
GO for Gene Documents

Xin Ying Qiu
Management Sciences Department

Tippie College of Business
The University of Iowa

xin-qiu@uiowa.edu

Padmini Srinivasan
Management Sciences Department &

School of Library and Information Science
The University of Iowa

padmini-srinivasan@uiowa.edu

ABSTRACT
Annotating genes and their products with Gene Ontology
codes is an important area of research. One approach for do-
ing this is to use the information available about these genes
in the biomedical literature. Our goal, based on this ap-
proach, is to develop automatic methods for annotation that
could supplement the expensive manual annotation processes
currently in place. Using a set of Support Vector Machines
(SVM) classifiers we were able to achieve Fscores of 0.48, 0.4
and 0.32 for codes of the molecular function, cellular compo-
nent and biological process GO hierarchies respectively. We
explore thresholding of SVM scores, the relationship of per-
formance to hierarchy level and to the number of positives in
the training sets. We find that hierarchy level is important
especially for the molecular function and biological process
hierarchies. We find that the cellular component hierarchy
stands apart from the other two in many respects. This may
be due to fundamental differences in link semantics. This
research also exploits the hierarchical structures by defining
and testing a relaxed criteria for classification correctness.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.7 [Document and Text Processing]: Miscellaneous

General Terms
Experimentation, Performance

Keywords
Automatic document annotation, Gene Ontology, Hierarchy
structures

1. INTRODUCTION
Annotating genes and their products with Gene Ontology

codes is an important area of research. One approach for do-
ing this is to use the information available about these genes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TMBIO’06, November 10, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-526-6/06/0011 ...$5.00.

in the biomedical literature. Our goal, based on this ap-
proach, is to develop automatic methods for annotation that
could supplement the expensive manual annotation processes
currently in place.

The importance of this GO annotation problem and the
value of computational methods to solve for it are well rec-
ognized. In the 2004 BioCreAtIve challenge, a set of tasks
were designed to assess the performance of current systems
in the area of supporting GO annotations for specific pro-
teins. In particular, the second task of identifying spe-
cific text passages that provide the evidence for annotation
resembles most the manual process of GO annotation[7].
The participating systems showed a variety of approaches
(from heuristics to Support Vector Machines classification)
exploring different levels in text analysis (such as sentences
or paragraphs)[2]. In Rice et al.[12], Support Vector Ma-
chines (SVM) classification was applied to the relevant doc-
uments for each GO code. Features from the documents
were selected and conflated as sets of synonymous terms.
Their methods worked better when a substantial set of rel-
evant documents were available. In Ray et al.[11], statisti-
cal methods were first applied to identify n-gram informa-
tive terms from the relevant documents of each GO term.
These term models provided hypothesized annotation mod-
els which could be applied to the test documents. In Chiang
et al.[5], a hybrid method that combined sentence level clas-
sification and pattern matching seemed to achieve higher
precision with fewer true positive documents.

In some of these previous studies, the hierarchy was ex-
plored but to a limited extent. This was done primarily to
add information to the classification models. When working
on GO annotation one may certainly draw from the general
hierarchical text classification literature (e.g. [4], [6], [18]).
We may also learn from hierarchical efforts with MeSH[14].
However GO may have special characteristics that could be
exploited beneficially. Or there may be properties that must
be considered by automatic annotation systems in order to
be effective.

Our goal in this research is to gain a better understanding
of the GO annotation problem using Support Vector Ma-
chines classification algorithms. We will study several open
issues in the GO context. One is the effect of the hierarchical
level on performance. Another is the effect of skewed distri-
butions where the negative examples tend to overwhelm the
positives in the training data. We will also study differences
between hierarchies built predominantly upon is a relation-
ships and those that significantly include part of relation-
ships as well. Although both are asymmetric and transitive,

their semantics are very different. Looking beyond achieving
good performance, our aim in this research is to contribute
to an understanding of the problem itself. The annotation of
genes and their products is an important contribution to de-
velopments in bioinformatics. As new genes are discovered
and as new functions of genes are identified, these annota-
tions serve as key mechanisms for organizing and providing
access to the accumulated knowledge.

2. DATA SOURCES AND APPROACH

2.1 Gene Ontology
Gene Ontology (GO)1 provides a structured vocabulary

that is used to annotate gene products in order to succinctly
indicate their molecular functions, biological processes, and
cellular components[1]. Although different subsets of GO
may be used to annotate different species, the intent is
to provide a common annotation infrastructure. Molecular
function describes activities performed by individual gene
products or complexes of gene products. Examples of molec-
ular functions are arbutin transporter activity and retinoic
acid receptor binding. A biological process is made of sev-
eral steps accomplished by sequences of molecular functions.
Examples include lipoprotein transport and phage assembly.
Cellular components are for example, the nucleus, NADPH
oxidase complex, and chromosome. There are three hierar-
chies in GO corresponding to these major dimensions. Each
hierarchy is a directed acyclic graph (DAG). The molecular
function hierarchy almost completely consists of is a links.
About a fifth of the links in the biological process hierarchy
represent part of links and the rest are is a links. The cellu-
lar component hierarchy is about evenly balanced between
the two types of links.

2.2 Annotations
We began with the August 2005 download of LocusLink

and extracted the entries for Homo Sapiens limited to those
with locus type gene with protein product, function known
or inferred..

There are 77, 759 annotation entries for 16, 630 locus ids.
Considering only annotations that used documents for evi-
dence we have 29, 501 entries. These entries are then lim-
ited to those having TAS (Traceable Author Statement) or
IDA (Inferred from Direct Assay) as evidence types yielding
20, 869 entries2. These entries are composed of 9, 577 anno-
tations for biological processes (BP) 5, 195 annotations for
cellular components (CC) and 6, 097 for molecular function
(MF). Together these 20, 869 annotations reference 8, 744
unique documents.

We looked at the distribution of the GO codes in our
dataset in terms of the number of documents associated with
each. The range is 1 to 333 for MF, 1 to 789 for CC and 1
to 579 for BP.

Limiting ourselves to only those codes that had at least
5 (unique) documents associated, we get 283 unique codes
for BP, 93 for CC and 214 for MF. We used 5 as the thresh-
old given the 5 times cross validation design for our experi-
ments. Thus we wish to ensure that each code had at least
1 evidence document in each split. Interestingly some code

1Downloaded on May 16 2006 from the GO Consortium:
http://www.geneontology.org
2http://www.geneontology.org/GO.evidence.shtml.

- pmid combinations occur more than once. This happens
when the same document offers two different kinds of evi-
dence, say TAS as also IDA, for annotation. Limiting these
combinations to the unique occurrences gives us 7, 200 an-
notations for BP, 4, 391 for CC and 3, 877 for MF. These
data were used in our experiments.

The data for each hierarchy was randomly split into 5
splits such that each code appears in each split with near
equal numbers of evidence documents. The overall cross
validation strategy is to iteratively take 4 splits as training
data and test the trained model on the remaining fifth split.
As an example for split1, we take splits 2 - 5 as training
data and 1 as testing. This ensures that there are at least
4 relevant documents for a code in the training side and at
least 1 in the test side.

2.3 Document Representation
In information retrieval research, the most widely used

document representation method is the “bag of words” ap-
proach where all the terms are used to form a vector rep-
resentation. Functional or connective words are considered
as stop words and are generally removed since they are as-
sumed to have no information content. The terms could
be weighted for example, with TF×IDF weights or boolean
weights. Alternative methods of defining terms have been
explored, but with little significant improvement for text
classification performance. Recent research by Moschitti
and Basili[10] suggests that the elementary textual repre-
sentation based on words applied to SVMs models is very
effective in text classification. More complex linguistic fea-
tures such as part-of-speech information and word senses did
not contribute to the predictive accuracy of SVMs.

For this research, we use vector representation for docu-
ments produced using the SMART system[15] with stemmed
terms after removing stop words. The “atc”[17] construc-
tion of TF×IDF weighting scheme were applied to the terms.
This representation has worked well in our previous research
([9]). We used the title, abstract, RN and MeSH fields of
the MEDLINE records.

2.4 Overall Approach
Genes (or more strictly their products) are annotated with

GO codes. Our interest is in predicting annotations from
the literature, specifically from MEDLINE records. This is
in contrast to other annotation methods such as the ones
involving sequence homology and protein domain analysis
(e.g. [19]). We approach the MEDLINE based annotation
problem in three phases. In the first phase we find docu-
ments that are relevant to the gene. In the second phase
we determine which codes should be assigned to each docu-
ment. In the third phase we decide which codes should be
assigned to a gene/gene product based on its classified doc-
uments. In recently completed work we studied phase 1, the
problem of retrieving MEDLINE records for genes[16]. In it
we consider the special challenges of dealing with gene name
and symbol ambiguity. In this research we focus mainly on
phase 2. That is, given a document (relevant for a gene or
a gene product) we ask: what GO codes should be assigned
to it? We also close this paper with preliminary results for
phase 3 using a very simple strategy. Specifically a gene is
assigned a code if it is assigned to any of its relevant docu-
ments. More sophisticated strategies for phase 3 are left to
future research.

The document annotation or classification problem of phase
two is interesting in that the codes themselves are struc-
tured hierarchically. Similar hierarchical classification prob-
lems have been addressed ([4], [6], [18]) including by our
own group ([13], [14]). A key aspect in GO based research
is that we have three hierarchies with different properties.
Moreover with GO, document classification is not the end
point but a step toward the goal which is gene/gene product
annotation (i.e., phase 3).

We adopt a classifier-based machine learning approach us-
ing the open source software SVM Light3. In all experiments
parameters are set at their default values. The positive in-
stances for a GO code are those records associated with it in
the LocusLink dataset. The negative instances are records
assigned to all the other GO codes.

We present a sequence of experiments within the Support
Vector Machines classifier framework. These also explore
the effect of hierarchy level and number of positives available
for each code during model building. We also explore a more
relaxed definition of classification correctness. Our overall
aim is to contribute a better understanding of phase 2 of the
GO annotation problem.

3. CODE SPECIFIC SVM CLASSIFIERS
Support Vector Machines were designed for binary or 2

class classification problems. A common solution, adopted
here, is to transform an N class problem into N binary
problems. Thus we build a distinct classifier for each code
(class) where the classifier decides whether a document be-
longs to the code’s class or not. The hierarchy within each
GO dimension is not used at this point. The only connection
among the codes is that they share a common dataset, al-
beit with different positive and negative instances. Unfortu-
nately, this approach yields extremely poor results as shown
in table 1. We found that most of the scores calculated by
SVM are negative, mainly due to the highly skewed nature
of the training data for most codes. As observed by several
others this problem may be fixed with judicious threshold-
ing[3]. So in the next experiment we calculated an optimal
threshold from the training data for the SVM scores.

Hierarchy Recall Precision Fscore
MF 0.0419 0.0944 0.052
CC 0.0599 0.1461 0.0764
BP 0.0234 0.064 0.0398

Table 1: Results: Single Classifier for each GO Code

4. SVM SCORE THRESHOLDS
Our goal is to determine a single threshold score for each

hierarchy, such that documents with scores assigned by the
SVM classifier above this threshold are declared positive.
We select the best threshold from the training data for each
split. In particular, we take the training dataset of a split
and divide it into 4 parts. (We call these ‘folds’ in order to
maintain a distinction from the higher level ‘splits’). Cross
validation over these four folds is done to generate a single
best threshold which is then applied to the test side of the

3http://svmlight.joachims.org/

split. The single best threshold was the average of the best
thresholds in the four folds[3].

Results are presented in table 2. The table shows for each
hierarchy, the threshold selected for each split as well as
the recall, precision and Fscore values achieved on both the
training and test sets. Averages across the splits are also
provided. First we observe that the thresholds selected fall
within a small range from -0.87 to -0.82 across all hierar-
chies. Molecular function has the smallest spread of thresh-
old values (-0.85 to -0.84). We also observe that molecular
function offers a relatively easier problem compared to cel-
lular component with biological process being the hardest
to solve. Finally, the test set scores are actually better than
the training set scores indicating that we have successfully
avoided over training our models in each case as these are
able to generalize to the unseen test cases. Thus we see that
setting the thresholds appropriately for these SVM classifiers
offers enormous benefits in performance (when compared to
the results in table 1).

5. CODE SPECIFIC THRESHOLDS
In the previous experiment a single threshold score was

set for each hierarchy. In this experiment thresholds are set
specific to individual GO codes. This strategy is reasonable
to explore as it may indeed be that although the averages
fall within a small range, the optimal threshold varies con-
siderably across the codes. The overall structure of the ex-
periment is the same as in the previous experiment. Code
specific thresholds are set using a 4-fold cross validation ex-
periment on each training set. The selected threshold is the
average of the best threshold for the code across the 4 folds.

Results are presented in table 3. Interestingly, this time
the Fscores achieved on the training runs are considerably
higher than the Fscores achieved in the test runs of the sin-
gle threshold experiment (compare with table 2). However,
the penalty is clearly paid on the test side, indicating that
this code specific strategy over-trains and fails to generalize
effectively on new data. The one exception is in the case
of CC where the Fscores are about the same in both cases.
However, performance for MF and BP drop significantly by
10.4% and 17.5% respectively. Thus a single threshold over
all codes of a hierarchy is superior to code specific thresh-
olding. We also find a similar pattern with the previous
experiment in that molecular function is easier to work with
than cellular component which in turn is less challenging
than biological process.

6. ANALYSIS OF RESULTS
We now analyze the best results obtained thus far which

is obtained using a single threshold score for all codes of a
given hierarchy. Our goal is to obtain further insights into
factors influencing the results.

6.1 Recall versus Precision
It is well understood that the same Fscore may be ob-

tained from different combinations of recall and precision.
In this regard a key point to note from table 2 (and table 3)
is that recall is always considerably higher than precision.
Although recall could also be improved, our results indicate
that the more serious problem for us lies in the context of
precision. Although in general we are making the correct
decisions the problem is we are making too many false pos-

Training Testing
Hierarchy Split Threshold Recall Precision Fscore Recall Precision Fscore

MF 1 -0.84 0.5624 0.4136 0.4504 0.5992 0.4258 0.4684
MF 2 -0.86 0.5923 0.3835 0.4390 0.6775 0.4073 0.4769
MF 3 -0.86 0.5954 0.3734 0.4328 0.6817 0.3874 0.4684
MF 4 -0.84 0.5713 0.4046 0.449 0.6857 0.4487 0.5134
MF 5 -0.85 0.5921 0.4076 0.4541 0.6772 0.3945 0.4727
MF Average na 0.5827 0.3965 0.4451 0.6643 0.4128 0.48
CC 1 -0.82 0.4799 0.3185 0.3627 0.5301 0.3531 0.3986
CC 2 -0.82 0.4823 0.3214 0.3665 0.5359 0.3516 0.4006
CC 3 -0.86 0.5287 0.2976 0.3590 0.6553 0.3895 0.4571
CC 4 -0.85 0.5122 0.2997 0.3571 0.5703 0.2976 0.3715
CC 5 -0.85 0.5222 0.315 0.3714 0.599 0.29 0.3767
CC Average na 0.5051 0.3104 0.3633 0.5781 0.3364 0.4009
BP 1 -0.87 0.4304 0.2378 0.2847 0.4722 0.2585 0.3079
BP 2 -0.87 0.4377 0.2442 0.2908 0.5259 0.2713 0.3362
BP 3 -0.85 0.4019 0.2615 0.2948 0.4908 0.2884 0.3392
BP 4 -0.84 0.3706 0.2556 0.2794 0.4854 0.2966 0.3484
BP 5 -0.87 0.4519 0.2600 0.3069 0.4608 0.2220 0.2791
BP Average na 0.4185 0.2518 0.2913 0.4870 0.2674 0.3222

Table 2: Results: Using a Common SVM Score Threshold

Training Testing
Hierarchy Split Fscore Recall Precision Fscore

MF 1 0.6221 0.4499 0.3989 0.3852
MF 2 0.615 0.5364 0.4402 0.44351
MF 3 0.6128 0.5295 0.3892 0.4133
MF 4 0.6298 0.5793 0.4394 0.452
MF 5 0.6371 0.5467 0.4264 0.4451
MF average 0.6234 0.5284 0.4188 0.4278
CC 1 0.5541 0.4679 0.3774 0.3842
CC 2 0.5052 0.5029 0.3435 0.3626
CC 3 0.5131 0.5632 0.3806 0.4239
CC 4 0.5554 0.5134 0.3273 0.3727
CC 5 0.5796 0.5148 0.3875 0.4201
CC average 0.5415 0.5125 0.3632 0.3927
BP 1 0.4469 0.3994 0.2463 0.2554
BP 2 0.4472 0.4017 0.2727 0.2793
BP 3 0.4378 0.3951 0.2531 0.2589
BP 4 0.4248 0.4309 0.2654 0.2804
BP 5 0.4518 0.3710 0.2434 0.2543
BP average 0.4417 0.3996 0.2562 0.2657

Table 3: Results: Using Dynamic Thresholds for
SVM Scores

itive declarations. In other words we need to tighten the
constraints and apply some filtering criteria on the positive
decisions declared. This angle will be pursued in future re-
search.

6.2 Hierarchical Level & Performance
Table 4 presents performance achieved for each level of

the hierarchies. Note that levels increase with the depth of
the tree. Thus more specific codes have higher level num-
bers. The table identifies the number of codes at each level
as well as the average scores. For molecular function, ignor-
ing level 1 which has very few codes, we find that levels 2
and 3 are the most challenging. The remaining MF levels
achieve Fscore in the range of 0.4728 to 0.6667. However
with the cellular component hierarchy we have Fscore de-
creasing as the level increases (barring level 1 which has
only 1 code). Finally with biological process, after level 2,
we observe somewhat stable performance between levels 3
and 6 (0.31 - 0.32 Fscore). Higher levels, especially level 7,
show better performance.

It seems that with MF and BP hierarchies the difficult
decisions are closer to the upper levels. This is contrary to
common intuition which suggests that classifying into more
general categories (such as animal or plant) should be easier
than classifying into more specific categories (such as hawk
or eagle). CC is different in that the decisions become more
challenging as we descend the hierarchy. The difference be-
tween MF and BP on the one hand and CC on the other
could be because of differences in the underlying semantics
of the links. As mentioned before CC links are about evenly
split between is a and part of whereas BP links are about
75% made of is a links while MF is almost exclusively is a.
These performance differences observed across the levels of
the hierarchies have important implications in the design of
automated annotation systems for GO.

of Scores
Hier. Level Codes Recall Precision FScore
MF 1 4 0.3176 0.1786 0.2205
MF 2 26 0.4846 0.2666 0.3176
MF 3 41 0.5261 0.3145 0.3695
MF 4 50 0.6780 0.4449 0.5066
MF 5 57 0.7799 0.4936 0.5732
MF 6 17 0.8937 0.5548 0.6505
MF 7 11 0.6961 0.3876 0.4728
MF 8 4 0.675 0.475 0.5233
MF 9 2 0.8 0.6 0.6667
CC 1 1 0.3171 0.2235 0.2537
CC 2 20 0.6476 0.4017 0.4675
CC 3 25 0.6062 0.349 0.4089
CC 4 26 0.5547 0.306 0.3741
CC 5 14 0.5502 0.2832 0.3622
CC 6 6 0.3955 0.2717 0.3135
CC 7 1 1 0.7917 0.8667
BP 1 3 0.1354 0.0481 0.0704
BP 2 10 0.3327 0.1767 0.2174
BP 3 34 0.5164 0.2517 0.3179
BP 4 54 0.4849 0.2563 0.3119
BP 5 49 0.4681 0.2516 0.3093
BP 6 52 0.4555 0.2734 0.3139
BP 7 51 0.5863 0.3251 0.3921
BP 8 21 0.4677 0.2834 0.3301
BP 9 8 0.4698 0.2840 0.3316

Table 4: Performance by Level

6.3 Number of Positives for Training &
Performance

Table 5 presents average scores for different ranges of num-
ber of positive examples in the training sets. Intuitively we
expect less skewed training data to provide better results as
we are using supervised SVM classifiers. Interestingly we
observe that this does not necessarily hold. For example
with molecular function higher numbers of true positives do
not necessarily yield better Fscores. Limiting our attention
to only those ranges with at least 10 codes, we find for ex-
ample, having more than 150 examples is significantly worse
than having just 16 to 20 positive examples. Observe that
as the size of the training set size is the same for each code,
having fewer positives implies that there are more negatives
in the sample. With the cellular component hierarchy we
restrict our attention to only the first 2 rows as the other
cells have too few codes in them. Again we see that fewer
examples yield better results. With the BP hierarchy we
again see a similar tendency for performance to drop with
increasing numbers of positive examples. The exception is
the first row which has significantly lower Fscore than the
next few ranges. These observations are interesting espe-
cially because they are counter to the generally accepted
notion that with a supervised approach we may expect bet-
ter results with more positive data.

Training
size

#
codes

MF-
Fscore

#
codes

CC-
Fscore

#
codes

BP-
Fscore

5 2 0.25 34 0.4067 128 0.2695
6-10 3 0.0833 25 0.3650 65 0.3875
11-15 9 0.4373 7 0.4528 22 0.3716
16-20 37 0.5645 4 0.4550 15 0.3306
21-25 39 0.544 3 0.4762 9 0.2588
26-30 31 0.5566 4 0.3687 4 0.3007
31-35 6 0.4663 3 0.5651 8 0.3566
36-40 7 0.5275 0 0 6 0.3579
41-45 10 0.4124 1 0.2009 5 0.3484
46-50 11 0.4276 1 0.2861 2 0.2553
51-75 18 0.3912 2 0.3430 12 0.3060
76-100 12 0.3936 1 0.2681 6 0.2726
101-125 5 0.4273 2 0.4089 0 0
126-150 4 0.4767 2 0.3226 0 0
151-last 20 0.3511 4 0.4586 1 0.2822

Table 5: Performance by Number of Positives for
Training

6.4 Correlations between Level and Number
of Positives for Training

Taking this analysis the next logical step forward we ex-
plore the relationship between level, positive set size and
performance for each code. Table 6 presents the computed
correlations.

We find a moderate and significant negative correlation
between level and size in the case of MF and BP but inter-
estingly not in the case of CC. So with MF and BP more
specific codes tend to have fewer positives in the training
data but this is not the case with CC. There is also a mod-
erate and significant positive correlation between level and
FScore in the case of MF and BP but again not for CC. That
is we tend to get better Fscores with more specific codes in
MF and BP hierarchies but not so with CC. Thus with MF
and BP we need to pay closer attention to the higher level
codes. Once again our efforts indicate that CC is a hierarchy
that might require classification methods that are different
from those that are appropriate for MF and BP. Again this
may be due to the underlying differences in link semantics.

Hier Level vs Size Level vs FScore Size vs FScore
MF -0.2705* 0.3361* -0.1146
CC -0.0123 -0.1051 0.0904
BP -0.2155* 0.1622* -0.0191

Table 6: Correlations. * - significant (0.01 signifi-
cance level)

A second observation may be made from the correlations
between performance and the other two variables. Specifi-
cally, level is far more important than the number of posi-
tives available for training, at least in the case of MF and
BP. Thus in order to seek improvements in performance it
would be prudent to develop methods capable of exploiting
the level information for the GO codes. Size of training set
on the other hand does not correlate with performance. As
mentioned before this is a surprising observation given the
commonly accepted notion that larger amounts of (positive)
training data tend to yield better performance scores.

7. LEVEL SPECIFIC THRESHOLDS
To explore the effect of level further we adopt a simple

strategy of setting the threshold by level. Table 7 shows
the effect of this strategy for the MF and BP hierarchies,
focussing only on levels 2 and 3. We do not apply this
strategy to CC as there was no correlation between level
and performance for this hierarchy. Also we consider only
levels 2 and 3 as level 1 has too few codes and these are the
levels where we seek improvements.

Interestingly, we find improvements at level 2 for both
MF and BP (+7.4% and +4.6% improvements in Fscore
respectively). However, the strategy does not work for level
3 in both cases. We will consider a different approach in
future research, one that involves including examples from
the neighborhood of the code. This could optionally include
weighting by distance to the code.

Original Final
Hier. Split Level Fscore Threshold Fscore
MF 1 2 0.3299 -0.8 0.3665
MF 2 2 0.2782 -0.83 0.2973
MF 3 2 0.3298 -0.78 0.373
MF 4 2 0.3484 -0.81 0.373
MF 5 2 0.3016 -0.78 0.3263
MF avg 2 0.3176 na 0.341

(+7.4%)
MF 1 3 0.3347 -0.87 0.3063
MF 2 3 0.3178 -0.84 0.3301
MF 3 3 0.4243 -0.88 0.3760
MF 4 3 0.4263 -0.87 0.3823
MF 5 3 0.3444 -0.86 0.3464
MF avg 3 0.3695 na 0.3482 (-

5.8%)

BP 1 2 0.2542 -0.87 0.2542
BP 2 2 0.2951 -0.89 0.2989
BP 3 2 0.2261 -0.89 0.2027
BP 4 2 0.1609 -0.87 0.2319
BP 5 2 0.1507 -0.88 0.1494
BP avg 2 0.2174 na 0.2274

(+4.6%)
BP 1 3 0.2916 -0.86 0.3020
BP 2 3 0.3145 -0.83 0.3455
BP 3 3 0.3496 -0.82 0.3030
BP 4 3 0.3128 -0.83 0.3164
BP 5 3 0.3209 -0.83 0.3529
BP avg 3 0.3179 na 0.324

(+1.9%)

Table 7: Performance: Level Specific Thresholds

8. RELAXING THE CORRECTNESS
CRITERIA

Thus far we have not utilized the hierarchical structure in
any way. There are at least two major directions in which
the hierarchy may be utilized. One is where the hierarchy is
used somehow during model building. For example, a node’s
training data may be augmented with training data from its
neighbors ([11]). Alternatively, a top down approach for
model building may be employed, with examples that filter
through higher level nodes participating in lower level de-

cisions ([4]). Many variations on these themes have been
explored in the general machine learning literature. In this
research we explore a second direction that has recently at-
tracted the attention of researchers, especially in the context
of bioinformatics problems (e.g. [8]). Specifically, we use the
hierarchy to relax the criteria for correctness of a classifica-
tion decision during evaluation. Essentially we assume that
when a document is assigned a GO code it is implicitly as-
signed the ancestor GO codes as well. This is reasonable
since the GO hierarchies encode is a and part of semantics
along the parent - child links and these are transitive rela-
tionships. With this assumption we relax the calculation of
recall and precision and therefore also of FScore as follows.

Recall = A/B where B is as usual the number of known
correct code - pmid pairs in the dataset. The relaxation is
applied to the calculation of A.

Consider a code - pmid pair (C - P) which is known to
be correct. If our classifiers assign code C to P then A is
increased by 1. Otherwise if our classifiers assign a code C’
to P where C’ is an ancestor of C then again A is increased
by 1.

Precision = E/F where F is as usual the number of pos-
itive decisions declared by the classifiers. The relaxation is
applied to the calculation of E.

Consider a code - pmid pair (C - P) which is declared a
positive by our classifiers. If code C is correctly assigned
to P then E is increased by 1. Otherwise if there exists a
code C” which is known to be assigned to P where C is an
ancestor of C” then E is increased by 1.

Note that our relaxed evaluation accepts as correct those
decisions that are more general than the correct code and
not those decisions that are more specific than the correct
code. Thus if the target code is glucoside transport, we will
accept as correct classification with the higher level (gen-
eral) carbohydrate transport code but not classification with
the lower level (specific) alpha-glucoside transport or beta-
glucoside transport codes.

The definition of ‘ancestor’ can of course be varied de-
pending upon how far up the tree one considers. This is for-
malized by ANCESTOR LEVEL, a parameter that can be
varied systematically. For example, when set to 1 ancestors
are limited to parents. Table 8 presents our results using
this relaxed evaluation scheme with ANCESTOR LEVEL
varying from 1 to 5. Unfortunately the results indicate that
we do not achieve improvements in FScore even when we
consider ancestors 5 levels up the hierarchies. But all is not
lost as we see next!

Table 9 takes a different perspective on assessing perfor-
mance within the context of this experiment. Note first that
thus far results have been obtained from averages of scores
for each GO code. To explain we have 5 splits in our ex-
periment design (see section 2), and each GO code appears
in each split with roughly equal number of positive exam-
ples. Within a split we first calculate FScore for each code
and then average these FScores. Tables 3 and 4 show such
averages for each split as also the global average. This ap-
proach for evaluation reflects a ‘code’ perspective with all
codes being considered equally important. A different way
to summarize performance is to consider each code - pmid
combination as an independent decision that has to be made.
Each combination needs to be declared as positive or nega-
tive by our classifiers. Thus given N codes and M pmids,
N×M decisions are to be made. Averages may then be com-

puted across the set of decisions in a split. In table 9 results
are presented from this perspective of individual decisions.

Observe first that we have new baselines identified for each
hierarchy. Note also that from the decision perspective, CC
is the easier hierarchy followed by MF and then BP. When
compared to these baselines we find steady improvements as
the definition of ancestor changes. Using ancestors up to 3
levels above gives improvements of 7.2%, 7.6% and 4.5% for
MF, CC and BP respectively. With level 5 we have 7.4%,
8.8% and 6.1% respectively. These improvements indicate
that, from a decision perspective, we perform better if we ac-
cept decisions that are approximately in the correct vicinity
of the target code.

Is the decision perspective useful? The answer is yes. Av-
eraging by the code (as done in the previous experiments)
tells us which codes are more challenging than others. While
designing annotation systems, we need to know code level
differences that may lead to tailored strategies. For exam-
ple the classifier system may differ by code level in the hi-
erarchies. So the “code perspective” is certainly important.
However, the decision perspective is more indicative of per-
formance in terms of our end goal - annotation at the gene
product level. The decision perspective implies that each
annotation decision, irrespective of code, is equally impor-
tant.

ANC LEVEL Recall Precision Fscore
MF baseline 0.6643 0.4128 0.4800
MF 1 0.6643 0.419 0.4847
MF 2 0.6650 0.4229 0.4880
MF 3 0.6650 0.4243 0.4888
MF 4 0.6650 0.4245 0.4890
MF 5 0.6650 0.4245 0.4880
CC baseline 0.5781 0.3364 0.4009
CC 1 0.5781 0.3471 0.4082
CC 2 0.5784 0.3509 0.4113
CC 3 0.5784 0.3536 0.4132
CC 4 0.5784 0.3540 0.4136
BP baseline 0.4870 0.2674 0.3222
BP 1 0.4887 0.2724 0.3265
BP 2 0.4887 0.2746 0.3285
BP 3 0.4890 0.2773 0.3301
BP 4 0.4890 0.2776 0.3305
BP 5 0.4890 0.2778 0.3306

Table 8: Performance: Common SVM Score
Threshold Runs with Relaxed Correctness Criteria
(Code Perspective)

Finally, we consider the annotation of the gene/gene prod-
uct (i.e., the locus id) itself. We test a simple strategy of
annotating a gene with a code if the code is assigned by our
system of classifiers to a document that is relevant to the
gene. Using this strategy we obtain for MF an Fscore of 0.31
(recall = 0.35 and precision = 0.28), for CC an Fscore of 0.36
(recall = 0.47 and precision = 0.29) and an Fscore of 0.22
for BP (recall = 0.26 and precision = 0.191). These scores
are on the low side indicating that on the whole the problem
of annotation is hard and one that offers many challenges.
We observe that the order of difficulty for the hierarchies at
the gene product annotation level has CC being easier than
MF and then BP. This parallels the order observed with the

ANC LEVEL Recall Precision Fscore
MF baseline 0.6639 0.3076 0.4100
MF 1 0.6639 0.3195 0.4309
MF 2 0.6652 0.326 0.4370
MF 3 0.6652 0.3288 0.4396
MF 4 0.6652 0.3296 0.4403
MF 5 0.6652 0.3297 0.4404
CC baseline 0.7442 0.3163 0.4432
CC 1 0.7442 0.3321 0.4586
CC 2 0.7458 0.3512 0.4769
CC 3 0.74583 0.3551 0.4804
CC 4 0.7458 0.357 0.4822
CC 5 0.7458 0.3572 0.4823
BP baseline 0.5578 0.2286 0.3236
BP 1 0.5583 0.2360 0.3311
BP 2 0.5583 0.2432 0.3381
BP 3 0.5586 0.2466 0.3415
BP 4 0.5586 0.2482 0.3430
BP 5 0.5586 0.2485 0.3433

Table 9: Performance: Common SVM Score
Threshold Runs with Relaxed Correctness Criteria
(Decision Perspective)

decision perspective (see table 9). We view these phase 3
(of the gene annotation problem, see section 2.3) results as
preliminary. Our focus in this paper is on gaining a better
understanding of phase 2 which is document classification
with GO codes.

9. CONCLUSIONS
We presented a series of experiments designed to explore

the value of Support Vector Machine based classifiers for as-
signing Gene Ontology codes to MEDLINE documents. We
find that by using thresholds selected for each hierarchy Fs-
cores of 0.48, 0.4 and 0.32 are obtained for the MF, CC and
BP hierarchies respectively. This is with a system of SVM
classifiers that do not yet capitalize on the hierarchical or-
ganization of the codes. Interestingly, threshold selection at
the individual code level (as opposed to the full hierarchy)
decreases performance due to over training. We explored
performance by level and by the number of positives in the
training set. The former appears more important especially
for MF and BP. CC in general differs from the other two
hierarchies. This may be due to differences in link seman-
tics as almost 50% of links are part of in CC. In contrast,
only a fifth of the links in BP are part of and there is only
1 such link in MF. Setting level specific thresholds for the
second highest level of MF and BP lead to appreciable im-
provements in Fscore. But this was not the case for level
3. Finally we explored a more relaxed evaluation criteria
where classification with a more general code compared to
the target code is considered correct. This yielded appre-
ciable improvements when a decision perspective was taken
during evaluation.

From this study we conclude that the hierarchies are dif-
ferent. Also hierarchical level is important. Counter to com-
mon intuition more general codes in MF and BP are actually
more challenging for classification. Also counter to common
intuition it is not necessarily the case that having more pos-
itives in our training data yields better performance.

There are several other ways in which we will exploit the
hierarchical structure in future work. For example, we plan
to try an ensemble of classifiers where ensembles are defined
through the hierarchy. We also plan to focus more on the
codes that have extremely few positive examples (1 to 4). In
this study we employed (global) feature weighting in lieu of
feature selection. In future work we will explore feature se-
lection, both global and local (code specific) strategies, more
directly. Finally, we plan on exploring other strategies for
phase 3 of the annotation problem which is to determine the
codes for a gene/gene product after these codes have been
assigned to their relevant documents. The current study has
given us a better understanding of the problem of classifying
documents with GO codes and prepares us for future work
in this direction.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No.0312356 awarded to P.
Srinivasan. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

10. REFERENCES
[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein,

H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski,
S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese,
J. E. Richardson, M. Ringwald, G. M. Rubin, and
G. Sherlock. Gene ontology: tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[2] C. Blaschke, E. A. Leon, M. Krallinger, and
A. Valencia. Evaluation of biocreative assessment of
task 2. BMC Bioinformatics, 6(Suppl
1)(S16):291–301, May 2005.

[3] J. Brank, M. Grobelnik, N. Milic-Frayling, and
D. Mlade. Training text classifiers with svm on very
few positive examples. Microsoft Corporation
Technical Report, MSR-TR-2003-34, 2003.

[4] S. Charkrabarti, B. Dom, R. Agrawal, and
P. Raghavan. Using taxonomy, discriminants, and
signatures for navigating in text databases. In
Proceedings of the International Conference on Very
Large Data Bases (VLDB), 1997.

[5] J.-H. Chiang and H.-C. Yu. Extracting functional
annotations of proteins based on hybrid text mining
approaches. In Proceedings of BioCreAtIvE Challenge
Evaluation Workshop 2004, 2004.

[6] S. Dumais and H. Chen. Hierarchical classification of
web content. In Proceedings of the ACM International
Conference on Research and Development in
Information Retrieval (SIGIR) 2000, pages 256–263,
2000.

[7] L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia.
Overview of biocreative: cretical assessment of
information extraction for biology. BMC
Bioinformatics, 6(Suppl 1)(S1):795–825, May 2005.

[8] S. Kiritchenko, S. Matwin, and A. Famili. Functional
annotation of genes using hierarchical text
categorization. In Proceedings of BioLINK SIG:
Linking Literature, Information and Knowledge for
Biology, 2005.

[9] M. Light, X. Y. Qiu, and P. Srinivasan. The language
of bioscience: Facts, speculations and statements in
between. In Proceedings of BioLink 2004 Workshop on
Linking Biological Literature, Ontologies and
Databases, 2004.

[10] A. Moschitti and R. Basili. Complex linguistic
features for text classification: A comprehensive study.
Proceedings of the 26th European Conference on
Information Retrieval (ECIR), pages 181–196, 2004.

[11] S. Ray and M. Craven. Learning statistical models for
annotating proteins with function information using
biomedical text. BMC Bioinformatics, 6(Suppl
1)(S18):291–301, May 2005.

[12] S. B. Rice, G. Nenadic, and B. J. Stapley. Mining
protein function from text using term-based support
vector machines. BMC Bioinformatics, 6(Suppl
1)(S22):291–301, May 2005.

[13] M. Ruiz and P. Srinivasan. Hybrid hierarchical
classifiers for categorization of medical documents.
Proceedings of the American Society for Information
Science and Technology, 2003.

[14] M. E. Ruiz and P. Srinivasan. Hierarchical text
categorization using neural networks. Information
Retrieval, 5(1):87–118, 2002.

[15] G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley, 1989.

[16] A. K. Sehgal and P. Srinivasan. Retrieval with gene
queries. BMC Bioinformatics, 7(220), April 2006.

[17] A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. Proceedings of the
1996 ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 21–29,
1996.

[18] W. Wibowo and H. Williams. Minimising errors in
hierarchical web categorisation. In Proceedings of the
International Conference on Information and
Knowledge Management (CIKM) 2002, pages
525–531, 2002.

[19] H. Xie, A. Wasserman, Z. Levine, A. Novik,
V. Grebinshy, A. Shoshan, and L. Mintz. Large scale
protein annotation through gene ontology. Genome
Research, 12:785–794, 2002.

