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Abstract: Precise and accurate estimation of state vectors is an important process during position 

determination. In this study, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) of stationary 
user, state vectors defined in Earth Centered Inertial (ECI) coordinate system, accompanied by GNSS 
measurement data. It is aimed to make estimations with methods. EKF and UKF methods were compared with 
each other. In this study, the effects of nonlinear motion analysis and linearization methods on state vector 
estimations were investigated. Thanks to this study, estimations of the positioning information required during 
the specific tasks of many moving platforms have been made. 
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1 Introduction 

 
Precise positioning is important to obtain the 

correct location, and the use of a Global Satellite 
Navigation System (GNSS) receiver is becoming 
widespread in the military and civilian areas [10]. 
Although GNSS receivers are developed, there may 
be situations where sufficient sensitive measurement 
cannot be obtained. For these cases, GNSS 
measurement accuracy can be improved by using 
mathematical filters such as the Kalman method. 

In the study of Soken and Hajiyev attitude 
estimation was made for pico satellites using the 
Unscented Kalman Filter [14]. In the aforementioned 
study, the measurement parameters obtained by 
modeling magnetometer and speed gyroscope were 
approximated to the real values with the help of UKF. 

Another study by Kumar et al, GNSS-based 
position estimation was performed using EKF [9]. In 
this study, in which EKF is applied for the stationary 
user, it has been shown that the EKF approach gives 
high accuracy results in estimating position and clock 
bias. 

In this study, 4 GNSS satellites were chosen to 
estimate the position of Şükrü SARAÇOĞLU 
Stadium (Istanbul/Turkey). Earth Centered Inertial 

(ECI) reference frame were used. Position estimation 
was obtained using the pseudo-ranging method. 
Clock bias and random errors were added to the 
distances between the GNSS satellites and the user 
for simulating GNSS receiver errors. Here random is 
white gaussian random noise with zero mean and unit 
variance. 

It’s obtained from study that estimated position 
with Kalman Filters are more accurate than 
measurement. Filter results converges to actual state 
conditions in short-time interval. 

 
2 Problem Statement 

 
In this study, by using 4 GNSS satellites, Şükrü 

Saraçoğlu Stadium coordinates were estimated with 
the use of pseudo-ranging approach. Obtained noisy 
measurement distances by GNSS receiver, processed 
with UKF and EKF for increasing the accuracy of the 
estimation 𝐷𝑎(𝑖)  =  √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2    (1) 

 𝐷(𝑖) = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 + 𝑏𝑖 + 𝑣𝑖 
 𝐿𝑖 = √𝑥𝑖2 + 𝑦𝑖2 + 𝑧𝑖2   i=1,2,3,4 
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Fig. 1. Distance measurement scheme [6] 

Here 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 represents the Descartes 
coordinates of the i th GPS satellite, x, y, z represents 
the coordinates of the user location, 𝑣𝑖 is white 
gaussian noise with zero mean and b is the clock bias. 𝐿1, 𝐿2,𝐿3 and 𝐿4 are distance between origin and 
GPS satellite.  𝐷𝑎 is the actual distance and 𝐷 is the 
measured distance by GPS receiver. After calculating 
actual distance with Eq.(1), random zero mean 
gaussian errors and clock bias were added to actual 
distances for making model more realistic. This 
calculation simulates the signal from the GPS 
receiver.  

The continuous-time state equation for simulated 
stationary user model is given as: �̇� = 0 �̇� = 0 �̇� = 0   �̇� = 𝑢𝑠 (2) 

where su  is the white noise with zero mean. 
The state equation can be written in the discrete-

time form as:  𝑥(𝑘) = 𝑥(𝑘 − 1) 𝑦(𝑘) = 𝑦(𝑘 − 1) 𝑧(𝑘) = 𝑧(𝑘 − 1) 𝑏(𝑘) = 𝑏(𝑘 − 1) + 𝑇𝑠𝑢𝑠 

(3) 

where sT is the sampling time. 
If we rewrite the preceding statements for scalar 

equations, 

[  
 𝑥(𝑘)𝑦(𝑘)𝑧(𝑘)𝑏(𝑘)]  

 = [1 0 0 00 1 0 00 0 1 00 0 0 1] [  
 𝑥(𝑘 − 1)𝑦(𝑘 − 1)𝑧(𝑘 − 1)𝑏(𝑘 − 1)]  

 + [ 000𝑇𝑠𝑢𝑠] (4) 

This means that the systems dynamics matrix is 
unit:  

𝜙(𝑘, 𝑘 − 1) = [1 0 0 00 1 0 00 0 1 00 0 0 1] (5) 

The system noise vector is: 

𝑊(𝑘) = [ 000𝑇𝑠𝑢𝑠] (6) 

The state space model can be written in matrix 
form as 𝑋(𝑘) = 𝜙(𝑘, 𝑘 − 1)𝑋(𝑘 − 1) + 𝑊(𝑘) (7) 𝑋(𝑘) = [𝑥(𝑘) 𝑦(𝑘) 𝑧(𝑘) 𝑏(𝑘)]𝑇 (8) 

Here 𝑋(𝑘) is the state vector. 
 

2.1 Extended Kalman Filter 

 
Extended Kalman Filter (EKF) is an approach for 

non-linear systems. This approach linearizes the 
system and estimates the state vectors. Unlike the 
Linear Filter, the covariances and gain matrix must be 
computed continuously as estimations and predictions 
are made. The Extended Kalman Filter uses a 
linearized model that needs to be calculated from 
approximate state information. Therefore, the filter 
must be well positioned initially for linearized models 
to be valid. State vector of the model were given in Eq. 
(8). 

Estimation Equation: �̂�(𝑘) = �̂�(𝑘 − 1) + 𝐾(𝑘)�̂�(𝑘/𝑘 − 1) (9) 

Extrapolation equation: �̂�(𝑘/𝑘 − 1)  = �̂�(𝑘 − 1/𝑘 − 1) (10) 
Innovation sequence: �̂�(𝑘/𝑘 − 1) = 𝐷(𝑘) − �̅�(𝑘) (11) 

     𝐷(𝑘) = [𝐷1(𝑘)𝐷2(𝑘)𝐷3(𝑘)𝐷4(𝑘)] ;                                    �̅�(𝑘) = [   
 �̅�1(𝑘)�̅�2(𝑘)�̅�3(𝑘)�̅�4(𝑘)]   

 
 (12) 

       

�̅�𝑖 = √(𝑥𝑖(𝑘) − 𝑥(𝑘 − 1))2 + (𝑦𝑖(𝑘) − �̂�(𝑘 − 1))2+(𝑧𝑖(𝑘) − �̂�(𝑘 − 1))2+ �̂�(𝑘 − 1) 

(13) 

i=1,2,3,4  
Kalman gain coefficient matrix: 𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐻(𝑘)𝑇[𝐻(𝑘)𝑃(𝑘/𝑘 − 1) 𝐻(𝑘)𝑇 + 𝑅(𝑘)]−1 (14) 

Predicted correlation matrix of estimation error 𝑃(𝑘/𝑘 − 1) = 𝜙(𝑘, 𝑘 − 1)𝑃(𝑘/𝑘 − 1)𝜙(𝑘, 𝑘 − 1)𝑇 + 𝑄(𝑘 − 1) (15) 

Estimated correlation matrix of estimation error: 𝑃(𝑘/𝑘) = 𝑃(𝑘 − 1/𝑘 − 1) − 𝐾(𝑘)𝐻(𝑘)𝑃(𝑘 − 1/𝑘 − 1)              (16) 

The system noise covariance matrix is taken as: 𝑄 (𝑘 − 1) = 0,01𝑥𝐼4𝑥4 (17) 

Measurement Matrix: 
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𝐻(𝑘) =
[  
   
   
 𝜕𝐷1𝜕𝑥 𝜕𝐷1𝜕𝑦 𝜕𝐷1𝜕𝑧 𝜕𝐷1𝜕𝑏𝜕𝐷2𝜕𝑥 𝜕𝐷2𝜕𝑦 𝜕𝐷2𝜕𝑧 𝜕𝐷2𝜕𝑏𝜕𝐷3𝜕𝑥 𝜕𝐷3𝜕𝑦 𝜕𝐷3𝜕𝑧 𝜕𝐷3𝜕𝑏𝜕𝐷4𝜕𝑥 𝜕𝐷4𝜕𝑦 𝜕𝐷4𝜕𝑧 𝜕𝐷4𝜕𝑏 ]  

   
   
 
 (18) 

Measurement error covariance matrix (R): 

𝑅(𝑘) = [𝜎2 0 0 00 𝜎2 0 00 0 𝜎2 00 0 0 𝜎2] (19) 

 
Here 𝜎 is the standard deviation of distance 

measurement error and 𝜎𝐷1 = 𝜎𝐷2 = 𝜎𝐷3 = 𝜎𝐷4 =𝜎 = 10 𝑚. 
 

2.2 Unscented Kalman Filter 

 
The Unscented Kalman Filter is an approach that 

creates a state vector into a set of state vector. Despite 
the EKF, for a model with n state vectors, UKF 
generates 2n+1 conditions, then, at that point 
estimates the new state for each condition and takes 
the average [7]. 

Let’s assume that 𝑋0 is the initial condition of the 
user, 𝑋0(𝑘/𝑘)  = �̂� (𝑘/𝑘) (20) 𝑋𝑖(𝑘/𝑘)  =  �̂� (𝑘/𝑘)  + (√(𝑛 + 𝜅)[𝑃(𝑘 ⁄ 𝑘) + 𝑄(𝑘)])𝑖 (21) 𝑋𝑖+𝑛(𝑘/𝑘) =  �̂�(𝑘/𝑘)– (√(𝑛 + 𝜅)[𝑃(𝑘 ⁄ 𝑘) + 𝑄(𝑘)])𝑖 (22) 
 

Here, 𝑋0(𝑘/𝑘) , 𝑋𝑖(𝑘/𝑘) and 𝑋𝑖+𝑛(𝑘/𝑘) are 
created sigma state conditions, Q(k) system noise 
vector and 𝜅 scaling parameter and n is the number 
of states. In this study, because of the model is 
stationary n=4. These 4 conditions are 3 axis position 
(x, y, z) and clock bias (b). By considering previous 
studies, sum of the n and 𝜅 chosen as 3 (n+𝜅 =3) [14, 
10]. 

Estimation equation:  𝑋(𝑘 + 1/𝑘) = 𝑓(𝑋(𝑘/𝑘), 𝑘) (23) 

Assuming the model is stationary,  𝑋(𝑘 + 1/𝑘)𝑖 = 𝑋(𝑘/𝑘)𝑖 (24) 

Obtained estimation used for calculation of 
predicted mean and covariance. 
 �̂�(k + 1/k) = 1𝑛 + 𝜅 [𝜅𝑋0(𝑘 + 1/𝑘) + 12∑ 𝑋𝑖(𝑘 + 1/𝑘)2𝑛𝑖=1 ] (25) 

𝑃(𝑘 + 1/𝑘) = 1𝑛 + 𝜅 {𝜅[𝑋0(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]× [𝑋0(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]𝑇   + 12∑ [𝑋𝑖(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]2𝑛𝑖=1× [𝑋𝑖(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]𝑇} 
 

(26) 

Here �̂�(𝑘 + 1/𝑘) is the predicted mean and              𝑃(𝑘 + 1/𝑘) is the predicted covariance matrices. 
Predicted observation and predicted observation 
covariance matrix can be shown as, �̂�(𝑘 + 1/𝑘) = 1𝑛 + 𝜅 {𝜅𝑌0(𝑘 + 1/𝑘) + 12∑ 𝑌𝑖(𝑘 + 1/𝑘)2𝑛𝑖=1 } (27) 

 
where 𝑌𝑖(k + 1/k)= h [�̂�i (k + 1/k)], 
 𝑃𝑦𝑦(𝑘 + 1/𝑘) = 1𝑛 + 𝜅 {𝜅[𝑌0(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]× [𝑌0(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]𝑇   + 12∑ [𝑌𝑖(𝑘 + 1/𝑘)2𝑛𝑖=1− �̂�(𝑘 + 1/𝑘)]× [𝑌𝑖(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]𝑇} 

(28) 

 
Innovation covariance can be expressed as 

following equation 𝑃𝑣𝑣(𝑘 + 1/𝑘) = 𝑃𝑦𝑦(𝑘 + 1/𝑘) + 𝑅(𝑘 + 1) 

In this equation 𝑅(𝑘 + 1) is the covariance matrix of 
measurement error. By using the following equation 
cross covariance matrix can be obtained 𝑃𝑥𝑦(𝑘 + 1/𝑘) = 1𝑛 + 𝜅 {𝜅[𝑋0(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]× [𝑌0(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]𝑇   + 12∑ [𝑋𝑖(𝑘 + 1/𝑘)2𝑛𝑖=1− �̂�(𝑘 + 1/𝑘)]× [𝑌𝑖(𝑘 + 1/𝑘) − �̂�(𝑘 + 1/𝑘)]𝑇} 

(29) 

 
The innovation sequence of UKF can be 
written as 
 𝑒(𝑘 + 1) = D(𝑘 + 1) − �̂�(𝑘 + 1/𝑘)                   (30)

 
 
 

(30) 
 

where 𝐷(𝑘 + 1)  are the distance measurements.    

   Kalman gain matrix is, 𝐾(𝑘 + 1) = 𝑃𝑥𝑦(𝑘 + 1/𝑘)𝑃𝑣𝑣−1(𝑘 + 1/𝑘) (31) 

As a final step, updated states and covariance 
matrix obtained as, �̂�(𝑘 + 1/𝑘 + 1) = �̂�(𝑘 + 1/𝑘) + 𝐾(𝑘 + 1)𝑒(𝑘 + 1) (32) 𝑃(𝑘 + 1/𝑘 + 1) = 𝑃(𝑘 + 1/𝑘) − 𝐾(𝑘 + 1)𝑃𝑣𝑣(𝑘 + 1)𝐾𝑇(𝑘 + 1) (33) 

When the equations shown above are applied to 
the model continuously, the filter estimation will 
occur in the loop [14]. 
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3 Simulation Results and Discussion 

 
In this study, a stationary user location estimated. 

Obtained GNSS data were processed with Unscented 
and Extended Kalman Filters. At the end of the 
simulations these two methods were compared. 

By analyzing the graphs, its obtained that both 
EKF and UKF estimations are less faulty than direct 
measurement. Approaches, decreases the 
measurement errors and estimations converges to the 
actual state conditions by time.  

Figure 2, 3, 4 and 5 shows the x, y, z position and 
clock bias estimations respectively. The blue line 
represents the EKF estimation and red line represents 
the actual position of the user. Also, errors of the 
estimations and variances of the estimation errors 
were given below for each position axis and clock 
bias. 
 

Fig.2: X Axis Position Estimation via EKF 

 
Fig.3: Y Axis Position Estimation via EKF 

 

Fig.4: Z Axis Position Estimation via EKF 
  

Fig.5: Clock Bias Estimation via EKF 
 

Figure 5 shows the normalized innovation graphs. 
Normalized innovation represents the characteristic 
of the filter. It’s expected that graph should be noisy 
around zero. From figure 5 its obtained that filter 
works properly. In the graphs, 1,2,3,4 indicates 
innovation that is consistent with GNSS 
measurements. 

. 

 
Fig.6: EKF Normalized Innovation Graphs 
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Figure 7, 8, 9 and 10 shows the x, y, z position and 
clock bias estimations of the UKF respectively. The 
blue line represents the UKF estimation and red line 
represents the actual position of the user. Also, errors 
of the estimations and variances of the estimation 
errors were given below for each position axis and 
clock bias. 
 

 
Fig.7:  X Axis Position Estimation via UKF 

 

Fig.8: Y Axis Position Estimation via UKF 
 

 
Fig.9: Z Axis Position Estimation via UKF 

  

 
Fig.10: Clock Bias Estimation via UKF 

 
Figure 11 shows the normalized innovation 

graphs of the UKF. From the figure it’s obtained that 
filter is working properly. In the graphs, 1,2,3,4 
indicates innovation that is consistent with GNSS 
measurements. 

 

 
Fig.11: UKF Normalized Innovation Graphs 

 
Root Mean Square Error (RMSE) tables are 

given below. 
 

Table 1: RMSE for 20 Seconds Simulations 
 

X (m) Y (m) Z (m) Clock Bias (m) 

EKF 4.0673 3.9843 5.3353 1.3685 
UKF 4.8352 3.7534 3.7852 1.0870 

 

Table 2: RMSE for 100 Seconds Simulations 
 

X (m) Y (m) Z (m) Clock Bias (m) 

EKF 2.0290 1.7819 2.6600 1.3024 
UKF 1.8257 1.8651 1.9873 0.9056 
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Table 3: RMSE for 200 Seconds Simulations 
 

X (m) Y (m) Z (m) Clock Bias (m) 

EKF 1.5136 1.5253 1.9065 0.9605 
UKF 1.4070 1.3007 1.5967 0.8496 
 

Table 4: RMSE for 300 Seconds Simulations 
 

X (m) Y (m) Z (m) Clock Bias (m) 

EKF 1.2378 1.3821 1.6072 0.9069 
UKF 1.1968 1.1613 1.2945 0.6407 

 
Table 5: RMSE for 500 Seconds Simulations 

 
X (m) Y (m) Z (m) Clock Bias (m) 

EKF 1.1659 1.0109 1.2467 0.7086 
UKF 0.9169 0.9638 1.0230 0.6374 

 
By analysing the root mean square error tables, 

it’s obtained that UKF estimations are better than 
EKF estimations for both short and long-time interval 
simulations. Also, when time of the simulation 
increased accuracy of the estimation increases. While 
root mean square errors are approximately 3-4 m for 
20 sec this value decreased below 1 m in 500 sec 
simulations. 

 

4 Conclusion 

 
In this study, two different Kalman Filters, 

Extended and Unscented, have been simulated for 
stationary user. The position of the Şükrü 
SARAÇOĞLU Stadium (Istanbul/Turkey) 
estimated. Graphs and tables showed that UKF 
estimations achieved better results in both short-term 
and long-term analyzes compared to EKF. With this 
study, it has been revealed which method gives better 
results in determining the stationary user's position, 
and convenience is provided for future studies. 
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