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Abstract
In nature, flying insects are capable of surprisingly good

navigation, despite the small size and relative simplicity of
their brains. Recent experimental research in biology has
uncovered a number of different ways in which insects use
cues derived from optical flow for navigational purposes,
such as obstacle avoidance, safe landing and dead-reckoning.
Inspired by the visual navigation of flying insects, this paper
presents a model of vision-based navigation using
Elementary Motion Detectors (EMDs). The performance
tests with an autonomous flying robot successfully
demonstrate goal-directed navigation in an unstructured
environment, as well as obstacle avoidance and course
stabilization behaviors. Further investigation in the
simulation shows that goal-directed navigation can be
potentially achieved by simple visual processing, and that
the design flexibility of this approach leads to high
adaptivity to the given task-environment.

1. Introduction
In nature, flying insects navigate through a complex

environment in a robust manner, despite their tiny brains.
Behavioral studies with insects have revealed that a number
of important navigational abilities rely mainly on visual
information: more specifically, image motion induced by
ego-motion plays a crucial role in their navigation. However,
vision is generally regarded as a computationally intensive
task, thus powerful hardware is required to operate in real
time. From an algorithmic viewpoint, the structure of visual
scenes is often very complex, and it can be difficult to
extract relevant information robustly. Especially, the
traditional technique of optical flow requires feature
tracking, which is possible only if visible objects possess
distinguishing features identified consistently in image
sequences1. Therefore, due to the limited weight constraint
and potentially hazardous conditions, flying artifacts rely
heavily on other sensory devices, such as GPSs, gyroscopes,
compasses, ultrasonic sensors, inclinometers, accelerometers,
and laser rangefinders2, 3, 4.

Recently, navigation using biologically inspired optical
flow has been investigated mainly on land-based agents. The
basic behaviors observed in flying insects, i.e. obstacle
avoidance, fixation behaviors and so on, were demonstrated
with relatively simple mechanisms5, 6, 7. Owing to its
simplicity, such mechanisms have been incorporated in a

robot exclusively using analog hardware5; a VLSI
implementation has been also realized8. In a similar way,
simulated flying agents were used for altitude control and
obstacle avoidance9, 10, 11, and a robotic gantry demonstrated
the landing behavior of flies12.

In our previous work, a biologically inspired model of
goal-directed navigation was tested with a freely flying
robot13. One of the interesting properties of this approach is
the lower computational cost and the design flexibility that
leads to the adaptivity to the given task-environment. In this
paper, we conduct further analysis with additional
experiments using the flying robot, as well as simulation
studies.

In the following section, we introduce navigation
mechanisms of flying insects. We then propose a goal-
directed navigation method in section 3, and show the
experiments with an autonomous flying robot in section 4.
Further analysis with simulation is discussed in section 5.

2. Navigation in flying insects
The vision systems of flying insects are exquisitely

sensitive to motion, because visual motion induced by ego-
motion can tell the animal much about its own motion and
also about the structure of its environment. Behavior
experiments with flies and bees show a number of different
ways in which insects use cues derived from optical flow for
navigational purposes (for review, see 14). Early studies
showed that a tethered fly inside a striped drum tends to turn
in the direction in which the drum is rotated15. This reaction,
so-called optomotor response, serves to help the insect
maintain a straight course by compensating for undesired
deviations. For speed control, honeybees have been shown
to regulate flight speed by monitoring the speed of apparent
motion16. For example, when forced to fly down a tapered
tunnel, bees slow down as they approach the narrowest
section and speed up again as the tunnel widens once more.
A similar mechanism can be used for achieving a smooth
landing12. By holding the angular velocity of the image of
the surface constant as insects approach the ground, the
forward and descent speeds are automatically reduced as the
surface is approached and are both close to zero at touch
down.� For long distance navigation, recent studies of bees’
behavior suggested that the amount of image motion plays
an important role in estimating the distance traveled17.



On the basis of above mentioned behavioral
experiments as well as electrophysiological studies, a model
of motion detection in the insect's nervous system, the
Elementary Motion Detector (EMD), has been proposed (for
review, see 18). A well-known model of the EMD is the so-
called Reichardt detector, which belongs to a class of
correlation-type detectors, shown in Figure 1. Two adjacent
photoreceptors send their outputs to temporal high-pass
filters which remove constant illumination containing no
motion information. These signals are then “delayed” by
exploiting the phase lag inherent in a first order temporal
low-pass filter. While not a true time delay, the low-pass
filter is a good approximation that biology appears to use.
Delayed channels are then correlated with adjacent, non-
delayed channels by means of a multiplication operation.
Finally the outputs of two opponent EMDs are subtracted to
yield a strongly direction-sensitive response.

Although the nature of the neural mechanisms and the
location in the visual pathway remains to be elucidated,
some behaviors of the motion sensitive neurons in insects
can be well characterized by this motion detector model14.
The salient properties of the movement-sensitive mechanism
underlying these responses are that it is directional, and it
does not encode the speed of the moving image. Rather, it is
sensitive to the temporal frequency of intensity fluctuations
generated by the moving image, and therefore confounds the
speed of the image with its spatial structure.

3. Navigation of a flying robot using the Elementary
Motion Detectors

In the rest of this paper, we focus on goal-directed
navigation by using EMDs. The navigation mechanism used
in this paper is built on the basis of two evidences gained in
behavior studies of insects. Firstly, a biologically inspired
visual odometer is applied for the distance measurement,
since bees are known to gauge the distance in terms of the
amount of image motion. In this method, the distance from
an initial location to a destination can be estimated by
accumulating responses of EMDs over time. However such
a visual odometer would work accurately only if the agent
were to follow a fixed route each time, because the total
amount of image motion that is experienced during the trip
would depend on the distances to the various objects that are
passed during navigation. Secondly, therefore, we assume
that sensory motor coordination, which regulates the courses

the robot follows, would play an important role in the
context of goal-directed navigation. This reaction is also
observed in behaviors of flying insects19.

To test this mechanism, we developed an autonomous
flying robot, shown in Figure 2. The flying robot Melissa is
a blimp-like flying robot, which consists of a helium balloon,
a gondola hosting the onboard electronics, and a host
computer. The balloon is 2.3m long and has a lift capacity of
approximately 400g. Inside the gondola, there are 3 motors
for rotation, elevation and thrust control, a four-channel
radio link, a miniature panoramic vision system, and the
batteries. The panoramic mirror was developed based on a
panoramic optics study20 and has a hyperbolic surface that
provides a visual field of 360 degrees on the horizontal
plane and 260 degrees vertically. The control process of
Melissa can be decomposed to three basic steps. First, the
video signal from the CCD camera attached to the gondola
is transmitted to the host computer via a wireless video link.
Second, the images are then digitized on the host computer,
which also performs the image processing in order to
determine the target motor command. And third, the motor
command is sent to the gondola also via radio transmission.

The control architecture of the robot is shown in Figure
3. The left and right visual fields consist of two dimensional
arrays of EMDs, in which EMDs are oriented both
horizontally and vertically to measure both movements18.
The number of EMDs in each array can be highly flexible;
in the extreme case, one EMD on each side and another for
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Figure 1. Left: The Reichardt model of EMD. Right: The
visual odometer based on a wide field motion detector.

Figure 2. Top: The autonomous flying robot, Melissa, and its
gondola. Bottom: An image obtained by the panoramic vision
system and its log-polar transformed image, which is also used in
the experiments.
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vertical one is sufficient (therefore, only 5 pixels are
required for 3-D control). In addition, parameters of the
EMDs, such as low-pass filter constants, can be set
independently, but only homogeneous distributions are
employed in this paper. The responses from both horizontal
and vertical wide field EMDs are extracted, and provide
inputs to the visual odometer as well as to a sensory-motor
circuit. In the visual odometer neuron, the given inputs from
the horizontal EMDs (EMD_H_R and L in Figure 3) are
accumulated over time. In the sensory-motor circuit, the
right and left horizontal EMDs are connected to the rotation
motor neuron. The right and left vertical EMD neurons
(EMD_V_R and L) are connected to the elevation motor
neuron, whereas the connection weights are chosen in such a
way to suppress vertical motion, i.e. to retain height. The
thrust motor neuron is connected to a bias neuron that drives
the robot forward at a constant speed. The connection
weights are set by hand, and are not changed during the
experiments.

4. Experiment with a freely flying robot
4.1. Course stabilization behavior

To evaluate the performance, we conducted a set of
experiments in an uncontrolled indoor environment. Figure
4 shows the experimental setup. We used two video cameras
to track and record the absolute trajectory of the robot for
later analysis. In this experiment, the connection weights
between the horizontal EMDs (EMD_H_R and L) and the
rotation motor neuron were hand-tuned in such a way that a
small difference between the EMD_H_R and EMD_H_L
activations is maintained. This scheme corresponds to a
course stabilization behavior, in which the robot follows a
“straight route”. The 80 x 80 pixels (40 x 40 EMDs) on each
left and right lateral views in the panoramic image were
used as inputs to the photoreceptors. All experiments were
conducted with the same initial conditions, i.e. initial
position, initial orientation, and connection weights. In this
experiment, the robot performed the control procedure for
20 seconds; the procedure was repeated 5 times.

In the upper graphs of Figure 5, the plots show 3-D
coordinates of the robot in one-second steps. Since the robot
has the same neural connections through all of the 5 trials,
the trajectories of the robot are similar. Figure 5 also shows
the visual odometer responses that the robot obtains during
each trial. Since the robot follows similar routes, the visual
odometer measures almost the same distances even with
natural stimuli in the office environment. In summary,
considering that the robot follows the same route, and it
measures the same "distance" robustly, this mechanism
could be used for navigating between different places in the
environment, i.e. for goal-directed navigation.

4.2. Obstacle avoidance behavior
In the next experiment, the low-pass filter parameters

and the number of EMDs were hand-tuned specifically for
obstacle avoidance in which, when the right EMDs have
higher activation, i.e. high speed image motion, the rotation
motor neuron will react to turn left, and vise versa. This

mechanism will make the robot follow a route away from
walls and obstacles, because image motion is faster when
the robot comes closer to objects. In this experiment, we
used 100 x 80 pixels (50 x 40 EMDs) on each lateral view;
the robot performed the control for 25 seconds; the trial was
repeated 5 times. The other parameters and experimental
setup were the same as the previous experiment.

Figure 6 shows the trajectories and the visual odometer
responses. As shown in the upper graphs, the robot reacted
to the wall on its left side (which is not shown in the graph),
and turned away to its right in all of the trials. The visual
odometer responses also estimated the distance correctly.

4.3. Discussion
The way a flying robot achieves goal-directed

navigation in these experiments is apparently different from
those of traditional map based approaches. There is no
explicit map in the robot brain, rather the navigation is
dependent on the interaction between the entire robot and
environment. For example, sensor morphology plays an
important role in this scheme, since the visual odometer can
work precisely only when sensors can sense the lateral
image motion. (The frontal part of the image does not move
much, when the robot goes straight.) However, if sensors
were positioned only on a part of the lateral view, obstacle
avoidance would not be performed well, because the robot
could not see obstacles approaching. Another important
point is parameters in the EMDs and the sensory-motor
connections. As described earlier, EMD arrays are sensitive
to a particular spatio-temporal frequency, thus the
parameters, such as time-delay constants in low-pass filters,
determine the output activation, which leads to the robot
behaviors together with the sensory motor connection
weights. It is not clearly shown in these experiments, but the
properties induced by the physical body of the robot, such as
inertia, air-friction, motor torque, etc. might be important as
well. For example, if the robot could move or turn faster
than a peak image frequency of EMDs, the sensory-motor
loop would become unstable. This reaction has been
reported in physiology study of flies21.

An advantage of this approach is that neither
computationally intensive feature tracking for optical flow
nor precise calibration is required even in an uncontrolled
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environment. As long as images contain intensity
fluctuations, this navigation mechanism performs goal-
directed navigation. Another advantage is that it is relatively
easy to change the behavior without changing the basic
mechanisms. In these experiments, for example, the course
stabilization and obstacle avoidance behaviors were
demonstrated by simply changing the low-pass filter
parameters and the number of EMDs, however it is also
intuitive that other important behaviors for flying insects
could be potentially achieved with similar mechanisms.

5. Simulation Experiments
5.1. Method

This section presents a simple simulation experiment to
investigate the influence of parameters on the proposed
approach. For the sake of convenience, we conducted the
simulations in a 2-D environment. As shown in Figure 7, an
agent navigates through a corridor, both sides of which have
walls with one-dimensional sinusoidal intensity patterns.
The same controller described in section 2 is implemented
on the agent, but it has no inertia or friction, thus the
position and the orientation of the agent are simply
calculated from visual inputs in the previous step. The agent
starts to navigate from the same initial condition and
continues until it hits the walls or reaches the end of the
experimented area.

We tested 2, 40, and 90 pixels on each lateral view of the
agent (therefore the agent has 2, 40, and 90 EMDs in total
respectively), each of them are positioned at a constant

angular distance of 2 degrees. We began with a simple
environment in which walls in the corridor contains
sinusoidal intensity patterns. Noise was then added by
means of the following equation.

I(x) = 128 + 256 x sin(x)
+ 256 x Noise_Level x Random (1)

where I(x) is the intensity at location x, and Random is a
random value between 0 and 1. We tried Noise_Level values

Figure 6. Top and Middle: 3-D trajectories of the flying robot
during the obstacle avoidance experiments. Bottom: Visual
odometer responses.

Figure 5. Top and Middle: 3-D trajectories of the flying
robot during the course stabilization experiments. Bottom:
Visual odometer responses.
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Figure 7. Top: The simulation setup. Bottom: The typical
patterns used on the wall. (Noise 0, 20, 50 and 100 % from
top to bottom.)



of 0, 20, 50, and 100 %. This noise corresponds to a
variation of spatial structure in the real environment. Figure
7 shows the typical sinusoidal patterns at each noise level.
With each combination of the number of EMDs and the
noise level, 20 trials were tested using the different wall
patterns generated by different random seeds.

5.2. Result and discussion
Figure 8 illustrates the trajectories from each trial, and

Figure 9 shows the mean visual odometer responses of 20
trials and the standard deviations (SD) as percentage of the
mean visual odometer responses. In case of Noise_Level 0%,
the proposed method can achieve goal-directed navigation
with only 2 EMDs (4 pixels); the agent follows the same
route and measures the distance correctly, i.e. zero SD. In
the noisy conditions, however, the trajectories spread out in
earlier stages of the navigation, which lead to larger
odometer errors. In the cases of 40 and 90 EMDs, on the
other hand, deviations of routes are relatively small. These
results suggest that the larger numbers of EMDs improve the
performance in the noisy environments, namely goal-
directed navigation can be achieved robustly even when
spatial structures of the environment are modified. This also
implies the design flexibility of the proposed approach in a
sense that designers (or an evolutionary process) can
flexibly change the architecture of the agent to adapt to the
complexity of the given task-environments.
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Figure 8. Trajectories of the simulated agent. Each graph contains the results from 20 trials with different wall patterns.

�

Figure 9. Top: The mean visual odometer responses of 20
trials. Bottom: The standard deviations as percentage of the
mean visual odometer responses.



6. Conclusion
The concept of “cheap vision” is summarized in 22, and

it is largely employed in the proposed scheme of goal-
directed navigation. This paper investigated mainly two
points; simple image processing and design flexibility,
which lead to robust control architecture and adaptivity to
the given environment. The control of our blimp-like robotic
platform is by far simpler than those of other platforms, such
as helicopters. However, by enhancing this “cheap vision”
approach, it would be possible to realize more sophisticated
controls for more demanding situations with a simpler
architecture, as the natural evolution has found a solution for
flying insects.
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