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ABSTRACT
Summary: GO::TermFinder comprises a set of object-
oriented Perl modules for accessing Gene Ontology (GO)
information and evaluating and visualizing the collective
annotation of a list of genes to GO terms. It can be
used to draw conclusions from microarray and other bio-
logical data, calculating the statistical significance of each
annotation. GO::TermFinder can be used on any system on
which Perl can be run, either as a command line applic-
ation, in single or batch mode, or as a web-based CGI
script.
Availability: The full source code and documentation for
GO::TermFinder are freely available from http://search.cpan.
org/dist/GO-TermFinder/
Contact: sherlock@genome.stanford.edu

INTRODUCTION: MOTIVATION AND DESIGN
The amount of data that can be produced by experimental
platforms such as microarrays can be overwhelming. A typ-
ical microarray experiment can generate many lists of genes,
each containing dozens or hundreds of genes of interest. The
challenge to the biologist is to determine whether there is a
common theme to those genes, which will help in interpreta-
tion of the experiment. The Gene Ontology (GO) Consortium
(Ashburner et al., 2000) provides controlled vocabularies,
which model Biological Process, Molecular Function and
Cellular Component, that are structured into directed acyc-
lic graphs (DAGs). Gene products may be annotated to one
or more GO nodes, and because of the structure of GO,
a gene annotated to a given node is thus also annotated
to all ancestral nodes (parent, grandparent, etc.) of that
specific node.

∗To whom correspondence should be addressed.

THE APPLICATION PROGRAMMING
INTERFACE (API)
GO:TermFinder comprises an extensible set of object-
oriented Perl modules that can be used to determine the
significance of a GO annotation to a list of genes, and to access
GO information and annotation information through a well-
documented API. The software defines two abstract classes,
OntologyProvider and AnnotationProvider, which provide
APIs for handling ontology and annotation information,
respectively. Also provided are concrete implementations
of both of these abstract classes that parse the annota-
tion and ontology files provided by the GO Consortium
(www.geneontology.org), as shown in Figure 1. This soft-
ware design defines a plug-in architecture, which allows the
creation of alternate concrete subclasses, which for instance
might read from a database instead of flat files.

CALCULATION OF STATISTICAL
SIGNIFICANCE
To determine whether any GO terms annotate a specified list
of genes at a frequency greater than that would be expected
by chance, GO::TermFinder calculates a P -value using the
hypergeometric distribution:

P = 1 −
k−1∑
i=0
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i

) (
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n − i

)
(
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) .

In this equation, N is the total number of genes in the back-
ground distribution, M is the number of genes within that
distribution that are annotated (either directly or indirectly)
to the node of interest, n is the size of the list of genes of
interest and k is the number of genes within that list which
are annotated to the node. The background distribution by
default is all the genes within a given annotation file, though
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Fig. 1. Simplified UML diagram of the architecture of GO::TermFinder and associated modules. Public methods defined by the abstract base
class, GO::OntologyProvider, which are implemented by concrete subclasses, such as the GO::OntologyProvider::OntologyParser class that
we have written, return either a single GO::Node, or an array of GO::Node instances. A subset of the public interface to GO::Node is shown,
illustrating the various methods that exist to query the attributes of a GO::Node, as well as to traverse the GO structure.

the software also allows a user-defined background distribu-
tion, such that biases in the sampling population (e.g. the
genes represented on a microarray) can be accounted for cor-
rectly. The hypergeometric distribution is sampling without
replacement—for instance, consider a bag with 500 red and
500 green beads. If 20 beads were selected randomly, and
beads were not replaced after each selection, and 17 were
green, we would use the hypergeometric distribution to cal-
culate the P -value as the probability of picking 17, or more,
green beads from 20, given that there are 500 of each in the
background distribution.

MULTIPLE HYPOTHESIS CORRECTION
In a statistical experiment, a P -value is considered significant
if it is less than that experiment’s chosen alpha value. The
alpha value specifies the accepted level of certainty at which
a result is considered statistically significant when it is in fact
merely the result of random chance. For example, in an exper-
iment using an alpha value of 0.05, there is a 1 in 20 that any
given true ‘null’ test would seem significant just by chance.

When multiple hypotheses are tested, each hypothesis has a
probability of being falsely determined to be significant. If
10 hypotheses are tested and the alpha level is 0.05, then the
chance of finding at least one apparently significant difference
due to random chance equals 0.4 (which is 1 − 0.9510).

Correction for multiple hypotheses attempts to maintain the
probability of falsely finding any significant hypothesis at the
alpha value. The most common multiple hypothesis correc-
tion method used is the Bonferroni correction, whereby the
alpha value is simply divided by the number of tests, and
the overall chance of finding any false positive remains the
same as in a single hypothesis experiment. The Bonferroni
correction assumes that the tests are independent, and is usu-
ally considered a conservative adjustment (Sokal and Rohlf,
1995). In our case, the hypotheses (GO nodes) are not inde-
pendent, because the nodes themselves are structured in a
DAG and it is thus not clear whether a Bonferroni adjustment
would be appropriate. To determine whether the Bonferroni
correction is appropriate for multiple hypothesis correc-
tion, we implemented a simulation-based correction within
GO::TermFinder. For each simulation, the same number of
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genes as were provided in the real data were picked randomly
from the list of genes that define the background distribution,
and P -values were calculated as normal. Adjusted P -values
for the real data were calculated for each node as the fraction
of 1000 null-hypothesis simulations having any node with a
P -value as good or better than the P -value for that node,
where the null hypothesis states that a randomly chosen list of
genes should not be significantly annotated by any GO nodes.
Examining the output of simulations, to determine a correction
factor that would need to be applied to uncorrected P -values,
and comparing it to the Bonferroni adjusted P -values, we
determined that the Bonferroni adjustment is in fact some-
what liberal, rather than conservative. Both simulation and
Bonferroni are provided as options for multiple hypothesis
correction, though while the simulation based analysis is the
most accurate, it also takes three orders of magnitude longer
to run, as 1000 independent simulations are needed.

FALSE DISCOVERY RATES
A concern with classical multiple hypothesis correction is
that it aims to control the probability of making even a
single type I error (a false positive) within the tested fam-
ily of hypotheses. This can be overly restrictive, and result
in lots of false negatives instead. An alternative methodo-
logy for multiple hypothesis testing is to calculate the false
discovery rate (FDR), which is the expected proportion of
true null hypotheses rejected out of the total number of null
hypotheses rejected (Benjamini and Hochberg, 1995), i.e.
it is the proportion of hypotheses deemed to be significant,
that are not actually significant. Based on 50 simulations,
GO::TermFinder calculates the FDR for each hypothesis from
the real data as the average number of nodes per simulation
that have a P -value as good or better than the real node’s P -
value, divided by the number of nodes in the real data that have
a P -value as good or better than that P -value. Comparison of
P -values corrected by simulation versus the FDR (Table 1)
shows the conservative nature of classic multiple hypothesis
testing. Using a cutoff of 5% false discovery in this example
results in 27 hypotheses being chosen as significant with an
FDR of 1.63%, and less than 1 expected false positive. How-
ever, the P -value at that level is 0.137, higher than that would
be typically used as a cutoff. Using a P -value cutoff of 0.05
would result in picking 22 hypotheses as significant, suggest-
ing that using the corrected P -value is likely to result in more
false negatives.

VISUALIZATION OF RESULTS
The GO::TermFinder set of libraries includes a module,
GO::View, for visualizing the output of an analysis of a set of
genes for enriched GO terms. The module is configurable such
that both nodes in the output, and genes annotated to those
nodes can be linked to URLs, with their identifiers embedded

in those URLs. Additionally, the colors of the nodes them-
selves are based on the calculated P -values, so that attention
is drawn to the most significant nodes. Thus, the output data
can be easily and intuitively viewed and explored in a web
browser, as shown in Figure 2, which was generated from the
‘methionine cluster’, which is discussed below.

EXAMPLE OF A GO::TERMFINDER ANALYSIS
OF MICROARRAY DATA
Spellman et al. (1998) characterized the yeast cell cycle using
microarrays. The authors called one set of coherently regu-
lated genes the ‘methionine cluster’ because it contained many
genes whose name begins with ‘MET’ (Figure 4b in that paper,
containing ICY2, MET11, MXR1, SAM3, MET28, STR3,
MMP1, MET1, SER33, MHT1, MET14, MET16, MET3,
MET10, ECM17, MET2, MUP1, MET6—note that seven of
the genes in this cluster have been named since that study).
GO::TermFinder identifies (using the Biological Process onto-
logy, and the SGD-provided gene associations file on May 3,
2004) many GO nodes with significant Bonferroni-adjusted
P -values for this list. The top three nodes are: sulfur metabol-
ism (2.75e−21), sulfur amino acid metabolism (1.5e−19) and
methionine metabolism (3.39e−16). While the initial naming
of the cluster as the methionine cluster was close to the mark,
GO::TermFinder is more informative, and provides a robust
statistical basis on which to draw conclusions about observa-
tions from microarray data. In all, there are 23 GO terms that
are selected as significant using a 5% FDR as the cut-off, and
at that level, the number of expected false positives would be
less than 1, with an FDR of 2.17%.

INCLUDED TOOLS
GO::TermFinder includes within its distribution a number of
useful tools for enabling users to use the functionality provided
within the libraries. Two batch processing tools exist, that
allow the analysis of any number of files, each of which con-
tain a list of genes. One of these simply produces text output,
while the other generates html pages with browsable repres-
entations of the GO, as depicted in Figure 2. Additionally,
there are some simple tools for retrieving GO information,
such as the parents, children or ancestors of a particular node.
Although potentially useful in their own right, these tools are
also useful examples for programmers wanting to implement
their own client scripts of these libraries.

COMPARABLE SOFTWARE
While this work was in progress, many similar tools have
become available. These include FunSpec (Robinson et al.,
2002), Onto-Express (Draghici et al., 2003a,b; Khatri et al.,
2002) and FatiGO (Al-Shahrour et al., 2004) which are web
applications; GoMiner (Zeeberg et al., 03), a Java applica-
tion; GeneMerge (Castillo Davis and Hartl, 2003), which
is a standalone Perl script whose source is available; and
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Table 1. Comparison of Bonferroni corrected P -values, simulation corrected P -values and FDR for the 28 most significant GO nodes.

GO term Rank FDR (%) Expected false
positives

Uncorrected
P -value

Bonferroni corrected
P -value

Simulation
corrected
P -value

Simulation/
Bonferroni

Invasive growth (sensu
Saccharomyces)

1 0 0 1.93E−09 1.35343E−07 0.0001 N/A

Negative regulation of
transcription by carbon
catabolites

2 0 0 1.25E−08 8.737E−07 0.0001 N/A

Negative regulation of
transcription by glucose

3 0 0 1.25E−08 8.737E−07 0.0001 N/A

Regulation of transcription
by carbon catabolites

4 0 0 1.25E−08 8.737E−07 0.0001 N/A

Regulation of transcription
by glucose

5 0 0 1.25E−08 8.737E−07 0.0001 N/A

Protein-vacuolar targeting 6 0 0 2.36E−07 1.652E−05 0.0001 N/A
Growth pattern 7 0 0 4.45E−07 3.117E−05 0.0001 N/A
Filamentous growth 8 0 0 4.45E−07 3.117E−05 0.0001 N/A
Protein processing 9 0 0 4.97E−07 3.476E−05 0.0001 N/A
Growth 10 0 0 5.16E−07 3.609E−05 0.0001 N/A
Cell differentiation 11 0 0 4.11E−05 2.874E-03 0.0062 2.157
Sporulation 12 0 0 4.11E−05 2.874E-03 0.0062 2.157
Cellular morphogenesis 13 0 0 4.35E−05 3.047E-03 0.0065 2.133
Morphogenesis 14 0 0 4.35E−05 3.047E-03 0.0065 2.133
Development 15 0 0 5.86E−05 4.100E-03 0.0115 2.805
Negative regulation of

transcription,
DNA-dependent

16 0.125 0.02 1.38E-04 9.627E-03 0.0237 2.462

Negative regulation of
transcription

17 0.118 0.02 1.47E-04 0.0103 0.0238 2.309

Protein targeting 18 0.111 0.02 1.60E-04 0.0112 0.0293 2.618
Cellular physiological

process
19 0.105 0.02 2.20E-04 0.0154 0.0352 2.286

Intracellular protein
transport

20 0.100 0.02 2.29E-04 0.0160 0.0359 2.237

Protein transport 21 0.095 0.02 2.62E-04 0.0183 0.0416 2.271
Cellular process 22 0.091 0.02 3.00E-04 0.0210 0.0429 2.043
Intracellular transport 23 0.087 0.02 4.74E-04 0.0332 0.0635 1.914
Sporulation (sensu

Saccharomyces)
24 0.083 0.02 5.67E-04 0.0397 0.074 1.865

Sporulation (sensu Fungi) 25 0.320 0.08 7.27E-04 0.0509 0.0905 1.779
Cell growth and/or

maintenance
26 0.615 0.16 8.85E-04 0.0619 0.1057 1.706

Protein-membrane
targeting

27 1.630 0.44 1.41E-03 0.0989 0.1373 1.389

Meiosis 28 5.786 1.62 2.94E-03 0.2055 0.5511 2.681

For a group of genes that show sensitivity to 1 M NaCl and 10 µM nystatin [(Giaever et al., 2002); SNF7 STP22 VPS28 SNF8 VPS36 VPS25 YGR122W RIM20 RIM21 RIM8
RIM101 DFG16 RIM9 YGL046W RIM13 YNR029]. Note that the Bonferroni correction is up to 2.8-fold less conservative than the simulation method that controls the Family Wise
Error Rate. N/A, not applicable—cases where no P -values better than that node’s P -value were seen in simulations.

FuncAssociate (Berriz et al., 2003), which is a web applic-
ation, comprising Perl and C code that are available for
download. Each of these supports the calculation of P -values
for annotations for a given set of genes, with various multiple
hypothesis correction strategies, and some have support for
FDR calculation. Although there is a significant overlap in
functionality, GO::TermFinder has some unique attributes
not found in these other tools. First, the source code for
GO::TermFinder is fully and freely available under a very

permissive Open Source license (the MIT license), which is
not the case for any of the above tools. Those whose source
code is available (GeneMerge and FuncAssociate) are avail-
able under more restrictive licenses. Second, GO::TermFinder
is modular so it is easy to incorporate into other applications
or analysis pipelines, or to improve or modify its behavior—
additionally, the MIT license asserts no ownership on any
improvements made to the software. Third, GO::TermFinder
defines an API for accessing GO and Annotation information,
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Fig. 2. Visualizing output from GO::TermFinder. GO graph layout that includes the significant GO nodes annotated by the ‘methioine cluster’,
which contains ICY2, MET11, MXR1, SAM3, MET28, STR3, MMP1, MET1, SER33, MHT1, MET14, MET16, MET3, MET10, ECM17,
MET2, MUP1 and MET6. The color of the nodes is an indication of their Bonferroni corrected P -value (orange <= 1e-10; yellow 1e-10 to
1e-8; green 1e-8 to 1e-6; cyan 1e-6 to 1e-4; blue 1e-4 to 1e-2; tan > 0.01).

which is well documented, and can easily be used by Perl
programmers. Fourth, GO::TermFinder can create browsable,
visual presentations of the significant nodes, making it
very easy for biologists to interpret their data. Finally,
GO::TermFinder includes a number of tools, as described
above. Thus despite the considerable overlap with other tools,
we believe GO::TermFinder to be a significant contribution.

DISCUSSION
The ability to determine rapidly significant GO annotations
for a list of genes, generated by any means, is a powerful tool
in a biologist’s arsenal in these days of genomic scale biology.
GO::TermFinder is flexible, extensible and easy to reuse and
incorporate into analysis pipelines. In future, we will write
data adaptors to the CHADO schema, which is being designed
as a generic model organism database (www.gmod.org). This
will enable new databases to incorporate the GO::TermFinder
functionality without additional coding.
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