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Abstract

This chapter discusses the most serious sources of error affecting global navigation sat-
ellite systems (GNSS) signals, classifying these in a new way, according to their nature 
and/or effects. For instance, errors due to clock bias or drift are grouped together. Errors 
related to the signal propagation medium, too, are treated in the same way. GNSS errors 
need to be corrected to achieve accepted positioning and navigational accuracy. We pro-
vide a theoretical description for each source, supporting these with diagrams and ana-
lytical figures where possible. Some common metrics to measure the magnitude of GNSS 
errors, including the user equivalent range error (UERE) and the dilution of precision 
(DOP), are also presented. The chapter concludes with remarks on the significance of the 
sources of error.
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1. Introduction

The services provided by global navigation satellite systems (GNSS) are used in a massive 
number of applications, both civilian and military. All GNSS systems comprise many satel-
lites orbiting the Earth at very high elevations. At a single point in time, there will be several 
satellites from which a receiver may have a clear line of sight to receive signals and build 
its own navigation solution. However, these signals are prone to several sources of distur-
bance, causing errors in the measurements that are generated inside the receiver, which in 
turn degrades positioning accuracy.

Most of the discussions here apply to all GNSS systems, but in some instances, we use the 
US GNSS system—the Global Positioning System (GPS)—as an example to explain our ideas. 
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Figure 1 depicts the structure of a typical GNSS system—GPS—with its three primary seg-
ments. In all GNSS systems, the signal makes a journey of thousands of kilometers between 
the satellite antenna and its destination, the receiver. The first and longest part of this trip is 
through space where the signal attains its characteristics. Nonetheless, when the signal travels 
through the atmosphere, this medium imposes some undesirable effects. The layers of the 
atmosphere add delays to signal propagation time, causing some errors in the measurements.

Once the signal nears the receiver antenna, it usually experiences some reflections and 
echoes, i.e. the signal often bounces off objects surrounding the receiver, potentially hitting 
the antenna multiple times—this phenomenon is known as multipath. Multipath is one of the 
major error sources that can be very harmful to GNSS signals in many applications [1]. All 
the abovementioned signal disturbances result from the nature of the signal or the propaga-
tion medium and are unintentional. Intentional signal degradation or replacement could be 
in many cases a tougher source of GNSS errors. One major type of deliberate errors is signal 
jamming. Signal jamming is deliberate interference caused by the broadcasting of radio fre-
quency (RF) signals near the receiver with the aim of preventing the tracking of GNSS signals. 
Some other less harmful error sources are discussed in this chapter, including system (circuit) 
errors and satellite orbital errors.

In general, this chapter discusses thoroughly the major sources of GNSS error sources, their 
causes, consequences, and scales. Each error source or factor is explained in depth, with sup-
porting figures whenever possible. Another contribution of this chapter is the presentation of 
a new scheme for categorizing GNSS errors.

Figure 1. The three GPS segments. Courtesy of Noureldin et al. [2].
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It is worth mentioning that in this work, we address the error sources that affect the stan-

dard point positioning (SPP) accuracy level where the receiver uses the broadcast ephemeris 
information and single-frequency measurements to estimate its position with a meter-level 
accuracy. However, there are other error sources that affect accuracy within the centimeter 
and millimeter level such as antenna phase center, phase wind-up, and site displacement 
errors. To achieve this degree of accuracy, the receiver needs to work in either differential 
GNSS mode or precise point positioning (PPP) mode, both of which are beyond the scope of 
this chapter.

2. Error sources and consequences

GNSS signals have very low power, and hence they are prone to several sources of noise and 
errors. The range measured by the GNSS receiver is contaminated by these errors, which is 
why it is called the pseudorange. The general pseudorange observation equation is expressed 
as follows:
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  s   is the pseudorange between the satellite s and the receiver r.   ρ  
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  s   is the true geometric 

range, c is the speed of light, and dt
r
 and dTs represent the receiver and satellite clock errors 

in seconds. The symbol I denotes the ionospheric delay, while T is the tropospheric delay in 
meters. Finally, ε combines the multipath and receiver noise errors.

In this section, GNSS errors will be categorized based on the nature of the error itself. Timing-
related errors in both the satellite and receiver are grouped as clock-related errors. Signal 
propagation errors combine atmospheric errors, multipath errors, and the effect of the relative 
motion between the satellite and receiver. Satellite orbit parameters needed to calculate satel-
lite position and velocity are estimated at the control segment. These parameters are sent to 
GNSS satellites to be broadcast in the navigation message. This estimation error is combined 
with the receiver noise effect as system errors. The last type of GNSS error is intentional 
errors. Those errors are, however, deliberate and can be harmful; these include signal jam-

ming and spoofing.

2.1. Clock-related errors

Receivers generate measurements based mainly on measuring time [3]. Indeed, time is central 
to GNSS systems; therefore, GNSS satellites are equipped with very precise, and hence very 
expensive, clocks [4]. Despite their accuracy, satellite clocks still drift slightly from GNSS 
time. For reasons of affordability and size, receiver clocks are usually much cheaper; conse-

quently, they drift from GNSS time rapidly. This drift translates into dramatic range errors 
in receiver measurements. Accordingly, it is significant to correct or compensate for timing 
errors in the GNSS signal. These clock errors can be summarized as follows:
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2.1.1. Satellite clock errors

There are three factors that can affect GNSS satellite clocks: stability, relativistic effects, and 
timing group delay.

Clock stability: The stability of a satellite clock is about 1 to 2 parts in 1013 a day, which is 
approximately 8.64 to 17.28 ns a day. This is equivalent to a range error of about 2.59 m to 
5.18 m [5]. This instability dTs’ is modeled using the quadratic function:
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are obtained from the broadcasted navigation message.

Relativistic effects: A clock aboard a satellite will be affected by both the general and special 
relativity theories. The net result is that this clock will appear to run faster than the same clock 
on Earth by approximately 38.4 μs/day. Scaled by the speed of light, this is equivalent to a 
range error of about 11,512 m. To compensate for this effect, a proper offset is introduced to 
the satellite clock rate before launching [4]. However, there is still a residual effect because of 
the noncircular satellite orbit, which should be compensated for at the user side. This relativ-

istic correction Δt
r
 is calculated by [6].
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where c is the speed of light, μ = 3.986005 x 1014 m3/s2 is the Earth’s universal gravitational 
parameter for GPS, a is the Earth’s semimajor axis, e is the eccentricity of the satellite orbit, 
and E is the eccentric anomaly of the satellite orbit. If the orbit was a perfect circle, this effect 
is zero as the eccentricity is zero. For instance, for an eccentricity of 0.015, the maximum value 
will be 16.8 ns, which corresponds to around 5 m. Another alternative equation to Eq. (3) is to 
use the satellite position and velocity to calculate the relativistic correction using the follow-

ing formula [7]:
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where   r   s  .  v   s   is the dot product of the satellite position and velocity vectors.

Timing group delay (TGD): the satellite clock corrections in the navigation message are 
referred to one GNSS signal or signal combination. In the case of GPS, this signal is the ion-

ospheric-free combination of the codes at L1 and L2 frequency bands. In the case of a single-
frequency operation, a correction should be made to compensate for the bias offset between 
L1 and the ionospheric-free combination signals. This correction is also provided in the navi-
gation message, named as timing group delay (TGD) [7].

The total satellite clock error is now calculated by the sum of the three terms as

   dT   s  =  dT   s'  + Δ  t  
r
   + TGD  (5)
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2.1.2. Receiver clock errors

GNSS receivers are equipped with inexpensive crystal clocks, which have low accuracy 
compared to satellite clocks [8]. As a result, the receiver clock error is much larger than 
that of the GNSS satellite clock. There are two ways to fix this issue. One is to use exter-

nal precise, usually cesium or rubidium, clocks which have superior performance, but the 
problem is that they are very expensive, as they cost between a few thousand dollars to 
about $20,000 [4].

The other solution, which is much more common, is to remove this error through differenc-

ing between satellites or by estimating the error as an additional unknown parameter in the 
position estimation process. This latter solution is meant to make receiver prices affordable 
[2]. Adding the receiver clock bias to the set of unknowns, in addition to three position param-

eters, sets the limitation to a minimum of four visible satellites, instead of three, for obtaining 
a solution from the receiver.

To prevent the receiver clock error from becoming too large, receiver manufacturers apply 
a clock-steering mechanism. Two main approaches are used for this [9]. The first method is 
continuous steering to keep the clock error within the acceptable range. The other method is 
clock jumping, where clock bias is adjusted only when the error reaches a certain threshold. 
Although the clock bias is estimated as an unknown parameter in the estimation filter, it 
should still be kept within a certain limit. The reason for this is that the receiver clock is used 
to time tag the receiver output. This time tag must have a minimum level of accuracy for time 
synchronization between different systems to occur.

2.1.3. Intersystem biases

One way to enhance the accuracy and the availability of the GNSS receiver solution is to 
use all the observations from all available GNSS constellations. GPS and the Russian global 
navigation satellite system, GLONASS, are currently fully operational systems with global 
coverage, while other systems are now evolving to achieve the worldwide coverage such as 
the European Galileo and the Chinese BeiDuo systems.

Each GNSS has its own timing system, and hence, there are some intersystem clock biases that 
should be considered when dealing with a multi-constellation system. This can be achieved 
by introducing new unknowns, which represent the time difference between the added GNSS 
constellation time and GPS time [10]. For example, if GLONASS measurements are to be 
used, then the receiver clock bias in Eq. (1) can now be represented as   dt  

r
   =  dt  

r,GPS
   +  dt  

r,GPS−GLONASS
   .  

As the number of unknowns is increased to five, this will require a minimum of five visible 
satellites from both constellations.

2.2. Signal propagation errors

During signal propagation time, the Earth would have rotated, causing a relative shift between 
the satellite and receiver locations at signal transmission time and signal reception time. If not 
accounted for, this relative distance, known as the Sagnac effect, will cause an extra error in 
the measured range.
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Furthermore, the GNSS signal travels a long trip between the satellite and the receiver. The 
first and longest part of the GNSS signal journey is through space where the signal preserves 
its original characteristics, foremost of which is its constant speed. At lower altitudes, how-

ever, the signal will experience some disturbances, e.g., ionosphere and troposphere effects. 
Moreover, during the final part of the signal path, the GNSS signal arrives directly at the 
receiver or via single or multiple reflections from the surrounding objects. This multipath 
effect is not deterministic and can degrade the signal dramatically. This section covers the fac-

tors that affect the signal throughout its journey between the satellite and the receiver.

2.2.1. Sagnac effect

The Sagnac effect is a relativistic error caused by the Earth’s rotation during signal propaga-

tion time between the satellite and the receiver [11]. Ephemeris parameters obtained from the 
navigation message provide information about the satellite position expressed in the Earth-
centered Earth-fixed (ECEF) frame at signal transmission time. However, during signal transit 
time, the Earth would have rotated (see Figure 2) and, hence, the ECEF frame; consequently, 
a correction is needed to express the satellite position in the ECEF frame at signal reception 
time instead of transmission time [2]. The amount of frame rotation during the signal transit 
time is w

e
(t

r
-t

t
), where w

e
 is the Earth rotation rate, t

r
 is the signal reception time, and t

t
 is the 

signal transmission time.

Although this error is not directly observable in Eq. (1), it is inherent in calculating the geo-

metric range   ρ  
r
  s  . The geometric range is calculated as the difference between the receiver posi-

tion and the satellites’ position, and by adding the Sagnac correction, it can be written as

   ρ  
r
  s  =  ‖ r  

r
   ( t  r  )  −  R  

z
   ( w  

e
   ( t  r   −  t  

t
  ) )  ⋅  r  s   ( t  t  ) ‖   (6)

where r
r
 is the receiver position vector and r

s
 is the satellite position vector, both in ECEF 

frame.   ‖⋅‖   is the norm, operator and   R  
z
   (θ)   is the coordinate rotation matrix around the z-axis of 

ECEF frame by an angle  θ  which is defined as

   R  
z
   (θ)  =  [ 

cosθ
  

sinθ
  

0
   − sinθ  cosθ  0   

0
  

0
  

1

 ]   (7)

If left uncompensated for, this effect could cause a position error of about 30 m [12].

2.2.2. Ionosphere errors

When the signal reaches an altitude of about 1000 km above the Earth’s surface, it penetrates 
the upper layer of the atmosphere, namely, the ionosphere (see Figure 3). This layer of atmo-

sphere includes various types of gases that are readily ionized by the sun’s radiation [4]. The 
intensity of solar activity is the key factor determining the condition of the ionosphere, but 
it is also affected by season and time of day. Accordingly, these three parameters define the 
level of ionization, thereby changing the refractive indices of the layers of the ionosphere, 
therefore, influencing the signal transit time measured by the receiver [8].
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The ionosphere acts as a dispersive medium, meaning that the ionospheric delay is frequency 
dependent. This delay represents one of the significant ranging errors in GNSS positioning 
and can reach a value of 300 ns (100 m) in some situations [13]. The first-order ionospheric 
delay I, in meters, is represented by the equation:

  I =   
40.3 ⋅ TEC

 _________ 
 f   2 

    (8)

where TEC is the total electron content which is defined as the number of electrons in a tube 
of 1 m2 cross section in the signal propagation direction and f is the signal frequency.

For dual-frequency receivers, using the ionospheric-free signal combinations, this first-order 
error can be removed and with it 99.99% of the ionospheric delay [14]. On the other hand, in 
single-frequency receivers, the ionospheric delay must be modeled or estimated. The simplest 
way is to use the broadcast models transmitted in the satellite navigation message, such as 
GPS Klobuchar model [13] and Galileo NeQuick model [15]. Nevertheless, these models can 
correct for approximately 50% rms of the ionospheric error; even the most accurate theoretical 
model can only correct up to 80% of this error [13].

Figure 2. The Sagnac effect.
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The other approach is to use a network of global or local dual-frequency receivers to esti-
mate ionospheric corrections in a grid model. This network usually estimates the vertical TEC 
(VTEC) and sends these corrections to the users. The satellite-based augmentation network 
(SBAS) corrections provided by the American Wide Area Augmentation System (WAAS) are 
an example of such corrections. The VTEC can be used to obtain the total slant TEC through 
an obliquity factor that accounts for the effect of the satellite elevation angle [16]. If the single-
frequency receiver has the capability of receiving these corrections, ionospheric error model-
ing will be more accurate than using broadcast models.

2.2.3. Troposphere errors

The next step is for the signal to move through the troposphere, the lowest part of the atmo-
sphere, extending from the Earth’s surface up to a maximum height of 20 km above sea level 
(see Figure 3). This part of the atmosphere is composed of dry gases and water vapor [16]. Since 
it is a refractive layer, the troposphere, too, delays GNSS signals; however, being electrically 
neutral, this layer is nondispersive for some GNSS frequencies [10]. The tropospheric delay 
has two components: wet and dry. The wet one is difficult to model, but luckily, it accounts 
for only 10 percent of the delay. The dry one, which is responsible for the rest of the delay, can 
be more easily modeled. The tropospheric delay is frequency independent; therefore, unlike 

Figure 3. The GPS signal’s propagation mediums [18].
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the ionospheric delay, it cannot be removed by combining measurements from L1 and L2 GPS 
signals. Depending on satellite elevation, the tropospheric delay adds up about 2.5 m to 25 m 
to range measurements [4].

For meter-level accuracy, several models can be used to mitigate the total tropospheric error, 
such as Hopfield model and Saastamoinen model. These models usually calculate the zenith 
delay (for elevation angle = 0) and then use a mapping function to obtain the total slant delay, 
depending on the satellite elevation angle [17]. For applications that need a higher level of 
accuracy in tropospheric error estimation, the dry component is modeled, while the zenith 
wet component is estimated as an additional unknown in the navigation filter.

2.2.4. Multipath errors

As the signal nears the receiver antenna, it can often be further degraded. In several scenarios, 
the signal may reach the receiver’s antenna via more than one path (see Figure 4), owing to 
signal reflections from surrounding structures or the ground [19]. Usually, one of the received 
signals would be the direct line-of-sight (LOS) signal, along with one or more of its echoes, 
which are delayed versions of the original signal. Those delayed versions are superimposed 
on the LOS signal, which can significantly distort the desired LOS signal. The multipath 
effect depends on the surrounding environment and the relative satellite-receiver motion. 
Moreover, in general, this effect cannot be canceled through differential positioning—even for 
closely spaced receivers. Therefore, the multipath error can limit positioning accuracy even if 
the other error sources have been removed. In the most severe conditions, the multipath error 
can cause a pseudorange error of up to 100 m [3].

One solution to avoid this source of error is to place the receiver antenna in a reflection-free 
location; however, this is not always practical, particularly when the GNSS receiver is on a 
moving platform. Another way to mitigate multipath error is through the receiver or antenna 
design. The “choke ring” antenna is one of the best-known antennas that mitigates multipath 
[20]. Other designs were made to keep the same high performance of the “choke ring” with 
lighter weight and smaller size [21]. Some modern receivers use techniques relying on mul-
tiple antennas or what is known as an antenna array. With such technology, the receiver 
can tune itself to track only the LOS signal and block all other replicas of the signal [22]. The 
multipath effect can also be mitigated at the measurement level while processing data. The 
simple way is by weighting the measurements according to the elevation angle, since the mul-
tipath error increases at lower elevation angles [1]. A more advanced approach is to detect the 
multipath effect using code-phase information, such as the code minus carrier observation. 
This data can be used to adjust satellite weighting or even to reject some measurements with 
severe multipath effects [23].

2.3. System errors

Some GNSS errors result from the overall nature of the system, e.g., the shape of orbital planes 
and receiver structure. These error sources are discussed in this section.
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2.3.1. Satellite orbital errors

Receivers calculate satellite position based on information contained in the navigation mes-

sage known as satellite ephemeris. These ephemeris parameters are estimated at the control 
segment and then uploaded to satellites. Satellites broadcast updated ephemeris data every 
2 hours; however, these parameters are estimated using a curve fit to predict the satellite 
orbit, which leaves residual errors relative to the actual orbit [2]. This error source introduces 
a root mean square (RMS) error of about 2 m [4]. This error can be mitigated if global or local 
network corrections for the satellite position are available. These corrections are used to refine 
the broadcast ephemeris corrections and, hence, improve accuracy. For post-processing, a 
more precise ephemeris, available from IGS [24], can be used if centimeter-level precision is 
required and a dual-frequency receiver was used.

2.3.2. Receiver noise

Receiver noise is a complex error generated at the receiver’s side while measuring satellite 
signals. It covers a broad spectrum of noise types, including but not limited to microwave 
radiations sensed by the antenna in the band of interest unrelated to the signal; noise intro-

duced by system components such as the antenna, cables, and amplifiers; and signal quan-

tization noise [25]. Receiver noise is considered white noise; therefore, it cannot be avoided 
entirely. However, with modern receiver technology, this term is lessened to about 0.1–1% 
of a cycle in the carrier phase and d of centimeters in pseudorange measurements. The 
contradiction here is that receiver noise increases by   √ 

__
 2    for single-differenced observations, 

while double-differenced ones have a noise amplification of two [26]. Observation differ-

encing is sometimes used to cancel the common between-receiver errors, between- satellite 
errors, or both.

Figure 4. Line-of-sight (direct) and multipath (indirect) signals [18].
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2.4. Intentional error sources

Some GNSS error sources are deliberate, i.e., imposed by the service provider or an attack on 
the system. These are discussed in the following subsections.

2.4.1. Selective availability

Selective availability is associated with only the GPS system among all the GNSS systems. 
Selective availability (SA) was an intentional degradation of GPS performance by the US gov-

ernment for national security reasons. Satellite clock corrections in the broadcast ephemeris 
were deliberately degraded to reduce the accuracy for civilian use of GPS to an accuracy level 
of 100 m for the horizontal position [20]. However, on 2 May 2000, this feature was discon-

tinued, and the USA announced that it would no longer impose this. Furthermore, the new 
generation of GPS satellites (GPS III) will not have this feature, meaning that SA cannot be 
used by the US government anymore [27].

2.4.2. Signal jamming

Intentional interference is, in many cases, a significant source of GNSS signal degradation. 
Intentional interference, known as signal jamming, is caused by the broadcast of malicious 
radio frequency (RF) signals to prevent GNSS receivers in the area from tracking GNSS sig-

nals [11]. The typical direct consequences of jamming are signal frequency shifts in Hertz (Hz)  
and a drop in signal power in decibels (dB). These effects, in turn, have the potential to cause 
severe errors in position, velocity, and time calculations and even completely freeze the 
receiver causing a denial of service condition. Attacking a GNSS signal through jamming 
requires neither sophisticated knowledge nor complex equipment: all that is needed is a sig-

nal of a higher power in the same frequency to defeat the target signal [28]. Figure 5 shows 
the visibility of several satellites in an open sky simulation scenario. Figure 6, on the other 
hand, shows the discontinuity (the highlighted rectangle) in satellite availability for the same 
scenario but when a jamming signal is inserted. The jamming signal lasted for about 1 minute 
with a power of around −70 dBm and a bandwidth of 10 MHz around the central GPS L1 
signal frequency. A slightly higher power jamming signal can completely block signals from 
all satellites in view.

One option to fight this problem is to use the military (M-Code) receivers or multi-constel-
lation receivers. Another option is to completely switch to any other available navigation 
solutions [29]. Among these is the long-range navigation system (Loran-C) which is not active 
now, but there is a noteworthy argument by the US Department of Defense to reactivate it 
for its significance as an alternative for GPS-based navigation. Furthermore, a modernized 
version of the system, known as enhanced Loran (e-Loran-C), has been already established 
and tested. What is special about this system is that its signal power is about a thousand times 
greater than the GPS signal power. Moreover, it uses an entirely different frequency range 
from GPS. This makes it safe from the intentional GPS jamming signals. Another alternative 
is the satellite-based augmentation systems (SBAS) and ground-based augmentation systems 
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(GBAS), which are approved by the US Federal Aviation System (FAA). These systems, though 
local, efficiently help in mitigating GPS signal outages. Moreover, they are robust against GPS 
signal jamming. Jamming-free navigation systems, e.g., Inertial Navigation Systems (INS), 
are an excellent alternative to rely on under jamming conditions.

2.4.3. Signal spoofing

GNSS signal spoofing is the creation of a faked GNSS signal that looks authentic to the GNSS 
receiver. Signal spoofing is more harmful than jamming because it is not readily detected. 

Figure 5. Satellite availability in a clean scenario.

Figure 6. Discontinuity in satellite availability during the presence of a jamming signal.
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The receiver can be fooled by the spoofing signal, which in turn affects its navigation solu-

tion. Furthermore, using correlation techniques to detect the spoofing is not feasible because 
the received signal is statistically correlated with the authentic GNSS signal, unlike the signal 
jamming case [30]. The effect of signal spoofing in degrading the navigation solution can have 
serious impacts in both military and civilian applications, especially those related to safety-
of-life services.

Research is ongoing to find reliable techniques for mitigating the effects of spoofing attacks 
[31]. One example of such techniques is based on the signal direction of arrival (DOA). If the 
GNSS receiver and its antenna can detect the signal DOA, this can be used to reject the spoof-
ing signal. This depends on the fact that, in most cases, the fake signal will be coming from a 
ground transmitter and therefore has a low elevation angle. On the other hand, the elevation 
angle of authentic signals can be predicted from the broadcast ephemeris [31].

2.5. User equivalent range error

After applying the appropriate models and the data in the navigation message to mitigate 
for the errors, one can use the so-called user equivalent range error (UERE) to quantify the 
total effect of the remaining errors on pseudorange measurements [2]. The metric, defined 
as the root sum square of the “unintentional” errors discussed above, is used to analyze the 
accuracy of the GNSS positioning solution under two assumptions. First, the measurement 
errors for all the satellites are uncorrelated; second, the independent errors are affecting the 
pseudorange measurement equivalently [4]. It is worth mentioning that the UERE is typically 
combined with the dilution of precision (DOP) to meaningfully express the expected accuracy 
of the GNSS positioning solution. The DOP measure is discussed in the next section.

2.6. Dilution of precision

One parameter that is independent of the cleanliness of measurements but plays a role in the 
accuracy of position accuracy is the DOP. This factor depends on the geometry of visible satel-
lites; the better the geometry is, the lower the DOP, and, hence, the better the position solution. 
Figure 7 visually depicts the concept of DOP. Figure 7(a) shows ideal case where signals from 
two satellites would form circles that intersect at the receiver position assuming the receiver has 
perfect measurements for the signal which is never true due to GNSS errors. Figure 7(b) repre-

sents a practical scenario in which uncertainty in measurement makes the virtual circuits radii 
a little ambiguous. The intersection region characterizes the area of possible receiver positions. 

Figure 7. Dilution of precision with range measurements in 2D. Courtesy of Noureldin et al. [2].
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Figure 8. Horizontal DOP values at low versus high latitudes.

Figure 9. Vertical DOP values at low versus high latitudes.

This region could have a totally different shape as in Figure 7(c). This solely depends on the 
geometry of seen satellites. DOP is used to select which satellites should be included in position 
calculations. An ideal receiver would select only the set of satellites with the minimum DOP [32]. 
The DOP number is unit-less, and calculating it requires knowing only the receiver and satel-
lites’ positions, i.e., no measurements are needed [4]. Hence, DOP could be computed before the 
journey to plan for trajectory data collection [2].
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DOP or the geometric DOP (GDOP) is the general term to describe the geometry of satellites; 
however, there are subcategories of this. Horizontal dilution of precision (HDOP), vertical 
dilution of precision (VDOP), and position dilution of precision (PDOP) are examples, to name 
a few. Simulation DOP values, using GPS only constellation, are shown in Figures 8 and 9,  
respectively, for low latitude (Equator) versus high latitude (North Pole) areas. It can be seen 
from both figures that DOP values at the Equator are always lower due to better satellite 
geometry. It can also be noted that GPS provides better HDOP against VDOP due to the 
arrangement of satellites and their orbits. The accuracy of the obtained/expected GPS solu-

tion is expressed as the product of the pseudorange error factor (i.e., UERE) and the geometry 
factor (i.e., DOP) [11]:

   Error in GPS solution = pseudorange error factor × geometry factor  = UERE × DOP   (9)

As an example on this, a UERE value of 9 m and an HDOP value of 1.4 will indicate a horizon-

tal position accuracy of 12.6 m at the two-sigma level.

3. Conclusion

GNSS signals have low power levels, and hence they are prone to many errors. These errors 
have various causes, scales, and, hence, consequences. This chapter discusses and classifies 
GNSS error sources according to their nature and effects. Errors related to the receiver and sat-
ellite clocks form one category—clock errors. Signal propagation errors explore a wide range 
of factors impacting the signal throughout its journey between the satellite and the receiver. 
Intentional error sources are grouped together. Whenever possible, diagrams and figures are 
used to explain the error type and/or size of the effect. Common error measure terms, includ-

ing the user equivalent range error (UERE) and the dilution of precision (DOP), are also pre-

sented. Some of the GNSS errors could be as small as a fraction of a signal cycle, e.g., receiver 
noise error, whereas other errors can be in the order of dozens of meters, e.g., ionosphere and 
multipath. Receiver clock bias can grow up to thousands of meters and, thus, needs to be 
modeled. Intentional error sources can completely deny the GNSS services. Regardless their 
scale, GNSS errors need to be mitigated to achieve accepted navigation accuracy. In addition 
to exploring each error type, this chapter mentions the best ways to address them.
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