
1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1

Goal-Driven Service Composition in Mobile and
Pervasive Computing

Nanxi Chen, Nicolás Cardozo and Siobhán Clarke

Abstract—Mobile, pervasive computing environments respond to users’ requirements by providing access to and composition of

various services over networked devices. In such an environment, service composition needs to satisfy a request’s goal, and be

mobile-aware even throughout service discovery and service execution. A composite service also needs to be adaptable to cope with

the environment’s dynamic network topology. Existing composition solutions employ goal-oriented planning to provide flexible

composition, and assign service providers at runtime, to avoid composition failure. However, these solutions have limited support for

complex service flows and composite service adaptation.

This paper proposes a self-organizing, goal-driven service model for task resolution and execution in mobile pervasive environments.

In particular, it proposes a decentralized heuristic planning algorithm based on backward-chaining to support flexible service discovery.

Further, we introduce an adaptation architecture that allows execution paths to dynamically adapt, which reduces failures, and lessens

re-execution effort for failure recovery. Simulation results show the suitability of the proposed mechanism in pervasive computing

environments where providers are mobile, and it is uncertain what services are available. Our evaluation additionally reveals the

model’s limits with regard to network dynamism and resource constraints.

Index Terms—Services Composition, Requirements Driven Service Discovery, Pervasive computing, Mobile Computing.

✦

1 INTRODUCTION

Pervasive computing environments respond to human
users’ requirements by providing access to various resources
over networked systems. Such environments have evolved
from closed (special purpose) and static to open and dy-
namic, embracing a large number of third-party mobile en-
tities (e.g., wearable technologies, smart phones, etc.). Such
open, mobile pervasive computing environments are likely
to incorporate abundant functionalities and heterogeneous
smart devices that have the potential to collaborate.

Service-oriented computing’s (SOC) packaging of het-
erogeneous resources as services that are discoverable,
accessible, and reusable has emerged as an important
paradigm in pervasive computing environments [1] [2].
SOC provides unifying interfaces for services to ease users’
access via communication networks. To address a partic-
ular requirement, a combination of multiple services may
be required, and so a fully-functional service composition
process will tackle potentially complex and mutable user
requests [3] with flexible composition of value-added ser-
vices, rather than simply providing information query or
file transmission services.

Given the environment’s openness and dynamism, such
a composition process faces significant challenges (see the
dash rectangle in Fig.1):

• Flexible service composition- services of interest are
independently deployed and maintained by different
service hosts that form a wireless network in ad hoc
ways. An individual service host has only a local

• N. Chen, N. Cardozo and S. Clarke are with the Department of Computer
Science, Trinity College, Dublin, Dublin 2, Dublin, Ireland.
E-mail: nchen@tcd.ie, cardozon@scss.tcd.ie, Siobhan.Clarke@scss.tcd.ie

system view because of its limited communication
ranges and resources. It is a challenge for service
hosts to collaborate to find possibly more potential
service providers to reduce composition failure.

• Adaptable composites- service hosts’ mobility leads
to changes to the network topology as well as the
established communication channel between com-
posite participants (service links). Such changes may
result in service link loss during service execution,
which further causes service execution path loss.
Efficient interactions between composite participants
are required to reduce the dependency on such
an error-prone communication channel. In addition,
composite services must be adaptable to increase
the chance that results can be delivered even when
a communication channel between their composite
participants drops.

This paper focuses on flexible service composition
and adaptable composites, assuming trustworthy service
providers. The remaining issues in Fig.1, service heterogene-
ity and third-party providers, are out of this paper’s scope
and are discussed further in Section 5.

As a motivating scenario (Fig.2), Anne is in a shopping
mall’s car park with her 1-year-old son. She would like to
get a step-free route to a shop that sells nappies and from
there to the nearest baby-changing facility in the mall, using
her smart watch. The mall offers an official website and a
mobile application for information browsing. But Anne’s
smart watch is incompatible with the application and its
screen is too small to display the route properly. However,
there is a pervasive computing environment in the mall
including various embedded devices owned by customers,
shop clerks, taxi drivers, information desks, or house keep-

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

2

Fig. 1. Open issues in service composition in pervasive computing
environment (a) service deployment device, (b) service composition
problems, (c) service composition requirements; the red dash line rep-
resents the challenges addressed in this paper.

Fig. 2. Services and a service composite in a shopping mall’s pervasive
computing environment

ers. These devices can package their capabilities, like GPS,
navigation, facility routing, taxi booking or indoor map to be
accessible via network connections. Anne’s smart watch has
been configured to incorporate surrounding communication
networks to make use of available resources [4]. Thus, her
smart watch may be able to directly get an audio route
stream via an ad hoc network that forms from different
devices in the pervasive computing environment, such as a
personal-shopper’s phone, a nearby car’s satellite navigator,
and the mall’s information kiosk. The pervasive computing
environment helps Anne avoid browsing the website, in-
creasing the likelihood of matching all her hardware and
software capabilities to get the routing result she needs.

Open issues with current research on service composi-

tion (e.g., goal-oriented planning [5], open workflows [6]
[7] [8], adaptable composition [9] [10] [11] and AI planning
[12] [13]) are that i) existing service composition models are
inflexible; and ii) the composition models have limited sup-
port for handling composite service adaptation. Specifically,
workflow-driven solutions [6] [7] [8] model user require-
ments as a complex task request in the form of workflows
(i.e., abstract composite services). However, dynamic service
availability is unpredictable. Such an exactly-defined task
request removes the possibility of using services that may
contribute to the user’s request, but are not outlined in the
predefined workflow. For example, with a workflow ”get
a shop location→ get ramp access points → get a baby-
changing facility’s location → get an audio route”, Anne’s
request cannot be solved by the environment shown in Fig.2.
Goal-driven solutions [13] [14] [15] [16] are more flexible,
and model service composition problems by dynamically
composing multiple services when an individual one for
a service request is unavailable. However, existing goal-
oriented approaches either handle only sequential service
flows for such a composite service [15] [16], or employ AI
planning algorithms that support various service flows but
requires planning infrastructures [14]. In addition, existing
approaches towards composite service adaptation and re-
planning [12] [10] [11] [17] [18] rely on structured net-
works, central controllers or service repositories. Keeping
such network topology or central controllers up to date in
highly dynamic environments requires periodic interactions
over error-prone channels to monitor whether a composite
participant is absent.

This paper proposes a self-organizing, Goal-driven ser-
vices Composition model in Mobile and pervasive comput-
ing environments, called GoCoMo. In particular, it leverages
a decentralized planning algorithm based on backward-
chaining [19] to support flexible service querying. This
algorithm supports complex service flows such as parallel
service flows and hybrid service flows. Further, GoCoMo
introduces an on-demand adaptation overlay that allows ex-
ecution paths to dynamically adapt, which reduces failures.
This model uses, with some extensions, an opportunistic re-
source allocation scheme [9] to lock a participant provider’s
resource for a composite only when this provider’s service
is about to execute.

This work extends our existing algorithm [20] with
three contributions: First, the number of potential services
available to the system may expand as providers enter the
system’s scope, automatically merging with the existing
service-flows to resolve user requirements. Second, dynamic
candidate execution path adaptation and selection, based on
path reliability, are introduced to accomplish service execu-
tion with less failure. Third, a novel heuristic service request
transition model is employed that prevents service requests
flooding the network, which trades off traffic overhead with
service discovery scope in service planning.

The evaluation compares this work with a distributed
goal-driven service composition approach [13] [21]. Simula-
tion results show the suitability of the proposed mechanism
in a pervasive computing environment where providers are
mobile and it is uncertain what services are available.

The reminder of this paper is organized as follows.
Section 2 defines the problem and introduces the service

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

3

model that supports service composition. Section 3 de-
scribes the service composition algorithm. Section 4 presents
the evaluation and result. Section 5 discusses the validity of
this approach and remaining challenges in detail. Section 6
outlines related work. Section 7 summarizes this work and
discusses the future work.

2 SERVICE MODEL

The target network for this work is open and so may
be unstructured or semi-structured with some autonomic
service hosts. In other words, service hosts do not follow
any authority in the network requiring them to schedule
services for service requesters. Service hosts of interests
will be cooperative and be prepared to process composite
requests.

A service composite for complex user tasks can be mod-
elled as a restrictive data transition in which the system data
changes from initial data (i.e., a user’s input parameters) to
goal data (the requested output data), while satisfying all
the requested functionalities or constraints. A participating
service for the composite, packaging its resources (e.g., data,
functionality), can support all or a part of (based on its
resource provision’s granularity) the data transition. This
paper assumes services’ functions and I/O parameters are
semantically annotated using globally understood seman-
tics and language, and able to match a service request
with semantic matchmakers [20]. We assume such semantic
service annotations are kept in local service hosts (devices)
and can be advertised using probe messages. A service’s
invocation must be based on all the specified input data,
and local devices can form an ad hoc network, cooperating
with each other to resolve a complex user task.

A service is described as S = 〈Sf , IN,OUT,QoStime〉,
where Sf represents the semantic description of service
S’s functionality. IN = {〈INS , IND〉} and OUT =
{〈OUTS , OUTD〉} describe the service’s input and output
parameters as well as their data types respectively. For
this work, execution time QoStime is the most important
quality of service (QoS) criterion as delay in composition
and execution can cause failures [9]. A service composition
model should select services with short execution time to
reduce delay in execution.

Complex user tasks can be modeled as a service request
R = 〈Rid, I,O,F , C〉, where Rid is a unique id for a request.
The set F represents all the functional requirements, which
consists of a set of essential while unordered functions. The
composition constraints set C are execution time constraints.
A composition process fails if C expires and the client
receives no result during service execution. A service com-
posite request also includes a set of initial parameters (input)
I = {〈IS , ID〉} and a set of goal parameters (output)
O = {〈OS ,OD〉}.

Given the mobile nature of devices of interest, this
paper discusses service provision in networks with high
dynamism where the network topology is likely to change
faster than it takes to entirely complete service composition
or execution. A client is assumed to have limited resource
and communication range, which are insufficient to ag-
gregate enough service providers for a task. The solution
proposed in this paper addresses mobility by providing

Fig. 3. General distributed backward-chaining model for service compo-
sition

a fully decentralized self-organizing/adapting composition
model.

3 SERVICE COMPOSITION

A service composition process can be modelled as classic AI
backward-chaining [12]. A backward-chaining process, also
known as goal-driven reasoning [13], starts by searching
for the knowledge that can infer a request’s goals (conse-
quences), and then the request is resolved backward from
the goal to the request’s antecedents, by converting the
goal into subgoals, resolving back through these subgoals
(e.g., Goal a → c in Fig.3). The process finds a solution
when all the antecedents are reached. A general goal-driven
reasoning process for service composition is shown in Fig.3.
The initiator issues a service request a → d to start the
process, which relies on distributed knowledge bases stored
in local service hosts (planners). In each step of the service
discovery, a part of the request’s goal can be solved (e.g.,
Goal : a → d can be partially solved on Service 1 that
provides data transition of c → d), and the remaining
request (Goal : a → c) is forwarded to the next hop
service providers (i.e., Service 2). In such a process, it is
the request’s goal that determines which services will be
selected and used. This process produces more flexible plan-
ning results than that of workflow-driven approaches, as it
considers service discovery as an open-ended problem and
dynamically generates composite services according to run-
time service availability. For example, in Anne’s scenario,
she can specify her requirements as a goal: an audio step-free
route to a store and then to a baby-changing facility which will
be resolved hop-by-hop and eventually supported by a com-
posite service. As illustrated in Fig.2, the planning resolves
first to AudioNavigator, back to RampAccessChecker, then
to StoreRouter as well as FacilityRouter, to StoreLocator, to
IndoorMap, and finally to StoreQuery.

Modelling service composition as such a process has
been explored in infrastructure-rich networks where compo-
sition planning is based on infrastructures like repositories
[22] or pre-existing overlay networks [7] . However, this
kind of infrastructure, as mentioned in Section 1, is not suit-
able for our target environment, and neither are the existing
goal-driven reasoning processes. To allow mobile pervasive
computing environments to benefit from the flexibility that
such a goal-driven service composition brings, this paper

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

4

Fig. 4. Decentralized service composition model

proposes a service composition model that handles the
following issues:

• Goal-Driven Service Discovery- is handled via a
composite participant cooperation mechanism to co-
ordinate distributed knowledge bases and indepen-
dent planners to support the generation and the
maintenance of various service flows. (Section 3.1)

• Opportunistic Service Execution- is handled via on-
line adaptable reasoning to create awareness of and
compose potentially better services that may appear
during service execution. (Section 3.2)

• Heuristic Discovery Checking- is handled via a
distributed heuristic discovery mechanism based on
QoS attributes to increase the likelihood of time-
efficient services being selected during execution and
prevent composite requests flooding the network.
(Section 3.3)

The model captures a goal-driven reasoning algorithm to
support a fully decentralized service composition process,
which is modelled as a state-transition diagram in Fig.4.
A transition between these illustrated states is triggered
by message communication events (e.g., msgIn, msgOut)
or local conditions (e.g., participate, usable). The model in-
cludes i) a goal-driven service discovery protocol to discover

and link all the reachable and usable services, and ii) an
opportunistic service composition protocol that is based on
the discovery result, to select, compose and execute services
hop-by-hop on demand.

In particular, the global service discovery (listening − a
state) starts when a client sends out a composite request
to look for composite participants. Composite participants
in this model are service hosts who are capable of reacting
to and reasoning about a composite request. They are also
responsible for invoking their subsequent services during
execution. From a composite participant’s perspective, the
local discovering loop starts in the listening state and ends
when the composite participant is invoked (the invoking
state), while a local composing process, starts in the invoking
state and ends in a composition-handover state.

3.1 Goal-Driven Service Discovery

Global service discovery is a process to group composite
participants. Each composite request can be resolved par-
tially (or completely), and the remaining request is for-
warded to the composite participant’s neighbours to con-
tinue the discovering process. In this composition protocol,
any remaining request is enclosed in a discovery message
that is forwarded between composite participants.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

5

Fig. 5. Dynamic composition overlay

Definition 1. A discovery message including a request’s re-
maining part R′, is represented as DscvMsg = 〈R′, cache, h〉,
where cache stores the progress of resolving split-join controls for
parallel service flows (see Section 3.1.2), and h is a criterion value
for request forwarding and service allocation (see Section 3.2 and
3.3).

The global service discovery process establishes a tempo-
rary overlay network called a dynamic composition overlay
(Fig.5), which contains all the reached usable composite
participants. Such a network only lasts for the duration of a
composition. It is managed by a set of execution guideposts,
which are control elements for the discovered service flow.
As shown in Fig.5, each guidepost is maintained by a
composite participant, linking the corresponding service to
who sent the discovery message. An execution guidepost is
adaptable and a byproduct of the composite participant’s
local discovery process.

Definition 2. An execution guidepost G = 〈Rid,D〉 includes
a set of execution directions D and the id of its corresponding
composite request. For each dj ∈ D, dj = 〈didj ,Spost, ω,Q〉,
where didj is a unique id for dj , and the set Spost stores the
participant’s post-condition services that can be chosen for next-
hop execution. The set ω represents possible waypoints on the
direction to indicate execution branches’ join-nodes when the
participant is engaged in parallel data flows. The set Q reflects
the execution path’s reliability of this direction, e.g., the estimated
execution path strength and the execution time (Section 3.2).

The local discovering process for a composite participant
is described in Algorithm 1. Note that the state transiting
conditions like ¬end, cost and usable are not shown in this
algorithm since they have been illustrated in Fig.4. This
process reacts when a composite request or a discovery
message is received, and generates an execution guidepost
as well as new discovery messages that enclose the part
of the composite request which cannot be solved on this
composite participant.

Data : Sender Y sends DscvMsg. Receiver X hosts
S = 〈Sf , IN,OUT,QoStime〉.

Result: an execution guidepost, A DscvMsg containing
the remaining request R

1 /* Listening */ ;
2 while receive message DscvMsg do
3 /* Configuring */;
4 GoalMatch(S, R);
5 /* Planning (when usable)*/;
6 if ∄DscvMsglog then
7 New D;
8 DscvMsglog ← DscvMsg;
9 if partUsable then

10 Event← addJoin
11 else
12 Event← add
13 end
14 else

15 if DscvMsglog and DscvMsg have matched
cache value then

16 Update cache; Event← addSplit
17 end

18 if Progress(DscvMsglog) < Progress(DscvMsg)
then

19 Event← adapt;
20 end

21 if Progress(DscvMsglog) ==
Progress(DscvMsg) then

22 Event← add ;
23 end
24 end
25 switch Event do
26 case addSplit:
27 foreach di ∈ D do Spost ← Spost + Y
28 endsw
29 case adapt:
30 Clean D; dy ← 〈Rid, Y 〉;
31 endsw
32 case add||addJoin: dy ← 〈Rid, Y 〉;
33 endsw
34 //When a branch’s resolving is finished
35 Initiate cpltMsg′ = 〈R′, cache, h〉;
36 Send cpltcvMsg′;
37 /* Handover */;
38 if (Event!=add)&&(RemainReq) then
39 Initiate DscvMsg′ = 〈R′, cache′, h′〉,

R′ = 〈I ′,O′,F ′, C′〉;
40 O′ ← IN ;

41 F ′ ← F − Sf
matched;

42 C′ ← C −QoStime;
43 Calculate h;
44 if GoalMatch(S,R) = partial then
45 Initiate cachei = 〈Sid,m, c〉;
46 Sid ← P rec, m← OUT ∩ O;
47 c← 〈 num(m)/ num(O)〉;
48 cache′ ← cache+ cachei;
49 end
50 Send DscvMsg′;
51 end
52 end

Algorithm 1: Local Service Discovering Algorithm

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

6

3.1.1 Local Discovering and Discovery Messages

The initial goal of a composite request is to produce the
final, required output, and if a service matches the goal,
the service is usable for this composite request. A service
S = 〈Sf , IN,OUT,QoStime〉matching a composite request
R’s goals (R = 〈Rid, I,O,F , C〉) is ranked from different
matching levels:

GoalMatch(S,R) =

usable if OUT ⊇ O
partUsable if OUT (O, OUT 6= ∅
unusable otherwise

(1)

In the configuring state, a composite participant checks
the goal matching level for a composite request. To prevent
repeatedly checking for the same composite request, com-
posite participants maintain a log for composite requests.
During service planning (Line 5-33), a matched participant
can create a direction to link to the request sender, which
will be added into an execution guidepost.

In the discovery handover state, a discovery message
can be created that depends on its matching level for the
in progress composite request (Line 39-49). A composite
participant updates the composition request, by removing
the goal, adding its required input parameters as a new
goal, removing the matched function and changing the
execution time (QoStime) requirement in the request. Then,
the updated request is enclosed in a discovery message.

A cache is used in discovery messages that stores infor-
mation about a node Y which sends a request R to the com-
posite participant S, in which the goal is partially matched
(Line 44), i.e., when GoalMatch(S,R) = partUsable. A
composite participant caches a request sender when the
participant only partially match the request’s goal. Such a
request sender’s information is represented as Ci ∈ cache
(Ci = 〈Sid, G

matched, ρ〉), where Sid is the unique id of
the requester node (e.g., the node Y), and the set Gmatched

stores matched outputs. The parameter ρ (ρ ∈ (0, 1)) cap-
tures the progress of addressing the partially matched goal.
For example, in Anne’s scenario, an IndoorMap provider
(see Fig.1) receives a discovery message from a StoreRouter,
which includes a subgoal for Anne to ask for two input
parameters: local map and store address. As the IndoorMap
service host can only provide the local map, the StoreRouter’s
goal is half matched, so the IndoorMap caches the request
sender by adding C = 〈IndoorMap, localmap, 0.5〉 into
the cache set. A discovery message will be forwarded to the
composite participant’s neighbours. As a discovery message
is sent out, the model may continue with the discovery of
the remaining services before the current local discovering
cycle has collected all the matched directions.

3.1.2 Data-Parallel Tasks and Execution Guideposts

A user requirement may include data-parallel tasks, such
as multi-source data aggregation, which are modelled as
parallel workflows in the service composition model [6]
[9]. Goal-driven service discovery should resolve a data-
parallel task without a-priori knowledge of its inner data
transaction. In the planning state, a composite participant
recognises split-join control logic for such a task and gener-
ates a corresponding direction for it:

Fig. 6. An example for dynamic composition overlay networks

Definition 3. An and-splitting direction directly links to
multiple services, which requires the composite participant to
simultaneously invoke these services for execution. An and-
joining direction links to a waypoint-service (join-node) that
collects data from the composite participant and other services on
different branches.

A composite participant detects various events (Line 6-
23 in Algorithm 1) as triggers for building these directions.
Establishing a set of splitting directions is triggered by the
addSplit event, and a joining direction can be created when
an addJoion event occurs. An example for a dynamic compo-
sition overlay is illustrated in Fig.6. A splitting direction on
the service StoreLocator links to the FacilityRouter as well
as the StoreRouter, while a joining direction to this service
indicates that a data syncing process will be needed on its
subsequent execution.

An execution guidepost has a life cycle with four phases:
preparing, verifying, directing and waiting. It spans the du-
ration of a participant’s local discovering and local compos-
ing processes. When a composite participant i establishes
an execution guidepost, a lifetime T is assigned for this
execution guidepost. The T is determined according to the
remaining time constraints (C) and a heuristic value (Section
3.3). Before the participant gets invoked for execution, the
guidepost prepares for composition by collecting the direc-
tions. When the participant is about to compose services,

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

7

Fig. 7. An example for composition solutions

the directions in the guidepost are verified by sending a
probe message to check the service availability associated
with the directions. Afterwards, a valid direction will be
selected. Subsequently, if its lifetime T is still not expired,
the guidepost will live for a while in case the remaining exe-
cution needs a rollback for failure recovery (see Section 3.2).
If T has expired, the participant drops the guidepost for the
composition request, removing itself from consideration in
the composition. The overall composition process continue
to work with the dynamic composition overlay (see Fig.5).

3.2 Opportunistic Service Composition

Execution guideposts support local discovery results. In a
global view, as shown in Fig.7(b) each execution guidepost
that maintains multiple directions acts as a split-choice1 con-
trol element. This split-choice guidepost allows the system
to select the best path according to the current system con-
text, like node availability or the reliability of the remaining
path. A re-selection mechanism is also proposed to recover
the system from path failures. Such a solution is partially
found beforehand (in the global discovery stage), and can
be expanded during service execution if newly matched
services join the network.

The service composition process extends our opportunis-
tic service execution mechanism [9] [24] that binds services
on demand and releases them after execution. This allows
a composite participant’s computing resources to be locked
only for the duration of its local composing process. This
may reduce the time a composite participant is occupied,
which in turn increases its overall service availability. A
local service composition process is a transition from the

1. A split-choice control element can have more than one outbound
paths, and only one of them is selected for invocation [23].

invoking state to the composition handover state, as shown
in Fig.4. Directions with the best quality valueQ (Definition
3) will be chosen for the next-hop invocation. TheQ (Q > 0)
on participant n is calculated based on service execution
time

∑

QoStime
n on each service and the remaining execu-

tion path’s reliability.

Q = α ∗
∑

QoStime
n + βhn (2)

where α is a weight value determined by the local net-
work’s dynamism, and hn is a heuristic value that reflects
the remaining path’s length. The β derives from a path
duration estimation scheme [25] to estimate execution paths’
reliability in mobile ad hoc networks.

β = λ0v/R (3)

where λ0 is a proportion constant defined by network
factors like node density, v is the nodes’ average speed, and
R represents the transmission range [25]. A direction that
can route to a reliable execution path with a quick execution
time can have a low Q value. As a direction for services
executed in parallel may have waypoints, to synchronize a
parallel service flow, the join-node will be selected when a
parallel flow starts to execute.

A composite participant checks the availability of the
first service on a direction before it hands over the com-
posing process to the service. When such checks result in
”unavailable”, the composition model applies a backjumping
mechanism to prevent failures. During composition, a com-
posite participant will get the id of the closest service that
has multiple available directions from a service allocation
token (see data F in Fig.4.). If a composite participant
cannot find a service available for composition handover,
the composition will back-jump to the one that has multiple
available directions, as long as it still locks resources for
the composition (i.e., its guidepost is in the waiting phase),
so that another potential remaining execution path can be
picked out for execution. For example (Fig.6), if the Router
detects its link to the RampAccessChecker is unavailable
when it is handling service execution, the Router will allow
the service execution process backjumps to the StoreQuery
who has a backup direction that is able to invoke another
execution path. An execution can ultimately fail if no execu-
tion path is available.

3.3 Heuristic Discovery Checking

The service discovery model finds services hop-by-hop
based on service data dependency. During service discovery,
service hosts relay a composite request when they cannot
match the request. Given the large number of possible data
dependency relations and possible relay nodes in a network,
a discovery mechanism is required. This is to find enough
usable services in a reasonable period of time2 by employing
a practical number of composite participants.

We use a function r(n) to calculate the relaying cost (re-
laying hops) from the last composite participant to current
composite participant n or a relay node i (for r(i)). These

2. A tolerable waiting time for a simple information query is about 2
second [26]. For operating tasks, the waiting time should be within 15
seconds [27].

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

8

calculations are based on the heuristic value h in a discovery
message.

hn =
∑

r(n) + n (4)

The discovery cost is defined as d(n) = µ(hn−1 + r(i)),
where µ is a local communication channel parameter that
is defined by local composite participants and relay nodes.
When a client issues a composite request, it sets up a time
Tdiscovery for global service discovery. When the estimated
remaining discovery time T ′

discovery is above a threshold τ :
T ′

discovery = Tdiscovery − d(n) > τ , the node/participant
will stop relaying/processing the composition request. The
threshold is determined by the remaining time constraint
value on participant n, represented by τ = lCn, where l is a
weight value that determines a level for heuristic discovery
checking, and Cn is the execution time constraints. This
heuristic discovery check trades off the service discovery
scale and the service user’s QoS requirements (in particular,
response time). It prevents the system from over-expanding
the discovery scope and unnecessary communications, but
supports discovering sufficient composition results to sup-
port the user requirement. The selection of the l value will
be discussed in Section 4.2.

4 EVALUATION

The dynamic composition overlay, the related discovery
algorithms and the composition logic were implemented on
the NS-3 simulator, and evaluated focusing on the following
three metrics:

• Planning failure rate (Section 4.1): the algorithm’s
success at finding sequential solutions to a goal re-
quest. The service composition/planning failure rate
is calculated as the ratio (∈ [0, 1]) of the number of
failed planning processes to the number of all the
issued requests during the simulation cycles. The
duration for a client to receive the first pre-execution
plan and the sent messages (system traffic) during
this process were also measured for performance
analysis.

• Execution failure rate (Section 4.2): the algorithm’s
success at handling potential failures that may ap-
pear during service execution. In this experiment,
the execution failure rate is computed as the ratio
(∈ [0, 1]) of the number of failed execution to the
number of all the successful planning, considering
different system configurations (i.e., mobility, and
network size). This experiment also included mea-
surements for execution performance, such as re-
sponse time for a client to receive the execution result
and the system traffic during this process.

• The failure rate for composing parallel service flows
(Section 4.3): the algorithm’s success at finding and
invoking parallel solutions. Composition failure rates
were calculated under different configuration of ser-
vice availability.

For the purposes of establishing a good baseline against
which to compare GoCoMo, we have combined state-of-the-
art functionality on a decentralised cooperative discovery

TABLE 1
Simulation Configuration

Controlled -(a) Section 4.1 and 4.2
Number of providers 20 (sparse), 30 (medium-dense),

40 (dense), 50
Types of services 10
Service instance per request 5, 10
Mobility (node speed) slow: 0-2 (m/s), fast: 8-13 (m/s),

medium-fast: 2-8 (m/s)
Controlled -(b) Section 4.3
Number of providers 20, 30, 40, 50
Types of service flows sequential, parallel, hybrid
Types of services 5-15
Service instance per request 5
Mobility (node speed) medium-fast: 2-8 (m/s)
General
Simulator NS-3
Clients 1
Communication range 250 (m)
Field 1000*1000 (m2)
Service deployment 1 service per node
Semantic matchmaking delay 0.2 (s) [28]
Service routing dynamic AODV 10-hops
Sample 300 runs
Random
Node placement
Service execution time 0.01-0.1 (s)
Node movement random walking mobility model

model [13] with a continuing message passing model [21]
that enables decentralized service invocation. This baseline
approach is referred to as CoopC in the following sec-
tions. CoopC’s cooperative discovery employs a backward
goal-driven service query and forward service construction
mechanism. It generates a sequential service flow as the
discovery result. However, CoopC’s offline approach to
service planning means that it does not support runtime
composite service adaptation. Unlike the cooperative dis-
covery model [13] used as an input to CoopC [29], we have
implemented CoopC to start service execution when the
first pre-execution plan is found. The plan is passed through
the service execution path to indicate which service will be
invoked for subsequent execution. This makes CoopC and
GoCoMo more comparable when measuring response time.

4.1 Flexibility of Service Planning

The evaluation scenario for assessing the flexibility of the
proposed discovery strategy contains one client node and
a specific number of service provider nodes. The context
configurations of the scenario is shown in Table 1.(a). There
are 10 different atomic services and their duplicates in the
scenario, one per service provider. These services have the
potential to form a 5-service sequential flow or a 10-service
sequential flow to support service queries with varying
complexity. GoCoMo and CoopC were simulated with con-
figurations that differ in their service density, node mobility
and the complexity of service composition.

The failure rate and the performance are illustrated in
Fig.8 - Fig.10. On finding pre-execution plans, GoCoMo
shows a higher possibility of returning a pre-execution
plan than CoopC (Fig.8(a) and (b)). In particular, with
the increasing complexity of service composition (Fig.8(c)),
GoCoMo raised about 0 − 6% failures while CoopC raised
approximately 0− 8% failures in most of the scenarios. The

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

9

Fig. 8. Planning failure rate in mobile networks: (a) 5 service instance
per request, (b) 10 service instance per request, and (c) the failure rate
deviation between (a) and (b)

Fig. 9. Discovery time in mobile networks: (a) 5 service instance per
request, (b) 10 service instance per request

Fig. 10. Discovery traffic in mobile networks: (a) 5 service instance per
request, (b) 10 service instance per request

Fig. 11. Execution failure rate in mobile networks: (a) 5 service instance
per request, (b) 10 service instance per request

results also show that GoCoMo discovery spent less time
than CoopC to return the first pre-execution plan (Fig.9),
but it sent slightly more messages than CoopC’s discovery
model (Fig.10(b)) to resolve a simple request in the sparse
scenario (20 nodes) and the medium-dense scenario (30
nodes). GoCoMo discovers more quickly, since it is not like
its counterpart that requires one more step to finish the
service discovery process, which constructs a pre-execution
composite by forwarding a construction message to all the
participant service providers after the backward service
query. GoCoMo allows the fragments of execution plans
to be selected and cooperate at execution time. GoCoMo
produces slightly more traffic for simple requests (5 service
instance per request) in sparse and medium-dense scenarios
(Fig.10(a)) as it discovers more service links to find various
possible execution paths for a single pre-execution plan (see
Fig.7(b)).

4.2 Adaptability of Composite Services

A composite solution is adaptable if the system is able to
compose solutions and complete service execution even in
a mobile environment. The execution failure rate was cal-
culated to show such adaptability for GoCoMo and CoopC.
In this simulation, both of the approaches are implemented
such that service execution starts immediately when the first
pre-execution plan is returned to the client.

For execution failure rate (Fig.11) GoCoMo is more suc-
cessful compared to CoopC in sparse networks for most
scenarios (20 nodes) and also in dense networks (30-50
nodes). CoopC produced heavy system traffic during ser-
vice execution (see Fig.13) when service density increases.
This is because when the first returned plan is applied
for execution, CoopC may still have participants that are
performing service discovery (mainly in the forwarding

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

10

Fig. 12. Response time: (a) 5 service instance per request, (b) 10
service instance per request

Fig. 13. Overall traffic: (a) 5 service instance per request, (b) 10 service
instance per request

process for service construction). Such system traffic occurs
at anytime less than t, for t ∈ [0.55, 5.3]s, which indicates
a frequent interaction between composition participants3.
Frequent interactions in a network increases the possibility
of high packet collision failures [30] [31]. Therefore, CoopC
had more failures even though service density is increased.
Although GoCoMo had the same tendency when service
density increases from 40 to 50, in general, GoCoMo pro-
duced less failures than CoopC in dense networks. Starting
service execution after the service discovery process leads
to all participants reducing some interactions in the service
execution process, which may prevent such frequent inter-
actions, but it delays the service composition process, which
may cause even more fails because of service path loss in
a mobile environment [9] [32]. With a high service density
(e.g., above 40 services), GoCoMo in a fast mobility network
returns about 0 − 17.33% more fails than in a medium-
fast mobility network or a slow mobility network. In a low
service density network (e.g., a network with 20 services),

3. Service execution time interval [0.55, 5.3]s is calculated by remov-
ing the time spent on discovery (in Fig.9) from the response time (in
Fig.12).

Fig. 14. Heuristic levels affect failure rates

the failures increase to 4.67 − 25.33%. This is because low
service density networks only have a limited number of
services in a node’s communication range, which makes it
hard for GoCoMo to find alternative service execution paths
to replace failed paths.

For service execution performance, the response time
was measured and the system traffic for a composition pro-
cess was counted. The results (Fig.12 and Fig.13) show that
GoCoMo processes more quickly than CoopC approach in
high density scenarios and is less affected by service density.
In highly dynamic (fast) networks, the time spent on service
composition for GoCoMo increases slightly faster than that
in slow networks. This is because execution failure recovery
requires jumping back to an executed node. Fig.13 shows
that GoCoMo generates less traffic compared to CoopC,
because CoopC merges all the partial plans during service
discovery, which increases interactions among participants.

GoCoMo applied a heuristic service discovery mech-
anism. The selection of the threshold level l may affect
the results for returning a composition solution. Because a
high threshold level can lead to more discovery messages
that may increase the possibility of packet collisions and
packet loss [30], and in turn composition failures. A test
was run to measure this influence, which assumed all the
nodes in the network use the same threshold level for
simplicity. The test applied 6 levels of heuristic discovery
from 0 to 5. Level 5 means there is no heuristic check,
and the level 0 process used the smallest threshold value,
which represents a comparatively small search scope. Fig.14
shows that, in a medium-dense network (30 services) with
medium-fast mobility, a low level (i.e., Level 0) of heuristic
discovery will reduce composition failures. Because, in such
a dense network, even a small search scope can support
enough backup execution paths for failure recovery, while it
sends less query messages than its high level counterparts,
reducing the potential for packet collision failures.

4.3 Planning Complex Service Flows

The evaluation scenario for assessing the support for com-
plex service flows contains one client node and 5-15 dif-
ferent atomic services and their duplicates, one per service
provider. These atomic services vary in the type and the
number of their input and output parameters. This reflects
that when service instances engage in a workflow, each may

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

11

Fig. 15. Potential service flow for a composite service that supports data
transition: x →y

Fig. 16. Failure rate for the data transition (x →y) request

have multiple, differing in-degrees and out-degrees4. The
potential service flows constructed by these atomic services
for a composite service is illustrated in Fig.15. These service
flows connect participating services relying on their data
dependency, which include sequential workflow models
(model a), parallel workflow models (model c and d), and
hybrid workflows (model b) [33] [23]. Each of them includes
5 service instances. All the service flows start and end with
the client node that issues a service query x→ y.

The failure rate of GoCoMo on scenarios that contain
the different kinds of flows are shown in Fig.16. It was
simulated under medium-fast networks. On returning so-
lutions, GoCoMo supports model c services (Fig.15(c)) the
best, and has more failures in the scenario with model d ser-
vices (Fig.15(d)). CoopC supports only model a (sequential
Fig.15(a)) services (see Section 4.1), and so only GoCoMo
results are illustrated.

4. In-degree and out-degree indicate the number of connections en-
tering and leaving a workflow node, respectively [33].

5 DISCUSSION

GoCoMo is designed for mobile and pervasive computing
applications that require multiple participants, and run in
dynamic ad hoc environments. GoCoMo generally reduces
the failure rate of service composition in dynamic, open per-
vasive computing environments. Specifically, flexible com-
positions of services are possible by using the proposed
goal-driven composition planning model, and the impact
of changes in the operating environments can be reduced
by GoCoMo’s adaptation and execution mechanism with
a reasonable cost. The context of this work refers to user
requirements and the runtime environment (e.g., service
availability). The model allows processes for pervasive com-
puting, like information querying, data aggregation, and
in-network data processing to be planned and executed
in dynamic environments. It also raises the potential for
applications like the messaging-based concierge service [34]
[35] to be applied in pervasive computing environments.
On the other hand, as service flows that include iterative
logics have not been addressed, this model does not suit
applications that imply complicated transactions, such as e-
commerce.

Service composition systems are likely to be provided
and maintained by third-parties, and in general, hop-by-
hop processing may expose the overall control and dataflow
to assigned providers. Service composition should be pro-
cessed in reliable entities and able to protect a compo-
sition requester’s privacy (e.g., data flow). Although this
work assumes a trustworthy environment, the backward
composition model described here goes some way towards
addressing the privacy issue by partitioning the dataflow
and the composition requester’s goal. In particular, a service
provider cannot see the whole data flow and the requester’s
data is not visible to the full service-flow’s provider (i.e., the
ending services’ provider).

Service discovery process matches services to a com-
position request. This work assumed no matchmaking in-
frastructure for service discovery, which implies the use
of dynamic matchmaking. To cope with heterogeneous ser-
vices, a dynamic semantic matchmaker is needed. However,
dynamic semantic matchmaking can be resource-consuming
and reduce the overall performance of service composition
[36]. A semantic matchmaking model was previously out-
lined for dynamically maintaining a distributed semantic
service dependency overlay network, which goes some
way towards efficient semantic matchmaking [20], but for
resource-constrained devices, the cost of maintaining a se-
mantic overlay network, may make participation in such
an open, sharing model infeasible. A mechanism that can
cope with fast and lightweight semantic matchmaking is
still requested.

6 RELATED WORK

Service composition has emerged as a promising solution
to service-rich environments such as those predominant in
pervasive computing. To reduce composition and execution
failures while dealing with complex user requirements,
existing service composition techniques investigate flexible
composition planning mechanisms, and service execution

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

12

policies. Examples of such investigations applied to perva-
sive computing include open service discovery approaches,
and dynamic service planning approaches, both of which
automatically discover a combination of multiple services
to support a user goal or a task when a single matched
service is not available. Efforts on dynamic binding for
decentralized service execution are also included.

6.1 Open Service Discovery

Service discovery allows a system to aggregate information
that is scattered in local service providers, to resolve com-
posite requests. Open service discovery approaches are flex-
ible compared to those that rely on a predefined workflow
to find services that can exactly match the sub-tasks in the
workflow.

A graph-based service aggregation method [8] mod-
els services and their I/O parameters in an aggregation
graph based on the parameter dependence of the services.
Complex user requirements in this method are resolved
according to predefined abstract composites. It dynamically
composes services to support a task in a workflow when
a direct match between the task and a single service does
not exist. A composite service is found if the aggregation
graph contains a path to link the task’s output parameter
and its input parameter. Similarly, a dependency graph [37]
was used for service aggregation, but its usage differs from
that in [8] since it directly maintains service dependency
relations rather than their I/O parameters relations. An
open workflow [6] has been proposed to support service
composition in mobile ad hoc networks. It models work-
flows that already exist in the environment as a super-
graph, and discovers services through the data flow in
the supergraph. However, the above approaches require
central entities for the graph-based service directory, which
implies frequent network communications to maintain such
a directory when the network topology changes quickly. In
addition, they require a pre-existing workflow to discover
services that support complex data flows, such as one with
parallel logic. Such a workflow may need to be generated
offline by a domain expert or a composition planning en-
gine, which is inconvenient when a change is required at
runtime. A decentralized reasoning system [38], which does
not need a pre-existing workflow, composes services using
a distributed overlay network built over P2P networks and
enables self-organizing service composition through man-
agement of the network. However, this approach assumed
that all the participants know their geographic locations,
and the service request is sent to the participants’ physical
neighbours. In mobile environments where devices’ geo-
graphic locations can change quickly, frequently updating
geographic locations wastes computation resources.

6.2 Dynamic Composition Planning

Dynamic composition planning resolves user requirements
and generates service flows during service composition.
Classic AI-planning algorithms, such as forward-chaining
and backward-chaining, have been applied for dynamic
composition planning. WSPR [14] proposes a novel AI
planning-based algorithm for large-scale Web services. This
work is based on the analysis of complex networks. The

EQSQL-based planning algorithm [39] applies rank-based
models to promote service composition efficiency. Ukey
et.al.[15] model a Web service as a conversion from an
input state to an output state and maintained published ser-
vices as a dependency graph. They employed a bi-direction
planning algorithm to find a path with the smallest cost
from the dependency graph. Khakhkhar et.al. [5] proposed
a bidirectional planning algorithm that combines a forward-
chaining approach and a backward-chaining approach. It
allows systems to plan a composite service from the input
data and the goal output at the same time. A planning
solution emerges when the searches from the two directions
meet at some point in the solution’s service flow. How-
ever, these approaches require central service repositories
to maintain service overlays, and they have no support for
dynamic composition replanning for composition failures.
WSMO [12] describes single-direction planning models,
which forward or backward chain service providers for
user tasks. WSMO reasons over service execution plans
and adapt composite services on the fly, addressing flexible
service composition, but still requiring central controllers
to schedule services. PM4SWS [16] is a distributed frame-
work to discover and compose web services. However, this
service exploration process simply floods the network with
query messages for service discovery, which is not suitable
for pervasive environments, especially where there are large
numbers of services to be considered [31] [40]. A cooperative
discovery model [13] provides fully distributed support for
unstructured P2P networks. This work is the closest solution
to our distributed goal-driven planning approach, but it
assumes the network has super-peers5 that are capable of
managing network links. This assumption is not safe in dy-
namic environments, as super-peer-based groups may fail if
any relevant peer leaves the network, or is no longer able to
fulfil its role because of reduced capacity. In addition, this
work assumed offline planning which limits the potential of
the planning solution’s dynamic adaptability. This work also
included a bi-direction search scheme that allows a data-
driven (finding services that match the query’s input param-
eters) service query and a goal-driven service query which
start concurrently to increase discovery efficiency. However,
this bi-direction search scheme requires an initiator node
to aggregate service informations, which implies resource-
rich devices, and according to evaluation results [13], using
the bi-direction search scheme lowers the discovery success
rate. The advantage of the efficient discovery cannot out
weight a decrease in successful discovery.

AI-planning algorithms like TLPlan [41], Haley[42], and
a fuzzy TOPSIS method [43] have been investigated for
dynamic composition planning and have features for au-
tomatic re-planning to handle failures. TLPlan [41] allows
a system to plan an abstract solution from a pre-existing
abstract service repository, and then to discover and bind
services for execution. It supports on-the-fly re-composition
and execution failure recovery by a composition re-planning
mechanism. Haley[42] applied a first-order semi-Markov
decision for dynamic composition planning. It also pro-
vides composition plan regeneration to recover the system
from failures. A fuzzy TOPSIS method [43] is employed to

5. peers with special capabilities [14].

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

13

support user-centric service compositions. It adapts service
bindings according to real-time user preferences. However,
these AI-planning algorithms rely on central composition
engines that have not yet been applied on mobile devices.
In addition, they need to re-generate a new plan for failure
recovery, which is time-consuming and not suitable for
dynamic environments.

The proposed service discovery differs from the exist-
ing open service discovery and the dynamic composition
planning approaches in three aspects. First, a split-choice
logic is introduced in the resolution result, which makes the
solution more flexible to fit in the execution context. Second,
the solution found by the proposed model is adaptable
as new split-choice logic can be added in the solution
even when the global service discovery is finished. Third,
the local discovery process may continue to discover new
available services even when the global discovery process
ends.

6.3 Decentralized Service Execution

The OSIRIS approach [44] decomposes a central service
flow description to a set of execution units that can be de-
ployed on service providers in a P2P network. These service
providers are found during service discovery. The service
execution process migrates from one service provider to
the other. At each time such a migration occurs, the client
node can select anther node that is available. It defines
special observer nodes to monitor the nodes that may cause
failure. If a failed node is detected the execution instance
can be migrated to another available node. However, it
starts execution after service discovery is finished, and it
requires that a part of the execution unit is deployed to all
the providers. It provides no means to allow a potential new
provider that may appear in the network to participate in
the composition.

A fuzzy-based service composition [45] has been in-
troduced for MANETs, considering resource-constrained
devices and error-prone wireless communication channels.
Each node maintains the neighbours’ service information
and gets the real-time QoS information during service dis-
covery. However, it has no support for adapting composite
services at runtime.

A minimum disruption service composition model [10]
investigated the types of composition failures in MANET,
and provided network-level and service-level adaptation as
well as recovery mechanisms. It quantitatively estimated
service execution paths’ reliability and availability. How-
ever, this model has no support for parallel service flows.
A cache based service execution and recovery model [11]
for MANETs is similar to GoCoMo in terms of using a cache
to store backup services. However, it assumes that service
providers constantly advertise their services and requires
service participants to maintain repositories for neighbours’
service information.

The work proposed in this paper extends the opportunis-
tic service execution model [9] [24] but uses goal-driven ser-
vice discovery beforehand to reduce the possibility of hav-
ing a dead end execution. This is because the opportunistic
service composition does not consider the remaining path’s
information (e.g., availability or reliability) when invoking

subsequent services, which may increase the possibility of
invoking a participant that cannot find a service provider
for its subsequent execution.

7 CONCLUSION AND FUTURE WORK

In a service-oriented computing environment where com-
plex user requests can be represented as a collection of
data requirements and functionality requirements, each of
the requirements can be supported by a set of services. In
a mobile, pervasive environment, there is potential for a
range of different types of devices (e.g., wearables, mobiles)
to participate as a service provider, but challenges include
flexible service discovery, and working with mobile devices
and dynamic network topologies. Related work, in par-
ticular goal-oriented service composition approaches, has
presented elegant solutions to flexible service composition
using graph-based composition planners, AI-planning or
dynamic composition re-planning, but these do not suit
mobile environments. In this paper, a novel goal-oriented
service composition model is introduced. The model in-
troduces the split-choice logic into the dynamic composi-
tion result, thereby handling real-time system environment
changes, but it also particularly addresses systems with high
mobility.

The proposed model is evaluated against a baseline with
multiple simulation scenarios, different request complexity,
varying device mobilities and a range of service densities.
The results show the goal-oriented service composition
model is more successful in returning a composition result
than the baseline, has less wireless communication and a
faster response during service composition. In future work,
we plan to address other QoS attributes in a pervasive
computing environment, such as memory or processing
power, and optimise the model to cater for these as far as
possible.

REFERENCES

[1] N. Ibrahim and F. Mouel, “A survey on service composition
middleware in pervasive environments,” International Journal of
Computer Science Issues, vol. 1, pp. 1–12, 2009.

[2] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware
for pervasive computing: A survey,” Pervasive and Mobile Comput-
ing, vol. 9, no. 2, pp. 177–200, Apr. 2013.

[3] Y. Wei and M. Blake, “Service-oriented computing and cloud
computing: Challenges and opportunities,” Internet Computing,
IEEE, 2010.

[4] M. Handte, “Peer-based automatic configuration of pervasive
applications,” Pervasive Services, 2005. ICPS ’05. Proceedings. Inter-
national Conference on, 2005.

[5] S. Khakhkhar, V. Kumar, and S. Chaudhary, “Dynamic Service
Composition,” International Journal of Computer Science and Artificial
Intelligence, vol. 2, pp. 32–42, Sep. 2012.

[6] L. Thomas, J. Wilson, G. Roman, and C. Gill, “Achieving co-
ordination through dynamic construction of open workflows,”
Middleware 2009, 2009.

[7] S. Kalasapur, M. Kumar, and B. A. Shirazi, “Dynamic Service
Composition in Pervasive Computing,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 18, no. 7, pp. 907–918, 2007.

[8] W. Zhenghui, X. Tianyin, Q. Zhuzhong, L. Sanglu, Z. Wang,
T. Xu, Z. Qian, and S. Lu, “A Parameter-Based Scheme for Service
Composition in Pervasive Computing Environment,” in Complex,
Intelligent and Software Intensive Systems, 2009. CISIS ’09. Interna-
tional Conference on, no. 3. Ieee, Mar. 2009, pp. 543–548.

[9] C. Groba and S. Clarke, “Opportunistic service composition in
dynamic ad hoc environments,” IEEE Transactions on Services Com-
puting, vol. X, no. c, pp. 1–1, 2014.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2533348, IEEE

Transactions on Services Computing

14

[10] S. Jiang, Y. Xue, and D. C. Schmidt, “Minimum disruption service
composition and recovery in mobile ad hoc networks,” Computer
Networks, vol. 53, no. 10, pp. 1649–1665, Jul. 2009.

[11] X. Zhou, Y. Ge, X. Chen, Y. Jing, and W. Sun, “A Distributed
Cache Based Reliable Service Execution and Recovery Approach
in MANETs,” 2011 IEEE Asia-Pacific Services Computing Conference,
pp. 298–305, Dec. 2011.

[12] A. Hibner and K. Zielinski, “Semantic-based Dynamic Service
Composition and Adaptation,” in Services, 2007 IEEE Congress on,
2007, pp. 213–220.

[13] A. Furno and E. Zimeo, “Efficient Cooperative Discovery of Ser-
vice Compositions in Unstructured P2P Networks,” 2013 21st Eu-
romicro International Conference on Parallel, Distributed, and Network-
Based Processing, pp. 58–67, Feb. 2013.

[14] S. Oh, D. Lee, and S. Kumara, “Effective Web Service Composition
in Diverse and Large-Scale Service Networks,” IEEE Trans. Services
Computing, 2008.

[15] N. Ukey, R. Niyogi, A. Milani, and K. Singh, “ A bidirectional
heuristic search technique for web service composition,” Computa-
tional Science and Its Applications, 2010.

[16] M. Gharzouli and M. Boufaida, “PM4SWS: A P2P Model for
Semantic Web Services Discovery and Composition,” Journal of
Advances in Information Technology, vol. 2, pp. 15–26, 2011.

[17] J. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw, “Task-
based adaptation for ubiquitous computing,” IEEE Transactions on
Systems, Man and Cybernetics, Part C (Applications and Reviews),
vol. 36, no. 3, pp. 328–340, May 2006.

[18] S. Schuhmann, “Adaptive Composition of Distributed Pervasive
Applications in Heterogeneous Environments,” ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 2013.

[19] M. Chein and M.-L. Mugnier, Graph-based Knowledge Representation:
Computational Foundations of Conceptual Graphs, 1st ed. Springer
Publishing Company, Incorporated, 2010.

[20] N. Chen and S. Clarke, “A Dynamic Service Composition Model
for Adaptive Systems in Mobile Computing Environments,” IEEE
International Conference on Service-Oriented Computing, 2014.

[21] W. Yu, “Scalable Services Orchestration with Continuation-Passing
Messaging,” 2009 First International Conference on Intensive Applica-
tions and Services, pp. 59–64, Apr. 2009.

[22] G. Zou, Y. Gan, Y. Chen, B. Zhang, R. Huang, Y. Xu, and Y. Xiang,
“Towards automated choreography of Web services using plan-
ning in large scale service repositories,” Applied Intelligence, vol. 41,
no. 2, pp. 383–404, Mar. 2014.

[23] R. Liu and A. Kumar, “An analysis and taxonomy of unstructured
workflows,” Business Process Management, pp. 268–284, 2005.

[24] C. Groba and S. Clarke, “Synchronising Service Compositions in
Dynamic Ad Hoc Environments,” 2012 IEEE First International
Conference on Mobile Services, pp. 56–63, Jun. 2012.

[25] N. Sadagopan and F. Bai, “PATHS: analysis of PATH duration
statistics and their impact on reactive MANET routing protocols,”
Proceedings of the 4th MobiHoc, pp. 245–256, 2003.

[26] F. Nah, “A study on tolerable waiting time: how long are Web
users willing to wait?” Behaviour & Information Technology, pp. 1–
37, 2004.

[27] R. Miller, “Response time in man-computer conversational trans-
actions,” Proceedings of the December 9-11, 1968, AFIPS Fall Joint
Computer Conference, vol. 33, pp. 267–277, 1968.

[28] M. Klusch, “Overview of the S3 contest: Performance evaluation
of semantic service matchmakers,” Semantic Web Services, pp. 1–18,
2012.

[29] A. Furno and E. Zimeo, “Self-scaling cooperative discovery of
service compositions in unstructured P2P networks,” Journal of
Parallel and Distributed Computing, vol. 74, no. 10, pp. 2994–3025,
Oct. 2014.

[30] J. Lipman, H. Liu, and I. Stojmenovic, “Broadcast in Ad Hoc
Networks,” in Guide to Wireless Ad Hoc Networks, ser. Computer
Communications and Networks, S. Misra, I. Woungang, and
S. Chandra Misra, Eds. London: Springer London, 2009, pp. 121–
150.

[31] T. Jun, N. Roy, and C. Julien, “Modeling delivery delay for flood-
ing in mobile ad hoc networks,” Communications (ICC), 2010 IEEE,
2010.

[32] C. Groba and S. Clarke, “Opportunistic composition of
sequentially-connected services in mobile computing environ-
ments,” Web Services (ICWS), 2011 IEEE, 2011.

[33] B. Kiepuszewski, A. Harry, and C. J. Bussler, “On Structured
Workflow Modelling Structured Workflows,” Advanced Information
Systems Engineering LNCS, vol. 1789, 2000, pp. 431–445, 2000.

[34] J. Shaffer and J. Keaveney, “Automated concierge system and
method,” US Patent 8,160,614, vol. 2, no. 12, 2012.

[35] J. Breau, E. Miller, S. Ng, and C. Persson, “Concierge for portable
electronic device,” US Patent 8,489,080, vol. 1, no. 12, 2013.

[36] O. Davidyuk and N. Georgantas, “MEDUSA: Middleware for
end-user composition of ubiquitous applications,” Handbook of
Research on Ambient Intelligence and Smart Environments: Trends and
Perspectives IGI Global (Ed.) (2011) 197-219, no. 2011, pp. 1–22, 2011.

[37] P. Rodriguez-mier, M. Mucientes, and M. Lama, “A Dynamic QoS-
Aware Semantic Web Service Composition Algorithm,” Service-
Oriented Computing LNCS, vol. 7636, pp. 623–630, 2012.

[38] I. Al-Oqily and A. Karmouch, “A Decentralized Self-Organizing
Service Composition for Autonomic Entities,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 6, no. 1, pp. 1–18, Feb.
2011.

[39] K. Ren, N. Xiao, and J. Chen, “Building Quick Service Query List
Using WordNet and Multiple Heterogeneous Ontologies toward
More Realistic Service Composition,” IEEE Trans. Services Comput-
ing, 2011.

[40] F. Dai and J. Wu, “Performance analysis of broadcast protocols in
ad hoc networks based on self-pruning,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 15, no. 11, pp. 1–13, 2004.

[41] M. Vukovi and P. Robinson, “Application development powered
by rapid , on-demand service composition,” 2007.

[42] H. Zhao and P. Doshi, “A hierarchical framework for logical
composition of web services,” Service Oriented Computing and
Applications, vol. 3, no. 4, pp. 285–306, Nov. 2009.

[43] D.-Y. Cheng, K.-M. Chao, C.-C. Lo, and C.-F. Tsai, “A user centric
service-oriented modeling approach,” World Wide Web, vol. 14,
no. 4, pp. 431–459, May 2011.

[44] C. Schuler and R. Weber, “Scalable peer-to-peer process
management-the OSIRIS approach,” Web Service, 2004.

[45] G. Prochart and R. Weiss, “Fuzzy-based support for service com-
position in mobile ad hoc networks,” IEEE International Conference
on Pervasive Services, pp. 379–384, 2007.

Nanxi Chen received her BEng degree in Soft-
ware Engineering from Wuhan University, China,
and her MEng degree in Electronic Engineering
from Dublin City University, Ireland. She is cur-
rently working towards the PhD degree in the
Department of Computer Science, Trinity Col-
lege Dublin, Ireland. Her research interests in-
clude mobile and pervasive computing, compo-
sition of (mobile) services, and semantic service
discovery. Her research is funded by the Science
Foundation Ireland (SFI).

Nicolás Cardozo received his PhD degree in
computer science from the Université catholique
de Louvain and Vrije Universiteit Brussel in
2013, specializing on programming language
design for context-aware environments. He is a
research fellow working in the Distributed Sys-
tems Group at Trinity College Dublin. The focus
of his research is in the field of self-adaptive
systems, studying analysis and verification tech-
niques to assure adaptation consistency. His re-
search is partially funded by the Science Foun-

dation Ireland (SFI) grant to Lero and FP7 grant to the DIVERSIFY
project.

Siobhán Clarke is a Professor and Fellow of
Trinity College Dublin, where she leads the Dis-
tributed Systems Group and is Director of Future
Cities, the Trinity Centre for Smart and Sustain-
able Cities. Her research interests are in soft-
ware engineering models for the dynamic pro-
vision of smart and dynamic software services
to urban stakeholders in large-scale, mobile en-
vironments. She received her BSc and PhD de-
grees in Computer Science from Dublin City Uni-
versity.

