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Abstract

We introduce a load-balanced adaptive routing algo-
rithm for torus networks, GOAL - Globally Oblivious Adap-
tive Locally - that provides high throughput on adversar-
ial traffic patterns, matching or exceeding fully randomized
routing and exceeding the worst-case performance of Chaos
[2], RLB [14], and minimal routing [8] by more than 40%.
GOAL also preserves locality to provide up to 4.6× the
throughput of fully randomized routing [19] on local traffic.
GOAL achieves global load balance by randomly choosing
the direction to route in each dimension. Local load bal-
ance is then achieved by routing in the selected directions
adaptively. We compare the throughput, latency, stability
and hot-spot performance of GOAL to six previously pub-
lished routing algorithms on six specific traffic patterns and
1,000 randomly generated permutations.

1 Introduction

Interconnection networks based on torus or k-ary n-cube
topologies [3] are widely used as switch and router fabrics
[5], for processor-memory interconnect [13], and for I/O
interconnect [12]. Torus networks have high path diversity,
offering many alternative paths between a message source
and destination. A good routing algorithm chooses between
these paths in a manner that exploits locality to provide low
latency, balances load to provide high throughput on ad-
versarial traffic patterns, and gracefully handles momentary
overloads to provide stability.

Many applications require the interconnection network
to provide high throughput on adversarial traffic patterns.
In an Internet router, for example, there is no backpressure
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on input channels so the interconnection network used for
the router fabric must handle any traffic pattern, even the
worst-case, at the line rate or packets will be dropped. To
meet their specifications, I/O networks must provide guar-
anteed throughput on all traffic patterns between host and
disk nodes. Some multicomputer applications are charac-
terized by random permutation traffic1. This arises when
operating on an irregular graph structure or on a regular
structure that is randomly mapped to the nodes of the ma-
chine. Performance on these applications is limited by the
throughput of the network on adversarial patterns.

A routing algorithm must strike a balance between the
conflicting goals of providing low latency on local traffic
and providing high throughput on adversarial traffic. To
achieve high performance on local traffic, minimal routing
algorithms - that choose a shortest path for each packet -
are favored. Minimal algorithms, however, perform poorly
on worst-case traffic due to load imbalance. With a mini-
mal routing algorithm, an adversarial traffic pattern can load
some links very heavily while leaving others idle. To im-
prove performance under worst-case traffic, a routing algo-
rithm must balance load by sending some fraction of traffic
over non-minimal paths - hence destroying some of the lo-
cality.

Previous work has attempted to address the issue of pro-
viding high worst-case performance while preserving local-
ity. Valiant’s randomized algorithm [19] gives good per-
formance on worst-case traffic, but at the expense of com-
pletely destroying locality and hence giving very poor per-
formance on local traffic and greatly increasing latency. The
Chaos routing algorithm [2] employs randomization to mis-
route from a shared queue of packets in each node when the
network becomes congested. However, the misrouting de-
cision is very localized and does not address the global load
imbalance caused by adversarial traffic patterns. Minimal
adaptive routing [8], [9] also suffers from this global load
imbalance. The RLB algorithm [14] globally load balances

1Random permutation traffic in which each node sends all messages
to a single, randomly-selected node should not be confused with random
traffic in which each message is sent to a different randomly selected node.
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traffic, but performs poorly on worst-case patterns because
it cannot locally adapt to traffic.

In this paper, we introduce Globally Oblivious Adap-
tive Locally (GOAL) - a non-minimal, adaptive routing al-
gorithm for torus networks that strikes a balance between
the conflicting goals of locality and load balance. GOAL
combines the global load balance of oblivious routing with
the local balance of adaptive methods. GOAL obliviously
chooses the direction of travel in each dimension weight-
ing the short direction more heavily than the long direction
in a manner that globally balances channel load while pre-
serving some locality. Once the directions are selected, the
packet is adaptively routed to the destination in the resulting
quadrant. This adaptive routing avoids the local imbalance
created by adversarial patterns.

The GOAL algorithm offers high throughput on worst-
case patterns — matching or exceeding the performance of
Valiant’s algorithm, and exceeding the worst-case perfor-
mance of Chaos, RLB, and minimal routing by more than
40%, on known adversarial traffic patterns. At the same
time GOAL exploits locality giving 4.6× the throughput of
Valiant on local traffic and more than 30% lower zero-load
latency than Valiant on uniform traffic. Because it is lo-
cally adaptive, GOAL matches the performance of Chaos
and minimal adaptive routing on hot-spot traffic. Because
it occasionally routes the long way around, GOAL does not
match the performance of minimal algorithms on local traf-
fic - achieving only 58% the throughput of minimal algo-
rithms on nearest neighbor traffic. However, we show that
any minimal algorithm asymptotically has at best half the
worst-case throughput as Valiant’s algorithm.

The remainder of this paper describes the GOAL algo-
rithm in more detail and compares its performance to other
routing algorithms. Section 3 derives theoretical bounds on
the performance of minimal and non-minimal algorithms.
Section 4 describes the GOAL algorithm in detail. We mea-
sure the performance of GOAL in Section 5 and compare
its performance to existing routing algorithms.

2 Preliminaries

2.1 Definitions and Conventions

We restrict our discussion to multi-dimension torus or k-
ary n-cube networks. A k-ary n-cube is a n dimensional
torus network with k nodes per dimension giving a total of
N = kn nodes. Each link is unidirectional, hence there are
two links between adjacent nodes — one for each direction.
A packet may be divided into fixed size units called flits.
Each link has unit capacity, i.e. it can forward one flit per
cycle.

In all the algorithms evaluated in this paper (except the
Chaos routing algorithm [2]), credit-based virtual channel

flow control [4] is employed. To make the algorithms stable,
age-based arbitration is used with the oldest packet winning
the contested resource. All addition and subtraction on node
coordinates is performed modulo k yielding a result that is
in the range [0, k − 1].

Traffic pattern (αΛ) - Λ is a N ×N doubly sub-stochastic
destination matrix where each entry 0 ≤ λi,j ≤ 1 is
equal to the probability that node i chooses node j as
its destination. All nodes inject the same average num-
ber of packets, α, per time step into the network. A
node is oversubscribed if the sum of its row or column
entries in Λ is greater than 1. A traffic pattern is ad-
missible if none of the nodes in its destination matrix,
Λ is oversubscribed.

Permutation matrix (Π) - A destination matrix Λ with a
single 1 entry in each row and column. All other en-
tries are 0.

Routing algorithm (R) - A routing algorithm maps a
source- destination pair to a path through the network
from the source to the destination. Oblivious algo-
rithms select the path using only the identity of the
source and destination nodes. Adaptive algorithms
may also base routing decisions on the state of the net-
work. Both oblivious and adaptive algorithms may use
randomization to select among alternative paths.

Minimal algorithms only route packets along a short-
est path from source to destination while non-minimal
ones may route packets along longer paths.

Channel load (γc(R, Λ)) - The expected number of pack-
ets that cross channel c per cycle for the destination
matrix Λ and routing algorithm R.

Normalized worst-case channel load (γwcn(R, Λ)) - The
expected number of packets crossing the heaviest
loaded channel normalized to the network capacity 2,

γwcn(R, Λ) =
maxc∈C γc(R, Λ)

k/8
,

where C is the set of all channels in the network.

Saturation throughput (Θ(R, Λ)) - The average number
of packets that can be injected by all the nodes in the
network per time step so as to saturate the worst-case
link to its unit capacity.

Θ(R, Λ) =
1

γwcn(R, Λ)
2The network capacity is the maximum load that the bisection of the

network can sustain for uniformly distributed traffic. In a k-ary n-cube
subjected to uniform random traffic, there are kn

2
packets trying to cross

the 4kn−1 (unidirectional) links in the bisection. Hence, each link in the

bisection must support an average load of kn/2

4kn−1 = k
8

packets per cycle.
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Worst-case saturation throughput (Θwc(R)) - The
worst-case saturation throughput for routing algo-
rithm R over the space of all admissible destination
matrices,

Θwc(R) = min
Λ

Θ(R, Λ)

2.2 Performance Measures

For a given traffic pattern Λ and routing algorithm R
we can describe the performance of an interconnection net-
work with two graphs as shown in Figure 1. The steady-
state performance of the network at offered loads below the
saturation point is described by Figure 1(a) which shows
the average latency per packet plotted against the offered
load α. The zero-load latency or hop-count H is the y-
intercept of this curve and the saturation throughput Θ is
the x-coordinate of the asymptote. At offered loads greater
than Θ, average steady-state latency is infinite.
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Figure 1. (a) Notational latency vs. offered
load graph. (b) Accepted throughput vs. of-
fered load.

Figure 1(b), which shows a plot of accepted traffic α′ as
a function of offered load α, describes network performance
after the saturation point, when α > Θ. We report the min-
imum accepted traffic over all source-destination pairs to
reflect the throughput achieved for the specified traffic ma-
trix Λ. Under heavy load, the source-destination pairs with
less contention deliver more packets than other pairs. In ef-
fect, these pairs get ahead of the other pairs. However, the
amount of the desired destination matrix Λ that is delivered
is governed by the slowest pair (the one with the least ac-
cepted throughput).

At offered loads less than the saturation point all traffic
is delivered so α′(α) = α. Beyond the saturation point ac-
cepted traffic is flat for a stable routing algorithm. That is,
α′(α) = Θ for α ≥ Θ. For unstable algorithms, through-
put degrades beyond saturation. This occurs for some non-
minimal algorithms where, due to congestion, average path
length increases with offered traffic. Instability may also

occur when global fairness is not maintained and hence the
throughput of the slowest source-destination pair is reduced
after saturation because more of a critical shared resource is
being granted to a faster source-destination pair.

0 1 2 3
4567

Figure 2. Minimally routed pattern 0 → 3, 1 →
2, 5 → 6.

To illustrate why we compute α′ as the minimum across
all source-destination pairs, consider an 8-ary 1-cube net-
work routing three flows as shown in Figure 2. There are
three source nodes - 0, 1 and 5 - sending packets to des-
tination nodes 3, 2 and 6 respectively. All source nodes
inject the same load, α into the network. As we increase
the injected load for each node from zero up to the satura-
tion point, α = 0.5, none of the links in the network are
saturated and the average accepted load α∗ and the mini-
mum accepted load α′ across the flows are both the same,
i.e. α∗ = α′ = α. Suppose we now increase α to 1.0. Link
1 → 2 becomes saturated and allocates half of its capacity
to each of the two flows 0 → 3 and 1 → 2. However, link
5 → 6 offers its full capacity to flow 5 → 6. The accepted
loads for nodes 2, 3 and 6 are therefore 0.5, 0.5 and 1.0 re-
spectively. Hence, α∗ = 2/3 = 0.67 while the α′ = 0.5.
The minimum number α′ reflects the amount of the original
destination matrix Λ that is being delivered, the extra traffic
on 5 → 6 represents additional traffic beyond the α′Λ that
is not part of the specified destination matrix.

3 Performance Bounds

In this section, we make some claims regarding the per-
formance of different types of routing algorithms.

Claim 1. No routing algorithm can guarantee a throughput
greater than half the network capacity on k-ary n-cubes.

Proof. We prove this claim by showing that for a particular
traffic permutation, no routing algorithm, R∗ can achieve a
saturation throughput greater than 0.5. Consider the permu-
tation Πdia, in which every source sends a packet half way
across the ring in each dimension. In a k-ary 2-cube, every
source (i, j) sends to (i + k/2, j + k/2). In such a per-
mutation, there are a total of kn packets, each packet being
nk/2 hops away from its destination. This implies that all
the packets need to traverse at least (kn)nk/2 links in the
network. However, there are (2n)kn links in a k-ary n-cube
network. Therefore, no matter what routing algorithm, R∗
is employed,
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γwcn(R∗, Πdia) ≥ (kn)nk/2
(k/8)(2n)kn = 2

⇒ Θwc(R∗) ≤ Θ(R∗, Πdia) ≤ 0.5

Claim 1 therefore, gives us an upper bound on the worst-
case performance of any routing algorithm.

Claim 2. Valiant’s algorithm gives optimal worst-case
throughput but performs identically on every admissible
destination matrix on k-ary n-cubes.

Proof. Let us first consider any permutation matrix, Π∗.
Valiant’s algorithm, Rval, involves two completely random
phases. A source node first sends a packet to a completely
random intermediate node q and then from q to the actual
destination. On average, a packet traverses k

4 hops per di-
mension in each of the two phases. So, in all, the kn pack-
ets of Π∗ traverse 2n(k

4 ) links simultaneously. There are
(2n)kn links in the network that uniformly support this traf-
fic. Since, all the channels are identically loaded for Rval,

∀c, γc(Rval, Π∗) =
kn2n(k

4 )
2nkn

=
k

4
(1)

By the result of Birkhoff [1], any admissible destination ma-
trix, Λ∗, can be written as a weighted combination of per-
mutation matrices:

Λ∗ =
∑

i

φiΠi, s.t.
∑

i

φi = 1 (2)

Hence,

∀c, γc(Rval, Λ∗) = γc(Rval,
∑

i

φiΠi) (3)

As shown in [17], due to the linearity of channel loading in
oblivious routing algorithms, such as Rval, we can rewrite
(3) as:

∀c, γc(Rval, Λ∗) =
∑

i γc(Rval, φiΠi)
=

∑
i φiγc(Rval, Πi)

=
∑

i φi
k
4 = k

4 from (1), (2)

Since all channels are identically loaded, we get
γwcn(Rval, Λ∗) = k/4

k/8 = 2. Therefore,

Θwc(Rval) = Θ(Rval, Λ∗) = 0.5

Claim 2 shows that Valiant’s algorithm gives optimal
worst-case saturation throughput. However, it destroys the
locality of every traffic pattern reducing it to the worst case.
Valiant also doubles the average path length of any packet
thereby resulting in very high latency even at low offered
load.

Next, let us consider the class of minimal routing algo-
rithms.

Claim 3. No minimal routing algorithm can guarantee a
throughput asymptotically greater than 25% the network
capacity on k-ary n-cubes.

Proof. Consider the tornado traffic permutation, Πtor, in
which every source sends a packet to a destination that is
one less than half-way across the ring in a single dimen-
sion. For e.g., in an 8-ary 2-cube, every source (i, j) sends
to (i + k/2 − 1, j). A minimal routing algorithm, Rmin,
will only employ links in one direction in the ring, leaving
the links going the other direction idle. Links in only one
dimension will be used. All other links will be idle. Fig-
ure 3 shows how minimally routing tornado traffic on an
8-ary 1-cube causes the packets to rotate around the ring in
a single direction like a tornado, keeping the links in the
other direction completely idle. Hence,

γwcn(Rmin, Πtor) = k/2−1
k/8

⇒ Θwc(Rmin) ≤ Θ(Rmin, Πtor) = k/8
k/2−1 ≈ 0.25

(for k/2 >> 1)

0 1 2 3
4567

Figure 3. Minimally routed tornado traffic on
an 8-ary 1-cube. Clockwise link load is 3.
Counter clockwise link load is 0.

Therefore, from a worst-case throughput point of view, a
minimal algorithm performs sub-optimally.

4 GOAL

The GOAL algorithm routes a packet from a source node
s = {s1, . . . , sn} to the destination node d = {d1, . . . , dn}
by obliviously choosing the direction to travel in each of the
n dimensions to exactly balance channel load (as is done by
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the RLB algorithm [14]). Choosing the directions selects
the quadrant in which a packet will be routed in a man-
ner that balances load among the quadrants. Then, trav-
eling only in the selected directions, the packet is routed
adaptively from s to d. At each hop, the router advances
the packet in the productive dimension that has the shortest
queue.

In each dimension, the choice of direction is made to ex-
actly balance the load on the channels in the two directions.
In each dimension i, the distance in the shorter of the two
directions is ∆i = min(di − si, si − di) . The direction of
the short path is ri = +1 if ∆i = di − si and ri = −1
otherwise. The selected direction is based on a probability
distribution favoring the short path. To exactly balance the
load due to symmetric traffic we send each packet in the
short direction, ri, with probability Pri = k−∆i

k and in the
long direction, −ri, with probability P−ri = ∆i

k .
For example, suppose we are routing from s = (0, 0)

to d = (2, 3) in an 8-ary 2-cube network (8 × 8 2-D
torus). The distance vector is ∆ = (2, 3), the minimal di-
rection vector is r = (+1, +1), and the probability vector
is P = (0.75, 0.625). We have four choices for choosing
directions, (+1, +1), (+1,−1), (−1, +1), and (−1,−1)
which we choose with probabilities 0.469, 0.281, 0.156, and
0.094 respectively. Each of these four directions describes
a quadrant of the 2-D torus as shown in Figure 4. The
weighting of directions routes more traffic in the minimal
quadrant (+1, +1) (shaded darkest) and less in the quad-
rant that takes the long path in both dimensions (−1,−1)
(shaded lightest).

D

I

IV

II

III

S

y

x

Quadrant IV

Quadrant III (+1,−1)

Quadrant II  (−1,+1)

Quadrant I   (+1,+1)

(−1,−1)

Figure 4. Quadrants in a k-ary 2 cube for a
given source S (0,0) and destination D (2,3).

Once we have selected the quadrant, the packet is routed
adaptively within that quadrant. A dimension i is produc-
tive if, the coordinate of the current node xi differs from
di. Hence, it is productive to move in that dimension since
the packet is not already at the destination coordinate. At

each hop, the productive dimension with the shortest output
queue is selected to advance the packet.

(0, 0)

(2, 3)

x

y

S

D

Figure 5. Example route from S (0,0) to D (2,3)
through the minimal quadrant (+1,+1).

For example, consider the case above where we are rout-
ing from s = (0, 0) to d = (2, 3) in an 8-ary 2-cube net-
work. Suppose the routing algorithm has obliviously cho-
sen the minimal quadrant, (+1, +1). One possible route of
the packet is shown in Figure 5. On the first hop, the pro-
ductive dimension vector is p = (1, 1) that is both the x and
y dimensions are productive. Suppose the queue in the x di-
mension is shorter so the packet proceeds to node (1,0). At
(1,0) p is still (1,1) so the packet can still be routed in either
x or y. At this point, suppose the queue in the y dimension
is shorter, so the packet advances to node (1,1). At (1,1) p
is still (1,1) and this time the route is in x to (2,1). At this
point, the packet has reached the destination coordinate in
x so p = (0, 1). Since the only productive dimension is y,
the remaining hops are made in the y dimension regardless
of queue length.

4.1 Virtual Channels and Deadlock

Our implementation of GOAL employs 3 virtual chan-
nels (VCs) per unidirectional physical channel (PC) to
achieve deadlock freedom in the network. This is an ex-
tension of the scheme proposed in the ∗-channels algorithm
[8] applied to the non-minimal GOAL algorithm. There are
two types of virtual channels per PC, ∗ and non-∗. Packets
will move through the ∗-channels only when traversing the
most significant productive dimension. The non-∗ channels
are fully adaptive and can be used at any time. In order
to make the ∗-channel subnetwork free from deadlock, we
have two ∗-channels per PC - ∗0 and ∗1. ∗1 (∗0) is used
if the packet has (has not) crossed a wrap-around edge in
the current dimension. With these constraints it can be seen
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that the channel dependency graph3 for the ∗-channels asso-
ciated with GOAL is acyclic. Moreover, no ∗-channel can
ever participate in a deadlock cycle. Hence, every packet
that has not reached its destination always has a ∗-channel
in the set of virtual channels it can possibly use to make for-
ward progress towards its destination. Therefore, if VCs are
assigned fairly, deadlock can never arise. The formal proof
is a simple extension of that provided in Appendix A of [8]
and is not presented in this paper.

4.2 Livelock and Packet Ordering

Livelock is a condition whereby a packet keeps circu-
lating within the network without ever reaching its desti-
nation. Freedom from such a critical condition must be
guaranteed. All minimal algorithms like DOR, ROMM and
MIN AD4 guarantee livelock freedom with fair arbitration
since each channel traversed by a packet reduces the dis-
tance to the destination. Valiant’s algorithm is also deter-
ministically livelock free since it is minimal in each of its
phases. The Chaos scheme uses randomization to misroute
from a shared queue of packets in each node during con-
gestion. This randomization only ensures that the algorithm
is probabilistically livelock free. Both the RLB and GOAL
algorithms while non-minimal, provide deterministic free-
dom from livelock. Once a route has been selected for a
packet, the packet monotonically makes progress along the
route, reducing the number of hops to the destination at each
step. Since there is no incremental misrouting, all pack-
ets reach their destinations after a predetermined, bounded
number of hops.

The use of a randomized or adaptive routing algorithm
can and will cause out of order delivery of packets. If an
application requires in-order packet delivery, a possible so-
lution is to reorder packets at the destination node using the
well known sliding window protocol [16].

5 Performance evaluation

In this section we compare the throughput and latency
of the seven routing algorithms described in Table 1 on the
local and adversarial traffic patterns described in Table 2
and on 1,000 random permutations. We also compare the
latency histograms for these algorithms on random traffic,
their performance on hot-spot traffic and their stability post
saturation.

The first two traffic patterns in Table 2, NN and UR,
are benign in the sense that they naturally balance load and
hence give good throughput with simple routing algorithms.
The next three patterns, BC, TP, and TOR, are adversar-
ial patterns that cause load imbalance. These patterns have

3For a detailed explanation of channel dependency graphs, see [6].
4See Table 1 for a description of these algorithms.

Name Description
VAL Valiant’s algorithm - route to a random

node q (phase 1) anywhere in the network,
then to the destination (phase 2). Deadlock
is avoided using 2 subnetworks (for each
phase) of 2 VCs each [19].

DOR Dimension-order routing - route in the min-
imal quadrant in x first, then in y. Deadlock
is avoided using 2 VCs [15].

ROMM Two-phase ROMM - route to random node
q in the minimal quadrant, then to destina-
tion [10]. Deadlock is avoided using the
same scheme as in VAL .

RLB Randomized Local Balance [14] - choose
a quadrant Q to route in according to
a weighted probability distribution, then
route within Q first to a random inter-
mediate node then to the destination ran-
domizing the order of matching dimen-
sions. Deadlock is avoided using Linder
and Harden’s scheme [9].

CHAOS The Chaos routing algorithm. Deadlock is
avoided using deflection routing [2].

MIN AD Minimal Adaptive (or the ∗-channels algo-
rithm) - always route in the minimal quad-
rant, routing adaptively within it. Deadlock
is avoided using 3 VCs [8].

GOAL Globally Oblivious Adaptive Locally -
choose a quadrant Q to route in accord-
ing to a weighted probability distribution,
then route within Q adaptively. Deadlock is
avoided using 3 VCs [8].

Table 1. The routing algorithms evaluated in
this paper.

been used in the past to stress and evaluate routing algo-
rithms [14], [17], [2], [7], [8], [10]. Finally, the worst-case
pattern is the traffic pattern that gives the lowest through-
put. In general, the worst-case pattern may be different for
different routing algorithms. As shown in [17], the worst-
case pattern for oblivious algorithms such as DOR, ROMM,
VAL and RLB can be restricted to traffic permutations and
may be analytically computed. These patterns are reported
in [14]. However, there is no known analytical method to
determine the worst case traffic pattern for adaptive routing
algorithms.

5.1 Experimental Setup

Measurements in this section have been made on a cycle-
accurate network simulator that models the pipeline of each
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Name Description
NN Nearest Neighbor - each node sends to one

of its four neighbors with probability 0.25
each.

UR Uniform Random - each node sends to a ran-
domly selected node.

BC Bit Complement - (x, y) sends to (k − x −
1, k − y − 1).

TP Transpose - (x, y) sends to (y, x).
TOR Tornado - (x, y) sends to (x + k

2 − 1, y).
WC Worst-case - the traffic pattern that gives the

lowest throughput by achieving the maxi-
mum load on a single link [17].

Table 2. Traffic patterns for evaluation of rout-
ing algorithms

router as described in [11]. Routing is assumed to take one
20 FO4 pipeline stage for each algorithm as supported by
gate-level designs. All the assumptions regarding the net-
work model stated in Section 2.1 hold for the experimental
setup. Each packet is assumed to be one flit long and each
virtual channel is 8 flits deep. The total buffer resources are
held constant across all algorithms, i.e. the product of the
number of VCs and the VC channel buffer depth is kept con-
stant. For the CHAOS algorithm (which does not use VCs),
we increase the number of buffers in the shared queue of
each node. All contention is resolved using the age-based
arbitration, always giving priority to a packet with an older
time-stamp since injection. All latency numbers presented
are measured since the time of birth of the packets and in-
clude the time spent by the packets in the source queues.
We have simulated two topologies, 8-ary 2-cube and 16-
ary 2-cube, but present only the results for the 8-ary 2-cube
topology due to space constraints. The results obtained for
the 16-ary 2-cube topology follow the same trend.

All simulations were instrumented to measure steady-
state performance with a high degree of confidence. The
simulator was warmed up under load without taking mea-
surements until none of the queue sizes changed by more
than 1% over a period of 100 cycles. Once the simula-
tor was warmed up, all injected packets were labeled for
measurement for 100/load cycles. The simulation was then
run until all labeled packets reached their destinations. The
packet sample size was chosen to ensure that measurements
are accurate to within 3% with 99% confidence.

5.2 Throughput on Specific Permutations

Figure 6 shows the saturation throughput for each algo-
rithm on each traffic pattern. The two benign traffic pat-
terns are shown in Figure 6(a) while the four adversarial

patterns are shown in Figure 6(b) with an expanded vertical
scale. The figure shows that GOAL achieves performance
at least as good as VAL on the adversarial patterns while
offering significantly more performance on the benign pat-
terns - 52% higher throughput on random traffic and 4.6×
the throughput on nearest-neighbor. However, the through-
put of GOAL does not match the performance of minimal
algorithms on the local patterns. This is the price of good
worst-case performance.

Figure 6 also shows that the minimal algorithms, DOR,
ROMM and MIN AD, offer high performance on benign
traffic patterns but have very poor worst-case performance.
Because the adaptivity of CHAOS is local in nature, its per-
formance is comparable to that of MIN AD, a minimal al-
gorithm. VAL gives provably optimal worst-case perfor-
mance but converts every traffic pattern to this worst case
giving very poor performance on the benign patterns and
sub-optimal performance on several of the adversarial pat-
terns.

The exact worst-case throughput for the oblivious algo-
rithms — DOR, ROMM, VAL and RLB — is shown in Fig-
ure 6(b). Since there is no known method to evaluate the
worst case pattern for adaptive algorithms, the worst case
graphs shown for CHAOS, MIN AD and GOAL show the
lowest throughput over all traffic patterns we have simu-
lated. We know from claim (3) that MIN AD saturates at
0.33 for tornado traffic for k = 8 and further deteriorates
to 0.285 for k = 16. Chaos does not do appreciably better
on tornado traffic saturating at 0.35 and 0.30 for k = 8 and
k = 16 respectively. The worst case pattern for GOAL that
we know of at this point is the Πdia permutation discussed
in claim (1) on which it saturates at 0.50.

The latency-load curves for the benign UR pattern for
all the algorithms are shown in Figure 7. On this benign
pattern the minimal algorithms give the best performance,
VAL gives the worst performance, and GOAL falls midway
between the two. CHAOS, MIN AD, and DOR all offer
minimal zero-load latency and unit throughput because they
always take the shortest path. Because VAL performs two
rounds of randomized routing, its zero load latency is twice
that of the minimal algorithms and its saturation throughput
is half of theirs. Because GOAL occasionally routes the
long way around its latency is increased and its throughput
is reduced compared to the minimal algorithms. However,
it offers substantially better performance than VAL while
giving the same performance as VAL on worst-case traffic.

Figure 8 shows the latency-load curves for each algo-
rithm on the adversarial TOR pattern for each of the algo-
rithms. Here the balanced algorithms RLB and GOAL offer
the best performance because they efficiently balance load
across the two directions in the x dimension. VAL does
nearly as well but has more than twice the zero load la-
tency as the balanced algorithms because of its two-phase
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Figure 6. Comparison of saturation throughput of seven algorithms on an 8-ary 2-cube for (a) two
benign traffic patterns and (b) four adversarial traffic patterns.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Normalized Offered Load (α)

A
ve

ra
ge

 D
el

ay
 p

er
 p

ac
ke

t (
cy

cl
es

)

Uniform Random Traffic

VAL

RLB

GOAL

ROMM

DOR

MIN AD

CHAOS

Figure 7. Performance of different algorithms
on UR (Uniform Random) traffic.

nature and because it takes gratuitous hops in the y dimen-
sion. The minimal algorithms, DOR, MIN AD, and ROMM
all perform poorly (37% lower throughput than GOAL) on
the tornado pattern because they route all of the traffic in the
shorter direction, leaving the channels in the other direction
idle. While CHAOS is not a minimal algorithm, its adaptiv-
ity is local in nature and thus is not able to globally balance
load across directions. Thus the performance of CHAOS
closely matches the performance of MIN AD on all adver-
sarial patterns, including TOR.

5.3 Throughput on Random Permutations

One might ask how often permutations as bad as the ad-
versarial patterns of Figure 6 occur in practice. To address
this question, we measured the performance of each algo-
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Figure 8. Performance of different algorithms
on TOR (Tornado) traffic.

rithm on 1,000 random permutations5. Histograms of sat-
uration throughput over these permutations for six of the
algorithms are shown in Figure 9. No histogram is shown
for VAL because its throughput is always 0.5 for all permu-
tations. All the other routing algorithms have bell-shaped
histograms. The highest, average and worst throughput in
this experiment for each of the algorithms are presented in
Figure 10.

The figures show that over the 1,000 permutations,
GOAL is the only algorithm with a worst-case throughput
that matches or exceeds that of VAL. The minimal algo-
rithms and CHAOS do substantially worse. GOAL out-
performs the best of these algorithms, MIN AD, by 31%.
The figures also show that despite the fact that it obliviously
routes a fraction of traffic the long way around, GOAL has
the highest average case throughput of all of the algorithms,

5These 103 permutations are selected from the N ! = kn! possible
permutations on an N -node k-ary n-cube.
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Figure 9. Histograms for the saturation
throughput for 103 random permutations. (a)
DOR, (b) ROMM, (c) RLB, (d) CHAOS (e) MIN
AD (f) GOAL

outperforming MIN AD by 5%. This shows clearly that
even for an average permutation, global load balance en-
hances performance and it is worth obliviously misrouting
(as in GOAL) to achieve this balance.

The figure also shows the importance of using adaptive
routing to achieve local balance6. GOAL has 49% higher
average throughput and 75% higher worst-case throughput
than RLB which also uses quadrant selection to achieve
global balance but attempts to obliviously achieve local bal-
ance. For the same reason, the unbalanced adaptive algo-
rithms MIN AD and CHAOS outperform the minimal obliv-
ious algorithms, DOR and ROMM. MIN AD slightly out-
performs CHAOS in terms of both average and worst-case
throughput. This suggests that for most permutations, local
misrouting is not advantageous.

6This advantage of adaptive routing has also been noted in [2].
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5.4 Latency

To compare the latency of the seven algorithms, we com-
puted latency histograms between a representative source-
destination pair in a network loaded with uniform random
traffic for each algorithm. In an 8-ary 2-cube loaded with
uniform traffic, the Manhattan distance between a source
and a destination node can range from 1 to 8. In our experi-
ments, we chose to measure the latency incurred by packets
from a source to 3 different destination nodes with a back-
ground of uniform random traffic at 0.2 offered load:

• A (0,0) to B (1,1) - path length of 2 representing very
local traffic.

• A (0,0) to C (1,3) - path length of 4 representing semi-
local traffic.

• A (0,0) to D (4,4) - path length of 8 representing non-
local traffic.

The histograms for semi-local paths (packets from A to
C) are presented 7 in Figure 11. Each histogram is com-
puted by measuring the latency of 104 packets for the test
pairs. For all experiments, offered load was held constant
at 0.2. The experiment was repeated for each of the seven
routing algorithms.

The latency, T , incurred by a packet is the sum of two
components, T = H + Q, where H is the hop count and
Q is the queueing delay. The average value of H is con-
stant while that of Q rises as the offered load is increased.
For a minimal algorithm, H is equivalent to the Manhat-
tan distance D from source to destination. For non-minimal
algorithms, H ≥ D.

7The other sets of histograms are not presented due to space constraints.
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Figure 11. Histograms for 104 packets routed
from node A(0,0) to node C(1,3). (a) DOR, (b)
ROMM, (c) VAL, (d) RLB, (e) CHAOS and MIN
AD, (f) GOAL.

The results for all the three representative paths are pre-
sented in Figure 12. Under benign traffic at low load, the
three minimal algorithms, DOR, ROMM, and MIN AD, and
CHAOS (which behaves minimally at low load) give the
lowest latency. All of these algorithms have a minimal hop
count, H = 4, and the queueing delay Q is exponentially
distributed with means ranging from 0.44 cycles for MIN
AD to 0.76 cycles for ROMM. This difference in queueing
delay further shows the advantage of adaptivity. The result
is a latency histogram with a peak at H = 4 that falls off
exponentially.

The balanced algorithms, RLB and GOAL, have higher
latency (40% higher than minimal) and broader distribu-
tions than the minimal algorithms because they route a frac-
tion of the traffic in the non minimal quadrants. Depending
on the quadrant chosen the hop count for a given packet is
H = 4, 6, 10, or 12. With the weighted choice of quadrants

the average hop count is H = 5.5 and the distribution is the
superposition of four exponential distributions, one for each
quadrant. This increase in latency compared to the minimal
algorithms is one of the costs of providing high worst-case
throughput. However the balanced algorithms offer much
lower latency than VAL. GOAL is on average 2.45 times,
1.60 times and 1.12 times faster than VAL on local, semi-
local and non-local paths respectively.

VAL has the highest latency and broadest distribution be-
cause it operates in two random phases. Depending on the
choice of intermediate node the hop count H can be any
even number between 4 and 12. The average hop count is
H = 8, and the broad distribution is the superposition of ex-
ponentially decaying distributions starting at each of these
hop counts.
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Figure 12. Average total - hop (H) and queue-
ing (Q) - latency for 104 packets for 3 sets of
representative traffic paths at 0.2 load.

5.5 Stability

In this subsection, we evaluate the stability of each rout-
ing algorithm, that is its throughput with offered traffic in
excess of the saturation throughput. As described in Sec-
tion 2.2 for a given destination matrix Λ and rate of offered
traffic α we measure the accepted traffic, α′ as the mini-
mum accepted load over all source-destination pairs sending
packets.

Figure 13 shows α∗ (upper line), the average accepted
throughput and α′ (lower line), the minimum accepted
throughput vs. α for the BC permutation on GOAL and
CHAOS routing algorithms. The figure shows that CHAOS
is quite unstable on this adversarial traffic pattern due to
injection-queue starvation. Since CHAOS employs deflec-
tion routing to avoid deadlock, it accepts traffic from the
node (source queue) only if resources are available after
serving the input channels and the shared queue. Thus,
at high, non-uniform loads, the source queues on nodes in
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Figure 13. Accepted Throughput for BC traffic
on (a) GOAL and (b) CHAOS.

high-traffic areas are starved indefinitely leading to a nearly
zero α′. However, GOAL is stable with accepted traffic, α′

flat after saturation. The other five algorithms are also stable
post saturation with age-based arbitration and their graphs
are not presented due to space constraints.

It is worth noting that some algorithms presented in
the literature such as those in [7] show that the accepted
throughput degrades after saturation. This is because these
schemes either use deadlock recovery techniques [18] or
strict escape paths which drain the packets that may be in-
volved in a deadlock. Hence, when deadlock starts to occur
frequently after saturation, the throughput of the network
degrades to the bandwidth of the deadlock free lanes or
escape channels. The four oblivious algorithms — VAL,
DOR, ROMM and RLB — use deadlock avoidance, i.e.
they achieve deadlock freedom by ensuring that the chan-
nel dependency graph (see [6]) of all the virtual channels
used is acyclic. Hence, they are stable after saturation. MIN
AD and GOAL use the ∗-channels as the deadlock free es-
cape paths for packets that maybe involved in a deadlock in
the fully adaptive non-∗ channels. However, these escape
paths are not strictly meant for packets involved in a poten-
tial deadlock in the non-∗ channels, i.e. packets entering the
∗-channels can always go back to the non-∗ ones and vice
versa. Hence, none of the adaptivity is lost and the through-
put is sustained post saturation.

5.6 Performance on Hot-Spot traffic

Occasionally a destination node in an interconnection
network may become oversubscribed. This may occur in a
switch or router due to a transient misconfiguration of rout-
ing tables. In a parallel computer such a hot spot occurs
when several processors simultaneously reference data on
the same node.

We evaluate the performance of five algorithms on hot-
spot traffic by using a hot-spot pattern similar to that used
in [2]. We first select a background traffic pattern, bit com-

plement (ΛBC), on which most of the algorithms give sim-
ilar performance. On top of ΛBC , five nodes8 are selected
which are five times more likely to be chosen as destina-
tions than the other nodes. In the resulting matrix ΛHS all
rows sum to one, but the five columns corresponding to the
five hot-spot nodes sum to five. Since the three adaptive
algorithms — CHAOS, MIN AD and GOAL — and two
oblivious algortihms — VAL and DOR — give similar per-
formance on ΛBC , we present results for these five on the
resulting ΛHS traffic.
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Figure 14. Saturation Throughput for the Hot-
Spot traffic pattern and the background Bit
Complement pattern.

Figure 14 shows the performance of each routing al-
gorithm on the hot-spot pattern and the background BC
pattern. The adaptive algorithms, CHAOS, MIN AD, and
GOAL have similar performance on hot-spot traffic. They
clearly outperform the oblivious algorithms because adap-
tivity is required to route around the congestion resulting
from hot nodes. VAL gives throughput lower than 0.5 on
hot-spot traffic because the traffic matrix is no longer ad-
missible.

6 Conclusion

In this paper, we give a theoretical justification for the
advantage of non-minimal routing that proves that any min-
imal routing algorithm can have worst-case performance at
best half as good as a well balanced non-minimal algorithm
on k-ary n-cubes. Based on that argument, we introduce a
load-balanced, non-minimal adaptive routing algorithm for
torus networks, GOAL, that achieves high throughput on
adversarial traffic patterns while preserving locality on be-
nign patterns. GOAL matches or exceeds the throughput of
Valiant’s algorithm on adversarial patterns and exceeds the

8These five hot-spot nodes are chosen very close to each other to stress
the adaptivity of the algorithms.
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worst-case performance of Chaos, RLB, and minimal rout-
ing by more than 40%. GOAL exploits locality to give 4.6×
the throughput of Valiant on local traffic and more than 30%
lower zero-load latency than Valiant on uniform traffic.

GOAL globally balances network load by obliviously
choosing the direction of travel in each dimension, in ef-
fect randomly picking a quadrant in which to transport
the packet. The random choice of directions is made us-
ing distance-based weights that exactly balance load in
each dimension. Once the quadrant is selected, GOAL lo-
cally balances load by routing adaptively within that quad-
rant. GOAL employs a new algorithm for deadlock free-
dom based on an extension of the ∗-channels approach [8]
(which is for minimal routing) to handle the non-minimal
case. This provides deadlock freedom with just 3 virtual
channels per physical channel. Unlike CHAOS, GOAL
is deterministically livelock free since within the selected
quadrant distance to the destination is monotonically de-
creased with each hop.

We compare GOAL to four previously published obliv-
ious algorithms, VAL, DOR, ROMM and RLB and two
state-of-the-art adaptive routing methods CHAOS, and
MIN AD, and present a comparison in terms of throughput,
latency, stability, and hot-spot performance. This evaluation
includes throughput histograms on random permutations
and latency histograms for CHAOS and MIN AD that have
not been previously reported. GOAL provides the highest
throughput of the seven algorithms on four adversarial pat-
terns and on the average and worst-case of 1,000 random
permutations. The cost of this high worst-case throughput
is a modest degradation on local traffic. GOAL achieves
only 58% and 76% of the throughput of minimal algorithms
on nearest neighbor traffic and uniform traffic respectively.
Due to oblivious misrouting, GOAL also has 40% higher la-
tency on random traffic than the minimal algorithms; how-
ever it has 38% lower latency than VAL. Finally, the paper
analyzes network performance beyond saturation through-
put and shows for the first time that due to fairness issues
CHAOS is unstable in this regime for certain permutations.

The development of GOAL opens many exciting av-
enues for further research. Other topologies with path di-
versity, such as Cayley graphs and hierarchical networks,
may benefit from GOAL-like routing algorithms if a method
of globally balancing traffic on these topologies can be de-
veloped. A method to determine the worst-case traffic pat-
tern for an adaptive routing algorithm, analogous to [17]
for oblivious routing algorithms, would provide more pre-
cise determination of performance on adversarial traffic pat-
terns. It is also interesting to ask what new topologies may
be enabled by GOAL-like routing algorithms.
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