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Abstract. The Geostationary Ocean Color Imager (GOCI)
Yonsei aerosol retrieval (YAER) version 1 algorithm was
developed to retrieve hourly aerosol optical depth at
550 nm (AOD) and other subsidiary aerosol optical prop-
erties over East Asia. The GOCI YAER AOD had accu-
racy comparable to ground-based and other satellite-based
observations but still had errors because of uncertainties
in surface reflectance and simple cloud masking. In addi-
tion, near-real-time (NRT) processing was not possible be-
cause a monthly database for each year encompassing the
day of retrieval was required for the determination of sur-
face reflectance. This study describes the improved GOCI
YAER algorithm version 2 (V2) for NRT processing with im-
proved accuracy based on updates to the cloud-masking and
surface-reflectance calculations using a multi-year Rayleigh-
corrected reflectance and wind speed database, and inver-
sion channels for surface conditions. The improved GOCI
AOD τG is closer to that of the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and Visible Infrared Imag-
ing Radiometer Suite (VIIRS) AOD than was the case for
AOD from the YAER V1 algorithm. The V2 τG has a lower
median bias and higher ratio within the MODIS expected

error range (0.60 for land and 0.71 for ocean) compared
with V1 (0.49 for land and 0.62 for ocean) in a validation
test against Aerosol Robotic Network (AERONET) AOD τA
from 2011 to 2016. A validation using the Sun-Sky Radiome-
ter Observation Network (SONET) over China shows similar
results. The bias of error (τG − τA) is within −0.1 and 0.1,
and it is a function of AERONET AOD and Ångström expo-
nent (AE), scattering angle, normalized difference vegetation
index (NDVI), cloud fraction and homogeneity of retrieved
AOD, and observation time, month, and year. In addition, the
diagnostic and prognostic expected error (PEE) of τG are es-
timated. The estimated PEE of GOCI V2 AOD is well corre-
lated with the actual error over East Asia, and the GOCI V2
AOD over South Korea has a higher ratio within PEE than
that over China and Japan.

1 Introduction

Aerosols are one of the most important components in the
atmosphere with respect to climate change and air pollution.
Aerosols influence the climate directly by scattering and ab-
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sorbing solar radiance (aerosol–radiation interactions) and
indirectly by altering cloud properties (aerosol–cloud inter-
action; IPCC, 2013). Two aerosol optical properties (AOPs),
the aerosol optical depth and single-scattering albedo, deter-
mine the sign and magnitude of the shortwave aerosol ra-
diative forcing of the atmosphere for different surface condi-
tions (Takemura et al., 2002). Thus, accurate AOP retrievals
are important for quantifying the role of aerosols in climate
change. With respect to air pollution, ambient fine particu-
late matter (PM) affects respiratory and pulmonary systems,
resulting in an increased incidence of heart disease, strokes,
and lung cancer (Lim et al., 2012). While PM information
is often obtained from ground-based in situ measurements,
the coverage of ground-based measurements is limited to the
local scale and observational networks are often sparse, es-
pecially in developing countries. However, satellite-based re-
mote sensing can provide aerosol information over a much
broader area. Chemical transport models (CTMs) make many
assumptions in predictions of PM concentrations. Modeling
accuracy can be improved significantly through data assim-
ilation with satellite-retrieved aerosol optical depth (AOD)
products (van Donkelaar et al., 2010).

East Asia has some of the highest aerosol concentrations
in the world, with components that include desert dust, an-
thropogenic carbonaceous aerosols, and sea salt (Kim et al.,
2007; Yoon et al., 2014). Trends in aerosol concentrations in
East Asia do not show the same significant decreases seen in
Europe or North America (Zhang and Reid, 2010; Hsu et al.,
2012), for reasons that are still unclear (IPCC, 2013).

The Geostationary Ocean Color Imager (GOCI), launched
in 2010 as the first ocean color imager in geostationary or-
bit (GEO), observes East Asia eight times per day from 00:30
to 07:30 Coordinated Universal Time (UTC; 09:30 to 16:30
Korea Standard Time (KST); Choi et al., 2012). Using the
radiance measurements from eight spectral channels (412,
443, 490, 555, 660, 680, 745, and 865 nm) with high spa-
tial resolution (500 m × 500 m), the GOCI Yonsei aerosol re-
trieval (YAER) version 1 (V1) algorithm was developed to
retrieve hourly aerosol optical properties such as aerosol op-
tical depth (AOD) with simple diagnostic parameters such
as fine-mode fraction (FMF), Ångström exponent (AE), and
single-scattering albedo (SSA; Choi et al., 2016). Because it
has more channels with higher spatial resolution in the visi-
ble and near-infrared (NIR) bands compared with recent and
planned advanced meteorological sensors in GEO, including
the Advanced Himawari Imager (AHI), the Advanced Base-
line Imager (ABI), and the Advanced Meteorological Im-
ager (AMI), GOCI provides valuable information related to
AOPs. Hourly AOD from the GOCI YAER algorithm is in
good agreement with Moderate Resolution Imaging Spectro-
radiometer (MODIS) and Visible Infrared Imaging Radiome-
ter Suite (VIIRS) AOD over East Asia (Xiao et al., 2016).
The application of GOCI retrievals through data assimilation
results in improved performance of several air quality fore-
casting model predictions of AOD and PM concentrations

(Park et al., 2014; Saide et al., 2014; Jeon et al., 2016; Lee et
al., 2016; Lee et al., 2017). For this reason, a need has arisen
for GOCI aerosol retrievals with near-real-time (NRT) pro-
cessing for operational air quality forecasting systems using
data assimilation.

The lack of shortwave infrared (SWIR) channels in GOCI
(similar to the 1.6 or 2.1 µm channels of MODIS) does not
allow for the calculation of surface reflectance in the visi-
ble range from top-of-atmosphere (TOA) reflectance in the
SWIR range (Kaufman et al., 1997). Instead, the minimum
reflectivity technique using the composite method (Herman
and Celarier, 1997; Koelemeijer et al., 2003; Hsu et al., 2004)
was applied in the GOCI YAER V1 algorithm. However, this
methodology prevents the GOCI YAER V1 algorithm from
being capable of near-real-time (NRT) processing because it
required a monthly database for each year encompassing the
day of retrieval for the determination of surface reflectance.
In addition, the resulting retrievals have a slightly negative
bias over land and a positive bias over ocean due to sur-
face reflectance errors, compared with AERONET data dur-
ing the Distributed Regional Aerosol Gridded Observation
Networks – Northeast Asia 2012 campaign (DRAGON-NE
Asia 2012 campaign; Choi et al., 2016).

In this study, version 2 (V2) of the algorithm is devel-
oped to both allow NRT processing and improve accuracy.
Monthly and hourly surface reflectance and wind speed de-
terminations are modified using a climatological database
from the multi-year GOCI dataset and reanalysis wind speed
data, respectively. The surface reflectance database obtained
from multi-year Rayleigh-corrected reflectance (RCR) sam-
ples enables more accurate surface reflectance retrievals by
increasing the availability of measurements that are not
aerosol- or cloud-contaminated, compared with the 1-year
samples of the V1 algorithm. The cloud masking and inver-
sion spectral channels for aerosol retrievals were also modi-
fied for better accuracy. Furthermore, retrieved GOCI YAER
V2 AOD is evaluated using ground-based observation data,
along with comparisons with both V1 and MODIS retrievals
from March 2011 to February 2016, which is a longer eval-
uation period than used in previous studies. The bias of the
GOCI YAER V2 AOD is analyzed and uncertainties are es-
timated to facilitate the application of GOCI AOD in data
assimilation.

The remainder of this paper is organized as follows. In
Sect. 2, improvements in the GOCI YAER V2 algorithm are
summarized and a quantitative comparison with other satel-
lite AODs is presented. In Sect. 3, the GOCI YAER V2 AOD
is validated using ground-based sun-photometer observations
along with other satellite AOD measurements. In Sect. 4,
GOCI YAER V2 AOD errors are analyzed in relation to var-
ious parameters and expected errors are estimated. Finally, a
summary and conclusions are presented in Sect. 5.
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2 GOCI YAER V2 algorithm

2.1 Overview of the GOCI YAER V1 and V2 algorithm

framework

A prototype of the GOCI YAER algorithm for use over
the ocean (Lee et al., 2010) was developed using MODIS
Level 1B (L1B) top-of-atmosphere (TOA) reflected radi-
ance data and improved using nonspherical AOPs (Lee
et al., 2012). Then, using real GOCI L1B TOA radiance
data, the GOCI YAER V1 algorithm for use over land
and ocean surfaces was developed (Choi et al., 2016). The
algorithm is applied to cloud-free and snow/ice-free pix-
els. Sets of 12 pixel × 12 pixel blocks are aggregated to
achieve 6 km × 6 km spatial resolution and averaged after
cloud/snow/ice masking and suitable pixel selection.

Unified aerosol models over land and ocean surfaces clas-
sify aerosols using AOD at 550 nm, FMF at 550 nm, and SSA
at 440 nm derived from the global Aerosol Robotic Network
(AERONET) inversion database (Dubovik and King, 2000;
Holben et al., 1998). This aerosol type classification (Lee et
al., 2012) covers a range of AOPs: FMF from 0.1 to 1.0 at
an interval of 0.1 and SSA from 0.85 to 1.00 at an interval
of 0.05. A total of 26 aerosol models are assumed in the al-
gorithm: nine highly absorbing, nine moderately absorbing,
and eight nonabsorbing models. Note that AOPs to calcu-
late AOD are constructed to account for hygroscopic growth
and aggregation (Eck et al., 2003; Reid et al., 1998). Non-
spherical properties are considered using the phase function
derived from AERONET data.

Dark ocean surface reflectance is calculated using the
Cox–Munk model (Cox and Munk, 1954) considering Fres-
nel reflectance with a bidirectional reflectance distribution
function according to geometry and wind speed in a precal-
culated look-up table (LUT) with temporal interpolation of
ECMWF wind speed data at 10 m above sea level (m a.s.l.)
over dark ocean pixels (Dee et al., 2011). Land surface re-
flectance is obtained using the minimum reflectivity tech-
nique for each month, channel, and hour, and temporal in-
terpolation is carried out over land, turbid ocean, and heavy
aerosol pixels in the inversion step. In the algorithm, turbid
water pixel detection is implemented using a difference of
660 nm TOA reflectance between directly observed and in-
terpolated data from 412 and 865 nm (hereafter, 1ρ660; Li et
al., 2003; Choi et al., 2016).

All eight channels are used over ocean surfaces, and differ-
ent combinations of channels are used over land, depending
on surface conditions. Measured spectral TOA reflectance
can be converted to spectral AOD for all aerosol models us-
ing the precalculated LUT, and spectral AOD can be con-
verted to the corresponding value at 550 nm using the as-
sumed AE of each aerosol model. Then, the mean value
and standard deviation (SD) of AOD at 550 nm from dif-
ferent channels are calculated for each aerosol model, and
the three aerosol models with the lowest SD are selected.

The SD-weighted average of mean AOD at 550 nm from
the three selected aerosol models is used as the AOD at
550 nm. An identical SD-weighted average is applied to the
assumed AE, FMF, and SSA of the selected aerosol models
to determine the final AE, FMF, and SSA values. This in-
version method is focused primarily on the retrieval of AOD
at 550 nm from multi-channel spectral information, and the
AE, FMF, and SSA are determined from aerosol models se-
lected for the best AOD fit. Thus, AOD at 550 nm is the
main retrieval product, and the AE, FMF, and SSA are con-
sidered as diagnostic parameters, or ancillary products. Note
that the discrete ordinate radiative transfer (DISORT) code
of the libRadtran software package is used to calculate TOA
reflectance for the LUT construction based on scalar calcu-
lations (i.e., intensity-only) and a plane-parallel atmosphere
approximation (Mayer and Kylling, 2005).

To improve the accuracy of AOP retrieval from GOCI
measurements, AOD in particular, the new V2 algorithm is
developed through piecewise upgrades to the V1 algorithm
while retaining the structure and conceptual approach of the
original algorithm. A flow chart of the GOCI YAER V2 algo-
rithm is presented in Fig. 1. The improved parts of the V2 al-
gorithm compared with V1 are the pixel masking and aggre-
gation procedures, implementation of the climatological sur-
face reflectance and wind speed from a 5-year climatological
database for NRT calculations, turbid water detection, and in-
version conditions for land, turbid water, and dark ocean pix-
els. The aerosol model construction and inversion method for
converting TOA reflectance to aerosol products are identical
to those of V1. Details of the refined parts of the algorithm
are introduced in the following subsections.

2.2 Pixel masking and aggregation procedure

The GOCI YAER algorithm is targeted to cloud-free and
snow-free pixels over land and cloud-free, ice-free, and high-
turbidity-water-free pixels over the ocean. Therefore, several
masking steps are required. The previous V1 algorithm con-
tains simple cloud-masking techniques, which include a spa-
tial variability test using the SD over a 3 pixel × 3 pixel block
and a threshold for high TOA reflectance. These simple tech-
niques remove most cloud pixels, but some thin homoge-
neous (e.g., cirrus) cloud pixels remain because of the ab-
sence of ice-crystal-sensitive 1.38 µm or other infrared chan-
nels in GOCI. This leads to unfiltered cloud pixels being
misclassified as high-AOD pixels and raises the need for
additional filtering for successful data assimilation between
models and GOCI AOD (Xu et al., 2015). In addition, some
low-AOD pixels could be misclassified as cloud pixels in re-
gions with highly inhomogeneous surface reflectance. In this
study, therefore, refined cloud-masking techniques are ap-
plied, as summarized (with references) in Table 1. Most of
these masking techniques were adopted from the MODIS and
VIIRS aerosol retrieval and cloud-masking algorithms. The
masking procedures consist of three stages: masking at the
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Figure 1. Flow chart of the GOCI Yonsei aerosol retrieval version 2 algorithm. Yellow indicates improvements from version 1 to version 2,
and gray indicates no change from version 1.

original 0.5 km × 0.5 km L1B pixel resolution, aggregation
from 0.5 km × 0.5 km to 6 km × 6 km resolution, and addi-
tional masking at the 6 km × 6 km resolution.

At the 0.5 km × 0.5 km resolution, cloud masking over
ocean surfaces is unchanged, but the land-surface cloud-
masking steps are refined. The previous SD test of a 3
pixel × 3 pixel block over land for identifying clouds and
aerosols (Step 3 in Table 1, except for a threshold of 0.0025)
works well for moderate- and high-AOD cases, but it over-
masks heterogeneous surface reflectance pixels under low-
AOD conditions. Thus, the threshold is relaxed to 0.015, and
the mean-weighted SD test (Step 4 in Table 1) and the ra-

tio of maximum to minimum TOA reflectance at 412 nm
within the 3 pixel × 3 pixel grid are adopted (Step 2 in Ta-
ble 1) as an alternative. To identify aerosols and clouds using
a different technique, a pseudo Global Environment Monitor-
ing Index (GEMI), developed by Pinty and Verstraete (1992)
and Kopp et al. (2014) and applied in the operational VIIRS
cloud-mask algorithm (Godin, 2014), is adopted (Step 6 in
Table 1). The GEMI is based on the reflectance ratio between
865 and 660 nm and is defined as follows:

GEMI = G × (1.0 − 0.25 × G) −
100 × Ref660 − 0.125

1.0 − 100 × Ref660
,
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Table 1. Cloud and other pixel masking steps of the GOCI YAER V2 algorithm.

Step Conditions Classification References

Masking at 0.5 km × 0.5 km resolution

1 SD of TOA reflectance at 555 nm in
3 pixel × 3 pixel blocks > 0.0025

Cloud over ocean (whole 9 pixels) Remer et al. (2005)
Choi et al. (2016)

2 Ratio of maximum to minimum TOA
reflectance at 412 nm in 3 pixel × 3 pixel
blocks > 1.1

Cloud over land (whole 9 pixels) Hsu et al. (2013)

3 SD of TOA reflectance at 490 nm in
3 pixel × 3 pixels block > 0.015

Cloud over land (whole 9 pixels) Wang et al. (2017)

4 Mean-weighted SD of TOA reflectance at
490 nm in 3 pixel × 3 pixel blocks > 0.0025

Cloud over land (whole 9 pixels) Wang et al. (2017)

5 TOA reflectance at 490 nm > 0.4 Cloud over ocean and land Remer et al. (2005)
Choi et al. (2016)

6 Pseudo GEMI index < 1.87 Cloud over land Pinty and Verstraete (1992),
Kopp et al. (2014)

7 NDVI using TOA reflectance at 660 and
865 nm < −0.01

Inland water over land Hsu et al. (2013)

8 Ratio of TOA reflectance at 490 to
660 nm < 0.75,
and SD of TOA reflectance at 490 nm < 0.015
(or mean-weighted SD of TOA reflectance at
490 nm < 0.0025)

Homogenous dust call-back over land
and ocean

Remer et al. (2005)

Aggregation to 6 km × 6 km resolution

9 Number of available pixels after masking
among 12 pixel × 12 pixel blocks > 72

Discard darkest 20 % and brightest
40 % of pixels referred to TOA
reflectance at 490 nm, and average
remaining pixels

Remer et al. (2005)
Levy et al. (2007)
Choi et al. (2016)

Additional masking in 6 km × 6 km resolution

10 SD of TOA reflectance at 412 nm > 0.003 and
mean TOA reflectance at 412 nm in
12 pixel × 12 pixel blocks > 0.22

Cloud over land and ocean

11 Mean TOA reflectance at 412 nm > 0.33 and
mean TOA reflectance at 555 nm > 0.33

Cloud over land and ocean

12 Mean TOA reflectance at 412 nm < 0.30 and
mean TOA reflectance at 660 nm > 0.2

Low aerosol signals and arid area
masking

13 Difference in TOA reflectance at 660 nm
between direct-measured value and
linear-interpolated value from 412 and
865 nm < −0.01

Highly turbid pixel masking over ocean Li et al. (2003)
Choi et al. (2016)

where

G =
200 × (Ref865 − Ref660) + 150 × Ref865 + 50 × Ref660

100 × Ref865 + 100 × Ref660 + 0.50
.

Note that Ref660 and Ref865 are the TOA reflectance at 660
and 865 nm, respectively. In addition, inland water pixels
are filtered out using a normalized difference vegetation in-
dex (NDVI) calculated using the TOA reflectance at 660 and
865 nm (Step 7 in Table 1). A dust call-back test used for
ocean pixels is expanded to include both ocean and land pix-
els and is coupled with a spatial homogeneity test (Step 8 in
Table 1).

After masking at the 0.5 km × 0.5 km resolution level, the
remaining pixels are aggregated to the Level 2 product res-
olution of 6 km × 6 km. The TOA reflectance of the remain-
ing pixels is averaged if the number of remaining pixels is
greater than 72 (Step 9 in Table 1). In this step, the darkest
20 % and brightest 40 % of pixels are discarded to filter out
cloud shadow, remaining cloud, and surface contamination,
following Choi et al. (2016). The quality assurance (QA)
value of the V1 algorithm was determined based on the range
of retrieved AOD and the remaining number of pixels in a
12 pixel × 12 pixel block after all masking procedures were
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performed. A QA value of 0, 1, 2, or 3 for the V1 AOD
was assigned for 6, 15, 22, or 36 remaining pixels, respec-
tively. In addition, retrieved AOD values between −0.05 and
3.6 were assigned a QA value of 1, 2, or 3, and retrieved
AOD values between −0.1 and −0.05 or between 3.6 and
5.0 were assigned a QA value of 0. The lower of these two
QA values for each pixel was used as the final QA value.
In the V2 algorithm, however, the retrieval is implemented
if the number of remaining pixels is greater than 28, and
the QA classification is eliminated. In addition, only pixels
with retrieved AOD between −0.05 and 3.6 are included in
the calculations. Small negative AOD values can be caused
by surface reflectance errors in this algorithm. These are as-
sumed to fall within the range of expected retrieval errors and
are statistically significant under low-AOD conditions when
compared with results from the MODIS DT algorithm (Levy
et al., 2007, 2013). The threshold of maximum AOD of 3.6
is based on Lee et al. (2012), who considered the probability
distribution of AOD in the region.

After the pixel aggregation procedure, merged TOA re-
flectance at the 6 km × 6 km resolution is filtered again.
Bright and inhomogeneous pixels within a 12 pixel × 12
pixel block are filtered using the mean and SD at 412 nm
(Step 10 in Table 1), and pixels with high TOA reflectance
at both 412 and 660 nm are also filtered out (Step 11 in Ta-
ble 1). Furthermore, pixels with low atmospheric signal (dark
at 412 nm) but high surface signal (bright at 660 nm), such as
in arid areas, are also filtered out to avoid misidentification
of the bright surface signal as aerosol (Step 12 in Table 1).

2.3 Climatological land surface reflectance database

from multi-year samples

In the GOCI YAER algorithm, surface reflectance over land
is handled differently to that over ocean. A minimum re-
flectance technique to determine the surface reflectance from
the composite Rayleigh-corrected reflectance (RCR) for each
month and hour is applied over all land and turbid-water pix-
els in the V1 algorithm. The GOCI YAER V1 algorithm was
not capable of NRT processing because it required an adja-
cent 2-month database encompassing the day of retrieval for
the determination of surface reflectance.

To achieve NRT retrieval in the V2 algorithm, climato-
logical land-surface reflectance for each channel, hour, and
month are calculated over the 5-year period from March 2011
to February 2016. The V1 surface reflectance database was
calculated at a 6 km × 6 km resolution by the aggregation of
12 pixel × 12 pixel data to extend the number of RCR sam-
ples. The V1 surface reflectance calculation assumes that sur-
face reflectance within a 6 km × 6 km area is homogeneous.
The V1 surface reflectance calculation resulted in slightly
negatively biased AOD at low AOD over South Korea and
Japan during spring 2012, which means that the surface re-
flectance was overestimated (Choi et al., 2016). In the V2 al-
gorithm, temporal RCR samples are expanded from a 1-year

period to a 5-year period, thereby improving performance
under low aerosol conditions and reducing the negative bias
in reflectance of the V1 algorithm. The spatial resolution of
climatological land surface reflectance used in the V2 algo-
rithm is 0.5 km × 0.5 km for the L1B TOA reflectance, an
improvement over the 6 km × 6 km resolution used in the
V1 algorithm. This higher resolution can capture highly spa-
tially variable surface reflectance and improve the identical
pixel matching between TOA and surface reflectance during
pixel aggregation. The maximum number of composite 5-
year RCR samples used to determine the surface reflectance
of a single pixel is 155 (31 days × 5 years). The darkest sam-
ples (the lowest 0–1 % of the aggregate sample) are assumed
to be cloud shadow and the brightest samples (3–100 % of
the aggregate sample) are assumed to be affected by aerosols
and/or clouds. Thus, the darkest 1–3 % of the RCR samples
are averaged and used to determine surface reflectance, as in
the V1 algorithm. According to Hsu et al. (2004), surface re-
flectance can be obtained by finding the minimum RCR for
each month, which corresponds to ∼ 3 % of the aggregate
sample. The darkest 0–1 % of pixels are assumed, based on
empirical grounds, to be cloud shadow and are thus excluded.
This composite procedure is implemented for each month,
hour, and channel. Monthly surface reflectance climatolog-
ical data correspond to the middle of each month (day 15)
and are linearly interpolated to the retrieval date. Major year-
to-year land use changes over the 5-year period would result
in an artificial AOD bias and should be addressed in future
work.

2.4 Climatological ocean surface wind speed database

from multi-year samples

To calculate dark ocean surface reflectance, the GOCI YAER
V1 algorithm uses the ECMWF wind speed at 10 m a.s.l.
from reanalysis data, which has a 6 h temporal resolution and
0.25◦ × 0.25◦ spatial resolution. The ECMWF data are inter-
polated to hourly resolution for use with observations. In the
V2 algorithm, the wind speed from a 5-year average of cli-
matological data is used. The wind speed from 5 years of
data for each month, hour, and 0.25◦ × 0.25◦ area is aver-
aged. This approach captures seasonal effects, such as higher
(lower) wind speeds in winter (summer), and variations in the
spatial distribution of wind speed, such as the higher (lower)
wind speed in the open sea (coast). As in the land surface
reflectance calculations, climatological wind speed data for
each month correspond to the middle of each month (day 15)
and are linearly interpolated to the retrieval date.

2.5 Refined pixel allocation for the land, turbid water,

and dark ocean algorithms and

inversion conditions

The GOCI YAER V1 land algorithm is applied not only over
land pixels but also over highly turbid or high-AOD ocean
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pixels; the ocean algorithm is applied only over dark ocean
surface pixels. A pixel with 1ρ660 below −0.05 is assumed
to be dark ocean and is processed using the dark ocean al-
gorithm. Pixels with 1ρ660 between −0.05 and −0.01 are
classified as turbid water and thus use the land algorithm.
Pixels with 1ρ660 above −0.01 are assumed to be highly
turbid water and removed (Step 13 in Table 1). In some
cases, ocean pixels have 1ρ660 above −0.05 with extremely
low TOA reflectance which could result from a combina-
tion of low aerosol concentrations and dark ocean surface
reflectance. Misidentification of these pixels as turbid water
results in negative AOD over the dark ocean. Therefore, a
threshold test to identify extremely dark ocean pixels using
TOA reflectance at 660 nm is included in the V2 algorithm.
The dark ocean algorithm is applied to pixels with 1ρ660 be-
tween −0.05 and −0.01 and TOA reflectance at 660 nm of
below 0.07.

The channels selected for the inversion from measured re-
flectance to aerosol optical properties are different for land,
turbid water, and dark ocean pixels. In the V1 algorithm, the
land and turbid water pixels use channels between 412 and
680 nm with surface reflectance less than 0.15, and the dark
ocean pixels use all eight channels. In the V2 algorithm, the
channels used for land pixels are the same as in the V1 al-
gorithm, but the channels selected for turbid water and dark
ocean pixels have been changed. In the atmospheric correc-
tion for ocean color retrieval, the main assumption is that
water-leaving radiance is close to zero in the NIR range, and
thus NIR bands are used for estimating aerosol loading in
the atmosphere. The aerosol signal in the visible range is
estimated from NIR measurements and the known relation-
ships of aerosol signals in the visible and NIR range for var-
ious aerosol types. Ocean color in the visible range is then
retrieved after the atmospheric correction. When AOPs are
the main retrieval target, however, water-leaving radiance is
estimated as a climatological value or neglected. Both ap-
proaches have limitations, as the accurate separation of ocean
color and aerosol signals is difficult. Because water-leaving
radiance is not considered in the current ocean surface re-
flectance calculations of the GOCI YAER algorithm, chan-
nels impacted by high water-leaving radiance are excluded
in the V2 algorithm to minimize artifacts (Ahn et al., 2012).
Thus, only two channels (412 and 865 nm) are used with
the climatological surface reflectance database over turbid-
water pixels, and four channels (412, 443, 745, and 865 nm)
are used with the climatological surface wind speed database
over dark ocean pixels.

2.6 Comparison of GOCI YAER V2 AOD with other

data

To evaluate the new masking techniques and climatological
data used in the V2 algorithm, a retrieved dataset of GOCI
YAER V2 AOD for 5 May 2015 is compared with that of the
V1 algorithm under two scenarios: using all the quality as-

sured (all QA; QA = 0, 1, 2, or 3) pixels and using only the
highest quality assured (QA = 3) pixels. The V2 products are
also compared with MODIS/Aqua DT and DB, and VIIRS
EDR products (Fig. 2). The overpass times of MODIS and
VIIRS are generally near 04:00 UTC over the Korean Penin-
sula, and thus GOCI 04:30 UTC results are selected for the
comparison.

Most land pixels over the Korean Peninsula and Japan
are not filtered out and are retrieved as low AOD in the
DT, DB, and EDR algorithms. The DB algorithm retrieves
high AOD over the bright surface of Manchuria located near
44◦ N, 126◦ E, but the DT and EDR do not retrieve AOD for
those pixels because the algorithms are optimized for dark
surface reflectance. The DT, DB, and EDR AOD are 0.7–
1.2 for land pixels over Hebei in China, located near 38◦ N,
117◦ E. Bright sun glint results in the masking of ocean pix-
els over the Yellow Sea and East Sea for MODIS and VIIRS,
respectively. The EDR algorithm captures an aerosol plume,
resulting in AODs of ∼ 0.8 over the northern Yellow Sea,
which is not captured by the DT algorithm, and the DT algo-
rithm captures an aerosol plume resulting in AODs of ∼ 0.6
over the East Sea close to Hokkaido, Japan, which is missed
by the EDR algorithm.

The all QA GOCI V1 predicts low AOD in Korean Penin-
sula and Japan areas, but cloud contamination results in high
and inhomogeneous AOD, especially near the edge of the
cloud cover. Sun-glint-masked ocean pixels are located at
lower latitudes for GOCI than for MODIS and VIIRS. Thus,
aerosol plumes detected by MODIS and VIIRS are both de-
tected by GOCI. Although the GOCI YAER algorithm tar-
gets dark land surface reflectance pixels, as do MODIS DT
and VIIRS EDR, the aerosol plume over bright land surfaces
in Manchuria captured by the DB algorithm is also detected.
However, whether these pixels are from cloud contamination,
bright land surface reflectance, or high AOD cannot be deter-
mined.

When only pixels with QA = 3 are applied to the V1 algo-
rithm, most high- and inhomogeneous-AOD pixels, typically
caused by unfiltered cloud contamination, are removed, but
low-AOD pixels over land in South Korea and Japan are also
removed. There are two possible reasons for the extensive
masking in V1 using only QA = 3 pixels for the case of low
AOD over land. The spatial inhomogeneity test of the V1 al-
gorithm is a simple SD of 3 pixel × 3 pixel TOA reflectance
with one fixed threshold, regardless of TOA reflectance. Al-
though this approach works well in high-AOD cases, in low-
AOD cases, inhomogeneous surface reflectance signals con-
tribute to high SD and result in excessive masking. Another
possible explanation is that these pixels have an AOD below
−0.05 because of an overestimation of surface reflectance.

Compared with the V1 algorithm, the spatial variability
tests of the V2 cloud-masking algorithm consist of the same
simple SD test (except for a relaxed threshold), an addi-
tional mean-weighted SD test, and a ratio test of the brightest
and darkest pixels, relative to TOA reflectance. In addition,
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Figure 2. (a) GOCI RGB images and AOD for (b) GOCI V1 all QA, (c) GOCI V1 QA3, (d) GOCI V2, (e) MODIS/Aqua DT,
(f) MODIS/Aqua DB, and (g) VIIRS EDR algorithms on 5 May 2015 over Northeast Asia.
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darker land surface reflectance is obtained from the clima-
tological data, and this results in increased AOD compared
with the large negative AODs seen from the V1 algorithm.
Thus, fewer pixels are filtered out using the GOCI V2 algo-
rithm and are retrieved as positive low AOD. The V2 AOD
also shows fewer inhomogeneous features near the edges of
clouds, similar to the MODIS and VIIRS AOD.

3 Long-term validation of GOCI YAER V2 AOD and

AE

3.1 Ground-based measurements and ancillary satellite

data

Two ground-based observation networks – the Aerosol
Robotic Network (AERONET) and the Sun-Sky Radiome-
ter Observation Network (SONET) – are used to quantify
the accuracy of GOCI YAER V2 AOD (τG−V2) using data
from March 2011 to February 2016. AERONET is a ground-
based aerosol remote sensing network of CIMEL sun-sky
radiometer photometers maintained by the NASA Goddard
Space Flight Center (Holben et al., 1998). Spectral AOD and
AE are retrieved from direct solar irradiance measurements,
and other optical/microphysical properties such as the vol-
ume size distribution and refractive indices are retrieved from
the inversion of spectral AOD with diffuse-sky radiance mea-
surements. Uncertainties in AERONET AOD (τA) in the vis-
ible and NIR have been reported as ±0.01 (Eck et al., 1999),
which is much lower than is typical for satellite-retrieved
AOD because of the minimal surface-reflectance effects in
direct solar irradiance measurements and the highly accurate
calibration. Thus, AERONET AOD is often used as the refer-
ence dataset for satellite AOD validation. The fully calibrated
and cloud-screened AERONET Version 2 Level 2.0 AOD at
550 nm and AE between 440 and 870 nm from direct mea-
surements are used in this study (Smirnov et al., 2000). A
total of 27 AERONET sites within the GOCI observation do-
main, excluding specific short-period campaign sites, are se-
lected for this analysis. Also, AERONET Version 2 Level 2.0
FMF at 550 nm and SSA at 440 nm from inversion products
are used for the validation of GOCI FMF and SSA (Dubovik
and King, 2000), The SONET is a ground-based aerosol re-
mote sensing network of CIMEL sun-sky radiometers main-
tained by the Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences (Li et al., 2015). The SONET
also provides spectral AOD (τSONET) from direct sun mea-
surements and AE. A total of six SONET sites in China are
selected for the validation of AOD at 550 nm.

In addition, the GOCI V1 AODs with all QA pixels
(τG−V1allQA) and only pixels with QA = 3 (τG−V1QA3) are
compared with V2 AODs to quantify improvements in the
V2 algorithm. The MODIS DT AOD (τMDT) and DB AODs
(τMDB) of the highest quality pixels (QA = 3) are also com-
pared over the same site and during the same period to verify

the GOCI AOD accuracy. Note that the VIIRS EDR AOD is
used in the qualitative comparison in the previous section but
is not included in the present validation because the VIIRS
data are only available from January 2013.

3.2 Collocation criteria between ground- and

satellite-based measurements

The comparison between satellite- and ground-based data is
implemented with spatial and temporal collocation criteria.
Hourly GOCI AOD pixels that are located within a 25 km
radius of each ground site, and ground-based observation
data within 30 min of each GOCI observation time, are av-
eraged. The averages from both datasets are included if at
least one measurement from each dataset is available. The
collocation criteria used for the MODIS data are the same
as for GOCI. After the collocation, 27 AERONET sites and
6 SONET sites are matched with GOCI land AOD obser-
vations, and 17 AERONET sites are matched with GOCI
ocean AOD observations. Note that the 27 AERONET sites
matched with GOCI land AOD observations includes all 17
coastal AERONET sites matched with GOCI ocean AOD ob-
servations because the coastal sites can be collocated with
both land and ocean AOD measurements.

3.3 Statistical evaluation metrics

Following the method of Sayer et al. (2014), the statistical
metrics for the evaluation contain the number of colloca-
tion data (N ); the Pearson’s linear correlation coefficient (R);
the median bias (MB); the root mean square error (RMSE);
and f , the fraction of data points within the expected er-
ror range of the MODIS DT AOD (Collection 5), EEMDT =

±(0.05 + 0.15 × τA), as described by Levy et al. (2007).
Each AOD product has an expected error range that can vary
with the algorithm performance. To compare accuracies, the
EEMDT is applied to all algorithms. Note that the expected
error range of the GOCI YAER V2 AOD (EEG_V2) is esti-
mated independently in Sect. 4.2.

3.4 Validation of GOCI YAER V2 land AOD and

comparison with other data

Results of a comparison between AERONET/SONET AOD
and GOCI-retrieved AOD over land and ocean surfaces are
presented in Fig. 3. Statistics from the comparison are sum-
marized in Table 2. As seen in the qualitative comparison
results (Fig. 2), τG_V1allQA shows many overestimated points
compared with τA because of remaining cloud contamina-
tion. About 20 % of pixels are filtered out with the QA = 3
criteria (τG_V1QA3), and this results in a reduction of the num-
ber of overestimated points, decreasing RMSE from 0.24
to 0.18, and increasing R from 0.86 to 0.92. However, un-
derestimated points due to the overestimation of surface re-
flectance remain, which results in an increase of the negative
median bias from −0.015 to −0.066. Results of a compari-
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Figure 3. Comparison of AOD between AERONET/SONET and GOCI/MODIS DT/MODIS DB over land and ocean surfaces. The x axis
is land AERONET AOD, land SONET AOD, and ocean AERONET AOD from top to bottom, and the y axis is GOCI YAER V1 for all QA,
GOCI YAER V1 for QA = 3, GOCI YAER V2, MODIS DT, and MODIS DB from left to right. Colored pixels represent a bin size of 0.02.
Black dashed lines denote the one-to-one line, and dotted lines denote the expected error range of MODIS DT AOD.

Table 2. Statistics of land and ocean AOD comparisons between AERONET/SONET and satellite products, as shown in Fig. 3.

Satellite AOD algorithm N R MB f within EEDT RMSE

Land AOD comparison with AERONET

GOCI YAER V1 all QA 47 850 0.86 −0.015 0.49 0.24
GOCI YAER V1 QA3 38 183 0.92 −0.066 0.49 0.18
GOCI YAER V2 45 643 0.91 0.010 0.60 0.16
MODIS DT 3228 0.92 0.043 0.62 0.18
MODIS DB 3463 0.93 0.007 0.73 0.16

Land AOD comparison with SONET

GOCI YAER V1 all QA 12 974 0.83 −0.048 0.45 0.29
GOCI YAER V1 QA3 10 483 0.88 −0.103 0.42 0.27
GOCI YAER V2 12 238 0.86 −0.021 0.51 0.24
MODIS DT 733 0.82 0.104 0.46 0.29
MODIS DB 1258 0.86 0.000 0.67 0.27

Ocean AOD comparison with AERONET

GOCI YAER V1 all QA 19 945 0.83 0.056 0.55 0.17
GOCI YAER V1 QA3 18 308 0.88 0.043 0.62 0.13
GOCI YAER V2 18 499 0.89 0.008 0.71 0.11
MODIS DT 680 0.92 0.033 0.73 0.09
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son of τG_V2 with τA show fewer overestimated points com-
pared with those of τG_V1allQA because of the improved pixel
masking. This results in an increased N and f within EEMDT
and decreased MB and RMSE compared with τG_V1QA3. The
increased N comes from the low-AOD points that are filtered
out in τG_V1QA3. The number of underestimated points in
the low-AOD range decreased because of decreased surface
reflectance using the 5-year samples. This results in lower
bias (MB = 0.010), decreased RMSE (0.16), and increased
f within EEMDT (0.60). The R of 0.91 is similar to that
of τG_V1QA3 (0.92). The N between τA and τG_V2 is about
14 times greater than the corresponding τMDT and τMDB,
mostly because of the hourly data available from GOCI com-
pared with the twice-daily overpass data from MODIS. The
spread of data points from MODIS and AERONET relative
to the one-to-one line is lower than that from GOCI and
AERONET, and this results in higher f within EEMDT( 0.62
for τMDT and 0.73 for τMDB). The R and RMSE of τMDT
and τMDB are similar to those of τG_V2. The MB of τMDB is
closest to zero, and τMDT has a positive MB of 0.043. The
overestimation of τMDT has been attributed to the urbaniza-
tion effect of the biased reflectance estimation (Munchak et
al., 2013) and has been corrected in the MODIS DT research
algorithm (not used here) using the modified urban surface-
reflectance algorithm (Gupta et al., 2016).

The GOCI V2 land AOD results can be recategorized as
coastal or inland according to whether each site is collo-
cated with both GOCI ocean and land AOD or with GOCI
land AOD only. Mean AERONET AODs from coastal sites
are lower (0.28) than those from inland sites (0.42). The
intercomparison between coastal-site AERONET AOD and
GOCI V2 land AOD has an R of 0.83, RMSE of 0.144, MB
of −0.004, and f within EEMDT of 0.60. Results from in-
land sites have higher R (0.93), RMSE (0.171), MB (0.023),
and the same f within EEMDT (0.60). High AOD is detected
more frequently at inland sites than at coastal sites.

A comparison between SONET AOD and satellite-
retrieved AOD over land reveals that τG_V2 has higher accu-
racy than τG_V1QA3, except in terms of R. The reason for the
decreased accuracy in R of τG_V2 may be the use of the same
climatological surface reflectance for each year, whereas in
reality the surface reflectance changes annually. The τMDB
has the lowest MB and RMSE and highest f within EEMDT.
The τMDT has a positive MB of 0.104.

In conclusion, most statistical parameters indicate that
land τG_V2 accuracy is improved relative to τG_V1QA3 and
is comparable to τMDT and τMDB.

3.5 Validation of GOCI YAER V2 ocean AOD and

comparison with other data

The changes of the GOCI YAER algorithm over ocean sur-
faces between V1 and V2 include the cloud-masking tech-
niques, the use of climatological wind speed data instead
of each date data, pixel classification thresholds, criteria for

Figure 4. Relative frequency histograms of retrieved AOD from
AERONET and satellites over (a) land and (b) ocean surfaces.

turbid-water and dark-ocean algorithm selection, and the
choice of spectral channels. Results from the comparison of
τG_V1QA3 with τG_V1allQA show decreased N and RMSE, an
MB closer to zero, and increased R and f within EEMDT,
which is similar to the results over land sites except for MB.
The refinement of the ocean algorithm from V1 to V2 results
in improvement in most statistical parameters: decreased MB
from 0.043 to 0.008, increased f within EEMDT from 0.62
to 0.71, and decreased RMSE from 0.13 to 0.11. An MB
closer to zero means that the modified channel selection in
the turbid-water and dark-ocean algorithms, to avoid the ef-
fect of water-leaving radiance variation, works effectively.
The N between AERONET and GOCI V2 AOD over ocean
surfaces is about 27 times greater than that for MODIS DT
AOD, which is greater than that seen in the land compar-
ison despite the same difference in observation frequency.
The reason for this result is that most turbid-water pixels
near the coast are filtered out in the MODIS DT algorithm,
but are included in the GOCI YAER algorithm. Compared
with the ocean τMDT, the ocean τG_V2 has slightly higher
RMSE, an MB closer to zero, slightly higher R, and slightly
lower f within EEMDT. In conclusion, most statistical pa-
rameters show that ocean τG_V2 accuracy is improved rela-
tive to τG_V1QA3 and is comparable with τMDT.

3.6 Comparison of AOD histogram distribution

In Fig. 4, mean relative frequency histograms for land τA,
collocated with GOCI and MODIS land AOD, have a mode
of 0.11 (i.e., highest frequency in the range 0.105–0.115)
and right-skewed distribution. This is similar to the global
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τMDT and τMDB mode of 0.1 reported by Sayer et al. (2013).
The land τG_V1QA3 mode is 0.02 and those of τG_V2, τMDT,
and τMDB are 0.12, 0.10, and 0.13, respectively, which are
similar to that of τA. Improvement in the land surface re-
flectance in V2 results in a reduced difference in mode be-
tween AERONET and GOCI. The shape of the histogram of
τMDB is better matched to that of τA in the AOD range 0.05–
0.30 than to τMDT and τG_V2. The land-targeted histograms
of τMDT and τG_V2 have a similar shape to each other. The
two histograms have lower frequency modes and higher fre-
quency AOD between 0.3 and 0.7 compared with τA. The
τG_V2 has a smoother shape due to a larger number of coin-
cident data points.

The mean relative frequency histograms for τA, collocated
with GOCI and MODIS ocean AODs, have a mode of 0.11,
and those of ocean τG_V1QA3 and τMDT have modes of 0.14
and 0.16, respectively. However, ocean τG_V2 has a mode of
0.10, which is closer to that of τA than those of τG_V1QA3 and
τMDT. Although the mode of ocean τMDT is higher than that
of τA, the magnitude of the peak is similar. The histogram
distributions of ocean τG_V1QA3 and τG_V2 have lower mag-
nitude peaks and more gradual decreases with increasing
AOD compared to τA.

3.7 Validation of GOCI YAER V2 AE, FMF, and SSA

over ocean and land surfaces

The AE intercomparisons between AERONET and GOCI
YAER V2 over ocean and land surfaces are presented in
Fig. 5a and b. Only AERONET AOD > 0.3 values are in-
cluded because large errors exist in AE, due to surface re-
flectance errors when AOD is low. Note that the GOCI AE
is derived from the predefined values of the selected aerosol
model, not from the retrieved spectral AOD. Compared with
the V1 AE accuracy during the DRAGON-NE Asia 2012
campaign described by Choi et al. (2016; R = 0.678 over
both land and ocean surfaces), the V2 land and ocean AE
have lower linear correlations with AERONET (R = 0.505
and 0.459, respectively) from the 5-year validation. The
DRAGON-NE Asia 2012 campaign was conducted in spring
(March–May) when long-range transport of yellow dust from
the Gobi and Taklamakan deserts in Asia, which has low AE
with high AOD, is more frequent. Aerosol plumes with low
AE and high AOD can be retrieved with higher accuracy
compared with the generally low-AOD cases during other
seasons. Thus, AE shows stronger linear correlation in spring
(R of 0.63 over land and 0.57 over ocean) but is lower for
other seasons (R of 0.24 over land and 0.22 over ocean).
The highest frequency of points is close to the one-to-one
line, but there is a significant discrepancy when AERONET
AE is ∼ 1.3 but GOCI AE is ∼ 0.6, particularly over land.
This could be caused by varying surface reflectance errors
for each channel or perhaps by a local-minimum problem in-
duced from the LUT approach used for inverse modeling.

The FMF intercomparisons between AERONET inver-
sion data and GOCI YAER V2 are similar to those of AE, as
shown in Fig. 5c and d. This comparison also includes only
AERONET AOD > 0.3 data. AERONET inversion products
are retrieved from almucantar measurements, which are pos-
sible when the solar zenith angle is greater than 50◦ (Dubovik
and King, 2000); thus, the number of points used in the com-
parison are fewer than the AOD and AE from direct mea-
surements. The correlation coefficients of FMF over ocean
and land surfaces are similar to those of AE, as both param-
eters are determined primarily by aerosol size.

The SSA intercomparisons between AERONET and
GOCI YAER V2 have the lowest R (0.206 for land and
0.251 for ocean) among the products. The visible–NIR wave-
length range is more sensitive to aerosol size than absorp-
tivity. Thus, aerosol models are constructed more coarsely
for SSA than for FMF, and the inversion methods focus on
spectral matching of AOD at 550 nm, rather than on SSA-
optimized retrieval, such as the OMI aerosol retrieval algo-
rithm using ultraviolet radiation (Torres et al., 2013; Jeong
et al., 2016). Nevertheless, the ratio of GOCI V2 SSA to
AERONET SSA in a ±0.03 and ±0.05 range is 47.7 and
68.0 % for land and 69.7 and 88.3 % for ocean, respectively,
which is comparable to the OMI SSA presented by Jethva et
al. (2014).

In conclusion, GOCI YAER V2 AE, FMF, and SSA com-
pared with AERONET products are more biased and have
lower correlation coefficients than seen for AOD. This indi-
cates that the aerosol type selection is biased to coarse and
nonabsorbing aerosols. To improve the accuracy of these pa-
rameters, more accurate surface reflectance estimations and
improved inversion methods are required.

4 Error analysis of GOCI YAER V2 AOD

Retrieved AOD likely has both a systematic and random error
associated with various factors, including sun–earth–satellite
geometry, cloud contamination, surface type, and assumed
aerosol model, among others. An error analysis of satellite
AOD can help identify the most important contributors to er-
rors in these products. In this section, coincident GOCI and
AERONET AOD are analyzed to quantify systematic and
random errors. A systematic bias analysis is implemented for
the four GOCI products (i.e., the V1 land AOD with QA = 3,
V2 land AOD, V1 ocean AOD with QA = 3, and V2 ocean
AOD). In addition, pixel-level uncertainties in GOCI ver-
sion 2 land and ocean AOD are estimated.
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Figure 5. Comparison between AERONET and GOCI YAER V2 (a) land AE, (b) ocean AE, (c) land FMF, (d) ocean FMF, (e) land SSA, and
(f) ocean SSA. Note that collocated data are only for AERONET AOD > 0.3 for the AE and FMF comparisons, and AERONET AOD > 0.4
for the SSA comparison. Each colored pixel represents a bin size of 0.10 for AE, 0.05 for FMF, and 0.005 for SSA. Black dashed lines denote
the one-to-one line, and blue dotted lines in the SSA comparison denote the ±0.03 and ±0.05 ranges.

4.1 Systematic bias analysis

4.1.1 Bias as a function of AERONET AOD

As shown in Fig. 6a, V1 land AOD has a negative bias in
the low-AOD range because of an overestimation of sur-
face reflectance. After implementing climatological surface
reflectance over land, the V2 land-AOD shows less bias than
that of V1 and is close to 0 over the whole AOD range. This
results from the increased probability of finding observation
days with low aerosol loading using a 5-year dataset. The V2
ocean AOD shows a positive bias around 0.05–0.10 and high

positive bias of 0.1 when AERONET AOD is ∼ 0.3. The rea-
son for the positive bias in ocean AOD may be an underes-
timation of ocean surface reflectance when considering only
climatologically averaged wind speed and geometry, with-
out accounting for changes in surface properties including
bio-optical properties. Details of improvements to the ocean
AOD calculation are described later. The ranges of the 16th–
84th percentiles of both land and ocean AOD become wider
as AERONET AOD increases, and the shapes of the ranges
are asymmetrical.
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Figure 6. Difference between GOCI and AERONET AOD in terms
of (a) AERONET AOD, (b) AERONET AE, (c) scattering angle,
and (d) GOCI NDVI. Each point represents the 50th percentile of
1000 collocated data points sorted in ascending order for each x axis
value. The horizontal line through each point represents the range
of collocated data points.

4.1.2 Bias as a function of AERONET AE

The V2 ocean and land AOD biases are close to zero when
AERONET AE is within 1.3–1.6 and the accuracy of GOCI
AE is high (Fig. 6b). However, these biases increase in
the positive direction as AE deceases to 0.3 (large parti-
cles). Compared with the biases of V1, those of V2 are re-
duced for all AE ranges, but the pattern of difference in

AE remains. This could be due to errors in the assumed
aerosol optical properties of extremely large particles. As-
sumed aerosol models based on the global AERONET cli-
matological database are categorized according to FMF and
SSA, and the phase functions of nonspherical properties are
averaged to one value for each model. In reality, various non-
spherical shapes with the same FMF value may be present
and may result in higher error at low values of AERONET
AE. The differences may also be due to errors in aerosol type
selection during the inversion process, as suggested by the
decreased accuracy of low GOCI AE. Wavelength-dependent
errors in calibration or surface reflectance assumptions may
also contribute to the observed differences. Further investiga-
tion is required to quantify the relative contributions of these
errors.

4.1.3 Bias as a function of scattering angle

In Fig. 6c, the bias of ocean AOD changes from −0.05 to
0.10 as scattering angle increases from 110 to 175◦. The bias
in land AOD shows a similar trend, but with a range of vari-
ance from −0.05 to 0.05. As the scattering angle increases to
180◦, the atmospheric contribution to total TOA reflectance
decreases compared with that from the surface because of
the shorter light path length, which leads to an increase in
AOD retrieval error (Sayer et al., 2013). This larger error at
higher scattering angle is more distinct for ocean AOD than
land AOD because of the difference in surface reflectance.
The land algorithm performs characterization at each hour
for surface reflectance using the composite method to reflect
the BRDF effect. The ocean algorithm also considers geom-
etry and wind speed in calculating the BRDF effect. How-
ever, ocean bio-optical properties such as chlorophyll (Chl)
or color-dissolved organic matter (CDOM) are not consid-
ered in the current ocean surface reflectance calculation. This
may be the cause of the relatively large error in ocean AOD
compared with land AOD.

4.1.4 Bias as a function of NDVI

A bias analysis of land and ocean AOD relative to NDVI
is presented in Fig. 6d. The V2 land AOD has a bias close
to zero for NDVI > 0.4 (high vegetation), but has a positive
bias of up to 0.05 in the range 0.1 < NDVI < 0.4, which cor-
responds to less vegetated areas, such as semiarid and urban
regions. The method used to determine surface reflectance
from multi-year samples in the V2 algorithm is applied to all
pixels identically regardless of surface type, which can result
in a bias that varies with NDVI. The positive bias over urban
areas is similar to that of the MODIS Collection 6 DT AOD
(Munchak et al., 2013; Gupta et al., 2016). The positive bias
of V1 ocean AOD is generally lower using the V2 algorithm
because the 500–600 nm channels that are strongly affected
by ocean bio-optical property variance are not used in the V2
ocean algorithm. However, channels that are used in the V2
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Figure 7. Difference between GOCI and AERONET AOD in terms
of (a) GOCI cloud fraction within each aerosol product pixel
(6 km × 6 km), (b) the number of spatially collocated GOCI pix-
els within a 25 km distance from AERONET sites, and (c) the spa-
tial standard deviation of collocated GOCI AOD. The points, dotted
lines, and horizontal lines in (a, c) are as defined in Fig. 6.

algorithm can still be slightly affected by these bio-optical ef-
fects. Thus, positive biases persist for smaller negative NDVI
values, which correspond to less turbid ocean pixels where
ocean surface models that consider wind speed are utilized.

4.1.5 Bias as a function of cloud contamination

Despite applying several cloud-masking techniques, the re-
maining cloud-contaminated pixels may still result in high
positive biases in AOD. In this section, uncertainties due to
cloud contamination are analyzed in terms of (1) cloud frac-
tion at the aerosol product pixel resolution (6 km × 6 km),
(2) the number of GOCI aerosol pixels collocated with each
AERONET site, and (3) AOD spatial homogeneity.

First, the cloud fraction (CF) for one 6 km × 6 km aerosol-
product pixel can be calculated using the number of
0.5 km × 0.5 km L1B pixels that remain after all masking

steps. In the aggregation step from the original L1B resolu-
tion of 0.5 km × 0.5 km to Level 2 aerosol-product resolution
of 6 km × 6 km, the maximum number of remaining pixels
is 58 after performing all the individual masking processes
and discarding the darkest 20 % and brightest 40 % of pix-
els in a block of 12 pixels × 12 pixels (i.e., 144 pixels). The
minimum number is set as 29, which corresponds to 50 %
of the maximum value. If the number of remaining pixels is
less than 29, then AOPs of that pixel are not retrieved. Note
that pixels that are bright because of surface reflectance, not
clouds, may be counted as a high CF, but it is difficult to
completely distinguish these two cases at 500 m spatial res-
olution. In Fig. 7a, the bias of ocean AOD is close to zero
for a CF of 0.0, and increases to 0.1 as the CF increases to
0.5. The bias of land AOD is ∼ 0.05 when the CF is close to
zero, approaches to zero for 0.05 < CF < 0.25, and increases
up to 0.05 as the CF goes to 0.4. This positive bias under
high-CF conditions is similar to that of MODIS DT and DB
AOD (Hyer et al., 2011; Shi et al., 2013). However, the pos-
itive bias of land AOD at CF = 0, which is not observed for
MODIS DT and DB AOD, may be due to surface reflectance
underestimations over bright surface in GOCI.

Next, the bias due to cloud contamination is analyzed with
reference to the number of spatially collocated GOCI AOD
pixels of each scene (NC) for each AERONET site location
(Fig. 7b). Because the GOCI AODs within a 25 km radius
around each site are averaged if at least one pixel is available,
NC can indicate the existence of clouds near the AERONET
site over a broader domain. Note that the maximum NC of
ocean AOD pixels of 40 is less than that of land (56) be-
cause ocean AOD is generally collocated with AERONET
sites located on the coast. The bias of V2 land AOD is 0.1 for
NC = 1 and approaches zero as NC increases. The V1 land
AOD had a negative bias, primarily because of surface re-
flectance. Thus, the bias does not change with NC. The ocean
AOD bias is 0.05 for NC = 1 and decreases for higher NC, up
to 30. However, high positive biases exist for NC > 30, which
could be due to problems in characterizing ocean surface re-
flectance.

Finally, the SD of the spatially collocated AODs indicates
how spatially smooth the retrieved AODs are. In the GOCI
algorithm, aerosol optical properties for each pixel are re-
trieved independently regardless of the surrounding pixels,
which is similar to the approach used by the MODIS DT and
DB algorithms (Hsu et al., 2013; Levy et al., 2013). The SD
could increase if cloud-contaminated pixels are misclassified
as high-AOD pixels, despite the presence of relatively low
AOD in the surrounding pixels. Thus, the SD may be an in-
direct indicator of cloud contamination in this independent-
pixel retrieval method. In Fig. 7c, the bias increases posi-
tively up to ∼ 0.13 for ocean AOD and to ∼ 0.08 for land
AOD as the SD increases. The 16th–84th percentile range
also becomes wider (not shown). The V1 land AOD had neg-
ative biases of −0.1 for low SD and −0.05 for high SD and
was persistently affected by surface reflectance issues and/or
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cloud contamination. Note that some recent aerosol retrieval
algorithms have adopted a statistical spatial smoothness con-
straint for AOPs in the inversion procedure to improve accu-
racy (Dubovik et al., 2011; Xu et al., 2016).

In summary, the high cloud contamination in both each
product-pixel (6 km × 6 km) and neighboring pixel (within
25 km) domains results in high positive biases of up
to 0.1. However, an independent analysis of the cloud-
contamination-only effect is complicated by various factors
including surface reflectance errors, resulting in a high bias
under low cloud-contamination conditions.

4.1.6 Bias as a function of hour, month, and year

The GOCI AOD consists of eight hourly observations per
day from 09:30 to 16:30 KST (centered time of each mea-
surement), and the solar zenith and azimuth angle varies
over a much wider range than that of low earth orbit (LEO)
satellites. However, it requires more sophisticated treatments
for properties such as surface reflectance, the aerosol phase
function, and the calculation of Rayleigh scattering, which
may result in accuracies that vary with measurement time. In
Fig. 8a, the bias of land AOD decreases from about −0.1 for
V1 to almost zero for V2, with no noticeable hourly depen-
dence for V2. In contrast, the ocean AOD has a distinct di-
urnal bias shape, which is close to zero at 09:30, 15:30, and
16:30 KST and ∼ 0.1 at 12:30 KST. This is consistent with
the results of the bias analysis with reference to the scatter-
ing angle.

The bias of land AOD as a function of month remains near
zero (Fig. 8b). In contrast, that of ocean AOD increases up
to 0.1 in spring (April–May) and to ∼ 0.05 in late fall and
early winter (November–December), which can likely be at-
tributed to monthly variations in Chl concentration over East
Asia. The climatological Chl concentration reported by Ya-
mada et al. (2004) is highest during spring (1.2–2.7 µg L−1),
lower during late fall (0.8–1.2), and 0.2–0.4 µg L−1 during
other seasons. Thus, the change in monthly bias for ocean
AOD is likely affected by Chl concentrations in the current
GOCI ocean AOD algorithm. The positive biases of the V1
ocean AOD during spring and late fall were reduced using
V2 after changing the channel selection.

The V1 land AOD retrieved using monthly surface re-
flectance data for each year shows a constant negative bias
of about −0.05 from 2011 to 2015 (Fig. 8c). In contrast, the
V2 land AOD retrieved using monthly climatological surface
reflectance data from the 5-year dataset samples shows biases
that are smaller than those of V1 but with increased variation.
The increased variance for V2 could be due to a limitation
of the application of climatological data, which cannot re-
flect year-to-year changes in surface reflectance. The ocean
AOD shows less variation in bias compared with the V2 land
AOD, but it varies more than the V1 land AOD. This may
be attributable to interannual variations in ocean surface re-
flectance caused by ocean bio-optical properties.

Figure 8. Difference between GOCI and AERONET AOD in terms
of local observation time, month, and year. The points are as defined
in Fig. 7b.

4.2 Uncertainty estimation for GOCI YAER V2 AOD

The uncertainty (or “expected error”) of retrieved AOD is de-
fined as a 1 SD confidence interval corresponding to the 68th
percentile, and it is estimated from the long-term evaluation
of retrieved satellite AOD using ground-based AERONET
measurements. Each satellite-retrieved AOD has its own un-
certainty based on the methods used for surface reflectance
estimations, assumed aerosol models, etc. The expected er-
ror (EE) of retrieved AOD can be estimated as a function
of both AERONET AOD and retrieved satellite AOD. The
“diagnostic” expected error (DEE) is based on AERONET
AOD, which is more accurate than satellite AOD and is
thus more useful in quantitatively evaluating the algorithm,
though it is restricted to only the AERONET pixels. Alterna-
tively, the “prognostic” expected error (PEE), a function of
retrieved satellite AOD, can be calculated over all retrieved
pixels, making it more appropriate for certain applications,
such as data assimilation with air-quality forecasting models
(Sayer et al., 2013; Shi et al., 2013). A common characteristic
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Table 3. Expected errors of MODIS C6, VIIRS EDR, and GOCI over ocean and land. µ0 and µ are the cosine of solar zenith angle and
satellite zenith angle, respectively. τA and τS are AERONET and satellite AOD, respectively.

Algorithm Diagnostic expected error (DEE) Prognostic expected error (PEE) Reference

Ocean

MODIS DT Linear regression with bias
consideration:
−0.10τA − 0.02 (lower bound)
and 0.10τA + 0.04 (upper bound)

Levy et al. (2013)

VIIRS EDR Linear regression with bias
consideration:
−0.238τA + 0.01 (lower bound)
and 0.194τA + 0.048 (upper bound)

Linear regression:
±(0.250τS + 0.009)

Huang et al. (2016)

GOCI YAER V2 Linear regression:
±(0.185τA + 0.037)

Linear regression:
±(0.206τS + 0.030)

Unique regression per AOD
range: Table 4

This study

Land

MODIS DT Linear regression: ±(0.15τA + 0.05) Levy et al. (2010)
MODIS DB Linear regression: ±(0.20τA + 0.05) Linear regression with air mass

factor consideration:
±(0.56 + 0.086)/(1/µ0 + 1/µ)

Sayer et al. (2013)

VIIRS EDR Linear regression with bias
consideration:
−0.470τA − 0.01 (lower bound)
and −0.0058τA+0.09 (upper bound)

Linear regression:
±(0.34τS + 0.023)

Huang et al. (2016)

GOCI YAER V2 Linear regression:
±(0.137τA + 0.073)

Linear regression:
±(0.184τS + 0.061)

Unique regression per AOD
range: Table 4

This study

of EE is that it increases linearly with AOD. Thus, a linear
regression fit between the 68th percentile of absolute error
and the reference AOD (AERONET or satellite AOD) is de-
termined as EE. The 68th, 38th, and 95th percentile points
correspond to 1, 0.5, and 2 SD intervals, respectively, assum-
ing the error has a Gaussian distribution and no bias. Thus,
0.5 and 2 times the linear least square regression equation of
the 68th percentile should correspond to the 38th and 95th
percentiles, respectively. The EEs of MODIS, VIIRS, and
GOCI AOD based on this approach are summarized in Ta-
ble 3. Note that additional factors are considered in the EE
calculations for each algorithm, such as bias information in
MODIS DT over ocean surfaces and VIIRS EDR, and geo-
metrical air mass factors in MODIS DB (Levy et al., 2013;
Sayer et al., 2013; Huang et al., 2016).

To estimate DEE and PEE of the GOCI YAER V2 AOD
using a linear least-squares regression equation, the abso-
lute AOD difference between GOCI and AERONET is an-
alyzed for AERONET and GOCI AOD in Fig. 9. The lin-
ear DEE (0.185τA + 0.037) and PEE (0.206τG + 0.030) of
ocean AOD follow the 68th percentile points well (R = 0.968

and 0.971, respectively). Doubled values of DEE and PEE
for ocean AOD are well matched with the 95th percentile
points. Although the linear DEE (0.137τA +0.073) and PEE
(0.184τG + 0.061) of land AOD are well matched with the
68th percentile points (R = 0.969 and 0.937, respectively),
the PEE of land AOD includes discrepancies that vary over
the AOD range. Significant discrepancies exist between the
95th percentile points and doubled values of the PEE of land
AOD. Due to the existence of more complex error sources,
the EE of land AOD cannot be accurately characterized in
a linear relationship with AOD (Hyer et al., 2011). The es-
timated linear DEE and PEE of land AOD show similar or
lower slopes but higher offset compared with MODIS and
VIIRS, which is assumed to be due to higher surface re-
flectance bias in GOCI.

Instead, PEE values constructed for specific AOD ranges
(“multiple PEE”) are applied as in Fig. 10 and summarized
in Table 4. The “noise floor”, defined by Hyer et al. (2011), is
the minimum absolute error. A fifth-order polynomial regres-
sion fit is applied for GOCI AOD < 0.5 to reflect the curved
pattern, and a linear fit is applied when GOCI AOD > 0.7.

www.atmos-meas-tech.net/11/385/2018/ Atmos. Meas. Tech., 11, 385–408, 2018



402 M. Choi et al.: GOCI Yonsei aerosol retrieval version 2 products

Figure 9. Absolute difference between GOCI YAER V2 AOD and AERONET AOD in terms of (a) AERONET ocean AOD, (b) AERONET
land AOD, (c) GOCI YAER V2 ocean AOD, and (d) GOCI YAER V2 land AOD. The diamond, triangle, and square symbols represent the
38th, 68th, and 95th percentiles of 200 collocated data points sorted in ascending order of x axis value. In (a–d), the red line in each panel is
the linear least-squares fit of the 68th percentiles, and the blue and green lines are half and double the red line values, respectively.

Table 4. Prognostic expected error (PEE) estimation of GOCI YAER V2 AOD according to the AOD range. The minimum PEE is labeled
“noise floor”.

GOCI AOD range Ocean algorithm Land algorithm

“Noise floor” 0.044 0.048
−0.05 ≤ τG < 0.50 0.07 − 0.58τG + 4.12τ2

G8.81τ3
G + 7.39τ4

G1.50τ5
G 0.11 − 1.15τG + 8.87τ2

G25.05τ3
G + 34.83τ4

G18.93τ5
G

τG ≥ 0.70 0.00 + 0.25τG 0.13 + 0.12τG
0.50 ≤ τG < 0.70 Highest between two fitting equations Highest between two fitting equations

The higher of these two computed values is applied when
GOCI AOD is between 0.5 and 0.7. Both multiple PEEs show
higher EE values near GOCI AOD of 0.1 (over ocean and
land) and 0.6 (over land) compared with the linear PEEs, and
thus they better match observations near the 68th percentile.

The ratio of actual error to linear and multiple PEE follows
the theoretical Gaussian distribution with a mean of zero and
variance of 1 (N(0,1)) as shown in Fig. 11, which is simi-
lar to the results obtained for MODIS DB AOD (Sayer et al.,
2013). Because the PEE of ocean AOD has a strong linear re-
lation with GOCI AOD, there are fewer differences between
linear and multiple PEE. However, the PEE of land AOD has
a significantly different relationship with AOD, leading to
differences in the distributions of linear and multiple PEE.
Although the ratio between N (0,1) = −1 and N (0,1) = +1
(0.683) is closer to that of linear PEE for land AOD (0.680)
than to the corresponding multiple PEE (0.669), the peak of
N (0,1) is closer to that of multiple PEE than linear PEE. In
addition, all linear and multiple PEEs of ocean and land AOD
have slight positive biases compared with N (0,1). Notwith-

standing, the obtained PEEs of GOCI YAER V2 AOD, par-
ticularly multiple PEE for land AOD, generally represent ac-
tual errors well.

4.3 Regional performance

The obtained GOCI DEE and (multiple) PEE can be used for
AOD validation for each site along with other statistical eval-
uation metrics presented earlier. The validation results for
all sites have been analyzed individually to compile the re-
sults shown for each site, including the fraction of data points
within DEE and (multiple) PEE. Spatial distributions of sta-
tistical evaluation metrics are presented in Figs. 12 and 13
for land and ocean AOD, respectively.

The average of collocated AERONET AOD is highest
in China, including the Beijing (0.69 and 0.48 with GOCI
V1 and V2, respectively) and Taihu (0.70) sites. The South
Korean sites show higher annual average AERONET AOD
(0.33–0.50) than Japanese sites (0.17–0.30). For land AOD
among the 27 land AERONET sites, 21 sites show improve-
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Figure 10. Absolute difference between GOCI YAER V2 AOD and AERONET AOD in terms of (a) GOCI YAER V2 ocean AOD and
(b) GOCI YAER V2 land AOD. The triangle symbols represent the 68th percentiles of 200 collocated data points sorted in ascending order
of x axis value.

Figure 11. Comparison of observed (a) ocean and (b) land AOD error distributions with theoretical Gaussian distributions for the linear PEE
(red) and multiple PEE (blue).

ment in V2 according to the statistical evaluation metrics and
6 sites have decreased accuracy in V2 compared with V1. In
addition, the GOCI V2 land AOD shows less bias and has a
higher fraction of data points within DEE and PEE over the
Korean Peninsula compared with the Chinese and Japanese
sites. The sites with the worst accuracy in V2 land AOD have
a positively increased median bias. The reason for this de-
crease in accuracy of some of the sites in V2 compared with
V1 is likely the way that the surface reflectance database is
constructed. Surface reflectance at the lower accuracy sites in
V2, such as at Chiba University, Kobe, Xinglong, and Osaka,
is brighter (urban surfaces) than at other sites, and the current
identification threshold of the darkest 1–3 % of observations,
without considering surface type, results in climatologically
derived values for reflectance that are too dark at bright (ur-
banized) surface sites. Tilstra et al. (2017) suggested that se-
lecting the mode of the RCR histogram improves the charac-
terization of surface reflectance of bright surfaces compared
with selecting the minimum values of the RCR. Choosing
different thresholds for various surface types may improve
the accuracy of retrievals over sites that have high surface
reflectance.

For ocean AOD, 14 sites show improvement in V2 and 3
sites have lower accuracy in V2 than V1 among the 17 coastal
AERONET sites. In contrast to the increased median bias in
land AOD, ocean AOD shows decreased median bias from
V1 to V2. However, the lower accuracy sites do not differ
significantly between V1 and V2 compared with land AOD.
The fraction of data points within DEE and PEE for V1 ocean
AOD at the Japan sites is higher than at the South Korean
sites, but becomes similar in V2. The obtained DEE of V2
ocean AOD (94 %) is higher than the theoretical 1σ fraction
(68 %). However, the PEE of V2 ocean AOD is 66 %, similar
to the theoretical value. Thus, the obtained PEE can represent
the error of GOCI AOD better than DEE.

5 Summary and outlook

Aerosol retrieval using GOCI is unique because of hourly
monitoring of aerosols with multi-channel measurements in
the visible to near-infrared range with high spatial resolu-
tion, over East Asia where aerosol emissions are very high,
despite its limitation in observation area coverage. Hourly
GOCI AOD retrievals with high accuracy, NRT availability,
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Figure 12. Spatial distribution of statistical evaluation metrics for GOCI YAER V1 QA3 land AOD (first and third columns) and V2 land
AOD (second and fourth columns). Left panels show mean AERONET AOD, correlation coefficient, and RMSE from top to bottom. Right
panels show median bias, fraction within DEE, and fraction within multiple PEE from top to bottom.

and quantitatively analyzed uncertainties are highly suitable
for use with air-quality monitoring and data assimilation in
air-quality forecasting models, particularly when rapid diur-
nal variations and transboundary transport are significant.

The objective of this study is the development of an im-
proved GOCI YAER algorithm (V2) for NRT processing
with higher accuracy. Cloud-masking procedures were re-
vised to prevent false masking of low-AOD pixels over bright
surfaces that was present in the previous version by adopt-
ing recent MODIS and VIIRS cloud-masking methodology
and improving existing V1 methodologies. To reduce the re-
maining cloud and aerosol contamination effects in the sur-
face reflectance database, the period of RCR samples is ex-
panded from a 1-year to a 5-year period, to increase the prob-
ability of finding cloudless low-AOD cases that improve the
accuracy of the climatological surface reflectance database.
In addition, the surface wind speed data are constructed as
a climatological database for NRT retrieval without import-
ing numerical weather forecast products. The GOCI spectral
channel selection is revised to account for specific surface
conditions: dark ocean, turbid water, and land surface. In par-

ticular, the channels from 500 to 700 nm, which are signifi-
cantly affected by ocean bio-optical variations, are excluded
from ocean AOD retrievals. As a result, the area of success-
ful AOD retrieval and masking in the GOCI YAER V2 algo-
rithm and the retrieved AOD values approach the results of
MODIS and VIIRS AOD qualitatively, compared to that of
GOCI YAER V1.

To confirm the improvements to GOCI AOD accuracy in
V2, the retrieved GOCI AOD and MODIS AOD are com-
pared with ground-based East Asia AERONET and China
SONET measurements of AOD for 5 years from 1 March
2011 to 29 February 2016. The GOCI YAER land AOD
shows a significant improvement from V1 to V2 with re-
duced bias from about −0.07 to 0.01 and increased f within
EEMDT from 49 to 60 %. The comparison with SONET AOD
also shows improved results with reduced bias from about
−0.10 to −0.02 and increased f within EEMDT from 42 to
51 %. The GOCI YAER ocean AOD also shows reduced bias
from about 0.04 to 0.01 and increased f within EEMDT from
62 to 71 %. As a result, the quality of both the GOCI YAER
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Figure 13. As for Fig. 12, except for GOCI ocean AOD.

V2 ocean and land AOD is more comparable to that of the
MODIS DT and DB AOD products over East Asia.

Although retrieved GOCI YAER V2 AOD shows some
bias with respect to AERONET AOD and AE, scattering
angle, NDVI, cloud fraction and homogeneity of retrieved
AOD, and observation time, month, and year, it never ex-
ceeds an absolute value of ∼ 0.1 for most variables. Account-
ing for the observed increase in error with AOD, the intrinsic
expected error of GOCI YAER V2 AOD was estimated using
AERONET data. The linear DEE and PEE (0.185τA +0.037
and 0.206τG +0.030, respectively) for ocean AOD represent
the actual error well over the entire AOD range. The linear
DEE of land AOD (0.137τA + 0.073) also represents the ac-
tual error well. However, the actual error does not increase
linearly with GOCI land AOD; thus, the linear PEE of land
AOD (0.184τG + 0.061) shows variations over the AOD. In-
stead, the use of multiple PEE, which consists of PEE values
for specific GOCI AOD ranges, improves the representation
of the actual error.

Despite the algorithm improvements presented in this
study, there is still potential for future improvements. The
current version of the LUT was calculated using a scalar ra-

diative transfer calculation, which is less accurate for cal-
culating Rayleigh scattering for short visible wavelengths
(∼ 400 nm), and using a plane-parallel atmosphere approx-
imation that is less accurate at high solar/sensor zenith angle.
Vector radiative transfer calculations (i.e., consideration of
polarization) and spherical-shell atmosphere approximations
can calculate Rayleigh scattering at high accuracy and may
improve the accuracy of the GOCI YAER algorithm. Also,
recent statistically optimized aerosol retrieval algorithms uti-
lizing the characteristics of spatial and temporal smoothness
constraints for aerosols result in improved accuracy by in-
creasing the aerosol signal (Dubovik et al., 2011; Xu et al.,
2016). They also enable the simultaneous retrieval of mul-
tiple geophysical variables, such as aerosol and surface re-
flectance over land and aerosol and chlorophyll concentra-
tions over the ocean, which can reduce the remaining error
due to the predefined surface reflectance over ocean and land
surfaces in the GOCI YAER algorithm.

The second-generation GOCI (GOCI-II), scheduled to
launch in 2019, which has higher spatial resolution
(∼ 250 m), more channels, including 380 nm, and daily full-
disk coverage, will further improve the accuracy of AOP re-
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trieval. Furthermore, GOCI-II will observe East Asia simul-
taneously with the Geostationary Environmental Monitoring
Spectrometer (GEMS) for trace gases (i.e., ozone, nitrogen
dioxide, formaldehyde, and sulfur dioxide) and the AMI for
meteorological parameters (i.e., cloud properties). Therefore,
multi-sensor synergies contributing to a comprehensive un-
derstanding of aerosols and trace gases, cloud, and ocean col-
ors are expected.
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from https://aeronet.gsfc.nasa.gov (GSFC, 2018). The SONET data
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