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Abstract

The feature correlation layer serves as a key neural network module in numerous
computer vision problems that involve dense correspondences between image pairs.
It predicts a correspondence volume by evaluating dense scalar products between
feature vectors extracted from pairs of locations in two images. However, this
point-to-point feature comparison is insufficient when disambiguating multiple
similar regions in an image, severely affecting the performance of the end task. We
propose GOCor, a fully differentiable dense matching module, acting as a direct
replacement to the feature correlation layer. The correspondence volume generated
by our module is the result of an internal optimization procedure that explicitly
accounts for similar regions in the scene. Moreover, our approach is capable of
effectively learning spatial matching priors to resolve further matching ambigu-
ities. We analyze our GOCor module in extensive ablative experiments. When
integrated into state-of-the-art networks, our approach significantly outperforms
the feature correlation layer for the tasks of geometric matching, optical flow, and
dense semantic matching. The code and trained models will be made available at
github.com/PruneTruong/GOCor.

1 Introduction

Finding pixel-wise correspondences between pairs of images is a fundamental problem in many
computer vision domains, including optical flow [14, 19, 21, 28, 51, 52, 55], geometric matching [13,
37, 41, 42, 55], and disparity estimation [11, 33, 40, 61]. Most recent state-of-the-art approaches rely
on feature correlation layers, evaluating dense pair-wise similarities between deep representations
of two images. The resulting four-dimensional correspondence volume captures dense matching
confidences between every pair of image locations. It serves as a powerful cue in the prediction of, for
instance, optical flow. This encapsulation of dense correspondences has further achieved wide success
within semantic matching [9, 12, 18, 23, 25, 26, 27, 43, 55], video object segmentation [10, 17, 39, 57],
and few-shot segmentation [36, 58]. The feature correlation layer thus serves as a key building block
when designing network architectures for a diverse range of important computer vision applications.

In the feature correlation layer, each confidence value in the correspondence volume is obtained as
the scalar product between two feature vectors, extracted from specific locations in the two images,
here called the reference and the query images. However, the sole reliance on point-to-point feature
comparisons is often insufficient in order to disambiguate multiple similar regions in an image.
As illustrated in Fig. 1, in the case of repetitive patterns, the feature correlation layer generates
undistinctive and inaccurate matching confidences (Fig. 1d), severely affecting the performance of the
end task. This remains the key limitation of feature correlation layers, since repetitive patterns, low-
textured regions, and co-occurring similar objects are all pervasive in computer vision applications.

We design a new dense matching module, aiming to address the aforementioned issues by exploring
information not exploited by the feature correlation layer. We observe that a confidence value in
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Figure 1: Visualization of the matching confidences (c)-(e) computed between the indicated location
(green) in the reference image (a) and all locations of the query image (b). The feature correlation (d)
generates undistinctive and inaccurate confidences due to similar regions and repetitive patterns. In
contrast, our GOCor (e) predicts a distinct high-confidence value at the correct location.

the correspondence volume generated by the feature correlation layer only depends on the feature
vectors extracted at one pair of locations in the reference and query. However, the reference also
contains the appearance information of other image locations, that are likely to occur in the query
image. This includes the appearance of similar regions in the scene, opening the opportunity to
actively identify and account for such similarities when estimating each matching confidence value.
Moreover, the feature correlation layer ignores prior knowledge and constraints that can be derived
from the query, e.g. the uniqueness and spatial smoothness of correspondences. Our matching module
encapsulates the aforementioned information and constraints into a learnable objective function. Our
enhanced correspondence volume is obtained by minimizing this objective during the forward-pass
of the network. This allows us to predict globally optimised correspondence volumes, effectively
accounting for similar image regions and matching constraints, as visualized in Fig. 1e.

Contributions: We introduce GOCor, a differentiable neural network module that generates the
correspondence volume between a pair of images, acting as a direct replacement to the feature
correlation layer. Our main contributions are as follows. (i) Our module is formulated as an internal
optimization procedure that minimizes a customizable matching-objective during inference, thereby
providing a general framework for effectively integrating both explicit and learnable matching
constraints. (ii) We propose a robust objective that integrates information about similar regions
in the scene, allowing our GOCor module to better disambiguate such cases. (iii) We introduce a
learnable objective for capturing constraints and prior information about the query frame. (iv) We
apply effective unrolled optimization, paired with accurate initialization, ensuring efficient end-to-
end training and inference. (v) We perform extensive experiments on the geometric matching and
optical flow tasks by integrating our module into state-of-the-art network architectures. Our approach
outperforms the feature correlation layer in terms of both accuracy and robustness. In particular, our
GOCor module demonstrates better domain generalization properties.

2 Related work

Enhancing the correlation volume: Since the quality of the correspondence volume is of prime
importance, several works focus on improving it using learned post-processing techniques [29, 31,
43, 60]. Notably, Rocco et al. [43] proposed a trainable neighborhood consensus network, NC-
Net, applied after the correlation layer to filter out ambiguous matches. Instead, we propose a
fundamentally different approach, operating directly on the underlying feature maps, before the
correlation operation. Our work is also related to [24, 44], which generate filters dynamically
conditioned on an input [24] or features updated with an attentional graph neural network, whose
edges are defined within the same or the other image of a pair [44]. Xiao et al. [59] also recently
introduced a learnable cost volume that adapts the features to an elliptical inner product space.

Optimization-based meta-learning: Our approach is related to optimization-based meta-learning
[4, 5, 6, 30, 56, 62]. In fact, our GOCor module can be seen as an internal learner, which solves
the regression problem defined by our objective. In particular, we adopt the steepest descent based
optimization strategy shown effective in [5, 6]. From a meta-learning viewpoint, our approach
however offers a few interesting additions to the standard setting. Unlike for instance, in few-shot
classification [4, 30, 62] and tracking [5, 56], our learner constitutes an internal network module of a
larger architecture. This implies that the output of the learner does not correspond to the final network
output, and therefore does not receive direct supervision during (meta-)training. Lastly, our learner
module actively utilizes the query sample through the introduced trainable objective function.

2



3 Method

3.1 Feature Correlation Layers

The feature correlation layer has become a key building block in the design of neural network
architectures for a variety of computer vision tasks, which either rely on or benefit from the estimation
of dense correspondences between two images. To this end, the feature correlation layer computes a
dense set of scalar products between localized deep feature vectors extracted from the two images,
in the form of a four-dimensional correspondence volume. We consider two deep feature maps
fr = φ(Ir) and fq = φ(Iq) extracted by a deep CNN φ from the reference image Ir and the
query image Iq, respectively. The feature maps fr, fq ∈ R

H×W×D have a spatial size of H ×W
and dimensionality D. We let fr

ij ∈ R
D denote the feature vector at a spatial location (i, j). The

feature correlation layer evaluates scalar products (fr
ij)

Tf
q
kl between the reference and query image

representations. There are two common variants of the correlation layer, both relying on the same
local scalar product operation, but with some important differences. We define these operations next.

The Global correlation layer evaluates the pairwise similarities between all locations in the reference
and query feature maps. This is defined as the operation,

CG(f
r, fq)ijkl = (fr

ij)
Tf

q
kl , (i, j), (k, l) ∈ {1, . . . , H} × {1, . . . ,W} . (1)

The result is thus a 4D tensor CG(f
r, fq) ∈ R

H×W×H×W capturing the similarities between all
pairs of spatial locations. In the Local correlation layer, the scalar products involving fr

ij are instead

only evaluated in a neighborhood of the location (i, j) in the query feature map fq ,

CL(f
r, fq)ijkl = (fr

ij)
Tf

q
i+k,j+l , (i, j) ∈ {1, . . . , H}×{1, . . . ,W}, (k, l) ∈ {−R, . . . , R}2. (2)

(k, l) represents the displacement relative to the reference frame location (i, j), constrained to a value
within the search radius R. While the limited search region R makes the local correlation practical
even for feature maps of a large spatial size H ×W , it does not capture similarities beyond R.

3.2 Motivation

The main purpose of feature correlation layers is to predict a dense set of matching confidences
between the two images Ir and Iq. This is performed in (1)-(2) by applying each reference frame
feature vector fr

ij to a region in the query fq . However, this operation ignores two important sources
of valuable information when establishing dense correspondences.

Reference frame information : The matching confidences C(fr, fq)ij.. ∈ R
H×W (in 1-2) for the

reference image location (i, j) does not account for the appearance at other locations of the reference
image. Instead, it only depends on the feature vector fr

ij at the location itself. This is particularly
problematic when the reference frame contains multiple locations with similar appearance, such as
repetitive patterns or homogeneous regions (see Fig. 1). These regions are also very likely to occur
in the query feature map fq, since it usually depicts the same scene at a later time instance or from
a different viewpoint. This easily results in high correlation values at multiple incorrect locations,
often severely affecting the accuracy and robustness of the final network prediction. Unfortunately,
patterns of similar appearance are almost ubiquitous in natural scenes. Therefore, the estimation of
matching confidences should ideally exploit the known similarities in the reference image itself.

Query frame information : The second source of information not exploited by the feature cor-
relation layer is matching constraints and priors that can be derived from the query fq. One such
important constraint is that each reference image location fr

ij can have at most one matching location

f
q
kl in the query image. Moreover, dense matches across the image pair generally follow spatial

smoothness properties, due to the spatio-temporal continuity of the underlying 3D scene. This can
serve as a powerful prior when predicting the correspondence volume between the image pair.

Next, we set out to develop a dense matching module capable of effectively utilizing the aforemen-
tioned information when predicting the correspondence volume relating Ir and Iq .

3.3 General Formulation

In this section, we formulate GOCor, an end-to-end differentiable neural network module capable
of generating more accurate correspondence volumes than feature correlation layers. We start by
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(a) Feature correlation layer (b) GOCor feature correlation (Ours)

Figure 2: Schematic overview of the the feature correlation layer (a) and our GOCor module (b).

replacing the reference feature map fr in (1)-(2) with a general tensor w∗ of the same size, which we
refer to as the filter map. Instead of correlating the reference features fr with the query fq , we aim
to first predict the filter map w∗, enriched with the global information about the reference fr and
query fq described in the previous section. The filter map w∗ is then applied to the query features
fq to obtain the final correspondence volume as C(w∗, fq). We use C to denote either global (1) or
local (2) correlation. We thus embrace the correlation operation (1)-(2) itself, and aim to enhance its
output by enriching its input.

The remaining part of our method description is dedicated to the key question raised by the above
generalization, namely how to achieve a suitable filter map w∗. In general, we can consider it to
be the result of a differentiable function w∗ = Pθ(f

r, fq), which takes the reference and query
features as input and has a set of trainable parameters θ. For example, simply letting Pθ(f

r, fq) = fr

retrieves the original feature correlation layer C(fr, fq). However, designing a neural network
module w∗ = Pθ(f

r, fq) that effectively takes advantage of the information and constraints discussed
in Sec. 3.2 is challenging. Moreover, we require our module to robustly generalize to new domains,
having image content and motion patterns not seen during training.

We tackle these challenges by formulating an objective function L, that explicitly encodes the
constraints discussed in Sec. 3.2. The network module Pθ(f

r, fq) is then constructed to output the
filter map w∗ that minimizes this objective,

w∗ = Pθ(f
r, fq) = argmin

w
L(w; fr, fq, θ) . (3)

This formulation allows us to construct the filter predictor module Pθ by designing an objective
L along with a suitable optimization algorithm. It gives us a powerful framework to explicitly
integrate the constraints discussed in Sec. 3.2, while also benefiting from significant interpretability.
In the next sections, we formulate our objective function L. We first integrate information about the
reference features fr into the objective (3) in Sec. 3.4. In Sec. 3.5, we then extend the objective L
with information about the query fq. Lastly, we discuss the optimization procedure applied to our
objective in Sec. 3.6. An overview of our general matching module is illustrated in Figure 2.

3.4 Reference Frame Objective

𝑓	"#
$𝓌"#

𝑓	%&
$

𝑓	
$𝓌

Figure 3: Visualization of the filter map
w and reference feature map fr.

Here, we introduce a flexible objective that exploits global
information about the reference features fr, as discussed
in Sec. 3.2. For convenience, we follow the convention for
global correlation (1) by letting subscripts denote absolute
spatial locations. When establishing matching confidences
for a reference frame location (i, j), the feature correlation
layer C(fr, fq) only utilizes the encoded appearance fr

ij

at the location (i, j). However, the reference feature map
fr also contains the encoding fr

kl of other image regions (k, l), which are likely to also occur in
the query fq. To exploit this information, we therefore first replace the reference feature map fr

with our filter map w. The aim is then to find w which enforces high confidences C(w, fr)ijij =
wT

ijf
r
ij ≈ 1 at the corresponding reference location (i, j), while ensuring low matching confidences

C(w, fr)ijkl = wT
ijf

r
kl ≈ 0 for other locations (k, l) 6= (i, j) in the reference map fr. These

constraints aim at designing wij , that explicitly suppresses the corresponding matching confidences
in regions fr

kl that have similar appearance as fr
ij , since these regions may also occur in fq .

As a first attempt, the aforementioned reference-frame constraints could be realized by minimizing
the quadratic objective ‖C(w, fr)− δ‖2. Here, δ represents the desired correlation response, which
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in case of global correlation (1) is δijkl = 1 whenever (i, j) = (k, l) and δijkl = 0 otherwise.
The quadratic objective is attractive since it can be tackled with particularly effective optimization
methods. On the other hand, the simple quadratic objective is known for its sensitivity to outliers.
In our setting, the objective should in fact be largely indifferent to cases when a non-matching pair
generates a strong negative correlation output wT

ijf
r
kl ≪ 0. This stems from the fact that any zero or

negative confidence is enough to indicate a non-match. However, such strong negative predictions
receive a disproportionately large impact in the quadratic objective, instead compromising the quality
of the correspondence volume in challenging regions with similar appearance. This issue is further
amplified by the severe imbalance between examples of matches and non-matches in the objective.

To address these issues, we formulate a robust non-linear least squares objective. For a non-matching
location pair (δijkl = 0), a positive correlation output C(w, fr)ijkl > 0 corresponds to a similar
appearance that should be suppressed, while negative correlation output C(w, fr)ijkl < 0 is of
little importance. We account for this asymmetry by introducing separate penalization weights v+

ijkl

and v−

ijkl for positive and negative correlation outputs, respectively. The confidence values are thus

mapped by the scalar function σ defined as,

σ(c; v+, v−) =

{

v+c , c ≥ 0

v−c , c < 0
, (4a)

ση(c; v
+, v−) =

v+− v−

2

(

√

c2 + η2 − η
)

+
v++ v−

2
c . (4b)

We have also defined a smooth approximation ση, which for η > 0 avoids the discontinuity in the
derivative of σ at C(w, fr) = 0. The original function σ = σ0 is retrieved by setting η = 0.

By applying the function (4), the confidence values C(w, fr) can be re-weighted using appropriate
values for the weights v+ and v−. To address the question of how to set v+ and v− in practice,
recall that our objective defines a neural network module through the optimization (3). This opens
an interesting opportunity of learning v+ and v− as parameters of the neural network. These can
thus be trained along with all other parameters of the network for the end task. Specifically, we
parametrize the weights as functions v+

ijkl = v+

θ (dijkl) and v−

ijkl = v−

θ (dijkl) of the distance

dijkl =
√

(i− k)2 + (j − l)2 between wij and the example fr
kl. This strategy allows the network

to learn the transition between the correct match dijij = 0 and the distant dijkl ≫ 0 examples of
non-matching features fr

kl. Our robust and learnable objective function for integrating reference
frame information is thus formulated as,

Lr(w; f
r, θ) =

∥

∥ση

(

C(w, fr); v+, v−

)

− y
∥

∥

2
. (5)

Here we have additionally replaced the ideal correlation δ with a learnable target confidence yijkl =
yθ(dijkl), to add further flexibility. We parametrize v+

θ , v−

θ , and yθ using the strategy introduced
in [5], as piece-wise linear functions of the distance dijkl, further detailed in the appendix, Sec. C.

3.5 Query Frame Objective

In the previous section, we formulated an approach that integrates the reference feature map fr

into the objective (3). However, as discussed in Sec. 3.2, there is also rich information to gain
from the query frame. Firstly, correspondences between a pair of images must adhere to certain
constraints, mainly that each point in the reference image can have at most a single match in the
query image. Secondly, neighboring matches follow spatial smoothness priors, largely induced by the
spatio-temporal continuity of the underlying 3D-scene. We encapsulate such constraints by defining
a regularizing objective on the query frame,

Lq(w; f
q, θ) = ‖Rθ ∗C(w, fq)‖

2
. (6)

Here, ∗ denotes the convolution operator and Rθ ∈ R
K4

×Q is a learnable 4D-kernel of spatial size K
and Q number of output channels. A 4D-convolution operator allows us to fully utilize the structure
of the 4D correspondence volume. Furthermore, its use is motivated by the translation invariance
property induced by the 2D translation invariance of the two input feature maps. Rθ is learnt, along
with all other network parameters, by the SGD-based minimization of the final network training loss.

The use of smoothness priors has a long and successful tradition in classic variational formulations for
optical flow, developed during the pre-deep learning era [2, 7, 16, 35]. We therefore take inspiration
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from these ideas. However, our approach offers several interesting conceptual differences. First, our
regularization operates directly on the matching confidences generated by the correlation operation,
rather than the flow vectors. The correspondence volume provides a much richer description by
encapsulating uncertainties in the correspondence assignment. Second, our objective is a function
of the underlying filter map w, which is the input to the correlation layer. Third, our objective is
implicitly minimized inside a deep neural network. Finally, this further allows our regularizer Rθ

to be learned in a fully end-to-end and data-driven manner. In contrast, classical methods rely on
hand-crafted regularizers and priors. By integrating information from a local 4D-neighborhood, the
operator Rθ in (6) can enforce spatial smoothness by, for instance, learning differential operators.
Moreover, our formulation lets the network learn the weighting of the query term (6) in relation to
the reference frame objective (5), eliminating the need for such hyper-parameter tuning.

3.6 Filter map prediction module P

Our objective, employed in (3), is obtained by combining the reference (5) and query (6) terms as,

L(w; fr, fq, θ) = Lr(w; f
r, θ) + Lq(w; f

q, θ) + ‖λθw‖
2 . (7)

The last term corresponds to a regularizing prior on w, weighted by the learnable scalar λθ ∈ R. Note
that while the reference frame objective Lr in (5) can be decomposed into independent terms for each
location wij , the query term Lq (6) introduces dependencies between all elements in w. Efficiently
optimizing such a high-dimensional problem during the forward pass of the network in order to
implement (3) may seem an impossibility. Next, we demonstrate that this can, in fact, be achieved by
a combination of accurate initialization and a simple but powerful iterative procedure. Any neural
network architecture employing feature correlation layers can thereby benefit from our module.

Optimizer: While finding the global optima of (7) within a small tolerance is costly, this is not
necessary in our case. Instead, we can effectively utilize the information encoded in the objective (7)
by optimizing it to a sufficient degree. We therefore derive the filter map w∗ = Pθ(f

r, fq) by
applying an iterative optimization strategy. Specifically, we use the Steepest Descent algorithm,
which was found effective in [5]. Given the current iterate wn, the steepest descent method [38, 49]
finds the step-length αn that minimizes the objective in the gradient direction. This is obtained
through a simple closed-form expression by first performing a Gauss-Newton approximation of (5).
The filter map is then updated by taking a gradient step with optimal length αn,

wn+1 = wn − αn∇L (wn; fr, fq, θ) , αn = argmin
α

Ln
GN

(

wn − α∇L(wn; fr, fq, θ)
)

. (8)

Here, Ln
GN is the Gauss-Newton approximation of (7) at wn. Both the gradient ∇L and the step length

αn are implemented using their closed form expressions with standard neural network modules, as
detailed in the appendix Sec. A. Importantly, the operation (8) is fully differentiable w.r.t. fr, fq , and
θ, allowing end-to-end training of all underlying network parameters.

Initializer: To reduce the number of optimization iterations needed in the filter predictor network
P , we generate an initial filter map w0 using an efficient and learnable module. We parametrize
w0

ij = aijf
r
ij + bij f̄r, where f̄r ∈ R

d is the spatial average reference vector, encoding contextual

information. Intuitively, we wish w0 to have a high activation (w0
ij)

Tfr
ij = 1 at the matching position

and (w0
ij)

Tf̄r = 0. The scalar coefficients aij and bij are then easily found by solving these equations.
Details are given in the appendix Sec. B.

4 Experiments

We perform comprehensive experiments for two tasks: geometric correspondences and optical flow.
We additionally show that our method can be successfully applied to the task of semantic matching.
Both global and local correlation-based versions of our GOCor module are analyzed by integrating
them into two recent state-of-the-art networks. Further results, analysis, and visualizations along with
more details regarding architectures and datasets are provided in the appendix.

4.1 Geometric matching

We first evaluate our GOCor module for dense geometric matching by integrating it into the recent
GLU-Net [55]. GLU-Net is a 4-level pyramidal network, operating at two image resolutions to
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Figure 4: Results on geometric matching dataset ETH3D [47]. AEPE (left), PCK-1 (center), and
PCK-5 (right) are plotted w.r.t. the inter-frame interval length.

estimate dense flow fields. It relies on a global correlation at the coarsest level to capture long-range
displacements and uses local correlations in the subsequent levels.

Experimental setup: We create GLU-Net-GOCor by replacing global and local feature correlation
layers with our global and local GOCor modules, respectively. The global GOCor module employs
the full objective (7), while the local variant uses only the reference term (5). We use three steepest
descent iterations during training and increase the number during inference. We follow the same self-
supervised training procedure and data as in [55], applying synthetic homography transformations to
images compiled from different sources to ensure diversity. We refer to this as the Static dataset, since
it simulates a static scene. For better compatibility with real 3D scenes and moving objects, we further
introduce a Dynamic training dataset, by augmenting the Static data with random independently
moving objects from the COCO [34] dataset. In all experiments, we compare the results of GLU-Net
and GLU-Net-GOCor trained with the same data, and according to the same procedure.

Evaluation datasets and metrics: We first employ the 59 sequences of the HPatches dataset [3],
consisting of planar scenes from different viewpoints. We additionally utilize the multi-view ETH3D
dataset [47], depicting indoor and outdoor scenes captured from a moving hand-held camera. We
follow the protocol of [55], sampling image pairs at different intervals to analyze varying magnitude
of geometric transformations. Finally, because of the difficulty to obtain dense annotations on real
imagery with extreme viewpoint and varying imaging condition, we also evaluate our model on sparse
correspondences available on the MegaDepth [32] dataset, according to the protocol introduced
in [48]. We use the Static training data for the comparison on the HPatches dataset and the Dynamic
training data for the ETH3D and MegaDepth datasets. In line with previous works [37, 55], we
employ the Average End-Point Error (AEPE) and Percentage of Correct Keypoints at a given pixel
threshold T (PCK-T ) as the evaluation metrics.

Table 1: HPatches homography dataset [3].
AEPE ↓ PCK-1 (%) ↑ PCK-5 (%) ↑

DGC-Net [37] 33.26 12.00 58.06
GLU-Net 25.05 39.55 78.54
GLU-Net-GOCor (Ours) 20.16 41.55 81.43

Results: In Table 1, we present results on
HPatches. We also report the results of the recent
state-of-the-art DGC-Net [37] for reference. Our
GLU-Net-GOCor outperforms original GLU-Net
by a large margin, achieving both higher accuracy
in terms of PCK, and better robustness to large errors as indicated by AEPE. In Figure 4, we plot
AEPE, PCK-1 and PCK-5 obtained on the ETH3D images. For all intervals, our approach is consis-
tently better than baseline GLU-Net. We note that the improvement is particularly prominent at larger
intra-frame intervals, strongly indicating that our GOCor module better copes with large appearance
variations due to large viewpoint changes, compared to the feature correlation layer.

Table 2: Results on sparse correspondences of
the MegaDepth dataset [32].

PCK-1 (%) ↑ PCK-3 (%) ↑ PCK-5 (%) ↑

GLU-Net 21.58 52.18 61.78
GLU-Net-GOCor (Ours) 37.28 61.18 68.08

This is also confirmed by the results on MegaDepth
in Table 2. Images depict extreme view-point
changes with as little as 10% of co-visible regions.
In this case as well, GOCor brings significant im-
provement, particularly in pixel-accuracy (PCK-1).

4.2 Optical flow

Next, we evaluate our GOCor module for the task of optical flow estimation, by integrating it into
the state-of-the-art PWC-Net [51, 52] and GLU-Net [55] architectures. PWC-Net [51] is based on a
5-level pyramidal network, estimating the dense flow field at each level using a local correlation layer.

Experimental setup: We replace all local correlation layers with our local GOCor module to
obtain PWC-Net-GOCor. We finetune PWC-Net-GOCor on 3D-Things [21], using the publicly
available PWC-Net weights trained on Flying-Chairs [14] and 3D-Things [21] as initialization. For
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Table 3: Results for the optical flow task on the training splits of KITTI [15] and Sintel [8]. A result
in parenthesis indicates that the dataset was used for training.

KITTI-2012 KITTI-2015 Sintel Clean Sintel Final
AEPE ↓ F1 (%) ↓ AEPE ↓ F1 (%) ↓ AEPE ↓ PCK-1 (%) ↑ PCK-5 (%) ↑ AEPE ↓ PCK-1 (%) ↑ PCK-5 (%) ↑

GLU-Net 3.14 19.76 7.49 33.83 4.25 62.08 88.40 5.50 57.85 85.10
GLU-Net-GOCor 2.68 15.43 6.68 27.57 3.80 67.12 90.41 4.90 63.38 87.69

PWC-Net (from paper) 4.14 21.38 10.35 33.67 2.55 - - 3.93 - -
PWC-Net (ft 3D-Things) 4.34 20.90 10.81 32.75 2.43 81.28 93.74 3.77 76.53 90.87
PWC-Net-GOCor (ft 3D-Things) 4.12 19.31 10.33 30.53 2.38 82.17 94.13 3.70 77.34 91.20

PWC-Net (ft Sintel) 2.94 12.70 8.15 24.35 (1.70) - - (2.21) - -
PWC-Net-GOCor (ft Sintel) 2.60 9.67 7.64 20.93 (1.74) (87.93) (95.54) (2.28) (84.15) (93.71)

fair comparison, we also finetune the standard PWC-Net on 3D-Things with the same schedule.
Finally, we also finetune PWC-Net-GOCor on the Sintel [8] training dataset according to the schedule
introduced in [21, 51]. As described in Sec. 4.1, we train both GLU-Net and GLU-Net-GOCor on the
Dynamic training set. For the global and local GOCor modules, we use the same settings as in 4.1.

Datasets and evaluation metrics: For evaluation, we use the established KITTI dataset [15],
composed of real road sequences captured by a car-mounted stereo camera rig. We also utilize
the Sintel dataset [8], which consists of 3D animated sequences. We use the standard evaluation
metrics, namely the AEPE and F1 for KITTI. The latter represents the percentage of optical flow
outliers. For Sintel, we employ AEPE together with PCK, i.e. percentage of inliers. In line with
[19, 20, 51, 52, 55], we show results on the training splits of these datasets.

Results: Results are reported in Tab. 3. First, compared to the GLU-Net baseline, our GOCor module
brings significant improvements in both AEPE and F1/PCK on all optical flow datasets. Next we
compare the PWC-Net based methods trained on 3D-Things (middle section) and report the official
result [51, 52] along with our fine-tuned versions. While our PWC-Net-GOCor obtains a similar
AEPE, it achieves substantially better accuracy, with a 3% improvement in F1 metric on KITTI-2015.
After finetuning on Sintel images, both PWC-Net and PWC-Net-GOCor achieve similar results on
the Sintel training data (in parenthesis). However, the PWC-Net-GOCor version provides superior
results on the two KITTI datasets. This clearly demonstrates the superior domain generalization
capabilities of our GOCor module. Note that both methods in the bottom section of Tab. 3 are only
trained on animated datasets, while KITTI consists of natural road-scenes. Thanks to the effective
objective-based adaption performed in our matching module during inference, PWC-Net-GOCor
excels even with a sub-optimal feature embedding trained for animated images, and when exposed to
previously unseen motion patterns. This is a particularly important property in the context of optical
flow and geometric matching, where collection of labelled realistic training data is prohibitively
expensive, forcing methods to resort to synthetic and animated datasets.

4.3 Generalization to semantic matching

Table 4: PCK [%] on TSS.
FGD3Car JODS PASCAL All

Semantic-GLU-Net [55] 94.4 75.5 78.3 82.8
GLU-Net 93.2 73.3 71.1 79.2
GLU-Net-GOCor 95.0 78.9 81.3 85.1

We additionally compare the performance of GOCor to the
feature correlation layer on the task of semantic matching. In
Table 4, we evaluate our GLU-Net-GOCor, without any re-
training, for dense semantic matching on the TSS dataset [54].
In the semantic correspondence task, images depict different
instances of the same object category (e.g. horse). As a result, the value of additional reference frame
information (Sec. 3.2 and 3.4) is not as pronounced in semantic matching compared to geometric
matching or optical flow. Indeed, our reference frame objective uses its full potential when both the
reference and the query images depict similar regions from the same scene. Nevertheless, our GLU-
Net-GOCor sets a new state-of-the-art on this dataset, even outperforming Semantic-GLU-Net [55].

4.4 Run-time

Table 5: Run time [ms] aver-
aged over the 194 image pairs
of KITTI-2012.

Run-time [ms]

PWC-Net 118.05
PWC-Net-GOCor 203.02
GLU-Net 154.97
GLU-Net-GOCor 261.90

In Table 5, we compare the run time of our GOCor-based networks
to their original versions on the KITTI-2012 dataset. The timings
are obtained on the same desktop with an NVIDIA Titan X GPU.
While our GOCor module leads to increased computation, the run-
time remains within reasonable margins thanks to our dedicated
optimization module, described in Sec. 3.6. We can further control
the trade of between computation and performance by varying the
number of steepest descent iterations in our GOCor module. In
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Table 6: Ablation study of key aspects of our approach on three different datasets.

HPatches KITTI-2012 KITTI-2015
AEPE ↓ PCK-5 (%) ↑ AEPE ↓ F1 (%) ↓ AEPE ↓ F1 (%) ↓

(I) BaseNet 30.94 69.22 4.03 30.49 8.93 48.66
(II) BaseNet + NC-Net [43] 39.15 63.52 4.41 34.78 9.86 52.78
(III) BaseNet + Global-GOCor Linear Regression 27.02 68.12 4.31 35.30 8.93 52.64
(IV) BaseNet + Global-GOCor Lr 26.27 71.29 3.91 29.77 8.50 46.24
(V) BaseNet + Global-GOCor Lr + Lq 25.30 71.21 3.74 26.82 7.87 43.08
(VI) BaseNet + Global-GOCor Lr + Lq + Local-GOCor 23.57 78.30 3.45 25.42 7.10 39.57

Appendix Sec. E.1 we provide such a detailed analysis, and propose faster operating points with only
minor degradation in performance.

4.5 Ablation study

Finally, we analyze key components of our approach. We first design a powerful baseline architecture
estimating dense flow fields, called BaseNet. It consists of a three-level pyramidal CNN-network,
inspired by [55], employing a global correlation layer followed by two local layers. All methods are
trained with the Dynamic data, described in Sec. 4.1. Results on HPatches, KITTI-2012 and KITTI-
2015 are reported in Tab. 6. We first analyse the effect of replacing the feature correlation layer with
GOCor at the global correlation level. The version denoted (IV) employs our global GOCor using
solely the reference-based objective Lr (Sec. 3.4). It leads to significantly better results on all datasets
compared to standard BaseNet (I). Instead of our robust reference loss Lr, the version (III) employs a
standard linear regression objective ‖C(w, fr)− δ‖2, leading to substantially worse results. We also
compare with adding the post-processing strategy proposed in [43] (II), employing 4D-convolutions
and enforcing cyclic consistency. This generally leads to a degradation in performance, likely caused
by the inability to cope with the domain gap between training and test data. From (IV) to (V) we
integrate our query frame objective Lq (Sec. 3.5), which results in major gains, particularly on the
more challenging KITTI datasets. Finally, we replace the local correlation layers with our local
GOCor module in (VI). This leads to large improvements on all datasets and metrics.

In Figure 5, we visualize the relevance of our reference loss (Sec. 3.4) qualitatively by plotting the
correspondence volume outputted by our global GOCor module, when correlating a particular point
(i,j) of the reference image with all locations of either the reference itself or the query image. The
predicted correspondence volume gets increasingly distinctive after each iteration in the GOCor layer.
Specifically, it is clearly visible that final matching confidences with the query image benefits from
optimizing the correlation scores with the reference image itself, using Eq. (5).

5 Conclusion

We propose a neural network module for predicting globally optimized matching confidences be-
tween two deep feature maps. It acts as a direct alternative to feature correlation layers. We integrate
unexploited information about the reference and query frames by formulating an objective function,
which is minimized during inference through an iterative optimization strategy. Our approach thereby
explicitly accounts for, e.g., similar image regions. Our resulting GOCor module is thoroughly anal-
ysed and evaluated on the tasks of geometric correspondences and optical flow, with an extension to
dense semantic matching. When integrated into state-of-the-art networks, it significantly outperforms
the feature correlation layer.

Figure 5: Visualization of the matching confidences computed between the indicated location (green)
in the reference image and all locations of either the reference image itself or the query image.
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Broader Impact

Our feature correspondence matching module can be beneficial in a wide range of applications
relying on explicit or implicit matching between images, such as visual localization [46, 53], 3D-
reconstruction [1], structure-from-motion [45], action recognition [50] and autonomous driving [22].
On the other hand, any image matching algorithm runs the risk of being used for malevolent tasks,
such as malicious image manipulation or image surveillance system. However, our module is only
one building block to be integrated in a larger pipeline. On its own, it therefore has little chances of
being wrongfully used.
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