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Abstract

Go with the Flow: Graphs, Streaming and Relational Computations over
Distributed Dataflow

by

Reynold Shi Xin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael Franklin, Co-chair
Professor Ion Stoica, Co-chair

Modern data analysis is undergoing a “Big Data” transformation: organizations
are generating and gathering more data than ever before, in a variety of formats
covering both structured and unstructured data, and employing increasingly so-
phisticated techniques such as machine learning and graph computation beyond the
traditional roll-up and drill-down capabilities provided by SQL. To cope with the
big data challenges, we believe that data processing systems will need to provide
fine-grained fault recovery across a larger cluster of machines, support both SQL
and complex analytics efficiently, and enable real-time computation.

This dissertation builds on Apache Spark, a distributed dataflow engine, and
creates three related systems: Spark SQL, Structured Streaming, and GraphX. Spark
SQL combines relational and procedural processing through a new API called
DataFrame. It also includes an extensible query optimizer to support a wide variety
of data sources and analytic workloads. Structured Streaming extends Spark SQL’s
DataFrame API and query optimizer to automatically incrementalize queries, so
users can reason about real-time stream data as batch datasets, and have the same
application operate over both stream data and batch data. GraphX recasts graph
specific system optimizations as dataflow optimizations, and provides an efficient
framework for graph computation on top of Spark.

The three systems have enjoyed wide adoption in industry and academia, and
together they laid the foundation for Spark’s 2.0 release. They demonstrate the
feasibility and advantages of unifying disparate, specialized data systems on top of
distributed dataflow systems.
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Chapter 1

Introduction

For the past few decades, data warehouses have been the primary data reposito-
ries for analytics. Different teams within an organization get together to define a
data model based on their business requirements. Achieving consensus on the data
model often requires months, if not years, of discussions. Once such model is cre-
ated, live transactional data, presented in tabular forms, are extracted, transformed,
and loaded (ETL) into data warehouses at regular intervals. Business analysts
create reports and perform ad-hoc queries using SQL against the data warehouses.
From a software architecture perspective, such data warehouses typically employ
the Massively Parallel Processing (MPP) architecture, scaling often to only a few
high-end physical machines.

1.1 Challenges of Big Data

With the rise of the Internet, e-commerce, and connected devices, modern data
analysis is undergoing a “Big Data” transformation. Unlike what’s described above,
big data is defined by the following four key properties. The first three properties,
volume, velocity, and variety, have been famously identified by Gartner as the “3Vs
of Big Data” [5].

1. Volume: Data volumes are expanding drastically, creating the need to scale out
both data storage and processing across clusters of hundreds, if not thousands,
of commodity machines. Most MPP databases employ a coarse-grained re-
covery model, in which an entire query has to be resubmitted if a machine
fails in the middle of a query. This approach works well for short queries
when a retry is inexpensive, but faces significant challenges for long queries
as clusters scale up [9].

2. Velocity: The velocity of data arriving is also increasing. Often without human
in the loop, data can be generated and arrive at the speed of light. This opens
up the opportunity for organizations to deploy systems that process data in
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real-time. Nightly batch systems are no longer sufficient. In addition to the
real-time nature of data, business requirements also change at a faster pace,
making it difficult to create a commonly agreed upon data model.

3. Variety: Semi-structured and unstructured data, such as images, text, and
voice, are becoming more common, while traditional data systems were built
to handle primarily structured, tabular data.

4. Complexity: The complexity of analysis has also grown. Modern data analysis
often employs sophisticated statistical methods, such as machine learning
algorithms, that go well beyond the roll-up and drill-down capabilities of
traditional database systems. While it may be possible to implement some of
these functionalities using user-defined functions (UDFs) in MPP databases,
these algorithms are often difficult to express and debug using UDFs. They
are also computationally more expensive, exacerbating the need for systems
to recover gracefully from machine failures or mitigate slowdowns that are
common in large clusters.

To tackle the big data problem, the industry has created a new class of systems
based on a distributed dataflow architecture. At the time this thesis first started,
MapReduce [48] and Dryad [69] were the most prominent examples of such systems.
They employ a fine-grained fault tolerance model suitable for large clusters, where
tasks on failed or slow nodes can deterministically be re-executed on other nodes.
These systems are also fairly general: [41] shows that these systems can express
many statistical and machine learning algorithms, support unstructured data, and
“schema-on-read” for greater flexibility.

However, dataflow engines lack many of the features that make MPP databases
efficient, and thus exhibit high latencies of tens of seconds to hours, even on simple
SQL queries. They are also designed primarily for batch analytics, and thus are
unsuitable for real-time data processing. As such, most organizations tend to use
these systems alongside MPP databases to perform complex analytics.

To provide an effective environment for big data analysis, processing systems
will need to provide fine-grained fault recovery across a larger cluster of machines,
support both SQL and complex analytics efficiently, and enable real-time compu-
tation. This dissertation develops three related systems: Spark SQL, Structured
Streaming, and GraphX, that explore building effective systems for big data on top
of a distributed dataflow engine.

1.2 Distributed Dataflow Frameworks

We use the term distributed dataflow framework to refer to cluster compute
frameworks like MapReduce and its various generalizations. Although details vary
from one framework to another, they typically satisfy the following properties:

2



1. a data model consisting of typed collections (i.e., a generalization of tables to
unstructured data).

2. a coarse-grained data-parallel programming model composed of deterministic
operators which transform collections (e.g., map, group-by, and join).

3. a scheduler that breaks each job into a directed acyclic graph (DAG) of tasks,
where each task runs on a (horizontal) partition of data, and the edges in the
graph indicate the input/output dependencies.

4. a runtime that can tolerate stragglers and partial cluster failures without
restarting.

MapReduce is a special distributed dataflow framework. Its programming
model exposes only two operators: map and reduce (a.k.a., group-by), and conse-
quently each MapReduce job can contain at most two layers in its DAG of tasks.
More modern frameworks such as DryadLINQ [129] and Spark [131] expose addi-
tional dataflow operators such as fold and join, and can execute tasks with multiple
layers of dependencies. More generally, many shared-nothing parallel databases
also satisfy the description of distributed dataflow frameworks when user-defined
functions are employed, although databases typically have weaker fault-tolerance
guarantees.

Distributed dataflow frameworks have enjoyed broad adoption for a wide
variety of data processing tasks, including iterative machine learning. They have
also been shown to scale to thousands of nodes operating on petabytes of data.

1.3 Apache Spark

In order to understand the projects and ideas in this thesis, it is important
initially to examine the background of Apache Spark.

Spark is a distributed dataflow framework with APIs in Scala, Java and
Python [20]. Spark was initially released in 2010 by the UC Berkeley AMPLab,
and the project was donated to the Apache Software Foundation in 2013 (and thus
“Apache Spark”). It has since become the most active open source project for big
data processing, with over 1200 people [4] having contributed code to the project.

Spark has several features that are particularly relevant to the work in this
dissertation:

1. Spark’s storage abstraction called Resilient Distributed Datasets (RDDs) [131]
enables applications to keep data in memory, which is essential for complex
analytics such as machine learning algorithms and graph algorithms.

2. RDDs permit user-defined data partitioning, and the execution engine can ex-
ploit this to co-partition RDDs and co-schedule tasks to avoid data movement.
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This primitive is essential for performance optimizations for both relational
query processing and advanced analytics.

3. Spark logs the lineage of operations used to build an RDD, enabling automatic
reconstruction of lost partitions upon failures. Since the lineage graph is
relatively small even for long-running applications, this approach incurs
negligible runtime overhead, unlike checkpointing, and can be left on without
concern for performance. Furthermore, Spark supports optional in-memory
distributed replication to reduce the amount of recomputation on failure.

4. Spark provides high-level programming APIs in Scala, Java, and Python that
can be easily extended.

Next, we explain Resilient Distributed Datasets, the primary programming
abstraction of Spark.

1.3.1 Resilient Distributed Datasets (RDDs)

Spark’s main abstraction is resilient distributed datasets (RDDs), which are im-
mutable, partitioned collections that can be created through various data-parallel
operators (e.g., map, group-by, hash-join). Each RDD is either a collection of data stored
in an external storage system, such as a file in HDFS [2], or a derived dataset created
by applying operators to other RDDs. For example, given an RDD of (visitID, URL)
pairs for visits to a website, we might compute an RDD of (URL, count) pairs by
applying a map operator to turn each event into an (URL, 1) pair, and then a reduce
to add the counts by URL.

In Spark’s native API, RDD operations are invoked through a functional interface
similar to DryadLINQ [129] in Scala, Java or Python. For example, the Scala code
for the query above is:

val visits: RDD[String] = spark.hadoopFile("hdfs://...")

val counts: RDD[(String, Int)] = visits.map(v => (v.url, 1))

.reduceByKey((a, b) => a + b)

RDDs can contain arbitrary data types as elements (since Spark runs on the
JVM, these elements are Java objects), and are automatically partitioned across
the cluster, but they are immutable once created, and they can only be created
through Spark’s deterministic parallel operators. These two restrictions, however,
enable highly efficient fault recovery. In particular, instead of replicating each RDD
across nodes for fault-tolerance, Spark remembers the lineage of the RDD (the graph
of operators used to build it), and recovers lost partitions by recomputing them
from base data [131].1 For example, Figure 1.1 shows the lineage graph for the
RDDs computed above. If Spark loses one of the partitions in the (URL, 1) RDD,

1 We assume that external files for RDDs representing data do not change, or that we can take a
snapshot of a file when we create an RDD from it.
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Figure 1.1: Lineage graph for the RDDs in our Spark example. Oblongs represent
RDDs, while circles show partitions within a dataset. Lineage is tracked at the
granularity of partitions.

for example, it can recompute it by rerunning the map on just the corresponding
partition of the input file.

The RDD model offers several key benefits in our large-scale in-memory com-
puting setting. First, RDDs can be written at the speed of DRAM instead of the
speed of the network, because there is no need to replicate each byte written to
another machine for fault-tolerance. DRAM in a modern server is over 10× faster
than even a 10-Gigabit network. Second, Spark can keep just one copy of each RDD
partition in memory, saving precious memory compared with a replicated system,
since it can always recover lost data using lineage. Third, when a node fails, its
lost RDD partitions can be rebuilt in parallel across the other nodes, allowing fault
recovery.2 Fourth, even if a node is just slow (a “straggler”), we can recompute
necessary partitions on other nodes because RDDs are immutable so there are no
consistency concerns with having two copies of a partition.

One final note about the API is that RDDs are evaluated lazily. Each RDD
represents a “plan” to compute a dataset, but Spark waits until the execution of
certain output operations, such as count, to launch a computation. This allows the
engine to do some simple query optimization, such as pipelining operations. For
instance, in the example above, Spark will pipeline reading lines from the HDFS
file with the map operation, so that it never needs to materialize the intermediate
results. While such optimization is extremely useful, it is also limited because the
engine does not understand the structure of the data in RDDs (which is arbitrary
Java/Python objects) or the semantics of user functions (which contain arbitrary
code).

2 To provide fault tolerance across “shuffle” operations like a parallel reduce, the execution
engine also saves the “map” side of the shuffle in memory on the source nodes, spilling to disk if
necessary.
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1.3.2 Fault Tolerance Guarantees

As data volume and analysis complexity increase, the runtime of data intensive
programs also increases. As a result, it is more likely for stragglers or faults to occur
in the course of a job. Spark provides the following fault tolerance properties:

1. Spark can tolerate the loss of any set of worker nodes. The execution engine
will re-execute any lost tasks and recompute any lost RDD partitions using
lineage.3 This is true even within a query: Spark will rerun any failed tasks,
or lost dependencies of new tasks, without aborting the query.

2. Recovery is parallelized across the cluster. If a failed node contained 100
RDD partitions, these can be rebuilt in parallel on 100 different nodes, quickly
recovering the lost data.

3. The deterministic nature of RDDs also enables straggler mitigation: if a task
is slow, the system can launch a speculative “backup copy” of it on another
node, as in MapReduce [48].

The RDD model is expressive, fault-tolerant, and well-suited for distributed
computation. In the next section, we discuss why the RDD model alone is not
sufficient to capture the common analytic workloads.

1.4 Expanding Use Cases

As demonstrated in previous sections, Spark’s RDD model was well suited
for distributed computation. Immediately after Spark was open sourced, we saw
organizations in the real world migrating their existing big data applications over
from earlier generation systems such as Apache Hive [121]. As Spark’s adoption
grew, we started to see new applications that were previously less common. This
section documents the challenges early users encountered and how we address
them in this thesis.

We see primarily four classes of big data use cases among Spark users [44]:

Interactive Analysis: A common use case is to query data interactively. In this
context, SQL is the standard language used by virtually all software tools and
users. The lack of SQL support in Spark was a huge inhibitor, because only the
most sophisticated users would be able to perform interactive analysis using Spark.
Chapter 2 introduces Spark SQL and discusses executing SQL queries efficiently
over Spark.

Extract, transform, load (ETL): One of the earliest and most popular use cases for
Spark was to extract data from different data sources, join them, transform them,

3 Support for master recovery could also be added by reliably logging the RDD lineage graph
and the submitted jobs, because this state is small, but we have not implemented this yet.
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and then load them into other data sources. This is also sometimes referred to as
a data pipeline. These ETL jobs are typically developed and maintained by data
engineers and employ custom code. Although they can sometimes be expressed
in the form of SQL queries with user-defined functions, most ETL application
developers apply modern software engineering techniques that make SQL as a
programming language a poor fit due to the lack of proper IDEs, continuous
integration and deployment tooling support.

While the RDD model provides a programmatic interface in Scala, the RDD
abstraction does not differentiate the logical plan and the physical plan, making
it difficult for Spark to optimize user programs. As a result, users often need to
hand tune their applications for better performance. In addition to executing SQL
queries, Chapter 2 shows how Spark SQL’s query optimizer and execution engine
can be extended to support a declarative, programmatic API called DataFrame that
is more suitable for building data pipelines.

Streaming Processing: Many large-scale data sources operate in real time, includ-
ing sensors, logs from mobile applications, and the Internet of Things. The RDD
model was designed to capture static, batch computation. Spark Streaming [133]
was the first attempt at extending the RDD model to support stream processing.
Spark Streaming worked by chunking a stream of data into infinite sets of small
batch datasets, and required users to implement their batch jobs and streaming jobs
twice, using completely different APIs. This approach led to diverging semantics
of users’ batch and stream pipelines over time. Chapter 3 develops Structured
Streaming, an extension to Spark SQL that automatically incrementalizes query
plans, and thus enabling users to write their data pipelines once but operate on
both batch and stream data.

Machine Learning and Graph Computation: As advanced analytics such as ma-
chine learning and graph computation become increasingly common, many spe-
cialized systems have been designed and implemented to support these workloads.
These workloads, however, are only part of the larger analytic pipelines that often
require distributed dataflow systems. Naively implementing these workloads on
Spark leads to suboptimal performance that can be orders-of-magnitude slower
than specialized systems. Chapter 4 presents GraphX, an efficient implementation
of graph processing on top of Spark. Note that several systems to support machine
learning on Spark have been developed, but are beyond the scope of this thesis.
Interested readers are referred to [115] for details.

To summarize, this thesis explores designs that expand Spark to cover the
aforementioned use cases efficiently and effectively. In order to accomplish that, a
new relational engine is created to support both SQL and the DataFrame program-
ming model. The same engine is extended to support incremental computation
and stream processing. Last but not least, the end of the thesis develops graph
computation on top of dataflow engine.
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1.5 Summary and Contributions

This dissertation is organized as follows.

Chapter 2 develops Spark SQL, a novel approach to combine relational query
processing with complex analytics. It unifies SQL with the DataFrame programming
model popularized by R and Python, enabling its users to more effectively deal with
big data applications that require a mix of processing techniques. It includes an
extensible query optimizer called Catalyst to support a wide range of data sources
and algorithms in big data. Spark SQL was initially open sourced and included in
Spark in 2014, and has since become the most widely used component in Spark.

Chapter 3 develops Structured Streaming, an extension to Spark SQL that sup-
ports real-time and streaming applications. Specifically, Structured Streaming can
automatically incrementalize queries against static, batch datasets to process stream-
ing data. Structured Streaming is also designed to support end-to-end applications
that combine streaming, batch, and ad-hoc analytics, and to make them “correct by
default”, with prefix consistency and exactly-once processing. Structured Stream-
ing was open sourced in 2016, as part of Spark 2.0. We have observed multiple
large-scale production use cases, the largest of which processes over 1PB of data
per month.

Chapter 4 presents GraphX on Spark, a system created by this dissertation to
support graph processing. Historically, graph processing systems evolved sepa-
rately from distributed dataflow frameworks for better performance. GraphX is
an example of unifying graph processing with distributed dataflow systems. By
identifying the essential dataflow patterns in graph computation and recasting
optimizations in graph processing systems as dataflow optimizations, GraphX can
recover the performance of specialized graph processing systems within a general-
purpose distributed dataflow framework. GraphX was merged into Spark in its
1.2 release. In Spark 2.0, it became the main graph processing system, in lieu of an
older system called Bagel.

Each of the aforementioned sections also covers the related works.

Finally, Chapter 5 concludes and discusses possible areas for future work.
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Chapter 2

Spark SQL: SQL and DataFrames

As discussed in the previous chapter, modern data analysis is undergoing a “Big
Data” transformation, requiring data processing systems to support more than just
SQL. This chapter develops Spark SQL, a new relational query processing system
that combines SQL and the DataFrame programming API for complex analytics.
We first describe Shark, our initial attempt at implementing SQL on top of Spark.
We then describe Spark SQL’s user-facing API and the core internals to support
that API, followed by performance evaluation on the system. Finally, we discuss
research applications and related work.

2.1 Introduction

Big data applications require a mix of processing techniques, data sources and
storage formats. The earliest systems designed for these workloads, such as Map-
Reduce, gave users a powerful, but low-level, procedural programming interface.
Programming such systems was onerous and required manual optimization by the
user to achieve high performance. As a result, multiple new systems sought to
provide a more productive user experience by offering relational interfaces to big
data. Systems like Pig, Hive, Dremel [98, 121, 88] and Shark (Section 2.2) all take
advantage of declarative queries to provide automatic optimizations.

While the popularity of relational systems shows that users often prefer writ-
ing declarative queries, the relational approach is insufficient for many big data
applications. First, users want to perform ETL to and from various data sources
that might be semi- or unstructured, requiring custom code. Second, users want
to perform advanced analytics, such as machine learning and graph processing,
that are challenging to express in relational systems. In practice, we have observed
that most data pipelines would ideally be expressed with a combination of both
relational queries and complex procedural algorithms. Unfortunately, these two
classes of systems—relational and procedural—have until now remained largely
disjoint, forcing users to choose one paradigm or the other.
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This chapter describes our effort to combine both models in Spark SQL, a major
extension in Apache Spark [131]. Rather than forcing users to pick between a
relational or a procedural API, however, Spark SQL lets users seamlessly intermix
the two.

Spark SQL bridges the gap between the two models through two contributions.
First, Spark SQL provides a DataFrame API that can perform relational operations
on both external data sources and Spark’s built-in distributed collections. This API
is similar to the widely used data frame concept in R [108], but evaluates operations
lazily so that it can perform relational optimizations. Second, to support the wide
range of data sources and algorithms in big data, Spark SQL introduces a novel
extensible optimizer called Catalyst. Catalyst makes it easy to add data sources,
optimization rules, and data types for domains such as machine learning.

The DataFrame API offers rich relational/procedural integration within Spark
programs. DataFrames are collections of structured records that can be manipulated
using Spark’s procedural API, or using new relational APIs that allow richer opti-
mizations. They can be created directly from Spark’s built-in distributed collections
of Java/Python objects, enabling relational processing in existing Spark programs.
Other Spark components, such as the machine learning library, take and produce
DataFrames as well. DataFrames are more convenient and more efficient than
Spark’s procedural API in many common situations. For example, they make it easy
to compute multiple aggregates in one pass using a SQL statement, something that
is difficult to express in traditional functional APIs. They also automatically store
data in a columnar format that is significantly more compact than Java/Python
objects. Finally, unlike existing data frame APIs in R and Python, DataFrame
operations in Spark SQL go through a relational optimizer, Catalyst.

To support a wide variety of data sources and analytics workloads in Spark SQL,
we designed an extensible query optimizer called Catalyst. Catalyst uses features of
the Scala programming language, such as pattern-matching, to express composable
rules in a Turing-complete language. It offers a general framework for transforming
trees, which we use to perform analysis, planning, and runtime code generation.
Through this framework, Catalyst can also be extended with new data sources,
including semi-structured data such as JSON and “smart” data stores to which one
can push filters (e.g., HBase); with user-defined functions; and with user-defined
types for domains such as machine learning. Functional languages are known to be
well-suited for building compilers [123], so it is perhaps no surprise that they made
it easy to build an extensible optimizer. We indeed have found Catalyst effective in
enabling us to quickly add capabilities to Spark SQL, and since its release we have
seen external contributors easily add them as well.

Spark SQL was released in May 2014, and is now the most actively developed
component [4] in Apache Spark. Spark SQL has already been deployed in very
large scale environments. For example, a large Internet company [67] uses Spark
SQL to build data pipelines and run queries on an 8000-node cluster with over
100 PB of data. Each individual query regularly operates on tens of terabytes. In

10



addition, many users adopt Spark SQL not just for SQL queries, but in programs
that combine it with procedural processing. For example, 2/3 of customers of
Databricks Cloud, a hosted service running Spark, use Spark SQL within other
programming languages. Performance-wise, we find that Spark SQL is competitive
with SQL-only systems on Hadoop for relational queries. It is also up to 100× faster
and more memory-efficient than naive Spark code in computations expressible in
SQL.

More generally, Spark SQL is an important evolution of the core Spark API.
While Spark’s original functional programming API was quite general, it offered
only limited opportunities for automatic optimization. Spark SQL simultaneously
makes Spark accessible to more users and improves optimizations for existing ones.
Within Spark, the community is now incorporating Spark SQL into more APIs:
DataFrames are the standard data representation in a new “ML pipeline” API for
machine learning, and we hope to expand this to other components, such as GraphX
and streaming.

More fundamentally, our work shows that MapReduce-like execution models
can be applied effectively to SQL, and offers a promising way to combine relational
and complex analytics.

2.2 Shark: The Initial SQL Implementation

In this section, we give an overview of Shark, the first implementation of SQL
over Spark that attempted to combine relational query processing with complex
analytics. Many of the ideas in Shark have been reimplemented and inspired major
features in Spark SQL. Refer to [127] for more details on Shark.

2.2.1 System Overview

Shark is compatible with Apache Hive, enabling users to run Hive queries
much faster without any changes to either the queries or the data. Thanks to its
Hive compatibility, Shark can query data in any system that supports the Hadoop
storage API, including HDFS and Amazon S3. It also supports a wide range of
data formats such as text, binary sequence files, JSON, and XML. It inherits Hive’s
schema-on-read capability and nested data types [121].

Figure 2.1 shows the architecture of a Shark cluster, consisting of a single master
node and a number of worker nodes, with the warehouse metadata stored in an
external transactional database. When a query is submitted to the master, Shark
compiles the query into operator tree represented as RDDs, as we shall discuss in
the next subsection. These RDDs are then translated by Spark into a graph of tasks
to execute on the worker nodes.

Cluster resources can optionally be allocated by a resource manager (e.g.,
Hadoop YARN [2] or Apache Mesos [65]) that provides resource sharing and
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Figure 2.1: Shark Architecture

isolation between different computing frameworks, allowing Shark to coexist with
engines like Hadoop.

2.2.2 Executing SQL over Spark

Shark runs SQL queries over Spark using a three-step process similar to tradi-
tional RDBMSs: query parsing, logical plan generation, and physical plan genera-
tion.

Given a query, Shark uses the Hive query compiler to parse the query and
generate an abstract syntax tree. The tree is then turned into a logical plan and basic
logical optimization, such as predicate pushdown, is applied. Up to this point, Shark
and Hive share an identical approach. Hive would then convert the operator into
a physical plan consisting of multiple MapReduce stages. In the case of Shark, its
optimizer applies additional rule-based optimizations, such as pushing LIMIT down
to individual partitions, and creates a physical plan consisting of transformations on
RDDs rather than MapReduce jobs. We use a variety of operators already present in
Spark, such as map and reduce, as well as new operators we implemented for Shark,
such as broadcast joins. Spark’s master then executes this graph using standard
MapReduce scheduling techniques, such as placing tasks close to their input data,
rerunning lost tasks, and performing straggler mitigation [131].

2.2.3 Engine Extensions

While the basic approach outlined in the previous section makes it possible to
run SQL over Spark, doing it efficiently is challenging. The prevalence of UDFs and
complex analytic functions in Shark’s workload makes it difficult to determine an
optimal query plan at compile time, especially for new data that has not undergone
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ETL. In addition, even with such a plan, naı̈vely executing it over Spark (or other
MapReduce runtimes) can be inefficient. In this, we outline several extensions we
made to Spark to efficiently store relational data and run SQL.

Partial DAG Execution (PDE): Systems like Shark and Hive are frequently used
to query fresh data that has not undergone a data loading process. This precludes
the use of static query optimization techniques that rely on accurate a priori data
statistics. To support dynamic query optimization in a distributed setting, we
extended Spark to support partial DAG execution (PDE), a technique that allows
dynamic alteration of query plans based on data statistics collected at run-time. The
dynamic optimization is used to choose physical join execution strategies (broadcast
join vs shuffle join) and to mitigate stragglers.

Columnar Memory Store: Shark implements a columnar memory store that en-
codes data in a compressed form using JVM primitive arrays. Compared with
Spark’s built-in cache, this store significantly reduces the space footprint overhead
of JVM objects as well as speeding up garbage collection.

Data Co-partitioning: In some warehouse workloads, two fact tables are frequently
joined together. For example, the TPC-H benchmark frequently joins the lineitem
and order tables. A technique commonly used by MPP databases is to co-partition
the two tables based on their join key in the data loading process. In distributed
file systems like HDFS, the storage system is schema-agnostic, which prevents
data co-partitioning. Shark allows co-partitioning two tables on a common key for
faster joins in subsequent queries. When joining two co-partitioned tables, Shark’s
optimizer constructs a DAG that avoids the expensive shuffle and instead uses map
tasks to perform the join.

Partition Statistics and Map Pruning: Shark implements a form of data skipping
called Map Pruning. The columnar memory store automatically tracks statistics
(min value and max value) for each column for each partition. When a query is
issued, the query optimizer uses this information to prune partitions that definitely
do not have matches. It has been shown in [127] that this technique reduces the size
of data scanned for queries by a factor of 30 in real workloads.

2.2.4 Complex Analytics Support

A key design goal of Shark is to provide a single system capable of efficient SQL
query processing and complex analytics such as machine learning. Shark offers an
API in Scala that can be called in Spark programs to extract Shark data as an RDD.
Users can then write arbitrary Spark computations on the RDD, where they get
automatically pipelined with the SQL ones.

As an example of Scala integration, Listing 2.1 illustrates a data analysis pipeline
that performs logistic regression [63] over a user database using a combination of
SQL and Scala.
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def logRegress(points: RDD[Point]): Vector {

var w = Vector(D, _ => 2 * rand.nextDouble - 1)

for (i <- 1 to ITERATIONS) {

val gradient = points.map { p =>

val denom = 1 + exp(-p.y * (w dot p.x))

(1 / denom - 1) * p.y * p.x

}.reduce(_ + _)

w -= gradient

}

w

}

val users = sql2rdd("SELECT * FROM user u JOIN comment c ON c.uid=u.uid")

val features = users.mapRows { row =>

new Vector(extractFeature1(row.getInt("age")),

extractFeature2(row.getStr("country")),

...)}

val trainedVector = logRegress(features.cache())

Listing 2.1: Logistic Regression Example

The map, mapRows, and reduce functions are automatically parallelized by Shark
to execute across a cluster, and the master program simply collects the output of
the reduce function to update w. They are also pipelined with the reduce step of
the join operation in SQL, passing column-oriented data from SQL to Scala code
through an iterator interface.

The DataFrame API in Spark SQL was in part inspired by this functionality in
Shark.

2.2.5 Beyond Shark

While Shark showed good performance and good opportunities for integration
with Spark programs, it had three important challenges. First, Shark could only be
used to query external data stored in the Hive catalog, and was thus not useful for
relational queries on data inside a Spark program (e.g., on the errors RDD created
manually above). Second, the only way to call Shark from Spark programs was
to put together a SQL string, which is inconvenient and error-prone to work with
in a modular program. Finally, the Hive optimizer was tailored for MapReduce
and difficult to extend, making it hard to build new features such as data types for
machine learning or support for new data sources.

With the experience from Shark, we wanted to extend relational processing to
cover native RDDs in Spark and a much wider range of data sources. We set the
following goals for Spark SQL:
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Figure 2.2: Interfaces to Spark SQL, and interaction with Spark.

1. Support relational processing both within Spark programs (on native RDDs)
and on external data sources using a programmer-friendly API.

2. Provide high performance using established DBMS techniques.

3. Easily support new data sources, including semi-structured data and external
databases amenable to query federation.

4. Enable extension with advanced analytics algorithms such as graph processing
and machine learning.

The rest of this chapter describes the core components and innovations in Spark
SQL that address these goals.

2.3 Programming Interface

Spark SQL runs as a library on top of Spark, as shown in Figure 2.2. It exposes
SQL interfaces, which can be accessed through JDBC/ODBC or through a command-
line console, as well as the DataFrame API integrated into Spark’s supported
programming languages. We start by covering the DataFrame API, which lets users
intermix procedural and relational code. However, advanced functions can also
be exposed in SQL through UDFs, allowing them to be invoked, for example, by
business intelligence tools. We discuss UDFs in Section 2.3.7.

2.3.1 DataFrame API

The main abstraction in Spark SQL’s API is a DataFrame, a distributed collection
of rows with the same schema. A DataFrame is equivalent to a table in a relational
database, and can also be manipulated in similar ways to the “native” distributed
collections in Spark (RDDs).1 Unlike RDDs, DataFrames keep track of their schema
and support various relational operations that lead to more optimized execution.

1 We chose the name DataFrame because it is similar to structured data libraries in R and Python,
and designed our API to resemble those.
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DataFrames can be constructed from tables in a system catalog (based on external
data sources) or from existing RDDs of native Java/Python objects (Section 2.3.5).
Once constructed, they can be manipulated with various relational operators, such
as where and groupBy, which take expressions in a domain-specific language (DSL)
similar to data frames in R and Python [108, 101]. Each DataFrame can also be
viewed as an RDD of Row objects, allowing users to call procedural Spark APIs
such as map.2

Finally, unlike traditional data frame APIs, Spark DataFrames are lazy, in that
each DataFrame object represents a logical plan to compute a dataset, but no execu-
tion occurs until the user calls a special “output operation” such as save. This en-
ables rich optimization across all operations that were used to build the DataFrame.

To illustrate, the Scala code below defines a DataFrame from a table in Hive,
derives another based on it, and prints a result:

users = spark.table("users")

young = users.where(users("age") < 21)

println(young.count())

In this code, users and young are DataFrames. The snippet users("age") < 21 is
an expression in the data frame DSL, which is captured as an abstract syntax tree
rather than representing a Scala function as in the traditional Spark API. Finally,
each DataFrame simply represents a logical plan (i.e., read the users table and filter
for age ¡ 21). When the user calls count, which is an output operation, Spark SQL
builds a physical plan to compute the final result. This might include optimizations
such as only scanning the “age” column of the data if its storage format is columnar,
or even using an index in the data source to count the matching rows.

We next cover the details of the DataFrame API.

2.3.2 Data Model

Spark SQL uses a nested data model based on Hive [66] for tables and
DataFrames. It supports all major SQL data types, including boolean, integer,
double, decimal, string, date, and timestamp, as well as complex (i.e., non-atomic)
data types: structs, arrays, maps and unions. Complex data types can also be nested
together to create more powerful types. Unlike many traditional DBMSes, Spark
SQL provides first-class support for complex data types in the query language and
the API. In addition, Spark SQL also supports user-defined types, as described in
Section 2.4.4.

Using this type system, we have been able to accurately model data from a
variety of sources and formats, including Hive, relational databases, JSON, and
native objects in Java/Scala/Python.

2These Row objects are constructed on the fly and do not necessarily represent the internal storage
format of the data, which is typically columnar.

16



2.3.3 DataFrame Operations

Users can perform relational operations on DataFrames using a domain-specific
language (DSL) similar to R data frames [108] and Python Pandas [101]. DataFrames
support all common relational operators, including projection (select), filter (where),
join, and aggregations (groupBy). These operators all take expression objects in a
limited DSL that lets Spark capture the structure of the expression. For example,
the following code computes the number of female employees in each department.

employees

.join(dept, employees("deptId") === dept("id"))

.where(employees("gender") === "female")

.groupBy(dept("id"), dept("name"))

.agg(count("name"))

Here, employees is a DataFrame, and employees("deptId") is an expression rep-
resenting the deptId column. Expression objects have many operators that return
new expressions, including the usual comparison operators (e.g.,=== for equality
test, > for greater than) and arithmetic ones (+, -, etc). They also support aggregates,
such as count("name"). All of these operators build up an abstract syntax tree (AST)
of the expression, which is then passed to Catalyst for optimization. This is unlike
the native Spark API that takes functions containing arbitrary Scala/Java/Python
code, which are then opaque to the runtime engine. For a detailed listing of the API,
we refer readers to Spark’s official documentation [20].

Apart from the relational DSL, DataFrames can be registered as temporary tables
in the system catalog and queried using SQL. The code below shows an example:

users.where(users("age") < 21).registerTempTable("young")

ctx.sql("SELECT count(*), avg(age) FROM young")

SQL is sometimes convenient for computing multiple aggregates concisely, and
also allows programs to expose datasets through JDBC/ODBC. The DataFrames
registered in the catalog are still unmaterialized views, so that optimizations can
happen across SQL and the original DataFrame expressions. However, DataFrames
can also be materialized, as we discuss in Section 2.3.6.

2.3.4 DataFrames versus Relational Query Languages

While on the surface, DataFrames provide the same operations as relational
query languages like SQL and Pig [98], we found that they can be significantly easier
for users to work with thanks to their integration in a full programming language.
For example, users can break up their code into Scala, Java or Python functions that
pass DataFrames between them to build a logical plan, and will still benefit from
optimizations across the whole plan when they run an output operation. Likewise,
developers can use control structures like if statements and loops to structure their
work.
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To simplify programming in DataFrames, we also made Spark SQL analyze
logical plans eagerly (i.e., to identify whether the column names used in expressions
exist in the underlying tables, and whether their data types are appropriate), even
though query results are computed lazily. Thus, Spark SQL reports an error as soon
as user types an invalid line of code instead of waiting until execution. This is again
easier to work with than a large SQL statement.

2.3.5 Querying Native Datasets

Real-world pipelines often extract data from heterogeneous sources and run a
wide variety of algorithms from different programming libraries. To interoperate
with procedural Spark code, Spark SQL allows users to construct DataFrames
directly against RDDs of objects native to the programming language. Spark SQL
can automatically infer the schema of these objects using reflection. In Scala and
Java, the type information is extracted from the language’s type system (from
JavaBeans and Scala case classes). In Python, Spark SQL samples the dataset to
perform schema inference due to the dynamic type system.

For example, the Scala code below defines a DataFrame from an RDD of User
objects. Spark SQL automatically detects the names (“name” and “age”) and data
types (string and int) of the columns.

case class User(name: String, age: Int)

// Create an RDD of User objects

usersRDD = spark.parallelize(

List(User("Alice", 22), User("Bob", 19)))

// View the RDD as a DataFrame

usersDF = usersRDD.toDF

Internally, Spark SQL creates a logical data scan operator that points to the RDD.
This is compiled into a physical operator that accesses fields of the native objects.
It is important to note that this is very different from traditional object-relational
mapping (ORM). ORMs often incur expensive conversions that translate an entire
object into a different format. In contrast, Spark SQL accesses the native objects
in-place, extracting only the fields used in each query.

The ability to query native datasets lets users run optimized relational operations
within existing Spark programs. In addition, it makes it simple to combine RDDs
with external structured data. For example, we could join the users RDD with a
table in Hive:

views = ctx.table("pageviews")

usersDF.join(views, usersDF("name") === views("user"))
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2.3.6 In-Memory Caching

Like Shark before it, Spark SQL can materialize (often referred to as “cache”)
hot data in memory using columnar storage. Compared with Spark’s native cache,
which simply stores data as JVM objects, the columnar cache can reduce mem-
ory footprint by an order of magnitude because it applies columnar compression
schemes such as dictionary encoding and run-length encoding. Caching is partic-
ularly useful for interactive queries and for the iterative algorithms common in
machine learning. It can be invoked by calling cache() on a DataFrame.

2.3.7 User-Defined Functions

User-defined functions (UDFs) have been an important extension point for
database systems. For example, MySQL relies on UDFs to provide basic support
for JSON data. A more advanced example is MADLib’s use of UDFs to imple-
ment machine learning algorithms for Postgres and other database systems [42].
However, database systems often require UDFs to be defined in a separate pro-
gramming environment that is different from the primary query interfaces. Spark
SQL’s DataFrame API supports inline definition of UDFs, without the complicated
packaging and registration process found in other database systems. This feature
has proven crucial for the adoption of the API.

In Spark SQL, UDFs can be registered inline by passing Scala, Java or Python
functions, which may use the full Spark API internally. For example, given a model
object for a machine learning model, we could register its prediction function as a
UDF:

val model: LogisticRegressionModel = ...

ctx.udf.register("predict",

(x: Float, y: Float) => model.predict(Vector(x, y)))

ctx.sql("SELECT predict(age, weight) FROM users")

Once registered, the UDF can also be used via the JDBC/ODBC interface by
business intelligence tools. In addition to UDFs that operate on scalar values like
the one here, one can define UDFs that operate on an entire table by taking its name,
as in MADLib [42], and use the distributed Spark API within them, thus exposing
advanced analytics functions to SQL users. Finally, because UDF definitions and
query execution are expressed using the same general-purpose language (e.g., Scala
or Python), users can debug or profile the entire program using standard tools.

The example above demonstrates a common use case in many pipelines, i.e., one
that employs both relational operators and advanced analytics methods that are
cumbersome to express in SQL. The DataFrame API lets developers seamlessly mix
these methods.
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2.4 Catalyst Optimizer

To implement Spark SQL, we designed a new extensible optimizer, Catalyst,
based on functional programming constructs in Scala. Catalyst’s extensible design
had two purposes. First, we wanted to make it easy to add new optimization tech-
niques and features to Spark SQL, especially to tackle various problems we were
seeing specifically with “big data” (e.g., semistructured data and advanced analyt-
ics). Second, we wanted to enable external developers to extend the optimizer—for
example, by adding data source specific rules that can push filtering or aggregation
into external storage systems, or support for new data types. Catalyst supports
both rule-based and cost-based optimization.

While extensible optimizers have been proposed in the past, they have typically
required a complex domain specific language to specify rules, and an “optimizer
compiler” to translate the rules into executable code [59, 60]. This leads to a signifi-
cant learning curve and maintenance burden. In contrast, Catalyst uses standard
features of the Scala programming language, such as pattern-matching [49], to let
developers use the full programming language while still making rules easy to
specify. Functional languages were designed in part to build compilers, so we found
Scala well-suited to this task. Nonetheless, Catalyst is, to our knowledge, the first
production-quality query optimizer built on such a language.

At its core, Catalyst contains a general library for representing trees and applying
rules to manipulate them.3 On top of this framework, we have built libraries specific
to relational query processing (e.g., expressions, logical query plans), and several
sets of rules that handle different phases of query execution: analysis, logical
optimization, physical planning, and code generation to compile parts of queries to
Java bytecode. For the latter, we use another Scala feature, quasiquotes [113], that
makes it easy to generate code at runtime from composable expressions. Finally,
Catalyst offers several public extension points, including external data sources and
user-defined types.

2.4.1 Trees

The main data type in Catalyst is a tree composed of node objects. Each node has
a node type and zero or more children. New node types are defined in Scala as sub-
classes of the TreeNode class. These objects are immutable and can be manipulated
using functional transformations, as discussed in the next subsection.

As a simple example, suppose we have the following three node classes for a
very simple expression language:4

3Cost-based optimization is performed by generating multiple plans using rules, and then
computing their costs.

4 We use Scala syntax for classes here, where each class’s fields are defined in parentheses, with
their types given using a colon.
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Add 

Attribute(x) Add 

Literal(1) Literal(2) 

Figure 2.3: Catalyst tree for the expression x+(1+2).

• Literal(value: Int): a constant value

• Attribute(name: String): an attribute from an input row, e.g., “x”

• Add(left: TreeNode, right: TreeNode): sum of two expressions.

These classes can be used to build up trees; for example, the tree for the expres-
sion x+(1+2), shown in Figure 2.3, would be represented in Scala code as follows:

Add(Attribute(x), Add(Literal(1), Literal(2)))

2.4.2 Rules

Trees can be manipulated using rules, which are functions from a tree to another
tree. While a rule can run arbitrary code on its input tree (given that this tree is
just a Scala object), the most common approach is to use a set of pattern matching
functions that find and replace subtrees with a specific structure.

Pattern matching is a feature of many functional languages that allows extracting
values from potentially nested structures of algebraic data types. In Catalyst, trees
offer a transformmethod that applies a pattern matching function recursively on
all nodes of the tree, transforming the ones that match each pattern to a result. For
example, we could implement a rule that folds Add operations between constants
as follows:

tree.transform {

case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)

}

Applying this to the tree for x+(1+2), in Figure 2.3, would yield the new tree x+3.
The case keyword here is Scala’s standard pattern matching syntax [49], and can be
used to match on the type of an object as well as give names to extracted values (c1
and c2 here).

The pattern matching expression that is passed to transform is a partial function,
meaning that it only needs to match to a subset of all possible input trees. Catalyst
will tests which parts of a tree a given rule applies to, automatically skipping over
and descending into subtrees that do not match. This ability means that rules only
need to reason about the trees where a given optimization applies and not those
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Figure 2.4: Phases of query planning in Spark SQL. Rounded rectangles represent
Catalyst trees.

that do not match. Thus, rules do not need to be modified as new types of operators
are added to the system.

Rules (and Scala pattern matching in general) can match multiple patterns in the
same transform call, making it very concise to implement multiple transformations
at once:

tree.transform {

case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)

case Add(left, Literal(0)) => left

case Add(Literal(0), right) => right

}

In practice, rules may need to execute multiple times to fully transform a tree.
Catalyst groups rules into batches, and executes each batch until it reaches a fixed
point, that is, until the tree stops changing after applying its rules. Running rules
to fixed point means that each rule can be simple and self-contained, and yet still
eventually have larger global effects on a tree. In the example above, repeated
application would constant-fold larger trees, such as (x+0)+(3+3). As another
example, a first batch might analyze an expression to assign types to all of the
attributes, while a second batch might use these types to do constant folding. After
each batch, developers can also run sanity checks on the new tree (e.g., to see that
all attributes were assigned types), often also written via recursive matching.

Finally, rule conditions and their bodies can contain arbitrary Scala code. This
gives Catalyst more power than domain specific languages for optimizers, while
keeping it concise for simple rules.

In our experience, functional transformations on immutable trees make the
whole optimizer very easy to reason about and debug. They also enable paralleliza-
tion in the optimizer, although we do not yet exploit this.

2.4.3 Using Catalyst in Spark SQL

We use Catalyst’s general tree transformation framework in four phases, shown
in Figure 2.4: (1) analyzing a logical plan to resolve references, (2) logical plan
optimization, (3) physical planning, and (4) code generation to compile parts of
the query to Java bytecode. In the physical planning phase, Catalyst may generate
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multiple plans and compare them based on cost. All other phases are purely rule-
based. Each phase uses different types of tree nodes; Catalyst includes libraries
of nodes for expressions, data types, and logical and physical operators. We now
describe each of these phases.

Analysis

Spark SQL begins with a relation to be computed, either from an abstract syntax
tree (AST) returned by a SQL parser, or from a DataFrame object constructed using
the API. In both cases, the relation may contain unresolved attribute references or
relations: for example, in the SQL query SELECT col FROM sales, the type of col, or
even whether it is a valid column name, is not known until we look up the table
sales. An attribute is called unresolved if we do not know its type or have not
matched it to an input table (or an alias). Spark SQL uses Catalyst rules and a
Catalog object that tracks the tables in all data sources to resolve these attributes. It
starts by building an “unresolved logical plan” tree with unbound attributes and
data types, then applies rules that do the following:

• Looking up relations by name from the catalog.

• Mapping named attributes, such as col, to the input provided given operator’s
children.

• Determining which attributes refer to the same value to give them a unique
ID (which later allows optimization of expressions such as col = col).

• Propagating and coercing types through expressions: for example, we cannot
know the type of 1 + col until we have resolved col and possibly cast its
subexpressions to compatible types.

In total, the rules for the analyzer are about 1000 lines of code.

Logical Optimization

The logical optimization phase applies standard rule-based optimizations to the
logical plan. These include constant folding, predicate pushdown, projection prun-
ing, null propagation, Boolean expression simplification, and other rules. In general,
we have found it extremely simple to add rules for a wide variety of situations.
For example, when we added the fixed-precision DECIMAL type to Spark SQL, we
wanted to optimize aggregations such as sums and averages on DECIMALs with small
precisions; it took 12 lines of code to write a rule that finds such decimals in SUM
and AVG expressions, and casts them to unscaled 64-bit LONGs, does the aggregation
on that, then converts the result back. A simplified version of this rule that only
optimizes SUM expressions is reproduced below:
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object DecimalAggregates extends Rule[LogicalPlan] {

/** Maximum number of decimal digits in a Long */

val MAX_LONG_DIGITS = 18

def apply(plan: LogicalPlan): LogicalPlan = {

plan transformAllExpressions {

case Sum(e @ DecimalType.Expression(prec, scale))

if prec + 10 <= MAX_LONG_DIGITS =>

MakeDecimal(Sum(LongValue(e)), prec + 10, scale)

}

}

As another example, a 12-line rule optimizes LIKE expressions with simple
regular expressions into String.startsWith or
String.contains calls. The freedom to use arbitrary Scala code in rules made these
kinds of optimizations, which go beyond pattern-matching the structure of a subtree,
easy to express. In total, the logical optimization rules are 800 lines of code.

Physical Planning

In the physical planning phase, Spark SQL takes a logical plan and generates
one or more physical plans, using physical operators that match the Spark execu-
tion engine. It then selects a plan using a cost model. At the moment, cost-based
optimization is only used to select join algorithms: for relations that are known to
be small, Spark SQL uses a broadcast join, using a peer-to-peer broadcast facility
available in Spark.5 The framework supports broader use of cost-based optimiza-
tion, however, as costs can be estimated recursively for a whole tree using a rule.
We thus intend to implement richer cost-based optimization in the future.

The physical planner also performs rule-based physical optimizations, such
as pipelining projections or filters into one Spark map operation. In addition, it
can push operations from the logical plan into data sources that support predi-
cate or projection pushdown. We will describe the API for these data sources in
Section 2.4.4.

In total, the physical planning rules are about 500 lines of code.

Code Generation

The final phase of query optimization involves generating Java bytecode to
run on each machine. Because Spark SQL often operates on in-memory datasets,
where processing is CPU-bound, we wanted to support code generation to speed
up execution. Nonetheless, code generation engines are often complicated to build,
amounting essentially to a compiler. Catalyst relies on a special feature of the Scala
language, quasiquotes [113], to make code generation simpler. Quasiquotes allow
the programmatic construction of abstract syntax trees (ASTs) in the Scala language,
which can then be fed to the Scala compiler at runtime to generate bytecode. We use

5 Table sizes are estimated if the table is cached in memory or comes from an external file, or if it
is the result of a subquery with a LIMIT.
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Figure 2.5: A comparision of the performance evaluating the expresion x+x+x, where
x is an integer, 1 billion times.

Catalyst to transform a tree representing an expression in SQL to an AST for Scala
code to evaluate that expression, and then compile and run the generated code.

As a simple example, consider the Add, Attribute and Literal tree nodes in-
troduced in Section 2.4.2, which allowed us to write expressions such as (x+y)+1.
Without code generation, such expressions would have to be interpreted for each
row of data, by walking down a tree of Add, Attribute and Literal nodes. This
introduces large amounts of branches and virtual function calls that slow down
execution. With code generation, we can write a function to translate a specific
expression tree to a Scala AST as follows:

def compile(node: Node): AST = node match {

case Literal(value) => q"$value"

case Attribute(name) => q"row.get($name)"

case Add(left, right) =>

q"${compile(left)} + ${compile(right)}"

}

The strings beginning with q are quasiquotes, meaning that although they look
like strings, they are parsed by the Scala compiler at compile time and represent
ASTs for the code within. Quasiquotes can have variables or other ASTs spliced
into them, indicated using $ notation. For example, Literal(1)would become the
Scala AST for 1, while Attribute("x") becomes row.get("x"). In the end, a tree
like Add(Literal(1), Attribute("x")) becomes an AST for a Scala expression like
1+row.get("x").

Quasiquotes are type-checked at compile time to ensure that only appropriate
ASTs or literals are substituted in, making them significantly more useable than
string concatenation, and they result directly in a Scala AST instead of running
the Scala parser at runtime. Moreover, they are highly composable, as the code
generation rule for each node does not need to know how the trees returned by
its children were built. Finally, the resulting code is further optimized by the
Scala compiler in case there are expression-level optimizations that Catalyst missed.
Figure 2.5 shows that quasiquotes let us generate code with performance similar to
hand-tuned programs.

We have found quasiquotes very straightforward to use for code generation, and
we observed that even new contributors to Spark SQL could quickly add rules for
new types of expressions. Quasiquotes also work well with our goal of running on
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native Java objects: when accessing fields from these objects, we can code-generate
a direct access to the required field, instead of having to copy the object into a Spark
SQL Row and use the Row’s accessor methods. Finally, it was straightforward to
combine code-generated evaluation with interpreted evaluation for expressions we
do not yet generate code for, since the Scala code we compile can directly call into
our expression interpreter.

In total, Catalyst’s code generator is about 700 lines of code.

2.4.4 Extension Points

Catalyst’s design around composable rules makes it easy for users and third-
party libraries to extend. Developers can add batches of rules to each phase of query
optimization at runtime, as long as they adhere to the contract of each phase (e.g.,
ensuring that analysis resolves all attributes). However, to make it even simpler to
add some types of extensions without understanding Catalyst rules, we have also
defined two narrower public extension points: data sources and user-defined types.
These still rely on facilities in the core engine to interact with the rest of the rest of
the optimizer.

Data Sources

Developers can define a new data source for Spark SQL using several APIs,
which expose varying degrees of possible optimization. All data sources must
implement a createRelation function that takes a set of key-value parameters and
returns a BaseRelation object for that relation, if one can be successfully loaded.
Each BaseRelation contains a schema and an optional estimated size in bytes.6 For
instance, a data source representing MySQL may take a table name as a parameter,
and ask MySQL for an estimate of the table size.

To let Spark SQL read the data, a BaseRelation can implement one of several
interfaces that let them expose varying degrees of sophistication. The simplest,
TableScan, requires the relation to return an RDD of Row objects for all of the data
in the table. A more advanced PrunedScan takes an array of column names to
read, and should return Rows containing only those columns. A third interface,
PrunedFilteredScan, takes both desired column names and an array of Filter objects,
which are a subset of Catalyst’s expression syntax, allowing predicate pushdown.7

The filters are advisory, i.e., the data source should attempt to return only rows
passing each filter, but it is allowed to return false positives in the case of filters that
it cannot evaluate. Finally, a CatalystScan interface is given a complete sequence

6 Unstructured data sources can also take a desired schema as a parameter; for example, there is
a CSV file data source that lets users specify column names and types.

7At the moment, Filters include equality, comparisons against a constant, and IN clauses, each on
one attribute.
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of Catalyst expression trees to use in predicate pushdown, though they are again
advisory.

These interfaces allow data sources to implement various degrees of optimiza-
tion, while still making it easy for developers to add simple data sources of virtually
any type. We and others have used the interface to implement the following data
sources:

• CSV files, which simply scan the whole file, but allow users to specify a
schema.

• Avro [18], a self-describing binary format for nested data.

• Parquet [19], a columnar file format for which we support column pruning as
well as filters.

• A JDBC data source that scans ranges of a table from an RDBMS in parallel
and pushes filters into the RDBMS to minimize communication.

To use these data sources, programmers specify their package names in SQL
statements, passing key-value pairs for configuration options. For example, the
Avro data source takes a path to the file:

CREATE TEMPORARY TABLE messages

USING com.databricks.spark.avro

OPTIONS (path "messages.avro")

All data sources can also expose network locality information, i.e., which ma-
chines each partition of the data is most efficient to read from. This is exposed
through the RDD objects they return, as RDDs have a built-in API for data local-
ity [131].

Finally, similar interfaces exist for writing data to an existing or new table. These
are simpler because Spark SQL just provides an RDD of Row objects to be written.

User-Defined Types (UDTs)

One feature we wanted to allow advanced analytics in Spark SQL was user-
defined types. For example, machine learning applications may need a vector type,
and graph algorithms may need types for representing a graph, which is possible
over relational tables [126]. Adding new types can be challenging, however, as
data types pervade all aspects of the execution engine. For example, in Spark SQL,
the built-in data types are stored in a columnar, compressed format for in-memory
caching (Section 2.3.6), and in the data source API from the previous section, we
need to expose all possible data types to data source authors.

In Catalyst, we solve this issue by mapping user-defined types to structures
composed of Catalyst’s built-in types, described in Section 2.3.2. To register a Scala
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type as a UDT, users provide a mapping from an object of their class to a Catalyst
Row of built-in types, and an inverse mapping back. In user code, they can now use
the Scala type in objects that they query with Spark SQL, and it will be converted to
built-in types under the hood. Likewise, they can register UDFs (see Section 2.3.7)
that operate directly on their type.

As a short example, suppose we want to register two-dimensional points (x, y)
as a UDT. We can represent such vectors as two DOUBLE values. To register the UDT,
we write the following:

class PointUDT extends UserDefinedType[Point] {

def dataType = StructType(Seq( // Our native structure

StructField("x", DoubleType),

StructField("y", DoubleType)

))

def serialize(p: Point) = Row(p.x, p.y)

def deserialize(r: Row) =

Point(r.getDouble(0), r.getDouble(1))

}

After registering this type, Points will be recognized within native objects that
Spark SQL is asked to convert to DataFrames, and will be passed to UDFs defined
on Points. In addition, Spark SQL will store Points in a columnar format when
caching data (compressing x and y as separate columns), and Points will be writable
to all of Spark SQL’s data sources, which will see them as pairs of DOUBLEs. We use
this capability in Spark’s machine learning library, as we describe in Section 2.5.2.

2.5 Advanced Analytics Features

In this section, we describe three features we added to Spark SQL specifically
to handle challenges in “big data” environments. First, in these environments,
data is often unstructured or semistructured. While parsing such data procedu-
rally is possible, it leads to lengthy boilerplate code. To let users query the data
right away, Spark SQL includes a schema inference algorithm for JSON and other
semistructured data. Second, large-scale processing often goes beyond aggregation
and joins to machine learning on the data. We describe how Spark SQL is being
incorporated into a new high-level API for Spark’s machine learning library [89].
Last, data pipelines often combine data from disparate storage systems. Building
on the data sources API in Section 2.4.4, Spark SQL supports query federation,
allowing a single program to efficiently query disparate sources. These features all
build on the Catalyst framework.

2.5.1 Schema Inference for Semistructured Data

Semistructured data is common in large-scale environments because it is easy
to produce and to add fields to over time. Among Spark users, we have seen very
high usage of JSON for input data. Unfortunately, JSON is cumbersome to work
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{

"text": "This is a tweet about #Spark",

"tags": ["#Spark"],

"loc": {"lat": 45.1, "long": 90}

}

{

"text": "This is another tweet",

"tags": [],

"loc": {"lat": 39, "long": 88.5}

}

{

"text": "A #tweet without #location",

"tags": ["#tweet", "#location"]

}

Figure 2.6: A sample set of JSON records, representing tweets.

text STRING NOT NULL,

tags ARRAY<STRING NOT NULL> NOT NULL,

loc STRUCT<lat FLOAT NOT NULL, long FLOAT NOT NULL>

Figure 2.7: Schema inferred for the tweets in Figure 2.6.

with in a procedural environment like Spark or MapReduce: most users resorted
to ORM-like libraries (e.g., Jackson [71]) to map JSON structures to Java objects, or
some tried parsing each input record directly with lower-level libraries.

In Spark SQL, we added a JSON data source that automatically infers a schema
from a set of records. For example, given the JSON objects in Figure 2.6, the library
infers the schema shown in Figure 2.7. Users can simply register a JSON file as a
table and query it with syntax that accesses fields by their path, such as:

SELECT loc.lat, loc.long FROM tweets

WHERE text LIKE ’%Spark%’ AND tags IS NOT NULL

Our schema inference algorithm works in one pass over the data, and can also be
run on a sample of the data if desired. It is related to prior work on schema inference
for XML and object databases [27, 64, 95], but simpler because it only infers a static
tree structure, without allowing recursive nesting of elements at arbitrary depths.

Specifically, the algorithm attempts to infer a tree of STRUCT types, each of which
may contain atoms, arrays, or other STRUCTs. For each field defined by a distinct
path from the root JSON object (e.g.,tweet.loc.latitude), the algorithm finds the
most specific Spark SQL data type that matches observed instances of the field.
For example, if all occurrences of that field are integers that fit into 32 bits, it will
infer INT; if they are larger, it will use LONG (64-bit) or DECIMAL (arbitrary precision);
if there are also fractional values, it will use FLOAT. For fields that display multiple
types, Spark SQL uses STRING as the most generic type, preserving the original JSON
representation. And for fields that contain arrays, it uses the same “most specific
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supertype” logic to determine an element type from all the observed elements. We
implement this algorithm using a single reduce operation over the data, which starts
with schemata (i.e., trees of types) from each individual record and merges them
using an associative “most specific supertype” function that generalizes the types of
each field. This makes the algorithm both single-pass and communication-efficient,
as a high degree of reduction happens locally on each node.

As a short example, note how in Figures 2.6 and 2.7, the algorithm generalized
the types of loc.lat and loc.long. Each field appears as an integer in one record
and a floating-point number in another, so the algorithm returns FLOAT. Note also
how for the tags field, the algorithm inferred an array of strings that cannot be null.

In practice, we have found this algorithm to work well with real-world JSON
datasets. For example, it correctly identifies a usable schema for JSON tweets from
Twitter’s firehose, which contain around 100 distinct fields and a high degree of
nesting. Multiple Databricks customers have also successfully applied it to their
internal JSON formats.

In Spark SQL, we also use the same algorithm for inferring schemas of RDDs
of Python objects (see Section 2.3), as Python is not statically typed so an RDD can
contain multiple object types. In the future, we plan to add similar inference for CSV
files and XML. Developers have found the ability to view these types of datasets as
tables and immediately query them or join them with other data extremely valuable
for their productivity.

2.5.2 Integration with Spark’s Machine Learning Library

As an example of Spark SQL’s utility in other Spark modules, MLlib, Spark’s ma-
chine learning library, introduced a new high-level API that uses DataFrames [89].
This new API is based on the concept of machine learning pipelines, an abstraction
in other high-level ML libraries like SciKit-Learn [112]. A pipeline is a graph of
transformations on data, such as feature extraction, normalization, dimensionality
reduction, and model training, each of which exchange datasets. Pipelines are a
useful abstraction because ML workflows have many steps; representing these steps
as composable elements makes it easy to change parts of the pipeline or to search
for tuning parameters at the level of the whole workflow.

To exchange data between pipeline stages, MLlib’s developers needed a format
that was compact (as datasets can be large) yet flexible, allowing multiple types
of fields to be stored for each record. For example, a user may start with records
that contain text fields as well as numeric ones, then run a featurization algorithm
such as TF-IDF on the text to turn it into a vector, normalize one of the other fields,
perform dimensionality reduction on the whole set of features, etc. To represent
datasets, the new API uses DataFrames, where each column represents a feature of
the data. All algorithms that can be called in pipelines take a name for the input
column(s) and output column(s), and can thus be called on any subset of the fields
and produce new ones. This makes it easy for developers to build complex pipelines
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tokenizer tf lr 

(text, label) (text, label, 
words) 

(text, label, 
words, features) 

model 

data = <DataFrame of (text, label) records>

tokenizer = Tokenizer()

.setInputCol("text").setOutputCol("words")

tf = HashingTF()

.setInputCol("words").setOutputCol("features")

lr = LogisticRegression()

.setInputCol("features")

pipeline = Pipeline().setStages([tokenizer, tf, lr])

model = pipeline.fit(data)

Figure 2.8: A short MLlib pipeline and the Python code to run it. We start with a
DataFrame of (text, label) records, tokenize the text into words, run a term frequency
featurizer (HashingTF) to get a feature vector, then train logistic regression.

while retaining the original data for each record. To illustrate the API, Figure 2.8
shows a short pipeline and the schemas of DataFrames created.

The main piece of work MLlib had to do to use Spark SQL was to create a user-
defined type for vectors. This vector UDT can store both sparse and dense vectors,
and represents them as four primitive fields: a boolean for the type (dense or sparse),
a size for the vector, an array of indices (for sparse coordinates), and an array of
double values (either the non-zero coordinates for sparse vectors or all coordinates
otherwise). Apart from DataFrames’ utility for tracking and manipulating columns,
we also found them useful for another reason: they made it much easier to expose
MLlib’s new API in all of Spark’s supported programming languages. Previously,
each algorithm in MLlib took objects for domain-specific concepts (e.g., a labeled
point for classification, or a (user, product) rating for recommendation), and each
of these classes had to be implemented in the various languages (e.g., copied from
Scala to Python). Using DataFrames everywhere made it much simpler to expose
all algorithms in all languages, as we only need data conversions in Spark SQL,
where they already exist. This is especially important as Spark adds bindings for
new programming languages.

Finally, using DataFrames for storage in MLlib also makes it very easy to expose
all its algorithms in SQL. We can simply define a MADlib-style UDF, as described
in Section 2.3.7, which will internally call the algorithm on a table. We are also
exploring APIs to expose pipeline construction in SQL.
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2.5.3 Query Federation to External Databases

Data pipelines often combine data from heterogeneous sources. For example, a
recommendation pipeline might combine traffic logs with a user profile database
and users’ social media streams. As these data sources often reside in different
machines or geographic locations, naively querying them can be prohibitively
expensive. Spark SQL data sources leverage Catalyst to push predicates down into
the data sources whenever possible.

For example, the following uses the JDBC data source and the JSON data source
to join two tables together to find the traffic log for the most recently registered
users. Conveniently, both data sources can automatically infer the schema without
users having to define it. The JDBC data source will also push the filter predicate
down into MySQL to reduce the amount of data transferred.

CREATE TEMPORARY TABLE users USING jdbc

OPTIONS(driver "mysql" url "jdbc:mysql://userDB/users")

CREATE TEMPORARY TABLE logs

USING json OPTIONS (path "logs.json")

SELECT users.id, users.name, logs.message

FROM users JOIN logs WHERE users.id = logs.userId

AND users.registrationDate > "2015-01-01"

Under the hood, the JDBC data source uses the PrunedFilteredScan interface in
Section 2.4.4, which gives it both the names of the columns requested and simple
predicates (equality, comparison and IN clauses) on these columns. In this case, the
JDBC data source will run the following query on MySQL:8

SELECT users.id, users.name FROM users

WHERE users.registrationDate > "2015-01-01"

In future Spark SQL releases, we are also looking to add predicate pushdown
for key-value stores such as HBase and Cassandra, which support limited forms of
filtering.

2.6 Performance Evaluation

We evaluate the performance of Spark SQL on two dimensions: SQL query
processing performance and Spark program performance. In particular, we demon-
strate that Spark SQL’s extensible architecture not only enables a richer set of func-
tionalities, but brings substantial performance improvements over previous Spark-
based SQL engines. In addition, for Spark application developers, the DataFrame
API can bring substantial speedups over the native Spark API while making Spark
programs more concise and easier to understand. Finally, applications that combine

8 The JDBC data source also supports “sharding” a source table by a particular column and
reading different ranges of it in parallel.
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Figure 2.9: Performance of Shark, Impala and Spark SQL on the big data benchmark
queries [104].

relational and procedural queries run faster on the integrated Spark SQL engine
than by running SQL and procedural code as separate parallel jobs.

2.6.1 SQL Performance

We compared the performance of Spark SQL against Shark and Impala [3]
using the AMPLab big data benchmark [124], which uses a web analytics workload
developed by Pavlo et al. [104]. The benchmark contains four types of queries
with different parameters performing scans, aggregation, joins and a UDF-based
MapReduce job. We used a cluster of six EC2 i2.xlargemachines (one master, five
workers) each with 4 cores, 30 GB memory and an 800 GB SSD, running HDFS
2.4, Spark 1.3, Shark 0.9.1 and Impala 2.1.1. The dataset was 110 GB of data after
compression using the columnar Parquet format [19].

Figure 2.9 shows the results for each query, grouping by the query type. Queries
1–3 have different parameters varying their selectivity, with 1a, 2a, etc being the
most selective and 1c, 2c, etc being the least selective and processing more data.
Query 4 uses a Python-based Hive UDF that was not directly supported in Impala,
but was largely bound by the CPU cost of the UDF.
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We see that in all queries, Spark SQL is substantially faster than Shark and
generally competitive with Impala. The main reason for the difference with Shark
is code generation in Catalyst (Section 2.4.3), which reduces CPU overhead. This
feature makes Spark SQL competitive with the C++ and LLVM based Impala engine
in many of these queries. The largest gap from Impala is in query 3a where Impala
chooses a better join plan because the selectivity of the queries makes one of the
tables very small.

2.6.2 DataFrames vs. Native Spark Code

In addition to running SQL queries, Spark SQL can also help non-SQL devel-
opers write simpler and more efficient Spark code through the DataFrame API.
Catalyst can perform optimizations on DataFrame operations that are hard to do
with hand written code, such as predicate pushdown, pipelining, and automatic
join selection. Even without these optimizations, the DataFrame API can result in
more efficient execution due to code generation. This is especially true for Python
applications, as Python is typically slower than the JVM.

For this evaluation, we compared two implementations of a Spark program that
does a distributed aggregation. The dataset consists of 1 billion integer pairs, (a,
b) with 100,000 distinct values of a, on the same five-worker i2.xlarge cluster as in
the previous section. We measure the time taken to compute the average of b for
each value of a. First, we look at a version that computes the average using the map
and reduce functions in the Python API for Spark:

sum_and_count = \

data.map(lambda x: (x.a, (x.b, 1))) \

.reduceByKey(lambda x, y: (x[0]+y[0], x[1]+y[1])) \

.collect()

[(x[0], x[1][0] / x[1][1]) for x in sum_and_count]

In contrast, the same program can written as a simple manipulation using the
DataFrame API:

df.groupBy("a").avg("b")

Figure 2.10, shows that the DataFrame version of the code outperforms the
hand written Python version by 12×, in addition to being much more concise. This
is because in the DataFrame API, only the logical plan is constructed in Python,
and all physical execution is compiled down into native Spark code as JVM byte-
code, resulting in more efficient execution. In fact, the DataFrame version also
outperforms a Scala version of the Spark code above by 2×. This is mainly due to
code generation: the code in the DataFrame version avoids expensive allocation of
key-value pairs that occurs in hand-written Scala code.
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Figure 2.10: Performance of an aggregation written using the native Spark Python
and Scala APIs versus the DataFrame API.
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Figure 2.11: Performance of a two-stage pipeline written as a separate Spark SQL
query and Spark job (above) and an integrated DataFrame job (below).

2.6.3 Pipeline Performance

The DataFrame API can also improve performance in applications that combine
relational and procedural processing, by letting developers write all operations in a
single program and pipelining computation across relational and procedural code.
As a simple example, we consider a two-stage pipeline that selects a subset of text
messages from a corpus and computes the most frequent words. Although very
simple, this can model some real-world pipelines, e.g., computing the most popular
words used in tweets by a specific demographic.

In this experiment, we generated a synthetic dataset of 10 billion messages
in HDFS. Each message contained on average 10 words drawn from an English
dictionary. The first stage of the pipeline uses a relational filter to select roughly
90% of the messages. The second stage computes the word count.

First, we implemented the pipeline using a separate SQL query followed by a
Scala-based Spark job, as might occur in environments that run separate relational
and procedural engines (e.g., Hive and Spark). We then implemented a combined
pipeline using the DataFrame API, i.e., using DataFrame’s relational operators to
perform the filter, and using the RDD API to perform a word count on the result.
Compared with the first pipeline, the second pipeline avoids the cost of saving the
whole result of the SQL query to an HDFS file as an intermediate dataset before
passing it into the Spark job, because SparkSQL pipelines the map for the word count
with the relational operators for the filtering. Figure 2.11 compares the runtime
performance of the two approaches. In addition to being easier to understand and
operate, the DataFrame-based pipeline also improves performance by 2×.
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2.7 Research Applications

In addition to the immediately practical production use cases of Spark SQL, we
have also seen significant interest from researchers working on more experimental
projects. We outline two research projects that leverage the extensibility of Catalyst:
one in approximate query processing and one in genomics.

2.7.1 Generalized Online Aggregation

Zeng et al. have used Catalyst in their work on improving the generality of
online aggregation [134]. This work generalizes the execution of online aggregation
to support arbitrarily nested aggregate queries. It allows users to view the progress
of executing queries by seeing results computed over a fraction of the total data.
These partial results also include accuracy measures, letting the user stop the query
when sufficient accuracy has been reached.

In order to implement this system inside of Spark SQL, the authors add a new
operator to represent a relation that has been broken up into sampled batches.
During query planning a call to transform is used to replace the original full query
with several queries, each of which operates on a successive sample of the data.

However, simply replacing the full dataset with samples is not sufficient to
compute the correct answer in an online fashion. Operations such as standard
aggregation must be replaced with stateful counterparts that take into account both
the current sample and the results of previous batches. Furthermore, operations
that might filter out tuples based on approximate answers must be replaced with
versions that can take into account the current estimated errors.

Each of these transformations can be expressed as Catalyst rules that modify
the operator tree until it produces correct online answers. Tree fragments that
are not based on sampled data are ignored by these rules and can execute using
the standard code path. By using Spark SQL as a basis, the authors were able to
implement a fairly complete prototype in approximately 2000 lines of code.

2.7.2 Computational Genomics

A common operation in computational genomics involves inspecting overlap-
ping regions based on a numerical offsets. This problem can be represented as a join
with inequality predicates. Consider two datasets, a and b, with a schema of (start
LONG, end LONG). The range join operation can be expressed in SQL as follows:

SELECT * FROM a JOIN b

WHERE a.start < a.end

AND b.start < b.end

AND a.start < b.start

AND b.start < a.end
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Without special optimization, the preceding query would be executed by many
systems using an inefficient algorithm such as a nested loop join. In contrast, a
specialized system could compute the answer to this join using an interval tree.
Researchers in the ADAM project [97] were able to build a special planning rule into
a version of Spark SQL to perform such computations efficiently, allowing them to
leverage the standard data manipulation abilities alongside specialized processing
code. The changes required were approximately 100 lines of code.

2.8 Discussion

Spark SQL, and its earlier predecessor, Shark, shows that it is possible to run fast
relational queries in a fault-tolerant manner using the fine-grained deterministic
task model introduced by MapReduce. This design offers an effective way to scale
query processing to ever-larger workloads, and to combine it with rich analytics. In
this section, we consider two questions: first, why were previous MapReduce-based
systems, such as Hive, slow, and what gave Spark SQL its advantages? Second, are
there other benefits to the fine-grained task model? We argue that fine-grained tasks
also help with multitenancy and elasticity, as has been demonstrated in MapReduce
systems.

2.8.1 Why are Previous MapReduce-Based Systems Slow?

Conventional wisdom is that MapReduce is slower than MPP databases for
several reasons: expensive data materialization for fault tolerance, inferior data
layout (e.g., lack of indices), and costlier execution strategies [103, 118]. Our ex-
ploration of Hive confirms these reasons, but also shows that a combination of
conceptually simple “engineering” changes to the engine (e.g., in-memory storage)
and more involved architectural changes (e.g., partial DAG execution) can alleviate
them. We also find that a somewhat surprising variable not considered in detail
in MapReduce systems, the task scheduling overhead, actually has a dramatic
effect on performance, and greatly improves load balancing if minimized. There is
no fundamental reason why this overhead needs to be large, and Spark makes it
several orders of magnitude lower than Hadoop.

Intermediate Outputs: MapReduce-based query engines, such as Hive, materialize
intermediate data to disk in two situations. First, within a MapReduce job, the map
tasks save their output in case a reduce task fails [48]. Second, many queries need
to be compiled into multiple MapReduce steps, and engines rely on replicated file
systems, such as HDFS, to store the output of each step.

For the first case, we note that map outputs were stored on disk primarily as
a convenience to ensure there is sufficient space to hold them in large batch jobs.
Map outputs are not replicated across nodes, so they will still be lost if the mapper
node fails [48]. Thus, if the outputs fit in memory, it makes sense to store them in
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memory initially, and only spill them to disk if they are large. Spark SQL’s shuffle
implementation does this by default, and sees far faster shuffle performance (and
no seeks) when the outputs fit in RAM. This is often the case in aggregations and
filtering queries that return a much smaller output than their input.9 Another
hardware trend that may improve performance, even for large shuffles, is SSDs,
which would allow fast random access to a larger space than memory.

For the second case, engines that extend the MapReduce execution model to
general task DAGs can run multi-stage jobs without materializing any outputs to
HDFS. Many such engines have been proposed, including Dryad, Tenzing and
Spark [69, 38, 131].

Data Format and Layout: While the naı̈ve pure schema-on-read approach to Map-
Reduce incurs considerable processing costs, many systems use more efficient
storage formats within the MapReduce model to speed up queries. Hive itself
supports “table partitions” (a basic index-like system where it knows that certain
key ranges are contained in certain files, so it can avoid scanning a whole table),
as well as column-oriented representation of on-disk data [121]. We go further in
Spark SQL by using fast in-memory columnar representations within Spark. Spark
SQL does this without modifying the Spark runtime by simply representing a block
of tuples as a single Spark record (one Java object from Spark’s perspective), and
choosing its own representation for the tuples within this object.

Another feature of Spark that helps Spark SQL, but was not present in previous
MapReduce runtimes, is control over the data partitioning across nodes. This lets
us co-partition tables.

Finally, one capability of RDDs that we do not yet exploit is random reads. While
RDDs only support coarse-grained operations for their writes, read operations on
them can be fine-grained, accessing just one record [131]. This would allow RDDs
to be used as indices. Tenzing can use such remote-lookup reads for joins [38].

Execution Strategies: Hive spends considerable time on sorting the data before
each shuffle and writing the outputs of each MapReduce stage to HDFS, both
limitations of the rigid, one-pass MapReduce model in Hadoop. More general
runtime engines, such as Spark, alleviate some of these problems. For instance,
Spark supports hash-based distributed aggregation and general task DAGs.

To truly optimize the execution of relational queries, however, we found it
necessary to select execution plans based on data statistics. This becomes difficult
in the presence of UDFs and complex analytics functions, which we seek to support
as first-class citizens in Spark SQL. To address this problem, we proposed partial
DAG execution (PDE), which allows our modified version of Spark to change the
downstream portion of an execution graph once each stage completes based on
data statistics. PDE goes beyond the runtime graph rewriting features in previous

9 Systems like Hadoop also benefit from the OS buffer cache in serving map outputs, but we
found that the extra system calls and file system journaling from writing map outputs to files still
adds overhead (Section ??).
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systems, such as DryadLINQ [129], by collecting fine-grained statistics about ranges
of keys and by allowing switches to a completely different join strategy, such as
broadcast join, instead of just selecting the number of reduce tasks.

Task Scheduling Cost: Perhaps the most surprising engine property that affected
Spark SQL, however, was a purely “engineering” concern: the overhead of launch-
ing tasks. Traditional MapReduce systems, such as Hadoop, were designed for
multi-hour batch jobs consisting of tasks that were several minutes long. They
launched each task in a separate OS process, and in some cases had a high latency
to even submit a task. For instance, Hadoop uses periodic “heartbeats” from each
worker every 3 seconds to assign tasks, and sees overall task startup delays of 5–10
seconds. This was sufficient for batch workloads, but clearly falls short for ad-hoc
queries.

Spark avoids this problem by using a fast event-driven RPC library to launch
tasks and by reusing its worker processes. It can launch thousands of tasks per
second with only about 5 ms of overhead per task, making task lengths of 50–100
ms and MapReduce jobs of 500 ms viable. What surprised us is how much this
affected query performance, even in large (multi-minute) queries.

Sub-second tasks allow the engine to balance work across nodes extremely well,
even when some nodes incur unpredictable delays (e.g., network delays or JVM
garbage collection). They also help dramatically with skew. Consider, for example,
a system that needs to run a hash aggregation on 100 cores. If the system launches
100 reduce tasks, the key range for each task needs to be carefully chosen, as any
imbalance will slow down the entire job. If it could split the work among 1000
tasks, then the slowest task can be as much as 10× slower than the average with
negligible on the job response time! After implementing skew-aware partition
selection in PDE, we were somewhat disappointed that it did not help compared
to just having a higher number of reduce tasks in most workloads, because Spark
could comfortably support thousands of such tasks. However, this property makes
the engine highly robust to unexpected skew.

In this way, Spark stands in contrast to Hadoop/Hive, where using the wrong
number of tasks was sometimes 10× slower than an optimal plan, and there has
been considerable work to automatically choose the number of reduce tasks [77, 62].
Figure 2.12 shows how job execution times vary as the number of reduce tasks
launched by Hadoop and Spark in a simple aggregation query on a 100-node cluster.
Since a Spark job can launch thousands of reduce tasks without incurring much
overhead, partition data skew can be mitigated by always launching many tasks.

More fundamentally, there are few reasons why sub-second tasks should not
be feasible even at higher scales than we have explored, such as tens of thousands
of nodes. Systems like Dremel [88] routinely run sub-second, multi-thousand-
node jobs. Indeed, even if a single master cannot keep up with the scheduling
decisions, the scheduling could be delegated across “lieutenant” masters for subsets
of the cluster. Fine-grained tasks also offer many advantages over coarser-grained
execution graphs beyond load balancing, such as faster recovery (by spreading out
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Figure 2.12: Task launching overhead

lost tasks across more nodes) and query elasticity [99]; we discuss some of these
next.

2.8.2 Other Benefits of the Fine-Grained Task Model

The fine-grained task model also provides other attractive properties. We wish
to point out two benefits that have been explored in MapReduce-based systems.

Elasticity: In traditional MPP databases, a distributed query plan is selected once,
and the system needs to run at that level of parallelism for the whole duration of the
query. In a fine-grained task system, however, nodes can appear or go away during
a query, and pending work will automatically be spread onto them. This enables
the database engine to naturally be elastic. If an administrator wishes to remove
nodes from the engine (e.g., in a virtualized corporate data center), the engine can
simply treat those as failed, or (better yet) proactively replicate their data to other
nodes if given a few minutes’ warning. Similarly, a database engine running on
a cloud could scale up by requesting new VMs if a query is expensive. Amazon’s
Elastic MapReduce [1] already supports resizing clusters at runtime.

Multitenancy: The same elasticity, mentioned above, enables dynamic resource
sharing between users. In some traditional MPP databases, if an important query
arrives while another large query is using most of the cluster, there are few options
beyond canceling the earlier query. In systems based on fine-grained tasks, one
can simply wait a few seconds for the current tasks from the first query to finish,
and start giving the nodes tasks from the second query. For instance, Facebook
and Microsoft have developed fair schedulers for Hadoop and Dryad that allow
large historical queries, compute-intensive machine learning jobs, and short ad-hoc
queries to safely coexist [130, 70].
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2.9 Related Work

Programming Model Several systems have sought to combine relational process-
ing with the procedural processing engines initially used for large clusters. As
discussed earlier, Shark is the predecessor to Spark SQL, running on the same en-
gine and offering the same combination of relational queries and advanced analytics.
Spark SQL improves on Shark through a richer and more programmer-friendly API,
DataFrames, where queries can be combined in a modular way using constructs in
the host programming language (see Section 2.3). It also allows running relational
queries directly on native RDDs, and supports a wide range of data sources beyond
Hive.

One system that inspired Spark SQL’s design was DryadLINQ [129], which
compiles language-integrated queries in C# to a distributed DAG execution engine.
LINQ queries are also relational but can operate directly on C# objects. Spark
SQL goes beyond DryadLINQ by also providing a DataFrame interface similar to
common data science libraries [108, 101], an API for data sources and types, and
support for iterative algorithms through execution on Spark.

Other systems use only a relational data model internally and relegate proce-
dural code to UDFs. For example, Hive and Pig [121, 98] offer relational query lan-
guages but have widely used UDF interfaces. ASTERIX [26] has a semi-structured
data model internally. Stratosphere [13] also has a semi-structured model, but offers
APIs in Scala and Java that let users easily call UDFs. PIQL [23] likewise provides
a Scala DSL. Compared to these systems, Spark SQL integrates more closely with
native Spark applications by being able to directly query data in user-defined classes
(native Java/Python objects), and lets developers mix procedural and relational
APIs in the same language. In addition, through the Catalyst optimizer, Spark SQL
implements both optimizations (e.g., code generation) and other functionality (e.g.,
schema inference for JSON and machine learning data types) that are not present in
most large-scale computing frameworks. We believe that these features are essential
to offering an integrated, easy-to-use environment for big data.

Finally, data frame APIs have been built both for single machines [108, 101]
and clusters [46, 28]. Unlike previous APIs, Spark SQL optimizes DataFrame
computations with a relational optimizer.

Extensible Optimizers The Catalyst optimizer shares similar goals with extensi-
ble optimizer frameworks such as EXODUS [59] and Cascades [60]. Traditionally,
however, optimizer frameworks have required a domain-specific language to write
rules in, as well as an “optimizer compiler” to translate them to runnable code.
Our major improvement here is to build our optimizer using standard features of a
functional programming language, which provide the same (and often greater) ex-
pressivity while decreasing the maintenance burden and learning curve. Advanced
language features helped with many areas of Catalyst—for example, our approach
to code generation using quasiquotes (Section 2.4.3) is one of the simplest and most
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composable approaches to this task that we know. While extensibility is hard to
measure quantitatively, one promising indication is that Spark SQL had over 50
external contributors in the first 8 months after its release.

For code generation, LegoBase [75] recently proposed an approach using gener-
ative programming in Scala, which would be possible to use instead of quasiquotes
in Catalyst.

Advanced Analytics Spark SQL builds on recent work to run advanced analytics
algorithms on large clusters, including platforms for iterative algorithms [131] and
graph analytics [126, 82]. The desire to expose analytics functions is also shared
with MADlib [42], though the approach there is different, as MADlib had to use
the limited interface of Postgres UDFs, while Spark SQL’s UDFs can be full-fledged
Spark programs. Finally, techniques including Sinew and Invisible Loading [120, 10]
have sought to provide and optimize queries over semi-structured data such as
JSON. We hope to apply some of these techniques in our JSON data source.

2.10 Conclusion

We have developed Spark SQL, a new module in Apache Spark providing rich
integration with relational processing. Spark SQL builds on the lessons learned
from its predecessor, Shark, the initial SQL implementation on Spark that is heavily
tied to Hive internals. Spark SQL extends Spark with a declarative DataFrame API
to allow relational processing, offering benefits such as automatic optimization, and
letting users write complex pipelines that mix relational and complex analytics. It
supports a wide range of features tailored to large-scale data analysis, including
semi-structured data, query federation, and data types for machine learning. To
enable these features, Spark SQL is based on an extensible optimizer called Cata-
lyst that makes it easy to add optimization rules, data sources and data types by
embedding into the Scala programming language. User feedback and benchmarks
show that Spark SQL makes it significantly simpler and more efficient to write data
pipelines that mix relational and procedural processing, while offering substantial
speedups over previous SQL-on-Spark engines.
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Chapter 3

Structured Streaming: Declarative
Real-Time Applications

This chapter develops Structured Streaming, an extension to Spark SQL to sup-
port stream processing. We first describe the technical and operational challenges
from stream processing, and present how Structured Streaming’s ability to incre-
mentalize query plans addresses those challenges. We also present use cases we
have seen in production and conduct performance evaluation on the system. We
end the chapter by surveying related work.

3.1 Introduction

Many large-scale data sources operate in real time, including sensors, logs from
mobile applications, and the Internet of Things. As organizations have gotten better
at capturing this data, they also want to process it in real time, whether to give
human analysts the freshest possible data or drive automated decisions. Enabling
broad access to streaming computation requires systems that are scalable, easy to
use and easy to integrate into business applications.

While there has been tremendous progress in distributed stream processing
systems in the past few years [17, 52, 12, 93, 43], these systems still remain fairly
challenging to use in practice. In this chapter, we begin by describing these chal-
lenges, based on our experience with Spark Streaming [133], one of the earliest
stream processing systems to provide a relatively high-level, functional API. We
find that two challenges frequently came up with users. First, streaming systems
often asked users to think in terms of low-level, physical execution concepts, such
as at-least-once delivery, state storage and triggering modes, that are unique to
streaming. Second, many systems focused only on streaming computation, but
in real use cases, streaming was a part of a larger business application that also
includes batch processing, joins with static data, and interactive queries. Integrating
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streaming systems with these other systems (e.g., maintaining transactionality)
requires significant engineering.

Motivated by these challenges, we describe Structured Streaming, a new high-
level API for stream processing that was added to Apache Spark in summer
2016. Structured Streaming builds on many ideas in recent stream processing
systems, such as separating processing time from event time and triggers in Google
Dataflow [12], using a relational execution engine for performance [36], and offering
a language-integrated API [52, 133], but aims to make them simpler to use and
integrated with the rest of Apache Spark. Specifically, Structured Streaming differs
from other widely used open source streaming APIs in two ways:

• Incremental query model: Structured Streaming automatically incremental-
izes queries on static datasets expressed through Spark’s SQL and DataFrame
APIs, meaning that users often only need to understand Spark’s batch APIs to
write a streaming query, similar to [56]. Event time concepts are especially easy
to express in this model, making them easier to understand. Although incre-
mental query execution and view maintenance are well studied [29, 107, 135],
we believe Structured Streaming is the first effort to adopt them in a widely
used open source system.

• Support for end-to-end applications: Structured Streaming’s API and built-
in connectors aim to make it easy to write code that is “correct by default”
when interacting with external systems and their code can be integrated into
larger applications using Spark and other systems. Data sources and sinks
follow a simple transactional model that enables “exactly-once” computation
by default. The incrementalization based API also allows users to run a
streaming query as a batch job or develop hybrid applications that join streams
with static data computed through Spark’s batch APIs. In addition, users
can manage multiple streaming queries dynamically and run interactive
queries on consistent snapshots of stream output, making it possible to write
applications that go beyond computing a fixed result to let users refine and
drill into streaming data.

Beyond these benefits, we have made several design choices in Structured
Streaming that simplify operation and increase performance. First, Structured
Streaming reuses the Spark SQL execution engine, including its optimizer and
runtime code generator. This leads to high throughput compared to other stream-
ing systems (e.g., 4× the throughput of Apache Flink in the Yahoo! Streaming
Benchmark [40]), as in Trill [36], and also lets Structured Streaming automatically
leverage new SQL functions added to Spark. The engine runs in a microbatch
execution mode by default [133] but we are also extending it to support low-latency
continuous operators for some queries because the API is agnostic to execution
strategy [21].

Second, we found that operating a streaming application can be challenging,
and designed the engine to support failures, code updates and recomputation of
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already outputted data. For example, one common issue is that new data in a stream
causes an application to crash, or worse, to output an incorrect result that users do
not notice until much later (e.g., due to mis-parsing an input field). In Structured
Streaming, each application maintains a write-ahead event log in human-readable
JSON format that operators can use to restart the application from an arbitrary
point. If the application crashes due to an error in a user-defined function, operators
can update the UDF and restart from where it left off, which happens automatically
when the restarted application reads the log. If it was outputting incorrect data
instead, operators can restart from a point before the bad data started arriving
and recompute results from there; this works provided old enough checkpoint
information was kept.

Since Structured Streaming became part of open source Spark in 2016, we
have observed a number of use cases, through the open source mailing lists as
well as production use cases on Databricks’ cloud service. We end the chapter
with some example use cases. Production applications range from interactive
network security analysis and automated alerts to incremental Extract, Transform
and Load (ETL). Users often leverage the design of the engine in interesting ways,
e.g., running a streaming query “discontinuously” as a series of single-microbatch
jobs to leverage Structured Streaming’s transactioal input and output without
having to pay for cloud servers running 24/7. The largest production applications
we discuss process over 1 PB of data per month on hundreds of machines. We also
show that Structured Streaming outperforms Apache Flink and Kafka Streams by
4× and 90× respectively in the widely used Yahoo! Streaming Benchmark [40].

The rest of this chapter is organized as follows. We start by discussing stream
processing challenges based on our experience with Spark Streaming in Section 3.2.
Next, we give an overview of Structured Streaming (Section 3.3), then describe
its API (Section 3.4), query planning (Section 3.5) and execution and operation
(Section 3.6). In Section 3.7, we describe several large use cases. We then measure
the system’s performance in Section 3.8, discuss related work in Section 3.9 and
conclude in Section 4.8.

3.2 Stream Processing Challenges

Despite extensive progress in the past few years, distributed streaming appli-
cations are still still generally considered hard to develop and operate. Before
designing Structured Streaming, we spent time discussing the challenges in this
domain with users and designers of other streaming systems, including Spark
Streaming, Truviso, Storm, Flink, Dataflow and others. This section discusses the
main challenges we saw.
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3.2.1 Low-Level APIs

Streaming systems were invariably considered more difficult to use than batch
ones due to complex API semantics. Some complexity is to be expected due to new
concerns that arise only in streaming: for example, the user needs to think about
what type of intermediate results the system should output before it has received
all the data relevant to a particular entity, e.g., to a customer’s browsing session on
a website. However, other complexity arises due to the low-level nature of many
streaming APIs: these APIs often ask users to specify applications at the level of
physical operators with complex semantics instead of a more declarative level.

As a concrete example, the Google Dataflow model [12] has a powerful API
with a rich set of options for handling event time aggregation, windowing and
out-of-order data. However, in this model, users need to specify a windowing mode,
triggering mode and trigger refinement mode (essentially, whether the operator
outputs deltas or accumulated results) for each aggregation operator. Adding an
operator that expects deltas after an aggregation that outputs accumulated results
will lead to unexpected results. In essence, the raw API [25] asks the user to write a
physical operator graph, not a logical query, so every user of the system needs to
understand the intricacies of incremental processing.

Other APIs, such as Spark Streaming [133] and Flink’s DataStream API [53], are
also based on writing DAGs of physical operators and offer a complex array of
options for managing state [55]. In addition, reasoning about applications becomes
even more complex in systems that relax exactly-once semantics [17], effectively
requiring the user to design and implement a consistency model.

To address this issue, we designed Structured Streaming to make simple appli-
cations simple to express using its incremental query model. In addition, we found
that adding customizable stateful processing operators to this model still enabled
advanced users to build their own processing logic, such as custom session-based
windows, while staying within the incremental model (e.g., these same opera-
tors also work in batch jobs). Other open source systems have also recently been
adding incremental SQL queries [54, 43], and of course such queries have long been
studied [29, 107, 135].

3.2.2 Integration in End-to-End Applications

The second challenge we found was that nearly every streaming workload
must run in the context of a larger application, and this integration often required
significant engineering effort. Many streaming APIs focus primarily on reading
streaming input from a source and writing streaming output to a sink, but end-to-
end business applications need to perform other tasks. Examples include:

• The business purpose of the application may be to enable interactive queries
on fresh data. In this case, streaming is used to compute and update summary

46



tables in a structured storage system such as a SQL database or Apache
Hive [121]. It is important that when the streaming job updates its result, it
does so atomically, so queries do not see partially written results. This can be
challenging with file-based big data systems like Apache Hive, where multiple
files need to “appear” in parallel, or even with parallel load commands in a
data warehouse.

• An Extract, Transform and Load (ETL) job might need to join a stream with
static data loaded from another storage system or transformed using other
Spark code. In this case, it is important to be able to reason about consistency
across the two systems (what happens when the static data is updated?), and
it is helpful to write transformations on both datasets in the same API.

• A team may occasionally need to run its streaming business logic in a batch
application, e.g., to backfill a result on old data or test alternate versions of
the code. Rewriting the code in a separate system would be time-consuming
and error-prone.

We address this challenge by integrating Structured Streaming closely with
Spark’s batch and interactive APIs.

3.2.3 Operational Challenges

One of the largest challenges to deploying streaming applications in practice is
management and operation. Some key issues include:

• Failures: This is the most heavily studied issue in the research literature.
In addition to single node failures, systems also need to support graceful
shutdown and restart of the whole application, e.g., to let operators migrate it
to a new cluster.

• Code Updates: Applications are rarely perfect, so developers may need to
update their code. After an update, they may want the application to restart
where it left off, or possibly to recompute past results that were erroneous due
to a bug. Both cases need to be supported in the streaming system’s state
management and fault recovery mechanisms. In addition, updates to the
streaming system itself (e.g., a patch to Spark) should be supported as much as
possible.

• Rescaling: Applications see varying load over time, and generally increasing
load in the long term, so operators may want to scale them up and down
dynamically, especially in the cloud. Systems based on a static communication
topology, while conceptually simple, are difficult to scale dynamically.

• Stragglers: Instead of outright failing, nodes in the streaming system can slow
down due to hardware or software issues and degrade the throughput of the
whole application. Systems should automatically handle this situation.
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• Monitoring: Streaming systems need to give operators clear visibility into
per-node load, backlogs, state size, etc. to let them make good operational
decisions.

3.2.4 Cost and Performance

Beyond operational and engineering issues, the cost-performance of streaming
applications can be an obstacle because these applications run 24/7. For example,
without dynamic rescaling, an application will always consume its peak resources,
and even with rescaling, it may be more expensive to update a result continuously
than to run a periodic batch job. We thus designed Structured Streaming to leverage
all the execution optimizations in Spark SQL.

So far, we chose to optimize throughput as our main performance metric because
we found that it was often the most important metric in large-scale streaming
applications. Applications that require a distributed streaming system usually work
with large data volumes coming from external sources (e.g., mobile devices, sensors
or IoT), where data may already incur a delay just getting to the system. This is one
reason why event time processing is an important feature in these systems [12]. In
contrast, latency-sensitive applications such as high-frequency trading or physical
system control loops often run on a single scale-up processor, or even custom
hardware like ASICs and FPGAs [14]. However, we also designed Structured
Streaming to support executing over latency-optimized engines, and are building a
continuous processing mode for this task [21], which we describe in Section 3.6.3.
This is a change over Spark Streaming, where microbatching was “baked into” the
API.

3.3 Structured Streaming Overview

Structured Streaming aims to tackle the stream processing challenges we identi-
fied through a combination of API design and execution engine design, including
features to simplify operation. In this section, we give a brief overview of the engine
before diving into each of these topics in the following sections. Figure 3.1 shows
an overview of the Structured Streaming system.

Input and Output. Structured Streaming connects to a variety of input sources
and output sinks for I/O. To provide “exactly-once” output and fault tolerance, it
places two restrictions on sources and sinks, which are similar to other exactly-once
systems [133, 52]:

1. Input sources must be replayable, allowing the system to re-read recent input
data if a node crashes. In practice, organizations use a reliable message bus
such as Amazon Kinesis or Apache Kafka [16, 73] for this purpose, or simply
a durable file system.
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Figure 3.1: The components of Structured Streaming.

2. Output sinks must support idempotent writes, to ensure reliable recovery if a
node fails while writing. Structured Streaming can also provide atomic output
for some sinks that support it, where any update to the job’s output appears
at once even if it was written by multiple nodes working in parallel.

In addition to external systems, Structured Streaming also supports input and
output from tables in Spark SQL. For example, users can compute a static table
from any of Spark’s batch input sources and join it with a stream, or ask Structured
Streaming to output to an in-memory Spark table that users can query interactively.

API. Users program Structured Streaming by writing a query against one or more
streams and tables using Spark SQL’s batch APIs—SQL and DataFrames. This
query defines an output table that the user wants to compute, assuming that each
input stream is replaced by a table holding all the data received from that stream so
far. The engine then determines how to compute and materialize this output table in
a sink incrementally, using similar techniques to incremental view maintenance [29,
107]. Different sinks also support different output modes, which determine how the
system may update their results—for example, some sinks are by nature append-
only, while others allow updating records in place by key.

To support streaming specifically, Structured Streaming also adds several API
features that fit in the existing Spark SQL API:

• Triggers control how often the engine will attempt to compute a new result
and update the output sink, as in Dataflow [12].
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• Users can mark a column as denoting event time (a timestamp set at the data
source), and set a watermark policy to determine when enough data has been
received to output a result for a specific event time, as in [12].

• Stateful operators allow users to track and update mutable state by key in order
to implement complex processing, such as custom session-based windows.
These are similar to Spark Streaming’s updateStateByKey API [133].

Note that windowing, another key feature for streaming, is done using Spark
SQL’s existing aggregation operators. In addition, all the new APIs in Structured
Streaming also work in batch jobs.

Execution. Once it has received a query, Structured Streaming optimizes it, incre-
mentalizes it, and begins executing it. The system uses a microbatch model similar
to Discretized Streams in Spark Streaming by default, which supports dynamic
load balancing, rescaling, fault recovery and straggler mitigation by dividing work
into small tasks [133]. In addition, a new continuous processing mode uses more
traditional long-running operators [57] to provide lower latency at the cost of more
static scheduling (Section 3.6.3).

In both cases, Structured Streaming uses two forms of durable storage to achieve
fault tolerance. First, a write-ahead log keeps track of which data has been processed
and reliably written to the output sink from each input source. For some output
sinks, this log can be integrated with the sink to make updates to the sink atomic.
Second, the system uses a larger-scale state store to hold snapshots of operator states
for long-running aggregation operators. These are written asynchronously, and may
be “behind” the latest data written to the output sink; the system will automatically
track which state it has last updated in its log, and recompute state starting from
that point in the data on failure. Both the log and state store can run over pluggable
storage systems (e.g., HDFS or S3).

Operational Features. Using the durability of the write-ahead log and state store,
users can achieve several forms of rollback and recovery. An entire Structured
Streaming application can be shut down and restarted on new hardware. Running
applications also tolerate node crashes, additions and stragglers automatically, by
sending tasks to new nodes. For code updates to UDFs, it is sufficient to stop and
restart the application, and it will begin using the new code. In addition, users can
manually roll back the application to a previous point in the log and redo the part of
the computation starting then, beginning from an older snapshot of the state store.

In addition, Structured Streaming’s ability to execute with microbatches lets
it “adaptively batch” data so that it can quickly catch up with input data if the
load spikes or if a job is rolled back, then return to low latency later. This makes
operation significantly simpler (e.g., operators can safely update code more often).

The next sections go into detail about Structured Streaming’s API (§3.4), query
planning (§3.5) and job execution and operation (§3.6).
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3.4 Programming Model

Structured Streaming combines elements of Google Dataflow [12], incremental
queries [29, 107, 135] and Spark Streaming [133] to enable stream processing beneath
the Spark SQL API. In this section, we start by showing a short example, then
describe the semantics of the model and the streaming-specific operators we added
in Spark SQL to support streaming use cases (e.g., stateful operators).

3.4.1 A Short Example

Structured Streaming operates within Spark’s structured data APIs—SQL,
DataFrames and Datasets. The main abstraction users work with is tables (called
DataFrames or Datasets in the language APIs), which each represent a view to be
computed from input sources to the system.1 When users create a table/DataFrame
from a streaming input source, and attempt to compute it, Spark will automatically
launch a streaming computation.

As a simple example, let us start with a batch job that counts clicks by country
of origin for a web application. Suppose that the input data is JSON files and the
output should be Parquet. This job can be written with Spark DataFrames in Scala
as follows:

// Define a DataFrame to read from static data

data = spark.read.format("json").load("/in")

// Transform it to compute a result

counts = data.groupBy($"country").count()

// Write to a static data sink

counts.write.format("parquet").save("/counts")

Changing this job to use Structured Streaming only requires modifying the input
and output sources, not the transformation in the middle. For example, if new
JSON files are going to continually be uploaded to the /in directory, we can modify
our job to continually update /counts by changing only the first and last lines:

// Define a DataFrame to read streaming data

data = spark.readStream.format("json").load("/in")

// Transform it to compute a result

counts = data.groupBy($"country").count()

// Write to a streaming data sink

counts.writeStream.format("parquet")

1 Spark SQL offers several slightly different APIs that map to the same underlying query engine.
The DataFrame API, modeled after data frames in R and Pandas [108, 101], offers a simple interface
to build relational queries programmatically that is familiar to many users. The Dataset API adds
static typing over DataFrames, similar to RDDs [131]. Alternatively, users can write SQL. All APIs
produce a relational query plan.
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.outputMode("complete").start("/counts")

The output mode parameter on the sink here specifies how Structured Streaming
should update the sink. In this case, the complete mode means to write a complete
result file for each update, because the file output sink chosen does not support
fine-grained updates. However, other sinks, such as key-value stores, support more
sophisticated output modes (e.g., updating just changed keys).

Under the hood, Structured Streaming will automatically incrementalize the
query specified by the transformation(s) from input sources to data sinks, and
execute it in a streaming fashion. The engine will also automatically maintain state
and checkpoint it to external storage as needed—in this case, for example, we have
a running count aggregation since the start of the stream, so the engine will keep
track of the running counts for each country.

Finally, the API also naturally supports windowing and event time through
Spark SQL’s existing support aggregation operators. For example, instead of count-
ing data by country, we could count it in 1-hour sliding windows advancing every
5 minutes by changing just the middle line of the computation as follows:

// Count events by windows on the "time" field

data.groupBy(window($"time","1h","5min")).count()

The time field here (event time) is just a field in the data, similar to country
earlier. Users can also set a watermark on this field to let the system forget state for
old windows after a timeout (§3.4.3).

3.4.2 Model Semantics

Formally, we define the semantics of Structured Streaming’s execution model as
follows:

1. Each input source provides a partially ordered set of records over time. We
assume partial orders here because some message bus systems are parallel
and do not define a total order across records—for example, Kafka divides
streams into “partitions” that are each ordered.

2. The user provides a query to execute across the input data that can output a
result table at any given point in processing time. Structured Streaming will
always produce results consistent with running this query on a prefix of the
data in all input sources. That is, it will never show results that incorporate one
input record but do not incorporate its ancestors in the partial order. Moreover,
these prefixes will be increasing over time.

3. Triggers tell the system when to run a new incremental computation and update
the result table. For example, in microbatch mode, the user may wish to trigger
an incremental update every minute (in processing time).
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4. The sink’s output mode specifies how the result table is written to the output
system. The engine supports three distinct modes:

• Complete: The engine writes the whole result table at once, e.g., replacing
a whole file in HDFS with a new version. This is of course inefficient
when the result is large.

• Append: The engine can only add records to the sink. For example, a
map-only job on a set of input files results in monotonically increasing
output.

• Update: The engine updates the sink in place based on a key for each
record, updating only keys whose values changed.

Figure 3.2 illustrates the model visually. One attractive property of the model is
that the contents of the result table (which is logically just a view that need never be
materialized) are defined independently of the output mode (whether we output
the whole table on every trigger, or only deltas). In contrast, APIs such as Dataflow
require the equivalent of an output mode on every operator, so users must plan
the whole operator DAG keeping in mind whether each operator is outputting
complete results or positive or negative deltas, effectively incrementalizing the
query by hand.

A second attractive property is that the model has strong consistency semantics,
which we call prefix consistency. First, it guarantees that when input records are
relatively ordered within a source (e.g., log records from the same device), the
system will only produce results that incorporate them in the same records (e.g.,
never skipping a record). In addition, because the result table is defined based on all
data in the input prefix at once, we know that all rows in the result table reflect each
input records. For example, in some systems based on message-passing between
nodes, the node that receives a record might send an update to two downstream
nodes, but there is no guarantee that the outputs from these are synchronized.

In summary, with the Structured Streaming models, as long as users understand
a regular Spark or DataFrame query, they can understand the content of the result
table for their job and the values that will be written to the sink. Users need not
worry about consistency, failures or incorrect processing orders.

Finally, the reader might notice that some of the output modes we defined are
incompatible with certain types of query. For example, suppose we are aggregating
counts by country, as in our code example in the previous section, and we want to
use the append output mode. There is no way for the system to guarantee it has
stopped receiving records for a given country, so this combination of query and
output mode will not be allowed by the system. We describe which combinations
are allowed in Section 3.5.1.
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Figure 3.2: Structured Streaming’s semantics for two output modes. Logically, all
input data received up to a point in processing time is viewed as a large input
table, and the user provides a query that defines a result table based on this input.
Physically, Structured Streaming computes changes to the result table incrementally
(without having to store all input data) and outputs results based on its output
mode. For complete mode, it outputs the whole result table (left), while for append
mode, it only outputs newly added records (right).

3.4.3 Streaming Specific Operators

Many Structured Streaming queries can be written using just the standard
operators built intp Spark SQL, such as selection, joins and aggregation. However,
to support some new requirements unique to streaming, we added two new types
of operators to Spark SQL: watermarking operators tell the system when to “close”
an event time window and output results or forget state, and stateful operators let
users write custom logic to implement custom complex processing. Crucially, both
of these new operators still fit within Structured Streaming’s incremental semantics
(§3.4.2), and both can also be used in batch applications.

Event Time Watermarks

From a logical point of view, the key idea in event time is to treat application-
specified timestamps as an arbitrary field in the data, allowing records to arrive out-
of-order [76, 12]. We can then use standard operators and incremental processing
to update results grouped by event time. In practice, however, it is useful for the
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processing system to have some loose bounds on how late data can arrive, for two
reasons:

1. Allowing arbitrarily late data might require storing arbitrarily large state. For
example, if we count data by 1-minute event time window, the system needs
to remember a count for every 1-minute window since the application began,
because a late record might still arrive for any particular minute. This can
quickly lead to large amounts of state, especially if combined with another
grouping key (e.g., group by minute and city).

2. Some sinks do not support data retraction, making it useful to be able to
write the results for a given event time after a timeout. For example, many
downstream applications want to start working with a “final” result from
streaming analytics eventually, and might not be able to handle retractions.
Append-mode sinks also do not support retractions.

Structured Streaming lets developers set a watermark [12] for event time
columns using the withWatermark operator. This operator gives the system a delay
threshold tC for a given timestamp column C. At any point in time, the watermark
for C is max(C)− tC, that is, tC seconds before the maximum event time seen so far
in C. Note that this choice of watermark is naturally robust to backlogged data: if
the system cannot keep up with the input rate for a period of time, the watermark
will not move forward arbitrarily during that time, and all events that arrived
within at most T seconds of being produced will still be processed.

When present, watermarks affect when stateful operators can forget old state
(e.g., if grouping by a window derived from a watermarked column), and when
Structured Streaming will output data with an event time key to append-mode
sinks. Different input streams can have different watermarks.

Stateful Operators

For developers who want to write custom stream processing logic, Structured
Streaming’s stateful operators are “UDFs with state” that give users control over
the computation while fitting into Structured Streaming’s semantics and fault
tolerance mechanisms. There are two stateful operators, mapGroupsWithState and
flatMapGroupsWithState. Both operators act on data that has been assigned a key
using groupByKey, and let the developers track and update a state for each key using
custom logic, as well as output records for each key. They are closely based on
Spark Streaming’s updateStateByKey operator [133].

The mapGroupsWithState operator, on a grouped dataset with keys of type K and
values of type V, takes as argument an update function with the following arguments:

• key of type K

• newValues of type Iterator[V]
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// Define an update function that simply tracks the

// number of events for each key as its state, returns

// that as its result, and times out keys after 30 min.

def updateFunc(key: UserId, newValues: Iterator[Event],

state: GroupState[Int]): Int = {

val totalEvents = state.get() + newValues.size()

state.update(totalEvents)

state.setTimeoutDuration("30 min")

return totalEvents

}

// Use this update function on a stream, returning a

// new table lens that contains the session lengths.

lens = events.groupByKey(event => event.userId)

.mapGroupsWithState(updateFunc)

Figure 3.3: Using mapGroupsWithState to track the number of events per session,
timing out sessions after 30 minutes.

• state of type GroupState[S], where S is a user-specified class.

The operator will invoke this function whenever one or more new values are
received for a key. On each call, the function receives all of the values that were
received for that key since the last call (multiple values may be batched for effi-
ciency). It also receives a state object that wraps around a user-defined data type
S, and allows the user to update the state, drop this key from state tracking, or
set a timeout for this specific key (either in event time or processing time). This
allows the user to store arbitrary data for the key, as well as implement custom logic
for dropping state (e.g., custom exit conditions when implementing session-based
windows).

Finally, the update function returns a user-specified return type R for its key. The
return value of mapGroupsWithState is a new table with the final R record outputted
for each group in the data (when the group is closed or times out). For example, the
developer may wish to track user sessions on a website using mapGroupsWithState,
and output the total number of pages clicked for each session.

To illustrate, Figure 3.3 shows how to use mapGroupsWithState to track user
sessions, where a session is defined as a series of events with the same userId and
gaps less than 30 minutes between them. We output the final number of events in
each session as our return value R. A job could then compute metrics such as the
average number of events per session by aggregating the result table lens.

The second stateful operator, flatMapGroupsWithState, is very similar to
mapGroupsWithState, except that the update function can return zero or more val-
ues of type R per update instead of one. For example, this operator could be used
to manually implement a stream-to-table join. The return values can either be
returned all at once, when the group is closed, or incrementally across calls to the
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update function. Both operators also work in batch mode, in which case the update
function will only be called once.

3.5 Query Planning

We implemented Structured Streaming’s query planning using the Catalyst
extensible optimizer in Spark SQL, which allows writing composable rules using
pattern matching in Scala, as described in Section [? ]. Query planning proceeds in
three stages: analysis to determine whether the query is valid, incrementalization
and optimization.

3.5.1 Analysis

The first stage of query planning is analysis, where the engine validates the
user’s query and resolves the attributes and data types referred to in the query.
Structured Streaming uses Spark SQL’s existing analysis passes to resolve attributes
and types, but adds new rules to check that the query can be executed incrementally
by the engine. It also checks that the user’s chosen output mode is valid for this
specific query.

The rules for when each output mode is allowed are as follows:

• Complete mode: Only aggregation queries are allowed, where the amount
of state that needs to be tracked is proportional to the number of keys in the
result as opposed to the total number of input records. Queries that only do
selection operations, for example, are not allowed because they would require
storing all the input data.2

• Append mode: In this mode, the engine must be able to guarantee that an
output record will not be updated once it writes it. (More formally, queries
here should be monotonic [15].) Only selections, joins with static tables, and
aggregations over event time on streams with watermarks are allowed. For
aggregations over event time, Structured Streaming only outputs a key when
the watermark has moved past its event time.

• Update mode: All queries support this mode, which allows updating past
records based on a key.

These rules aim to establish two main goals: (1) that Structured Streaming need
not remember an indefinitely large amount of input, which would be virtually guar-
anteed to be a bug in the user’s application, and (2) that it respects the limitations
of the output sink (e.g., append only). A full description of the supported modes is
available in the Spark documentation [114].

2 Although input sources in Structured Streaming should support replaying recent data on failure,
most will only retain data for a limited time (e.g., Kafka and Kinesis).
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3.5.2 Incrementalization

As of Spark 2.2.0, Structured Streaming can incrementalize a restricted set of
queries, which can contain:

• Any number of selections, projections and SELECT DISTINCTs.

• Any number of inner or right outer joins between a stream and a static table.

• Stateful operators like mapGroupsWithState (§3.4.3).

• Up to one aggregation (possibly on compound keys).

• Sorting after an aggregation, only in complete output mode.

Work is also under way to support other types of queries, such as stream-to-
stream joins on event time windows.

These supported queries are mapped, using transformation rules, to physical
operators that perform both computation and state management. For example, an
aggregation in the user query might be mapped to a StatefulAggregate operator that
tracks open groups inside Structured Streaming’s state store (§3.6.1) and outputs
the desired result. Internally, Structured Streaming also tracks an output mode for
each physical operator in the DAG produced during incrementalization, similar
to the refinement mode for aggregation operators in Dataflow [12]. For example,
some operators may update emitted records (equivalent to update mode), while
others may only emit new records (append mode). Crucially, however, users do not
have to specify these intra-DAG modes manually.

Incrementalization is an active area of work in Structured Streaming, but we
have found that even the fairly simple set of queries supported today is broadly
applicable in many use cases (§3.7). We expect to add more advanced incremental-
ization techniques later.

3.5.3 Optimization

The final stage of planning is optimization. Structured Streaming applies most
of the optimization rules in Spark SQL, such as predicate pushdown, projection
pushdown, expression simplification and others. In addition, it uses Spark SQL’s
Tungsten binary format for data in memory (avoiding the overhead of Java objects),
and its runtime code generator to compile chains of operators to Java bytecode
that runs over this format. This design means that most of the work in logical and
execution optimization for analytical workloads in Spark SQL automatically applies
to streaming.
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Figure 3.4: State management during the execution of Structured Streaming. Input
operators are responsible for defining epochs in each input source and saving
information about them (e.g., offsets) reliably in the write-ahead log. Stateful
operators also checkpoint state asynchronously, marking it with its epoch, but
this does not need to happen on every epoch. Finally, output operators log which
epochs’ outputs have been reliably committed to the idempotent output sink; the
very last epoch may be rewritten on failure.

3.6 Application Execution

The final component of Structured Streaming is its execution strategy. In this
section, we describe how the engine tracks state, and then the two execution modes:
microbatching via fine-grained tasks and the in-development continuous processing
mode. We then discuss operational features to simplify management.

3.6.1 State Management and Recovery

At a high level, Structured Streaming tracks state in a manner similar to Spark
Streaming [133], in both its microbatch and continuous modes. The state of an
application is tracked using two external storage systems: a write-ahead log that
supports durable, atomic writes at low latency, and a state store that can store larger
amounts of data durably and allows parallel access (e.g., S3 or HDFS). Structured
Streaming uses these systems together to recover on failure.

The engine places two requirements on input sources and output sinks to pro-
vide fault tolerance. First, input sources should be replayable, i.e., allow re-reading
recent data using some form of identifier, such as a stream offset. Durable message
bus systems like Kafka and Kinesis meet this need. Second, output sinks should be
idempotent, allowing Structured Streaming to rewrite some already written data on
failure. Sinks can implement this in different ways.
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Given these properties, Structured Streaming performs state tracking using the
following mechanism, as shown in Figure 3.4:

1. As input operators read data, the master node of the Spark application defines
epochs based on offsets in each input source. For example, Kafka and Kinesis
present topics as a series of partitions, each of which are byte streams, and
allow reading data using offsets in these partitions. The master writes the
start and end offsets of each epoch durably to the log.

2. Any operators requiring state checkpoint their state periodically and asyn-
chronosuly to the state store, using incremental checkpoints when possible.
They store the epoch ID along with each checkpoint written. These check-
points do not need to happen on every epoch or to block processing.3

3. Output operators write the epochs they committed to the log. The master
waits for all nodes running an operator to report a commit for a given epoch
before allowing commits for the next epoch. Depending on the sink, the
master can also run an operation to finalize the writes from multiple nodes if
the sink supports this. This means that if the streaming application fails, only
one epoch may be partially written.4

4. Upon recovery, the new instance of the application starts by reading the log to
find the last epoch that has not been committed to the sink, including its start
and end offsets. It then uses the offsets of earlier epochs to reconstruct the
application’s in-memory state from the last epoch written to the state store.
This just requires loading the old state and running those epochs with the
same offsets while disabling output. Finally, the system reruns the last epoch
and relies on the sink’s idempotence to write its results, then starts defining
new epochs.

Finally, all of the state management in this design is transparent to user code.
Both the aggregation operators and custom stateful processing operators (e.g.,
mapGroupsWithState) automatically checkpoint state to the state store, without re-
quiring custom code to do it. The user’s data types only need to be serializable.

3.6.2 Microbatch Execution Mode

Structured Streaming jobs can execute in two modes: microbatching or continu-
ous operators. The microbatch mode uses the discretized streams execution model

3 In Spark 2.2.0, we actually make one checkpoint per epoch, but we plan to make them less
frequent in a future release, as is already done in Spark Streaming.

4 Some sinks, such as Amazon S3, provide no way to atomically commit multiple writes from
different writer nodes. In such cases, we have also created data sources for Spark that check both the
storage system and the streaming application’s log to read only complete epochs. This lets other
Spark applications still see a correct view [22].
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from Spark Streaming [133], and inherits its benefits, such as dynamic load bal-
ancing, rescaling, straggler mitigation and fault recovery without whole-system
rollback.

In this mode, epochs are typically set to be a few hundred milliseconds to a few
seconds, and each epoch executes as a traditional Spark job composed of a DAG of
independent tasks [131]. For example, a query doing selection followed by stateful
aggregation might execute as a set of “map” tasks for the selection and “reduce”
tasks for the aggregation, where the reduce tasks track state in memory on worker
nodes and periodically checkpoint it to the state store. As in Spark Streaming, this
mode provides the following benefits:

• Dynamic load balancing: Each operator’s work is divided into small, in-
dependent tasks that can be scheduled on any node, so the system can au-
tomatically balance these across nodes if some are executing slower than
others.

• Fine-grained fault recovery: If a node fails, only its tasks need to be rerun,
instead of having to roll back the whole cluster to a checkpoint as in most
systems based on topologies of long-lived operators. Moreover, the lost tasks
can be rerun in parallel, further reducing recovery time [133].

• Straggler mitigation: Spark will launch backup copies of slow tasks as it
does in batch jobs, and downstream tasks will simply use the output from
whichever copy finishes first.

• Rescaling: Adding or removing a node is simple as tasks will automatically
be scheduled on all the available nodes.

• Scale and throughput: Because this mode reuses Spark’s batch execution en-
gine, it inherits all the optimizations in this engine, such as a high-performance
shuffle implementation [125] and the ability to run on thousands of nodes.

The main disadvantage of this mode is a higher minimum latency, as there is
overhead to launching a DAG of tasks in Spark. In practice, however, latencies of
a few seconds are achievable even on large clusters and are acceptable for many
applications where data takes a similar amount of time to even be uploaded to the
system (e.g., those collecting data from mobile devices).

3.6.3 Continuous Processing Mode

A new continuous processing mode under active development for Spark 2.3 [21]
enables execution Structured Streaming jobs using long-lived operators as in a
traditional streaming systems such as TelegraphCQ and Borealis [37, 6]. This mode
enables lower latency at a cost of less operational flexibility (e.g., limited support
for rescaling the job at runtime).
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The key enabler for this execution mode was choosing a declarative API for
Structured Streaming that is not tied to the execution strategy. For example, the
original Spark Streaming API had some operators based on processing time that
leaked the concept of microbatches into the programming model, making it hard to
move programs to another type of engine. In contrast, Structured Streaming’s API
and semantics are independent of the execution engine: continuous execution is
similar to having a much larger number of triggers. Note that unlike systems based
purely on unsynchronized message passing, such as Storm [17], we do retain the
concept of triggers and epochs in this mode so the output from multiple nodes can
be coordinated and committed together to the sink.

Because the API supports fine-grained execution, Structured Streaming jobs
could theoretically run on any existing distributed streaming engine design [52, 6,
37]. In continuous processing, we sought to implement a simple continuous opera-
tor engine that lives inside Spark and can reuse Spark’s scheduling infrastructure
and per-node operators (e.g., code-generated operators). The first version, currently
under development, only support “map” jobs (i.e., no shuffle operations), which
were one of the most common scenarios where users wanted lower latency. The
design can also be extended to support shuffles, however. Compared to microbatch
execution, there are two differences when using continuous processing:

• The master launches long-running tasks on each partition using Spark’s sched-
uler that each read one partition of the input source (e.g., Kinesis stream) but
execute multiple epochs. If one of these tasks fails, e.g., due to a node crash,
Spark will automatically relaunch it on another node, which will start process-
ing that same partition.

• Epochs are coordinated differently. The master periodically tells nodes to start
a new epoch, and receives a start offset for the epoch on each input partition,
which it inserts into the write-ahead log. When it asks them to start the next
epoch, it also receives end offsets for the previous one, writes these to the log,
and tells nodes to commit the epoch when it has written all the end offsets.
Thus, the master is not on the critical path for inspecting all the input sources
and defining start/end offsets.

In practice, we found that the main use case where organizations wanted low
latency and the scale of a distributed processing engine was “stream to stream”
map operations to transform data before it is used in other streaming applications.
For example, an organization might upload events to Kafka, run some simple ETL
transformations as a streaming map job, and write the transformed to Kafka again
for consumption by multiple downstream applications. In this type of architecture,
every streaming transformation job will add latency to all downstream applications,
so organizations wish to minimize this latency. For this reason, we have chosen to
only focus on map jobs in the first version of continuous processing, but in general
it is possible to use a full distributed streaming design.
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3.6.4 Operational Features

We used several properties of our execution strategy and API to design a number
of operational features in Structured Streaming that tackle common problems in
deployments.

Code Updates

Developers can update User-Defined Functions (UDFs) in their program and
simply restart the application to use the new version of the code. For example, if
a UDF is crashing on a particular input record, that epoch of processing will fail,
so the developer can update the code and restart the application again to continue
processing. This also applies to stateful operator UDFs, which can be updated
as long as they retain the same schema for their state objects. We also designed
Spark’s log and state store formats to be binary compatible across Spark framework
updates.

Manual Rollback

Sometimes, an application outputs wrong results for some time before a user
notices: for example, a field that fails to parse might simply be reported as NULL.
Therefore, rollbacks are a fact of life for many operators. In Structured Streaming,
it is easy to determine which records went into each epoch from the write-ahead
log and roll back the application to the epoch where a problem started occurring.
We chose to store the write-ahead log as JSON to let administrators perform these
operations manually.5 As long as the input sources and state store still have data
from the failed epoch, the job can start again from a previous point. Message buses
like Kafka are typically configured for several weeks of retention so rollbacks are
often possible. Moreover, Structured Streaming’s support for running the same
code as a batch job and for rescaling means that administrators can run the recovery
on a temporarily larger cluster to catch up quickly.

Hybrid Batch and Streaming Execution

The most obvious benefit of Structured Streaming’s unified API is that users can
share code between batch and streaming applications, or run the same program as a
batch job for testing. However, we have also found this useful in purely streaming
applications, in two scenarios:

• “Run-once” triggers for cost savings: Many Spark users wanted the transaction-
ality and state management properties of a streaming engine without running

5 One additional step they may have to do is remove faulty data from the output sink, depending
on the sink chosen. For the file sink, for example, it’s straightforward to find which files were written
in a particular epoch and remove those.
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servers 24/7. Virtually all ETL workloads require tracking how far in the
input one has gotten and which results have been saved reliably, which can be
difficult to implement by hand. These functions are exactly what Structured
Streaming’s state management provides. Thus, several organizations imple-
mented ETL jobs by running a single epoch of a Structured Streaming job every
few hours as a batch computation, using the provided “run once” trigger that
was originally designed for testing. This leads to significant cost savings (in
one case, up to 10× [128]) for lower-volume applications. With all the major
cloud providers now supporting per-second or per-minute billing [24], we
believe this type of “discontinuous processing” will become more common.

• Adaptive batching: Even streaming applications occasionally experience large
backlogs. For example, a link between two datacenters might go down,
temporarily delaying data transfer, or there might simply be a spike in user
activity. In these cases, Structured Streaming will automatically execute longer
epochs in order to catch up with the input streams, often achieving similar
throughput to Spark’s batch jobs. This will not greatly increase latency, given
that data is already backlogged, but will let the system catch up faster. In cloud
environments, operators can also add extra nodes to the cluster temporarily.

Monitoring

Structured Streaming uses Spark’s existing metrics API and structured event log
to report information such as number of records processed, bytes shuffled across
the network, etc. These interfaces are familiar to operators and easy to connect to a
variety of monitoring tools using existing connectors.

Fault and Straggler Recovery

As discussed in §3.6.2, Structured Streaming’s microbatch mode can recover
from node failures, stragglers and load imbalances using Spark’s fine-grained task
execution model. The continuous processing mode recovers from node failures
by launching the failed partition on a new node, but does not yet protect against
stragglers or load imbalance.

Perhaps most importantly for operators, we aimed to make both Structured
Streaming’s semantics and its fault tolerance model easy to understand. With a
simple design, operators can form an accurate model of how a system runs and
what various actions will do without having know all its internal details.
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Figure 3.5: Information security platform use case.

3.7 Use Cases

First released in 2016, Structured Streaming has been part of Apache Spark and
are supported by various cloud vendors. Databricks started supporting Structured
Streaming on its managed cloud service [45] since 2016, and today, the cloud service
is running hundreds of production streaming applications at a given time (i.e.,
applications running 24/7). The largest of these applications ingest over 1 PB of
data per month and run on hundreds of servers. Structured Streaming is also used
internally by Databricks to monitor services, including the execution of Structured
Streaming itself. In this section, we describe three production workloads that
leverage various aspects of Structured Streaming, as well as the Databricks internal
use case.

3.7.1 Information Security Platform

A large organization has used Structured Streaming to develop a large-scale
security platform to enable over 100 analysts to scour through network traffic logs to
quickly identify and respond to security incidents, as well as to generate automated
alerts. This platform combines streaming with batch and interactive queries and is
thus a great example of the system’s support for end-to-end applications.

Figure 3.5 shows the architecture of the platform. Intrusion Detection Systems
(IDSes) monitor all the network traffic in the organization, and output logs to S3.
From here, a Structured Streaming jobs ETLs these logs into the Parquet columnar
format to reduce the size and improve query speed. Other Structured Streaming jobs
process the Parquet logs into additional structured tables (e.g., by joining with other
data). Analysts query these tables interactively, either using SQL or Dataframes,
to detect and diagnose new attack patterns. If they identify a compromise, they
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also look back through historical data to trace previous actions from that attacker.
Finally, in parallel, the Parquet logs are processed by another Structured Streaming
cluster that generates alerts based on pre-written rules.

The key challenges in realizing this platform are (1) building a robust and
scalable streaming pipeline, while (2) providing the analysts with an effective envi-
ronment to query both fresh and historical data. Using standard tools and services
available on AWS, a team of 20 people took over six months to build and deploy a
previous version of this platform in production. This previous version had several
limitations, including only being able to store a small amount of data for histori-
cal queries due to using a traditional data warehouse for the interactive queries.
In contrast, a team of five engineers was able to reimplement the platform using
Structured Streaming in two weeks. The new platform was simultaneously more
scalable and able to support more complex analysis using Spark’s ML APIs. Next,
we provide a few examples to illustrate the advantages of Structured Streaming
that made this possible.

First, Structured Streaming’s ability to adaptively vary the batch size enabled
the developers to build a streaming pipeline that deals not only with spikes in the
workload, but also with failures and code upgrades. Consider a streaming job that
goes offline either due to failure or upgrades. When the cluster is brought back
online, it will start automatically to process the data all the way back from the
moment it went offline. Initially, the cluster will use large batches to maximize the
throughput. Once it catches up, the cluster switches to small batches for low latency.
This allows operators to regularly upgrade clusters without the fear of excessive
downtime.

Second, the ability to join a stream with other streams, as well as with histor-
ical tables, has considerably simplified the analysis. Consider the simple task of
figuring out which device a TCP connection originates at. It turns out that this
task is challenging in the presence of mobile devices, as these devices are given
dynamic IP addresses every time they join the network. Hence, from TCP logs
alone, is not possible to track down the end-points of a connection. With Structured
Streaming, an analyst can easily solve this problem. She can simply join the TCP
logs with DHCP logs to map the IP address to the MAC address, and then use the
organization’s internal database of network devices to map the MAC address to a
particular machine and user. In addition, users were able to do this join in real time
using stateful operators as both the TCP and DHCP logs were being streamed in.

Finally, using the same system for streaming, interactive queries and ETL has
provided developers with the ability to quickly iterate and deploy new alerts. In
particular, it enables analysts to build and test queries for detecting new attacks on
offline data, and then deploy these queries directly on the alerting cluster. In one
example, an analyst developed a query to identify exfiltration attacks via DNS. In
this attack, malware leaks confidential information from the compromised host by
piggybacking this information into DNS requests sent to an external DNS server
owned by the attacker. One simplified query to detect such an attack essentially
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computes the aggregate size of the DNS requests sent by every host over a time
interval. If the aggregate is greater than a given threshold, the query flags the
corresponding host as potentially being compromised. The analyst used historical
data to set this threshold, so as to achieve the desired balance between false positive
and false negative rates. Once satisfied with the result, the analyst simply pushed
the query to the alerting cluster. The ability to use the same system and the same
API for data analysis and for implementing the alerts led not only to significant
engineering cost savings, but also to better security, as it is significantly easier to
deploy new rules.

3.7.2 Live Video Stream Monitoring

A large media company is using Structured Streaming to compute quality
metrics for their live video traffic and interactively identify delivery problems. Live
video delivery is especially challenging because network problems can severely
disrupt utility. For pre-recorded video, clients can use large buffers to mask issues,
and a degradation at most results in extra buffering time; but for live video, a
problem may mean missing a critical moment in a sports match or similar event.
This organization collects video quality metrics from clients in real time, performs
ETL operations and aggregation using Structured Streaming, then stores the results
in a data warehouse. This allows operations engineers to interactively query fresh
data to detect and diagnose quality issues (e.g., determine whether an issue is tied
to a specific ISP, video server or other cause).

3.7.3 Online Game Performance Analysis

A large gaming company uses Structured Streaming to monitor the latency
experienced by players in a popular online game with tens of millions of monthly
active users. As in the video use case, high network performance is essential for the
user experience when gaming, and repeated problems can quickly lead to player
churn. This organization collects latency logs from its game clients to cloud storage
and then performs a variety of streaming analyses. For example, one job joins
the measurements with a table of Internet Autonomous Systems (ASes) and then
aggregates the performance by AS over time to identify poorly performing ASes.
When such an AS is identified, the streaming job triggers an alert, and operators
can contact the AS in question to remediate the issue.

3.7.4 Databricks Internal Data Pipelines

Databricks has been using Spark since the start of the company to monitor its
cloud service, understand the workload, trigger alerts and let engineers interactively
debug issues. The monitoring pipeline produces dozens of interactive dashboards
as well as structured Parquet tables for ad-hoc queries. These dashboards also play
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a key role for business users to understand which customers have increasing or de-
creasing usage, prioritize feature development, and proactively identify customers
experiencing problems.

Databricks built at least three versions of a monitoring pipeline using a combi-
nation of batch and streaming APIs starting three years ago, and in all the cases,
the major challenges were operational. Despite substantial engineering investment,
pipelines could be brittle, experiencing frequent failures when aspects of input
data changed (e.g., new schemas or reading from more locations than before), and
upgrading them was a daunting exercise. Worse yet, failures and upgrades of-
ten resulted in missing data, so manual re-run of jobs to reconstruct the missing
data was frequent. Testing pipelines was also challenging due to their reliance
on multiple distinct Spark jobs and storage systems. Databricks’ experience with
Structured Streaming shows that it successfully addresses many of these challenges.
Not only were they able to reimplement their pipelines in weeks, but the manage-
ment overhead decreased drastically. Restartability coupled with adaptive batching,
transactional sources/sinks and well-defined consistency semantics have enabled
simpler fault recovery, upgrades, and rollbacks to repair old results. Moreover, we
can test the same code in batch mode on data samples or use many of the same
functions in interactive queries.

Databricks’ pipelines with Structured Streaming also combine its batch and
streaming capabilities. For example, the pipeline to monitor streaming jobs starts
with an ETL job that reads JSON events from Kafka and writes them to a columnar
Parquet table in S3. Dozens of other batch and streaming jobs then query this
table to produce dashboards and other reports. Because Parquet is a compact and
column-oriented format, this architecture consumes drastically fewer resources than
having every job read directly from Kafka, and simultaneously places less load on
the Kafka brokers. Overall, streaming jobs’ latencies range from seconds to minutes,
and users can also query the Parquet table interactively in seconds.

3.8 Performance Evaluation

In this section, we measure the performance of Structured Streaming using con-
trolled benchmarks. We study performance vs. other systems on the Yahoo! Stream-
ing Benchmark [40], scalability, and the throughput-latency tradeoff with continu-
ous processing.

3.8.1 Performance vs. Other Streaming Systems

To evaluate performance compared to other streaming engines, we used the
Yahoo! Streaming Benchmark [40], a widely used workload that has also been
evaluated in other open source systems. This benchmark requires systems to read
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Figure 3.8: Throughput results on the Yahoo! benchmark.

ad click events, join them against a static table of ad campaigns by campaign ID,
and output counts by campaign on 10-second event-time windows.

We compared Kafka Streams 0.10.2, Apache 1.2.1 and Spark 2.2.0 on a cluster
with ten r3.xlarge Amazon EC2 workers (each with 4 virtual cores and 30 GB
RAM) and one master. For Flink, we used the optimized version of the benchmark
published by dataArtisans for a similar cluster [61]. Like in that benchmark, the
systems read data from a Kafka cluster running on the workers with 40 partitions
(one per core), and write results to Kafka. The original Yahoo! benchmark used
Redis to hold the static table for joining ad campaigns, but we found that Redis
could be a bottleneck, so we replaced it with a table in each system (a KTable in
Kafka, a DataFrame in Spark, and an in-memory hash map in Flink).

Figure 3.6 shows each system’s maximum stable throughput, i.e., the throughput
it can process before a backlog begins to form. We see that streaming system perfor-
mance can vary significantly. Kafka Streams implements a simple message-passing
model through the Kafka message bus, but only attains 700,000 records/second on
our 40-core cluster. Apache Flink reaches 16 million records/s, which is similar to
the 15 million reported by dataArtisans on a similar cluster [61], though we were
only able to achieve this number when we changed the input data to have just one
ad per campaign (the default of 10 ads per campaign resulted in lower through-
put). Finally, Structured Streaming reaches 65 million records/s, more than 4× the
throughput of Flink. This particular Structured Streaming query is implemented
using just DataFrame operations with no UDF code. The performance thus comes
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Figure 3.9: Latency of continuous processing vs. input rate. Dashed line shows max
throughput in microbatch mode.

solely from Spark SQL’s built in execution optimizations, including storing data
in a compact binary format and runtime code generation. As pointed out by the
authors of Trill [36] and others, execution optimizations can make a large difference
in streaming workloads, and many systems based on per-record operations do not
maximize performance.

3.8.2 Scalability

Figure 3.7 shows how Structured Streaming’s performance scales for the Ya-
hoo! benchmark as we vary the size of our cluster. We used 1, 5, 10 and 20 c4.2xlarge
Amazon EC2 workers (with 8 virtual cores and 15 GB RAM each) and the same
experimental setup as in §3.8.1, including one Kafka partition per core. We see that
throughput scales close to linearly, from 11.5 million records/s on 1 node to 225
million records/s on 20 nodes (i.e., 160 cores).

3.8.3 Continuous Processing

We benchmarked Spark’s in-development continuous processing mode on a 4-
core server to show the latency-throughput tradeoffs it can achieve. (Since partitions
run independently in this mode, we expect the latency to stay the same as more
nodes are added.) Figure 3.9 shows the results for a map operation reading from
Kafka, with the dashed line showing the maximum throughput achievable by
microbatch mode. We see that continuous mode is able to achieve much lower
latency without a large drop in throughput (e.g., less than 10 ms latency at half the
maximum throughput of microbatching). Its maximum stable throughput is also
slightly higher because microbatch mode incurs latency due to task scheduling.
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3.9 Related Work

Structured Streaming builds on many existing systems for stream processing and
big data analytics, including Spark SQL’s DataFrame API, Spark Streaming [133],
Dataflow [12], incremental query systems [29, 107, 135] and distributed stream
processing [57]. At a high level, the main contributions of this work are:

• An account of real-world user challenges with streaming systems, including
operational challenges that are not always discussed in research (§3.2).

• A simple, declarative programming model that incrementalizes a widely
used batch API (Spark DataFrames/SQL) to provide similar capabilities to
Dataflow [12] and other streaming systems, and experience with this model
in real-world applications.

• An execution engine providing high throughput, fault tolerance, and unique
operational features such as rollback and hybrid batch and streaming exe-
cution (§3.6.4). With the rest of Spark, this lets users easily build end-to-end
business applications.

From an API standpoint, the closest work is incremental query systems [29, 107,
135], including recent distributed systems such as Stateful Bulk Processing [80] and
Naiad [87]. Structured Streaming’s API is an extension of Spark SQL, including
its declarative DataFrame interface for programmatic construction of relational
queries. Apache Flink also recently added a table API (currently in beta) for defining
relational queries that can map to either streaming or batch execution [54], but this
API lacks some of the features of Structured Streaming, such as custom stateful
operators (§3.4.3).

Other recent streaming systems have language-integrated APIs that operate
at a lower, more “imperative” level. In particular, Spark Streaming [133], Google
Dataflow [12] and Flink’s DataStream API [53] provide various functional operators
but require users to choose the right DAG of operators to implement a particular
incrementalization strategy (e.g., when to pass on deltas versus complete results);
essentially, these are equivalent to writing a physical execution plan. Structured
Streaming’s API is simpler for users who are not experts on incrementalization.
Structured Streaming adopts the definitions of event time, processing time, wa-
termarks and triggers from Dataflow but incorporates them in an incremental
model.

For execution, Structured Streaming uses concepts similar to discretized streams
for microbatch mode [133] and traditional streaming engines for continuous pro-
cessing mode [57, 37, 6]. It also builds on an analytical engine for performance
like Trill [36]. The most unique contribution here is the integration of batch and
streaming queries to enable sophisticated end-to-end applications. As described in
§3.7, Structured Streaming users can easily write applications that combine batch,
interactive and stream processing using the same code (e.g., security log analysis).
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In addition, they leverage powerful operational features such as run-once triggers
(running a streaming application “discontinuously” as batch jobs to retain its trans-
actional features but lower costs), code updates, and batch processing to handle
backlogs or code rollbacks (§3.6.4).

3.10 Conclusion

Stream processing is a powerful tool, but streaming systems are still difficult
to use, operate and integrate into larger applications. We designed Structured
Streaming to simplify all three of these tasks while integrating with the rest of
Apache Spark. Structured Streaming provides a simple declarative API that just
incrementalizes a Spark SQL computation, and a fast execution engine built on
Spark SQL that outperforms other open source systems. Experience across hun-
dreds of production use cases shows that users can leverage the system to build
sophisticated business applications that combine batch, streaming and interactive
queries in complex ways.
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Chapter 4

GraphX: Graph Computation on
Spark

The previous two chapters develop relational query processing in a new context,
with programming APIs beyond SQL and continuous execution modes against both
batch and streaming data. This chapter develops GraphX and explores the design
space in building a graph computation framework on top of a distributed dataflow
framework. We first provide background in the property graph data model and the
graph-parallel abstraction. We then recast graph-parallel operations as dataflow
operations to enable graph processing on top of Spark. We conduct experiments to
demonstrate that GraphX matches the performance of specialized graph processing
systems, while enabling a wider range of computation.

4.1 Introduction

The growing scale and importance of graph data has driven the development
of numerous specialized graph processing systems including Pregel [85], Power-
Graph [58], and many others [34, 39, 119]. By exposing specialized abstractions
backed by graph-specific optimizations, these systems can naturally express and ef-
ficiently execute iterative graph algorithms like PageRank [100] and community de-
tection [79] on graphs with billions of vertices and edges. As a consequence, graph
processing systems typically outperform general-purpose distributed dataflow
frameworks like Hadoop MapReduce by orders of magnitude [58, 83].

While the restricted focus of these systems enables a wide range of system opti-
mizations, it also comes at a cost. Graphs are only part of the larger analytics process
which often combines graphs with unstructured and tabular data. Consequently,
analytics pipelines (e.g., Figure 4.11) are forced to compose multiple systems which
increases complexity and leads to unnecessary data movement and duplication.
Furthermore, in pursuit of performance, graph processing systems often abandon
fault tolerance in favor of snapshot recovery. Finally, as specialized systems, graph
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Figure 4.1: GraphX is a thin layer on top of the Spark general-purpose dataflow
framework (lines of code).

processing frameworks do not generally enjoy the broad support of distributed
dataflow frameworks.

In contrast, general-purpose distributed dataflow frameworks (e.g., Map-
Reduce [47], Spark [132], Dryad [68]) expose rich dataflow operators (e.g., map,
reduce, group-by, join), are well suited for analyzing unstructured and tabular data,
and are widely adopted. However, directly implementing iterative graph algorithms
using dataflow operators can be challenging, often requiring multiple stages of
complex joins. Furthermore, the general-purpose join and aggregation strategies de-
fined in distributed dataflow frameworks do not leverage the common patterns and
structure in iterative graph algorithms and therefore miss important optimization
opportunities.

Historically, graph processing systems evolved separately from distributed
dataflow frameworks for several reasons. First, the early emphasis on single stage
computation and on-disk processing in distributed dataflow frameworks (e.g., Map-
Reduce) limited their applicability to iterative graph algorithms which repeatedly
and randomly access subsets of the graph. Second, early distributed dataflow frame-
works did not expose fine-grained control over the data partitioning, hindering the
application of graph partitioning techniques. However, new in-memory distributed
dataflow frameworks (e.g., Spark and Naiad) expose control over data partitioning
and in-memory representation, addressing some of these limitations.

Given these developments, we believe there is an opportunity to unify advances
in graph processing systems with advances in dataflow systems enabling a single
system to address the entire analytics pipeline. In this chapter we explore the design
of graph processing systems on top of general purpose distributed dataflow systems.
We argue that by identifying the essential dataflow patterns in graph computation
and recasting optimizations in graph processing systems as dataflow optimizations
we can recover the advantages of specialized graph processing systems within a
general-purpose distributed dataflow framework. To support this argument we
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introduce GraphX, an efficient graph processing framework embedded within the
Spark [132] distributed dataflow system.

GraphX presents a familiar, expressive graph API (Section 4.3). Using the
GraphX API we implement a variant of the popular Pregel abstraction as well as a
range of common graph operations. Unlike existing graph processing systems, the
GraphX API enables the composition of graphs with unstructured and tabular data
and permits the same physical data to be viewed both as a graph and as collections
without data movement or duplication. For example, using GraphX it is easy to join
a social graph with user comments, apply graph algorithms, and expose the results
as either collections or graphs to other procedures (e.g., visualization or rollup).
Consequently, GraphX enables users to adopt the computational pattern (graph or
collection) that is best suited for the current task without sacrificing performance or
flexibility.

We built GraphX as a library on top of Spark (Figure 4.1) by encoding graphs
as collections and then expressing the GraphX API on top of standard dataflow
operators. GraphX requires no modifications to Spark, revealing a general method
to embed graph computation within distributed dataflow frameworks and distill
graph computation to a specific join–map–group-by dataflow pattern. By reducing
graph computation to a specific pattern we identify the critical path for system
optimization.

However, naively encoding graphs as collections and executing iterative graph
computation using general-purpose dataflow operators can be slow and inefficient.
To achieve performance parity with specialized graph processing systems, GraphX
introduces a range of optimizations (Section 4.4) both in how graphs are encoded
as collections as well as the execution of the common dataflow operators. Flexible
vertex-cut partitioning is used to encode graphs as horizontally partitioned col-
lections and match the state of the art in distributed graph partitioning. GraphX
recasts system optimizations developed in the context of graph processing systems
as join optimizations (e.g., CSR indexing, join elimination, and join-site specification)
and materialized view maintenance (e.g., vertex mirroring and delta updates) and
applies these techniques to the Spark dataflow operators. By leveraging logical
partitioning and lineage, GraphX achieves low-cost fault tolerance. Finally, by
exploiting immutability GraphX reuses indices across graph and collection views
and over multiple iterations, reducing memory overhead and improving system
performance.

We evaluate GraphX on real-world graphs and compare against direct imple-
mentations of graph algorithms using the Spark dataflow operators as well as
implementations using specialized graph processing systems. We demonstrate that
GraphX can achieve performance parity with specialized graph processing systems
while preserving the advantages of a general-purpose dataflow framework. In
summary, the contributions of this chapter are:

1. an integrated graph and collections API which is sufficient to express existing
graph abstractions and enable a much wider range of computation.
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2. an embedding of vertex-cut partitioned graphs in horizontally partitioned
collections and the GraphX API in a small set of general-purpose dataflow
operators.

3. distributed join and materialized view optimizations that enable general-
purpose distributed dataflow frameworks to execute graph computation at
performance parity with specialized graph systems.

4. a large-scale evaluation on real graphs and common benchmarking algorithms
comparing GraphX against widely used graph processing systems.

4.2 Background

In this section we review the design trade-offs and limitations of graph process-
ing systems and distributed dataflow frameworks. At a high level, graph processing
systems define computation at the granularity of vertices and their neighborhoods
and exploit the sparse dependency structure pre-defined by the graph. In contrast,
general-purpose distributed dataflow frameworks define computation as dataflow
operators at either the granularity of individual items (e.g., filter, map) or across
entire collections (i.e., operations like non-broadcast join that require a shuffle).

4.2.1 The Property Graph Data Model

Graph processing systems represent graph structured data as a property
graph [109], which associates user-defined properties with each vertex and edge.
The properties can include meta-data (e.g., user profiles and time stamps) and
program state (e.g., the PageRank of vertices or inferred affinities). Property graphs
derived from natural phenomena such as social networks and web graphs often
have highly skewed, power-law degree distributions and orders of magnitude more
edges than vertices [79].

In contrast to dataflow systems whose operators (e.g., join) can span multiple col-
lections, operations in graph processing systems (e.g., vertex programs) are typically
defined with respect to a single property graph with a pre-declared, sparse structure.
While this restricted focus facilitates a range of optimizations (Section 4.2.3), it also
complicates the expression of analytics tasks that may span multiple graphs and
sub-graphs.

4.2.2 The Graph-Parallel Abstraction

Algorithms ranging from PageRank to latent factor analysis iteratively transform
vertex properties based on the properties of adjacent vertices and edges. This
common pattern of iterative local transformations forms the basis of the graph-parallel
abstraction. In the graph-parallel abstraction [58], a user-defined vertex program
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Listing 4.1: PageRank in Pregel: computes the sum of the inbound messages,
updates the PageRank value for the vertex, and then sends the new weighted
PageRank value to neighboring vertices. Finally, if the PageRank did not change
the vertex program votes to halt.

def PageRank(v: Id, msgs: List[Double]) {

// Compute the message sum

var msgSum = 0

for (m <- msgs) { msgSum += m }

// Update the PageRank

PR(v) = 0.15 + 0.85 * msgSum

// Broadcast messages with new PR

for (j <- OutNbrs(v)) {

msg = PR(v) / NumLinks(v)

send_msg(to=j, msg)

}

// Check for termination

if (converged(PR(v))) voteToHalt(v)

}

is instantiated concurrently for each vertex and interacts with adjacent vertex
programs through messages (e.g., Pregel [85]) or shared state (e.g., PowerGraph [58]).
Each vertex program can read and modify its vertex property and in some cases [58,
83] adjacent vertex properties. When all vertex programs vote to halt the program
terminates.

As a concrete example, in Listing 4.1 we express the PageRank algorithm as
a Pregel vertex program. The vertex program for the vertex v begins by sum-
ming the messages encoding the weighted PageRank of neighboring vertices. The
PageRank is updated using the resulting sum and is then broadcast to its neighbors
(weighted by the number of links). Finally, the vertex program assesses whether it
has converged (locally) and votes to halt.

The extent to which vertex programs run concurrently differs across systems.
Most systems (e.g., [34, 58, 85, 110]) adopt the bulk synchronous execution model,
in which all vertex programs run concurrently in a sequence of super-steps. Some
systems (e.g., [58, 83, 119]) also support an asynchronous execution model that
mitigates the effect of stragglers by running vertex programs as resources become
available. However, the gains due to an asynchronous programming model are
often offset by the additional complexity and so we focus on the bulk-synchronous
model and rely on system level techniques (e.g., pipelining and speculation) to
address stragglers.

While the graph-parallel abstraction is well suited for iterative graph algorithms
that respect the static neighborhood structure of the graph (e.g., PageRank), it is
not well suited to express computation where disconnected vertices interact or
where computation changes the graph structure. For example, tasks such as graph
construction from raw text or unstructured data, graph coarsening, and analysis
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Listing 4.2: Gather-Apply-Scatter (GAS) PageRank: The gather phase combines
inbound messages. The apply phase consumes the final message sum and updates
the vertex property. The scatter phase defines the message computation for each
edge.

def Gather(a: Double, b: Double) = a + b

def Apply(v, msgSum) {

PR(v) = 0.15 + 0.85 * msgSum

if (converged(PR(v))) voteToHalt(v)

}

def Scatter(v, j) = PR(v) / NumLinks(v)

that spans multiple graphs are difficult to express in the vertex centric programming
model.

4.2.3 Graph System Optimizations

The restrictions imposed by the graph-parallel abstraction along with the sparse
graph structure enable a range of important system optimizations.

The GAS Decomposition: Gonzalez et al. [58] observed that most vertex pro-
grams interact with neighboring vertices by collecting messages in the form of a
generalized commutative associative sum and then broadcasting new messages in
an inherently parallel loop. They proposed the GAS decomposition which splits
vertex programs into three data-parallel stages: Gather, Apply, and Scatter. In List-
ing 4.2 we decompose the PageRank vertex program into the Gather, Apply, and
Scatter stages.

The GAS decomposition leads to a pull-based model of message computation: the
system asks the vertex program for value of the message between adjacent vertices
rather than the user sending messages directly from the vertex program. As a
consequence, the GAS decomposition enables vertex-cut partitioning, improved
work balance, serial edge-iteration [110], and reduced data movement. However,
the GAS decomposition also prohibits direct communication between vertices that
are not adjacent in the graph and therefore hinders the expression of more general
communication patterns.

Graph Partitioning: Graph processing systems apply a range of graph-
partitioning algorithms [74] to minimize communication and balance computation.
Gonzalez et al. [58] demonstrated that vertex-cut [51] partitioning performs well
on many large natural graphs. Vertex-cut partitioning evenly assigns edges to
machines in a way that minimizes the number of times each vertex is cut.

Mirror Vertices: Often high-degree vertices will have multiple neighbors on the
same remote machine. Rather than sending multiple, typically identical, messages
across the network, graph processing systems [58, 83, 90, 106] adopt mirroring
techniques in which a single message is sent to the mirror and then forwarded to
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all the neighbors. Graph processing systems exploit the static graph structure to
reuse the mirror data structures.

Active Vertices: As graph algorithms proceed, vertex programs within a graph
converge at different rates, leading to rapidly shrinking working sets (the collection
of active vertex programs). Recent systems [50, 58, 83, 85] track active vertices
and eliminate data movement and unnecessary computation for vertices that have
converged. In addition, these systems typically maintain efficient densely packed
data-structures (e.g., compressed sparse row (CSR)) that enable constant-time access
to the local edges adjacent to active vertices.

4.3 The GraphX Programming Abstraction

We now revisit graph computation from the perspective of a general-purpose
dataflow framework. We recast the property graph data model as collections and
the graph-parallel abstraction as a specific pattern of dataflow operators. In the
process we reveal the essential structure of graph-parallel computation and identify
the key operators required to execute graph algorithms efficiently.

4.3.1 Property Graphs as Collections

The property graph, described in Section 4.2.1, can be logically represented as a
pair of vertex and edge property collections. The vertex collection contains the vertex
properties uniquely keyed by the vertex identifier. In the GraphX system, vertex
identifiers are 64-bit integers which may be derived externally (e.g., user ids) or by
applying a hash function to the vertex property (e.g., page URL). The edge collection
contains the edge properties keyed by the source and destination vertex identifiers.

By reducing the property graph to a pair of collections we make it possible
to compose graphs with other collections in a distributed dataflow framework.
Operations like adding additional vertex properties are naturally expressed as joins
against the vertex property collection. The process of analyzing the results of graph
computation (i.e., the final vertex and edge properties) and comparing properties
across graphs becomes as simple as analyzing and joining the corresponding collec-
tions. Both of these tasks are routine in the broader scope of graph analytics but are
not well served by the graph parallel abstraction.

New property graphs can be constructed by composing different vertex and
edge property collections. For example, we can construct logically distinct graphs
with separate vertex properties (e.g., one storing PageRanks and another storing
connected component membership) while sharing the same edge collection. This
may appear to be a small accomplishment, but the tight integration of vertices and
edges in specialized graph processing systems often hinders even this basic form
of reuse. In addition, graph-specific index data structures can be shared across
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CREATE VIEW triplets AS

SELECT s.Id, d.Id, s.P, e.P, d.P

FROM edges AS e

JOIN vertices AS s JOIN vertices AS d

ON e.srcId = s.Id AND e.dstId = d.Id

Listing 4.3: Constructing Triplets in SQL: The column P represents the properties
in the vertex and edge property collections.

graphs with common vertex and edge collections, reducing storage overhead and
improving performance.

4.3.2 Graph Computation as Dataflow Ops.

The normalized representation of a property graph as a pair of vertex and edge
property collections allows us to embed graphs in a distributed dataflow framework.
In this section we describe how dataflow operators can be composed to express
graph computation.

Graph-parallel computation, introduced in Section 4.2.2, is the process of com-
puting aggregate properties of the neighborhood of each vertex (e.g., the sum of the
PageRanks of neighboring vertices weighted by the edge values). We can express
graph-parallel computation in a distributed dataflow framework as a sequence of
join stages and group-by stages punctuated by map operations.

In the join stage, vertex and edge properties are joined to form the triplets view1

consisting of each edge and its corresponding source and destination vertex proper-
ties. The triplets view is best illustrated by the SQL statement in Listing 4.3, which
constructs the triplets view as a three way join keyed by the source and destination
vertex ids.

In the group-by stage, the triplets are grouped by source or destination vertex to
construct the neighborhood of each vertex and compute aggregates. For example, to
compute the PageRank of a vertex we would execute:

SELECT t.dstId, 0.15+0.85*sum(t.srcP*t.eP)

FROM triplets AS t GROUP BY t.dstId

By iteratively applying the above query to update the vertex properties until they
converge, we can calculate the PageRank of each vertex.

These two stages capture the GAS decomposition described in Section 4.2.3. The
group-by stage gathers messages destined to the same vertex, an intervening map
operation applies the message sum to update the vertex property, and the join stage
scatters the new vertex property to all adjacent vertices.

Similarly, we can implement the GAS decomposition of the Pregel abstraction by

1 The triplet terminology derives from the classic Resource Description Framework (RDF), dis-
cussed in Section 4.6.
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Listing 4.4: Graph Operators: transform vertex and edge collections.

class Graph[V, E] {

// Constructor

def Graph(v: Collection[(Id, V)],

e: Collection[(Id, Id, E)])

// Collection views

def vertices: Collection[(Id, V)]

def edges: Collection[(Id, Id, E)]

def triplets: Collection[Triplet]

// Graph-parallel computation

def mrTriplets(f: (Triplet) => M,

sum: (M, M) => M): Collection[(Id, M)]

// Convenience functions

def mapV(f: (Id, V) => V): Graph[V, E]

def mapE(f: (Id, Id, E) => E): Graph[V, E]

def leftJoinV(v: Collection[(Id, V)],

f: (Id, V, V) => V): Graph[V, E]

def leftJoinE(e: Collection[(Id, Id, E)],

f: (Id, Id, E, E) => E): Graph[V, E]

def subgraph(vPred: (Id, V) => Boolean,

ePred: (Triplet) => Boolean)

: Graph[V, E]

def reverse: Graph[V, E]

}

iteratively composing the join and group-by stages with data-parallel map stages.
Each iteration begins by executing the join stage to bind active vertices with their
outbound edges. Using the triplets view, messages are computed along each triplet
in a map stage and then aggregated at their destination vertex in a group-by stage.
Finally, the messages are received by the vertex programs in a map stage over the
vertices.

The dataflow embedding of the Pregel abstraction demonstrates that graph-
parallel computation can be expressed in terms of a simple sequence of join and
group-by dataflow operators. Additionally, it stresses the need to efficiently main-
tain the triplets view in the join stage and compute the neighborhood aggregates
in the group-by stage. Consequently, these stages are the focus of performance
optimization in graph processing systems. We describe how to implement them
efficiently in Section 4.4.

4.3.3 GraphX Operators

The GraphX programming abstraction extends the Spark dataflow operators by
introducing a small set of specialized graph operators, summarized in Listing 4.4.
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val graph: Graph[User, Double]

def mapUDF(t: Triplet[User, Double]) =

if (t.src.age > t.dst.age) 1 else 0

def reduceUDF(a: Int, b: Int): Int = a + b

val seniors: Collection[(Id, Int)] =

graph.mrTriplets(mapUDF, reduceUDF)

Figure 4.2: Example use of mrTriplets: Compute the number of older followers of
each vertex.

The Graph constructor logically binds together a pair of vertex and edge property
collections into a property graph. It also verifies the integrity constraints: that every
vertex occurs only once and that edges do not link missing vertices. Conversely,
the vertices and edges operators expose the graph’s vertex and edge property
collections. The triplets operator returns the triplets view (Listing 4.3) of the
graph as described in Section 4.3.2. If a triplets view already exists, the previous
triplets are incrementally maintained to avoid a full join (see Section 4.4.2).

The mrTriplets (Map Reduce Triplets) operator encodes the essential two-
stage process of graph-parallel computation defined in Section 4.3.2. Logically,
the mrTriplets operator is the composition of the map and group-by dataflow
operators on the triplets view. The user-defined map function is applied to each
triplet, yielding a value (i.e., a message of type M) which is then aggregated at the
destination vertex using the user-defined binary aggregation function as illustrated
in the following:

SELECT t.dstId, reduceF(mapF(t)) AS msgSum

FROM triplets AS t GROUP BY t.dstId

The mrTriplets operator produces a collection containing the sum of the inbound
messages keyed by the destination vertex identifier. For example, in Figure 4.2
we use the mrTriplets operator to compute a collection containing the number of
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Listing 4.5: GraphX Enhanced Pregel: An implementation of the Pregel abstraction
using the GraphX API.

def Pregel(g: Graph[V, E],

vprog: (Id, V, M) => V,

sendMsg: (Triplet) => M,

gather: (M, M) => M): Collection[V] = {

// Set all vertices as active

g = g.mapV((id, v) => (v, halt=false))

// Loop until convergence

while (g.vertices.exists(v => !v.halt)) {

// Compute the messages

val msgs: Collection[(Id, M)] =

// Restrict to edges with active source

g.subgraph(ePred=(s,d,sP,eP,dP)=>!sP.halt)

// Compute messages

.mrTriplets(sendMsg, gather)

// Receive messages and run vertex program

g = g.leftJoinV(msgs).mapV(vprog)

}

return g.vertices

}

older followers for each user in a social network. Because the resulting collection
contains a subset of the vertices in the graph it can reuse the same indices as the
original vertex collection.

Finally, Listing 4.4 contains several functions that simply perform a dataflow
operation on the vertex or edge collections. We define these functions only for caller
convenience; they are not essential to the abstraction and can easily be defined
using standard dataflow operators. For example, mapV is defined as follows:

g.mapV(f) ≡ Graph(g.vertices.map(f), g.edges)

In Listing 4.5 we use the GraphX API to implement a GAS decomposition of the
Pregel abstraction. We begin by initializing the vertex properties with an additional
field to track active vertices (those that have not voted to halt). Then, while there
are active vertices, messages are computed using the mrTriplets operator and the
vertex program is applied to the resulting message sums.

By expressing message computation as an edge-parallel map operation followed
by a commutative associative aggregation, we leverage the GAS decomposition
to mitigate the cost of high-degree vertices. Furthermore, by exposing the entire
triplet to the message computation we can simplify algorithms like connected
components. However, in cases where the entire triplet is not needed (e.g., PageRank
which requires only the source property) we rely on UDF bytecode inspection (see
Section 4.4.3) to automatically drop unused fields from join.
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Listing 4.6: Connected Components: For each vertex we compute the lowest reach-
able vertex id using Pregel.

def ConnectedComp(g: Graph[V, E]) = {

g = g.mapV(v => v.id) // Initialize vertices

def vProg(v: Id, m: Id): Id = {

if (v == m) voteToHalt(v)

return min(v, m)

}

def sendMsg(t: Triplet): Id =

if (t.src.cc < t.dst.cc) t.src.cc

else None // No message required

def gatherMsg(a: Id, b: Id): Id = min(a, b)

return Pregel(g, vProg, sendMsg, gatherMsg)

}

In Listing 4.6 we use the GraphX variant of Pregel to implement the connected
components algorithm. The connected components algorithm computes the lowest
reachable vertex id for each vertex. We initialize the vertex property of each vertex
to equal its id using mapV and then define the three functions required to use the
GraphX Pregel API. The sendMsg function leverages the triplet view of the edge
to only send a message to neighboring vertices when their component id should
change. The gatherMsg function computes the minimum of the inbound message
values and the vertex program (vProg) determines the new component id.

Combining Graph and Collection Operators: Often groups of connected ver-
tices are better modeled as a single vertex. In these cases, it can be helpful coarsen
the graph by aggregating connected vertices that share a common characteristic
(e.g., web domain) to derive a new graph (e.g., the domain graph). We use the
GraphX abstraction to implement graph coarsening in Listing 4.7.

The coarsening operation takes an edge predicate and a vertex aggregation
function and collapses all edges that satisfy the predicate, merging their respective
vertices. The edge predicate is used to first construct the subgraph of edges that are
to be collapsed (i.e., modifying the graph structure). Then the graph-parallel con-
nected components algorithm is run on the subgraph. Each connected component
corresponds to a super-vertex in the new coarsened graph with the component id
being the lowest vertex id in the component. The super-vertices are constructed
by aggregating all the vertices with the same component id using a data-parallel
aggregation operator. Finally, we update the edges to link together super-vertices
and generate the new graph for subsequent graph-parallel computation.

The coarsen operator demonstrates the power of a unified abstraction by com-
bining both data-parallel and graph-parallel operators in a single graph-analytics
task.
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Listing 4.7: Coarsen: The coarsening operator merges vertices connected by edges
that satisfy the edge predicate.

def coarsen(g: Graph[V, E],

pred: (Id,Id,V,E,V) => Boolean,

reduce: (V,V) => V) = {

// Restrict graph to contractable edges

val subG = g.subgraph(v => True, pred)

// Compute connected component id for all V

val cc: Collection[(Id,ccId)] =

ConnectedComp(subG).vertices

// Merge all vertices in same component

val superV: Collection[(ccId,V)] =

g.vertices.leftJoin(cc)

.groupBy(CC_ID, reduce)

// Link remaining edges between components

val invG = g.subgraph(ePred = t => !pred(t))

val remainingE: Collection[(ccId,ccId,E)] =

invG.leftJoin(cc).triplets.map {

e => (e.src.cc, e.dst.cc, e.attr)

}

// Return the final graph

Graph(superV, remainingE)

}

4.4 The GraphX System

GraphX achieves performance parity with specialized graph processing systems
by recasting the graph-specific optimizations of Section 4.2.3 as optimizations on top
of a small set of standard dataflow operators in Spark. In this section we describe
these optimizations in the context of classic techniques in traditional database
systems including indexing, incremental view maintenance, and join optimizations.
Along the way, we quantify the effectiveness of each optimization; readers are
referred to Section 4.5 for details on datasets and experimental setup.

4.4.1 Distributed Graph Representation

GraphX represents graphs internally as a pair of vertex and edge collections
built on the Spark RDD abstraction. These collections introduce indexing and
graph-specific partitioning as a layer on top of RDDs. Figure 4.3 illustrates the
physical representation of the horizontally partitioned vertex and edge collections
and their indices.

The vertex collection is hash-partitioned by the vertex ids. To support frequent
joins across vertex collections, vertices are stored in a local hash index within each
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Figure 4.3: Distributed Graph Representation: The graph (left) is represented as
a vertex and an edge collection (right). The edges are divided into three edge
partitions by applying a partition function (e.g., 2D Partitioning). The vertices are
partitioned by vertex id. Co-partitioned with the vertices, GraphX maintains a
routing table encoding the edge partitions for each vertex. If vertex 6 and adjacent
edges (shown with dotted lines) are restricted from the graph (e.g., by subgraph),
they are removed from the corresponding collection by updating the bitmasks
thereby enabling index reuse.

partition (Section 4.4.2). Additionally, a bitmask stores the visibility of each vertex,
enabling soft deletions to promote index reuse (Section 4.4.3).

The edge collection is horizontally partitioned by a user-defined partition func-
tion. GraphX enables vertex-cut partitioning, which minimizes communication in
natural graphs such as social networks and web graphs [58]. By default edges are
assigned to partitions based on the partitioning of the input collection (e.g., the
original placement on HDFS). However, GraphX provides a range of built-in parti-
tioning functions, including a 2D hash partitioner with strong upper bounds [35]
on the communication complexity of operators like mrTriplets. This flexibility
in edge placement is enabled by the routing table, described in Section 4.4.2. For
efficient lookup of edges by their source and target vertices, the edges within a
partition are clustered by source vertex id using a compressed sparse row (CSR) [111]
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representation and hash-indexed by their target id. Section 4.4.3 discusses how
these indices accelerate iterative computation.

Index Reuse: GraphX inherits the immutability of Spark and therefore all graph
operators logically create new collections rather than destructively modifying exist-
ing ones. As a result, derived vertex and edge collections can often share indices to
reduce memory overhead and accelerate local graph operations. For example, the
hash index on vertices enables fast aggregations, and the resulting aggregates share
the index with the original vertices.

In addition to reducing memory overhead, shared indices enable faster joins.
Vertex collections sharing the same index (e.g., the vertices and the messages from
mrTriplets) can be joined by a coordinated scan, similar to a merge join, without
requiring any index lookups. In our benchmarks, index reuse reduces the per-
iteration runtime of PageRank on the Twitter graph by 59%.

The GraphX operators try to maximize index reuse. Operators that do not
modify the graph structure (e.g., mapV) automatically preserve indices. To reuse
indices for operations that restrict the graph structure (e.g., subgraph), GraphX relies
on bitmasks to construct restricted views. In cases where index reuse could lead to
decreased efficiency (e.g., when a graph is highly filtered), GraphX uses the reindex
operator to build new indices.

4.4.2 Implementing the Triplets View

As described in Section 4.3.2, a key stage in graph computation is constructing
and maintaining the triplets view, which consists of a three-way join between the
source and destination vertex properties and the edge properties.

Vertex Mirroring: Because the vertex and edge property collections are par-
titioned independently, the join requires data movement. GraphX performs the
three-way join by shipping the vertex properties across the network to the edges,
thus setting the edge partitions as the join sites [84]. This approach substantially
reduces communication for two reasons. First, real-world graphs commonly have
orders of magnitude more edges than vertices. Second, a single vertex may have
many edges in the same partition, enabling substantial reuse of the vertex property.

Multicast Join: While broadcast join in which all vertices are sent to each edge
partition would ensure joins occur on edge partitions, it could still be inefficient
since most partitions require only a small subset of the vertices to complete the join.
Therefore, GraphX introduces a multicast join in which each vertex property is sent
only to the edge partitions that contain adjacent edges. For each vertex GraphX
maintains the set of edge partitions with adjacent edges. This join site information is
stored in a routing table which is co-partitioned with the vertex collection (Figure 4.3).
The routing table is associated with the edge collection and constructed lazily upon
first instantiation of the triplets view.

The flexibility in partitioning afforded by the multicast join strategy enables
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more sophisticated application-specific graph partitioning techniques. For example,
by adopting a per-city partitioning scheme on the Facebook social network graph
Ugander et al. [122] showed a 50.5% reduction in query time. In Section 4.5.1 we
exploit the optimized partitioning of our sample datasets to achieve up to 56%
reduction in runtime and 5.8× reduction in communication compared to a 2D hash
partitioning.

Partial Materialization: Vertex replication is performed eagerly when vertex
properties change, but the local joins at the edge partitions are left unmaterialized
to avoid duplication. Instead, mirrored vertex properties are stored in hash maps
on each edge partition and referenced when constructing triplets.

Incremental View Maintenance: Iterative graph algorithms often modify only
a subset of the vertex properties in each iteration. We therefore apply incremental
view maintenance to the triplets view to avoid unnecessary movement of unchanged
data. After each graph operation, we track which vertex properties have changed
since the triplets view was last constructed. When the triplets view is next accessed,
only the changed vertices are re-routed to their edge-partition join sites and the
local mirrored values of the unchanged vertices are reused. This functionality is
managed automatically by the graph operators.

Figure 4.4 illustrates the impact of incremental view maintenance for both
PageRank and connected components on the Twitter graph. In the case of PageRank,
where the number of active vertices decreases slowly because the convergence
threshold was set to 0, we see only moderate gains. In contrast, for connected
components most vertices are within a short distance of each other and converge
quickly, leading to a substantial reduction in communication from incremental view
maintenance. Without incremental view maintenance, the triplets view would need
to be reconstructed from scratch every iteration, and communication would remain
at its peak throughout the computation.

4.4.3 Optimizations to mrTriplets

GraphX incorporates two additional query optimizations for the mrTriplets
operator: filtered index scanning and automatic join elimination.

Filtered Index Scanning

The first stage of the mrTriplets operator logically involves a scan of the triplets
view to apply the user-defined map function to each triplet. However, as iterative
graph algorithms converge, their working sets tend to shrink, and the map function
skips all but a few triplets. In particular, the map function only needs to operate
on triplets containing vertices in the active set, which is defined by an application-
specific predicate. Directly scanning all triplets becomes increasingly wasteful as
the active set shrinks. For example, in the last iteration of connected components
on the Twitter graph, only a few of the vertices are still active. However, to execute
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Figure 4.4: Impact of incrementally maintaining the triplets view: For both
PageRank and connected components, as vertices converge, communication de-
creases due to incremental view maintenance. The initial rise in communication is
due to message compression (Section 4.4.4); many PageRank values are initially the
same.

mrTriplets we still must sequentially scan 1.5 billion edges and check whether
their vertices are in the active set.

To address this problem, we introduced an indexed scan for the triplets view.
The application expresses the current active set by restricting the graph using the
subgraph operator. The vertex predicate is pushed to the edge partitions, where
it can be used to filter the triplets using the CSR index on the source vertex id
(Section 4.4.1). We measure the selectivity of the vertex predicate and switch from
sequential scan to clustered index scan when the selectivity is less than 0.8.

Figure 4.5 illustrates the benefit of index scans in PageRank and connected
components. As with incremental view maintenance, index scans lead to a smaller
improvement in runtime for PageRank and a substantial improvement in runtime
for connected components. Interestingly, in the initial iterations of connected
components, when the majority of the vertices are active, a sequential scan is
slightly faster as it does not require the additional index lookup. It is for this reason
that we dynamically switch between full and indexed scans based on the fraction
of active vertices.

Automatic Join Elimination

In some cases, operations on the triplets view may access only one of the vertex
properties or none at all. For example, when mrTriplets is used to count the degree
of each vertex, the map UDF does not access any vertex properties. Similarly, when
computing messages in PageRank only the source vertex properties are used.
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Figure 4.5: Sequential scan vs index scan: Connected components on the Twitter
graph benefits greatly from switching to index scan after the 4th iteration, while
PageRank benefits only slightly because the set of active vertices is large even at the
15th iteration.

GraphX uses a JVM bytecode analyzer to inspect user-defined functions at
runtime and determine whether the source or target vertex properties are referenced.
If only one property is referenced, and if the triplets view has not already been
materialized, GraphX automatically rewrites the query plan for generating the
triplets view from a three-way join to a two-way join. If none of the vertex properties
are referenced, GraphX eliminates the join entirely. This modification is possible
because the triplets view follows the lazy semantics of RDDs in Spark. If the user
never accesses the triplets view, it is never materialized. A call to mrTriplets is
therefore able to rewrite the join needed to generate the relevant part of the triplets
view.

Figure 4.6 demonstrates the impact of this physical execution plan rewrite on
communication and runtime for PageRank on the Twitter follower graph. We
see that join elimination cuts the amount of data transferred in half, leading to
a significant reduction in overall runtime. Note that on the first iteration there
is no reduction in communication. This is due to compression algorithms that
take advantage of all messages having exactly the same initial value. However,
compression and decompression still consume CPU time so we still observe nearly
a factor of two reduction in overall runtime.

4.4.4 Additional Optimizations

While implementing GraphX, we discovered that a number of low level en-
gineering details had significant performance impact. We sketch some of them
here.

Memory-based Shuffle: Spark’s default shuffle implementation materializes the
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Figure 4.6: Impact of automatic join elimination on communication and runtime:
We ran PageRank for 20 iterations on the Twitter dataset with and without join
elimination and found that join elimination reduces the amount of communication
by almost half and substantially decreases the total execution time.

temporary data to disk. We modified the shuffle phase to materialize map outputs
in memory and remove this temporary data using a timeout.

Batching and Columnar Structure: In our join code path, rather than shuffling the
vertices one by one, we batch a block of vertices routed to the same target join site
and convert the block from row-oriented format to column-oriented format. We
then apply the LZF compression algorithm on these blocks to send them. Batching
has a negligible impact on CPU time while improving the compression ratio of LZF
by 10–40% in our benchmarks.

Variable Integer Encoding: While GraphX uses 64-bit vertex ids, in most cases the
ids are much smaller than 264. To exploit this fact, during shuffling, we encode
integers using a variable-encoding scheme where for each byte, we use only the first
7 bits to encode the value, and use the highest order bit to indicate whether we need
another byte to encode the value. In this case, smaller integers are encoded with
fewer bytes. In the worst case, integers greater than 256 require 5 bytes to encode.
This technique reduces communication in PageRank by 20%.

4.5 Performance Evaluation

In this section we demonstrate that, for iterative graph algorithms, GraphX is
over an order of magnitude faster than directly using the general-purpose dataflow
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operators described in Section 4.3.2 and is comparable to or faster than specialized
graph processing systems.

We evaluate the performance of GraphX on several graph-analytics tasks, com-
paring it with the following:

1. Apache Spark 0.9.1: the base distributed dataflow system for GraphX. We
compare against Spark to demonstrate the performance gains relative to the
baseline distributed dataflow framework.

2. Apache Giraph 1.1: an open source graph computation system based on the
Pregel abstraction.

3. GraphLab 2.2 (PowerGraph): the open-source graph computation system
based on the GAS decomposition of vertex programs. Because GraphLab is
implemented in C++ and all other systems run on the JVM, given identical
optimizations, we would expect GraphLab to have a slight performance
advantage.

We also compare against GraphLab without shared-memory parallelism (de-
noted GraphLab NoSHM). GraphLab communicates between workers on the same
machine using shared data structures. In contrast, Giraph, Spark, and GraphX adopt
a shared-nothing worker model incurring extra serialization overhead between
workers. To isolate this overhead, we disabled shared-memory by forcing GraphLab
workers to run in separate processes.

It is worth noting that the shared data structures in GraphLab increase the
complexity of the system. Indeed, we encountered and fixed a critical bug in
one of the GraphLab shared data structures. The resulting patch introduced an
additional lock which led to a small increase in thread contention. As a consequence,
in some cases (e.g., Figure 4.7c) disabling shared memory contributed to a small
improvement in performance.

All experiments were conducted on Amazon EC2 using 16 m2.4xlarge worker
nodes. Each node has 8 virtual cores, 68 GB of memory, and two hard disks. The
cluster was running 64-bit Linux 3.2.28. We plot the mean and standard deviation
for multiple trials of each experiment.

4.5.1 System Comparison

Cross-system benchmarks are often unfair due to the difficulty in tuning each
system equitably. We have endeavored to minimize this effect by working closely
with experts in each of the systems to achieve optimal configurations. We emphasize
that we are not claiming GraphX is fundamentally faster than GraphLab or Giraph;
these systems could in theory implement the same optimizations as GraphX. Instead,
we aim to show that it is possible to achieve comparable performance to specialized
graph processing systems using a general dataflow engine while gaining common
dataflow features such as fault tolerance.
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Figure 4.7: System Performance Comparison. (c) Spark did not finish within 8000
seconds, Giraph and Spark + Part. ran out of memory.
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While we have implemented a wide range of graph algorithms on top of GraphX,
we restrict our performance evaluation to PageRank and connected components.
These two representative graph algorithms are implemented in most graph process-
ing systems, have well-understood behavior, and are simple enough to serve as an
effective measure of the system’s performance. To ensure a fair comparison, our
PageRank implementation is based on Listing 4.1; it does not exploit delta messages
and therefore benefits less from indexed scans and incremental view maintenance.
Conversely, the connected components implementation only sends messages when
a vertex must change component membership and therefore does benefit from
incremental view maintenance.

For each system, we ran both algorithms on the twitter-2010 and uk-2007-05
graphs (Table 4.1). For Giraph and GraphLab we used the included implementa-
tions of these algorithms. For Spark we implemented the algorithms both using
idiomatic dataflow operators (Naive Spark, as described in Section 4.3.2) and us-
ing an optimized implementation (Optimized Spark) that eliminates movement
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Dataset Edges Vertices
twitter-2010 [32, 31] 1,468,365,182 41,652,230
uk-2007-05 [32, 31] 3,738,733,648 105,896,555

Table 4.1: Graph Datasets. Both graphs have highly skewed power-law degree
distributions.

of edge data by pre-partitioning the edges to match the partitioning adopted by
GraphX.

Both GraphLab and Giraph partition the graph according to specialized parti-
tioning algorithms. While GraphX supports arbitrary user defined graph partition-
ers including those used by GraphLab and Giraph, the default partitioning strategy
is to construct a vertex-cut that matches the input edge data layout thereby mini-
mizing edge data movement when constructing the graph. However, as point of
comparison we also tested GraphX using a randomized vertex-cut (GraphX Rand).
We found (see Figure 4.7) that for the specific datasets used in our experiments
the input partitioning, which was determined by a specialized graph compres-
sion format [31], actually resulted in a more communication-efficient vertex-cut
partitioning.

Figures 4.7a and 4.7c show the total runtimes for connected components algo-
rithm. We have excluded Giraph and Optimized Spark from Figure 4.7c because
they were unable to scale to the larger web-graph in the allotted memory of the
cluster. While the basic Spark implementation did not crash, it was forced to re-
compute blocks from disk and exceeded 8000 seconds per iteration. We attribute
the increased memory overhead to the use of edge-cut partitioning and the need to
store bi-directed edges and messages for the connected components algorithm.

Figures 4.7b and 4.7d show the total runtimes for PageRank for 20 iterations on
each system. In Figure 4.7b, GraphLab outperforms GraphX largely due to shared-
memory parallelism; GraphLab without shared memory parallelism is much closer
in performance to GraphX. In 4.7d, GraphX outperforms GraphLab because the
input partitioning of uk-2007-05 is highly efficient, resulting in a 5.8x reduction in
communication per iteration.

4.5.2 GraphX Performance

Scaling: In Figure 4.8 we evaluate the strong scaling performance of GraphX
running PageRank on the Twitter follower graph. As we move from 8 to 32 machines
(a factor of 4) we see a 3x speedup. However as we move to 64 machines (a
factor of 8) we only see a 3.5x speedup. While this is hardly linear scaling, it is
actually slightly better than the 3.2x speedup reported by GraphLab [58]. The poor
scaling performance of PageRank has been attributed by [58] to high communication
overhead relative to computation for the PageRank algorithm.

It may seem surprising that GraphX scales slightly better than GraphLab given
that Spark does not exploit shared memory parallelism and therefore forces the

94



graph to be partitioned across processors rather than machines. However, Figure 4.9
shows the communication of GraphX as a function of the number of partitions.
Going from 16 to 128 partitions (a factor of 8) yields only an approximately 2-fold
increase in communication. Returning to the analysis of vertex-cut partitioning
conducted by [58], we find that the vertex-cut partitioning adopted by GraphX
mitigates the 8-fold increase in communication.

Fault tolerance: Existing graph systems only support checkpoint-based fault tol-
erance, which most users leave disabled due to the performance overhead. GraphX
is built on Spark, which provides lineage-based fault tolerance with negligible
overhead as well as optional dataset replication. We benchmarked these fault toler-
ance options for PageRank on uk-2007-05 by killing a worker in iteration 11 of 20,
allowing Spark to recover by using the remaining copies of the lost partitions or
recomputing them, and measuring how long the job took in total. For comparison,
we also measured the end-to-end time for running until failure and then restarting
from scratch on the remaining nodes using a driver script, as would be necessary in
existing graph systems. Figure 10 shows that in case of failure, both replication and
recomputation are faster than restarting the job from scratch, and moreover they
are performed transparently by the dataflow engine.

4.6 Related Work

In Section 4.2 we described the general characteristics shared across many of the
earlier graph processing systems. However, there are some exceptions to many of
these characteristics that are worth noting.

While most of the work on large-scale distributed graph processing has focused
on static graphs, several systems have focused on various forms of stream process-
ing. One of the earlier examples is Kineograph [39], a distributed graph processing
system that constructs incremental snapshots of the graph for offline static graph
analysis. In the multicore setting, GraphChi [78] and later X-Stream [110] intro-
duced support for the addition of edges between existing vertices and between
computation stages. Although conceptually GraphX could support the incremental
introduction of edges (and potentially vertices), the existing data-structures would
require additional optimization. Instead, GraphX focuses on efficiently support-
ing the removal of edges and vertices: essential functionality for offline sub-graph
analysis.

Most of the optimizations and programming models of earlier graph processing
systems focus on a single graph setting. While some of these systems [81, 58, 110]
are capable of operating on multiple graphs independently, they do not expose an API
or present optimizations for operations spanning graphs (or tables). One notable
exception is CombBLAS [34] which treats graphs (and data more generally) as
matrices and supports generalized binary algebraic operators. In contrast GraphX
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preserves the native semantics of graphs and tables and provides a simple API to
combine data across these representations.

The triplets view in GraphX is related to the classic Resource Description Frame-
work [86] (RDF) data model which encodes graph structured data as subject-predicate-
object triplets (e.g., NYC-isA-city). Numerous systems [7, 33, 96] have been proposed
for storing and executing SPARQL [105] subgraph queries against RDF triplets. Like
GraphX, these systems rely heavily on indexing and clustering for performance.
Unlike GraphX, these systems are not distributed or do not address iterative graph
algorithms. Nonetheless, we believe that the optimizations techniques developed
for GraphX may benefit the design of distributed graph query processing.

There have been several recent efforts at exploring graph algorithms within
dataflow systems. Najork et al. [94], compares implementations of a range of graph
algorithms on the DryadLINQ [68] and SQL Server dataflow systems. However, the
resulting implementations are fairly complex and specialized, and little is discussed
about graph-specific optimizations. Both Ewen et al. [50] and Murray et al. [92]
proposed dataflow systems geared towards incremental iterative computation
and demonstrated performance gains for specialized implementations of graph
algorithms. While this work highlights the importance of incremental updates in
graph computation, neither proposed a general method to express graph algorithms
or graph specific optimizations beyond incremental dataflows. Nonetheless, we
believe that the GraphX system could be ported to run on-top of these dataflow
frameworks and would potentially benefit from advances like timely dataflows [92].

At the time of publication, the Microsoft Naiad team had announced initial
work on a system called GraphLINQ [91], a graph processing framework on-top of
Naiad which shares many similarities to GraphX. Like GraphX, GraphLINQ aims to
provides rich graph functionality within a general-purpose dataflow framework. In
particular GraphLINQ presents a GraphReduce operator that is semantically similar
to the mrTriplets operator in GraphX except that it operates on streams of vertices
and edges. The emphasis on stream processing exposes opportunities for classic
optimizations in the stream processing literature as well as recent developments like
the Naiad timely dataflows [92]. We believe this further supports the advantages
of embedding graph processing within more general-purpose data processing
systems.

Others have explored join optimizations in distributed dataflow frameworks.
Blanas et al. [30] show that broadcast joins and semi-joins compare favorably with
the standard MapReduce style shuffle joins when joining a large table (e.g., edges)
with a smaller table (e.g., vertices). Closely related is the work by Afrati et al. [11]
which explores optimizations for multi-way joins in a MapReduce framework.
They consider joining a large relation with multiple smaller relations and provide a
partitioning and replication strategy similar to classic 2D partitioning [35]. However,
in contrast to our work, they do not construct a routing table forcing the system
to broadcast the smaller relations (e.g., the vertices) to all partitions of the larger
relation (e.g., the edges) that could have matching tuples. Furthermore, they force a
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Figure 4.11: Graph Analytics Pipeline: requires multiple collection and graph
views of the same data.

particular hash partitioning on the larger relation precluding the opportunity for
user defined graph partitioning algorithms (e.g., [74, 122, 117]).

4.7 Discussion

The work on GraphX addressed several key themes in data management systems
and system design:

Physical Data Independence: GraphX allows the same physical data to be
viewed as collections and as graphs without data movement or duplication. As
a consequence the user is free to adopt the best view for the immediate task. We
demonstrated that operations on collections and graphs can be efficiently imple-
mented using the same physical representation and underlying operators. Our
experiments show that this common substrate can match the performance of spe-
cialized graph systems.

Graph Computation as Joins and Group-By: The design of the GraphX system
reveals the strong connection between distributed graph computation and dis-
tributed join optimizations. When viewed through the lens of dataflow operators,
graph computation reduces to join and group-by operators. These two operators
correspond to the Scatter and Gather stages of the GAS abstraction. Likewise, the
optimizations developed for graph processing systems reduce to indexing, dis-
tributed join site selection, multicast joins, partial materialization, and incremental
view maintenance.

The Narrow Waist: In designing the GraphX abstraction, we sought to develop
a thin extension on top of dataflow operators with the goal of identifying the
essential data model and core operations needed to support graph computation.
We aimed for a portable framework that could be embedded in a range of dataflow
frameworks. We believe that the GraphX design can be adopted by other dataflow
systems, including MPP databases, to efficiently support a wide range of graph
computations.

Analytics Pipelines: GraphX provides the ability to stay within a single frame-
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work throughout the analytics process, eliminating the need to learn and support
multiple systems (e.g., Figure 4.11) or write data interchange formats and plumbing
to move between systems. As a consequence, it is substantially easier to iteratively
slice, transform, and compute on large graphs as well as to share data-structures
across stages of the pipeline. The gains in performance and scalability for graph
computation translate to a tighter analytics feedback loop and therefore a more
efficient work flow.

Adoption: GraphX was publicly released as part of the 0.9.0 release of the
Apache Spark open-source project. It has since generated substantial interest in
the community and has been used in production at various places [67]. Despite its
nascent state, there has been considerable open-source contribution to GraphX with
contributors providing some of the core graph functionality. We attribute this to its
wide applicability and the simple abstraction built on top of an existing, popular
dataflow framework.

4.8 Conclusion

In this work we introduced GraphX, an efficient graph processing system that
enables distributed dataflow frameworks such as Spark to naturally express and
efficiently execute iterative graph algorithms. We identified a simple pattern of join–
map–group-by dataflow operators that forms the basis of graph-parallel computation.
Inspired by this observation, we proposed the GraphX abstraction, which represents
graphs as horizontally-partitioned collections and graph computation as dataflow
operators on those collections. Not only does GraphX support existing graph-
parallel abstractions and a wide range of iterative graph algorithms, it enables the
composition of graphs and collections, freeing the user to adopt the most natural
view without concern for data movement or duplication.

Guided by the connection between graph computation and dataflow opera-
tors, we recast recent advances in graph processing systems as range of classic
optimizations in database systems. We recast vertex-cut graph partitioning as
horizontally-partitioned vertex and edge collections, active vertex tracking as in-
cremental view maintenance, and vertex mirroring as multicast joins with routing
tables. As a result, for graph algorithms, GraphX is over an order of magnitude
faster than the base dataflow system and is comparable to or faster than specialized
graph processing systems. In addition, GraphX benefits from features provided by
recent dataflow systems such as low-cost fault tolerance and transparent recovery.
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Chapter 5

Conclusion

This chapter concludes the dissertation. We summarize the contributions and
broader industry impact from each of the three systems. Finally, we discuss future
work.

5.1 Innovation Highlights and Broader Impact

All three systems, Spark SQL, Structured Streaming, and GraphX, developed
in this dissertation, share a common theme: modern analytics are becoming more
diverse. The types of analytics are becoming more diverse: complex analytics such
as machine learning and graph processing are becoming increasingly common in
addition to relational query processing. The programming languages are becoming
more diverse: data engineers use Scala and Java, data scientists use Python and
R, while business analysts still predominantly use SQL. Finally, the frequency of
analytics are becoming more diverse as well: many organizations that started with
batch analytics that happen once a day are now employing real-time streaming data
pipelines to increase the velocity of data-driven decisions.

These three systems have been widely adopted in industry. Combined together,
the three systems laid the foundation for Spark 2.0.

5.1.1 Spark SQL

Spark SQL integrates relational processing with Spark’s functional programming
API for complex analytics. Built on our experience with Shark, Spark SQL lets Spark
programmers leverage the benefits of relational processing (e.g., declarative queries
and optimized storage), and lets SQL users call complex analytics libraries in Spark
(e.g., machine learning). Compared to previous systems, Spark SQL makes two main
additions. First, it offers much tighter integration between relational and procedural
processing, through a declarative DataFrame API that integrates with procedural
Spark code. Second, it includes a highly extensible optimizer, Catalyst, built using
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features of the Scala programming language, that makes it easy to add composable
rules, control code generation, and define extension points. Using Catalyst, we
have built a variety of features (e.g., schema inference for JSON, machine learning
data types, and query federation to external databases) tailored for the complex
needs of modern data analysis. We see Spark SQL as an evolution of both SQL-on-
Spark and of Spark itself, offering richer APIs and optimizations while keeping the
benefits of the Spark programming model. More fundamentally, Spark SQL and its
predecessor Shark show that dataflow execution models can be applied effectively
to SQL, and offer a promising way to combine relational and complex analytics.

Since its initial experimental open source release in 2014, Spark SQL has become
the most widely used and developed module in Spark. The DataFrame API became
the de facto programming API in Spark’s 2.0 release. While the initial RDD API
remains as an important lower level API, most user applications have migrated
over from the RDD API to the DataFrame API. Given that Spark is one of the most
popular open source projects in Big Data, it is very likely that the DataFrame API is
the most widely used API in big data.

5.1.2 Structured Streaming

With the ubiquity of streaming data, organizations need stream processing sys-
tems that are scalable, easy to use, and easy to integrate into business applications.
Structured Streaming builds on Spark SQL, and exposes a high-level, declarative
streaming API. Structured Streaming differs from other recent streaming APIs, such
as Google Dataflow, in two main ways. First, it is a purely declarative API based
on automatically incrementalizing a static relational query (expressed using SQL
or DataFrames), as opposed to APIs that ask the user to design a DAG of physical
operators. This makes it accessible to non-experts. Second, Structured Streaming
is designed to support end-to-end real-time applications that combine streaming
with batch and interactive analysis. We found that many real-world applications
required this type of integration, and this integration was often the most challeng-
ing part of building them. Structured Streaming achieves high performance using
Spark SQL’s code generation engine and outperforms Apache Flink by up to 4×
and Kafka Streams by 90×. It also offers powerful operational features such as
rollbacks, code updates, and mixed streaming/batch execution.

Structured Streaming was initially released in 2016. We have observed several
hundred large-scale production use cases, the largest of which processes over 1 PB
of data per month.

5.1.3 GraphX

GraphX is an embedded graph processing system built on top of Apache Spark.
GraphX presents a familiar composable graph abstraction that is sufficient to express
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existing graph APIs, yet can be implemented using only a few basic dataflow
operators (e.g., join, map, group-by).

In pursuit of graph processing performance, the systems community has largely
abandoned general-purpose distributed dataflow frameworks in favor of special-
ized graph processing systems that provide tailored programming abstractions and
accelerate the execution of iterative graph algorithms. In this paper we argue that
many of the advantages of specialized graph processing systems can be recovered
in a modern general-purpose distributed dataflow system.

To demonstrate this, we implemented GraphX on top of Spark, a dataflow
framework. To achieve performance parity with specialized graph systems, GraphX
recasts graph-specific optimizations as distributed join optimizations and materi-
alized view maintenance. By leveraging advances in distributed dataflow frame-
works, GraphX brings low-cost fault tolerance to graph processing. We evaluate
GraphX on real workloads and demonstrate that GraphX achieves an order of
magnitude performance gain over the base dataflow framework and matches the
performance of specialized graph processing systems while enabling a wider range
of computation.

GraphX was merged into Spark in version 1.2. In Spark 2.0, it became the main
graph processing library, in lieu of Bagel.

5.2 Future Work

Our work on these systems points to a larger research agenda in the unification
of specialized data processing systems. Recent advances in specialized systems
for topic modeling, graph processing, stream processing, and deep learning have
revealed a range of new system optimizations and design trade-offs. However, the
full potential of these systems is often realized in their integration (e.g., applying
deep learning to text and images in a social network). By casting these systems
within a common paradigm we may reveal common patterns and enable new
analytic capabilities. In this context, the main areas of future work are:

AI, Deep Learning, and Machine Learning on Dataflows: One cannot avoid draw-
ing attention to AI, deep learning, and machine learning when discussing data
analytics in 2018. Many systems, both hardware [72] and software [8, 102], have
been built specifically for developing and executing deep learning and machine
learning algorithms. These systems achieve high performance for numeric compu-
tation through highly optimized kernels that employ data-parallel CPU and GPU
instructions.

There are two general approaches in using dataflow systems for machine learn-
ing. The first approach uses the dataflow systems across the entire pipeline, from
data loading, to feature engineering, to training. In this approach, the training
algorithm is implemented entirely in these dataflow systems, using dataflow or
relational operators. The second approach is to “integrate”. In this approach, users
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leverage dataflow systems for data loading, feature engineering, and parallelization,
but run the specialized software (e.g., PyTorch) for training. Compared with the
first approach, the second approach typically achieves higher performance for the
training part, at the cost of increased operational complexity and lower performance
in data exchange.

One fruitful area of research is to explore whether a single dataflow system can
efficiently and effectively support machine learning pipelines end-to-end, from data
loading, to feature engineering, to training. This will require the development of
new code generation engines that can combine relational processing with highly
efficient numeric computations. KeystoneML [116] is an early attempt at this.

GraphFrames: The graph abstraction in GraphX is analogous to the RDD abstrac-
tion for distributed collection of data. It is a lower level, expressive API, but lacks
optimization opportunities due to the extensive use of user-defined functions as
well as coupling of physical plans and logical plans. A possible extension is to
combine the ideas in Spark SQL and GraphX to create GraphFrames, a DataFrame-
based approach for programming graph applications. This new approach can
enable graph specific optimizations by extending the Catalyst query optimizer.

Streaming, Incremental Graph Computation: Similar to streaming data that are
constantly changing, real-life graph structures are rarely static. Members on social
networks make new connections all the time, while an interest graph would be
updated each time a user ”likes” an item. All operations in GraphX are batch-
oriented, and any update on a graph would require recomputing the entire data
pipeline.

Incremental graph computation will be a fruitful research area, by minimizing
the computation cost of small graph updates. This will require both API changes to
restrict operations to be algebraic, as well as system changes that can automatically
incrementalize graph computation plans.

Unifying multi-core with distributed dataflows: In the course of this dissertation,
the increase of CPU clock speed has largely plateaued. Instead, CPUs are increasing
in core-count. It is not uncommon to see machines with 128 cores. With such high
core counts, future multi-core systems resemble distributed systems more than they
do traditional single-node systems. We believe there is a tremendous opportunity to
design simple software architectures, based on dataflows, that can scale well from
single-node multi-core systems, for small to medium amounts of data, to clusters of
thousands of machines, for large amounts of data.

We hope the lessons learned in this dissertation can help facilitate further re-
search in the above areas, and create innovative solutions that shape new system
directions.
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