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Abstract

Achieving a target objective, goal or aspiration level are relevant aspects of decision making under
uncertainties. We develop a goal driven stochastic optimization model that takes into account an
aspiration level. Our model maximizes the shortfall aspiration level criterion, which encompasses the
probability of success in achieving the goal and an expected level of under-performance or shortfall.
The key advantage of the proposed model is its tractability. We show that proposed model is reduced
to solving a small collections of stochastic linear optimization problems with objectives evaluated un-
der the popular conditional-value-at-risk (CVaR) measure. Using techniques in robust optimization,
we propose a decision rule based deterministic approximation of the goal driven optimization problem
by solving a polynomial number of subproblems with respect to the accuracy, with each subproblem
being a second order cone optimization problem (SOCP). We compare the numerical performance of
the deterministic approximation with sampling approximation and report the computational insights
on a multi-product Newsvendor problem.
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1 Introduction

Stochastic optimization is an adopted framework for modeling optimization problems that involve un-
certainty. In a standard stochastic optimization problem, one seeks to minimize the aggregated expected
cost over a multiperiod planning horizon, which corresponds to decision makers who are risk neutral;
see for instance, Birge and Louveaux [9]. However, optimizing an expectation assumes that the decision
can be repeated a great number of times under identical conditions. Such assumptions may not be
widely applicable in practice. The framework of stochastic optimization can also be adopted to address
downside risk by optimizing over an expected utility or more recently, a mean risk objective; see chapter
2 of Birge and Louveaux [9], Ahmed [1] and Ogryczak and Ruszczynski [29]. In such a model, the onus
is on the decision maker to articulate his/her utility function or to determine the right parameter for
the mean-risk functional. This can be rather subjective and difficult to obtain in practice.

Recent research in decision theory suggests a way of comprehensively and rigorously discussing
decision theory without using utility functions; see Castagnoli and LiCalzi [12] and Bordley and LiCalzi
[8]. With the introduction of an aspiration level or the target objective, the decision risk analysis focuses
on making decisions so as to maximize the probability of reaching the aspiration level. As a matter of
fact, aspiration level plays an important role in daily decision making. Lanzillotti’s study [23], which
interviewed the officials of 20 large companies, verified that the managers are more concerned about a
target return on investment. In another study, Payne et al. [30, 31] illustrated that managers tend to
disregard investment possibilities that are likely to under perform against their target. Simon [38] also
argued that most firms’ goals are not maximizing profit but attaining a target profit. In an empirical
study by Mao [26], managers were asked to define what they considered as risk. From their responses,
Mao concluded that “risk is primarily considered to be the prospect of not meeting some target rate of
return”.

Based on the motivations from decision analysis, we study a two stage stochastic optimization
model that takes into account an aspiration level. This work is closely related to Charnes et al.’s P-
model [13, 14] and Bereanu’s [6] optimality criterion of maximizing the probability of getting a profit
above a target level. However, maximizing the probability of achieving a target is generally not a
computationally tractable model. As such, studies along this objective have been confined to simple
problems such as the Newsvendor problem; see Sankarasubramanian and Kumaraswamy [36], Lau and
Lau [22], Li et al. [24] and Parlar and Weng [32].

Besides its computational intractability, maximizing the success probability assumes that the mod-
eler is indifferent to the level of losses. It does not address how catastrophic these losses can be expected
when the “bad”, small probability events occur. However, studies have suggested that subjects are not
completely insensitive to these losses; see for instance Payne et al [30]. Diecidue and van de Ven [17]
argue that a model that solely maximizes the success probability is “too crude to be normatively or
descriptively relevant.” They suggested an objective that takes into account a weighted combination of
the success probability as well as an expected utility. However, such a model remains computationally
intractable when applied to the stochastic optimization framework.

Our goal driven optimization model maximizes the shortfall aspiration level criterion, which takes
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into account the probability of success in achieving the goal and an expected level of under-performance
or shortfall. A key advantage of the proposed model over maximizing the success probability is its
tractability. We show that proposed model is reduced to solving a small collections of stochastic op-
timization problems with objectives evaluated under the Conditional-Value-at-Risk (CVaR) measure
popularized by Rockafellar and Uryasev [34]. This class of stochastic optimization problems with mean
risk objectives have recently been studied by Ahmed [1] and Riis and Schultz [33]. They proposed
decomposition methods that facilitate sampling approximations.

The quality of sampling approximation of a stochastic optimization problem depends on several
issues: the confidence of the approximation around the desired accuracy, the size of the problem, the
type of recourse and the variability of the objective; see Shaprio and Nemirovski [37]. Even in a two stage
model, the number of sampled scenarios required to approximate the solution to reasonable accuracy
can be astronomical large, for instance, in the presence of rare but catastrophic scenarios or in the
absence of relatively complete recourse. Moreover, sampling approximation of stochastic optimization
problems requires complete probability descriptions of the underlying uncertainties, which are almost
never available in real world environments. Hence, it is conceivable that models that are heavily tuned
to an assumed distribution may perform poorly in practice.

Motivated by recent development in robust optimization involving multiperiod decision process (see
Ben-Tal et al. [3], Chen, Sim and Sun [15] and Chen et al. [16]), we propose a new decision rule
based deterministic approximation of the stochastic optimization problems with CVaR objectives. In
line with robust optimization, we require only modest assumptions on distributions, such as known
means and bounded supports, standard deviations and the forward and backward deviations introduced
by Chen, Sim and Sun [15]. We adopt a comprehensive model of uncertainty that incorporates both
models of Chen, Sim and Sun [15] and Chen et al. [16]. We also introduce new bounds on the CVaR
measures and expected positivity of a weighted sum of random variables, both of which are integral in
achieving a tractable approximation in the form of second order cone optimization problem (SOCP); see
Ben-Tal and Nemirovski [5]. This allows us to leverage on the state-of-the-art SOCP solvers, which are
increasingly becoming more powerful, efficient and robust. Finally, we compare the performance of the
deterministic approximation with a sampling approximation on a class of multi-product Newsvendor
problem that maximizes the shortfall aspiration level criterion.

The structure of the paper is as follows. In Section 2, we introduce the goal driven model and
propose the shortfall aspiration level criteria. We show that the goal driven optimization problem can
be reduced to solving a sequence of stochastic optimization problems with CVaR objectives. Using tech-
niques in robust optimization, we develop in Section 3, a deterministic approximation of the stochastic
optimization problem with CVaR objective. In Section 4, we report some computational results and
insights on a multi-product Newsvendor problem. Finally, Section 5 concludes this paper.

Notations We denote a random variable, x̃, with the tilde sign. Bold face lower case letters such as
x represent vectors and the corresponding upper case letters such as A denote matrices. In addition,
x+ = max{x, 0} and x− = max{−x, 0}. The same operations can be used on vectors, such as y+ and
z− in which corresponding operations are performed componentwise.

3



2 A Goal Driven Optimization Model

We consider a two stage decision process in which the decision maker first selects a feasible solution
x ∈ <n1 , or so-called here-and-now solution in the face of uncertain outcomes that may influence the
optimization model. Upon realization of z̃, which denotes the vector of N random variables whose
realizations correspond to the various scenarios, we select an optimal wait-and-see solution or recourse
action. We also refer to z̃ as the vector of primitive uncertainties, which consolidates all underlying
uncertainties in the stochastic model. Given the solution, x and a realization of scenario, z, the optimal
wait-and-see objective we consider is given by

f(x,z) = c(z)′x+ min
u, y

du
′u + dy

′y

s.t. T (z)x + Uu + Y y = h(z)
y ≥ 0,

(1)

where du ∈ <n2 and dy ∈ <n3 are known vectors, U ∈ <m2×n2 and Y ∈ <m2×n3 are known matrices,
c(z̃) ∈ <n1 , T (z̃) ∈ <m2×n1 and h(z̃) ∈ <m2 are random data as function mapping of z̃. In the language
of stochastic optimization, this is a fixed recourse model in which the matrices U and Y associated with
the recourse actions are not influenced by uncertainties; see Birge and Louveaux [9]. The model (1)
represents a rather general fixed recourse framework characterized in classical stochastic optimization
formulations. Using the convention of stochastic optimization, if the model (1) is infeasible, the function
f(x,z) will be assigned an infinite value.

We denote by τ(z̃) the target level or aspiration level, which, in the most general setting, depends
on the primitive uncertainties, z̃; see Bordley and LiCalzi [8]. The wait-and-see objective f(x, z̃) is a
random variable with probability distribution as a function of x. Under the aspiration level criterion,
which we will subsequently define, we examine the following model:

max
x

β
(
f(x, z̃)− τ(z̃)

)

s.t. Ax = b

x ≥ 0

(2)

where b ∈ <m1 and A ∈ <m1×n1 are known. We use the phrase aspiration level prospect to represent
the random variable, f(x, z̃)− τ(z̃). Hence, an aspiration level prospect taking a positive value denotes
a shortfall of the wait-and-see objective against the target level. The functional β(·) is the aspiration
level criterion, which evaluates the chance of exceeding the target level of performance.

Definition 1 Given an aspiration level prospect, ṽ, the aspiration level criterion is defined as

β(ṽ) ∆= P(ṽ ≤ 0). (3)

We adopt the same definition as used in Diecidue and van de Ven [17] and in Canada et al. [11], chapter
5. We can equivalently express the aspiration level criterion as

β(ṽ) = 1− P(ṽ > 0) = 1− E(H(ṽ)) (4)
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where H(·) is a heavy-side utility function defined as

H(x) =

{
1 if x > 0
0 otherwise.

2.1 Shortfall aspiration level criterion

The aspiration level criterion has several drawbacks from the computational and modeling perspectives.
The lack of any form of structural convexity leads to computational intractability. Moreover, it is
evident from Equation (4) that the aspiration level criterion does not take into account the shortfall
level and may equally value a catastrophic event with low probability over a mild violation with the
same probability. In view of the deficiencies of the aspiration level criterion, we introduce the shortfall
aspiration level criterion.

Definition 2 Given an aspiration level prospect, ṽ with the following conditions:

E(ṽ) < 0
P(ṽ > 0) > 0,

(5)

the shortfall aspiration level criterion is defined as

α(ṽ) ∆= 1− inf
a>0

(E (S(ṽ/a))) (6)

where we define the shortfall utility function as follows:

S(x) = (x + 1)+.

We present the properties of the shortfall aspiration level criterion in the following theorem.

Theorem 1 Let ṽ be an aspiration level prospect satisfying the inequalities (5). The shortfall aspiration
level criterion has the following properties
(a)

α(ṽ) ≤ β(ṽ)

(b)
α(ṽ) ∈ (0, 1).

Moreover, there exists a finite a∗ > 0, such that

α(ṽ) = 1− E (S (ṽ/a∗))

(c)
α(ṽ) = sup

γ
{1− γ : ψ1−γ(ṽ) ≤ 0, γ ∈ (0, 1)}

where
ψ1−γ(ṽ) ∆= min

θ

(
θ +

E((ṽ − θ)+)
γ

)
(7)
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is the risk measure known as Conditional-Value-at-Risk (CVaR) popularized by Rockafellar and Uryasev
[34].
(d) Suppose for all x ∈ X, ṽ = ṽ(x) is normally distributed, then the feasible solution that maximizes
the shortfall aspiration level criterion also maximizes the aspiration level criterion.

Proof : (a) Observe that for all a > 0, S(x/a) ≥ H(x), hence, we have

P(ṽ > 0) = E (H(ṽ))

≤ inf
a>0

E (S(ṽ/a))

= 1− α(ṽ).

Therefore,
β(ṽ) = P(ṽ ≤ 0) = 1− P(ṽ > 0) ≥ α(ṽ).

(b) Since P(ṽ > 0) > 0, from (a), we have α(ṽ) ≤ 1− P(ṽ > 0) < 1. To show that α(ṽ) > 0, it suffices
to find a b > 0 such that E(S(ṽ/b)) < 1. Observe that

E(S(ṽ/a)) = 1 +
E(ṽ) + E ((ṽ + a)−)

a
.

As E(ṽ) < 0 and E ((ṽ + a)−) is nonnegative, continuous in a and converges to zero as a approaches
infinity, there exists a b > 0, such that E(ṽ) + E ((ṽ + b)−) < 0. Hence,

α(ṽ) = 1− inf
a>0

E ((ṽ + a)+)
a

≥ 1− E ((ṽ + b)+)
b

> 0.

Since P(ṽ > 0) > 0 implies E(ṽ+) > 0, we also observe that

lim
a↓0

E(S(ṽ/a)) = lim
a↓0

E ((ṽ + a)+)
a

≥ lim
a↓0

E (ṽ+)
a

= ∞.

Moreover,
lim

a→∞E(S(ṽ/a)) = 1.

We have also shown that infa>0 E(S(ṽ/a)) ∈ (0, 1), hence, the infimum cannot be achieved at the limits
of a = 0 and a = ∞. Moreover, due to the continuity of the function E(S(ṽ/a)) over a > 0, the infimum
is achieved at a finite a > 0.
(c) Using the observations in (b), we have

1− infa>0 E(S(ṽ/a))

= supv<0

(
1 +

E((ṽ−v)+)
v

)

= supγ,v

{
1− γ : 1− γ ≤ 1 +

E((ṽ−v)+)
v , v < 0, γ ∈ (0, 1)

}

= supγ,v

{
1− γ : v +

E((ṽ−v)+)
γ ≤ 0, v < 0, γ ∈ (0, 1)

}

= supγ,v

{
1− γ : v +

E((ṽ−v)+)
γ ≤ 0, γ ∈ (0, 1)

}
With E(ṽ+) > 0, v < 0 is implied

= supγ{1− γ : ψ1−γ(ṽ) ≤ 0, γ ∈ (0, 1)}.
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(d) Observe that
max

x

{
β

(
ṽ(x)

)
: x ∈ X

}
(8)

is equivalent to
max
x,γ

{
1− γ : P

(
ṽ(x) ≤ 0

)
≥ 1− γ, x ∈ X

}
.

Let µ(x) and σ(x) be the mean and standard deviation of ṽ(x). The constraint P
(
ṽ(x) ≤ 0

)
≥ 1− γ

is equivalent to
−µ(x) ≥ Φ−1(1− γ)σ(x),

where Φ(·) is the distribution function of a standard normal. Since E(ṽ(x)) < 0, the optimal objective
satisfies 1− γ > 1/2 and hence, Φ−1(1− γ) > 0. Noting that Φ−1(1− γ) is a decreasing function in γ,
the optimal solution in Model (8) corresponds to maximizing the following ratio:

max
−µ(x)
σ(x)

s.t. x ∈ X .
(9)

This relation was observed by Dragomirescu [18]. Using the result in (c), we can express the maximiza-
tion of the shortfall aspiration level criterion as follows:

max 1− γ

s.t. ψ1−γ(ṽ(x)) ≤ 0

x ∈ X , γ ∈ (0, 1)

(10)

Under normal distribution, we can also evaluate the CVaR measure in closed form as follows:

ψ1−γ(ṽ(x)) = µ(x) +
φ(Φ−1(γ))

γ︸ ︷︷ ︸
ξ(γ)

σ(x)

where φ(·) is the density of a standard normal. Moreover, ξ(γ) is also a decreasing function in γ.
Therefore, the optimum solution of Model (10) is identical to Model (9).

We now propose the following goal driven optimization problem.

max
x

α
(
f(x, z̃)− τ(z̃)

)

s.t. Ax = b

x ≥ 0

(11)

Theorem 1(a) implies that an optimal solution of Model (11), x∗ can achieve the following success
probability,

P(f(x∗, z̃) ≤ τ(z̃)) ≥ α
(
f(x∗, z̃)− τ(z̃)

)
.

The optimal parameter, a∗ within the shortfall aspiration level criterion is chosen to attain the tightest
bound in meeting the success probability. The aspiration level criterion of (4) penalizes the shortfall
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with an heavy-side utility function that is insensitive to the magnitude of violation. In contract, the
shortfall aspiration level criterion,

α(f(x∗, z̃)− τ(z̃)) = 1− 1
a∗

E
(
(f(x∗, z̃)− τ(z̃) + a∗)+

)
for some a∗ > 0

has an expected utility component that penalizes an expected level of “near” shortfall when the aspira-
tion level prospect raises above −a∗. Speaking intuitively, given two aspiration level prospects, ṽ1 and
ṽ2 with the same aspiration level criteria defined in (3), suppose ṽ2 incurs greater expected shortfall,
the shortfall aspiration level criterion will rank ṽ1 higher than ṽ2. Nevertheless, Theorem 1(d) suggests
that if the distribution of the objective is “fairly normally distributed”, we expect the solution that
maximizes the shortfall aspiration level criterion to also maximize the aspiration level criterion.

We now discuss the conditions of (5) with respect to the goal driven optimization model. The first
condition implies that the aspiration level should be strictly achievable in expectation. Hence, the goal
driven optimization model appeals to decision makers who are risk averse and are not unrealistic in
setting their goals. The second condition implies that there does not exist a feasible solution, which
always achieves the aspiration level. In other words, the goal driven optimization model is used in
problem instances where the risk of under-performance is inevitable. Hence, it appeals to decision
makers who are not too apathetic in setting their goals.

Theorem 1(c) shows the connection between the shortfall aspiration level criterion with the CVaR
measure. The CVaR measure satisfies four desirable properties of financial risk measures known as
coherent risk. A coherent risk measure or functional, ϕ(·) satisfies the following Axioms of coherent risk
measure:

(i) Translation invariance: For all a ∈ <, ϕ(ṽ + a) = ϕ(ṽ) + a.

(ii) Subadditivity: For all random variables ṽ1, ṽ2, ϕ(ṽ1 + ṽ2) ≤ ϕ(ṽ1) + ϕ(ṽ2).

(iii) Positive homogeneity: For all λ ≥ 0, ϕ(λṽ) = λϕ(ṽ).

(iv) Monotonicity: For all ṽ ≤ w̃, ϕ(ṽ) ≤ ϕ(w̃).

The four axioms were presented and justified in Artzner et al. [2]. The first axiom ensures that
ϕ(ṽ − ϕ(ṽ)) = 0, so that the risk of ṽ after compensation with ϕ(ṽ) is zero. It means that reducing
the cost by a fixed amount of a simply reduces the risk measure by a. The subadditivity axiom states
that the risk associated with the sum of two financial instruments is not more than the sum of their
individual risks. It appears naturally in finance - one can think equivalently of the fact that “a merger
does not create extra risk,” or of the “risk pooling effects” observed in the sum of random variables.
The positive homogeneity axiom implies that the risk measure scales proportionally with its size. The
final axiom is an obvious criterion, but it rules out the classical mean-standard deviation risk measure.

A byproduct of a risk measure that satisfies these axioms is the preservation of convexity; see for
instance Ruszczynski and Shapiro [35]. Hence, the function ψ1−γ(f(x, z̃)− τ(z̃)) is convex in x. Using
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the connection with the CVaR measure, we express the goal driven optimization model (11), equivalently
as follows:

max
γ,x

1− γ

s.t. ψ1−γ(f(x, z̃)− τ(z̃)) ≤ 0
Ax = b

x ≥ 0
γ ∈ (0, 1).

(12)

2.2 Reduction to stochastic optimization problems with CVaR objectives

For a fixed γ, the first constraint in Model (12) is convex in the decision variable x. However, the
Model is not jointly convex in γ and x. Nevertheless, we can still obtain the optimal solution by solving
a sequence of subproblems in the form of stochastic optimization problems with CVaR objectives as
follows:

Z(γ) = min
x

ψ1−γ

(
f(x, z̃)− τ(z̃)

)

s.t. Ax = b

x ≥ 0,

(13)

or equivalently,

Z(γ) = min
x,u(·),y(·)

ψ1−γ

(
c(z̃)′x + du

′u(z̃) + dy
′y(z̃)− τ(z̃)

)

s.t. Ax = b

T (z̃)x + Uu(z̃) + Y y(z̃) = h(z̃)
y(z̃) ≥ 0
x ≥ 0

(14)

where u(z̃) and y(z̃) correspond to the second stage or recourse variables in the space of measurable
function.

Algorithm 1 (Binary Search)
Input: A routine that solves Model (13) optimally and ζ > 0
Output: x

1. Set γ1 := 0 and γ2 := 1.

2. If γ2 − γ1 < ζ, stop. Output: x

3. Let γ := γ1+γ2

2 . Compute Z(γ) from Model (13) and obtain the corresponding optimal solution x.

4. If Z(γ) ≤ 0, update γ2 := γ. Otherwise, update γ1 := γ

5. Go to Step 2.

Proposition 1 Suppose Model (12) is feasible. Algorithm 1 finds a solution, x with objective 1 − γ†

satisfying |γ† − γ∗| < ζ in at most dlog2(1/ζ)e computations of the subproblem (13), where 1− γ∗ being
the optimal objective of Model (12).

9



Proof : Observe that each looping in Algorithm 1 reduces the gap between γ2 and γ1 by half. We
now show the correctness of the binary search. Suppose Z(γ) ≤ 0, γ is feasible in Model (12), hence,
γ∗ ≤ γ. Otherwise, γ would be infeasible in Model (12). In this case, we claim that the optimal feasible
solution, γ∗ must be greater than γ. Suppose not, we have γ∗ ≤ γ. We know the optimal solution x∗

of Model (12) satisfies
ψ1−γ∗

(
f(x∗, z̃)− τ(z̃)

)
≤ 0.

However, since γ∗ ≤ γ, we have

Z(γ) ≤ ψ1−γ

(
f(x∗, z̃)− τ(z̃)

)
≤ ψ1−γ∗

(
f(x∗, z̃)− τ(z̃)

)
≤ 0,

contradicting that Z(γ) > 0.
If z̃ takes values from zk, k = 1, . . . , K with probability pk, we can formulate the subproblem of

(13) as a linear optimization problem as follows:

min
θ,s,x,yk,yk

θ +
1
γ

K∑

k=1

skpk

s.t. sk ≥ c(zk)′x + du
′uk + dy

′yk − τ(zk)− θ k = 1, . . . , K

Ax = b

T (zk)x + Uuk + Y yk = h(zk) k = 1, . . . , K

x ≥ 0, s ≥ 0
yk ≥ 0 k = 1, . . . , K

Unfortunately, the number of possible recourse decisions increases proportionally with the number of
possible realization of the random vector z̃, which could be extremely large or even infinite. Nevertheless,
under relatively complete recourse, the two stage stochastic optimization model can be solved rather
effectively using sampling approximation. In such problems, the second stage problem is always feasible
regardless of the choice of feasible first stage variables. Decomposition techniques has been studied
in Ahmed [1] and Riis and Schultz [33] to enable efficient computations of the stochastic optimization
problem with CVaR objective.

In the absence of relatively complete recourse, the solution obtained from sampling approximation
may not be meaningful. Even though the objective of the sampling approximation could be finite, in
the actual performance, the second stage problem can be infeasible, in which case the actual objective
is infinite. Indeed, a two stage stochastic optimization is generally intractable. For instance, checking
whether the first stage decision x gives rise to feasible recourse for all realization of z̃ is already an NP -
hard problem; see Ben-Tal et al. [3]. Moreover, with the assumption that the stochastic parameters are
independently distributed, Dyer and Stougie [19] show that two-stage stochastic programming problems
are #P-hard. Under the same assumption they show that certain multi-stage stochastic programming
problems are PSPACE-hard. We therefore pursue an alterative method of approximating the stochastic
optimization problem, that could at least guarantee the feasibility of the solution, and determine an
upper bound of the objective function.
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3 Deterministic Approximations via Robust Optimization

We have shown that solving the goal driven optimization model (11) involves solving a sequence of
stochastic optimization problems with CVaR objectives in the form of Model (14). Hence, we devote
this section to formulating a tractable deterministic approximation of Model (14).

One of the central problems in stochastic models is how to properly account for data uncertainty.
Unfortunately, complete probability descriptions are almost never available in real world environments.
Following the recent development of robust optimization such as Ben-Tal et al. [3], Bertsimas and
Sim [7], Chen, Sim and Sun [15] and Chen et al. [16], we relax the assumption of full distributional
knowledge and modify the representation of data uncertainties with the aim of producing a computa-
tionally tractable model. We adopt the parametric uncertainty model in which the data uncertainties
are affinely dependent on the primitive uncertainties.
Affine Parametric Uncertainty: We assume that the uncertain input data to the model c(z̃), T (z̃),
h(z̃) and τ(z̃) are affinely dependent on the primitive uncertainties z̃ as follows:

c(z̃) = c0 +
N∑

j=1

cj z̃j ,

T (z̃) = T 0 +
N∑

j=1

T j z̃j ,

h(z̃) = h0 +
N∑

j=1

hj z̃j ,

τ(z̃) = τ0 +
N∑

j=1

τ j z̃j .

Note that this parametric uncertainty representation is useful for relating multivariate random variables
across different data entries through the shared primitive uncertainties.

Since the assumption of having exact probability distributions of the primitive uncertainties is
unrealistic, as in the spirit of robust optimization, we adopt a modest distributional assumption on the
primitive uncertainties, such as known means, supports, subset of independently distributed random
variables and some aspects of deviations. Under the affine parametric uncertainty, we can translate
the primitive uncertainties so that their means are zeros. For the subset of independently distributed
primitive uncertainties, we will use the forward and backward deviations, which were recently introduced
by Chen, Sim and Sun [15].

Definition 3 Given a random variable z̃ with zero mean, the forward deviation is defined as

σf (z̃) ∆= sup
θ>0

{√
2 ln(E(exp(θz̃)))/θ2

}
(15)

and backward deviation is defined as

σb(z̃) ∆= sup
θ>0

{√
2 ln(E(exp(−θz̃)))/θ2

}
. (16)
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Given a sequence of independent samples, we can essentially estimate the magnitude of the deviation
measures from (15) and (16). Some of the properties of the deviation measures include:

Proposition 2 (Chen, Sim and Sun [15])
Let σ, p and q be respectively the standard, forward and backward deviations of a random variable, z̃

with zero mean.
(a) Then p ≥ σ and q ≥ σ. If z̃ is normally distributed, then p = q = σ.
(b)

P(z̃ ≥ θp) ≤ exp(−θ2/2);

P(z̃ ≤ −θq) ≤ exp(−θ2/2).

(c) For all θ ≥ 0,
ln E(exp(θz̃)) ≤ θ2p2

2 ;
ln E(exp(−θz̃)) ≤ θ2q2

2 .

Proposition 2(a) shows that the forward and backward deviations are no less than the standard de-
viation of the underlying distribution, and under normal distribution, these two values coincide with
the standard deviation. As exemplified in Proposition 2(b), the deviation measures provide an easy
bound on the distributional tails. Chen, Sim and Sun ([15]) show that the new deviation measures pro-
vide tighter approximation of probabilistic bounds compared to standard deviations. This information,
whenever available, enable us to improve upon the solutions of the approximation.

When only the support of the distributions are available, Chen, Sim and Sun [15] show how to obtain
upper bounds of the forward and backward deviation measures.

Theorem 2 ( Chen, Sim and Sun [15]) If z̃ has zero mean and distributed in [−z, z̄], z, z̄ > 0, then

σf (z̃) ≤ σ̄f (z̃) =
z + z̄

2

√
g

(
z − z̄

z + z̄

)

and

σb(z̃) ≤ σ̄b(z̃) =
z + z̄

2

√
g

(
z̄ − z

z + z̄

)
,

where
g(µ) = 2 max

s>0

{
φµ(s)− µs

s2

}
,

and

φµ(s) = ln

(
es + e−s

2
+

es − e−s

2
µ

)
.

Moreover the bounds are tight.
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Note that the forward and backward deviations may be infinite for heavier tailed distributions.
Despite the stringent assumption, the advantage of using the forward and backward deviations is the
ability to capture distributional asymmetry and stochastic independence, while keeping the resultant
optimization model computationally amicable. The interested reader may refer to Natarajan et al.
[27] for the computational experience of using the forward and backward deviations in minimizing the
Value-at-Risk of a portfolio, which gives surprisingly good out-of-sample performance on real data.

Model of Uncertainty, U: We assume that the uncertainties {z̃j}j=1:N are zero mean random
variables, with finite positive definite covariance matrix, Σ and support W = [−z, z̄], z, z̄ ∈ (0,∞]N .
Of the N primitive uncertainties, the first I random variables, that is, z̃j , j = 1, . . . , I are stochastically
independent. Moreover, the corresponding forward and backward deviations are finite and given by
pj = σf (z̃j) > 0 and qj = σb(z̃j) > 0 respectively for j = 1, . . . , I. We may also use the deviation
bounds in Theorem 2. We denote P = diag(p1, . . . , pI) and Q = diag(q1, . . . , qI).

In practice, these parameters are, at best, estimated values. Moreover, the forward and backward
deviations are harder to estimate compared to standard deviations in the sense that we may require
more samples to achieve the same relative accuracy. It is fair to say that the effect of their estimation
errors on the optimization problem has not been fully understood. As proposed in classical robust
optimization, one possibility to address these estimation errors is to build uncertainty sets around these
parameters. See for instance, Ben-Tal and Nemirovski [4], Bertsimas and Sim [7] and Goldfarb and
Iyengar [21]. For simplicity, we assume in this paper that the exact parameters are given.

Similar uncertainty models have been defined in Chen, Sim and Sun [15] and Chen et al. [16]. While
the uncertainty model proposed in the former focuses on only independent primitive uncertainties with
known support, forward and backward deviation measures, the uncertainty model proposed in the latter
discards independence and assumes known support and covariance of the primitive uncertainties. Hence,
the Model of Uncertainty, U encompasses both models discussed in Chen, Sim and Sun [15] and Chen
et al. [16].

Under the Model of Uncertainty, U, it is evident that h0, for instance, represents the mean of
h(z̃) and hj represents the magnitude and direction associated with the primitive uncertainty, z̃j .
The Model of Uncertainty, U, provides a flexibility of incorporating a subset of mutually independent
random variables, which can lead better evaluation of the objective function. For instance, if h̃ is
multivariate normally distributed with mean h0 and covariance, Σ, then we can decompose h̃ into
primitive uncertainties that are stochastically independent as follows

h̃ = h(z̃) = h0 + Σ1/2z̃.

To fit into the affine parametric uncertainty and the Model of Uncertainty, U, we can assign the vector
hj to the jth column of Σ1/2. Moreover, z̃ has stochastically independent entries with covariance equal
to the identity matrix, infinite support and unit forward and backward deviations; see Proposition 2(a).
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3.1 Approximations of E((y0 + y′z̃)+) and ψ1−γ(y0 + y′z̃)

Although the CVaR measure,

ψ1−γ(y0 + y′z̃) = min
θ

(
θ +

E((y0 + y′z̃ − θ)+)
γ

)

is convex in the variable (y0, y), it does not necessarily lead to a tractable optimization problem. The key
difficulty lies in the evaluation of the expectation, E((·)+), which involves multi-dimension integration.
Such evaluation is typically analytically prohibitive when the dimension of the integration exceeds four.
Hence, providing bounds on E((y0 + y′z̃)+) is pivotal in developing tractable approximations of the
CVaR measure. We next present various ways of bounding E((y0 + y′z̃)+) and ψ1−γ(y0 + y′z̃) as
follows:

Theorem 3 Assuming z̃ follows the Model of Uncertainty, U, the following functions πi(y0, y), i ∈
{1, . . . , 5} are upper bounds of E ((y0 + y′z̃)+). Likewise, the following functions,

ηi
1−γ(y0,y) ∆= min

θ

(
θ +

1
γ

πi(y0 − θ, y)
)

i ∈ {1, . . . , 5}

are the upper bounds of ψ1−γ(y0 + y′z̃)).
(a)

π1(y0, y) ∆=
(

y0 + max
z∈W

z′y
)+

= min
r,s, t

{
r | r ≥ y0 + s′z + t′z, s− t = y, s, t ≥ 0, r ≥ 0

}
,

η1
1−γ(y0, y) ∆= y0 + max

z∈W
y′z

= y0 + min
s, t≥0

{
s′z + t′z | s− t = y

}
.

The bound π1(y0, y) is tight whenever y0 + y′z ≤ 0 for all z ∈ W.

(b)

π2(y0, y) ∆= y0 +
(
−y0 + max

z∈W
(−y)′z

)+

= min
r,s, t

{
r | r ≥ s′z + t′z, s− t = −y, s, t ≥ 0, r ≥ y0

}
,

η2
1−γ(y0, y) ∆= y0 + (1/γ − 1)max

z∈W
(−y)′z

= y0 + (1/γ − 1) min
s, t≥0

{
s′z + t′z | s− t = −y

}
.

The bound π2(y0, y) is tight whenever y0 + y′z ≥ 0 for all z ∈ W.

(c)
π3(y0,y) ∆= 1

2y0 + 1
2

√
y0

2 + y′Σy,

η3
1−γ(y0,y) ∆= y0 +

√
1− γ

γ

√
y′Σy

(d)

π4(y0,y) ∆=





infµ>0

{
µ
e exp

(
y0

µ + ‖u‖22
2µ2

)}
if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise

η4
1−γ(y0,y) ∆=

{
y0 +

√−2 ln γ‖u‖2 if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise
,

14



0 0.2 0.4 0.6 0.8 1

10
0

γ

ρ i(γ
)

 

 
i=3
i=4
i=5
Unified

Figure 1: Plot of ρi(γ) against γ for i = 3, 4 and 5, defined in Proposition 3.

where uj = max{pjyj ,−qjyj}, j = 1, . . . , I.
(e)

π5(y0, y) ∆=





y0 + infµ>0

{
µ
e exp

(
− y0

µ + ‖v‖22
2µ2

)}
if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise

η5
1−γ(y0, y) ∆=

{
y0 + 1−γ

γ

√−2 ln(1− γ)‖v‖2 if yj = 0 ∀j = I + 1, . . . , N

+∞ otherwise
,

where vj = max{−pjyj , qjyj}, j = 1, . . . , I.

The proof is shown in Appendix A.
Remark : The first and second bounds in Proposition 3 are derived from the support of the primitive
uncertainties. Observe that the first bound is independent of the parameter γ. The third bound is
derived from the covariance of the primitive uncertainties. The last two bounds act upon primitive
uncertainties that are stochastically independent.

To understand the conservativeness of the approximation, we compare the bounds of ψ1−γ(z̃), where
z̃ is standard normally distributed. Figure 1 compares the approximation ratios given by

ρi(γ) =
ηi
1−γ(0, 1)− ψ1−γ(z̃)

ψ1−γ(z̃)
, i = 3, 4, 5

It is clear that none of the bounds dominate another across γ ∈ (0, 1). For small values of γ, the
bound η4

1−γ(0, 1) is the tightest, while at high values, η5
1−γ(0, 1) dominates. At mid-range, η3

1−γ(0, 1)
gives the best bound. Hence, this motivate us to integrate the best of all bounds to achieve the tightest
approximation. The unified approximation in Figure 1 achieves a worst case approximation error of
33% at γ = 0.2847 and γ = 0.7153. We next show how to unify these bounds.
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Theorem 4 (a) Let

π(y0, y) ∆= min
yi0,yi

5∑

i=1

πi(yi0, yi)

s.t.
5∑

i=1

yi0 = y0

5∑

i=1

yi = y.

Then for all (y0, y)
E

(
(y0 + y′z̃)+

) ≤ π(y0, y) ≤ min
i∈{1,...,5}

{πi(y0, y))} (17)

(b) Let

η1−γ(y0, y) ∆= min
θ

(
θ +

1
γ

π(y0 − θ, y)
)

or equivalently

η1−γ(y0, y) ∆= min
yi0,yi

5∑

i=1

ηi
1−γ(yi0,yi)

s.t.
5∑

i=1

yi0 = y0

5∑

i=1

yi = y.

Then for all (y0, y) and γ ∈ (0, 1)

ψ1−γ(y0 + y′z̃) ≤ η1−γ(y0, y) ≤ min
i∈{1,...,5}

{ηi
1−γ(y0, y)} (18)

Proof : (a) To show the upper bound, we note that

5∑

i=1

πi(yi0, yi)

≥
5∑

i=1

E
(
(yi0 + y′iz̃)+

)
Proposition 3

≥ E
((∑5

i=1(yi0 + y′iz̃)
)+

)
Subadditvity

= E ((y0 + y′z̃)+) .

Finally, to show that π(y0,y) ≤ πi(y0, y), i = 1, . . . , 5, let

(yr0,yr) =

{
(y0, y) if r = i

(0,0) otherwise
for r = 1, . . . , 5.

Hence,

πr(yr0,yr) =

{
πr(y0, y) if r = i

0 otherwise
for r = 1, . . . , 5,
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and therefore

π(y0, y) ≤
5∑

i=1

πi(yi0, yi) = πi(y0, y).

(b) Observe that

η1−γ(y0, y) = min
θ

(
θ +

π(y0 − θ,y)
γ

)

= min
θ,θ,yi0,yi,∀i

(
θ +

5∑

i=1

(πi(yi0 − θi, yi)
γ

)
|

5∑

i=1

yi = y,
5∑

i=1

yi0 = y0,
5∑

i=1

θi = θ

)

= min
yi0,yi,∀i




5∑

i=1

min
θi

(
θi +

πi(yi0 − θi, yi)
γ

)

︸ ︷︷ ︸
=ηi

1−γ(yi0,yi)

|
5∑

i=1

yi = y,
5∑

i=1

yi0 = y0




.

Finally, the inequalities (18) are trivial consequence of the inequalities (17).
Remark : Note that in the presence of stochastically dependent primitive uncertainties and unbounded
support, all the bounds, except for the third, of Theorem 3 can become infinite. However, such trivial
bound is avoided in the unified bound.

From Theorem 3(a), the epigraph of the unified bound of E((y0 + y′z̃)+), π(y0, y) ≤ s can be
expressed as follows:

∃ri, yi0 ∈ <, yi, s, t,d, h ∈ <N , i = 1, . . . , 5, u,v ∈ <I , such that
r1 + r2 + r3 + r4 + r5 ≤ s

y10 + s′z̄ + t′z ≤ r1

0 ≤ r1

s− t = y1

s, t ≥ 0
d′z̄ + h′z ≤ r2

y20 ≤ r2

d− h = −y2

d,h ≥ 0
1
2y30 + 1

2‖(y30,Σ1/2y3)‖2 ≤ r3

infµ>0
µ
e exp

(
y0

µ + ‖u‖22
2µ2

)
≤ r4

uj ≥ pjy4j , uj ≥ −qjy4j ∀j = 1, . . . , I

y4j = 0 ∀j = I + 1, . . . , N

y0 + infµ>0
µ
e exp

(
− y0

µ + ‖v‖22
2µ2

)
≤ r5

vj ≥ qjy5j , vj ≥ −pjy5j ∀j = 1, . . . , I

y5j = 0 ∀j = I + 1, . . . , N

y10 + y20 + y30 + y40 + y50 = y0

y1 + y2 + y3 + y4 + y5 = y.

(19)

Due to the presence of the constraint, infµ>0 µ exp
(

a
µ + b2

µ2

)
≤ c, the set of constraints in (19) is not

exactly second order cone representable (see Ben-Tal and Nemirovski [5]). Fortunately, using a few
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number second order cones, we can accurately approximate such constraint to within the precision of
the solver. We present the second order cone approximation in Appendix B.

Similarly, from Theorem 3(b), the epigraph of the unified CVaR approximation, η1−γ(y0, y) ≤ s is
second order cone representable as follows:

∃ri, yi0 ∈ <, yi, s, t, d,h ∈ <N , i = 1, . . . , 5,u, v ∈ <I such that
r1 + r2 + r3 + r4 + r5 ≤ s

y10 + s′z̄ + t′z ≤ r1

s, t ≥ 0
s− t = y1

y20 + (1/γ − 1)d′z̄ + (1/γ − 1)h′z ≤ r2

d− h = −y2

d, h ≥ 0

y30 +
√

1−γ
γ ‖Σ1/2y3‖2 ≤ r3

y40 +
√−2 ln(γ)‖u‖2 ≤ r4

uj ≥ pjy4j , uj ≥ −qjy4j ∀j = 1, . . . , I

y4j = 0 ∀j = I + 1, . . . , N

y50 + 1−γ
γ

√−2 ln(1− γ)‖v‖2 ≤ r5

vj ≥ qjy5j , vj ≥ −pjy5j ∀j = 1, . . . , I

y5j = 0 ∀j = I + 1, . . . , N

y10 + y20 + y30 + y40 + y50 = y0

y1 + y2 + y3 + y4 + y5 = y.

It is rather surprising to note that while the epigraph of the function π(·, ·) is approximately second-order
cone representable, the epigraph of η(·, ·), is fully second-order cone representable.

3.2 Decision rule approximation of recourse

Depending on the distribution of z̃, the second stage recourse decisions, u(z̃) and y(z̃) can be very large
or even infinite. Moreover, since we do not specify the exact distributions of the primitive uncertainties,
it would not be possible to obtain an optimal recourse decision. To enable us to formulate a tractable
problem in which we could derive an upper bound of Model (14), we first adopt the linear decision
rule used in Ben-Tal et al. [3] and Chen, Sim, and Sun [15]. We restrict u(z̃) and y(z̃) to be affinely
dependent on the primitive uncertainties, that is

u(z̃) = u0 +
∑N

j=1 uj z̃j , y(z̃) = y0 +
∑N

j=1 yj z̃j . (20)

Under linear decision rule, the following constraint

T jx + Uuj + Y yj = hj j = 0, . . . , N

is a sufficient condition to satisfy the affine constraint involving recourse variables in Model (14). More-
over, since the support of z̃ is W = [−z, z̄], an inequality constraint yi(z̃) ≥ 0 in Model (14) is the same
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as the robust counterpart

y0
i +

N∑

j=1

yj
i zj ≥ 0 ∀z ∈ W,

which is representable by the following linear inequalities

y0
i ≥

N∑

j=1

(zjs
i
j + z̄jt

i
j)

for some si, ti ≥ 0 satisfying si
j − tij = yj

i , j = 1, . . . , N . As for the aspiration level prospect, we let

w(z̃) = w0 +
N∑

j=1

wj z̃j , (21)

where
wj = cj ′x + du

′uj + dy
′yj − τ j j = 0, . . . , N, (22)

so that
w(z̃) = c(z̃)′x + du

′u(z̃) + dy
′y(z̃)− τ(z̃).

Hence, applying the bound on the CVaR measure at the objective function, we have

ψ1−γ(w(z̃)) ≤ η1−γ(w0, w)

where we use w to denote the vector with elements wj , j = 1, . . . , N . Putting these together, we solve
the following problem, which is an SOCP.

ZLDR(γ) = min
x,uj ,yj ,w0,w

η1−γ(w0,w)

s.t. Ax = b

wj = cj ′x + du
′uj + dy

′yj − τ j j = 0, . . . , N.

T jx + Uuj + Y yj = hj j = 0, . . . , N.

y0
i +

∑N
j=1 yj

i zj ≥ 0 ∀z ∈ W, i = 1, . . . , n3

x ≥ 0.

(23)

Theorem 5 Let (x, u0, . . . ,uN ,y0, . . . ,yN ) be an optimal solution of Model (23). The solution x and
linear decision rules u(z̃) and y(z̃) defined in the equations (20), are feasible in the subproblem (14).
Moreover,

Z(γ) ≤ ZLDR(γ).

Deflected linear decision rule

The most common type of stochastic optimization problems is one of complete recourse, which is defined
on the matrix (U , Y ) such that for any t, there exists (u,y), y ≥ 0 satisfying Uu + Y y = t. It is
easy to see in Model (14) that complete recourse problem always admits a feasible recourse, however,
it may not necessarily be one of linear decision rule. Although linear decision rule leads to a tractable
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approximation of the recourse, Chen et al. [16] show that linear decision rules can be inadequate and
can lead to infeasible instances even in complete recourse problems. To resolve such infeasibility, we
adopt the deflected linear decision rules proposed by Chen et al. [16] as an improvement over linear
decision rules. We first define the vector d̄ with elements

d̄i = minu,y du
′u + dy

′y
s.t. Uu + Y y = 0

yi = 1
y ≥ 0,

(24)

where we denote d̄i = ∞ if the corresponding optimization problem is infeasible. For notational conve-
nience, we define the sets

C ∆= {i : d̄i < ∞, i = 1, . . . , n3}, C̄ ∆= {i = 1, . . . , n3}\C.

For i ∈ C, we define (ūi, ȳi) as the optimal solution of the corresponding optimization problem.
Note that if d̄i < 0, then given any feasible solution u and y, the solution u + κūi, and y + κȳi

will also be feasible, and that the objective will be reduced by |κd̄i|. Hence, whenever a second stage
decision is feasible, its objective will be unbounded from below. Therefore, it is reasonable to assume
that d̄ ≥ 0.

Next, we present the model that achieves a better bound than Model (23).

ZDLDR(γ) = min
x,uj ,yj ,w0,w

η1−γ(w0, w) +
1
γ

∑

i∈C
π(−y0

i ,−yi)d̄i

s.t. Ax = b

wj = cj ′x + du
′uj + dy

′yj − τ j j = 0, . . . , N.

T jx + Uuj + Y yj = hj j = 0, . . . , N.

y0
i +

∑N
j=1 yj

i zj ≥ 0 ∀z ∈ W, i ∈ C̄
x ≥ 0,

(25)

in which yi denotes the vector with elements yj
i , j = 1, . . . , N .

Theorem 6 Let (x, u0, . . . ,uN ,y0, . . . ,yN ) be an optimal solution of Model (25). The solution x and
the corresponding deflected linear decision rule

u(z̃) = u0 +
N∑

j=1

uj z̃j +
∑

i∈C
ūi(y0

i + y′iz̃)−

y(z̃) = y0 +
N∑

j=1

yj z̃j +
∑

i∈C
ȳi(y0

i + y′iz̃)−,

(26)

are feasible in the subproblem (14). Moreover,

Z(γ) ≤ ZDLDR(γ) ≤ ZLDR(γ).
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Proof : Noting that
Uūi + Y ȳi = 0,

it is straightforward to verify that the recourse with deflected linear decision rule satisfies the affine
constraints in Model (14). For i ∈ C, we have ȳi

i = 1, hence, the nonnegativity condition holds at every
i element of y(z̃). Besides, for i ∈ C̄, we have y0

i +
∑N

j=1 yj
i z̃j ≥ 0. Therefore, since ȳj ≥ 0 for all

j ∈ C, the nonnegativity condition of y(z̃) holds at every i element, i ∈ C̄ as well. To show the bound,
Z(γ) ≤ ZDLDR(γ), we note that d̄i = duūi + dyȳi, i ∈ C. Under the deflected linear decision rule, the
aspiration level prospect becomes

c(z̃)′x + du
′u(z̃) + dy

′y(z̃)− τ(z̃)
= w(z̃) +

∑

i∈C
d̄i(y0

i + y′iz̃)−,

where w(z̃) is defined in Equations (21) and (22). We now evaluate the objective of Model (14) under
the deflected linear decision rule as follows:

ψ1−γ

(
w(z̃) +

∑

i∈C
d̄i(y0

i + y′iz̃)−
)

= min
θ

{
θ +

1
γ

E

((
w(z̃) +

∑

i∈C
d̄i(y0

i + y′iz̃)− − θ
)+

)}

= min
θ



θ +

1
γ

E




(
w(z̃) +

∑

i∈C
d̄i

(
(−y0

i − y′iz̃)+
)
− θ

)+







≤ min
θ

{
θ +

1
γ

E
((

w(z̃)− θ
)+

)
+

∑

i∈C

1
γ

E
((
−y0

i − y′iz̃
)+

)
d̄i

}

= ψ1−γ (w(z̃)) +
1
γ

∑

i∈C
E

((
−y0

i − y′iz̃
)+

)
d̄i

≤ η1−γ(w0, w) +
1
γ

∑

i∈C
π(−y0

i ,−yi)d̄i

= ZDLDR(γ),

(27)

where the first inequality are due to (x + a)+ ≤ (x)+ + a, for all a ≥ 0, and that d̄ ≥ 0. The last
inequality is due to Theorems 4.

To prove the improvement over Model (23), we now consider an optimal solution of Model (23),
(x, u0, . . . ,uN ,y0, . . . ,yN ). Clearly, the solution is feasible in the constraints of Model (25). From
Theorems 3(a) and 4, the constraint y0

i +
∑N

j=1 yj
i zj ≥ 0, ∀z ∈ W enforced in Model (23) ensures that

0 ≤ π(−y0
i ,−yi) ≤ π1(−y0

i ,−yi) = 0,

for all i ∈ C. Therefore, the solution of Model (23) yields the same objective as Model (25). Hence,
ZDLDR(γ) ≤ ZLDR(γ).
Remark : Chen et al. [16] show that for complete recourse problems, d̄i is finite for all i = 1, . . . , n3.
Therefore, in such problems, there always exist a feasible recourse in the form of deflected linear decision
rule. As such, the magnitude of improvement of deflected linear rule over linear decision rule can be
arbitrarily large.
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4 Computation Studies: Multi-product Newsvendor Problem

In our computation studies, we compare the solutions obtained from sampling approximation and
deterministic approximation using robust optimization. In particular, we test whether our approach
has the ability of finding meaningful solutions even in the absence of complete distribution information.

We consider a multi-product Newsvendor problem evaluated under the goal driven optimization
framework. The classical multi-product Newsvendor problem was first introduced by Hadley and Whitin
[20] and was extended by Ben-Daya and Raouf [10] and Lau and Lau [25]. These models utilize the
risk-neutral objectives that maximize expected profits. Given a set of m products, we consider a simple
risk-neutral multi-product Newsvendor problem,

max
x

m∑

i=1

{
(pi − ci)xi − (pi − si)E

(
(xi − h̃i)+

) }

s.t. x ≥ 0,

(28)

where the terms are defined as follows:

ci : unit purchasing cost
pi : unit selling price
si : unit salvage value
h̃i : stochastic demand
xi : order quantity,

with pi > ci > si for all products. Note that regardless of the dependency of products’ demands, we
can easily decompose Model (28) into m independent Newsvendor problems. Hence, we can analytically
obtain the optimal solution of Model (28). Note that the formulation of Model (28) tacitly contains the
following recourse problem

(xi − h̃i)+ = min
yi
{yi : yi ≥ 0, yi ≥ xi − h̃i)}.

Hence, putting it in standard stochastic optimization framework, we have

max
x,y(·)

(p− c)′x−
m∑

i=1

E(yi(h̃))

s.t. yi(h̃)− ym+i(h̃) = (pi − si)(xi − h̃i) i = 1, . . . ,m

yi(h̃) ≥ 0 i = 1, . . . , 2m

x ≥ 0,

However, not all decision makers are comfortable with implementing the risk neutral solution. Given
a target profit, τ , Sankarasubramanian and Kumaraswamy [36] proposed a single-product model that
maximizes the probability of attaining the target. Likewise, Lau and Lau [22] and Li et al. [24] extended
the model to only two products. These approaches rely on full assumption of demand distribution
and are not analytically tractable for multi-products. Moreover, as we have discussed, maximizing
probability does not take into account of the level of shortfall against the target objective.
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We consider the goal driven optimization model as follows:

max
γ,x,y(·)

1− γ

s.t. ψ1−γ

(
τ − (p− c)′x +

m∑

i=1

yi(h̃)
)
≤ 0

yi(h̃)− ym+i(h̃) = (pi − si)(xi − h̃i) i = 1, . . . ,m

yi(h̃) ≥ 0 i = 1, . . . , 2m

x ≥ 0.

(29)

Using Algorithm 1, we reduce the problem (29) to solving a sequence of subproblems in the form of
stochastic optimization problems with CVaR objectives as follows:

Z(γ) = min
x,y(·)

ψ1−γ

(
τ − (p− c)′x +

m∑

i=1

yi(h̃)
)

s.t. yi(h̃)− ym+i(h̃) = (pi − si)(xi − h̃i) i = 1, . . . , m

yi(h̃) ≥ 0 i = 1, . . . , 2m

x ≥ 0.

(30)

In the nominal test problem, we choose ci = 3, pi = 5, si = 2 for all products. The demands across
products are uncorrelated. The distribution of each demand is unknown except for being a nonnegative
random variable with mean µi = 100 and standard deviation σi = 10. Hence,

h̃ = h(z̃) = h0 +
m∑

j=1

hj z̃j ,

where h0 is a vector of 100s, and hj is a vector with the jth element taking the value of ten and
zero otherwise. Therefore, the primitive uncertainties, z̃ have covariance being the identity matrix and
support of z̃i being [−10,∞). Note that we do not utilize the forward and backward deviations in this
experiment. To apply deflected linear decision rule, we need to obtain d̄ ∈ <2m as follows

d̄i = min
y

m∑

j=1

yj

s.t. yj − ym+j = 0 j = 1, . . . , m

yi = 1
yj ≥ 0 i = 1, . . . , 2m.

Clearly, d̄i = 1 for all i = 1, . . . , 2m. Hence, using deflected linear decision rule, we can obtain an upper
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bound of the subproblems (30) by solving the following problem:

ZDLDR(γ) = min
x,w0,w,yj

η1−γ(w0,w) +
1
γ

2m∑

i=1

π(−y0
i ,−yi)

s.t. y0
i − y0

m+i = (pi − si)(xi − h0
i ) i = 1, . . . , m

yj
i − y0

m+i = (pi − si)(−hj
i ) i = 1, . . . , m, j = 1, . . . ,m

w0 = τ − (p− c)′x +
m∑

i=1

y0
i

wj =
m∑

i=1

yj
i j = 1, . . . ,m

x ≥ 0,

(31)

where
η1−γ(w0, w) = min

s,r,yi0,yi

s

s.t. r1 + r2 + r3 ≤ s

y10 − y′1z ≤ r1

−y1 ≥ 0
y20 + (1/γ − 1)y′2z ≤ r2

y2 ≥ 0

y30 +
√

1−γ
γ ‖y3‖2 ≤ r3

y10 + y20 + y30 = w0

y1 + y2 + y3 = w,

π(y0, y) = min
s,r,yi0,yi

s

s.t. r1 + r2 + r3 ≤ s

y10 − y′1z ≤ r1

0 ≤ r1

−y1 ≥ 0
y′2z ≤ r2

y20 ≤ r2

y2 ≥ 0
1
2y30 + 1

2‖(y30, y3)‖2 ≤ r3

y10 + y20 + y30 = y0

y1 + y2 + y3 = y,

and zj = 10 for j = 1, . . . , m. Therefore, the deterministic approximation of the subproblem using
robust optimization has 2m second order cones of dimension m + 2 and one second order cone of
dimension m + 1.

After obtaining the robust solution of the goal driven optimization model, we generate the profit
profile on a sample size of M = 500, 000 using various assumed distributions with the same mean
and standard deviations. After obtaining the profit profiles, u1, . . . , uM , we can estimate the shortfall
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Figure 2: Goal driven optimization versus maximizing expected profit (m = 10)

aspiration level criterion as follows:

α̂ = 1− inf
a>0

1
aM

M∑

k=1

(τ − uk + a)+.

In our experiment, we consider two types of distributions: a normal distribution and a shifted exponen-
tial distribution with density function

fh̃i
(x;µi, σi) =





1
σi

exp
(
− 1

σi
(x− (µi − σi))

)
if x ≥ µi − σi

0 otherwise,

in which the mean and standard deviation are given by µi and σi respectively. While keeping the target
profit τ proportional to m, we analyze the profit profile as we vary the number of products, m. After
some experiments, we choose τ = 183m in order to obtain reasonably interesting profiles for m ranging
from five to 30.

Figure 2 shows the profit profiles of two solutions: one that maximizes the expected profit and the
other maximizes the shortfall aspiration level criterion. Indeed, the classical risk neutral model obtains
a higher expected profit than the goal driven model. However, its risk of under performing against the
target profit is substantially higher.

We next investigate the conservativeness of the solution obtained by robust optimization against
the solution obtained by sampling approximation using 1000 samples of the exact distribution. We for-
mulate the problems using an in-house developed software, PROF (Platform for Robust Optimization
Formulation). The Matlab based software is essentially an SOCP modeling environment that contains
reusable functions for modeling multiperiod robust optimization using decision rules. We have imple-
mented bounds for the CVaR measure and expected positivity of a weighted sum of random variables.
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Sampling approx. (Assume shifted exponential distribution)
Deterministic appox. using Robust Opt.

Figure 3: Shortfall aspiration level criteria evaluated on shifted exponential distribution with sampling
approximation using the same distribution.

The software calls upon CPLEX 10.0 to solve the underlying SOCP. It takes less than 0.5 seconds to
solve Problem (31) of the size, m = 30. In contrast, it takes about 30 seconds to obtain the solution by
sampling approximation using 1000 samples.

Since the stochastic optimization problem is one of complete recourse, and that the demand variances
are relatively small, we expect sampling approximation to outperform the robust solution. In Figure
3, where the demands follows the shifted exponential distribution, the solution obtained by sampling
approximation achieves higher shortfall aspiration level criterion. However, the gap against the robust
solution tapered off as the number of products increases. In contrast, Figure 4, where the demands are
normally distributed, shows that the shortfall aspiration level criterion obtained by the robust solution
is only marginally lower than that of the solution obtained by sampling approximation. We observe
that in these examples, the shortfall aspiration level criterion increases as the number of products, m

increases. It is probably due to the increased risk pooling effect, which is consistent with our intuitions.
We have seen in this example that the solution obtained by sampling approximations is likely

to outperform the robust solution if the demand distribution is correctly assumed. However, we find
another interesting phenomenon. We use the solution obtained by sampling approximation based on the
shifted exponential distribution and evaluate the shortfall aspiration level criteria based on a different
distribution, in this case, a normal distribution with the same mean and standard deviation. Figure 5
suggests that the robust solution can grossly outperform the solution obtained by sampled approximation
using a different distribution with identical mean and standard deviation.
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Figure 4: Shortfall aspiration level criteria evaluated on normal distribution with sampling approxima-
tion using the same distribution.
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Figure 5: Shortfall aspiration level criteria evaluated on normal distribution with sampling approxima-
tion using the shifted exponential distribution.
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5 Conclusions

We propose a new framework for modeling stochastic optimization problem that takes into account of
an aspiration level. We also introduce the shortfall aspiration level criterion, which factors into the
success probability and the adversity of under-performance. Moreover, the goal driven optimization
model that maximizes the shortfall aspiration level criteria is analytically tractable.

We also propose two methods of solving the goal driven optimization problem, one using sampling
approximations, while the other using deterministic approximations. Although the exposition in this
paper is confined to a two period model, the deterministic approximation via decision rule can easily
be extended to multiperiod modeling; see for instance Chen et al. [16]. This has immense advantage
over sampling approximation.
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A Proof of Theorem 3

(a) Since W is the support set of z̃, we have

E
(
(y0 + y′z̃)+

) ≤ (y0 + max
z∈W

y′z)+

︸ ︷︷ ︸
=π1(y0,y)

.

Note that whenever, y0 + maxz∈W y′z ≤ 0, it is trivial to see that E ((y0 + y′z̃)+) = 0 = π1(y0,y).
Hence,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π1(y0 − θ, y)
γ

)

= min
θ

(
θ +

1
γ

(y0 − θ + max
z∈W

y′z)+
)

= y0 + max
z∈W

y′z + min
θ

(
θ +

1
γ

(−θ)+
)

= y0 + max
z∈W

y′z

= η1
1−γ(y0, y),

where the last equality is due to minθ

(
θ + 1

γ (−θ)+
)

= 0 for all γ ∈ (0, 1).
(b) Since w+ = w + (−w)+, we have

E
(
(y0 + y′z̃)+

)
= y0 + E

(
(−y0 − y′z̃)+

) ≤ y0 +
(
−y0 + max

z∈W
(−y)′z

)+

︸ ︷︷ ︸
=π2(y0,y)

.
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Note that whenever y0 + y′z ≥ 0, ∀z ∈ W, or equivalently, −y0 + maxz∈W(−y)′z ≤ 0, it is trivial to
see that E ((y0 + y′z̃)+) = y0 = π2(y0, y). Therefore,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π2(y0 − θ,y)
γ

)

= y0 + min
θ

(
θ +

π2(−θ, y)
γ

)

= y0 + min
θ

{
θ +

1
γ

((
max
z∈W

(−y)′z + θ

)+

− θ

)}

= y0 + min
θ

{
θ(1− 1/γ) +

1
γ

(
(max
z∈W

(−y)′z + θ)+
)}

= y0 + (1/γ − 1)min
θ

{
−θ +

1
1− γ

(
(max
z∈W

(−y)′z + θ)+
)}

= y0 + (1/γ − 1)max
z∈W

y′(−z) + (1/γ − 1)min
θ

(
−θ +

1
1− γ

(θ)+
)

= y0 + (1/γ − 1)max
z∈W

y′(−z)

= η2
1−γ(y0,y),

(c) Using Jensen’s inequality and the relation, w+ = (w + |w|)/2, we have

E
(
(y0 + y′z̃)+

)
=

1
2
(y0 + +E(|y0 + y′z̃|)) ≤ 1

2

(
y0 +

√
y2
0 + ‖Σy‖2

2

)

︸ ︷︷ ︸
=π2(y0,y)

.

Hence,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π3(y0 − θ, y)
γ

)

= min
θ

(
θ +

y0 − θ +
√

(y0 − θ)2 + y′Σy

2γ

)

= y0 +

√
1− γ

γ

√
y′Σy

= η3
1−γ(y0, y)

where the second equality follows from choosing the optimum θ,

θ∗ = y0 +
√

y′Σy(1− 2γ)
2
√

γ(1− γ)
.

(d) The bound is trivially true if there exists yj 6= 0 for any j > I. Henceforth, we assume yj = 0,∀j =
I + 1, . . . , N . The key idea of the inequality comes from the observation that

w+ ≤ µ exp(w/µ− 1) ∀µ > 0.

Since z̃j , j = 1, . . . , I are stochastically independent, we have

E
(
(y0 + y′z̃)+

) ≤ µE(exp((y0 + y′z̃)/µ− 1)) = µ exp(y0/µ− 1)
I∏

j=1

E(exp(yj z̃j/µ)) ∀µ > 0. (32)
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This relation was first shown in Nemirovski and Shapiro [28]. Using the deviation measures of Chen,
Sim and Sun [15], and Proposition 2(c), we have

ln(E(exp(yj z̃j/µ))) ≤
{

yj
2pj

2/(2µ2) if yj ≥ 0
yj

2qj
2/(2µ2) otherwise.

(33)

Since pj and qj are nonnegative, we have

ln(E(exp(yj z̃j/µ))) ≤ (max{yjpj ,−yjqj})2
2µ2

=
u2

j

2µ2
. (34)

Substituting this in the inequality (32), we have

E
(
(y0 + y′z̃)+

) ≤ inf
µ>0



µ exp(y0/µ− 1)

I∏

j=1

E(exp(yj z̃j/µ))



 ≤ inf

µ>0

{µ

e
exp

(y0

µ
+
‖u‖2

2

2µ2

)}

︸ ︷︷ ︸
=π4(y0,y)

.

Hence,

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π4(y0 − θ, y)
γ

)

= min
θ,µ

(
θ +

µ
e exp(y0−θ

µ + ‖u‖22
2µ2 )

2γ

)

= min
µ

(
y0 +

‖u‖2
2

2µ2
− µ ln γ

)

= y0 +
√
−2 ln γ‖u‖2

= η4
1−γ(y0,y)

where the second and third equalities follow from choosing the minimizers θ∗ and µ∗ as follows

θ∗ = y0 +
‖u‖2

2

2µ2
− µ ln γ − µ,

µ∗ =
‖u‖2√−2 ln γ

.

(e) Again, we assume yj = 0,∀j = I + 1, . . . , N . Note that

E
(
(y0 + y′z̃)+

)
= y0 + E

(
(−y0 − y′z̃)+

) ≤ y0 + inf
µ>0

{µ

e
exp

(
− y0

µ
+
‖v‖2

2

2µ2

)}

︸ ︷︷ ︸
=π5(y0,y)

.

where vj = max{−pjyj , qjyj}, j = 1, . . . , I. Hence, following from the above exposition, we have

ψ1−γ(y0 + y′z̃) ≤ min
θ

(
θ +

π5(y0 − θ,y)
γ

)

= min
θ,µ

(
θ +

y0 − θ + µ
e exp(−y0−θ

µ + ‖v‖22
2µ2 )

2γ

)

= min
µ

(
y0 + (

1
γ
− 1)(

‖v‖2
2

2µ2
− µ ln(1− γ))

)

= y0 +
1− γ

γ

√
−2 ln(1− γ)‖v‖2

= η5
1−γ(y0,y).
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B Approximation of a conic exponential quadratic constraint

Our aim to is show that the following conic exponential quadratic constraint,

µ exp
(a

µ
+

b2

µ2

)
≤ c

for some µ > 0, a, b and c, can be approximately represented in the form of second order cones. Note
with µ > 0, the constraint

µ exp
(a

µ
+

b2

µ2

)
≤ c

is equivalent to
µ exp

(x

µ

)
≤ c

for some variables x and d satisfying
b2 ≤ µd

a + d ≤ x.

To approximate the conic exponential constraint, we use the method described in Ben-Tal and Ne-
mirovski [5]. Using Taylor’s series expansion, we have

exp(x) = exp
(

x

2L

)2L

≈
(

1 +
x

2L
+

1
2

(
x

2L

)2

+
1
6

(
x

2L

)3

+
1
24

(
x

2L

)4
)2L

,

where L is a positive integer. Observe that the approximation improves with larger values of L. Using
the approximation, the following constraint

µ

(
1 +

x/µ

2L
+

1
2

(
x/µ

2L

)2

+
1
6

(
x/µ

2L

)3

+
1
24

(
x/µ

2L

)4
)2L

≤ c

is equivalent to

µ

(
1
24

(
23 + 20

x/µ

2L
+ 6

(
x/µ

2L

)2

+
(

1 +
x/µ

2L

)4
))2L

≤ c,

which is equivalent to the following set of constraints

y = x
2L

z = µ + x
2L

y2 ≤ µf, z2 ≤ µg, g2 ≤ µh
1
24(23µ + 20y + 6f + h) ≤ v1

v2
i ≤ µvi+1 ∀i = 1, . . . , L− 1

v2
L ≤ µc

for some variables y, z ∈ <, f, g, h ∈ <+, v ∈ <L
+. Finally, using the well known result that

w2 ≤ st, s, t ≥ 0
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Figure 6: Evaluation of approximation of infµ>0 µ exp
(

a
µ + 1

µ2

)
.

is second order cone representable as
∥∥∥∥∥

[
w

(s− t)/2

]∥∥∥∥∥
2

≤ s + t

2
,

we obtain an approximation of the conic exponential quadratic constraint that is second order cone
representable.

To test the approximation, we plot in Figure 6, the exact and approximated values of the function
f(a) defined as follows:

f(a) = inf
µ>0

µ exp
(a

µ
+

1
µ2

)
.

We obtain the exact solution by substituting µ∗ = a+
√

a2+8
2 and the approximated solution by solving

the SOCP approximation with L = 4. We solve the SOCP using CPLEX 9.1, with precision level of
10−7. The relative errors for a ≥ −3 is less than 10−7. The approximation is poor when the actual
value of f(a) falls below the precision level, which is probably not a major concern in practice.

References

[1] Ahmed, S. (2006): Convexity and decomposition of mean-risk stochastic programs, Mathematical
Progamming, 106, 433-446.

[2] Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D. (1999): Coherent Risk Measures, Mathematical
Finance, 9(3), 203-228.

[3] Ben-Tal, A., A. Goryashko, E. Guslitzer and A. Nemirovski. (2004): Adjusting robust Solutions of
uncertain linear programs. Mathematical Programming, 99, 351-376.

32



[4] Ben-Tal, A., Nemirovski, A. (1998): Robust convex optimization, Math. Oper. Res., 23, 769-805.

[5] Ben-Tal, A., Nemirovski, A. (2001): Lectures on modern convex optimization: analysis, algorithms,
and engineering applications, MPR-SIAM Series on Optimization, SIAM, Philadelphia.

[6] Bereanu, B. (1964): Programme de risque minimal en programmation linéaire stochastique, C.R.
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