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Abs t r ac t .  We investigate the general problem of accurate metrology 

from uncalibrated video sequences where only partial information is 

available. We show, via a specific example - plotting the position of 

a goal-bound soccer ball - that accurate measurements can be obtained, 

and that both qualitative and quantitative questions about the data can 

be answered. 

From two video sequences of an incident captured from different view- 

points, we compute a novel (overhead) view using pairs of corresponding 

images. Using projective constructs we determine the point at which the 

vertical line through the ball pierces the ground plane in each frame. 

Throughout we take care to consider possible sources of error and show 

how these may be eliminated, neglected, or we derive appropriate uncer- 

tainty measures which are propagated via a first-order analysis. 

1 I n t r o d u c t i o n  

The 1966 World Cup Final at Wembley Stadium, between England and West 

Germany, produced what is arguably the best known and most  controversial 

goM in football history. In extra time, with the score at 2-2, Geoff Hurst  the 

l~Sngland number 10, received the ball from the right, turned, and struck a shot 

towards the German goal. With the goal-keeper beaten, the ball cannoned down 

from the crossbar, hit the ground and bounced back out into play (whence it was 

cleared by the German defence). English players claimed a goal - tha t  the ball 

had passed completely over the line - and after consultation with his linesman, 

the referee concurred. England went on to win 4-2, but the controversy has never 

been satisfactorily resolved. 

Here we resolve this controversy using video sequences of the goal. Two mon- 

ocular sequences acquired from substantially different viewpoints are used for 

the analysis. Figure 1 shows a series of frames from each of the sequences. Using 

these, the question we wish to answer is Did the ball cross the goal line? And, if 

not, How close did it come to crossing the goal line? 

The question is challenging because of the lack of available calibration: 

1. The internal calibration of the cameras is unknown (and free - -  i.e. may  well 

change during the sequence). 

2. The motion of the cameras is unknown, and relative orientation (between 

stereo pairs) changes. 

3. For many  frames of the sequence there are few features available off the ground 

plane, other than moving objects - -  the players and the bail. 

From an uncalibrated monocular sequence projective 3D measurements  can be 

made [2, 4, 7] and upgraded to Euclidean (angles, lengths) [6, 12] for unchanging 
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Fig. 1. Images from two available sequences of the incident. 

internal parameters. These methods are not applicable for two reasons: first, 

because of the free internal parameters, and second because the object of interest 

(the ball) is moving relative to other objects in the image (in particular the 

ground). A binocular view (images acquired simultaneously) avoids the second 

problem, and, if the internal parameters and relative orientation of the cameras 

were also unchanging for a few frames, then 3D Euclidean structure could be 

recovered [1, 18, 19]. Again, the free parameters and changing relative motion 

prevent this. In the light of this paucity of information how can the question be 

answered? 

It is answered by projecting the ball vertically onto the ground plane and 

charting the projected position and uncertainty in this position relative to the 

goal line. Vertical is defined by the goal posts, and metric information is provided 

by the dimensions of the ground plane markings. We employ the ground plane 

homography between views, together with vertical vanishing points, which can 

be computed even though point features off the ground plane are often not 

available. The technique is related to Quan and Mohr's [13] "shadow" algorithm 

for computing, from two images acquired from different viewpoints, the imaged 

intersection of a line with a plane. This algorithm was subsequently used to 
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compute invariants of 3D objects [3], and for specifying points for robotic grasp- 

ing [8]. 

The procedure here is a development on these papers in two ways: first, the 

intersection is not between an actual line and a plane, but between a virtual line 

constructed using the vertical direction vanishing point; and, second (and more 

importantly),  a full error analysis is given for the projective transfer. The error 

analysis takes into account three sources of error: first, the localisation error 

of the points used to define the projective transformation; second, the localisa- 

tion error of the computed vanishing point; and, third, the localisation error of 

the ball. This case study exemplifies the measurement of relative positions and 

their uncertainty, from uncalibrated image sequences, when there is insufficient 

information for a full 3D reconstruction. 

We begin by describing details of the construction in section 2. The sources 

of error are outlined in section 3 and the implementational details, including 

t reatment  of errors, are given in section 4. Finally, results are presented in sec- 

tion 5. 

2 O u t l i n e  o f  m e t h o d  

We determine the vertical projection of the ball onto the ground plane from 

two images acquired simultaneously from different viewpoints. To visualise this, 

imagine dropping a (vertical) "plumb-line" from the ball to the ground [10]. We 

show that,  

Given 

1. two images acquired simultaneously from different viewpoints, 

2. the vertical vanishing point in each image, 

3. the homography (see below) between the images induced by the ground plane, 

4. the images o/ a 31) point B. 

then the intersection, P, with the ground plane of a vertical line through the 

point B can be computed uniquely. 

In the following we denote world entities by upper case, and their corresponding 

images by lower case 3-vectors, e.g. x and x ~ for points, and 1 and F for lines. 

Matrices are denoted by teletype capital letters. For homogeneous quantities, = 

indicates equality up to a non-zero scale factor. 

The geometry of the construction is illustrated in figure 2, where the line is 

defined by two points, B and V, in 3D. Actually, V is a point on the plane 

at infinity (an ideal point), and its images v, v ~ are vanishing points, but  this 

does not affect the projective construction. The plane projective transformation 

(homography) T between the two images via the ground plane provides a means 

of transferring lines between the two images. If 1 and F are images of a line on 

the ground plane, then F -- T-T1, where T is a 3 x 3 point transformation matrix: 

x ~ ----- Tx for images of points on the ground plane. 

There  are four steps in the algorithm for computing p, the image of P:  

1. Compute the plane projective transformation, T between the two images from 

the correspondence of four lines (no three concurrent) i.e. 1~ = T - T l i , i  E 
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Fig. 2. L is a line passing through the points V (the vertical ideal point) and B (the 

ball), which intersects the plane r (the ground plane) in the point P. I and l' are images 

of L, which does not lie on It. Equivalently, however, they are the images of lines L~ 

and L'~, respectively, which are on the ground plane - -  the line L casts a "shadow" 

L~ from view 1, where the plane lr intersect the backprojection of the line 1 from the 

first image. A similar shadow, L~, is generated from view 2. Since L'8 is on the ground 

plane, its image is 2"Tl j in image 1, where 1" is the point projective transformation 

between the images induced by the plane 7r. Since the lines L~ and L~ intersect at P, 

their images 1 and s -- TTI ' respectively, intersect at the image p of P. 

{1, .., 4}. Details of this computat ion are given in section 4. 

2. Compute  the lines through the images of V and B. These lines are given by 

1 = v x b, l' = v '  x b '  in the first and second images respectively. 

3. Transfer the line 1' from the second onto the first image as s = TT1 '. 

4. Then the image of the intersection point is p = s x 1 in the first image. 

A similar construction determines pl, the imaged intersection in the second 

image, as p '  = (T-T1) X I'. 

This computat ion can also be transferred to a plan (rectified) view of the 

ground plane using the projective t ransformation between the points/l ines on 

the ground plane and their images. In this case the six-yard goal markings are 

known (up to a plane Euclidean transformation),  and these relative measure- 

ments provide metric calibration, and a 2D frame in which to evaluate uncer- 

tainty. 

3 S o u r c e s  o f  e r r o r  

Potential  sources of error are discussed in the following sub-sections. In each 

case it is demonstrated that  these potential  errors did not arise, or could be 

accounted for. 

Synchronisation 
The synchronisation of the two sequences used is an essential assumption of 
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the method. The time difference between frames is assessed by computing the 

ground plane homography between the two images using features corresponding 

to fixtures (such as marked lines on the ground, and goal posts), and measuring 

the error when this transformation is applied to features corresponding to moving 

objects (player's shadows). The error is the pixel distance between the actual 

and transferred point. The synchronisation error could be up to 20ms between 

video frames (1/48 s between film frames). 

Eight points are obtained to sub-pixel accuracy by intersecting straight lines 

fitted to the ground plane markings. The homography is then computed using 

a combination of linear and non-linear minimisation where the cost function is 

the transfer error. 

The accuracy of the transformations is first assessed by measuring the error 

for fixtures not used in the computation of the transformation. Errors are typ- 

ically less than two pixels (e.g. for the ground plane computation 8 matches are 

available, 6 are used to compute the homography, and the error measured on 

the remaining two). For moving objects the error between corresponding frames 

of sequences are similar to the fixture error, whilst for a near corresponding 

frame, the errors exceed 10 pixels. Figure 3 illustrates these cases. In summary, 

the ground plane homography is used to establish that  the two sequences are 

"perfectly" synchronised. 

R a d i a l  distortion 

In order to take advantage of projective geometry we require that  the image 

formation process be described accurately by a central projection model. This 

model is invalid if there is any significant lens distortion, the most common type 

of which is radial distortion. One manifestation of radial distortion is bending 

of straight lines near the periphery. We have therefore tested its effect by fitting 

lines to known straight features in the periphery of images in each sequence. Fig- 

ure 4 shows two typical images and corresponding residuals after an orthogonal 

regression fit to putative straight edge data. The lines fitted are superimposed on 

the images. The side view shows no distortion (residuals are distributed evenly 

either side of the fitted line), while a small, but for our purposes insignificant, 

amount of distortion is apparent in the three quarter view (obtained with a wider 

angle lens). 

Straightness of  lines/planarity of  ground "plane" 

If an imaged line remains straight through a range of viewpoints then this is 

compelling evidence that the world line is straight. Similarly, the straightness of 

a number of transverse lines on a surface is evidence that  the surface is planar. 

The image measured straightness of all lines of the six-yard markings throughout  

both sequences indicates the planarity of the ground. 

Motion blur 

One further potential source of error is motion blur. As the ball moves (while 

the camera is stationary) it is significantly blurred in the direction of motion. 
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Fig.  3. Assessing the synchronisation of the sequences. (a) is a frame from sequence 1, 

and (b) (c) are near corresponding frames from sequence 2. The ground plane homo- 

graphies between the frames (a ~ b, and a &: c) are computed from imaged f ix tures .  

Two points (fixtures) are marked on the ground plane of frame (a) and transferred to 

frames (b) and (c) using the appropriate homography. The disparity between trans- 

ferred and actual position is negligible (i.e. less that  a pixel), indicating the accuracy of 

the computed homography. (d) (e) (f) are the same frames with points corresponding 

to m o v i n g  objects marked in (d). The points chosen are the left most point of the 

shadow of each player. The transferred points are superimposed on (e) and (f). In (e) 

the correspondence between transferred and actual position is again negligible, indicat- 

ing that  the frames are synchronised. However, in (f) there is a significant discrepancy 

(10 pixels) indicating that  the frames are not synchronised. 

Similarly, as the  ball is t racked  by the  c a m e r a m a n ,  the  s t a t iona ry  features  in the  

env i ronment  are observed to blur. 

For tuna te ly  during the  crucial f rames  in which the  ball is close to  crossing the  

line, there  is little blur due to c amera  mot ion.  T h a t  which there  is, is accounted  

for in the  line uncer ta in ty  by inflating the  line covariance appropr ia te ly .  T h e  

significant blur  is due a lmost  entirely to the  mot ion  of the  ball. In  this case we 

take  the  blur  into account  by a grea ter  uncer ta in ty  in the  ball locat ion in the  

direct ion of mot ion.  
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Fig. 4. Testing for radial distortion. (a) an image from the three-quarter view sequence 

with a detected line (shown black) near the periphery. The residuals of an orthogonal 

regression fit are shown in the graph below. The axes are in pixels. (b) is for a line 
from the side sequence. 

4 Implementat ion and error analysis 

In this section we discuss the representation, computation, and uncertainty of the 

geometric primitives and transformations required for the analysis. We follow the 

approach of [5, 11] computing uncertainty propagation via first-order approxim- 

ations. We have verified the validity of the first-order model using Monte Carlo 

techniques. Full details are given in [15]. The covariance of a vector is denoted 

Ax. The dimension of a matrix is indicated where necessary, in parentheses: e.g. 

Ax(2 • 2). 

L i n e s  

Line segments are computed using orthogonal regression on a set of canny 

edge strings. Each (manually selected) set of edge strings is processed using the 

RANSAC algorithm [17] to enforce collinearity, adding greatly to the robustness 

of the line fitting by providing rigorous outlier rejection and by enabling multiple 

strings to contribute to one line segment. 

Lines are represented both as homogeneous three vectors and by (inhomo- 

geneous) two-parameter representations: 

a = [a, c] T such that  
a x  + y + c = 0, if the line is closer to horizontal 

x + a y  + c = 0, if the line is closer to vertical 

The uncertainty of a line is represented by a 2 x 2 covariance matrix, An, which 
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Fig. 5. Estimation of th~ vertical vanishing direction via the goal-posts. The • marks 

the ball~ and the extended black line indicates the image of a vertical line through the 
ball (it joins the ball to the vanishing point computed from the goal-posts). 

is computed from edgel uncertainties using the method described in Chapter 5 of 

[5], and where necessary, by a 3 x 3 form for this covariance, denoted Aa(3 x 3). 

Points  

Points are generally localised by intersecting lines, and their covariance com- 

puted from the line uncertainty. Where this is not possible, e.g. the ball centre, 

the point is picked with a mouse, in which case the uncertainty is estimated as 

the mouse precision (about •  pixel in each direction). The uncertainty in a 

point 's position is represented by the 2 x 2 covariance matrix Ax. 

The vertical vanishing point is obtained by intersecting lines computed from 

the obvious vertical cues in each image - the goal-posts. Figure 5 shows an ex- 

ample. Care must be exercised when intersecting lines to find vanishing points, 

since the final component of the homogeneous representation may be close to 

zero, rendering the computations of the inhomogeneous coordinates and cov- 

ariance unstable. For the case of vertical vanishing points which are of special 

interest here, we derive inhomogeneous coordinates from v = [vx,vy,Vz] T as 

[v~:/Vy, vz/vy]T and the covariance calculation is modified appropriately. 

Intersect ions  

The intersection of two lines is given by the cross-product of homogeneous 

lines, v -- 11 x 12. Letting x = [v~/vz, vy/vz] T, we obtain the uncertainty in the 

location of the intersection using a first-order error analysis: 

0 Aa2(3x3)  DT' where D ( 2 x 6 ) =  I 

G r o u n d  p l a n e  h o m o g r a p h y  

The homography between a camera view and the plan view, T, is obtained 

from the corners of the six-yard area 1. It is computed from image positions 

p, which are estimated accurately by the intersection of extended lines, and 

1 We also compute the line transformation using four line correspondences, but have 
omitted the discussion here since it is analogous to that for points, although com- 

plicated by the need for two different parameterisations of lines. 
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Fig. 6. The three-quarter and side views of the action just before the ball strikes the 

crossbar, showing the positions of lines used tbr registration. 

corresponding plan view positions P,  which have known (exact) values. Each 

correspondence gives rise to two independent linear equations in the eight un- 

knowns of T, so from four such correspondences we can construct and solve the 

8 x 8 matrix equation At = b, where t is an 8-vector of the free parameters of T. 

Defining the vector z to be the 8-vector containing the inhomogeneous co- 

ordinates of the image points Pi...4 (hence Az is a block diagonal matr ix consist- 

ing of the 2 x 2 submatrices A,,, where x = [p~/pz,py/pz]T) ,  it is straightforward 

to show that: 

At = D Az D T where D(8 X 8 )  - -  O t  __ A _  1 C~A 
0z ~ t  

T r a n s f o r m i n g  p r i m i t i v e s  

The final aspect of uncertainty which must be considered, is how to compute 

the uncertainty of a transformed primitive, when both the primitive and the 

transformation are uncertain. In the case of points (lines are analogous but  once 

again, complicated slightly by the necessity for two different representations) the 

transformation is given by P = Tp. Thus the uncertainty in X = [P~/Pz, p y / p z ] T  

depends on Ax and At the covariances of the image position x = [p~/Pz, Py/Pz] T 

and homography T respectively, and is given by 

lAx 0 I D T where D ( 2 x l 0 ) - -  0X 
Ax -= D At cg{x, t} 

5 Results 

As indicated previously, the four lines of the six-yard area are used to register 

each image with the plan view, and the goal-posts are used to determine the 

vertical vanishing direction. The centre of the ball is picked manually with a 

mouse (and its uncertainty set to reflect the error introduced by this process). 

Figure 6 shows one pair from the sequence with the lines and ball position 

superimposed. 

The rectified six-yard area is shown in figure 7a, with the centre of the ball, 

and its covariance, for the frame before the ball strikes the crossbar. The ellipse 

represents the 3a limit, meaning there is, practically speaking, no chance that  

the centre of the ball is outside this ellipse. The transferred vertical lines used 
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Fig. 7. (a) One ball position on the rectified frame, together with its uncertainty ellipse. 

The top line is the front of the (finite width) goal line; (b) Uncertainty ellipses and 
constraint lines for the crucial frames of the sequence. 
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Fig. 8. (a) The computed position of the ball throughout the sequence; (b) distance 
away from being a goal (in cm) versus frame number for the crucial frames of the 

sequence. 

to compute the position are shown, with the ball position being their point of 

intersection. The uncertainty ellipses for all of the computed ball positions from 

just before the ball struck the crossbar to the point where it reenters play can 

be seen in figure 7b. One point of note here is that  there are four frames in 

the middle of this sequence when a ball position cannot be computed because 

the goal-keeper obscures the ball in the three quarter view. This does not affect 

our ability to decide the question of whether it crossed the line or not, since we 

still have one constraint on the ball position: The transferred vertical line which 

represents this constraint has been drawn in the figure for the "missing" frames 

in which the ball strikes the ground, clearly showing that  wherever the ball is 

placed along this line, we can still say with certainty that  it was not across the 

line. 

The complete set of computed ball positions from the moment Hurst shot for 

goal, to the point where it hit the crossbar, then the ground, and finally back 

out into play is shown in figure 8(a), rendered with the rectified texture (from 

the last image pair). The answer to the question, "did the ball cross the line?" 

must also take the ball radius into account, and a more quantitative analysis is 

given in the graph of figure 8(b) which shows the distance of the ball from being 

a goal (taking its radius into account) plotted against frame number. The dotted 

lines indicate three standard deviations from the estimate, thus a conservative 

estimate has the ball still 6cm from being a goal. 
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6 C o n c l u s i o n s  

While it has been known for some t ime that  3D structure can be computed 

from uncalibrated views of a scene given sufficient correspondences in general 

position, this has rarely been used to answer specific, metric questions about  

the data. The approach taken here has been to make use of plane projective 

homographies to compute an overhead view of the action from a sequence of 

disparate image pairs. An alternative approach might have used virtual parallax, 

as described in [16], but this could only give a qualitative answer and would have 

required that  the whole of the goal-mouth be visible in all frames. Another,  and 

more convenient method,  would have been to use an affine approximation to the 

imaging geometry - -  since fewer features would have been required. However, 

this approximation was found to be insufficiently accurate for these sequences as 

the images exhibit non-negligible perspective effects. Thus, although in the past  

the use of affine structure has proved fruitful for various active vision tasks [8, 14] 

such as tracking or visual servoing, it is not well suited to tackling quanti tat ive 

measurements tasks unless the projection model truly is affine. 

The application we have presented is one of a wider class of problems (such as 

traffic monitoring) in which the ground plane t rajectory of a target  is desired, but  

in which the camera calibration is difficult or impossible to obtain with sufficient 

accuracy. Sporting domains are often ground-plane orientated, with well known 

regular marking which can be used for registration, and so are particularly suited 

to this analysis [9]. 

While at the same t ime providing a compelling example of the power of un- 

calibrated techniques, this work has made a tangible contribution in settling, 

once and for all, the argument  over whether or not the ball crossed the line in 

the most famous goal of all. In describing the closing seconds of the match,  com- 

mentator  Kenneth Wolstenholme said of celebrating English fans: They think it's 

all over. It is now/Nearly  thir ty years on, his words are once again appropriate.  
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