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ABSTRACT 

 

The poor performance of global navigation satellite 

systems (GNSS) user equipment in urban canyons is a 

well-known problem, especially in the cross-street 

direction. A new approach, shadow matching, has recently 

be proposed to improve the cross-street accuracy using 

GNSS, assisted by knowledge derived from 3D models of 

the buildings close to the user of navigation devices. In 

this work, four contributions have been made. Firstly, a 

new scoring scheme, a key element of the algorithm to 

weight candidate user locations, is proposed. The new 

scheme takes account of the effects of satellite signal 

diffraction and reflection by weighting the scores based on 

diffraction modelling and signal-to-noise ratio (SNR). 

Furthermore, an algorithm similar to k-nearest neighbours 

(k-NN) is developed to interpolate the position solution 

over an extensive grid. The process of generating this grid 

of building boundaries is also optimized. Finally, instead 

of just testing at two locations as in the earlier work, real-

world GNSS data has been collected at 22 different 

locations in this work, providing a more comprehensive 

and statistical performance analysis of the new shadow-

matching algorithm. 

 

In the experimental verification, the new scoring scheme 

improves the cross street accuracy with an average bias of 

1.61 m, with a 9.4% reduction compared to the original 

SS22 scoring scheme. Similarly, the cross street RMS is 

2.86 m, a reduction of 15.3%. Using the new scoring 

scheme, the success rate for determining the correct side of 

a street is 89.3%, 3.6% better than using the previous 

scoring scheme; the success rate of distinguishing the 

footpath from a traffic lane is 63.6% of the time, 6.8% 

better than using the previous scoring scheme. 
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1. INTRODUCTION 

 

The poor performance of global navigation satellite 

systems (GNSS) user equipment in urban canyons is a 

well-known problem in terms of both accuracy and 

solution availability (Jiang et al., 2011; Groves, 2011; 

Wang et al. 2012). In contrast, a great number of day-to-

day navigation requests are made in urban areas by city 

residents. Advanced intelligent transportation systems, for 

example, rely on positioning systems for their ability to 

direct individual cars in order to maximize traffic flow and 

prioritize emergency vehicles (Bruner, J, 2008). Vehicle 

lane detection in lane guidance systems, location-based 

advertising, augmented-reality applications, and step-by-
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step guidance for visually impaired and tourists all require 

sufficient positioning accuracy to perform their functions 

(Rashid et al., 2005, You et al., 2008, Broll et al., 2008). 

However, the availability and accuracy of GNSS in urban 

areas limits the use of these applications (Wang et al., 

2012). 

 
Figure 1. The buildings cast GNSS shadows over the 

adjacent terrain. 

 
Figure 2. A schematic diagram of shadow matching.  

 

 
Figure 3: The shadow-matching concept: using direct 

signal reception to localise position 

 

The problem of GNSS performance in urban canyons 

arises because where there are tall buildings or narrow 

streets, the direct line-of-sight (LOS) signals from many, 

sometimes most, of the satellites are blocked. The 

buildings effectively cast GNSS shadows over the adjacent 

terrain. Figure 1 illustrates this. Without direct signals 

from four or more satellites, an accurate position solution 

cannot be determined. Sometimes, a degraded position 

solution may be obtained by making use of signals that can 

only be received by reflection off a building; these are 

known as non-line-of-sight (NLOS) signals (Ercek et al., 

2005; Viandier et al., 2008). 

As well as affecting the number of available GNSS signals, 

an urban canyon also affects the geometry of satellites, 

which causes lower accuracy in the cross-street direction. 

This is because signals with lines of sight going across the 

street are much more likely to be blocked by buildings 

than signals with lines of sight going along the street. This 

is illustrated by Figure 2. As a result, the signal geometry, 

and hence the positioning accuracy, will be much better 

along the direction of the street than across the street 

(Groves, 2011).  

 

For improving navigation performance in highly built-up 

areas, a variety of navigation sensors have been used to 

enhance or augment GNSS. Road vehicles typically 

combine GNSS with odometers, and map-matching 

algorithms, while pedestrian navigation users may 

combine GNSS with cell phone signals, Wi-Fi and/or dead 

reckoning using inertial sensors, magnetic compass and 

barometric altimeter (Groves, 2008; Farrell, 2008). 

However, these approaches improve the continuity and 

robustness of the position solution, but not the cross-street 

accuracy. 

 

A new approach has recently be proposed to improve the 

cross-street accuracy using GNSS, assisted by knowledge 

derived from 3D building models close to the user of 

navigation devices (Groves, 2011). As 3D building models 

are becoming more accurate and widely available 

(Bradbury, 2007; Bradbury et al., 2007), they may be 

treated as a new data source for urban navigation and used 

to improve cross-track positioning accuracy in urban 

canyons. This can be achieved by predicting which 

satellites are visible from different locations and 

comparing this with the measured satellite visibility to 

determine position. Satellite visibility predictions using a 

3D city model have been validated with real-world 

observation, demonstrating the practical potential of 

shadow matching (Bradbury, 2007; Bradbury et al., 2007; 

Suh and Shibasaki, 2007; Kim et al., 2009; Ji et al., 2010; 

Wang et al, 2012). A preliminary shadow-matching 

algorithm has been developed and demonstrated the ability 

to distinguish pavement from vehicle lane, and identify the 

correct side of street using real-world GPS and GLONASS 

measurements (Wang et al, 2011, Groves et al., 2012). 

 

However, only direct line-of-sight (LOS) signals are 

predicted in the earlier algorithm, whereas the user 

equipment can also observe diffracted and reflected signals. 

This mismatch can degrade shadow-matching performance. 

In this work, four contributions have been made. Firstly, a 

new scoring scheme, a key element of the algorithm to 

weight candidate user locations, is proposed. The new 

scheme takes account of the effects of satellite signal 

diffraction and reflection by weighting the scores based on 

diffraction modelling and signal-to-noise ratio (SNR). 

Furthermore, an algorithm similar to k-nearest neighbours 

(k-NN) is developed to interpolate the position solution 

over an extensive grid. The process of generating this grid 

of building boundaries is also optimized. Finally, instead 

of just testing at two locations as in the earlier work, real-
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world GNSS data has been collected at 22 different 

locations in this work, providing a more comprehensive 

and statistical performance analysis of the new shadow-

matching algorithm. 

 

The improved shadow-matching algorithm is described in 

Section 2, employing a set of new scoring schemes to 

acknowledge signal diffraction and reflection. Section 3 

then describes the testing of the algorithm using real-world 

GPS and GLONASS measurements, and compares 

performance of the shadow-matching algorithm using 

different scoring schemes. Finally, in Section 4, 

conclusions are drawn and future work discussed. 

 

2. SHADOW MATCHING OPTIMIZATION  

 

This section describes the full implementation of the 

shadow-matching algorithm and discusses how it was 

optimized. Section 2.1 first explains the existing shadow-

matching algorithm. Section 2.2 then gives a 

comprehensive implementation of the algorithm, which 

consists of two phases – offline phase and online phase. 

Each step in the two phases are further introduced, with 

emphasis on optimization in grid generation of building 

boundaries and a set of proposed new scoring schemes. 

 

2.1 The Existing Shadow-matching Algorithm 

 

The principle of shadow matching is simple (Groves, 

2011). Due to obstruction by buildings in urban canyons, 

signals from many GNSS satellites will be receivable in 

some parts of a street, but not others. Figure 3 illustrates 

this, noting that the boundary between the two regions is 

fuzzy due to diffraction effects at building edges 

(Bradbury, 2007). Where each direct signal is receivable 

can be predicted using a 3D city model. Consequently, by 

determining whether a direct signal is being received from 

a given satellite, the user can localise their position to 

within one of two areas of the street. By considering other 

satellites, the position solution may be refined further. At 

each epoch, a set of candidate user positions is generated 

close to the user’s low-accuracy conventional GNSS 

positioning solution. At each candidate user position, the 

predicted satellite visibility is matched with the real 

observations. The candidate position that has the best 

match between the prediction and the real observations is 

deemed the shadow matching positioning solution. This 

process can be conducted epoch by epoch, so the GNSS 

user can be either static or dynamic. Figure 2 illustrates 

this process.  

 

2.2 The Improved Shadow-matching Algorithm 

 

The new shadow-matching algorithm has two phases – the 

offline phase (the preparation step) and the online phase, 

consists of five steps, both illustrated in Figure 4. An off-

line phase is conducted to generate a grid of building 

boundaries. In the beginning of the online phase, the user 

position is first initialized, e.g. using standard point 

positioning (SPP) with GNSS pseudo-ranges. The second 

step defines the search area for the shadow-matching 

position solution. For the third step, the satellite visibility 

at each grid position is predicted using the building 

boundaries generated from the 3D city model. After that, 

the similarity of satellite visibility between prediction and 

observation is evaluated using a scoring scheme, providing 

a score for each grid point in search area. Finally, the 

shadow-matching positioning solution is generated by a 

modified k-nearest neighbours algorithm, which averages 

the grid points with the highest scores. Each of the steps is 

described in more detail below. 

 

 
Figure 4:  A workflow of the improved shadow-matching algorithm. 
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Figure 5: An example of a building boundary as azimuth-

elevation pairs in a sky plot. (The centre of the plot 

correspond to a 90º elevation or normal incidence) 

 

 

 
 

Figure 6: The process generating the grid of building 

boundaries 

 

 Step 0: Generate a Grid of Building Boundaries 

 

In the off-line phase, building boundaries at a grid of 

locations are generated. A building boundary means from 

a GNSS user’s perspective, the building’s edge determined 

for each azimuth (from 0 to 360°) as a series of elevation 

angles. The results from this step show where the building 

edges are located within an azimuth-elevation sky plot. 

Figure 5 shows an example of a building boundary 

computed from a candidate user location. Once the 

building boundary has been computed, it may be stored 

and reused easily in the online phase to predict satellite 

visibility by simply compare the elevation of a satellite 

with the elevation of the building boundary at the same 

azimuth.  

 

From the perspective of mobile devices, the algorithm 

trades time and computing power to a one-off processing 

requirement at the server side. Specifically, this is 

achieved by representing the 3D model in a specially 

designed form - building boundaries at each candidate 

positions. The logic behind the strategy is that the vast 

amount of data in a 3D city model is not of direct interest 

to the shadow-matching algorithm, only where the edges 

of the buildings are located from a user’s perspective 

matter. Thus, utilizing this knowledge, only building 

boundaries at each candidate positions are abstracted from 

the 3D model. This method saves computation load 

because individual mobile devices do not need to compute 

the building boundaries on the fly. Instead, they can 

simply request building boundaries at a certain range of 

locations, or cache a desired region. 

 

Using stored building boundaries, fewer than fifty 

comparison and addition operations are required to 

calculate an overall shadow matching score for one 

candidate position with two GNSS constellations. 

Therefore, shadow matching may be performed in real 

time on a mobile device with several hundred candidate 

positions, where necessary.  

 

Without any data compression, about 300 bytes are 

required to store a building boundary with a 1�  resolution. 

If a 2� 2 metre grid spacing is used for the candidate 

positions, a 1 km long 20 m wide street will contain 5000 

grid points, requiring 1.5 MB of data storage. By 

exploiting the similarities both between neighbouring 

azimuths in the same building boundary and between 

building boundaries at neighbouring grid points, 

substantial data compression should be achievable; 

possibly up to a factor of ten. 

 

Therefore, a standard 4 GB flash drive could store building 

boundary data for 2500–25000 km of road network. For 

comparison, the Greater London metropolitan area 

contains about 15000 km of road. However, as shadow 

matching is only useful in streets where conventional 

GNSS positioning is poor, the database need only contain 

building boundary data for these streets, maybe 10% of the 

total. Therefore, it should be practical to preload a mobile 

device with shadow-matching data for several cities, which 

could be kept up-to-date via the internet. 

 

A software toolkit for generating the grid of building 

boundaries from a 3D city model was developed in C++.  

Figure 6 shows the process.  
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Figure 7 The optimization used in building boundary 

generation by refining city models according to location of 

candidate user position and azimuth of interest. (Aerial 

perspective, the figure is not drawn to scale) 

 

The process can be broken into four steps. Firstly, a one 

meter by one meter horizontal grid of points, covering the 

3D city model area, is generated. The height is set to be 

1.5 meters above the terrain height measured in the 3D city 

model. Secondly, a pre-processing step is developed to 

eliminate indoor points from the generated grid in the first 

step, because the current shadow-matching algorithm is 

designed to work outdoors. Outdoor points are 

distinguished from indoor ones by testing whether the 

elevation angle of the sky at each azimuth is 90 degrees. 

Further details of the algorithms testing line-of-sight 

visibility can be found in a previous paper (Wang et al, 

2012). Thirdly, buildings that are unlikely to block satellite 

signals are eliminated from the search area, based on 

checks of their relative location from the candidate 

position of interest. Finally, the highest elevation angle for 

a visible sky at each azimuth is tested to determine the 

building boundary at each outdoor candidate position. 

 

 

Figure 6 also illustrates the optimization of the process of 

building boundary generation. Without optimization, it 

takes an estimated 53 days to perform the process at a 1 m 

by 1 m grid of candidate positions across a 500 m by 500 

m area, using a computer with a CPU speed of 2.67 GHz. 

In order to improve the efficiency, only buildings that are 

close to the candidate position and in the direction of 

interest are tested. Figure 7 illustrates this search area. It 

should be noted that the parameters used in this example 

are manually selected based on knowledge of the 3D city 

model used in this work. Appropriate changes should be 

made if using another type of city model. After 

optimization, the time required to generate building 

boundaries at the same grid of points was reduced to less 

than 4 days, a 92.5% reduction in time compared to the 

original algorithm. 

 

 Step 1 Position Initialization (Online Phase) 

 

In the first step of shadow-matching algorithm, standard 

point positioning (SPP) using GNSS pseudo-ranges is 

conducted to acquire an initial user position. In an urban 

environment, the accuracy is often poor. Consistency 

checking may be used to identify non-line-of-sight signals 

and remove them from the position solution (Jiang et al., 

2011, Jiang and Groves, 2012). Other available positioning 

methods (e.g. Wi-Fi or Cell network solution) may be 

introduced into this step when the GNSS SPP is poor or 

unavailable.  

 

 Step 2 Determine the Search Area for Candidate 

Positions from the Building Boundaries at a Grid  

 

The second step defines the search area in which candidate 

positions are located for the shadow-matching position 

solution. A search area is defined based on an initial 

position generated in the first step. A simple 

implementation can be to draw a fixed-radius circle 

centred at the initialized position, but more advanced 

algorithms can be developed to use the knowledge from 

the initialization process to optimize the search area. 

 

For instance, if the initial position is generated using a 

conventional GNSS solution, the signal geometry, and 

hence the positioning accuracy, will be much better along 

the direction of the street than across the street. This is 

because an urban canyon affects the geometry of the 

available GNSS signals. Signals with lines of sight going 

across the street are much more likely to be blocked by 

buildings than signals with lines of sight going along the 

street. Therefore, the conventional GNSS solution has 

lower accuracy across-street and higher accuracy along-

street, which is complementary to shadow-matching 

algorithm. 

 

Thus, the along-street component of SPP solution can be 

used as a reference to define the search area and thus 

generate candidate user positions that vary more in the 

across-street direction. This is illustrated by the two 

mobile phones besides the SPP solution in Figure 2, with 

the green area representing the search area centred at the 

initial position. A more advanced shadow-matching 

algorithm would vary the size of its search area based on 

an assessment of the quality of the SPP solution. 

 

 Step 3 Predict Satellite Visibility at Each Candidate 

Position 

 

In the third step performed at each candidate position, each 

satellite’s elevation is compared with the building 

boundary elevation at the same azimuth. The satellite is 

predicted to be visible if the satellite is above the building 

boundary.  
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Figure 8: Scoring matrix giving the score for each satellite 

in shadow matching (SS22) 
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Figure 9: Scoring matrix giving the score for each satellite 

in shadow matching, which models diffraction effects 

(SS23) 

 

1 0

0 1

VisibleInvisible

Strong signal
(high SNR)

Not tracked

Prediction

Observation 0.5 0.5
Weak signal
(low SNR)

 
Figure 10: Scoring matrix giving the score for each 

satellite in shadow matching, which account for weak 

signals that are likely to be caused by signal diffraction 

and reflection (SS32) 
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Figure 11: Scoring matrix giving the score for each 

satellite in shadow matching, which both models 

diffraction effects and accounts for weak signals that are 

likely to be caused by signal diffraction and reflection 

(SS33) 

 

 

 

 
Figure 12: Part of the 3D model of London used in the 

experiments. 

 

The diffraction effect is also modelled in this work (Wang 

et al., 2012). A three-degree diffraction zone is modelled 

for building boundaries both horizontally and vertically. 

Thus, in this model, from the perspective of a GNSS 

receiver, buildings are three degrees lower and narrower 

than their actual height and width. If the line-of-sight (LOS) 

falls within the diffraction region, the signal is predicted to 

be diffracted. Otherwise, it is predicted to be invisible. 

 

 Step 4: Satellite Visibility Scoring Using Scoring 

Scheme 

 

For the fourth step, the similarity of the satellite visibility 

between predictions and observations is evaluated. The 

candidate positions with the better matches will then be 

weighted higher in the shadow matching positioning 

solution. There are two stages for calculating a score for a 

candidate position. Firstly, each satellite above the 

elevation mask angle is given a score, calculated based on 

the predicted and observed visibility, using a scoring 

scheme. Secondly, the position scoring function, evaluates 

for each possible user position the overall degree of match 

between predicted and observed satellite visibility. This is 

illustrated in (1).  

 ∑ , ,     (1) 

 

where  is the position score for grid point j ; ,  is the score of satellite i at grid point j;  is the 

number of satellites above the mask elevation angle; SS is 

the scoring scheme which defines a score based on 

predicted and observed satellite visibility.  

By the end of this step, each candidate position should 

have a score to represent the degree to which it matches 

the observed satellite visibility, and thus how likely it is 

that each candidate position is close to the true location. 
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The existing scoring scheme SS22 is shown in Figure 8. 

Only direct line-of-sight (LOS) signals are considered 

using this scoring scheme, whereas the user equipment can 

also observe diffracted and reflected signals. This 

mismatch can degrade shadow-matching performance. 

 

Thus, the scoring scheme has been improved to 

acknowledge diffraction effects by diffraction modelling. 

Diffraction occurs at the edge of a building (or other 

obstacle) when the incoming signal is partially blocked, 

noting that the path taken by a GNSS signal is several 

decimetres wide. There are two approaches to predicting 

the effect of diffraction on satellite visibility using a 3D 

city model. The first one would be to numerically 

determine the diffraction field based on every physical 

factor, including the surface of building, the angle of 

incidence of the signal and the properties of the GNSS user 

equipment. This method is impractical because the 

necessary information about the building materials and 

antenna characteristics is difficult to obtain and the 

computational complexity is high. The second, much 

simpler, approach has been adopted here. This simply 

extends the building boundary used for satellite visibility 

determination by adding a diffraction region to model the 

diffraction effect around building edge. Thus, wherever the 

LOS intersects the diffraction region, the signal is 

classified as potentially diffracted instead of blocked 

(Walker and Kubik, 1996; Bradbury, 2007; Wang et al., 

2012). Both horizontal and vertical edges are considered 

for diffraction modelling. Here, a 3º-wide diffraction 

region was modelled. The improved scoring scheme SS23 

as shown in figure 9. 

As diffractions and reflections both normally result in 

weaker signal reception, the signal strength is also built 

into the new scoring scheme – SS32, as shown in figure 10. 

In this scheme, a weak signal is regarded likely to be 

reflected or diffracted, thus it is given alower weight 

compared to a strong signal. The boundary to distinguish 

weak signal from strong signal should be based on the 

signal to noise ratio (SNR).  

 

Finally, by joining both diffraction modelling and signal 

strength based scoring, a new SS33 scoring scheme is 

introduced, as shown in figure 11. It should be noted that 

the scores in these scoring schemes are based on both 

theory and experimental data. Changes may be needed 

when using GNSS receivers of other types. 

 

In Section 3, a comprehensive comparison will be 

conducted to evaluate the influence using different scoring 

schemes on performance of shadow matching. 

 

 Step 5: Positioning Using Scores at Candidate Positions 

 

The last step of the shadow-matching algorithm is to 

generate a positioning solution using scores from each 

candidate position. Shadow matching uses the pattern-

matching positioning method (Groves, 2013). As the 

process of Wi-Fi fingerprinting is similar to the this 

process in shadow matching, the algorithms used in Wi-Fi 

fingerprinting may be investigated for their potential 

implementation in shadow matching. Potential algorithms 

include, but are not limited to, k-weighted nearest 

neighbours, the Bayesian inference received signalstrength 

(RSS) location method, and the particle filter. 

 

In this work, a method similar to k-nearest neighbours is 

used to estimate the location, averaging the grid positions 

of highest scores. With the current scoring system, scores 

take integer or half-integer values. Therefore, several grid 

points typically share the highest score. The points in the 

grid with highest scores are regarded as nearest neighbors. 

For L nearest neighbors, the location estimate is conducted 

using (2) and (3) for northing and easting coordinate 

components: 

 Northing ∙ ∑      (2)	Easting ∙ ∑    (3) 

 

where ni and ei are, respectively, the northing and easting 

coordinates of the i
th high-scoring candidate positions. 

Note that L varies from epoch to epoch depending on how 

many candidate positions share the highest score. 

 
3. COMPARISON OF VISIBILITY PREDICTION 

SCORING USING EXPERIMENTAL DATA 

 
The different scoring schemes were tuned and compared 

using experimental data to improve the accuracy and 

reliability of shadow matching. Section 3.1 introduces the 

3D city model of the Aldgate area of central London, used 

in the shadow matching experiments. Real-world data sets 

are collected at sites within the city model area, scattered 

on major roads and minor roads, at and between junctions. 

Section 3.2 describes the methods and logics behind 

implementations of each step of shadow matching. Section 

3.3 presents details of selected experimental sites. The 

experimental results are compared and analysed in Section 

3.4 - 3.6. 

 

3.1 City Models 

 

A real 3D city model of the Aldgate area of central 

London, supplied by ZMapping Ltd, has been used. The 

model has a high level of detail and decimetre-level 

accuracy. Figure 12 shows an aerial view of the city model 

used in this work. 

 

The software toolkit developed for this study stores and 

processes 3D city model data using Virtual Reality 

Modelling Language (VRML), an international standard 

format. Model data in other formats can be transformed to 

VRML. Buildings in VRML format are represented by 

structures, which in turn compromise polygons (normally 

triangle meshes). 
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Figure 13: The experimental sites in urban canyons. It shows the experimental sites location in the satellite image in real world. 

 

 

Figure 14. Left: A photo taken in the experiment on 

Billiter Street, which is a narrow street. Right: a photo 

taken in the same experiment on Fenchurch Street. 

3.2 Shadow Matching Implementation 

 

In the offline phase, a 1 meter by 1 meter grid has been 

generated, and the building boundaries determined at each 

grid point as defined earlier in the paper. They are stored 

in a specially defined format in a database. 

 

In the online phase, position initialization is not conducted 

because this study focuses on comparing the different 

scoring schemes. Different methods used in positioning 

initialization can result in very different initial positions, 

so in order to prevent initialization errors from 

contaminating the following scoring step, the search area 

for each site is centred at the true position. The search area 

for each site is defined as everything within a radius of 20 

meters,  except for the indoor points. Four scoring schemes 

are deployed at every sites in the satellite visibility scoring 

step. The modified k-nearest neighbours algorithm is used 

to determine the positioning solution of shadow-matching 

algorithm, using (2) and (3). 

 

3.3 Experimental Site Selection 

 

To compare the performance of shadow matching using 

different scoring schemes, experiments were conducted at 

11 pairs of sites, resulting in GNSS data at 22 locations in 

central London on 23/07/2012. In each pair, two survey-

grade GNSS receivers (Leica Viva) were set up on 

opposite sides of each street (Leadenhall Street, Billiter 

Street and Fenchurch Street), standing on a footpath close 

to the traffic lane. GPS and GLONASS observation data 

were recorded at a 1 Hz rate simultaneously for 10 minutes 

at each pair of locations. For the purpose of increasing the 

reliability of the experiments, each site was visited twice at 
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an interval of approximately 4 hours, allowing the satellite 

geometry to change completely. The first round is denoted 

r1, the second round is denoted r2. Thus, in total, 7 hours 

and 20 minutes of GNSS data was recorded in 44 

observation periods at 22 different locations. A summary 

of the experimental sites is shown in Table 1; their 

locations are presented in Figure 13. Figure 14 shows two 

of the narrow streets in the experimental area. 

 

3.4 Signal to Noise Ratio (SNR) Empirical Value 

 

The signal to noise ratio (SNR) is introduced as an 

indicator of satellite signal quality in the shadow-matching 

system. An empirical analysis was first conducted to 

observe the level of SNR in the experimental data. This is 

because SNR can vary significantly between different 

types of GNSS receiver. The SNR of the L1 C/A code 

signal recorded by the Leica Viva GNSS receiver is shown 

in figures below. Figure 15a shows a period of 

observations with typical ‘strong’ SNR values; Figure 15b 

shows the same period of observation, but with typical 

‘weak’ SNR values. The figure also shows that when the 

signal is strong, the SNR value typically remains stable 

(normally around 50 dB-Hz); whereas when the signal is 

weak, it changes dramatically and the value tends to be 

lower (normally below 40 dB-Hz). 

 

SNR values of all satellites recorded by two identical 

Leica Viva receivers in the experimental period show that 

the SNR mainly ranges between 25 dB-Hz and 55 dB-Hz 

with an average of 40 dB-Hz. Thus, in those scoring 

schemes that account for the observed signal quality, 

signals with SNR > 40 dB-Hz are regarded as strong and 

signals with SNR ≤ 40 dB-Hz is regarded as weak. 

 

3.5 Score Map of Candidate Positions 

 

At the true position of each experimental site, a 20 meter 

radius circle is used to generate candidate positions. The 

pre-calculated candidate grid of building boundaries is 

loaded in the on-line phase of shadow matching. At each 

observation epoch, comparison is made between the 

predicted and observed satellite visibility. Each of the four 

score schemes is applied to the results for comparison. To 

illustrate the distribution of scores at the grid points, 

Figure 16 shows an example of score map for 

experimental sites G011 (left) and R011 (right). 

 

In Figure 16, the score of candidate positions ranges 

mainly at the cross-street direction. As G011 and R011 are 

located at different sides of a street, it is clearly 

demonstrated that the shadow matching algorithm is 

sensitive to changes in the across-street direction, but less 

sensitive in the along-street direction. This is in line with 

expectations and complements conventional GNSS 

positioning, which is generally more precise in the along-

street direction. There are some spaces that between 

buildings fall within the search area, but the highest 

scoring points are mostly in the correct street. In order to 

evaluate the performance across all of the experimental 

data, statistical analysis was conducted. 

Table 1. A summary of experimental sites 

Site Name 1st Round 2nd Round 

G001, R001 09:05-09:15 13:07-13:17 

G002, R002 09:35-09:45 13:19-13:29 

G003, R003 09:10-10:00 13:31-13:41 

G004, R004 10:05-10:15 13:44-13:54 

G005, R005 10:18-10:28 13:58-14:08 

G006, R006 10:33-10:43 14:11-14:21 

G007, R007 10:45-10:55 14:23-14:33 

G008, R008 10:59-11:09 14:36-14:46 

G009, R009 11:14-11:24 14:49-14:59 

G010, R010 11:31-11:41 15:03-15:13 

G011, R011 11:47-11:57 15:15-15:25 

 

 
(a) 

 

 
(b) 

Figure 15a (top). A period observation of typical strong 

signal (SNR on L1 of GPS PRN 2, on experimental site ID 

G001_r1); 15b (bottom). A period observation of typical 

weak signal (SNR on L1 of GLONASS 18, on 

experimental site ID G001_r1) 
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     (a)      (b) 

Figure 16. Shadow-matching score map of experimental sites G011 (a) and R011 (b) using 3x3 scoring scheme SS33 (at epoch 

11:55:40 23 July 2012). The circles represent the candidate positions. The red bar is where the shadow-match positioning 

solution is. Refer to Figure 13 for the true location of each site. For illustration purposes, a 50 meter-radius circular search area 

centered at each truth position is used.

 

 

 
Figure 17. The average bias and RMS between shadow matching positioning solution from true position for each experimental 

sites using the 2 * 2 scoring matrix. 
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Figure 18. The average bias between shadow matching positioning solution from true position for each experimental sites 

using the 2 * 3 scoring matrix. 

 

 
Figure 19. The average bias between shadow matching positioning solution from true position for each experimental sites 

using the 3 * 2 scoring matrix. 
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Figure 20. The average bias between shadow matching positioning solution from true position for each experimental sites 

using the 3 * 3 scoring matrix. 

 

3.1 Statistical Analysis 

 

Two indicators, average bias and root mean square error 

(RMS), are used for each experimental site to evaluate the 

performance of shadow matching. The bias is transformed 

from local coordinates (Northing and Easting) to the 

along-street and across street direction. In order to 

compare shadow matching using the different scoring 

schemes, the average biases and RMS at each site are 

compared in Figures 17 - 20, noting that the statistics 

cover a 10 min observation period, during which the 

constellation geometry changes slowly, so the results are 

highly correlated over time. The y-axis is in meters. Where 

separate statistics are calculated for the two different 

observation periods at the same site, results for which may 

be considered independent.  A few sites are missing from 

the results because fewer than four satellites were observed 

so an SPP solution could not be computed and the GNSS 

receivers used for this experiment would not record the 

measurement due to the design of their software. 

 

It is shown in Figure 17 - 20 that the along street average 

bias is typically higher than the across street one. As 

shadow matching was designed to improve the cross-street 

positioning, and may be combined with conventional 

GNSS and other possible techniques, this is not considered 

to be a problem. 

 

Further statistics have been computed to average the bias 

and RMS error using each scoring scheme, the results are 

shown in Figure 21. Similarly, Figure 22 also compares 

different scoring schemes for their effects on shadow 

matching performance in terms of success rate of 

positioning error with certain meters. It can be seen from 

both graphs that different scoring schemes have a 

relatively small influence on the performance of shadow 

matching, which means the shadow matching performance 

is not very sensitive to the scoring schemes. However, 

there is a small improvements using the new SS33 scoring 

scheme. For example, in Figure 21, the new scoring 

scheme improves the cross street accuracy with an average 

bias of 1.61 m, with a 9.4% reduction compared to the 

original SS22 scoring scheme. Similarly, the cross street 

RMS is 2.86 m, a reduction of 15.3%.  

 

As the street is around 10 meters wide, a positioning 

accuracy better than 5 meters is considered good enough to 

determine the correct side of the street, while a positioning 

accuracy better than 2 meters is considered good enough to 

distinguish the foot path from a traffic lane. Figure 20 

shows success rate in terms of achieving a cross-street 

error within 1, 2, 3, 4, and 5m. It shows that the success 

rate for determining the correct side of a street is 89.3%, 

3.6% better than using the previous SS22 scoring scheme; 

the success rate of distinguishing the footpath from a 

traffic lane is 63.6% of the time, 6.8% better than using the 

previous SS22 scoring scheme. 
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Figure 21. The average bias and RMS that is averaged 

between all experimental sites, using different scoring 

matrix in shadow matching algorithm. 

 

 
Figure 22. The success rate of positioning error using 

shadow matching in cross-street direction. 

 

4 CONCLUSION AND FUTURE WORK 

 

In this work, four contributions have been made. Firstly, a 

new scoring scheme, a key element of the algorithm to 

weight candidate user locations, is proposed. The new 

scheme takes account of the effects of satellite signal 

diffraction and reflection by weighting the scores based on 

diffraction modelling and signal-to-noise ratio (SNR). 

Furthermore, an algorithm similar to k-nearest neighbours 

(k-NN) is developed to interpolate the position solution 

over an extensive grid. The process of generating this grid 

of building boundaries is also optimized. Finally, instead 

of just testing at two locations as in the earlier work, real-

world GNSS data has been collected at 22 different 

locations in this work, providing a more comprehensive 

and statistical performance analysis of the new shadow-

matching algorithm. 

 
Figure 23. Conventional GNSS positioning solution using 

weighted least square (WLS) at site G003. 

 

In the experimental verification, the new scoring scheme 

achieves an average cross street accuracy to 1.61 m, a 

9.4% improvement over the previous scheme, while the 

cross street RMS error is 2.86 m, a 15.3% improvement. 

Figure 22 shows that the success rate for determining the 

correct side of a street is 89.3%, a 3.6% improvement, 

while the success rate for distinguishing the footpath from 

a traffic lane is 63.6%, a 6.8% improvement. 

 

Conventional GNSS positioning performs relatively poorly 

in the across street direction, and better along the street. 

Figure 23 shows the conventional GNSS positioning 

solution at point G003_r1 using weighted least square 

(WLS). It demonstrates that the cross street position from 

the conventional GNSS solution can vary by 40 meters. As 

shadow matching has a cross-street accuracy of a few 

meters, it is highly complementary to conventional GNSS 

positioning methods. 

 

In future work, shadow matching using GPS and 

GLONASS data from a smartphone will be tested. Four-

constellation shadow-matching performance will also be 

predicted by combining GPS and GLONASS data from 

two different epochs, separated in time. The Bayesian 

inference received signal strength (RSS) location method, 

and the particle filter may be investigated for the shadow 

matching positioning algorithm. Further investigations will 

be conducted to improve the shadow-matching algorithm. 

 

To obtain an accurate and reliable position solution in 

challenging urban environments, shadow matching must 

be combined with conventional GNSS positioning, NLOS 

signal detection and other techniques that exploit the 3D 

mapping, such as height aiding. This concept is known as 

intelligent urban positioning (IUP) and is introduced in 

Groves et al (2012b). IUP may also be extended to 

incorporate other techniques, such as Wi-Fi, Bluetooth 

Low Energy, and MEMS inertial sensors. 
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