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GNSS total variometric approach: 
first demonstration of a tool 
for real‑time tsunami genesis 
estimation
Michela Ravanelli 1*, Giovanni Occhipinti2,3, Giorgio Savastano4,5, Attila Komjathy4, 
Esayas B. Shume4,6 & Mattia Crespi1

Global Navigation Satellite System (GNSS) is used in seismology to study the ground displacements 
as well as to monitor the ionospheric total electron content (TEC) perturbations following seismic 
events. The aim of this work is to combine these two observations in one real‑time method based on 
the Total Variometric Approach (TVA) to include the GNSS real‑time data stream in future warning 
systems and tsunami genesis estimation observing both, ground motion and TEC. Our TVA couples 
together the Variometric Approach for Displacement Analysis Stand‑alone Engine (VADASE) with the 
Variometric Approach for Real‑Time Ionosphere Observation (VARION) algorithms. We apply the TVA 
to the Mw 8.3 Illapel earthquake, that occurred in Chile on September 16, 2015, and we demonstrate 
the coherence of the earthquake ground shaking and the TEC perturbation by using the same GNSS 
data stream in a real‑time scenario. Nominally, we also highlight a stronger kinetic energy released in 
the north of the epicenter and visible in both, the ground motion and the TEC perturbation detect at 
30 s and around 9.5 min after the rupture respectively. The high spatial resolution of ionospheric TEC 
measurement seems to match with the extent of the seismic source. The GNSS data stream by TVA of 
both the ground and ionospheric measurement opens today new perspectives to real‑time warning 
systems for tsunami genesis estimation.

Natural hazards such as earthquakes and the subsequent tsunamis generate atmospheric acoustic-gravity waves 
that propagate upward to the ionosphere where they may be detectable by ionospheric sounding  techniques1. In 
particular, at the epicentral area, the upli� at the surface—produced by the seismic rupture—induces, by dynamic 
coupling with the atmosphere, an acoustic-gravity wave (AGW epi ). During the upward propagation the AGW epi 
is strongly ampli�ed by the double e�ects of the decrease of the air density ρ and the conservation of the kinetic 
energy ρv2 , under the adiabatic hypothesis of the atmosphere. Consequently the oscillation v induced by the 
crossing of the AGW epi is becoming large enough to generate strong perturbations in the ionospheric plasma, 
mainly where its density is near the maximum (F-layer, altitude about 300 km)2.

Di�erent techniques have been already applied to detect the ionospheric post-seismic perturbations: 
 ionosondes3, HF Doppler  sounders4,5, airglow  cameras1,6–8, over-the-horizon  radar8,9 and GNSS sTEC (slant 
TEC, TEC on the satellite-receiver line-of-sight LoS)  observations10–14. �is last technique received more and 
more attention due to the wide and continuously increasing worldwide availability of GNSS permanent stations. 
GNSS sTEC became a major tool to study the  ionosphere15, which can be a�ected by geophysical events such as 
 earthquake1,2,16,  tsunami17–20, volcano  explosions21–23; and man-made events such as  explosions24,25 and rocket 
 launches26–28. Recently, an algorithm was  developed29,30, named VARION (Variometric Approach for Real-Time 
Ionosphere Observation), able to estimate sTEC variations from GNSS observations in real time. GNSS-sTEC 
measurements are commonly referred to the altitude of the F-layer along the LoS, called the ionospheric piercing 
point (IPP). �e AGW epi for large events (Mw > 7) is systematically detectable near the  epicenter2, within 1000 
km, and they move vertically at the speed of sound c s . In the Earth atmosphere c s varies with the altitude (from 
several hundreds m/s—near sea level—to about 1 km/s at 400 km of altitude); c s ranges from 800 to 1000 m/s 
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at the height of the ionospheric F-layer ( 300 km), where the electron density reaches the  maximum11. Overall, 
it takes around 8 min for the AGW epi to be detectable by GNSS-sTEC observations.

�e recent work of Manta et al.16 clearly shows the empirical relationship between the TEC perturbations and 
the maximum volume of the displaced water during the tsunami genesis (source extent times the max upli� at 
the source). Authors highlighted the potential use of GNSS-sTEC observations for tsunami genesis estimation 
at 8 min a�er the rupture to support conventional tsunami warning systems. �ey introduced the ionospheric 
tsunami power index (ITPI) empirically related to the maximum volume of displaced water (in  km3) during the 
tsunami genesis to discriminate tsunamigenic earthquakes.

On the other hand, it has been known and tested that earthquakes induced ground shaking and coseismic 
displacements that can be e�ectively recorded using GNSS as  well31–36. �e ground motion measured by GNSS 
is bene�ting of its relevant feature not to be a�ected by the saturation problem, which can impact seismometers 
located near the epicenters of strong earthquakes. A great e�ort in the last decade has been done in order to 
explore the contribution of GNSS data in the future tsunami warning systems in order to improve their reliabil-
ity of the responses. Ground motion measured by GNSS receivers has been used to estimate the  magnitude37, 
moment  tensor38 as well as �nite  source39, in particular for tsunamigenic events and to improve the tsunami 
genesis  estimation40. Also in this case, the real-time approach, named VADASE (Variometric Approach for 
Displacements Analysis Stand-Alond Engine), was proposed by Colosimo et al.41 and re�ned in Fratarcangeli et 
al.42 to estimate seismic waveforms and coseismic displacements.

We introduce here the dual GNSS real-time contribution using the same data-stream from permanent stations 
for both ground shaking and TEC estimation, to explore the potential improvement of tsunami genesis estima-
tion. We coupled the VADASE and VARION algorithms—the former being able to estimate surface waveforms 
and co seismic  displacements41,42, and the latter is able to compute sTEC perturbations in real-time29,30.

�e �nal algorithm, named Total Variometric Approach (TVA), was applied to the moderate tsunamigenic 
earthquake of Illapel (Chile, September 16, 2015, Mw 8.3). We analyse the GNSS permanent stations already 
providing real-time data stream; as well as the GNSS stations (not real-time) but used here in a real-time scenario 
to improve the coverage of our network. We also support the GNSS ground motion observations with traditional 
accelerometer measurements.

In particular, we �rst introduce the Illapel event and the response of tsunami warning systems; then we detail 
the dataset and the methodology used in the investigation; and we �nally present our results and conclusions.

Earthquake information and dataset
�e 2015 Illapel earthquake, in Chile, occurred 46 km o�shore of the Coquimbo region on September 16 at 
19:54:33 Chile Standard Time (22:54:33 UTC), with a moment magnitude of Mw 8.3. �e initial quake lasted 
between 3 and 5 min and it was followed by several a�ershocks greater than moment magnitude 6.0, and two 
of them exceeded 7.043. �e earthquake occurred on thrust faults along the boundary of the Nazca and South 
American plates. �e region frequently produces large earthquakes that induce deadly tsunamis.

A tsunami threat message from NOAA Paci�c Tsunami Warning Center was issued 7 min a�er the main 
 shock44,45 and Servicio Hidrográ�co y Oceanográ�co de la Armada (the organization in charge of the Chile’s 
National Tsunami Warning System) issued the �rst tsunami alarm 8  min46 a�er the earthquake: despite the 
prompt evacuation, eight causalities were attributed to the  tsunami47. �e �rst tsunami waves arrived on the 
Chilean coast within 10  min48, with a series of waves reaching at least 4.5  m49 on the closer coasts and produced 
severe damages and losses.

Di�erent datasets were employed for VADASE and VARION algorithm. Nominally, 44 GPS stations at 1 Hz 
rate from Centro Sismológico Nacional, Universidad de Chile were employed for VADASE algorithm: the dataset 
is shown in the right panel of Fig. 1. �e high-rate data (1 Hz or more) are required to avoid aliasing in the 
estimation of ground shaking and waveforms.

Data from 118 GPS stations, mostly located in Chile but also spread all over the South-American conti-
nent, were processed with VARION, as it is shown in Fig. 1 (le� panel). Nominally, 48 GPS stations (including 
the previous 44, since they also supply data at 15 s rate), located in Chile were kindly provided by the Centro 
Sismológico Nacional, Universidad de Chile (CSN). Other observations were gathered from 15 GPS stations of 
International GNSS service (IGS), from 26 GPS stations of Système d’Observation du Niveau des Eaux Littorales 
(SONEL) network and from 29 GPS stations of Low-Latitude Ionospheric Sensor Network (LISN) respectively. 
�ese GPS receivers collected data at 10, 15 and 30 s rate.

It is important to underline that only 21 stations of 118 stations can already work in real time. For real time, 
we mean the possibility for a GNSS receiver to broadcast real-time streaming of GNSS/GPS (RT-GNSS) data in 
RTCM  formats50 via the Networked Transport of RTCM via Internet Protocol (NTRIP)51. In detail, the GPS sta-
tions belonging to CSN are not all able to provide data in real time at this point. Both IGS and SONEL networks 
include GNSS receivers from national and regional networks: few of them are technically set up to provide data 
in real time . Nevertheless, the 29 stations from LISN can provide GNSS measurements in near real time (every 
15 min). �erefore, it is important to push forward enhancing the GNSS network in a real-time operational 
approach.

Ground shaking and coseismic displacements from VADASE
GNSS high-rate observations (1 Hz) were used as input for the VADASE algorithm to estimate the east-, north—
and up-components of the velocity for each receiver. �e upper panel of Fig. 2 show the up-component of veloc-
ity: the series are sorted according to GNSS receiver distances (computed with Vincenty’s  formula52) from the 
epicenter. Positive and negative distances represent respectively the GNSS stations placed north and south of 
the epicenter. Velocity time series for the horizontal and the up-components for CMBA station (the closest one 
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to the epicenter towards North) are shown in Fig. 3a,b. �e earthquake signi�cant shaking was detected on the 
basis of the Levene test for equality of variances at around 30 s a�er the rupture. �e moving window was 60 
samples, corresponding to 1-min interval, and the signi�cance level for the test was equal to 1%.

�e interval corresponding to the earthquake signi�cant shaking represents is selected between 100 and 200 
s a�er the earthquake (highlighted in red in Fig. 3a,b). Nominally, Fig. 3a shows the horizontal component of 
the velocity for the GNSS stations CMBA, in essence the shaking of the receiver in the horizontal plane. It is 
important to recall that the shaking duration through Levene test was evaluated on the lesser noisy horizontal 
component of the velocity (east- and north-components combined), and then the same interval was considered 
for the up-component.

�e determination of the shaking duration allows to estimate the coseismic displacements and the energy 
released (see Methods section for computation details) by the earthquake for every GNSS receiver. Le� panel of 
Fig. 4 shows the kinetic energy associated to the Up component for each GNSS station: the size of each station 
is proportional to the kinetic energy. �e kinetic energy (Table 1) released northbound is remarkably higher 
than the southbound one.

�e same procedure was also applied to accelerometer data showing similar results: accelerometers located 
north are characterized by larger ground shaking than south. In Supplementary Material (SM) we show the 
accelerometer network (Fig. SM1), the di�erent step to the energy determination for one single accelerometer 
(Fig. SM2) and the map of released energy by accelerometers (Fig. SM3).

In order to visualize the time evolution of the ground displacement, Fig. 5 shows the coseismic de-trended 
displacements series as computed by integrating the VADASE velocity solutions, the trend is also showed on the 
same �gure (Fig. SM4 shows coseismic displacements before the de-trending operation). Table 1 summarizes 
the overall coseismic displacements. �e largest coseismic displacement occurs for the east-component and this 
is consistent with the east-northeast movement of the Nazca  plate43. Moreover, the greatest east displacements 
take place for the stations placed at north of the epicenter.

We used the shaking duration to determine the energy released by the earthquake in 100–200 s a�er the 
earthquake. �e Power Spectral Density (PSD) related to this duration was computed from the Up component 
of the velocities. In Fig. 3c, the PSD respectively for CMBA stations is reported. �e normalized kinetic energy 
associated to the vertical shaking has been calculated by integrating the PSD within the frequency range 3.3-200 
mHz. �is frequency range was chosen in order to include the acoustic component of the typical AGW epi , and 
this is highlighted in Fig. 3c ; the upper limit of 200 mHz was chosen a�er a trial and error procedure in order 
to catch the whole normalized kinetic energy asymmetry. Figure 3d depicts the energy spectrum for CMBA 
station for the up velocity component.

Ionospheric detection of the AGW epi by VARION
In order to exclude other sources of ionospheric disturbances (e.g., geomagnetic storms), we evaluate relevant 
geomagnetic  indices53 during the day of the earthquake. �e o�cial planetary K p index does not reach the value 
of 4, excluding the possibility of geomagnetic storms on that  day54. D ST index (Disturbance Storm Time) was 
about—19 nT before and a�er the earthquake  time53. Hence, according to Loewe and Prölss55 classi�cation, it 
is possible to state that no geomagnetic storm was present on that day and so the Illapel earthquake is the main 
source of the ionospheric perturbations.

In order to perform the localization of the TEC perturbation detected by the GNSS stations in real-time, we 
compute the ionospheric piercing points (IPPs) �xing the layer of the ionosphere at the maximum of ionization 

Figure 1.  Le�—Map with the epicenter of the earthquake and the 118 GPS permanent stations at low-rate 
data sampling (10, 15, 30 s) used in VARION processing for sTEC variation estimation; GPS stations from 
CSN, SONEL, IGS and LISN in red, blue, orange and green respectively. Right—Map with the epicenter of the 
earthquake and the 44 GPS permanent stations at high-rate data sampling (1 s) used in VADASE processing for 
ground shaking and kinetic energy estimation: CSN stations in blue.
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calculated by some a priori models (e.g. the International Reference Ionosphere—IRI—2016  model56,57 and 
NeQuick  model58,59—Fig. 6). We �nally selected the NeQuick model because the computational time is faster 
then IRI, giving a great advantage for the real-time aproach. Anyway, we highlight that the two models are fully 
consistent. NeQuick model is based on a single input parameter—the E�ective Ionisation Level (Az)—determined 
using three coe�cients broadcast in the Galileo navigation  message60; this resulted, for the day of the Chile event, 
in a maximum electron density height of 290 km.

�e TEC time series were analysed with VARION during the time window from 21:45:00 to 23:59:59 GNSS 
time. �e longer period (> 35–40 min) component of the TEC variation was removed using an 8 th order poly-
nomial �t in order to highlight the AGW epi

29. We highlight that—in our knowledge—this is the �rst time that 
the AGW epi is detected in a near real-time scenario.

Figure 2.  Upper panel—Real-time scenario estimated ground motion (Up component) through VADASE. 
Bottom panels—sTEC variations for all the satellites in view for all the GPS stations computed through 
VARION in range of 1500 km from the epicenter (le� panel) and a zoom in the range of 150 km (right panel). In 
both cases, positive and negative distances represent respectively the IPP position at 8 min a�er the earthquake 
placed north and south the epicenter.
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�e elevation cut-o� angle of 20◦ was used in order to remove the noisier observations as usually suggested 
in the  literature2. �e bottom panels of Fig. 2 (the right panel is a zoom in of the green rectangle of the le� one) 
give a general vision of sTEC time series variations for all satellites and all stations, referred to the respective 
IPP positions 8 min a�er the earthquake, and sorted by the IPP corresponding distances (positive and nega-
tive distances represent respectively the IPP placed north and south of the epicenter from the epicenter at this 
epoch). It is important to highlight that overall 11 GPS satellites (G02, G05, G06, G12, G13, G14, G15, G20, 
G24, G25, G29) observed from the 118 GPS permanent stations showing the much higher spatial coverage of 
the ionospheric observations (bottom panels of Fig. 2) compared to the GNSS ground motion observation only 
(upper panel of Fig. 2). �e right panel of Fig. 4 shows the area analysed in which the coloured tracks represent 
the sTEC variations at the SIPs (same positions of the corresponding IPPs projected on the Earth ellipsoid) from 
the earthquake time (22:54:49 GPS time) to 23:59:59 GPS time. �e TEC perturbation computed in real-time 
by VARION and showed in the right panel of Fig. 4 is characterized by a favorable coverage and is consistent 
with the source extent, proving the potential advantages to use real-time sTEC observations for tsunami genesis 
estimation. Additionally, sTEC observations appear to correlate well with the vertical ground motion and the 
related kinetic energy showing a strong perturbation mainly located at the North of the epicenter. Video S1 in 
Supplementary Material shows the TEC perturbation appearing about 9.5 min a�er the earthquake and moving 
northward.

�e remarkable spatial density of ionospheric TEC observation by GNSS compared to ground motion (shown 
in Figs. 2 and 4) is simply related to fact that ground information is calculated only at the GNSS station location, 
instead the TEC measurements are located at the IPP between the GNSS station and the satellites. Consequently, 

Figure 3.  (a, b) Velocity time series for CMBA GPS station placed north of the epicenter. Speci�cally, (a) 
and (b) show the horizontal component and the Up component of the velocity respectively. �e duration 
was computed on the horizontal component and then applied to the Up component of velocity. �e red part 
highlights the earthquake duration detected with the Levene test. (c) �e PSD for CMBA station. In red the 
chosen frequency range (3.3–200 mHz) for the integration. (d) �e kinetic energy spectrum due to shaking in 
vertical direction for CMBA station.
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at each epoch, every GNSS station has one single measurement of ground motion but several sTEC measure-
ments: nominally, one for each satellite in view. �e actual multiplication of GNSS systems—i.e., GPS (US), 
GLONASS (Russia), Galileo (EU), BeiDou (China)—is opening ambitious perspectives for really dense coverage 
of ionospheric monitoring to support conventional ground motion observation by seismometers.

Figure 7 summarizes more than one hour (from 22:45:00 to 23:59:59 GPS time) of GNSS sTEC observa-
tions around the epicenter (hodochrones) and clearly shows the propagation of the AGW epi all around from 
the epicenter at the speed of sound. �e propagation speed of the AGW epi was estimated by linear least-squares 
regression and the horizontal disturbance propagation velocities are estimated with their standard deviations 
within the range of 620–640 m/s +/− 40 m/s (see Method for comparison with models). To better illustrate the 
correspondence between vertical ground shaking and ionospheric sTEC disturbances, the area was divided into 
six zones, four mainly on land and two mainly on the Paci�c Ocean. �e oblique straight lines, separating regions 
3 and 4, and regions 5 and 6, have azimuths respectively equal to 45 and 135 degrees. We selected the satellites 
with the best observation geometry well highlighting the sTEC perturbation (other satellites are showed in the 
Fig. SM5). As expected, and coherently with the ground motion observations, the TEC perturbations are more 
evident in the north of the epicenter (region 1, 3 and 4). �is e�ect is also partially induced by the magnetic 
�eld  lines18,61.

Figure 4.  Le� panel—Map of the earthquake ground shaking: the dimension of the station markers is 
proportional to the energy associated to the Up component of the earthquake ground shaking for some stations 
near the epicenter. It is evident that north placed stations are characterized by a higher energy than south placed 
ones. Right panel—Space-time sTEC variations at the SIPs for less than two hours (22:54:49-23:59:59 GPS time) 
on 16th September 2015 for all the satellites in view (cut-o� angle set to 20◦ ) from all the 118 GPS stations.

Table 1.  Overall coseismic displacements and their standard deviations for the GPS stations within 300 km 
from the epicenter. �e last column shows the value for the energy connected to the Up component of the 
earthquake ground shaking.

Stations Distance

East North Up

Energyvalue σ value σ value σ

– km cm cm cm cm cm cm J/kg

North

CMBA 76.91 − 76.76 0.13 0.28 0.62 − 13.56 1.88 2.45 e −6

PFRJ 99.33 − 137.98 0.12 − 19.77 0.57 − 10.36 1.72 5.09 e −6

PEDR 124.01 − 49.50 0.13 − 6.38 0.58 − 1.81 1.75 2.52 e −6

TOLO 176.02 − 27.79 0.12 − 12.63 0.56 − 1.77 1.71 3.74 e −6

LSCH 188.73 − 18.56 0.14 − 10.23 0.64 4.81 1.94 1.80 e −6

South

LVIL 40.56 − 33.97 0.11 4.05 1.11 -9.01 1.79 4.02e−7

ZAPA 110.74 − 4.59 0.01 − 1.50 0.95 − 10.04 1.53 4.22 e −7

VALN 161.71 − 1.98 0.15 − 5.14 1.41 2.69 2.28 2.21 e −7

DGF1 229.89 − 4.73 0.10 4.23 0.99 9.97 1.60 1.47 e −7

RCSD 231.23 − 2.16 0.09 − 0.16 0.87 2.41 1.40 1.98 e −7
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Figure 5.  VADASE detrended coseismic displacements for the East (a), North (b) and Up (c) component. �e 
stations are ordered according to their distance from the epicenter (positive distances for north placed stations 
and negative distances for south placed stations). �e spatial median computed for the north and south stations 
is depicted in black; the red part highlights the interval over which the robust linear �t was estimated, whereas 
the dashed line represents the extrapolated trend.
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Conclusions
VADASE and VARION variometric algorithms were de�ned and implemented in the past years to estimate 
ground shaking, co-seismic displacements and ionosphere disturbances from GNSS data in real time. In this 
paper we combined the two algorithms in a single one so-called Total Variometric Approach (TVA); only GNSS 
data that are really available in real time were analized in a real-time scenario with TVA to retrieve the ground 
shaking, the energy associated to its Up component and the ionospheric signature due to the September 16, 
2015 Mw 8.3 Illapel earthquake in Chile. We highlight that both ground-motion and TEC measurements reveal 
the north-south asymmetry related to the geometry of the rupture, and coherently with the plate tectonic local 
characteristic.

�e proposed real-time Total Variometric Approach (TVA) provides us with both ground shaking and TEC 
perturbation in real time, on the basis of the same GNSS data stream. �e TVA applied to the case of study 
of the Illapel earthquake (Mw 8.3, Chile) in 2015 using the data stream of 118 GNSS stations all around the 
epicenter allows to estimate signi�cant ground shaking at only 30 s a�er the rupture as well as the consequent 
energy related to the shaking. Additionally, the anomalous TEC perturbation, estimated with the same GNSS 
data-stream, and related to the propagation of the AGW epi , is detected at 9.5 min a�er the rupture and it also 
displays the north-south asymmetry previously shown by the GNSS ground-motion measurements. �e high 
spatial resolution of the GNSS-TEC observations reveal the source extent, the potential advantages introduced 
by the ionospheric observations. We highlight that no classic techniques are today able to directly measure the 
source extent of the rupture during an earthquake.

�erefore, for the very �rst time, we have demonstrated to simultaneously monitor—using the Total Vari-
ometric Aproach (TVA) on the same real-time GNSS data-stream—the ground-motion and the ionospheric 
TEC perturbation to support traditional instrument (e.g., seismometers, accelerometers, buoys and tide gages) 
to improve the quick estimation of the source parameters and to estimate the tsunami genesis.

Considering the richness of the information coming from ionospheric sounding and the demonstrated pos-
sibility to detect the ionospheric perturbation related to the AGW epi in about 9.5 min, TVA can be already used 
for to support classic tsunami warning system. Indeed, following Manta et al.16 the ionospheric tsunami power 
index (ITPI) of the Illapel event in 2015 is 14.51, corresponding to the estimated water-volume in the order of 
104 km3 displaced during the tsunami genesis.

Consequently, the �nal goal of the paper is to underline the feasibility and reliability of TVA approach for 
tsunami detection. Indeed, the TVA main advantages is to leverage the information coming from the ionosphere 
to densify the GNSS observations and to make up for the lack of any other data. �is makes TVA suitable for 
regions without high GNSS coverage (e.g., Sumatra and Paci�c region) or a massive scienti�c infrastructure (e.g., 
supercomputers). Furthermore, TVA represents a low-cost tool, ready to be implemented on existing high-rate 
GNSS real-time networks and to push forward the installation of new dense GNSS real-time networks. Finally, 
TVA main goal is to represent an additional resource to classic methods, such as tsunami  forecast62, earthquake 
early warning for tsunami  alert63, tsunami inundation simulation and damage  estimation64,65; in this context, 
the synergic use of all the available tools could really enhance the already existing tsunami warning systems.

Methods
Total Variometric Approach �e proposed real-time method is called Total Variometric Approach (TVA) and it 
is based on the joint use of VARION and VADASE algorithms. Both algorithms share the same variometric prin-
ciple (time single-di�erence of proper combinations of phase observations) using a standalone GPS receiver and 
standard GNSS broadcast products (orbits and clock corrections) that are available in real-time; VADASE uses 
ionosphere-free combination and it estimates GNSS station velocities and displacements (thus earthquake ground 
shaking)41,42, while VARION uses geometry-free combination and it estimates sTEC  variations29. VADASE and 
VARION can run in parallel but independently using the same GNSS data stream, so that TVA represents a com-
prehensive way to GNSS ground and ionosphere seismology, ready to be implemented on still existing high-rate 

Figure 6.  Sound velocity (right) and electron density pro�le (le�) with altitude on September 16th 2015 
according to IRI 2016 and Nequick model.
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GNSS permanent networks able to supply real-time data. Here data processing with both VADASE and VARION 
was performed o�-line, even if in a real-time scenario: exclusively the information available in real time was used.

VADASE starting from the previous developed and published  methodology41,42, the algorithm was improved 
with statistical test to de�ne the signi�cant shaking duration on the basis of the mean noise level of the velocity 
components, which have been recognized to be constant before and a�er the earthquake shaking generally with 
Gaussian distribution. East, North and Up velocities before and a�er the earthquake were evaluated to determine 
whether data are normally distributed. �e result from D’Agostino–Pearson66 test shows that the data follows a 
Gaussian distribution as shown in Fig. SM6 of the Supplementary material. �e incidence of non-normality is 
equal at most to 12.5%. For this reason, Levene test for equality of  variances67 was chosen instead of the F-test 
applied in Fratarcangeli et al.42: Levene test is, indeed, less powerful, but, at the same time, less sensitive to 
departure from normality than F-test. �e Levene test was performed on the horizontal velocity component 
(sum of East and North components).

Starting from the duration of signi�cant shaking, we de�ned the overall coseismic displacements and the 
energy released by the earthquake. �e series of the coseismic displacements, computed from the integration 
of VADASE velocity solutions, for the East, North and Up component, were de-trended as follows. First, we 
computed the spatial median of the displacements for the stations within 300 km of the epicenter as reported in 
Fratarcangeli et al.42. In our case, we computed two di�erent medians—respectively for the northward and the 

Figure 7.  Map indicating the division in six regions of the studied area making the epicenter the area center. 
�e two western sectors (1 and 2) are mainly placed over the Paci�c Ocean, while the four eastern sectors (3, 4, 5 
and 6) are mainly placed over land. Hodochron plots for the 6 regions identi�ed computed for a time interval of 
one hour and 15 min (from 22:45:00 to 23:59:59 GPS time) and for some satellites in view (cut-o� angle of 20◦ ) 
from all the 118 GPS stations. �e number in the upper right box denotes the region to which the hodochrones 
belong. �e slope of the straight line �tted, considering a linear least-squares regression for corresponding sTEC 
minima for di�erent satellites, represent the AGW epi horizontal propagation velocity.
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southward stations—since they are impacted di�erently by the rupture. �e spatial median was �tted robustly 
with a linear model (Huber regression  model68) considering the interval of 60 s before the earthquake for the 
nearest stations (CMBA in the north and LVIL in the south). �is straight line was extrapolated on all the 
interval of the coseismic displacements and then removed. Once completed the de-trending procedure, the 
overall coseismic displacements were computed using the strategy reported in Fratarcangeli et al.42. Based on 
the de-trending estimation, we also determined the uncertainty (sigmas) on the coseismic displacements using 
the model reported in Equation 1. More in detail, �Cr represents the overall coseismic displacements estima-
tion; a and b are respectively the slope and y-intercept of the robusted estimated linear model; σ 2

a  , σ 2

b
 and σab are 

the variances of the slope and y-intercept and the covariance between a and b respectively; �t is the signi�cant 
shaking duration.

Regarding the energy produced by the Up component of ground shaking released by the earthquake, we 
computed the Power Spectral Density (PSD) to the ground shaking duration for the up component of the velocity 
at each site. �e PSD was estimated using Welch method: an improvement of the standard periodogram spec-
trum estimation method, able to reduce the noise in the estimated power spectra in exchange for reducing the 
frequency  resolution69,70. By integrating the PSD within a speci�c frequency range, the energy (in that frequency 
range) was calculated. �is range is limited below by the speci�c cut-o� frequency for the AGW epi , as reported 
in the Introduction section. In this way, the normalized (for unit mass) kinetic energy for the Up component, 
related to the earthquake shaking, was computed for each site.

Atmospheric velocity of AGW epi �e estimated velocity of the AGW epi by the analysis of Fig. 7 were also vali-
dated with the US Naval Research Laboratory Mass-Spectrometer Incoherent-Scatter (NRL MSISE-00) and 
IRI-2016 models. �e NRL MSISE-00 is an empirical, global model of the Earth’s atmosphere from ground to 
thermospheric heights whose outputs are temperatures and densities of the atmosphere  components71. Hence, 
the temperature T pro�le as a function of the height in the earthquake day was computed. �en the sound veloc-

ity, cs =

√

γTR

m1
 , where R (approximately 8.3145 J mol−1 K −1 ), is the molar gas constant, γ is the adiabatic index 

(1.6667 for monatomic gases and 1.4 for diatomic gases), and m1 is the molar mass of the gases, was evaluated. 
�e le� panel of Fig. 6 shows the sound velocity pro�le for the earthquake day: a velocity of about 910 m/s is 
estimated at an height of 290 km (F2 layer height, where the electron density is maximum). �is sound velocity 
derived from model is coherent with the estimated sTEC perturbations velocity range, since hodochrones rep-
resent only the horizontal propagation velocity component of the AGW epi at the level of the F2 maximum, not 
the full velocity along the propagating k-vector.
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