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Abstract— Insufficient localization accuracy of global 

navigation satellite system (GNSS) receivers is one of the 

challenges to implement advanced intelligent transportation 

system in highly urbanized areas. Multipath and non-line-of-sight 

(NLOS) effects strongly deteriorate GNSS positioning 

performance. This paper aims to train a classifier by supervised 

machine learning to separate the type of GNSS pseudorange 

measurement into three categories, clean, multipath and NLOS. 

Several features obtained or calculated from the GNSS raw data 

are evaluated. This paper also proposes a new feature to indicate 

the consistency between measurements of pseudorange and 

Doppler shift. According to the experiment result, about 75% of 

classification accuracy can be achieved using a support vector 

machine (SVM) classifier trained by the proposed feature and 

received signal strength. 

Keywords—Global Positioning System, Multipath, NLOS, 

Support Vector Machine, Urban Area, Machine Learning 

I. INTRODUCTION 

Smart mobility is one of the six major components of the 
smart city development. Global navigation satellite system 
(GNSS) localization is essential to the smart mobility for 
different applications, including pedestrian [1] and vehicle 
navigation [2], fleet management [3], road traffic monitoring and 
analysis [4], road user charging (RUC) [5], irregular driving 
detection [6] etc. This paper focuses on the vehicle and 
pedestrian localization for the autonomous driving application.  

As the maturity and popularity of the pedestrian-to-vehicle 
(P2V) and vehicle-to-vehicle (V2V) communications [7, 8], the 
collision avoidance between pedestrian and autonomous 
vehicles could be achieved in the coming future. One of the 
current bottlenecks of the intelligent collision avoidance is the 
localization accuracy of pedestrian and vehicle. Generally 
speaking, GNSS receiver is the most common device/chip to 
provide absolute positioning information to the carriers. GNSS 
positioning performance is currently very satisfactory in the area 
with good satellite observing condition such as highway, express 
way, sub-urban and rural areas. Its positioning performance in 
urban area is a different story. The notorious multipath effect in 
dense building environment is dramatically reducing the GNSS 
localization accuracy. The multipath effect is sourced from the 
reflection and diffraction of satellite signal by the tall buildings 
and skyscrapers. It could easily deteriorate the GNSS accuracy 
to several tens of meters [9]. Comparing with the multipath 
effects, a more devastating phenomenon is non-line-of-sight 

(NLOS) reception. The difference between multipath and NLOS 
can be demonstrated as Fig.1. Multipath contains both the line-
of-sight (LOS) and reflected signals while NLOS contains only 
the latter one. 

 

 

Fig. 1. The multipath and NLOS effects in an urban canyon. (a) Multipath 

effect, (b) NLOS propagation [1]. 

The multipath effect could be roughly mitigated using 
sophisticated receiver correlator designs [10]. The principle of 
the correlator design is comparing the early, prompt and late 
channels in code tracking loop [11]. In the other words, it 
compares the direct signal with reflected one. Unfortunately, this 
design does not mitigate the NLOS effect at all because the 
NLOS contains only the reflected signal. Thus, the research 
focused on detection and mitigation of NLOS is increasing.  The 
NLOS detection methods can be categorized into antenna [12], 
advanced receiver algorithm [13, 14], sensors integration [15], 
3D building model and machine learning. The detail of the latter 
two methods will be discussed in the next section.  

This paper aims to develop a LOS, multipath, NLOS 
classifier based on machine learning algorithm. The pivot of 
successful machine learning is to identify the significant 
features. Thus, several variables obtained or calculated from the 
GNSS raw data is evaluated. The raw data denotes the 
pseudorange, carrier to noise ratio, Doppler shift frequency and 
carrier phase measurements which can be archived as RINEX 
format [16]. According to the recent announcement of Google, 
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all the new smartphone with Android Nougat OS can support the 
output of the above listed measurements [17]. Namely, an 
assumption can be made that the potential features extracting 
from the GNSS raw data is able to be obtained from most of the 
new GNSS devices. The novelty of this paper is to not only 
classifying clean and biased measurements but also further 
distinguish multipath and NLOS from the biased measurements. 

II. RELATED RESEARCH 

A. GNSS with 3D buildings 

Due to the rise of smart cities, the 3D city models are rapidly 
developed and became widely available. Recent research stream 
of dealing with multipath and NLOS is to utilize 3D mapping 
and is called as 3D mapping aided (3DMA) positioning 
methods. One of the most well-known 3DMA method is shadow 
matching [18, 19]. It takes advantage of making building 
boundary to predict satellite visibility from the 3D city model. 
Researchers are also focused on improved GNSS positioning 
accuracy using enhanced 3D digital map [20-22]. Instead of 
mitigating or excluding NLOS effect, in the past few years, the 
potential of using NLOS signal in constructive senses is 
proposed [1, 23, 24]. Researchers propose to combine ray-
tracing simulation with hypothesis-based positioning method to 
further improve the positioning accuracy. These range-based 
3DMA uses a ray-tracing technique to estimate the reflection 
route of NLOS signal. The route is then used to correct the 
NLOS delay from the biased pseudorange measurement and 
finally it further improved positioning accuracy to about 5 
meters for pedestrian applications [25]. However, the range-
based method cannot be easily adapted to low-cost receiver due 
to the heavy computational load caused by ray-tracing and the 
inaccessibility to 3D building models in real-time. In this paper, 
the ray-tracing simulation and 3D building model will be used 
in the offline stage to label the measurement into LOS, multipath 
and NLOS.  

B. GNSS using machine learning 

The discussion of GNSS using machine learning to facilitate 
its localization starts from 2013. The first idea is to classify the 
location accuracy into three accuracy bands based on the 
combination of number of satellite, dilution of precision (DOP), 
received signal strength and receiver speed [26]. A Wilcoxon-
norm-regressor based on pseudorange residual is proposed to 
detect biased pseudorange measurement [27]. Researchers also 
select elevation and azimuth angles as the key features in their 
machine learning to mitigate multipath effect for static 
applications [28]. Variable from the correlators in the receiver 
signal processing stages are extracted to classify the six typical 
scenarios of GNSS receiver [29]. In 2016, the idea of machine 
learning to detect NLOS is also implemented in Nav2Nav 
application, which is well-known as the vehicle cooperative 
navigation [30]. A decision tree approach is used to classify LOS 
and NLOS based on receiver signal strength and elevation angle 
[31]. In this paper, we investigate several features used in the 
related work. In addition, the measurement of Doppler shift is 
also used as key feature in the proposed classifier trained by 
support vector machine (SVM).  

III. GNSS DATA COLLECTION AND LABELLING 

In order to record a large amount of multipath and NLOS 
data, we set up a static experiment in a dense building area in 
Hung Hom, HK. Fig. 2 demonstrates the environment that the 
data was collected. The antenna is attached with a stick and put 
outside of the window for long time data collection. Commercial 
GNSS receiver, u-blox M8, is deployed to collect multipath and 
NLOS data. 24 hours of the biased GNSS raw measurement are 
collected. In this dataset, almost all the measurements are 
affected by the building in the vicinity. In the other words, this 
urban dataset only contains multipath and NLOS measurements. 

 

Fig. 2. a) denotes the environment of the multipath and NLOS data was 

collected and b) indicates the installment of the patch antenna. 

Labelling multipath and NLOS signals from the urban data 
is challenging because of the implicit signal transmission. Our 
idea is to implement the ray-tracing simulation to identify the 
signal transmitting types. The principle of ray-tracing in GNSS 
is to use the known satellite, reflector and receiver geometry to 
trace the direct and reflecting path. The detail of the ray-tracing 
in the simulation of GNSS multipath can be found in [32]. The 
satellite position can be estimated by the broadcast ephemeris. 
The reflector is searched from the 3D building models. We 
manually construct basic 3D building models of Hung Hom area 
by referencing the 3D model in Google Earth as Fig. 3. 

 

Fig. 3. Constructed 3D building models in Kowloon, HK (courtesy of Google 

Earth).  

In the labelling stage, the receiver is set statically in the 
experiment so that the ground truth of receiver position can be 
easily determined. The ground truth is given by the topographic 
map brought from land department of HK government. The 
resolution of the map is 20 centimeter (cm). Each point is given 
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with accurate 2D coordinate. The height is given by the 
topography height obtained from Google plus the height of 
equipment. Once the positions of satellite, reflector and receiver 
are known, the ray-tracing simulation can be performed.  

Fig.4 shows the skyplot of the urban dataset. This skyplot is 
generated using ray-tracing and 3D building model. The grey 
area in Fig.4 indicates the direct transmission is blocked 
according to the building models. It is clear that many NLOS 
propagations are received in the biased dataset.  

 

Fig. 4. Skyplots with surrounding building information of data collected in 

HK. The color of satellite trajectory denotes received signal strength, the redder 

the color is, the higher of the signal strength received. 

The algorithm of NLOS identification is described as 
following. 

Algorithm 1: NLOS and multipath separation using ray-tracing simulation 

and building model 

STEP1: Prepare a line segment connecting the receiver and the 

satellite of the measurement (i). 

STEP2: Initialize signal type of measurement (i) as Multipath  

STEP3: for all the building model 𝐁𝑗 do 

STEP3:  for all planes (walls) 𝒘𝒌𝒋  of a building do 

STEP4:   if the intersection between the line segment and plane 𝑤𝑘𝑗 

exists then 

STEP5:    the measurement identified as NLOS 

    break 

   end if  

STEP6:  end for planes 

STEP7: end for buildings 

 

Regarding to LOS (clean) GNSS data, HK land department 
establishes a GNSS network called SatRef to provide differential 
correction for HK users. We adopt the archived RINEX data of 
the SatRef station as the LOS data because the reference station 
is located in place with great observing condition. 24 hours of 
clean data is also used in training the classifier.  

Observing Fig.4, we can discover that the received signal 
strength of NLOS signal at lower elevation angle is also lower. 
Namely, it implies the NLOS can be identified using the 
combination of different variables. Next section discusses the 
variables that can be used to classify the measurement types.  

IV. FEATURES TO CLASSIFY LOS/NLOS/MULTIPATHH 

MEASUREMENT 

LOS signal contains only direct signal from the satellite to 
receiver. NLOS reception denotes only the signal reflection 
received by the receiver. Multipath contains both direct and 
reflecting signal. Based on the nature of their differences, the 
following variables could be hints to separate the measurements.  

Received signal strength, 𝑅𝑆𝑆: Received signal strength is 
usually represented by carrier to noise ratio (C/N0). Due to the 
theory of signal propagation, additional travelling and reflection 
will increase the signal propagation loss. Thus, it is one of the 
most popular variable to be used to mitigate multipath effects. 
The RSS data can be easily obtained from NMEA and RINEX 
data format. 

Change rate of received signal strength, ∆𝑅𝑆𝑆: Due to the 
principle of receiver tracking loop, the received signal strength 
of multipath and NLOS could increase if the antenna stays static. 
As indicated in [33], the speed of the antenna is strongly related 
to the GNSS positioning error caused by multipath effect. 

Pseudorange residue, 𝜂: Least square estimation is a basic 
method to implement the triangulation which is the principle of 
GPS positioning. With the least squares estimation, the receiver 
states can be estimated using (1). 

 �̂� = (𝑮𝑻𝑮)−𝟏𝑮𝑻𝝆  (1) 

 
where 𝒓 is the receiver states, including 3-dimentional position 
and clock offset between receiver and GPS system time. 𝝆 
denotes the pseudorange measurement. 𝑮  denotes the 
measurement matrix consisting of the unit LOS vector between 
the satellite and receiver. The inconsistency between the 
pseudorange measurements can be expressed by 𝜂  and 
calculated as: 

 �̂� = 𝝆 − 𝑮 ∙ 𝒓   (2) 

 
As indicated in the previous study [14], the pseudorange residual 
can be regarded as an indicator to exclude multipath and NLOS 
signal if the number of measurement is sufficient.  

Difference between delta pseudorange and pseudorange 
rate |∆𝜌 − �̇� ∙ ∆𝑡| : The idea of this variable to check the 
consistency between the measurements of pseudorange and 
Doppler shift. The pseudorange and Doppler shift are estimated 
by code and frequency/carrier tracking loops, respectively. 
Namely, they are independent if neglecting their trivial cross-
correlation. Delta pseudorange indicates the change of 
pseudorange between two epochs. It is calculated by: 
 ∆𝜌𝑘(𝑖) = 𝜌𝑘(𝑖) − 𝜌𝑘−1(𝑖)

  (3) 

 
where superscript (i) and subscript k denote index of satellite and 
epoch, respectively. Pseudorange rate �̇�  also indicates the 
change of pseudorange between two epochs. It can be calculated 
by Doppler shift based on the principle of Doppler effect as: 
 �̇�(𝑖) = 𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟(𝑖) − 𝑐𝑓𝐿1  (4) 
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where 𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟  denotes the Doppler shift in unit of Hz, c 

denotes the speed of light and fL1 denotes the GPS L1 band 

carrier frequency, which is 1575.42 MHz. Thus, their difference 

can be calculated by |∆𝜌 − �̇� ∙ ∆𝑡| , where ∆𝑡  is the time 

difference between two epochs. 

 
The labelled data with respect to the above listed variable is 
shown in the figure below. The figure on the top panel clearly 
shows tne most of the clean LOS data has strong received signal 
strength comparing to the others. The C/N0 of multipath is within 
a wide range between 25 to 40 dB-Hz. The C/N0 of NLOS is 
rarely larger than 35 dB-Hz and mainly between 25 to 30 dB-Hz. 
In terms of change rate of C/N0, multipath has no distinct feature, 
it is widely distributed between -20 to 20 dB-Hz. NLOS is 
distributed between -10 to 10 dB-Hz. With regards to 
pseudorange residue, LOS has much smaller value because they 
are consistent to majority of received measurement. It is clear 
that NLOS distributes more on the positive than negative value. 
This phenomenon is due to the NLOS travels additional route 
comparing to LOS. Thus, its pseudorange error tends to be 
positive value. To observe the bottom column, LOS signal has 
better consistency between pseudorange and Doppler shift 
measurements than that of multipath and NLOS. Comparing to 
multipath and NLOS, they are similar in the range between -10 
to 10 meters. However, NLOS has wider range of difference 
between delta pseudorange and pseudorange rate. This 
difference will be shown in the next section.  

 

 

Fig. 5. Labelled LOS, Multipath and NLOS (1, 0 and -1 in Y-axis) data with 

respected to the GPS variables in X-axis. Color denotes the number of data. 

V. SUPPORT VECTOR MACHINE 

A. Algorithm and Toolbox 

A linear representation of the regressor, classes y and 
features x is expressed as: 
 𝑦(𝑥) = w𝑇𝜑(𝑥), 𝑥 ∈ ℝ   (5) 

 

where 𝜑(∙) denotes a manipulatable function that predefined 
according to application. w denotes the parameter of regressor, 
which is the parameter estimated by machine learning approach. 
A SVM is a supervised machine learning technique used for 
classification.  Its regressor can be understood as hyperplanes to 
separate different classes [34]. The hyperplanes of SVM can be 
described as: 

 minimize ‖w‖2  s. t.   𝑦 − w𝑇𝜑(𝑥) ≤ 𝜀𝑦 − w𝑇𝜑(𝑥) ≥ −𝜀  (6) 

 

where 𝜀 denotes the margin of the hyperplane. If the margin is 
small (i.e., almost zero), implying the trained classifier cannot 
clearly separate the classes based on the given features. To 
obtain the given equation (6), its optimization can be expressed 
as: minimize ‖w‖2 + γ ∑ 𝐿(𝑦𝑘 − w𝑇𝜑(𝑥𝑘))𝑁𝑘=1  (7) 

 
where 𝑟  denotes regularization parameter, which is used to 
balance the trade-off between model complexity and training 
error. Finally, it can be expressed as: 

 𝑦(𝑥) = ∑ 𝛼𝑘𝜙(𝑥, 𝑥𝑘)𝑁𝑘=1    (8) 

 
where 𝜙(𝑥, 𝑥𝑘) = 𝜑(𝑥)𝑇𝜑(𝑥𝑘)   (9) 

 𝜙(∙,∙) denotes a kernel function and α can be estimated using 
sophisticated toolbox. This paper applies SVM provided by 
Matlab [35]. This paper uses the default setting of Matlab to 
quickly demonstrate the effectiveness of SVM to classify clean 
and biased GNSS pseudorange measurement. In the default 
setting, the linear kernel, 𝜙(𝑥, 𝑥𝑘) = 𝑥𝑇𝑥 is used. There is other 
setting could better fit this GNSS LOS, multipath and NLOS 
classification. This paper uses the default setting of Matlab to 
quickly demonstrate the effectiveness of SVM to classify clean 
and biased GNSS pseudorange measurement.  

B. Classifaction Result 

To avoid the unbalance problem of the training dataset, 
identical numbers of LOS, multipath, and NLOS measurement 
are used. There are 85,365 samples used. This sample will be 
divided into 10 sets to conduct the 10 – fold classification [36]. 
The classification accuracies using single feature listed in 
Section IV are compared in TABLE I.   

TABLE I.  LOS, MULTIPATH AND NLOS CLASSIFICATION ACCURACY 

USING SINGLE FEATURE. 

Received 
signal 

strength 

Change rate of 
received signal 

strength 

Pseudorange 
residue 

Difference between 
delta pseudorange and 

pseudorange rate 

67.1% 39.4% 40.5% 65.4% 

 

As shown in TABLE I, the classification accuracy using the 
feature of pseudorange residue is less than 50%. In deep urban 
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canyon, the number of NLOS and multipath could be more than 
that of LOS in a single epoch data. It results in the pseudorange 
residue cannot be a distinct feature to classify the types of GNSS 
received signal. The accuracy using change rate of RSS as 
feature is less than 40%. The change rate of RSS can 
successfully separate clean and biased measurement. However, 
it has no capability to separate multipath and NLOS. The 
classification results using the rest two features can achieve more 
than 65%. Fig. 6 and 7 show the labelled data in the perspectives 
of received signal strength and the difference between delta 
pseudorange (from pseudorange measurement) and pseudorange 
rate (from Doppler shift). 

 

Fig. 6. Labelled data of LOS, multipath and NLOS. X and Y axes are RSS and |∆𝜌 − �̇� ∙ ∆𝑡|, respectively. 

 

Fig. 7. Mean and standard deviation of |∆𝜌 − �̇� ∙ ∆𝑡| in terms of C/N0. Solid 

and dash lines denote the mean and mean plus/minus a standard deviation, 

respectively.  

To observe Figs. 6 and 7, it is obvious that LOS, multipath and 
NLOS can be easily divided into three groups based on these two 
features. For example, the measurement is very likely to be 
NLOS if the C/N0 is larger than 40 dB-Hz and |∆𝜌 − �̇� ∙ ∆𝑡| is 
less than 2 meters. Based on this logic, the SVM classifier 
trained using multiple features are listed in TABLE II. There are 
three features are used, 1) RSS, 2) pseudorange residue and 3) 
difference between delta pseudorange and pseudorange rate. 

Using both the first and last features, the classification accuracy 
will achieve about 75%. If all the features mentioned in Section 
IV are used to train a SVM classifier, then still about 75% of 
accuracy is achieved. In the other words, it is not improved using 
additional two features. 

TABLE II.  LOS, MULTIPATH AND NLOS CLASSIFICATION ACCURACY 

USING MULTIPLE FEATURES. 

Received signal strength  

Difference between delta 
pseudorange and 
pseudorange rate 

Received signal 
strength  

Pseudorange 
residue 

Pseudorange residue 

Difference between delta 
pseudorange and 
pseudorange rate 

75.4% 69.9% 66.8% 

VI. CONCLUSIONS AND FUTURE WORK 

This paper applies a machine learning approach to 
distinguish the received GPS signal types, namely LOS, 
multipath and NLOS, using several features extracted from raw 
measurements. Four features including 1) received signal 
strength, 2) change rate of RSS, 3) pseudorange residue and 4) 
difference between delta pseudorange and pseudorange rate are 
discussed. According to the experiment result, about 75% of 
classification accuracy can be achieved using a SVM classifier 
trained by the first and the last features. 

This work is a pilot study to show the effeteness of the 
machine learning approaches in GNSS positioning. It is 
important to note the classifier developed can only be applied to 
static applications. Future work of this study is to train the 
classifier using dynamic dataset. In addition, different machine 
learning approaches, such as decision tree, will be applied to find 
the most reliable classifier. 
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