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Abstract

Registration is a fundamental task in computer vision.

The Iterative Closest Point (ICP) algorithm is one of the

widely-used methods for solving the registration problem.

Based on local iteration, ICP is however well-known to

suffer from local minima. Its performance critically relies

on the quality of initialization, and only local optimality is

guaranteed. This paper provides the very first globally op-

timal solution to Euclidean registration of two 3D pointsets

or two 3D surfaces under the L2 error. Our method is built

upon ICP, but combines it with a branch-and-bound (BnB)

scheme which searches the 3D motion space SE(3) effi-

ciently. By exploiting the special structure of the underlying

geometry, we derive novel upper and lower bounds for the

ICP error function. The integration of local ICP and global

BnB enables the new method to run efficiently in practice,

and its optimality is exactly guaranteed. We also discuss

extensions, addressing the issue of outlier robustness.

1. Introduction

The Iterative Closest Point (ICP) [5, 10, 35] is a well-

known algorithm for registering two point sets (in 2D or

3D) under Euclidean transformation. It has been successful-

ly applied to solving numerous real-world applications. The

concept of ICP is simple and intuitive. It alternates between

estimating geometric transformation (rotation and transla-

tion), and estimating the point-wise correspondences. Part-

ly due to its conceptual simplicity, as well as its good per-

formance in practice, ICP is one of the most popular algo-

rithms for registration, widely used in computer vision, and

beyond computer vision.

ICP is however also well-known for its suffering from

the issue of local minima, due to the local iterative pro-

cedure it adopts. Being an iterative method, ICP requires

a good initialization to start, without which the algorithm

may easily get trapped into local minima. If this situation

happens, the solution found by ICP may be far away from

the true (optimal) solution, leading to erroneous estimation.

More seriously, ICP itself has no way to tell whether or not

it has been trapped into a local minimum. Despite that this

drawback of local-minima is generally well-known, rela-

tively few papers have tackled this issue explicitly.

This paper is, to the best of our knowledge, the very first

that proposes a truly globally optimal solution to ICP type

Euclidean registration in 3D. It provides guaranteed opti-

mality without the need for a good initialization. In fact,

our new method always produces the exact and globally op-

timal solution (up to any desired accuracy), starting from

any initialization.

We call our new algorithm the Globally Optimal ICP (or

Go-ICP in short), because it largely resembles the computa-

tional structure of a standard ICP. It still relies on the search

of closest-points at each iteration. Moreover, a standard (lo-

cal) ICP is employed as a subroutine in our new algorithm.

By exploiting special structure of the underlying geometry

of SE(3), and with the help of local ICP, our Go-ICP algo-

rithm works rather efficiently. We have conducted extensive

tests on both synthetic data and real data; satisfactory result-

s (both in terms of theoretical optimality and computational

efficiency) are obtained for all tests.

Although Go-ICP is specifically designed for 3D Eu-

clidean registration since we take advantage of the geometry

of SE(3), the same techniques used in this paper may be in-

spiring for other cases as well (e.g. 2D or affine). Moreover,

confining to 3D should not be considered as a limitation, as

the 3D case is arguably the most useful case for registra-

tion. Our error metric used by Go-ICP follows strictly that

of ICP, namely, minimizing the L2 norm of the vector of

residuals. However, with small effort we can extend it to

other metrics such as the L1 norm, Least Median Squares

and other variants of ICP as well.
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2. Related Work

There has been a large volume of work published on ICP,

preventing us from giving a comprehensive list. Below we

only list a few most relevant works, that either aimed to

achieve optimal ICP or, more generally, addressed optimal-

ity in Euclidean registration. For other papers, the reader

is referred to a recent survey [8] or [31] and the references

therein.

To alleviate the local minima issue, previous work has at-

tempted to enlarge the basin of convergence by smoothing

out the objective function. Good performance has been ob-

served from Fitzgibbon’s LM-ICP [13] with robust kernels.

Probability density based techniques [18, 33, 27, 6] have

been used to model the points with Gaussian Mixture Mod-

els. Although improved robustness can be archived, the op-

timization procedures they adopted are still local search. Ef-

forts have been devoted to various heuristic stochastic op-

timizations, e.g. particle swarm optimization [34] and par-

ticle filtering [32], to help the registration jump out of lo-

cal minima. While these methods provide improved re-

sults, none of them maintains a deterministic and exact

optimality. Another class of methods adopt the heuris-

tic hypothesis-and-test idea. Examples include Hough

Transform, RANSAC and alignment-based object recogni-

tion [17]. They work well in cluttered scenes (e.g. the 4PC-

S [1]), but the heuristic nature renders their results not ex-

actly optimal.

Registration methods that come with guaranteed opti-

mality were published in the past, though in a smaller num-

ber. For example, in 2D cases, branch-and-bound (BnB)

has been used for image pattern matching [7, 26, 29]. A

truncated L2 optimization for optimal geometric fitting is

recently addressed in [2]. However, most of these methods

are focused on the much simpler 2D case. Extending them

to 3D and SE(3) is a non-trivial task.

Li and Hartley [23] presented a rotation-search method

for 3D-3D registration. While being globally optimal,

their method makes unrealistic assumption such as the t-

wo pointsets are of equal size and there is only pure rota-

tion. Branch-and-bound based Euclidean registration was

investigated in Olsson et al. [28] for cases with known cor-

respondences. Enqvist et al. [12] converted the registration

problem to graph vertex cover and provided an optimal so-

lution. Applications of BnB to other vision geometry prob-

lems may be found in [22, 20].

Methods that make use of local invariant shape descrip-

tors (e.g. spin image [19], shape contexts [4], EGI [24])

are mostly heuristic and do not address the optimality is-

sue. One exception is the work of Gelfand et al. [14] in

which they proposed a globally optimal solution on top of

the local descriptors. Their idea is based on pair-wise dis-

tance consistency similar to [12]. Their optimization is ap-

plied to a relatively small number of local descriptors rather

than whole point clouds. In contrast, our method (to be

described in this paper) requires no local descriptors and

directly works on raw point clouds.

In this paper, we solve the 3D Euclidean registration

problem with global optimality guarantee. Our method is

related to the idea of SO(3) space search, as proposed in

[15, 16] and extended in (e.g. [30, 3]). Most of the exist-

ing work along this line are based on the L∞-norm mini-

mization. For the case of L2-norm global optimization (e.g.

which is of interest to this paper), few results are known to

us.

3. The 3D Registration Problem

The standard ICP algorithm solves an L2-error mini-

mization problem, defined as follows.

Let two 3D pointsets X = {xi}, i = 1, ...,M and

Y = {yj}, j = 1, ..., N , where xi,yj ∈ R
3 are point co-

ordinates, be the data pointset and model pointset respec-

tively. The aim is to estimate a rigid motion with rotation

R ∈ SO(3) and translation t ∈ R
3, which minimizes the

following L2 error E:

E(R, t) =

M∑

i=1

ei(R, t)2 =

M∑

i=1

‖Rxi + t− yj∗‖2 (1)

where ei(R, t) is the per-point residual error for xi. The

point yj∗ ∈ Y is denoted as the optimal correspondence of

xi, which in the context of ICP is the closest point to the

transformed xi in Y , i.e.

j∗ = argmin
j∈{1,..,N}

‖Rxi + t− yj‖. (2)

Given initial transformation R and t, the ICP algorithm

iteratively solves the above minimization via alternating be-

tween estimating the transformation in Eq. (1), and finding

the closest-point matches by Eq. (2). Due to such iterative

nature, ICP can only guarantee the convergence to a local

minimum.

4. Method Overview

In this work, we seek a truly globally-optimal solution

to 3D registration. We choose to use branch-and-bound to

solve the global optimization problem. Our method is sum-

marized as follows.

Use BnB to search the space of SE(3)
Whenever a better solution is found, call ICP (ini-

tialized at this solution) to refine (reduce) the objec-

tive function value. Use ICP’s result as an updated

upper bound to continue the above BnB search.

Until convergence.
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While the idea of using BnB is straightforward, it is non-

trivial to apply it for the case of rigid 3D registration. Al-

though existing BnB approaches work successfully for 2D

registration, extending the success to 3D has been much

challenging (see e.g., [16, 12, 23, 12]).

In order to apply BnB to 3D registration, one must first

answer the following questions: (i) how to parameterize and

branch the domain of 3D motions, (ii) how to efficiently find

an upper bound and lower bound.

Domain parametrization. Recall that our goal is to min-

imize the error E in Eq. (1) over the domain of all feasible

3D motions (i.e. the group of SE(3), defined by SE(3) =
SO(3) × R

3). Each member of SE(3) can be minimally

parameterized by six parameters. The angle-axis represen-

tation is used in this paper to encode rotation, and we use

Rr to denote the rotation matrix with its angle-axis repre-

sentation to be r, i.e. Rr = exp([ r ]×) where exp(·) is the

matrix exponential and [ · ]× denotes the skew-symmetric

matrix representation. With this representation, the entire

space formed by all 3D rotations can be compactly repre-

sented as a solid radius-π ball in 3D. For ease of manipula-

tion, we use the minimum cube [−π, π]3 that encloses the

π-ball as the rotation domain. For the translation part, we

assume the optimal translation must lie within a bounded

cube [−ξ, ξ]3 which may be readily set by choosing a big

number as ξ. During BnB searches, initial cubes will be

subdivided into smaller sub-cubes Cr, Ct using the octree

data-structure and the process is repeated.

Bounding functions. We will present the derivation of

our new bounding functions (for the ICP L2-norm metric) in

the next section. Worth mentioning here is a unique feature

of the proposed BnB method. That is, we employ, as a sub-

routine, the conventional ICP algorithm in the BnB search

computation. This way, our method enjoys both the effi-

ciency provided by the local ICP search, and the optimality

guaranteed by the BnB search.

5. Derive New Bounding Functions

As for any BnB method, finding quality bounds is the key

to success. In our method, we need to find the bounds of the

particular type of L2-norm error function used in ICP within

a domain Cr × Ct. Next, we will introduce the concept

of uncertainty radius as a mathematical preparation, then

derive our new bounds based on it.

5.1. Uncertainty radius

The intuition behind the concept of uncertainty radius

is: we want to examine, if we perturb a 3D rigid motion

with rotation r ∈ Cr and/or translation t ∈ Ct applied to a

3D point x, what the uncertainty region of the transformed

point will be. We aim to find a ball enclosing such an un-

certainty region. Our first result is as follows.

X

Y

Z

∠
max

(a) Rotation uncertainty radius (b) Translation uncertainty radius

Figure 1. Uncertainty radii at a point. Left: rotation uncertainty

ball for Cr (in red) with center Rr0
x (blue dot) and radius γr .

Right: translation uncertainty ball for Ct (in red) with center x+
t0 (blue dot) and radius γt. In both diagrams, the uncertainty balls

enclose the range of Rrx or x+ t (in green).

Result 1. (Rotation uncertainty radius) Given a 3D point

x. For a rotation cube Cr of half side-length σr with r0 as

the center, examining the maximum distance from Rrx to

Rr0
x, we have

‖Rrx−Rr0
x‖62 sin(min(

√
3σr/2, π/2))‖x‖ .

=γr. (3)

Proof. ‖Rrx−Rr0
x‖

=2 sin(∠(Rrx,Rr0
x)/2)‖x‖

62 sin(min(∠(Rr,Rr0
)/2, π/2))‖x‖

62 sin(min(‖r− r0‖/2, π/2))‖x‖
62 sin(min(

√
3σr/2, π/2))‖x‖.

The first, and the second inequalities above, are based on

Lemma 1, Lemma 2 of paper [16], respectively. For con-

venience, we summarize both Lemmas in a (single) result

shown below.

Result 2. For any vector x, two rotations Rr and Rr0
, with

r and r0 as their angle-axis representations, then we have

∠(Rrx,Rr0
x) 6 ∠(Rr,Rr0

) 6 ‖r− r0‖. (4)

The second inequality in Eq. (4) means that, the angular

distance between two rotations in the underlying manifold,

is less than their vector distance in the angle-axis represen-

tation. We call γr the rotation uncertainty radius. Similarly,

we can derive a translation uncertainty radius γt, for a trans-

lation cube Ct with half side-length σt centered at t0:

‖(x+ t)− (x+ t0)‖ = ‖t− t0‖ 6
√
3σt

.
= γt. (5)

See Fig. 1 for illustrations of γr and γt. Both uncertainty

radii are used in deriving the lower bound for our method.

Note that γr is point-dependent, therefore γri refers to the

rotation uncertainty radius at xi.
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Figure 2. An illustrative figure for the obtained lower bound. It is

clear that a ≤ b ≤ c while a = ei and c = ei(Rr, t). See text for

details.

5.2. Bounding the L2 error

Given a 3D data point xi, a rotation cube Cr centered at

r0 and a translation cube Ct centered at t0, an upper bound

for the per-pixel residual error ei(R, t) within the cubes can

be trivially found as

ei
.
= ei(Rr0

, t0) > min
∀(r,t)∈(Cr×Ct)

ei(Rr, t). (6)

Finding a suitable lower bound for this L2 residual er-

ror appears to be a harder task, especially considering the

domain is in SE(3). However, below we will show how a

lower bound can be found, using the concept of uncertainty

radius.

The point yj∗ ∈ Y is closest to (Rrxi + t) as in Eq. (2).

Let yj∗
0

be the closest point to Rr0
xi + t0. Observe that,

∀(r, t) ∈ (Cr × Ct),

ei(Rr, t)

=‖Rrxi+t−yj∗‖
=‖(Rr0

xi+t0−yj∗)+ (Rrxi−Rr0
xi)+(t−t0)‖

>‖Rr0
xi+t0−yj∗‖−(‖Rrxi−Rr0

xi‖+‖t−t0‖) (7)

>‖Rr0
xi+t0−yj∗‖−(γri+γt) (8)

>‖Rr0
xi+t0−yj∗

0
‖−(γri+γt) (9)

=ei(Rr0
, t0)−(γri+γt),

where Eq. (7) follows from the (reverse) triangle inequali-

ty, Eq. (8) is based on the uncertainty radii in Eq. (3) and

Eq. (5), and Eq. (9) is based on the closest-point definition.

Note that, yj∗ is not a fixed point, but changes dynamically

as a function of (r, t) as defined in Eq. (2). Such a closest-

point mechanism is consistent with standard ICP.

Now we have reached a lower bound of the per-point

residual for Cr × Ct as

ei
.
=max(ei(Rr0

, t0)−(γri+γt), 0)6 min
∀(r,t)∈(Cr×Ct)

ei(Rr, t).

(10)

The geometric explanation of this lower bound is as fol-

lows. Since yj∗
0

is the closest point to the center Rr0
xi+t0

of the uncertainty ball with radius γ = γri+γt, it is also the

closest point to (the surface of) the ball and ei is the closest

distance between pointset Y and the ball. Thus no matter

where the transformed data point Rrxi + t lies inside the

ball, its closest distance to pointset Y will be no less than

ei. See Fig. 2 for an illustration.

Summing up the squared upper bounds and lower bounds

of the per-point residuals in Eq. (6) and Eq. (10) for all the

M points, we get the important result below.

Result 3. (Bounds of the L2 error) For a 3D motion domain

Cr×Ct centered at (r0, t0) with uncertainty radii γris and

γt, the upper bound E and the lower bound E of the optimal

L2 registration error E∗ can be chosen as

E
.
=

M∑

i=1

ei
2 =

M∑

i=1

ei(Rr0
,t0)

2, (11)

E
.
=

M∑

i=1

ei
2 =

M∑

i=1

max(ei(Rr0
,t0)−(γri+γt), 0)

2.(12)

This result gives both the upper bound and lower bound

of the registration error, based on which we developed our

Go-ICP algorithm.

6. The Go-ICP Algorithm

6.1. Nested BnBs

Instead of searching the 6D space of SE(3) with a

single BnB which would be less efficient, we propose to

use a nested BnB search structure. An outer BnB search-

es the rotation space of SO(3), while solving the bounds

and corresponding optimal translation by calling an in-

ner translational BnB. The bounds for both BnB algo-

rithms can be readily derived according to Sec. 5.2 and

will be briefly described as follows. In the outer rota-

tion BnB, for a cube Cr the bounds of the registration er-

ror can be chosen as Er = min∀t∈Ct

∑
i ei(Rr0

, t)2 and

Er = min∀t∈Ct

∑
i max(ei(Rr0

, t) − γri, 0)
2 where Ct

is the initial translation cube. To solve Er with the inner

translation BnB, the bounds for a translation cube Ct can

be chosen as Et =
∑

i max(ei(Rr0
, t0) − γri, 0)

2 and

Et =
∑

i max(ei(Rr0
, t0) − (γri + γt), 0)

2. By setting

all the rotation uncertainty radii γri to be zero in Et and Et

above, we get the translation BnB to solve Er.

A detailed description is given in Algorithm 1 (Go-

ICP – the Main Algorithm) and Algorithm 2 (the Trans-

lation BnB). The nested BnB structure can be clearly

seen: the outer BnB in Algorithm 1 calls the inner BnB

in Algorithm 2.

Search strategy and stop criterion. In both BnBs, we

perform best-first-search strategy. Specifically, each of the

BnBs maintains a priority queue Qr, Qt, respectively. The

priority of the cubes in the queue is opposite to their lower

bounds, which means that the BnBs always explore the cube

4



Algorithm 1: Go-ICP – the Main Algorithm: BnB

search for optimal registration in SE(3)

Input: Data and model points; threshold ǫ; initial cubes Cr , Ct.

Output: Globally minimal error E∗ and corresponding r
∗, t∗.

1 Put Cr into priority queue Qr . Set E∗ = +∞.

2 loop

3 Read out a cube with lowest lower-bound E
r

from Qr .

4 Quit the loop if E∗
−E

r
<ǫ.

5 Divide the cube into 8 sub-cubes.

6 foreach sub-cube Cr do

7 Compute Er for Cr and corresponding optimal t by

calling Algorithm 2 with r0, zero uncertainty radius, E∗.

8 if Er < E∗ then

9 Run ICP with initialization of (r0, t).
10 Update E∗, r∗, and t

∗ with the results of ICP.

11 end

12 Compute E
r

for Cr by calling Algorithm 2 with r0, γ
r

and E∗.

13 Discard Cr if E
r
> E∗; otherwise put it into Qr .

14 end

15 end

with smallest lower bound in the queue. Once the difference

between so-far-the-best error E∗ and the lower bound E of

current cube is less than a threshold ǫ, the BnB stops.

Proof of convergence. The convergence for both of the

algorithms is provable. All we need to do is to show that, as

the algorithm iterates, the gap between the lower bound and

the upper bound converges uniformly to zero. This is easy

to see, as when the side-lengths of all cubes asymptotically

diminish to zero, the gap between the two bounds, i.e. the

uncertainty radii in Eq. (3) and Eq. (5), will be zero too.

Initial error for inner BnB. Here we give some details

regarding the initial error setting in Line 1 of Algorithm 2.

To speed up the computation of inner BnB, we set the initial

E∗
t to be E∗ without loss of globally optimal registration

based on the following insight. If Er =E∗
t ≥E∗, then E∗

will not be updated. If Er = E∗
t ≥ E∗, then Cr contains

no better solution. In other words, if the error E∗
t returned

by the inner BnB is greater than or equal to so-far-the-best

error E∗ in the outer BnB, it makes no contribution.

6.2. Integration with local ICP

Lines 9-10 of Algorithm 1 describe our upper-bound re-

finement procedure based on a standard local ICP. This pro-

cedure is done as follows. Whenever the outer BnB finds

a cube Cr which has an upper-bound lower than the so-far-

the-best function value, it will then call the conventional

ICP to start over, from the center of Cr and corresponding

t∗ as the new initial transformation. This helps ICP jump

out of the previous local minima. Once ICP converges, it

will arrive at a new local minimum which has a lower func-

tion value. This new local minimum is used to update the

upper bound.

Algorithm 2: BnB search for optimal translation given

rotation
Input: Data and model points; threshold ǫ; initial cube Ct; rotation

r0; rotation uncertainty radii γ
r

, so far the best error E∗.

Output: Minimal error E∗

t
and corresponding t

∗.

1 Put Ct into priority queue Qt. Set E∗

t
= E∗.

2 loop

3 Read out a cube with lowest lower-bound E
t

from Qt.

4 Quit the loop if E∗

t
−E

t
<ǫ.

5 Divide the cube into 8 sub-cubes.

6 foreach sub-cube Ct do

7 Compute Et for Ct with r0,t0 and γ
r

.

8 if Et < E∗

t
then

9 Update E∗

t
= Et, t∗ = t0.

10 end

11 Compute E
t

for Ct with r0,t0,γ
r

,γt.

12 Discard Ct if E
t
> E∗

t
; otherwise put it into Qt.

13 end

14 end

ICP

ICP

ICP

BnB

BnB

Figure 3. Left: BnB and ICP collaboratively update the upper

bounds during the search process. Right: with the guidance of

BnB, ICP only explores un-discarded promising cubes with small

lower bounds marked up by BnB.

Figure 3 (left) illustrates the collaborative relationship

between ICP and BnB. Under the guidance of the global

BnB, the local ICP seems to have a strong “sense of direc-

tion”. Instead of exploring the domain blindly, ICP con-

verges into local minima one by one with each local mini-

mum having lower error than the previous one, and reaches

the global minimum in the end. Since ICP monotonically

decreases current-best error E∗ (cf. [5]), all points (transfor-

mation parameter r, t) in its search path should have error

lower than E∗, which means that lower bounds of the cubes

containing these points should be lower than E∗. Thus the

search path of the local ICP is entirely confined to the un-

discarded, promising cubes with small lower bounds, as il-

lustrated in Fig. 3 (right).

This way, both the global BnB search and the local ICP

search are intimately integrated in our method. The former

not only helps the latter to jump out of local minima, but al-

so provides a guidance for the latter’s next search; the latter

accelerates the former’s convergence by refining the upper

bound, hence improves the overall efficiency.
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Figure 4. Comparison of the registration error (Left) and rotation

error (Right) on random points, by our Go-ICP method, versus

ICP initialized with Identity rotation and zero translation. Ground-

truth rotation and translation lie randomly within ±100 degrees

and ±0.5 respectively.

7. Experiments

This section reports our experimental results of the Go-

ICP algorithm, on both synthetic data and real range sur-

faces. All our codes are implemented in C++, and test-

ed on a standard PC with Intel i7 3.4GHz CPU. To speed

up the closest-point computation one may use kd-tree or

Distance Transform (DT). Similar to [13], we use 3D Eu-

clidean DT with 300×300×300 grids. In all the experi-

ments reported below, we pre-normalized the pointsets such

that all the points are within the domain of [−1, 1]3 and

the initial transformation domain to explore is set to be

[−π, π]3 × [−0.5, 0.5]3. Except for the 3D object local-

ization experiment, we set the convergence threshold ǫ to

be 0.001∗M in all the tests. It is worth mentioning that,

thanks to the inner ICP, the convergence threshold can be

set reasonably large for BnB to converge fast. We organize

our experimental results below according to their purposes.

7.1. Optimality

The purpose of this first experiment is to verify the global

optimality of our new Go-ICP algorithm and compare that

with standard ICP. We repeat 100 tests on random points.

In each test, 100 model points are randomly drawn from the

uniform distribution in [−1, 1]3; rotation and translation are

randomly drawn within ±100 degrees and ±0.5 respective-

ly and applied to the model points to generate data points;

zero mean Gaussian noise is added to the points; ICP is ini-

tialized with Identity rotation and zero translation.

Figure 4 shows the final reported registration error and

rotation errors for the 100 runs. Note that our goal is to

minimize the L2 error while root-mean-square (RMS) error

is reported for better comprehension. It is clear that our Go-

ICP always outperforms the classic ICP, in terms of having

consistently lower residual error. Hence the optimality is

confirmed. The first row in Fig. 5 compares the registration

results of the first run. Visually inspected, our method yields

a more satisfactory registration too.

Figure 5. Visual comparison of registration results. Left: initial

pose. Middle: results by ICP initialized with Identity rotation and

zero translation. Right: results by our Go-ICP. (Better viewed in

color)

7.2. Running time

In this experiment, we use the Stanford bunny raw scan

data1 and a dense hand mesh2 shown in the last two rows

of Fig. 5 to test out the real-life efficiency. We test the run-

ning time of our method on different numbers of data points

(i.e. M ) by sub-sampling the original data, while the initial

poses are fixed.

As presented in Fig. 6, the running time of Go-ICP man-

ifests a linear trend, which is due to our linear convergence

threshold setting w.r.t number of data points, and the O(1)
closest-point distance retrieval from DT. Overall, the Go-

ICP algorithm is efficient. In our experiment, for example,

to match 1000 data points to about 30,000–40,000 model

points took about 30 seconds for bunny and 15 seconds for

the hand.

7.3. Convergence of bounds

To show the convergence of our method and demonstrate

the evolution of the bounds, we record the upper and lower

bound values of the outer BnB when registering the 1000

data points onto the model pointsets in the previous experi-

ment, and plot them as a function of time as shown in Fig. 7.

Note that, the global bounds are plotted. The global lower

bound, which is the smallest lower bound of the cubes in

the queue, is always close to zero because the globally op-

1http://graphics.stanford.edu/data/3Dscanrep/
2http://fastscan3d.com/download/samples/
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Figure 6. Typical execution time of our method on the bunny and

hand w.r.t. different numbers of data points (M ). Initial poses are

shown in the last two rows of Fig. 5.
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Figure 7. Typical convergence curves of the upper bounds and low-

er bounds in the outer BnB of our method on bunny and hand (M

= 1000).

timal error is close to zero, which is true for the registration

problem. It can be seen that, BnB and ICP collaboratively

update the upper bound. ICP refines the better upper-bound

found by BnB with local search, and BnB guides ICP to

converge into multiple local minima with lower and lower

registration errors until the global minimum is reached.

7.4. Outlier handling

This experiment aims to test the performance of our

method under outliers. Since ICP is based on least-squares

fitting, it is not inherently robust to outliers. However, our

Go-ICP can be easily extended to using a robust error func-

tion. In this test, we use ICP with trimming [11] and the

same trimming strategy in BnB to handle outliers. The ex-

tended lower bound is described in Sec. 8.

Different numbers of outliers (10% and 20%) are added

into the Bunny data points, and we set the trimming per-

centage of our Go-ICP to be 20%. Figure 8 visually shows

the effectiveness of our trimmed Go-ICP in attaining the

optimum despite of the presence of the outliers.

7.5. 3D object localization

In this experiment, we show how our method may be

used for model-based 3D object detection, localization and

pose estimation, from a cluttered range scan (e.g. that ob-

tained by a Kinect, or a laser scanner). The RGB-D

database from [21] is used. Our goal is to register the points

(a) 10% outliers (b) 20% outliers

Figure 8. Tests of Go-ICP with trimming under outliers. (Better

viewed in color)

of a baseball cap to the point cloud of the scene as shown

in Fig. 9. Note that this is an extremely hard task, as there

are numerous local minima (with very low registration er-

ror) arising when the cap is nestled into the table, the wall,

etc. Neither visual information nor local descriptors were

used; the inputs were two point clouds only.

We sampled 100 points on the cap, and the convergence

threshold was set to be 0.00001∗M = 0.001. Our Go-ICP

successfully localized the cap in the scene with accurate

pose estimation within 40 seconds. The final RMS error

is 3.9mm.

8. Extensions

This section gives some ideas of how to extend our

method to various other variants of ICP. We focus on a few

examples, showing mainly how the new lower bound (for

Cr × Ct) may be derived for these extended cases.

LM-ICP with robust M-estimator kernel. With little

change, our algorithm can be directly adapted to Levenberg-

Marquardt ICP [13]. Even the DT data structure in LM-ICP

can be shared by the BnB. The new lower-bound function

is simply a robust kernelized version of our original lower

bound.

Trimmed ICP. In [11], only a subset P of the data points

with smallest closest-point distances is used for motion

computation, hence improving the robustness. The new

lower bound can be derived as E=
∑

i∈Q ei
2≤∑

i∈Q e2i ≤∑
i∈P e2i =E, where Q is the trimmed subset of {ei} with

#Q=#P . In the same spirit, other variants of ICP such as

[9] or [25] can be similarly handled.

Lp-norm ICP. The same approach of the work may be

extended to other Lp-norm based ICP variants, such as the

robustness/sparseness promoting L1 norm. We leave this as

future work.

9. Closing Remarks

We have described a truly globally-optimal solution

to Euclidean registration in 3D, under the L2-norm error

7



Figure 9. 3D object detection and localization experiment. From left to right: a labeled object and its depth image; an RGB image and a

depth image of the scene; registration result showing 3D points and 2D image points. The object is optimally localized, with an accurate

pose estimated. Note that no appearance information (e.g. feature descriptors) was used, and there exists a large number of local minima.

metric which is the very first solution of this kind. Our algo-

rithm is especially useful for practical scenarios where hav-

ing an exact optimal solution is highly desirable. Despite

being a branch-and-bound based method, it works rather

efficiently. For certain applications where real-time perfor-

mance is not critical, our algorithm can be readily applied,

or used as an optimality benchmark.
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