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Abstract. Go is an increasingly-popular systems programming lan-
guage targeting, especially, concurrent and distributed systems. Go dif-
ferentiates itself from other imperative languages by offering structural
subtyping and lightweight concurrency through goroutines with message-
passing communication. This combination of features poses interesting
challenges for static verification, most prominently the combination of a
mutable heap and advanced concurrency primitives.

We present Gobra, a modular, deductive program verifier for Go
that proves memory safety, crash safety, data-race freedom, and user-
provided specifications. Gobra is based on separation logic and supports
a large subset of Go. Its implementation translates an annotated Go
program into the Viper intermediate verification language and uses an
existing SMT-based verification backend to compute and discharge proof
obligations.

Keywords: Separation logic · Program logics · Channel-based
concurrency · Interfaces · Deductive verification · Automated
verification

1 Introduction

Go is an increasingly popular systems programming language targeting, espe-
cially, concurrent and distributed systems such as web applications. It combines
standard features of imperative languages, such as mutable heap data struc-
tures, with less common concepts, such as structural subtyping and lightweight
concurrency through goroutines with message-passing communication.

This combination of features poses interesting challenges for static verifica-
tion, most prominently the combination of a mutable heap and advanced concur-
rency primitives. Prior research on Go verification handles some of these features,
but not their combination. For instance, Lange et al. [14,15] verify safety and
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liveness of Go’s message-passing, but do not consider functional properties about
the heap state, whereas Perennial [4] supports heap data structures, but neither
channels nor interfaces.

We present Gobra, an automated, modular verifier for heap-manipulating,
concurrent Go programs. Gobra supports a large subset of Go, including Go’s
interfaces and primitive data structures, both of which have not been fully sup-
ported in previous work. Gobra verifies memory safety, crash safety, data-race
freedom, and user-provided specifications. It takes as input a Go program anno-
tated with assertions such as pre and postconditions and loop invariants. Ver-
ification proceeds by encoding the annotated programs into the intermediate
verification language Viper [17] and then applying an existing SMT-based veri-
fier. In case verification fails, Gobra reports at the level of the Go program which
assertions it could not verify.

Gobra’s assertion language builds on established concepts: Gobra uses sepa-
ration logic style permissions [19] to reason locally about heap data structures.
It supports recursive predicates and specification methods to abstract over (pos-
sibly unbounded) data structures and their contents. In particular, Gobra has
first-class predicates that enable a natural specification of concurrency primitives,
for instance, to parameterize a lock by an invariant.

Gobra is intended for the verification of substantial, real-world code, and is
currently used to verify the Go implementation of the SCION internet architec-
ture [23]. Our tool paper makes the following technical contributions:

(1) We present the Gobra tool, an automated modular verifier for annotated Go
programs. Our evaluation demonstrates that Gobra can verify non-trivial
examples with good performance. Our artifact is available online [21].

(2) We define a specification language for functional properties of Go programs.
Our specification language provides a consistent abstraction at the level of
Go and does not leak details of the underlying encoding.

(3) We present the first specification and verification technique for structural
subtyping via Go interfaces.

(4) Our Viper encoding supports, among other features, Go’s broad range of
built-in data types, such as slices and channels. A lightweight annotation
allows it to apply separation logic to reason soundly about addressable
memory locations, but use a more efficient encoding for others.

Outline. We demonstrate key features of Gobra on examples (Sect. 2), give an
overview of the encoding into Viper (Sect. 3), and provide an experimental eval-
uation of Gobra (Sect. 4). Lastly, Sect. 5 discusses related work and concludes.

2 Gobra in a Nutshell

This section illustrates Gobra’s specification language on simple examples and
shows how we handle interfaces and concurrency.
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2.1 Basics

Gobra uses a variant of separation logic [19] in order to reason about muta-
ble heap data structures and concurrency. Separation logics associate an access
permission with each heap location. Access permissions are held by method
executions and transferred between methods upon call and return. A method
may access a location only if it holds the associated permission. Permission to a
shared location v is denoted in Gobra by acc(&v), which is analogous to sepa-
ration logic’s v �→ . Gobra provides an expressive permission model supporting
fractional permissions [3] to allow concurrent read accesses while still ensuring
exclusive writes, (recursive) predicates to denote access to unbounded data struc-
tures, and quantified permissions (also called iterated separating conjunction) to
express permissions to random-access data structures such as arrays and slices.

1 requires ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
2 ensures ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
3 ensures ∀ k int :: 0 ≤ k < len(s) =⇒ s[k] == old(s[k]) + n
4 func incr (s []int , n int) {

5 invariant 0 ≤ i ≤ len(s)
6 invariant ∀ k int :: 0 ≤ k < len(s) =⇒ acc(&s[k])
7 invariant ∀ k int :: i ≤ k < len(s) =⇒ s[k] == old(s[k])
8 invariant ∀ k int :: 0 ≤ k < i =⇒ s[k] == old(s[k]) + n
9 for i := 0; i < len(s); i += 1 {

10 s[i] = s[i] + n
11 }
12 }

Fig. 1. A simple Gobra example showing method and loop contracts.

The example in Fig. 1 illustrates the use of permissions. Method incr

increases all elements of a given slice s by an amount n. (Slices are data types
that can intuitively be seen as shared arrays of variable length.) The method
requires permission to all slice elements (via its precondition) and returns them
to the caller (via its first postcondition).

Functional properties are expressed via standard assertions, which include
side-effect free Go expressions (including calls to pure methods, as we explain
below) as well as universal quantification and old-expressions to refer to the value
an expression had in the pre-state of a method. In our example, the second
postcondition uses these assertions to express the functional behavior of the
method. The loop invariants are analogous to the method contracts and are
needed for verification.

In Go, any memory location can either be shared or exclusive. Shared loca-
tions reside on the heap and can, thus, be accessed by multiple methods and
threads; reasoning about shared locations requires permissions to ensure race
freedom and to enable framing, i.e., preserving information across heap changes.
On the other hand, exclusive locations are accessed exclusively by one method
execution and may be allocated on the stack; they can be reasoned about as
local variables. The Go compiler determines automatically whether a location is
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shared or exclusive, for instance by determining whether its address is taken at
some point of the execution. To make verification independent of a particular
compiler analysis, Gobra requires shared locations to be decorated with an extra
annotation @ at the declaration point, as illustrated by the following client of
incr:

1 a@ := [4] int { 1, 2, 4, 8 }
2 incr(a[2:], 2)
3 assert a == [4] int { 1, 2, 6, 10 }

The first line declares a Go array a of fixed length 4, with values 1, 2, 4, and 8.
This array is sliced on line 2 using the syntax a[2:], thereby omitting the first
two elements of a from the created slice. Since a is used in a context in which
it is sliced, it is a shared location, which is made explicit via the @ annotation.
Consequently, the array creation will produce permissions to the array elements,
which are required by incr’s precondition. Omitting the @ annotation will cause
a verification error.

2.2 Interfaces

Go supports polymorphism through interfaces, named sets of method signatures.
Subtyping for interfaces is structural: a type implements an interface iff every
method of the interface is implemented by the type. The subtype relationship is
determined by the type checker, without any declarations from the programmer1.

Calls on an interface value are dynamically dispatched. In settings with nomi-
nal subtyping, dynamic dispatch is handled by proving behavioral subtyping [16]:
each subtype declaration requires a proof that the specifications of subtype meth-
ods refine the specifications of the corresponding supertype methods. Since struc-
tural subtypes are not declared explicitly, we adapt this approach as follows.

Whenever a Go program assigns a value to a variable of an interface type,
Gobra requires an implementation proof, that is, a proof that each method of the
subtype satisfies the specification of the corresponding method in the interface.
Implementation proofs are inferred automatically by Gobra in simple cases; user-
provided implementation proofs are required especially when they include ghost
operations, for instance, to manipulate predicates.

The example in Fig. 2 illustrates this approach. Interface stream

(lines 1–8) declares an interface with two methods, hasNext and next. The
latter may return values of an arbitrary type, which is denoted by an empty
interface. Since interfaces do not contain an implementation, their specification
must be fully abstract. To this end, stream introduces an abstract predicate
memory, whose definition is provided by the subtypes of the interface. The func-
tional behavior of interface methods can be expressed in terms of pure (that is,
side-effect free) abstract methods, here, hasNext, which will also be defined in
subtypes.

Next, lines 10–16 show an implementation of the interface in the form of a
counter. The counter has a current f and maximum max value. As long as the
1 For the sake of simplicity, we omit embeddings, Go’s construct for delegation; an

extension is straightforward.
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1 type stream interface{
2 pred memory ()

3 requires acc(memory(), _) // arbitrary fraction of memory ()
4 pure hasNext () bool

5 requires memory () && hasNext ()
6 ensures memory ()
7 next() interface {}
8 }
9

10 type counter struct{ f int; max int }

11 requires acc(&x.f, _) && acc(&x.max , _)
12 pure func (x *counter) hasNext () bool { return x.f < x.max }

13 requires acc(&x.f) && acc(&x.max , 1/2) && x.hasNext ()
14 ensures acc(&x.f) && acc(&x.max , 1/2) && x.f == old(x.f)+1
15 ensures typeOf(y) == int && y.(int) == old(x.f)
16 func (x *counter) next() (y interface {}) { x.f++; return x.f-1 }

17
18 pred (x *counter) memory () { acc(&x.f) && acc(&x.max) }

19 (* counter) implements stream {

20 pure (x *counter) hasNextProof() bool {
21 return unfolding acc(x.memory(), _) in x.hasNext ()
22 }

23 (x *counter) nextProof() (res interface {}) { . . . }
24 }

Fig. 2. An interface specification for a stream (lines 1–8) together with an implementa-
tion (lines 10–16) and an implementation proof (lines 18–24). We write acc(p, _) to
denote an arbitrary, positive amount of predicate p, and simply p for acc(p, 1/1).
At line 14, the fractional permission to &x.max entails that x.max is not modified.

maximum value is not reached, next will increase the current value. At line 16,
an integer can be assigned to the empty interface since behavioral subtyping
holds trivially. The specification at line 15 expresses that the returned interface
value contains an integer with the old value of the f field.

The counter implementation is completely independent of the stream inter-
face. Their connection is established only in the implementation proof (lines
18–24). This proof defines the memory predicate from the stream interface for
receivers of type counter (line 18). Moreover, an implementation proof verifies
that the specification of each method implementation refines the specification
of the corresponding interface method. This proof checks that, assuming the
precondition of an interface method, a call to the implementation method with
identical arguments establishes the postcondition of the interface method. This
format is enforced syntactically and permits ghost operations before and after
the call to manipulate predicates. For instance, the proof on line 21 for hasNext

temporarily unfolds the memory predicate to obtain permission to x, which is
required by the implementation method, and conversely after the call.

Implementation proofs can be written explicitly, imported from other pack-
ages, and also inferred automatically when no explicit proof exists in the current
scope. Currently, Gobra does not infer ghost operations such as the unfolding

on line 21; our experiments suggest that already simple heuristics can deal with
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many cases occurring in practice. For instance, many implementation proofs we
have encountered follow the same pattern: First, the interface predicate instances
of the precondition are unfolded. Second, the implementation method is called.
Lastly, the interface predicate instances of the postcondition are folded. This
pattern can be generated automatically to alleviate the annotation burden.

Gobra’s implementation proofs enable one to reason about interfaces without
enforcing subtype declarations in either the interface or the declaration, which
would defeat the purpose of structural subtyping. This solution allows one to rea-
son about dynamically-dispatched calls. For instance, the following code snippet
verifies in Gobra:

1 x := &counter {0, 50}
2 var y stream = x
3 fold y.memory ()
4 var z interface {} = y.next()

In particular, Gobra is able to determine that next’s precondition
hasNext () holds because y.hasNext () is equal to x.hasNext (), and the lat-
ter follows from the definition of hasNext (line 12) and the initial value of x.f.
This intuitive reasoning is enabled by an intricate underlying encoding, which
is not exposed to users. Users do not have to know how interface predicates are
encoded and can treat interface predicates the same as any other separation-logic
predicate.

2.3 Concurrency

Go supports concurrency through goroutines, lightweight threads started by pre-
fixing a method call with the go keyword. Go offers the usual synchronization
primitives, but goroutines idiomatically synchronize via channels. Buffered chan-
nels provide asynchronous communication, where sending a message blocks only
when the buffer is full. Unbuffered channels offer rendez-vouz communication.

Gobra enables verification of concurrent programs by associating Go’s syn-
chronization primitives with predicates that do not only express properties of
data but also express how permissions to shared memory get transferred between
threads. For instance, lock invariants may include properties as well as permis-
sions to the data protected by the lock, and channel invariants include properties
and permissions of the data sent over a channel. These invariants are specified
via ghost operations when the synchronization primitive is initialized.

Figure 3 illustrates Gobra’s concurrency support using an excerpt from a
parallel search-and-replace algorithm (see the full paper [22] for the complete
example). Method searchAndReplace spawns a series of worker threads and
then sends each of them a chunk of the input slice to process. The worker threads
are joined via a wait group wg. Method worker implements the worker threads.

Gobra associates channels (like c in the example) with a predicate to specify
properties and permissions of the sent data. The call c.Init (...) on line 10
takes this predicate as an argument. As expressed on line 2, it includes permis-
sions to the chunk a worker operates on. For synchronous channels, an additional
predicate can specify permissions transferred in the opposite direction, from the
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1 pred messagePerm(wg *sync.WaitGroup , chunk []int , x, y int) {
2 ( ∀ i int :: 0 ≤ i < len(chunk) =⇒ acc(&chunk[i]) ) && . . .
3 }

4 requires ∀ i int :: 0 ≤ i < len(s) =⇒ acc(&s[i])
5 func searchAndReplace(s []int , x, y int) {
6 var wg@ sync.WaitGroup
7 ghost wg.Init()
8 c := make(chan []int ,4)
9 // predicate -name{. . ., _, . . .} is syntax for partial application

10 ghost c.Init(messagePerm {&wg , _, x, y})

11 // Spawn workers
12 invariant acc(c.RecvChannel (), _)
13 invariant c.RecvGotPerm () == messagePerm {&wg, _, x, y}
14 for i := 0; i < numOfWorkers; i++ { go worker(c, wg , x, y) }

15 // Split slice into chunks , which are sent to workers
16 invariant c.SendChannel ()
17 invariant c.SendGivenPerm () == messagePerm {&wg, _, x, y}
18 invariant ∀ i int :: offset ≤ i < len(s) =⇒ acc(&s[i])
19 invariant . . . // constraints on offset and nextOffset
20 for offset := 0; offset != len(s); offset = nextOffset {
21 nextOffset = . . .
22 wg.Add(1)
23 fold messagePerm {&wg , _, x, y}(s[offset:nextOffset ])
24 c <- s[offset:nextOffset]
25 }
26 wg.Wait()
27 }

28 requires acc(c.RecvChannel (), _)
29 requires c.RecvGotPerm () == messagePerm{wg , _, x, y};
30 func worker(c <- chan []int , wg *sync.WaitGroup , x, y int) {

31 invariant acc(c.RecvChannel (), _)
32 invariant c.RecvGotPerm () == messagePerm{wg , _, x, y};
33 invariant ok =⇒ messagePerm{wg , _, x, y}(chunk)
34 for chunk , ok := <- c; ok; chunk , ok = <-c {
35 unfold messagePerm{wg, _, x, y}( chunk)
36 . . . // replace x with y in chunk
37 wg.Done() // same as wg.Add (-1)
38 }
39 }

Fig. 3. Excerpt showing goroutines, channels, and wait groups. The code spawns
workers (line 14), sends slice chunks through a channel to the workers (line 24), and
then waits on a wait group (line 26). A worker receives a chunk (line 34), processes it,
and then notifies the wait group (line 37). For the sake of simplicity, some details were
omitted.

receiver to the sender. Initializing a channel also creates send and receive per-
missions for the channel, which are used to control which threads may access it.
In our example, we transfer a fraction of the receive permission to each worker
(line 28).

The workers receive permission to the chunk they operate on via a message
sent on line 24 and received on line 34. The transfer back is orchestrated through
a wait group, which implements an abstract shared counter. Wait groups are used
as follows: The main thread adds to the counter the number of units of work
to be done in spawned goroutines (line 22). Each spawned goroutine decreases
the counter each time a unit of work is done (via a call to Done, line 37). The
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master can await the counter to reach 0 via a call to Wait (line 26). Gobra uses
dedicated permissions to express the obligation of a thread to perform units
of work before decreasing the counter; each time this happens, permissions are
transferred to the wait group and, eventually to the main thread calling Wait.
We omit the details here for brevity.

In our example, this mechanism allows the main thread to recover the permis-
sions to the entire slice once the workers have terminated. The example in Fig. 3
illustrates only the permission aspect of the verification. Functional correctness
can be verified easily based on the explained machinery, by specifying a stronger
channel invariant that includes the work obligation for each worker. We omit the
details here, but see the full paper [22] for the complete example.

3 Encoding

Gobra encodes an annotated Go program into a Viper program verifying only
if the input program is correct. Many features of Gobra are also present in
Viper, making parts of the encoding straightforward. For instance, methods,
pure methods, and predicates are encoded to their Viper counterpart. Viper’s
permission model (including fractions, wildcards, and quantifiers) is similar to
Gobra’s, but memory is represented differently; Viper’s heap is object-based,
where each object contains all declared fields. Viper’s fields store primitive values
(including references). To encode Go’s compound values such as structs, arrays,
slices, and interface values, we use Viper’s mechanism to declare mathematical
types (such as tuples) using uninterpreted types, uninterpreted functions, and
appropriate axioms. Exclusive Go values are directly represented using these
mathematical types. For shared values, there is an indirection via the Viper
heap to permit aliasing and apply permission-based reasoning.

Interfaces. As explained in Sect. 2.2, our treatment of Go interfaces relies
on interface predicates, specification methods, and implementation proofs. We
explain how we handle the former two here; based on this encoding, the encoding
of implementation proofs is analogous to methods.

Intuitively, we encode interface predicates as a case split over all possible
implementations. All implementations not present in the current scope are sub-
sumed by an abstract default case. Consequently, adding an implementation does
not invalidate existing proofs, which enables modular reasoning. The predicate
for the stream example (Fig. 2) is encoded as follows:

predicate memory(x: �interface {}�) {
�typeOf(x) == *counter� ? �acc(x.(* counter ))� : unknownMemory (x)

}
predicate unknownMemory (x: �interface {}�)

function hasNext(x: �interface {}�) returns (y: �bool�)
req �acc(x.memory(), _)�
ens �typeOf(x) == *counter� =⇒ y == hasNextProof(�x.(* counter)�)
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The body of the predicate branches on the dynamic type of x, with a single case
for the (only) given implementation. The abstract predicate unknownMemory

encodes the default case. The encoding of pure methods such as hasNext uses an
analogous case split, but uses hasNextProof , which is part of the implementation
proof (Fig. 2 line 20) and couples the interface and implementation method. Our
encoding of interface predicates is an instance of an abstract predicate family [18].
For Go, we have crafted a variant that is well-suited for implementation proofs,
pure interface methods, and structural subtyping.

First-Class Predicates. Our support for concurrency uses first-class predi-
cates, for instance, to specify channel invariants (see Sect. 2.3). We encode first-
class predicate values as mathematical types, using defunctionalization. Pred-
icate instances are represented by abstract predicates that take the predicate
value as an argument. First-class predicates enable us to use library stubs to
support concurrency primitives such as mutexes and wait groups. These stubs
allow us to encode the use of these concurrency primitives via standard method
calls. Go’s native channel operations are represented analogously.

4 Implementation and Evaluation

The Gobra implementation consists of a parser and type checker for annotated
Go programs and a translation of those programs into the Viper intermediate
verification language. The resulting Viper program is verified using Viper’s sym-
bolic execution backend, which in turn uses the Z3 SMT solver [7]. Verification
errors are translated back to the Go level, such that users are not exposed to the
internal encodings. Users never have to inspect the encoding. Error messages
contain the failing assertion and a reason describing why the assertion failed.
Gobra’s test suite contains 407 verification tests (with and without errors) with
a total of 10’030 LOCs (Go code and annotations) that take 14.9 min to verify.

We evaluated Gobra on 14 interesting verification problems, which include
well-known algorithms and data structures, and cover Go’s main features, such
as interfaces (Examples 7–9) and concurrency primitives (Examples 13 and 14),
including goroutines, mutexes, wait groups, and channels. For each example,
Gobra verifies memory safety and functional correctness properties. To assess
Gobra’s performance on failing verifications, we have additionally constructed
two incorrect variations of each example, one with a seeded error in the specifi-
cation and one in the implementation.

All experiments were executed on a warmed-up JVM on a MacBook Pro with
a 2.3 GHz 8-Core Intel Core i9 CPU and 32 GB of RAM, running macOS 11.1
and OpenJDK 11. For each experiment, we measured its verification time using
Viper’s symbolic execution backend and averaged the duration of twelve execu-
tions, excluding the slowest and fastest outlier.

Figure 4 summarizes the results, including the required annotations and ver-
ification times for the three variants of each example. The annotation overhead
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# Example LOC / Spec. Viper LOC T [s] Tspec error [s] Timpl error [s]
1 binary search tree 125 / 140 632 10.88 10.50 11.67
2 dutchflag 22 / 16 142 2.02 1.78 1.88
3 heapsort 47 / 93 271 16.72 19.30 15.23
4 dense and sparse matrix 69 / 62 326 10.46 10.55 10.06
5 binary tree 59 / 20 217 2.09 2.08 2.11
6 running ex. (Fig. 1) 10 / 11 164 1.71 1.70 1.70
7 running ex. (Fig. 2) 24 / 16 186 1.04 0.98 1.01
8 list of interfaces 46 / 27 219 1.45 1.41 1.54
9 visitor pattern 76 / 30 475 4.38 4.22 5.45
10 zune 31 / 12 141 1.08 1.07 1.06
11 relaxed prefix 25 / 36 158 7.08 5.36 4.19
12 pair insertion sort 50 / 105 353 15.55 12.64 13.96
13 parallel search replace 35 / 94 565 53.18 51.97 61.54
14 parallel sum 31 / 98 527 58.39 50.25 57.69

Fig. 4. Experimental results. For each experiment, we list the number of lines of Go
code (LOC), number of lines of specification and proof annotations (Spec), and the
average verification time in seconds for correct examples (T), errors in the specification
(Tspec error), and errors in the implementation (Timpl error). A line containing both, code
and annotations, is counted as one line of Go code and one line of annotation.

ranges between 0.3 and 3.1 lines of annotations per line of code, which is typ-
ical for SMT-based deductive verifiers. Verification times range between a sec-
ond and a minute per example. The verification times are significantly higher
when the verified code uses concurrency features; these examples require quan-
titatively more and more-complex specifications, which complicates reasoning.
Lastly, there is hardly any difference between successful and failed verification
attempts. Consistent performance is crucial when verifiers are used interactively,
where users run them frequently, especially on programs that do not yet verify.

5 Related Work and Conclusion

Besides Gobra, we are aware of two other verification approaches for Go. Peren-
nial [4] reasons about concurrent, crash-safe systems. Their core techniques are
an extension to the Iris framework [13] and independent of Go. They connect
their theory to Go programs with Goose, a shallow embedding of Go into Coq [5],
which proves that Go code complies with a given transition system. In contrast
to Gobra, Perennial does not support core Go features such as channels and
interfaces.

Several prior works [9,14,15] infer behavioral types [12] to reason about
Go’s channel-based message passing. After they infer behavioral types for a
given program, they check safety and liveness properties on the inferred types,
using model checkers such as mCRL2 [6]. Some works use additional analyses to
strengthen the provided guarantees. Lange et al. [15] add a termination analysis
to enable one to verify unbounded properties under certain conditions. Gabet
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and Yoshida [9] extend this work by inferring behavioral types on shared vari-
ables and locks to additionally reason about data-race freedom, lock safety, and
lock liveness. The approaches by Lange et al. [15] and Gabet and Yoshida [9] are
vastly different from Gobra. They do not verify code contracts, but instead ver-
ify global properties such as deadlock and data-race freedom. Their automation
is high and annotation overhead minimal, but their analyses are not modular
and do not verify functional properties of code. Furthermore, they do not verify
properties about the state of the heap.

There are some prior works that can handle channel-based concurrency and
heap-manipulating programs, but these do not apply directly to Go. Villard
et al. [20] introduce a powerful contract mechanism to specify protocols that
channels must adhere to. Their channel specification language is more expressive
than the one presented in this paper. Their contracts are finite state machines
and thus can have multiple phases. However, their channels are always shared
between two peers whereas Go supports more advanced concurrency patterns
where both channel endpoints are shared between an unbounded number of peers.
Actris [10,11] is a concurrent separation logic built on top of the Iris framework
to reason about session types in an interactive theorem prover. Actris can go
beyond two peers, but to do so, it requires a memory model that is incompatible
with Go’s memory model. Actris models the sharing of channel endpoints via
Iris’ ghost locks, which to our knowledge, implies sequentialization of sends, and
dually receives, which is not guaranteed by Go’s memory model.

Gobra’s verification logic and encoding into Viper have been inspired by
several other Viper-based verifiers, such as Nagini [8] for Python, Prusti [1] for
Rust, and VerCors [2] for Java. None of these verifiers address the Go-specific
features that Gobra supports.

Conclusion. We introduced Gobra, the first modular verifier for Go that sup-
ports reasoning about a crucial aspect of the language: the combination of
channel-based concurrency and heap-manipulating constructs. Moreover, Gobra
is the first verifier to support Go’s version of interfaces and structural subtyping.
In future work, we will expand the properties that can be verified with Gobra, in
particular to liveness and hyper-properties. Furthermore, we are applying Gobra
to verify the implementation of a full-fledged network router [23]. Gobra is hosted
on Github at https://github.com/viperproject/gobra.
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