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Abstract
Aperiodic sinusoidal patterns that are cast by a GOBO (GOes Before Optics) projector are a powerful tool for optically

measuring the surface topography of moving or deforming objects with very high speed and accuracy. We optimised

the first experimental setup that we were able to measure inflating car airbags at frame rates of more than 50 kHz

while achieving a 3D point standard deviation of ~500 µm. Here, we theoretically investigate the method of GOBO

projection of aperiodic sinusoidal fringes. In a simulation-based performance analysis, we examine the parameters that

influence the accuracy of the measurement result and identify an optimal pattern design that yields the highest

measurement accuracy. We compare the results with those that were obtained via GOBO projection of phase-shifted

sinusoidal fringes. Finally, we experimentally verify the theoretical findings. We show that the proposed technique has

several advantages over conventional fringe projection techniques, as the easy-to-build and cost-effective GOBO

projector can provide a high radiant flux, allows high frame rates, and can be used over a wide spectral range.

Introduction
Measuring the three-dimensional (3D) topography of

macroscopic objects by using structured light requires

(i) the (sequential) projection of N ≥ 1 pattern(s) onto

the object and

(ii) the simultaneous recording of the pattern(s) that

are modulated by the object topography.

Years of research and development have shown that the

accuracy that can be achieved by such pattern projection

systems depends directly on the number N of projected

patterns1–3. Along with the increased demands on mea-

surement accuracy, in recent years, requirements on

measurement speed have also risen, which necessitate

high-speed pattern projection and recording and fast

computation and evaluation. In particular, dynamically

moving or deforming objects are to be measured.

In general, well-known algorithms for determining 3D

object coordinates by evaluating projected patterns are

based on detecting two-dimensional (2D) point corre-

spondences between two cameras or between one camera

and the projector4–7. Corresponding points are defined as

2D sensor points that are images of the same 3D object

point. When using a series of N patterns, triangulation

algorithms require temporal consistency of these

point correspondences during the period NT=N/f, where

f= T−1 is the projection and recording frame rate. In

dynamic measurement situations, i.e., if the measurement

object and the sensor system move relative to each other,

this rigid assignment will not be satisfied.

To re-establish a quasi-static measurement scenario,

two approaches are possible: first, methodological mod-

ifications could be made, e.g., reducing the number of

patterns N and, therefore, the period NT; projecting

alternative patterns; or compensating for the relative

movement. In particular, single-shot techniques (N= 1),

such as Fourier transform profilometry8,9, multi-line tri-

angulation10, and wave grid-based active stereo11, are

popular and efficient ways to minimise the measurement

time. Second, the projector and camera frame rate could
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be significantly increased. The minimum of the two frame

rates limits the measurement speed. In contrast to cam-

eras with high sensitivity, frame rate, and resolution

(several kHz at megapixel resolution), which have been

commercially available for some time, conventional pro-

jectors are limited in terms of speed (especially in 8-bit

greyscale mode), radiant flux, and applicable light spectral

range12–14. Thus, the focus is on improving traditional

projection systems, along with making potentially neces-

sary changes in the design of the projected patterns.

In addition to the well-known and extensively studied

phase-shifting fringe projection and phase value calcula-

tion15–17, 3D object coordinates can be determined by

evaluating a pattern sequence via temporal correla-

tion18,19. At each image point (x(1),y(1)) in camera 1, a

temporal grey value sequence I
1ð Þ
1 ; ¼ ; I

1ð Þ
N is measured

and correlated with the grey value stack I
2ð Þ
1 ; ¼ ; I

2ð Þ
N of

each pixel (x(2),y(2)) in camera 2 according to the nor-

malised cross-correlation:

ρ ¼
PN

i¼1 I
1ð Þ
i � I 1ð Þ

h i

I
2ð Þ
i � I 2ð Þ

h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 I

1ð Þ
i � I 1ð Þ

h i2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 I

2ð Þ
i � I 2ð Þ

h i2
r ð1Þ

where I jð Þ is the arithmetic mean of the grey value

sequence in camera j. Corresponding points are obtained

by maximising the correlation coefficient ρ. If the system

parameters are calibrated, 3D object coordinates can be

calculated via triangulation of corresponding points20,21.

In contrast to phase-shifting methods, determining

corresponding points via normalised cross-correlation

does not require any knowledge of the pattern design or

the variation between successive patterns. To be suitable

for (dynamic) 3D measurements, the only prerequisites

are a significant temporal variation of the intensity dis-

tribution and spatial frequencies that match the other

system parameters. The camera resolution, magnitude of

the pattern variation, and spatial frequencies of the pat-

terns should be fine-tuned to minimise disturbing effects

and obtain the optimum reconstruction accuracy.

Aperiodic sinusoidal fringes are a special type of tem-

poral pattern coding22. In contrast to two-dimensionally

varying patterns, such as speckle patterns23,24, aperiodic

sinusoidal fringes vary solely in one dimension:

I
proj
i x; yð Þ ¼ ai xð Þ þ bi xð Þ sin ci xð Þxþ di xð Þ½ � ð2Þ

with spatially and temporally varying offset ai(x), ampli-

tude bi(x), period length 2π/ci(x), and phase shift di(x).

The loss of coding information in one dimension is

compensated for by making use of the sensor geometry.

Based on the extrinsic and intrinsic camera parameters,

the search space for point correspondences can be

reduced to so-called epipolar lines20,21. Then, an intensity

variation along these lines is sufficient, i.e., the aperiodic

sinusoidal fringes should be approximately perpendicular

to the epipolar lines.

One novel approach to high-speed pattern projection is

the GOBO projection of aperiodic sinusoidal fringes25. In

general, GOBO projectors consist of a light source, a light

collector, a slide (GOBO=GOes Before Optics), and

imaging optics. Changing the projected patterns can be

realised by moving the GOBO, e.g., by rotating a GOBO

wheel. To project aperiodic sinusoidal fringes, the GOBO

wheel is equipped with aperiodic binary fringes, the pro-

jected image is slightly defocused, and the GOBO wheel is

revolving during the camera exposure time. In this way,

the wheel can be rotated continuously instead of in start/

stop operation. Furthermore, the projector does not need

to be synchronised with the cameras.

When using an appropriate light source, a GOBO

projector can provide a radiant flux of several 100W,

thereby allowing for extremely low camera exposure times

in the range of a few microseconds. With a 3D sensor that

comprises a GOBO projector and two high-speed cam-

eras, we were able to three-dimensionally capture highly

dynamic processes, such as a soccer ball kick. The system

enabled us to reconstruct 1300 independent point clouds

per second at a resolution of 1 megapixel25. Higher frame

rates of more than 50 kHz can be achieved when reducing

the camera resolution and adjusting the rotational speed

of the GOBO wheel accordingly.

After demonstrating the suitability of a GOBO projector

for high-speed 3D measurements via mainly qualitative

studies, quantitative investigations are necessary. In this

paper, we theoretically study the dependency of the 3D

reconstruction quality on various parameters of the

GOBO projection-based system, e.g., the GOBO wheel’s

rotational speed and the cameras’ exposure time.

Results
The quality of a 3D point cloud can be characterised by

two crucial indicators: accuracy and completeness. When

measuring an object with a GOBO projection-based

sensor, occlusions might restrict the surface area that is

covered by both the projector and the cameras, which

limits the maximum number of points that can be

reconstructed. The completeness p of a 3D point cloud

specifies how many of these points have been correctly

determined. The accuracy can be described by the stan-

dard deviation σ3D of non-outlier points from the known

surface. Naturally, the completeness should be as high as

possible, i.e., p= 100%, and the standard deviation should

be as low as possible. Therefore, the parameters of a

GOBO projection-based 3D sensor, such as the distance

between the cameras, the working distance, the number of

strips and slits in the GOBO wheel, and its rotational

speed, must be carefully designed to match one another.
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Table 1 summarises the parameters of a GOBO

projection-based 3D sensor, which affect the accuracy and

the completeness of the 3D reconstruction. Some of these

variables are related to each other, e.g., the number of

strips and slits in the GOBO wheel and the average angle

that is covered by one strip or slit. The third column lists

values that are realised in the current setups. To facilitate

understanding of the parameters, Fig. 1 illustrates some of

the variables that are shown in Table 1. Figure 1a shows a

schematic top view of the camera-projector-camera

arrangement. The projection centre, which is denoted

by P, should be midway between the two camera centres,

which are denoted as C1 and C2. The principal rays of the

cameras and the projector intersect at the centre of the

cuboid measurement volume. Figure 1b shows an

exemplary GOBO wheel with 36 aperiodic binary fringes.

Only a square area of size a × a is illuminated and imaged

into the measurement volume. According to their frame

rate f= T−1, both cameras start acquiring an image at any

time t0+ kT, k 2 N. Throughout the exposure time texp,

the GOBO wheel is continuously rotating through an

angle of texpω.

Aperiodic sinusoidal patterns

Using the simulation framework that is presented in

the Methods section, we generated several thousand

GOBO wheels with random parameters c (the ratio of

the maximum and minimum strip or slit widths), σblur
(the degree of defocusing of the GOBO wheel), and n

(the number of illuminated strips+ the number of

illuminated slits). Then, we rendered camera images

according to random parameters ω (the rotational speed

of the GOBO wheel) and e (the ratio of camera exposure

time texp and period T), added noise that corresponded

to four signal-to-noise ratios (SNRs), and calculated 3D

point clouds. For the exclusive presence of quantisation

noise (SNR ≈ 29 dB), Fig. 2a shows the results that have

standard deviations of σ3D= 50 µm or lower, which are

represented in parallel coordinates. Parameter sets that

lead to a completeness of p= 100% are coloured

according to the standard deviation. Parameter sets that

result in a completeness of p < 100% are shown in black

(background). For some of the parameters, the green

curves, which correspond to small standard deviations,

are concentrated around certain values (see the orange

rectangles).

For each of five parameters, namely, c, σblur, n, ω, and e,

Fig. 2b shows the minimum standard deviation σ3D of the

point clouds with a completeness p= 100% that have

been reconstructed during the simulation. In this repre-

sentation, the optimal ranges become apparent, which are

indicated by orange rectangles. They enable the derivation

of general guidelines for designing an optimum GOBO

wheel for a specified sensor:

● Based on the optimum range of the number n of

illuminated strips and slits, the average fringe pitch

should be approximately 22 px in the camera images.

A larger fringe width results in a reduced

measurement accuracy, while a smaller fringe width

reduces the uniqueness of the sequence, thereby

leading to a lower completeness.
● The exposure time proportion, which is expressed as

e ¼ texp
T
, does not exhibit a distinct minimum, i.e.,

there are accurate data sets for each value of e. For

that reason, and since an exposure time proportion

that is as large as possible is desired for high-speed

measurements, it can be fixed to a reasonable value

of e= 0.95, which takes the short time of 0.05T for

data readout into account.
● The rotational speed ω of the GOBO wheel should

be such that the pattern is rotated by nearly half the

average fringe pitch between each image acquisition.

A higher rotational speed would ensure that very

different areas of the GOBO wheel are illuminated

successively so that the temporal intensity values are

independent of each other. However, this would lead

to substantial blurring of the fringes during the

exposure time and, thus, to an undesired low grey

value modulation.
● The defocusing of the imaging lens should be

adjusted such that the rotating pattern neither

contains intensity plateaus nor has a poor

modulation. If the projection is too sharp, the

integration of the rotating pattern over the exposure

time results in triangular or trapezoidal patterns

instead of aperiodic sinusoidal patterns. If the

projection is too blurry, the grey values of adjacent

camera pixels do not differ substantially.
● The ratio c of the maximum and minimum angles

that are covered by one strip or slit should be

between 2 and 2.5. The closer the ratio is to 1,

the more periodic and, therefore, ambiguous the

patterns become, such that completeness of 100%

cannot be achieved. The larger the ratio, the more

inhomogeneously the fringes are blurred. Either

narrow fringes with very low modulation or broad

fringes with unwanted intensity plateaus are

obtained.

The randomness of the fringe generation can lead to

different standard deviations σ3D and completeness values

p for the same parameter set, which made it impossible

for us to carry out any direct optimisation. Even if, e.g., we

used the average or median of many results for each

parameter set, optimisation algorithms became trapped in

different local extrema each time, despite unchanged

initial values. Therefore, within the restricted parameter

ranges (see the orange rectangles in Fig. 2a, b; e= 0.95),

we have generated several thousand additional random
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Table 1 Parameters of a GOBO projection-based 3D sensor that affect the accuracy and completeness of the 3D result

Parameter Description Typ. value Sim. value

N ≥ 3, N 2 N Number of patterns per sequence 8…12 10

ntot= 2k, k 2 N Number of strips+ number of slits in the GOBO wheel 1200…2000 250…5000

ϕavg ¼ 360�

ntot
Average angle that is covered by one strip or slit 0.18°…0.3° 0.1°…1.5°

c ¼ ϕmax

ϕmin
� 1 Ratio of the maximum and minimum angles that are covered by one strip or slit 2 1…10

P(φ) Probability distribution of the strip or slit angle φ Uniform dist. Uniform dist.

r > 0 Distance of illuminated square’s centre from the GOBO wheel’s centre 20…200mm 25mm

a > 0 Width (= height) of the illuminated square on the GOBO wheel 10…100mm 10mm

δ ¼ 2 arctan a=2
r�a=2 Maximum angle that is covered by the illuminated square 15°…30° 28.1°

0 < n < ntot Number of illuminated strips+ number of illuminated slits 50…150 20…400

σblur ≥ 0 Projector defocusing, which is approximated by Gaussian blur with std. dev. σblur 0:2r tan
ϕavg

2
0…50 µm

s > 0 Width (= height) of the measurement volume 0.2…2 m 0.3 m

d > 0 Depth of the measurement volume 0.2…1 m 0.3 m

v ¼ s
d
>0 Ratio of the width s and depth d of the measurement volume 0.5…2 1

M ¼ s
a
>0 Magnification of the GOBO pattern 10…50 30

w > 0 Working distance (projection centre to measurement volume’s centre) 0.5…4 m 1m

ω ¼ φ
T
>0 Rotational speed of the GOBO wheel, which is given by the covered angle ϕ between two images

from cameras at frame rate f= T−1
0:5

ϕavg

T
¼

ϕavg

T
0:001�

T
¼

2:5�

T

0<e ¼ texp
T

� 1 Ratio of the camera exposure time texp and period T= f−1 0.6…0.95 0.5…1

l > 0 Distance between the two camera centres 0.1…1 m 0.2 m

γ ¼ 2 arctan l=2
w

Triangulation angle between the optical axes of the cameras 10°…30° 11.42°

α Horizontal (= vertical) field of view of the cameras 15°…40° 16.2°

A Camera resolution 0.25…4 Mpx 1 Mpx

b Camera bit depth 8 bit, 12 bit 8 bit

σ2e , σ
2
d , σ

2
q Camera noise (shot noise, dark noise, analogue-to-digital conversion)28 – 0

The grey highlighted cells indicate parameters that we have varied in a simulation. (Parameters ntot and Φavg are implicitly also varied, but depend on n.)
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a b
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1
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3
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Fig. 1 Schematic illustration of a GOBO projection-based 3D sensor. Definitions of some of the variables that are listed in Table 1 by means of

a a top view of the camera-projector-camera arrangement and b an exemplary GOBO wheel with aperiodic binary fringes
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GOBO patterns and picked the one with p= 100% com-

pleteness that yielded the lowest standard deviation σ3D.

The optimal result was the one that is shown in Table 2

for SNR ≈ 29 dB with a completeness of p= 100% and a

standard deviation of σ3D ≈ 11.4 µm (which is equal to a

relative standard deviation σrel
3D ¼ σ3D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2 þ d2
p

�
2:2 ´ 10�5 with respect to the measurement volume

diagonal). Figure 2c shows one of the corresponding

camera images and a profile along the central line. Based

on this optimal projected pattern, the full GOBO wheel

can be constructed via repetition of this section so that

the results remain approximately unchanged for all rota-

tion angles of the GOBO wheel.

The randomly obtained optimum agrees very well with

the results of previous theoretical and experimental

investigations on aperiodic sinusoidal fringes26,27. In these

investigations, we used the same sensor setup and

obtained an optimum of 90 fringes within the measure-

ment field. For GOBO-projected aperiodic sinusoidal

patterns, the number of projected fringes inherently varies

vertically due to the wheel layout. Therefore, the number

of illuminated strips and slits, namely, n= 120, that was

obtained for the parameter set in Table 2 is only realised

in the upper part of the camera image. In the centre, the

number of fringes is n ≈ 90 (see Fig. 2c), which corre-

sponds very well to the values that were obtained in

previous examinations.

Up to this point, we have taken into account spatial

integration over the camera pixels and 8-bit quantisation

in our simulation. However, cameras of real 3D sensors

will exhibit two additional types of noise, which negatively

affect the accuracy that can be achieved with the opti-

mised patterns: shot noise and dark noise. We simulated

the signal-dependent shot noise ne (Poisson distribution

with expected value μe and standard deviation σe ¼ ffiffiffiffiffi

μe
p

)

and the signal-independent dark noise nd (normal dis-

tribution with standard deviation σd) according to EMVA

standard 128828 as described in the Methods section. We

considered three levels of noise that correspond to signal-

to-noise ratios of SNR ≈ 19 dB, 17 dB, and 15 dB. The

following conclusions are drawn from the simulation

results.
● The lower the SNR, the lower the 3D point accuracy

and the fewer pattern sets result in 100% point cloud

completeness. High noise leads to a high standard

deviation σ3D. However, noisy data can also cause the

temporal grey value sequences of non-corresponding

points to have a higher correlation coefficient than

the actual homologous points. For this reason, for an

SNR of 15 dB, 10 patterns are insufficient for

achieving 100% completeness.
● The lower the SNR, the higher the number of fringes

that are necessary to obtain high accuracy, which is

caused by the counteraction of two effects: For broad

fringes, the integrated intensity over the finite area of

a pixel approximates very well the projected intensity

in the centre of the pixel. For narrow fringes, the

grey values of adjacent pixels differ significantly,

thereby making subpixel interpolation more reliable.

The higher the noise, the more essential it is to have

a large difference between adjacent grey values.

Table 2 shows the optimum GOBO parameters that we

obtained for SNR ≈ 19 dB, 17 dB, and 15 dB. Although the

span of the standard deviation and completeness increases

with decreasing signal-to-noise ratio, it is still possible to

generate patterns that yield 100% completeness. For

SNR ≈ 15 dB, the 3D point standard deviation is ~4.8 times

higher than for 29 dB.

Phase-shifted sine-like patterns

According to the discussed studies on aperiodic sinu-

soidal fringes26,27, phase-shifted sinusoidal fringes are the

limiting case of aperiodic sinusoidal fringes in terms of

accuracy. Therefore, it is reasonable to investigate whe-

ther this is also the case with GOBO projection because

the GOBO projector can be used to project phase-shifted

sine-like patterns when synchronised with the cam-

eras29,30. In the presented simulation framework (see

Methods section), this can be carried out by setting c= 1

(the ratio of the maximum and minimum fringe widths)

and ω= 2ϕavg/NT (the rotational speed of the GOBO

wheel). Random generation of the remaining parameters,

namely, n, σblur, and e, leads to the diagram that is shown

in Fig. 2d for SNR ≈ 29 dB.

The comparatively poor completeness of the recon-

structed point clouds is noticeable. Due to the periodicity

of the sinusoidal patterns, the temporal grey value

sequences are ambiguous and applying Eq. 1 yields many

false correspondences, as the number of maxima of the

correlation coefficient equals the number of fringe pairs

within the disparity search range of ≈ ±110 px. These

ambiguities must be eliminated via phase unwrapping31,32.

However, conventional methods that are based on the

evaluation of the phase difference between adjacent pixels

fail on objects with sharp edges or large depth. Therefore,

a variety of techniques have been developed for localising

corresponding fringe periods.

The most robust phase unwrapping method is the

projection of a sequence of Gray code patterns33–35,

which leads to a significant increase in the total length of

the pattern sequence N. Moreover, it is not feasible to

project Gray code patterns using the GOBO projection

principle. The projection of phase-shifted sinusoidal

fringes with different period lengths36–41 is also imprac-

ticable because this would require divergent rotational

speeds of the GOBO wheel. Instead, an additional pattern

must be embedded in the sinusoidal pattern, e.g., a

one-dimensional binary De Bruijn sequence42 or a

Heist et al. Light: Science & Applications  (2018) 7:71 Page 5 of 13
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Fig. 2 3D point cloud completeness p and standard deviation σ3D when using varying GOBO wheel parameters to project aperiodic

sinusoidal patterns (upper row) and phase-shifted sine-like patterns (lower row). a, d p and σ3D as functions of randomly varied parameters c,

σblur, n, ω, and e. b The minimum standard deviation σ3D, which is shown for each of the five parameters. c, e A camera image of the projection of the

optimal GOBO pattern onto a plane. f The 3D point standard deviation σ3D as a function of the number of aperiodic sinusoidal patterns (solid lines)

and phase-shifted sine-like patterns (dashed lines) that are used for reconstruction

Table 2 Exemplary results of 3D point cloud completeness p and standard deviation σ3D for parameters c, σblur, n, ω,

and e

Aperiodic sinusoidal patterns Phase-shifted patterns

Parameter 29 dB 19 dB 17 dB 15 dB 29 dB 19 dB 17 dB 15 dB

c 2.2 2.5 2.7 3.0 1.0

σblur 12 µm 6 µm 4 µm 3 µm 17 µm 8 µm 6 µm 5 µm

n 120 230 280 330 130 260 332 400

ω 0.21°/T 0.11°/T 0.09°/T 0.08°/T 0.04°/T 0.02°/T 0.01°/T 0.01°/T

e 0.95 0.95

p 100% 100% 100% 100% 7.1% 3.6% 2.8% 2.3%

σ3D 11.4 µm 31.2 µm 41.7 µm 55.1 µm 8.7 µm 20.5 µm 27.1 µm 34.0 µm

σrel3D 0.022‰ 0.060‰ 0.080‰ 0.106‰ 0.017‰ 0.039‰ 0.052‰ 0.065‰
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band-limited 1/f noise pattern43,44, which can be achieved,

for example, by placing an additional (static) slide in front

of the GOBO wheel29,30.

An embedded pattern reduces the signal-to-noise ratio

of the phase values and, thus, the measurement accuracy.

In addition, such an approach requires a spatial correla-

tion that acts as a spatial frequency low-pass filter so that

high-frequency components of the object surface are not

taken into account. Therefore, in all studies of GOBO-

projected phase-shifted sinusoidal patterns, we have

considered only pure sinusoidal patterns. In the general

case of an arbitrarily complex measurement object, these

patterns lead to very low completeness. However, they

yield high accuracy, as shown by the large number of

yellow curves, which correspond to small standard

deviations σ3D, in Fig. 2d. The optimum values of the

parameters σblur, n, and ω are indicated by orange crosses.

The exposure ratio e can again be chosen almost arbi-

trarily; it is set to 0.95.

In contrast to aperiodic sinusoidal patterns, the

remaining independent parameters, namely, σblur and n,

uniquely specify a phase-shifted sine-like pattern. There-

fore, they can be easily optimised, e.g., by the downhill

simplex method45. The results are listed in Table 2. As

expected, phase-shifted sine-like patterns yield the lowest

3D point standard deviation. The achievable standard

deviation is between 1.3 and 1.6 times smaller than with

aperiodic sinusoidal patterns. However, if there are no

special constraints on the measurement object, the peri-

odic pattern cannot be used due to its ambiguities, which

lead to poor completeness.

Figure 2e shows the optimum sine-like pattern for

SNR ≈ 29 dB. The determined number of fringes is con-

sistent with the findings of previous studies26,27, in

which an optimal number of 100 fringes was obtained.

In the centre of the optimised GOBO-projected phase-

shifted pattern, 102 fringes are projected, which

demonstrates the high degree of agreement between the

investigations.

Naturally, the achievable 3D accuracy depends directly

on the number of patterns that are used for the recon-

struction. Figure 2f shows this dependence for both

phase-shifted and aperiodic sinusoidal patterns. For

example, with 10 aperiodic sinusoidal patterns, the same

standard deviation is obtained as with 5–6 phase-shifted

sinusoidal patterns, which is in line with the results of

previous investigations of the measurement techni-

que26,27. However, aperiodic sinusoidal patterns yield a

significantly higher completeness of p= 100%, thereby

making resolving ambiguities by projection of additional

patterns unnecessary. Therefore, GOBO projection of

aperiodic sinusoidal fringes is an excellent alternative to

the established phase-shifting technique. In addition, it

offers the potential for an extremely fast and bright

projection compared to conventional projectors and it can

easily be used in a wide spectral range25.

Experimental evaluation

It is useful to experimentally verify the simulation

results. However, the diagram that is shown in Fig. 2a

suggests that it is not practical to experimentally vary all

five parameters that have been considered so far: c, σblur,

n, ω, and e. Manufacturing many GOBO wheels to vary

the number of fringes n and the fringe width ratio c would

be very cumbersome and expensive. Therefore, we deci-

ded to use one of our existing sensors (see Fig. 3a)46,47 and

varied the projection blur (in the form of the standard

deviation σblur of a Gaussian blur) and the rotational speed

ω= ϕ/T of the GOBO wheel.

For each combination of σblur and ω, we recorded 1000

images of the aperiodic sinusoidal fringes that were pro-

jected onto a granite slab. We used 10 images to calculate

each 3D point cloud, thereby obtaining 100 independent

data sets per parameter combination. Figure 3b, c shows

the resulting average 3D standard deviation σ3D and

average point cloud completeness p, respectively, as

functions of σblur and ω. The lowest achievable degree of

defocus leads to the highest accuracy. Moreover, the

standard deviation and completeness show an opposite

trend within the scanned parameter range: whereas for a

high measurement accuracy, the rotational speed should

be comparatively low, the completeness of the calculated

point clouds increases with increasing rotational speed. A

suitable parameter combination is, e.g., σblur= 15 µm and

ω= 0.15°/T, which results in a 3D standard deviation of

150 µm and a completeness of 100%.

To determine whether the experimental measurement

data match the theoretically expected results, we simu-

lated the 3D data generation of the NIR scanner in the

same way as described in the Methods section, but with

modified parameters that took the deviating sensor geo-

metry into account (see Table 3). The first step (the

random generation of the GOBO wheel) was obsolete, as

the design of the wheel was known. For the dark and shot

noise that we added to the rendered camera images, we

assumed values that corresponded to a signal-to-noise

ratio of SNR ≈ 17 dB. In the simulation, we were able to

vary the two parameters, namely, σblur and ω, more finely

and within a larger range of values than in the experiment.

The resulting diagrams for the standard deviation and

completeness are shown in Fig. 3e, f, respectively. The

optimum results are achieved for σblur= 7.5 µm and ω=

0.17°/T. For this parameter combination, the 3D standard

deviation is σ3D ≈ 130 µm and the completeness is

p= 100%.

Even if the simulated values very well agree with the

experimental results, it is likely that the comparatively

high assumed camera noise (SNR ≈ 17 dB) is lower in
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practice and the 3D accuracy is negatively affected by

another effect. There are many indications that the

GOBO wheel itself plays a major role since its production

quality is not optimal. According to Fig. 3d, especially in

the magnified view, the fringes on the GOBO wheel are

strongly frayed and there are many dark spots in areas

that should be transparent. The GOBO wheel that is

shown here and was used in the NIR scanner was man-

ufactured by applying an aluminium layer onto a 1.1 mm

thick substrate of borosilicate glass, which was partially

removed by a laser beam. Due to the recognisable arte-

facts, we will evaluate alternative fabrication methods. In

the near future, we are planning to produce GOBO wheels

via electron-beam lithography.

Discussion
We have studied the performance of the novel principle

of 3D shape measurement using GOBO-projected aper-

iodic sinusoidal patterns25. For this purpose, we have

varied five key parameters that influence the quality of the

measurement result (e.g., the number of fringes and the

Table 3 Parameters of the GOBO projection-based NIR

3D sensor that was used to experimentally verify the

theoretical results

Parameter Value Parameter Value

N 10 d 0.5 m

ntot 946 v ¼ s
d

1

ϕavg ¼ 360�

ntot
0.38° M ¼ s

a
43

c ¼ ϕmax

ϕmin
2.5 w 1.5 m

P(φ) Uniform dist. ω ¼ φ
T

Varied

r 23.9 mm e ¼ texp
T

0.95

a 11.6 mm l 0.23 m

δ 35.5° γ 8.8°

n 94 α 18.2°

σblur Varied A 1 Mpx

s 0.5 m b 8 bit

0.3

0.4

0.5

�
 (

°/
T

)
�

 (
°/

T
)

�
 (

°/
T

)
�

 (
°/

T
)

GOBO wheel

Measurement camera 1
(NIR camera)

(Optional)
RGB camera

Measurement camera 2
(NIR camera)

ba c

2 mm

500 μm

d 0.1

0.2

10 20 30 40 50 60 70

0.3

0.4

0.5

0.1

0.2

10 20 30 40 50 60 70

�3D (μm)

�3D (μm)

�blur (μm)
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�blur (μm)

250
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9585 90 100

0.3

0.4

0.5

e f

0.1

0.2
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0.3

0.4

0.5
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0.2
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9585 90 100
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≤80

≤140 ≥450350

250≤140 ≥450350

Fig. 3 Experimental investigation. a A photograph of the sensor that is used. b, c The measured and e, f simulated dependency of the 3D point

standard deviation σ3D and point cloud completeness p on the degree of projector defocusing, which is approximated by a Gaussian blur with

standard deviation σblur, and the rotational speed ω of the GOBO wheel. d A detailed view of the GOBO wheel of the sensor that is shown in

a. Undesired opaque spots, which may negatively affect the measurement accuracy, are clearly recognisable
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rotational speed of the GOBO wheel) in an extensive

rendering simulation of the measurement of a plane

object. Two main conclusions are drawn from the results

of our investigations. First, when setting up a GOBO

projection-based 3D sensor, the parameters must be

tuned carefully, as small variations of parameters can lead

to substantially different 3D results. Second, it is possible

to identify parameters of a GOBO-projected pattern that

ensure a small standard deviation and high completeness

of the 3D point cloud. In this way, e.g., 10 GOBO-

projected aperiodic sinusoidal patterns can lead to the

same measurement accuracy as 5 to 6 GOBO-projected

phase-shifted sine-like patterns, but without requiring

phase unwrapping. This result confirms the findings of

previous investigations of the principle of projecting

aperiodic sinusoidal patterns26,27.

Since corresponding points are detected solely via

temporal correlation, the results that are obtained for the

plane measurement object can be generalised to arbitrary

objects (see Supplementary Video S1), demonstrating the

excellent suitability of GOBO projection of aperiodic

sinusoidal patterns for high-speed 3D shape measure-

ment, which in addition to the generation of point clouds

with high accuracy and completeness, is characterised by

the potential for very fast pattern variation and high

radiant flux. The results of the exemplary measurement

that is shown in Fig. 4 demonstrate this, as we were able

realise a 3D rate of 5.5 kHz, which corresponds to a

temporal resolution of just over 180 µs (see also Supple-

mentary Video S2). Moreover, due to the pattern gen-

eration via a metal mask, a GOBO projector is suitable for

application in a wide spectral range that is beyond the

visible light range.

Because of its benefits, the principle of GOBO projec-

tion should be further investigated. Future research

should focus on studying the dependence of the 3D

measurement quality on the number of projected patterns

and on the motion of the measurement object. The pro-

jection of a smaller number of patterns generally results in

lower measurement accuracy, point cloud completeness,

and/or density. However, it might be reasonable to use

fewer patterns for 3D reconstruction of fast moving

objects to minimise the acquisition time. Therefore, it is

of particular interest to examine up to which object

speeds the GOBO projection of a series of aperiodic

sinusoidal patterns is superior to common single-shot

methods.

Materials and methods
Simulation framework

To identify an optimal set of GOBO wheel parameters

within a simulation framework, not all of the parameters

that are shown in Table 1 should be freely varied because

the solution space would be inconveniently large and

some of the parameters are not independent. For instance,

equally scaling the GOBO wheel and the size of the illu-

minated area by a specified factor will lead to the same

results, as the cameras observe the same patterns.

Therefore, we simulate a typical sensor setup and set

some of the parameters, e.g., a distance of 200mm

between the cameras, a working distance of 1 m, and a

measurement volume of 300 × 300 × 300 mm3 (see the last

column of Table 1). Hence, the optimisation problem is

reduced to a five-dimensional problem with the following

variables:

● c= 1…10 (the ratio of the maximum and minimum

strip or slit widths),
● σblur= 0…50 µm (the degree of defocusing of the

GOBO wheel),
● n = 20…400 (the number of illuminated strips+ the

number of illuminated slits),
● ω= 0.001°/T…2.5°/T (the rotational speed of the

GOBO wheel), and
● e= 0.5…1 (the ratio of the camera exposure time texp

and period T).

Figure 5 shows a block diagram of the simulation fra-

mework. The procedure can be divided into the five steps

explained in next sections.

Generation of the GOBO wheel

First, n random values Xi are generated, each between 1

and c. Then, the values

ϕj ¼ δ

Pj
i¼1 Xi

Pn
i¼1 Xi

ð3Þ

represent the angles of change between transparent and

opaque fringes in the illuminated part of the GOBO wheel

(0 < φj ≤ δ). The resulting GOBO mask contains n strips

and slits, which each cover an angle between φmin and

φmax= cφmin ≥ φmin.

Generation of the projected patterns

The GOBO wheel is continuously rotating at a speed

ω= ϕ/T, i.e., between successive image acquisitions, the

GOBO wheel has been rotated by an angle of ϕ. However,

to take the movement during the exposure time and the

ratio of the exposure time texp and period T into account,

the wheel is rotated by subangles ϕi. We opted for

50 subpatterns: ϕi= iϕe/50. For each of the 50 subposi-

tions, a square of size a × a= 10 × 10 mm2 with a distance

of r= 25 mm from the GOBO wheel centre is cut out.

The defocusing of the imaging lens is approximated by a

Gaussian blur with standard deviation σblur.
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Rendering of the camera images

The generated GOBO subpatterns are projected onto a

plane that is parallel to the GOBO wheel at a working

distance of 1 m. The corresponding camera images with a

resolution of 1024 × 1024 px are rendered using a ray-

tracer on the basis of a physically based rendering system,

namely, “PBRT”48. Each set of 50 subimages is averaged to

form the camera image, thus keeping motion blur in

mind. Altogether, N= 10 images per camera are gener-

ated, which are rectified according to the camera-

projector-camera arrangement21,49. In the rectified ima-

ges with coordinates x′1; y′1ð Þ and x′2; y′2ð Þ, corresponding
points lie on the same horizontal line, i.e., y′1 ¼ y′2.

Computation of the disparity map

The rectified images are used to calculate the coefficient

ρ of the normalised cross-correlation according to Eq. 1

between each pixel in camera 1 and pixels on the same

horizontal line in camera 2. The search area is limited by

the measurement volume, as the distance of w ± d/2=

(1 ± 0.15) m from the sensor corresponds to a disparity

search range of ≈ ± 110 px. The global maximum of

the correlation coefficient within this disparity search

range is considered to occur at the corresponding point.

Subpixel accuracy is achieved via linear grey value inter-

polation between adjacent pixels in each rectified image of

camera 2, with the aim of maximising ρ.

Reconstruction of the 3D point cloud

Based on the disparity map, for each pair of

corresponding points, namely, x′1; y′ð Þ and

x′2; y′ð Þ ¼ x′1 � disp; y′ð Þ, a point with homogeneous

coordinates

Q

x′1

y′

disp

1

0

B

B

B

@

1

C

C

C

A

withQ ¼

1 0 0 �c′x1

0 1 0 �c′y1

0 0 0 κ

0 0 �1=l c′x1 � c′x2ð Þ=l

2

6

6

6

4

3

7

7

7

5

ð4Þ

can be calculated, where κ is the camera constant of the

rectified system (in pixel units), c′x1 and c′y1 are the

4 ms

D
is

ta
n

c
e

 f
ro

m
 s

e
n

s
o

r 
(m

)

2.2

2.4

2.3

b

a

6 ms 8 ms 16 ms

4 ms 6 ms 8 ms 16 ms

12 ms

12 ms

c

4 ms 6 ms 8 ms 16 ms12 ms

Fig. 4 High-speed 3D measurement of the impact of a 40-bar nitrogen jet on a 400 × 400mm2 pillow that is attached to a polystyrene

plate. a Snapshots of the recorded process at five points in time. b Camera images of the GOBO-projected aperiodic sinusoidal fringes, which are

recorded with a resolution of 512 × 408 px at a frame rate of 55.2 kHz. c Reconstructed point clouds at a 3D rate of 5.5 kHz (see also Supplementary

Video S2)
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coordinates of the (rectified) principal point in camera 1,

and c′x2 is the x-coordinate of the (rectified) principal

point in camera 2. The resulting point cloud is compared

with the known plane so that outliers can be identified.

The point cloud completeness p is given by the ratio of

the number of correct points mcorrect and the maximum

possible number of points mmax:

p ¼ mcorrect

mmax
¼ 1�mfalse

mmax
ð5Þ

After removing the mfalse outliers, the standard devia-

tion σ3D of the remaining 3D points from the plane is

calculated.

To take the various types of noise of real cameras into

account, step 3 (i.e., Rendering of the camera images) can

be extended by following EMVA standard 128828. Let the

output of the ray-tracer be the number of photons μp that

impinge on each camera pixel. Depending on the total

quantum efficiency η(λ), they generate a number of

electrons, which is expressed as μe= η(λ)μp. Without loss

of generality, we set η(λ)= 1. Then, the number of elec-

trons μe= μp fluctuates with a signal-dependent shot

noise ne (Poisson distribution with standard deviation

σe ¼ ffiffiffiffiffi

μe
p

) and a signal-independent dark noise nd (nor-

mal distribution with standard deviation σd). The noisy

number of electrons

μnoisye ¼ ne þ nd ð6Þ

is converted to a grey value gnoisy ¼ Kμnoisye according to

the overall system gain K. After clipping the grey value to

the dynamic range of the camera, namely, 0…2b−1, it is

rounded to the nearest integer to take analogue-to-digital

conversion into account. The signal-to-noise ratio (SNR)

can be expressed as

SNR ¼ μe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2d þ σ2
q=K

2 þ μe

q ð7Þ

with the variance σ2
q ¼ 1=12DN of the uniformly dis-

tributed quantisation noise. In addition to the absence of

shot and dark noise, we have decided to simulate three

reasonable levels of noise, which are described as follows:
● K= 1/25 DN/e−, σd= 0.5/K (low noise),
● K= 1/10 DN/e−, σd= 1/K (medium noise), and
● K= 1/5 DN/e−, σd= 2/K (high noise).

For a grey value of g= 255, these levels correspond to

signal-to-noise ratios of SNR ≈ 19 dB, 17 dB, and 15 dB.

When only considering quantisation noise (i.e., K→∞ and

σd→0), the signal-to-noise ratio is SNR ≈ 29 dB.

In this way, we generated several thousand random

parameter combinations and evaluated the resulting point
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... ...

... ...

Image 10

Image 1 Image 10
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Camera 1

(3) Rendering of camera images

(1) Generation of
GOBO wheel part
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(5) Reconstruction of 3D point cloud
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Fig. 5 Block diagram of the simulation framework. According to the parameters c and n, a part of a GOBO wheel is generated (1). Based on the

parameters σblur, ω, and e, subpatterns of the rotating GOBO wheel are determined (2). The subpatterns that are related to a pattern are projected

onto a plane and the corresponding camera images are rendered (3). After computing the disparity map (4) and reconstructing the 3D point cloud

(5), the standard deviation σ3D and completeness p are estimated
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clouds with respect to the standard deviation σ3D and

completeness p. Then, we compared the results with

those that were obtained from GOBO-projected phase-

shifted sine-like patterns, as phase-shifting fringe projec-

tion is considered the gold standard for structured light-

based 3D measurement. The simulation framework can

easily be used to carry this out by setting c= 1 (the ratio of

the maximum and minimum fringe widths) and ω=

2φavg/NT (the rotational speed of the GOBO wheel).

Experimental setup

To experimentally verify the simulation results, we used

one of our existing GOBO projection-based sensors (see

Fig. 3a)46,47. Since this 3D scanner is primarily intended for

the irritation-free measurement of human faces, the aper-

iodic sinusoidal patterns are projected and detected in the

near infrared (NIR) region at a wavelength of 850 nm. With

the help of an additional RGB camera, colour information

can be acquired simultaneously with the 3D measurement.

For our measurements, we used two Basler “acA2040-

180kmNIR” measurement cameras at a resolution of

1024 × 1024 px and a frame rate of f= T−1= 50 Hz. By

using an exposure time of texp= 19 ms, we set the

exposure time ratio to e= texp/T= 0.95. The cameras’

projection centres were of distance l= 0.23 m from

each other and they observed a measurement field of size

s × s= 0.5 × 0.5 m2 at a working distance of w= 1.5 m.

The GOBO projector contained a GOBO wheel with a

diameter of 66 mm. The GOBO wheel comprised ntot=

946 strips and slits of various widths with a known dis-

tribution, ~94 of which were illuminated at any point in

time. All relevant parameters are summarised in Table 3.

The grey highlighted cells indicate the two parameters

that we have varied in the experiment: the projection blur

(in the form of the standard deviation σblur of a Gaussian

blur) and the rotational speed ω= ϕ/T of the GOBO

wheel.

To determine the standard deviation σblur that corre-

sponds to a specified level of projector defocusing, we

placed a matte white sprayed planar granite slab with a

calibrated peak-to-valley height of 4.55 µm parallel to the

sensor at the working distance and illuminated it with the

pattern of the stationary GOBO wheel. The resulting

camera image was compared with differently blurred

camera images of (hypothetical) binary fringes. The value

σblur for which the sum of the squared deviations was

minimal was assigned to the respective defocusing setting.

Due to the inherent slight lens blur, a value of σblur= 0

could not be realised. In addition, excessively high values

could not be achieved because defocusing settings that

exceed a specified level produce additional effects that

cannot be approximated by a Gaussian blur. Overall, we

have realised values between σblur ≈ 15 µm and 60 µm.

The rotational speed of the GOBO wheel was varied such

that the wheel was rotated between 0.05° and 0.50°

between two consecutive acquisition trigger signals.
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