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GoCoronaGo: Privacy Respecting Contact Tracing 

for COVID-19 Management

1 Introduction

Contagious viral diseases such as the SARS-CoV 
(2002), H1N1 (2009), MERS-CoV (2012), and 
SARS-CoV-2 (2019) have resulted in global epi-
demic outbreaks and placed a massive burden on 
public health systems around the world. These 
pandemics have cascading effects that result in 
irreparable consequences to economies and qual-
ity of life. The recent SARS-CoV-2 or COVID-19 
pandemic has triggered national and regional 
lockdowns across the world to curb the spread 
of the virus. With incubation periods that last 
days and with a significant fraction of asympto-
matic carriers, the proliferation of the disease has 
been hard to detect and localize. Further, testing 
of populations at a large-scale has proved chal-
lenging due to limited testing kits, well-trained 
health-care professionals, and funds in emerging 
economies42.

To tackle this problem, governments and 
health workers use ContactTracing of infected 
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lenges in managing the spread of the virus. A key pillar to mitigation is 
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individuals to identify those who may have come in 

contact with them, also called primary contacts. 
These primary contacts are then quarantined and/
or tested depending on their symptoms. Testing, 
tracing, and isolation form essential components 
of COVID-19 management, besides preventive 

measures like wearing masks, practising 
Social Distancing , and washing hands39. Tradi-
tional methods of contact tracing are often labo-
rious and may be erroneous due to recall biases2, 

38. Also, human activity patterns often involve 
interactions with strangers, especially when trav-
elling, which makes it difficult to identify contacts 
using traditional methods.

As a large fraction of the population owns 
smartphones, countries around the world, includ-
ing India, have attempted to use Digital Contact 

Tracing5, 19, 29. Mobile apps that use Bluetooth 
technology are deployed to record close interac-
tions between users. These Bluetooth Low-Energy 
(BLE) apps typically advertise a unique device ID, 

Bluetooth Low Energy (BLE): 

Bluetooth Low Energy (BLE) 

is a variant of the Bluetooth 

standard which uses much 

lesser power for communica-

tion, allowing it to be enabled 

all the time. It is widely used 

in smartphones, wearables, 

beacons and smart home 

devices.

Bluetooth: Bluetooth is a 

wireless technology standard 

for short-range communica-

tion between mobile devices 

such as laptops and smart-

phones, with a practical range 

of up to 10 m.
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which can be recognized by other nearby devices 
with the app that scan for and save these adver-
tised IDs, also called contacts. This information is 
typically stored on the local device; if a user tests 
positive, their Bluetooth contacts are uploaded to 
a central database and their contacts are alerted. 
This can dramatically reduce the time required 
for contact tracing from days to potentially hours, 
thereby mitigating the spread of the virus38. 
Examples of such national-scale apps include 
Aarogya Setu45 in India, TraceTogether54 in Singa-
pore, COVIDSafe24 in Australia, COVID Alert1 in 
Canada, Corona-Warn-App2 in Germany, etc.

However, there are limitations to digital con-
tact tracing. These constraints include the low 
reliability and asymmetry of Bluetooth technol-
ogy in detecting nearby users26, 40, 46, 60; low accu-
racy of the proximity distance between users to 
help distinguish nearby and farther off users40, 46; 
high degree of adoption required for digital con-
tact tracing to be effective33, 47; and the inability 
to locate secondary and tertiary contacts until 
the primary and secondary contacts test posi-
tive, respectively. It is hence still important to use 
complementary digital contact tracing with man-
ual methods.

In this article, we describe GoCoronaGo 

(GCG), a digital contact tracing app for institu-
tions, which attempts to address these limitations. 
A key distinction of our approach is to collect the 
contact trace data of devices into a centralized 
database, continuously, irrespective of if or when 
a person is diagnosed as COVID positive. This 
proximity data of all app users are used to build a 
temporal contact graph, where vertices are devices, 
and edges indicate proximity between devices for 
a certain time period and with a certain Blue-
tooth signal strength.

This approach has several benefits. When a 
GCG user is tested positive for COVID-19, we use 
graph algorithms to rapidly identify primary, sec-
ondary, and other higher-order contacts, based on 
WHO guidelines2. Further, even if the Bluetooth 
scans were missed by the infected user, successful 
scans by other proximate devices can be used to 
alert the relevant contacts, increasing the reliabil-
ity of detection. In addition, centralized digital 
contact tracing has the potential to estimate the 
state of the population using network-based SEIR 

models, which can be used to assign risk scores 
and prioritize testing28, 37, 55.

Of course, centralized contact data collection 
has its downsides, primarily, the privacy implica-
tions of tracking the interactions between a large 
number of individuals. We take several precau-
tions to mitigate this. One, the app is designed 
for deployment only within institutions and 
closed campuses, and not at a city, regional, or 
national scale. The data collected are owned by 
the host institution and not by a central author-
ity. Two, users do not have to share any personal 
information, and devices are identified using a 
randomly generated ID. Sharing GPS location or 
their phone number is voluntary and through 
opt-in. Last, deanonymization of data is limited 
to COVID-19 contact tracing and, by design, 
requires multiple entities to cooperate, and is 
overseen by an advisory board with a broad rep-
resentation from the institution. We discuss these 
pros and cons in more detail later.

Besides a centralized data collection approach, 
we also conduct experiments to understand the 
impact of various smartphone devices and the 
environment on the Bluetooth signal strength to 
better ascertain the proximity between devices. 
We also send proactive messages for users to 
enable custom Bluetooth settings in their smart-
phones to improve reliability. The use of the GCG 
App within an institutional setting, with data 
collection and usage governed by the organiza-
tion, may lead to higher adoption of the app and 
enhance its effectiveness in contact tracing.

This article examines the design rationale, 
architecture, and our experience in deploying the 
GoCoronaGo digital contact tracing app as part 
of a pilot at the Indian Institute of Science (IISc). 
It also discusses the challenges and opportunities 
in improving the utility of digital contact tracing.

The rest of the article is organized as follows: 
In Sect. 2, we review digital contact tracing and 
provide an overview of a few popular COVID-
19 apps. Section 3 provides details of the app 
design and the backend architecture. In Sect. 4, 
we describe various analytics, including temporal 
contact network algorithms, for contact tracing, 
and for providing feedback to app users. Finally, 
Sect. 5 summarizes our experience with deploy-
ing the app at IISc and highlights some of the 
opportunities and challenges of digital contact 
tracing.

1 COVID Alert App, https ://www.canad a.ca/en/publi c-healt 
h/servi ces/disea ses/coron aviru s-disea se-covid -19/covid -alert 
.html.
2 Corona-Warn-App, https ://www.coron awarn .app/en/.

https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html
https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19/covid-alert.html
https://www.coronawarn.app/en/
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2  Background and Related Work

2.1  Contact Tracing

Infectious diseases, that spread through person-
to-person interactions, can be contained by 
tracking their sources and quarantining the indi-
viduals who are or may be affected. This is typi-
cally done using physical interviews, which try to 
determine the places visited and the people met 
by the patient2. In some cases, the location his-
tory of the patients is shared by cities and public 
health agencies on websites and mobile apps to 
allow others who were in the vicinity at that time 
to take precautions. This form of contact trac-
ing relies heavily on one’s memory and collect-
ing such data manually is cumbersome. Contact 
tracing is crucial, especially for viruses such as the 
SARS-CoV-2 that exhibit high transmission rates, 
low testing rates, long incubation times, and a sig-
nificant fraction of asymptomatic carriers, who 
could infect other susceptible individuals13, 29, 31.

Digital contact tracing, on the other hand, 
involves the use of technology to keep track of 
the individuals who came in close proximity 
with each other. It has been shown to be effec-
tive in preventing the spread of communicable 
diseases in livestock34, 48, but experiments involv-
ing human populations have been limited52. 
The scale at which COVID-19 has spread has 
led to the use of Bluetooth and GPS-based con-
tact tracing applications on mobile phones. Such 
apps help individuals automatically keep a record 
of the places they visited and the people they met, 
along with the timestamps. This permits us to 
build contact neighborhoods that can be used to 
alert or quarantine the concerned individuals and 
identify potentially risky interactions.

2.2  Digital Contact Tracing for COVID-19

Most digital contact tracing (DCT) apps for 
COVID-19 rely on Bluetooth technology avail-
able on smartphones. In addition, a few apps col-
lect the GPS location of users. The rapid spread 
of the COVID-19 virus has led to the develop-
ment of a variety of smartphone apps around the 
world, which are variants on this theme. Exam-
ples include both national apps like Aarogya Setu 
(India), NHSX (UK), and Covid Safe (Australia), 
as well as those proposed by institutions, like 
NOVID (CMU) and SafePaths (MIT). A review 
of contact tracing apps can be found in11, 15, 19, 41, 
and their features are contrasted in Table 1.

At a broad level, these apps scan and advertise 
for Bluetooth signals and record the timestamp, 
along with the signal strength or the Received Sig-
nal Strength Indicator (RSSI), reported in deci-
bel-milliwatts (dBm) in Android.3 The RSSI 
values are negative and higher when the devices 
are close to each other. Translating the Bluetooth 
RSSI to proximity distances for contact tracing is 
not straightforward since it depends on numer-
ous factors such as the phone hardware, drivers, 
operating system, ability to run continuously in 
the background, and interference due to surfaces. 
Yet, they have been widely attempted and 
deployed because of its potential advantages over 
manual contact tracing.

In fact, to address some of the interoper-
ability issues across Android phones and iPhones, 
Google and Apple have even introduced an expo-

sure notifications (GAEN) protocol into their OS as 
part of their COVID-19 response6. The BlueTrace 
protocol16 used by apps in Singapore and Aus-
tralia is another popular standard. Europe has 
two competing contact tracing standards that are 
being refined, Decentralized Privacy-Preserving 
Proximity Tracing ( dp3t)56 and Pan-European 
Privacy-Preserving Proximity Tracing (PEPP-
PT)7. The Bluetooth Special Interest Group (SIG) 
is also working on a contact tracing standard for 
wearables18. Such protocols help with mobil-
ity across national boundaries, avoid having to 
install multiple apps, and in the development of 
custom, yet interoperable, apps.

Besides smartphone-based apps, others have 
also developed hardware devices such as the 
TraceTogether token25 that uses Bluetooth, but 
operates independently of a phone, or wearables 
like wristwatches that can track the location using 
GPS4. In addition to Bluetooth, a few apps like 
NOVID also broadcast ultrasound signals using 
a phone’s speakers and other apps in the vicin-
ity detect them using their microphone43. There 
have also been other digital apps such as the 
NZ COVID Tracer that use QR codes for users 
to check-in when they enter specific locations9. 
Besides contact tracing, digital tools have also 
been used to track symptoms among populations 
to identify emerging “hotspots” and for health 
professionals and volunteers to coordinate their 
response5.

However, the global adoption of contact trac-
ing apps is low. The percentage of the population 
who have installed such apps has struggled to go 

Received Signal Strength 

Indicator (RSSI): Received 

Signal Strength Indicator 

(RSSI) is a measure of the 

relative strength of a radio 

signal received by a device. 

Higher values indicate a 

stronger signal strength. The 

RSSI is affected by the radio 

chipset, strength at which 

the signal is transmitted and 

environmental factors.

3 ScanResult for Bluetooth LE scan, https ://devel oper.andro 
id.com/refer ence/kotli n/andro id/bluet ooth/le/ScanR esult .

https://developer.android.com/reference/kotlin/android/bluetooth/le/ScanResult
https://developer.android.com/reference/kotlin/android/bluetooth/le/ScanResult
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past 20%, even among developed countries where 
a majority of the individuals have smartphones21. 
While there is debate on the minimal adoption 
rate required for contact tracing apps to have a 
tangible effect, some use is better than none and 
more is better33, 38, 47. In particular, higher adop-
tion rates in dense neighborhoods can highlight 
the effectiveness of tracing effective since the risk 
of spreading the infection is greater in closely-
knit communities.

2.3  Balancing Community Safety 

and Individual Privacy

There are a number of ways in which one can 
design such digital contact tracing apps. These 
offer different trade-offs in terms of individ-
ual privacy and the health and safety of the 
community.

2.3.1  National vs. Institutional Use

The target of the app may be for national/regional 

use or institutional use. While national-scale con-
tact tracing apps potentially offer greater ability 
to manage the pandemic, they also carry greater 
risks of data leaks and misuse62. Further, a high 
degree of adoption at such large scales is chal-
lenging, limiting the usefulness of the app for 
contact tracing. Apps deployed at an institu-
tional scale can be better targeted to the audi-
ence and offer better uptake due to the fact that 
the data are managed at the organizational level. 
Institutions can also respond more rapidly based 
on insights provided by the app. But they are 
less effective when users are moving outside the 
confines of campuses and interacting with the 
broader population, e.g., apps like Aarogya Setu 
and TraceTogether are national apps, while GoC-
oronaGo, NOVID, and Covid Watch are designed 
for institutions.

2.3.2  Voluntary vs. Mandatory

The use of the app may be voluntary or manda-

tory. Some countries like China have made such 
apps mandatory for all residents, or for those 
meeting certain requirements such as travelers. 
Even organizations may make such national or 
institutional apps mandatory within their prem-
ises. But most countries and institutions tend to 
keep the use of such apps voluntary. Further, the 
use of the collected data for contact tracing may 
also be voluntary or mandatory. If voluntary, 
there is an explicit opt-in by the individual who 

is tested COVID positive or is quarantined, before 
contact tracing using their data can be initiated. 
Alternatively, there may be rules in place that 
allow the government or institutions to use any 
proximity data that are available with them, with-
out additional consent from infected users. An 
explicit consent helps address concerns of social 
stigma around COVID patients. The use of GCG 
is strictly voluntary, and there is an additional 
consent required by a user who is infected with 
COVID-19 before their data can be used for con-
tact tracing—this, despite their data already being 
available centrally in the backend.

2.3.3  Identifiable vs. Anonymized

Apps may collect identifiable, strictly anony-

mous, or pseudo-anonymous information as part 
of contact tracing. Some apps like Singapore’s 
TraceTogether compulsorily require the contact 
details and/or a national identification number 
to be shared when installing the app. This makes 
it quicker to reach-out to users during contact 
tracing, but also heightens the risk of misusing 
the data for the surveillance of specific individu-
als and can lead to a significant loss of privacy if 
the data arre breached. In a strictly anonymous 
setting, no personal information of the user is 
collected, and they are only identified by a ran-
dom ID, which itself may also be changed (or 
“rotated”) periodically. A set of such IDs may be 
provided by a central server (TraceTogether) or 
generated locally by the App. During contact trac-
ing, the user’s app is alerted and they have the 
option of voluntarily responding by contacting 
the health center or a government agency. If the 
user uninstalls the app, it may be impossible to 
do contact tracing. A hybrid approach of pseudo-
anonymization ensures that the contact trace data 
themselves are anonymous, but the information 
required for de-anonymization is available with 
a trusted independent authority whose consent 
is required (optionally, with a consent from the 
infected individual) to identify the users rele-
vant for contact tracing. GCG adopts this hybrid 
model that balances the privacy of users while 
also enabling rapid and reliable outreach during 
contact tracing.

2.3.4  Centralized vs. De-centralized

The contact tracing data may be kept de-cen-

tralized, semi-centralized, or centralized. If de-
centralized, the Bluetooth device IDs observed 
by a user’s app are stored locally on the device. 
When a user tests positive for COVID-19, they 
can inform a backend service of their device ID 
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(potentially, multiple IDs, in case of ID rotation) 
and their status. The backend periodically relays 
a list of device IDs associated with COVID posi-
tive individuals to all apps, which is then used by 
the user to verify if they came in contact with a 
COVID positive person. This is used by PACT 50 
and Google-Apple exposure notification (GAEN) 
framework53.

In a semi-centralized approach, a mapping 
between an app and its device ID is maintained 
centrally, but the contact trace data remains 
locally on the device. On testing positive, a user 
may choose to (or be required to) upload the 
contact trace data for the recent past to a backend 
service, which then sends notifications to these 
primary contact devices asking them to quar-
antine or get tested. Examples of this approach 
include BlueTrace16 and Aarogya Setu45. How-
ever, Aarogya Setu also allows users to voluntar-
ily upload their Bluetooth contact data to central 
servers at any time to get an estimate of other 
high-risk users in the vicinity.

Last, in a centralized approach, both the map-
ping of apps to device IDs as well as their con-
tacts are sent to a backend service periodically. 
When a user reports themselves as COVID posi-
tive, contact tracing can be initiated on the cen-
tralized data already available, optionally after an 
additional consent. GCG adopts this model. This 
variant is relatively intrusive, but arguably has 
advantages that may justify its use. One, contact 
data from both the infected and the proximate 
users can be combined to increase the reliability 
of contact tracing. Two, even if users uninstall 
the app, if the data collected are personalized or 
is de-anonymizable, then contact tracing can still 
happen over the backend data for the period dur-
ing which the app was kept installed. Three, not 
just primary but even secondary and tertiary con-
tact tracing, can be performed rapidly. And four, 
having a centralized model allows us to perform 
temporal analytics on a global contact network. 
This can help identify high-risk individuals for 
prioritizing preventive, testing and (future) vacci-
nation strategies, and infer the health of the user 
population.

2.3.5  Location Data and Longevity

Bluetooth data provide the relative interaction 
between proximate users but in itself does not 
reveal the spatial location of users. While this may 
disclose interaction patterns between (anony-
mous) users, which is necessary for contact trac-
ing, correlating this with particular individuals 

is not possible without additional out-of-band 
knowledge about them.

Some contact tracing apps may also collect 
GPS data (COVID SafePaths) and data from bea-
cons or QR codes (NOVID) that may reveal the 
absolute spatial location of the users. Collecting 
spatial location has some benefits. The coronavi-
rus may be transmitted through surfaces or be 
suspended in the air and thereby be passed on to 
others who are not near an infected user but in 
the same location soon after57. Bluetooth based 
proximity will miss such users. Also, GPS data 
collection may be more reliable than Bluetooth. 
However, GPS is not precise enough to be useful 
for identifying proximity between users. Further-
more, tracking the spatial movements of users 
continuously can have serious privacy conse-
quences49, 51. Bluetooth Beacons and scanning QR 
Codes present at well-known locations can also 
provide such spatial information, but will be lim-
ited to places where the beacons or codes are 
deployed. GCG allows users to optionally share 
their GPS data through an explicit opt-in and also 
allows the selective use of beacons deployed by 
institutions.

Last, we need to consider the duration for 
which the centralized or de-centralized data that 
are collected retained. This needs to be explic-
itly stated by the apps for transparency. More the 
data that are collected and more personalized it 
is, the greater are the consequences for retain-
ing it longer, especially in a centralized or semi-
centralized setting. Typically, the contact trace 
data themselves are useful only for roughly 30 
days after they are collected since this duration 
is typically the outer time-window of transmis-
sion of the virus. Also, there should be clarity on 
how long the data are retained after a user unin-
stalls the app. GCG deletes a user’s phone num-
ber, the only personal data they may share, from 
its backend within 3 months of them uninstalling 
the app. The anonymized contact trace data are 
retained for future research purposes, as per the 
rules set out by the Institute Human Ethics Com-
mittee (IHEC).

3  GCG Architecture

The GoCoronaGo (GCG) contact tracing plat-
form consists of a smartphone app and backend 
services for data collection, management, and 
analysis. The app is designed for COVID-19 oper-

ations and management within an institution and 
is also proposed as a research project governed by 
the Institute Human Ethics Committee (IHEC). 
The design and technical details of the app and 

QR Code: Quick Response 

(QR) Code is a 2-D barcode 

standard which serves as a 

machine or device readable 

label that encodes informa-

tion. Smartphones can use 

their cameras to take a picture 

of the QR Code and Apps 

or libraries can extract the 

information present in them. 

Examples of such information 

include some identifier, the 

physical location or a URL to 

a website.

Bluetooth Beacon: Bluetooth 

Beacon is a compact device 

that can be configured to 

continuously broadcast an 

identifier and some custom 

data as part of a Bluetooth 

signal. Other Bluetooth-ena-

bled devices can detect these 

signals to get information, 

typically specific to the loca-

tion of the Beacon.
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the backend services are described in this section. 
A high-level design is illustrated in Fig. 1.

3.1  Design of the GCG Smartphone App

3.1.1  App Installation and User Registration

The GCG App is limited for use by authorized 
institutions. Since not all institutions may have 
a private/enterprise app store for their organiza-
tions, hosting the app in the public Google Play 
or Apple App store is convenient. Users at author-
ized institutions are provided with individual 
invitation codes by a separate entity within the 
institution, typically the information technol-
ogy (IT) office. The IT office also maintains a 
mapping from the user’s unique invite code to 
the actual individual to whom the code was pro-
vided, along with their contact details, as shown 
in Fig. 2. This mapping from the individual to 

their invitation code is later used by the IT office 
during contact tracing, as described in Sect. 4.3. 
The user can download the GCG App from 
the Google Play Store or from an institutional 
download link. During installation, users enter 
this invite code into the app, which submits and 
validates it with the GCG backend servers and is 
returned a unique ID, a device ID, and a PIN.

The GCG backend maintains the mapping 
from the invite code to the unique ID for the 
installed device. The invitation code can only be 
used once by the user for the first installation. 
To allow future re-installations, a PIN is gener-
ated for this invitation code and is shared with 
the user. Optionally, the user may provide their 
one-time password (OTP)-verified phone number 
during installation, which is recorded in the back-
end. This number can be used along with the PIN 

Acquire Data

Store Data

Analyze Data

Send Alerts

• Adver�se Device ID
• Scan for Device IDs Cloud-hosted GCG Services

GCG App on 

Smart Phones

Interface with 

Health Center

Figure 1: Overall Design of GCG.
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Figure 2: Identifier mapping during GCG App installation.
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to reinstall the app in the future, in place of the 
one-time-use invite code. Last, a device ID in the 
form of a random 128 bit UUID is generated by 
the backend for each re/installation on a phone, 
and a mapping is maintained from the unique ID 
to the device ID, along with the creation times-
tamp. This device ID will be broadcast as part of 
the Bluetooth advertisement (Fig. 2). Both the 
invite code to unique ID and unique ID to device 
ID mappings are used during contact tracing 
(Sect. 4.3).

A final piece of information collected from the 
app during re/installation is the make and model 
of the phone. As we discuss later, this is vital for 
interpreting the Bluetooth signal strength and 
translating it into a distance estimate.

These identifiers are designed to maintain the 
anonymity of users from the GCG App and back-
end, enable de-anonymization of contact users 
upon an authorized request for contact tracing, 
and ensure that the app can be re/installed by 
authorized users. Such sandboxing and identifier-
indirection ensures that no single entity – the IT 
Office, a GCG user, or the GCG backend—can 
independently find the identity of any (other) 
user and their trace.

A key tenet of GCG is transparency. The 
installation process in the GCG App has disclo-
sures on the legal terms and conditions for the use 
of the app, and on how the data collected will be 
used. In addition, there is also a multi-lingual 
informed consent, as required by IHEC, which 
clearly documents the scope of the research pro-
ject, potential benefits and downsides, voluntary 
participation, etc.

3.1.2  BLE Advertisement and Scanning

The GCG App uses Bluetooth Low Energy (BLE) 
signals to detect other proximate phones run-
ning the app. The BLE wireless protocol is ubiq-
uitous among smartphones sold within the last 6 
years. It enables low-power, short-range wireless 
communication and is intended for applications 
in fitness, smart homes, healthcare, beacons, etc. 
Its maximum range is < 100m

17 though this is 
affected by environmental conditions and trans-
mitting power, and ≈ 10m is the typical range40.

BLE devices use an advertising and scanning 

protocol to discover each other and establish a 
connection. When acting as a server, the devices 
advertise one or more services that they support, 
which are identified by service assigned numbers; 
when acting as a client, they find servers to con-
nect, to based on the advertised service assigned 
numbers.4 A single device may advertise multiple 

services, and it can include a custom payload 
such as a service name. Also, the BLE advertise-
ment is broadcast in an open channel, which any 
nearby BLE client can discover. Besides standard 
16 bit service numbers that are registered and 
pre-defined for specific types of services, applica-
tions can also generate and use 128 bit UUIDs for 
custom services they provide. Once discovered, 
clients can establish a network connection with 
the service to perform additional operations such 
as data exchange.

The GCG App acts as both a client and a 
server when using the scanning and advertis-
ing capabilities of BLE, respectively. Specifi-
cally, it advertises two service assigned numbers, 
0x1800, which represents a Generic Access ser-
vice, and another custom service whose assigned 
number is the unique device ID for a particular 
app installation. This advertisement is broadcast 
continuously. As a client, the GCG App scans for 
5 secs every minute for advertisements that con-
tain the service number 0x1800. If found, it 
extracts and records the device ID that is sent as 
a secondary service number in the same adver-
tisement. Piggy-backing the device ID as a service 
assigned number rather than a custom payload 
takes fewer bytes, which in turn can reduce the 
power consumption for the advertisement.

As part of the scanning, the GCG App also 
retrieves the Received Signal Strength Indicator 

(RSSI), which is the strength of the BLE signal 
that is received by the app. As we discuss later, 
this can be used to estimate the proximity dis-
tance. The GCG Android App uses the default 
BLE settings for broadcasting its advertisements,5 
which translates to BLE broadcasts every 1 sec at a 
medium transmission power level. Also, the app 
consciously does not establish a connection with 
apps on another device; the device ID is broadcast 
to any BLE device that is in the vicinity. In fact, 
we explicitly set the connectable flag in the adver-
tisement to false. This enhances security by avoid-
ing malicious content from being transferred.

3.1.3  Support for GPS and Beacon Locations

While such proximity tracking is helpful for con-
tact tracing of individuals who were spatiotempo-
rally co-located, this does not address situations 
where two users shared the same space, such as 
an ATM, mess dining hall, or campus grocery, 
but for a short time apart. Since COVID-19 can 

4 Bluetooth GATT Service Assigned Numbers, https ://www.
bluet ooth.com/speci ficat ions/gatt/servi ces/.

https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/specifications/gatt/services/
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be transmitted through surfaces and can linger in 
the air for some time57, it is beneficial to identify 
users who were in the same location but not at 
the same time, especially for locations with a lot 
of footfall.

The GCG App allows users to voluntarily 
share their GPS location information with the 
backend. This is disabled by default. If enabled 
by the user, the GPS location is retrieved and 
uploaded to the backend every 5 mins, and buff-
ered for retries.

Since the sharing of GPS location is strictly 
voluntary, GCG supports the selective use of 
beacons installed by institutions at such high-
risk spaces. These beacons behave like a GCG 
App that passively advertises its device ID, and 
the smartphone app can scan for and record the 
beacon’s ID, just as it would detect another GCG 
smartphone’s device ID. Specifically, we use the 
iBeacon protocol from Apple. The beacon trans-
mits a static GCG UUID as its service number, 
0x004C, as the manufacturer ID for the pro-
tocol, and a major and minor version number to 
uniquely identify itself. The GCG App scans for 
the static service number, filters results based on 
the manufacturer ID, and retrieves the major and 
minor version numbers. The app encodes these 
version numbers into a template UUID to form 
a unique device ID for that beacon and adds it to 
its proximity trace.

3.1.4  Buffering Proximity Data for Reliability

During each scan, the proximity data collected 
consist of zero or more device ID(s) and the cor-
responding RSSI values that were discovered 
at that timestamp. Performing a service call to 
send these data to the backend servers consumes 
power and bandwidth on the phone. Instead of 
sending these data after each scan, we buffer it to 
a SQlite database on the phone and periodically 
send the buffered data to the backend in a single 
batch. This transmission interval is set to 15 mins. 
This type of batching amortizes the power and 
network costs across scans, while ensuring the 
freshness of the data available at the backend. 
Buffering is also beneficial when Internet con-
nectivity is intermittent. If the proximity data 
cannot be sent to the backend, the buffered data 
are retained on the device and a resend attempt is 
made in the next transmission interval.

Given that this is the most frequent service 
call to the backend, we use a compact binary seri-

alization to represent the proximity data sent to 
the backend, unlike the other services which use 
JSON.

3.1.5  Telemetry for App Health Monitoring

The GCG App needs to run in the background all 
the time for effective Bluetooth advertising, scan-
ning, and proximity data collection. However, 
the heterogeneity of smartphone models and the 
limitations of their OS means that this advertis-
ing and scanning may not be reliable. To identify 
issues with specific device models and app instal-
lations, and verify if the app is running, we col-
lect and report liveliness telemetry statistics to 
the backend every hour. These include a count 
of BLE scans performed, BLE scans failed, GPS 
scans, GCG users and beacons detected, and con-
tact buffer size; Bluetooth and GPS enabled sta-
tus, Bluetooth and GPS permission flags, battery 
level, app version, etc. These statistics also help us 
in understanding the aggregate usage of the GCG 
App within an institution.

3.1.6  UI and Analytics

Besides tracking Bluetooth contact data, the GCG 
App offers several features to inform the users 
about COVID-19 and engage them in preventing 
its spread. Screenshots of these UI elements are 
shown in Fig. 3.

Key among these is a Proximity Alert, wherein 
a notification is triggered on the smartphone 
if 5 or more users (configurable) were detected 
within a ≈ 2m distance during the last Bluetooth 
scan. This acts as a warning to users in case they 
inadvertently overlook social distancing. As dis-
cussed later, the 2 m distance threshold is just an 
estimate based on the RSSI. The alert is also trig-
gered only once an hour (configurable) to avoid 
saturating the user.

In addition, users can visualize a plot of the 
hourly count of contacts segregated by the dura-
tion of contact within the hour, e.g., < 10mins , 
10 − 20mins and > 20mins (Fig. 3b). This gives 
them a sense of their interaction pattern for the 
past 24 hours. Similarly, we also display the num-
ber of scans performed each hour for the past 24 h 
(Fig. 3c). This can help identify issues with Blue-
tooth scanning on specific phones, and prompts 
the user to take corrective measures. A summary 
of the number of scans completed per day is also 
shown as a progress bar to motivate users to hit 
1000 or more of the 1440 possible 1 min scans 
(Fig. 3a).

5 AdvertisingSetParameters, Google Developers, https ://devel 
oper.andro id.com/refer ence/andro id/bluet ooth/le/Adver tisin 
gSetP arame ters.

https://developer.android.com/reference/android/bluetooth/le/AdvertisingSetParameters
https://developer.android.com/reference/android/bluetooth/le/AdvertisingSetParameters
https://developer.android.com/reference/android/bluetooth/le/AdvertisingSetParameters
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These local analytics within the app are com-
plemented by aggregate analytics performed in 
the backend and are shared through the app each 
day. These include the social distancing score, user 

density heatmap for neighboring locations, and a 
visualization of the contact network neighborhood. 
These are described later in Sect. 4. A unique 

aspect of the app is that the set of remote analyt-
ics available can be dynamically changed without 
having to update the app. In the future, this can 
also be used to push forms and conduct surveys 
from within the app.

Importantly, none of the analytics provided 
to users reveals the identity of other users or 

Figure 3: User interface and analytics in the GoCoronaGo v0.7 Android App.
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even their device IDs, to protect their privacy. For 
example, the hourly contact bars only report the 
aggregate counts of nearby devices and cumu-
lative duration of interaction at different dis-
tances, while the proximity alert is triggered 
only if at least three users are nearby to prevent 
fine-grained estimates of the number of GCG 
users from being revealed.

Last, we also provide helpful information to 
educate users about COVID-19. These include 
a plot of the positive, recovered, and deceased 
cases across time in India, and in the local state, 
and a map of the current positive cases at the 
state and district level. In addition, we also share 
Let’s Control COVID and Curious about COVID? 
infographics as app alerts each day, which sug-
gest precautions, debunk myths, and offer sci-
entific information (Fig. 3f). These are sourced 
from public health and science resources such 
as WHO,6 the COVID Gyan initiative from 
IISc-TIFR,7 and Indian Scientists’ Response to 
COVID-19 8

3.1.7  Android and iOS Implementations

The features described here are largely applicable 
to GoCoronaGo v0.7 on Android smartphones. 
GoCoronaGo v0.2 is a lighter version available 
for iOS with features limited to advertising, scan-
ning, and receiving alerts. This is due to the lim-
ited numbers of iPhone users on the academic 
campus.

There are other OS and device-specific issues 
as well that we encountered and addressed in var-
ious iterations of the app. While we were initially 
using wildcard filters when performing Bluetooth 
scans for service numbers on the Android app, we 
noticed that certain phone models such as Sam-
sung did not reliably perform such scans. This led 
us to adopt the 0x1800 approach.

Continuous Bluetooth advertisement and 
scanning in the background is challenging in 
Android, and virtually impossible in iOS. Smart-
phone brands with custom Android builds, such 
as Xiaomi, Oppo, Vivo, etc. do not always sup-
port the recommended practise of executing 
such applications as a foreground service with 
a persistent, ongoing notification.9 As a result, 
users are forced to change the Android battery 

usage settings and/or autostart permissions for 
the GCG App, which are brand and even model 
specific. Absence of reliable scanning and adver-
tising defeats the key purpose of the app. We 
provide local analytics and alerts to help users 
address such issues. Further, Android requires 
users to enable GPS to even perform continuous 
Bluetooth scanning, as a way to indicate to users 
that their location may be revealed indirectly, say, 
through beacons at well-known locations. But 
requiring GPS to be on even though the app does 
not collect the GPS location without opt-in con-
fuses users, and may lead to privacy concerns.

On iOS, the problems with background Blue-
tooth advertisement and scanning is well docu-
mented due to Apple’s restrictive policies16, 20, 27. 
The iOS GCG App is effective when in the fore-
ground and when the user is viewing the app. 
However, when the user is not actively using the 
app or the phone is locked, the app can scan for 
other devices that are advertising, but it can-
not advertise. As a result, there needs to be other 
Android or active iOS GCG devices nearby for 
contacts to be recorded, colloquially referred to as 
“Android Herd Immunity”32.

Besides technical challenges, there are also 
policy challenges in deploying COVID-19 related 
Android and iOS apps to Google Play and Apple 
App stores. Certification from an official Govern-
ment of India agency with specific verbiage was 
required before the GCG Android app would 
even be reviewed for hosting on the Play store, 
and the subsequent reviews of the app’s update 
takes weeks. Given the restrictions that Apple 
imposes on apps posted on its App Store, the iOS 
GCG App is only viable for an ad hoc or enter-
prise license deployment.

3.2  Design of the GCG Backend Services

GCG web services, data management, and 
analytics are hosted on the Microsoft Azure Pub-
lic Cloud. As shown in Fig. 4, these are present on 
different Virtual Machines (VMs) that are segre-
gated based on their workload (service endpoint, 
data management, analytics), and their security 

zone (Internet, Intranet, and internal). We 
describe these backend capabilities next.

3.2.1  Internet-Facing Services

A suite of REST service Application Program-
ming Interface (API) is defined for the GCG App 

Virtual Machines (VMs): A 

Virtual Machine (VM) is a 

computing environment that 

provides all the function-

alities of a full computer, 

but executes within another 

computer. A VM is the typical 

unit of renting a computer 

in public clouds. VMs help 

divide a single large computer 

or server in the cloud into 

multiple smaller computers, 

and the VMs are indepen-

dently rented to different 

users.

Public Cloud: Public Cloud is 

an Internet-based service that 

allows users to rent and access 

remote computation, storage 

and software capabilities 

that are hosted at large data 

centers offered managed by 

service providers like Micro-

soft, Amazon, and Google. It 

reduces the cost and effort in 

managing physical computing 

infrastructure at an organiza-

tion, and at a higher reliability 

and scalability.6 Information for the public, World Health Organization, 
https ://www.who.int/weste rnpac ific/emerg encie s/covid -19/
infor matio n.
7 COVID Gyan, TIFR and IISc, https ://covid -gyan.in/.
8 Indian Scientists’ Response to CoViD-19.https ://indsc icov.
in/.

9 Services overview, Google Developers https ://devel oper.
andro id.com/guide /compo nents /servi ces.

https://www.who.int/westernpacific/emergencies/covid-19/information
https://www.who.int/westernpacific/emergencies/covid-19/information
https://covid-gyan.in/
https://indscicov.in/
https://indscicov.in/
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
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to interface with the backend, to upload data and 
to download analytics and alerts. The REST ser-
vices are implemented using Java Servlets run-
ning on Apache Tomcat Web Server, and their 
service endpoints are accessible on the Internet. 
These APIs include register device, add proximity 

contacts, add GPS, add liveliness, get notifications, 
and fetch analytics. Most use JSON as the REST 
body, except add contacts which uses a binary 
protocol.

The register device API accepts an invitation 
code from the app, checks a MariaDB table if the 
code is present, not expired and not yet used, and 
if so, generates a random device UUID, a ran-
dom PIN and a unique ID for the user, which 
are returned back to the app. These mappings, 
as described earlier, are maintained in MariaDB. 
The phone number, if provided, is salted, hashed, 
and stored in the database for comparison in 
the future if a user reinstalls the app. The num-
ber is also asymmetrically encrypted and stored 
in the database, so that it can be decrypted upon 
authorization by the institution’s advisory board, 
if needed. The decryption key is store securely 
off-cloud to prevent accidental breaches.

The add contact API is most frequently 
invoked, once every 15 mins by potentially 
1000’s of users. To avoid the power, compute, 
and network overheads of de/serializing JSON, 
we use an alternative binary format. It starts 
with 16 bytes of the source device ID, followed 
by a series of scan records, one per scan. Each 
record starts with 4 bytes of UNIX epoch time in 
seconds with the scan record’s timestamp. The 
next 1 byte indicates the number of device con-

tacts ‘n’ in that scan, followed by 17 × n bytes 
having the 16 byte device ID and 1 byte RSSI 

value for the n proximate devices. If more than 
n = 255 devices are found in one scan, the app 
creates multiple scan records. Records are cre-
ated and sent by the app even if there are no 
proximate devices, since this information is 
also useful. As mentioned before, beacons are 
also encoded as device IDs following a standard 
UUID template.

Intuitively, each record forms an adjacency list 
for the contact graph. The binary records from 
service calls from all users are appended to a file 
and every 2 h, a pre-processing service fetches 
these binary files and generates a corresponding 
CSV file with an edge list consisting of the times-
tamp, source device ID, sink device ID, and RSSI. 
This CSV file is backed up to Azure BLOB store 
and, as discussed later, stored on HDFS for fur-
ther analytics.

Add GPS is the next frequently called API, 
every 5 mins, for users who choose to share their 
GPS location. These data are used to generate a 
device density heatmap of the user’s neighbor-
hood for the recent past, and potentially for con-
tact tracing. To support such spatio-temporal 
queries, we use the InfluxDB temporal database to 
store the GPS data. One copy of the latitude and 
longitude is asymmetrically encrypted and stored 
in InfluxDB, along with the timestamp, to sup-
port authorized contact tracing. Another copy is 
transformed using a GeoHash44 of 7 characters, 
which reduces the precision of the location to a 
150 m × 150 m grid. When generating the heat-
map for the app user’s current location, we query 
over this GeoCode.

The app communicates hourly device health 
data using the add liveliness API, as a set of key-
value pairs that has evolved over app versions. As 
a result, we store these data within Azure Cosmos 

DB, which is a NoSQL database. These data are 
later queried for identifying devices that are not 
reporting Bluetooth data reliably for send-
ing alerts with possible fixes, and also for moni-
toring the overall status of the GCG deployment 
at an institution.

Alerts are sent to the app using a custom 
notification service in the backend that the app 
polls every 5 mins. This approach was initially 
chosen over Google or Apple’s push notifications 
to reduce the dependence on external services. 
Alerts that are generated by various analytics are 
inserted into a MariaDB table with the device ID, 
title, content, type, and validity time range. When 
an app polls the service, any pending alerts for 
that device are returned. Besides displaying alerts 
to the user, they may also have a special payload 
that triggers changes to the UI, such as updating 
the social distancing score on the main screen.

User-level analytics such as displaying their 
contact network and other analytics such as the 
user density are sent to the app as HTML that is 
locally rendered. The app invokes a get analyt-

ics API, which returns a JSON containing a list 
of current endpoints that serve the analytics. 
The plots and maps are served off an Apache 2 
instance. Separately, we also run our own Open 
Street Maps tileserver for serving the map tiles.

These external-facing services are hosted on 
a separate set of VMs over which the services are 
distributed based on their workload and to avoid 
performance interference. These VMs are shown 
in orange in Fig. 4. We use one Azure D2s v3 VMs 
to host the register device, add GPS, and add live-

liness endpoints, a second one that exclusively 
runs the add contact, and another to run the get 

GeoHash: GeoHash is a 

mechanism to encode a loca-

tion in the form of a compact 

sequence of alphabets and 

numbers that are easy to 

remember, compared to lati-

tude and longitude. Typically, 

longer hashes offer a higher 

precision of the location.

Application Programming 

Interface (API): Application 

Programming Interface (API) 

is a description of the input 

and output parameters that 

are received and returned 

when accessing a capability 

offered by an application.
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notifications service; the latter two see a higher 
load. The tileserver for displaying open street 
maps, which is only occasionally used, runs off 
an Azure B2S VM, while the analytics are served 
from an Azure D2s v3 VM. A separate Azure D4s 
v3 VM hosts MariaDB and InfluxDB used by 
these services.

3.2.2  Internal Services

Besides the Internet-facing services, there are 
internal services to support the GCG platform. 
These are used to host an operations portal to 
oversee the health of the system, on-boarding of 
devices, and visualize the contact network. The 
portal does not directly access any user database 
or files to prevent accidental access to or modifi-
cations of the raw data. Instead, a separate routing 

service offers a limited set of well-defined services 
to access authorized data. These APIs are periodi-
cally called and the results are cached in a sepa-
rate MariaDB instance used by the portal. The 
portal and its database are also hosted on separate 
VMs, shown in yellow in Fig. 4. This sandboxing 
also extends to the analytics services, which too 
do not directly access the user databases for send-
ing alerts or generating visualizations, but operate 
through this routing API.

For example, the liveliness data are fetched 
every 15 mins through this routing service from 
Cosmos DB and into MariaDB for the portal to 
visualize the number of scan records received and 
scans failed among the apps, while the device reg-
istration summary is fetched through the API to 

plot the users on-boarded over time, distribution 
of their device make and models, etc.

3.2.3  Securing the Backend Platform

Ensuring the security of the services and the 
data collected by the GCG platform is of para-
mount importance and is intrinsic to various 
design and deployment choices. All the REST 
endpoints use HTTP/2 with HTTP Strict Trans-

port Security (HSTS), which forces the use of a 
Transport Layer Security (TLS 1.2/SSL) encrypted 
channel between the GCG App and the backend 
and prevents man-in-the-middle attacks.

Further, all service calls are authenticated 
based on a device key that is returned to the 
app during registration. To ensure that this ser-
vice call authentication is light-weight, we use 
a digital signature protocol, which ensures that 
each call can be locally validated, without the 
need for any database (Fig. 5). Specifically, the 
device key is generated by the backend service 
as key = base64(SHA256(device ID, 

salt)), where salt is a secret phrase known 
only to the service. The GCG App encrypts and 
stores this device key on the phone. Subse-
quently, when invoking any backend service, the 
app sends its device key, the current timestamp, 
and a signature, which consists of sign = 

base64(SHA256(device ID, times-

tamp, device key)) as part of its HTTPS 
header or body. The service then uses the received 
device ID to generate the device key on the fly, 
and additionally uses the timestamp to gener-
ate the signature. It also verifies if the timestamp 

REST: Representational State 

Transfer (REST) is a software 

architecture that allows 

desktop and mobile clients to 

interact with Internet services 

by passing requests and re-

ceiving responses, using web 

standards such as HTTP and 

data models like JSON.

Figure 4: Backend VMs, services and databases, and their interactions.
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passed is recent, for mitigating replay attacks. If 
the generated signature matches the received sig-
nature, the request is valid and is executed. Note 
that all of these are flowing over an encrypted 
HTTPS channel.

Various other best security practises are used. 
The register device service takes measures to miti-
gate brute-force attacks using random invitation 
codes and PINs by limiting the number of daily 
attempts. Internal services such as the portal are 
only accessible from the institution’s private net-
work, over VPN, and are additionally secured 
using authentication. Firewall rules are used to 
restrict access to unused ports. Direct SSH access 
is not available to any VMs running services or 
the database. The Internet-facing VMs are in a 
separate subnet from the ones hosting the data-
bases and internal services on Azure to keep the 
networks in different security domains. Data 
flows between the services and databases/stor-
age are tightly controlled and a routing service 
used for internal services. We run the latest sta-
ble release of all software and the latest security 
patches to protect against known security flaws.

The MariaDB SQL database follows the 
principle of least privileges for access, and only 
minimal permissions for SELECT or SELECT/
INSERT are given to user accounts. User-defined 
functions are disabled. All queries are templatized 
to avoid SQL code injection. Sensitive data such 
as phone number and location are kept hashed 
and/or encrypted when stored. This prevents pri-
vacy from being compromised even if there is a 
cloud security breach and the data are leaked. We 
use asymmetric public-private keys so that only 
public keys are hosted on the VM for encryption 
and private keys for decryption are kept securely 
offline. Contact data are backed up to Azure 
encrypted BLOB storage.

The backend services have undergone profes-
sional vulnerability and penetration testing by 
Crossbow Labs.10

4  GCG Analytics and Contact Tracing

The GCG App is designed to provide feedback 
to users on their daily interactions using simple 
metrics and contact neighborhoods. Addition-
ally, to improve user engagement, the app also 
provides heatmaps of user density and charts 
and maps that show the COVID-19 situation in 
various states and districts around the country. In 
this section, we describe these features along with 
the contact tracing protocols that are in place if 
an app user tests positive.

4.1  Temporal Network Analytics

4.1.1  Creating Temporal Graphs

We receive contact records from various 
devices that contain the contact timestamp and 
associated Bluetooth signal value. For efficient 
primary and secondary contact tracing, we peri-
odically stitch these contact records to create a 
global contact network graph. Further, we anno-
tate the edges with the contact timestamps and 
signal values to creating a temporal contact net-

work or a Temporal Graph.

We use Apache Spark to perform this stitch-
ing from the CSV edge file, as a pre-processing 
step. Specifically, we create an interval graph for 
scans received during a specific time interval. The 
Spark application takes a start and end time for 
the interval, and then filters in all the edge list 
entries in the input CSV file whose timestamp 
falls within this time interval. It then groups all 
edges by their source and sink vertices to create 
an adjacency list for each vertex that includes 
all scan entries from either source or sink edges. 
Every edge is characterised by a time interval 
[ts, te) , where ts is the earliest scan timestamp and 
te is the latest scan timestamp between the con-
necting devices, during that interval. Scans on an 
edge that fall on adjacent time points with the 
same RSSI value are combined to form longer 
intervals on the edge annotations. This gives a 
set of disjoint sub-intervals on the edge with an 
associated Bluetooth signal strength. The output 
is stored in HDFS for future analysis.

Temporal Graph: Like a regu-

lar graph, a Temporal Graph 

(or Temporal Network) is a 

collection of vertices and edges 

between vertices that indicate 

a relationship between them. 

But the vertices and edges 

that exist at different points in 

time may vary, and their at-

tributes may also change over 

time. E.g., temporal graphs 

model interactions in a social 

network, traffic flow in a 

road network and proximity 

contacts in a contact tracing 

network.

Figure 5: Signing service requests using device key.

10 Crossbow Labs, https ://cross bowla bs.com/.

https://crossbowlabs.com/
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Figure 6 is an example interval graph obtained 
for a 24-h time period. The interval has scan 
records for 4 devices A–D, for 8 contiguous time 
periods. Consider devices A and C, which come 
in contact 3 times with the earliest contact time 
being 9 AM and the last contact time being 
10 PM. The edge between A and C will thus span 
the time interval [9 AM, 10 PM). This is fur-
ther broken into sub-intervals: [9 AM, 10 AM), 
[10 AM, 6 PM), [6 PM, 7 PM), [7 PM, 9 PM), 
and [9 PM, 10 PM), with corresponding sig-
nal strengths of −80 , −∞ , −70 , −∞ , and −100 , 
respectively. A signal of −∞ means the devices 
could not see each other, such as devices A and C 
between [10 AM, 6 PM) and [7 PM, 9 PM).

4.1.2  Social Distancing Scores

The social distancing score provides users with a 
measure of their extent of social distancing, on a 
daily basis. Unlike the local Bluetooth data used 
to plot the contact counts on an hourly basis 
within the app, the social distancing score uses 
more global knowledge from a device and its 
neighbors. In particular, it accounts for “back-
ground devices” that are often or always in the 
vicinity, such as family members or hostel room 
neighbors, and which are subtracted from this 
score as their sustained presence does not pose 
any additional risk.

These scores are calculated using Apache 
Giraph once a day, over the interval graph cre-
ated for the preceding 24-h period. The score 
calculation depends on three parameters: signal 
threshold (δ) , minimum contact duration (φm) , 
and background contact duration (φb) . For each 
device ID, we first identify those neighboring 
devices that could detect each other for at least 
φb mins , cumulatively, during the 24-h period. 
These neighbors form the background devices 
and are eliminated from further analysis. Cur-
rently, we use φb = 240mins.

Next, from the remaining neighbors, we retain 
only the RSSI entries which exceed a value of δ on 
their edge sub-intervals. This helps identify the 
duration of nearby contacts with them. Based on 
experiments described in the next section, we set 
δ = −78 , which approximates a distance of 2 m. 
We sum up the duration of nearby contacts for 
each edge, and those whose duration is greater 
than φm mins form the proximate contacts, p. 
We set φm = 15mins by default. Intuitively, this 
means that the user has interacted with p other 

devices in close physical proximity of about ≤ 2m 
for a cumulative of 15 mins or more in the past 
24 h, but who are not part of the sustained back-
ground presence. From this, the social distancing 
score for a device is calculated as max{0, 10 − p} . 
This normalization offers a higher score for users 
who practise social distancing and a lower score 
for the others.

In the example snapshot, assume that 
δ = −60 , φm = 30mins and φb = 180min . For 
the device C, devices B and D are proximate con-
tacts since their close contact durations are 1 h 
and 2 h, respectively. However, A is not a proxi-
mate neighbor of C since it is a part of its back-
ground, having been detected for a total of 3 h. So 
the social distancing score of C is 8.

4.2  Translating RSSI to Distance 

Measures

The SARS-CoV-2 virus is currently assumed to 
spread by ‘contact and droplet’ as well as airborne 
transmission 3. WHO and various countries have 
provided social distancing advisories that empha-
size a minimum spacing of 1–2 m for curbing the 
spread of the virus1, 3, 8, 22, 23. Being able to nudge 
users to maintain such distancing is one of the 
goals of the GCG App.

However, inferring distances accurately from 
Bluetooth RSSI values is non-trivial. Factors such 
as smartphone hardware variations, body inter-
ference, and multi-path interference lead to both 
false-positives and false-negatives while estimat-
ing the distance from RSSI values 26, 60.

Researchers elsewhere have conducted experi-
ments to understand if contact tracing apps can 
estimate if two users are close to each other, i.e., 
within a distance of 2 m for 15 mins or longer40. 
These were performed with Google Pixel 2 and 
Samsung Galaxy A10 devices using the Open-
Trace App,11 an open-source version of Singa-
pore’s TraceTogether App54. They used different 
environmental conditions such as signal attenu-
ation by the human body, a handbag, walls, etc. 
and also by enacting real-world scenarios. The 
measured RSSI and the distance are plotted over 
time to understand the variability for differ-
ent configurations and their relationship to the 
ground truth.

Another Smart Contract Tracing (SCT) Sys-
tem46 uses machine learning classifiers to classify 

11 OpenTrace, https ://githu b.com/opent race-commu nity.

12 Exposure Notifications BLE RSSI calibration procedure, 
Google Developers, https ://devel opers .googl e.com/andro id/
expos ure-notifi cati ons/ble-atten uatio n-proce dure.

https://github.com/opentrace-community
https://developers.google.com/android/exposure-notifications/ble-attenuation-procedure
https://developers.google.com/android/exposure-notifications/ble-attenuation-procedure


638

Y. Simmhan et al.

1 3 J. Indian Inst. Sci.| VOL 100:4 | 623–646 October 2020 | journal.iisc.ernet.in

the contacts as high/low risk using the Bluetooth 
RSSI values. They perform experiments to collect 
RSSI from a Nokia 8.1 with Android 10 and HTC 
M9 with Android 7.0 for distances ranging from 
0.2–5 m, and for random device orientations, 
and at different locations such as hand, pocket, 
and backpack. The collected data are labeled as 
+1 (high-risk, ≤ 2m ) or −1 (low-risk) accord-
ing to the ground truth. They filter the data using 
a moving average filter before training using 
machine learning classifiers like decision tree, lin-
ear discriminant analysis, naïve Bayes, k nearest 
neighbors, and support vector machine.

The Google–Apple Exposure Notification API 
in Android also applies BLE calibration correc-
tions based on manual measurement of the signal 
strength under standard conditions.12

Given the hardware diversity we observe 
among our campus population, we conduct simi-
lar lab-scale experiments, as described, using a 
more diverse number of smartphones and bea-
cons. We evaluate the effect of RSSI at 1, 2, and 
4 m distances to help us determine whether two 
phones are within 2 m.

4.2.1  Experiment Design

We use a debug version of the GoCoronaGo 
Android and iOS apps that log the Bluetooth scan 
information to a local file on the smartphone in 
our experiments. The experiment was performed 
in an open room measuring about 5 × 5m with 
few furniture, mimicking a real-world environ-
ment. Our experiment uses 9 Android devices, 
2 iPhones, and 3 Bluetooth Low Energy (BLE) 
beacons running both stock and custom Android 
OSes: Motorola Moto G6 (Android v9), two 
Motorola Moto G5S Plus (v8.1), Xiaomi Mi A3 
(v9), Xiaomi Redmi Note 8 (Android v9, MIUI 
v11.0.2), Samsung Galaxy M31 (Android v10, 
One UI Core 2.0), Samsung Galaxy S9+ (Android 

v10, One UI 2.1), OPPO A1K (Android v9, 
ColorOS v6.0.1), and Vivo Y91i (Android v8.1, 
Funtouch OS v4.5), iPhone 7 (iOS v13.5) and 
iPhone XR (iOS v13.6). The BLE beacons from 
TechoLabz use the iBeacon protocol and transmit 
at −3 dBm at 1 s advertising intervals.

All the devices were used at a high battery 
level, with power-saving modes disabled and 
screen set to stay on for as long as possible while 
performing the Bluetooth scans. Each experi-
ment configuration was performed for a period 
of 10 mins to give ≈ 10 RSSI measurements per 
device pair in that configuration. Given the tech-
nical limitations of iOS, Android devices can 
detect other Android devices and the Beacons, 
and iPhones can detect the Android devices. Con-
sidering these factors, two experimental setups 
were designed to collect the RSSI data as illus-
trated in Fig. 7.

For the distance a = 1m , we use a hexago-
nal placement, as shown in Fig. 7a, with pairs of 
devices at the vertices, A, B, C, D, E, F, and the 
center, G. These give us devices at distances of 
0 m (same vertex); 1 m, between adjacent vertices, 
e.g., A–B; 2 m, between vertices at diagonal cor-
ners, e.g., A–D; and 

√

3m for vertices that are two 
hops away, e.g., A–C. Three runs with the hexago-
nal setup are required to ensure that every pair of 
devices is measured at a 1 m distance.

For distances a = 2m and 4 m the devices 
were arranged in three clusters, A, B, C, at the 
corners on an equilateral triangle with a side of 
length a (Fig.  7b). In each cluster, the devices are 
placed vertically and adjacent to each other, in 
a row. Devices across clusters are separated by a 
distance a while those within a cluster have a dis-
tance of ≈ 0m . Three runs of the triangular setup 
with different clusters are performed to ensure 
that we get the RSSI for each pair of devices at 
2 m and 4 m.
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Figure 6: Sample scan records for an interval and the corresponding interval graph.
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4.2.2  Modeling Proximity Distances Using RSSI 

Values

A key rationale for this study is to understand 
if two devices are within 2 m of each other or 
not, as we use the 2 m distance as the proximity 
threshold in our platform. A total of 1988 RSSI 
data points at 1 m, 2865 data points at 2 m, and 
2321 data points for 4 m are collected. We focus 
our analysis on just the Android phones, which 
form the bulk of our deployment. There are 
1073, 1746, and 1377 data points for 1, 2, and 
4 m between the Android devices, respectively. 
For each distance and a device pair, we drop the 
maximum and minimum RSSI values to elimi-
nate outliers.

An empirical Cumulative Distribution Func-
tion (CDF) of the RSSI values at 1, 2, and 4 m 
are shown in Fig. 8a. The X-axis shows the RSSI 
values, while the Y-axis lists the corresponding 
percentiles for different distance configurations. 
We see that there is a substantial overlap between 
data points at the three different distances for a 
given RSSI. For example, for an RSSI of ≤ −75 , 
we have 23% of the 1 m data points, 54% of the 
2 m data points, and 84% of the 4 m data points 
fall within that signal strength. So, using any sin-
gle threshold value of RSSI as an estimate for a 
2 m distance is liable to result in both false posi-
tives and false negatives.

For this preliminary study, we wish to deter-
mine an RSSI value that is the most discriminat-
ing with regard to the ≤ 2m and > 2m proximity. 
So for each RSSI value, we plot the difference in 
the percentile of data points that are at 2 m and 
at 4 m distances, and this is shown in Fig. 8b. 
The peak difference is observed at an RSSI value 
of −78 , i.e., the difference between the true posi-
tive of 2 m (59%) and false positive of 4 m (29%) 
is the highest. Hence, we use an RSSI of −78 as 

the proximity threshold in our GCG app and the 
backend analytics.

In the future, we propose to study the effect 
on RSSI from different pairs of phone models and 
in different environmental conditions in order to 
develop a more customized proximity threshold, 
instead of using a single global value that is cur-
rently adopted.

4.3  Contact Tracing Protocol

When an app user tests positive for COVID or is 
under mandatory quarantine, the current proto-
col at IISc requires the campus health center to 
check if the user is willing to share their contact 
data for tracing. If so, they are asked to enter their 
phone number within the GCG App, if not done 
so. The health center collects and enters the GCG 
unique id, device id suffix, and phone number 
from the user into a portal. This initiates a call 
to the GCG backend and triggers an OTP to the 
user’s phone number, if the details match with an 
existing user. The user may share this OTP with 
the health center and this serves as their informed 

consent for contact tracing.
The health center enters the OTP and any 

additional details about the subject, such as 
symptoms, start and end dates for contact trac-
ing, and test information. The GCG backend con-
firms if the OTP is accurate, and if so, the request 
is forwarded to the advisory board to get the pri-
mary and secondary contacts for this user. The 
advisory board has representatives from the insti-
tute, including faculty, staff, students, doctors, 
and a bio-ethicist.

If the board approves the request through 
their portal, the GCG backend is notified and it 
will perform a time-respecting breadth first search 

Breadth First Search (BFS): 

Breadth First Search (BFS) is 

a graph algorithm designed 

to visit all vertices that have a 

path from a particular source 

vertex. It begins by visiting the 

immediate neighbours of the 

source vertex, proceeds to visit 

the immediate neighbours of 

the newly visited vertices if 

they are unvisited, and so on.

(a) (b)

Figure 7: Experimental setup for collecting RSSI values at fixed distances.
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(T-BFS), which is a variant of Breadth First 
Search (BFS) performed over the temporal con-
tact graph. The T-BFS will be initiated from the 
device ID corresponding to the given user’s 
unique ID and for the time duration in the past 
indicated by the health center. If the user’s unique 
ID is associated with multiple devices during this 
period, the search will be initiated from each of 
these IDs. The output is a list of device ids for the 
primary and secondary contacts. We then use the 
invitation code, unique ID and device ID map-
pings maintained in the GCG backend to get the 
list of invitation codes used by the primary and 
secondary contacts.

These invitation codes are shared with the IT 
staff, who then use their mapping table to de-
anonymize them and provide the health center 
with a list of email IDs and/or phone numbers of 
these contacts. The GCG backend also provides 
the duration of contacts for each of the invite 
codes. The health center can then choose to ini-
tiate their relevant protocols for reaching out to 
these contacts, and quarantine or test them. If 
mandated by law, the health center may share 
the contact trace data with the local government 
agency responsible for COVID-19 surveillance.

4.4  Other Analytics and User 

Engagement

Besides the local analytics within the app, we also 
provide additional analytics to the GCG user 
based on aggregation in the backend.

Figure 3d shows a heatmap of GCG user count 
in a 1.5 × 1.5 km area around the current loca-
tion of an app user, if they share their GPS loca-
tion. It is aggregated over the past 24 h from users 
who share their GPS data. These data are queried 
from the timestamp and geohashes present in the 

InfluxDB backend. In order to respect privacy, the 
location data are spatially coarsened into tiles of 
approximately 150m × 150m , and temporally 
coarsened over 24 h, and only the aggregate count 
of users in each tile is shown. Also, when few 
users are present in a tile, we display these data in 
a categorical manner, e.g., < 5.

The contact graphs that are constructed in the 
backend can be visualized using tools such as 
Gephi. Figure 9 shows a subset of the temporal 
graph generated for a single day. Here, the size of 
a node depends on its degree Centrality Measure 
across the entire time duration. The thickness of 
the links depends on the duration of their 
contact.

While such a graph is instructive for backend 
analytics, we use it to generate a neighbourhood 

tree for each user, as shown in Fig. 3e. The tree is 
based on the last 48 h of data and contains con-
tacts up to two hops. Importantly, this is a tree 
and not a neighborhood sub-graph to preserve 

privacy, i.e., edges between the 1-hop and 2-hop 
neighbors are not shown to avoid revealing con-
tact patterns between them. These trees are gen-
erated on a daily basis. It helps the users get a 
sense of not just their primary contacts, but also 
their secondary contacts, which could be much 
larger, and in-turn motivate users to take greater 
precautions by socially distancing.

5  Discussion

5.1  Deployment Experience

The GCG App is currently deployed at the Indian 
Institute of Science (IISc), Bangalore. The IISc 
campus is an access-controlled residential cam-
pus with close to 4000 students, over 450 faculty, 

Centrality Measure: Central-

ity Measure is a graph-theo-

retic score that measures the 

relative importance of vertices 

in their ability to spread or 

influence other vertices in the 

network. Examples of these 

measures include degree, be-

tweenness, Eigenvalue, close-

ness centrality, Page Rank, 

etc. They are used to identify 

important or critical vertices 

in contact networks, social 

networks, WWW graphs, road 

networks, etc.

Figure 8: Distribution of RSSI at different distances for the Android phones.
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and over 2000 research and administrative staff. 
A majority of the students and faculty live on 
campus. However, IISc entered a full shutdown in 
March, 2020, a few days ahead of a nation-wide 
lockdown in India, and the students on campus 
were instructed to leave for their homes. Initial 
versions of the app were tested among faculty vol-
unteers during the lockdown period. The GCG 
App was first rolled out to students in June, 2020 
after a subset of them were allowed to re-enter 
campus, and subsequently to other faculty and 
staff.

At the time of writing this paper, the GCG 
App has been installed by over 1000 users at IISc. 
A plot of the number of installations of the GCG 
App over time is shown in Fig. 10. Sharp jumps 
in installations correspond to new invitations or 
reminders sent to students, faculty, and staff for 
installing the app. The app is yet to be rolled out 
to essential workers such as hostel cooks, clean-
ing staff, and security personnel, and noticeably, 
some of the early cases of COVID-19 on campus 
have been initiated through them. This is under-
standable since many of them stay off-campus 
and possibly have a larger mobility footprint, 
increasing their risk of acquiring the coronavirus.

While the GCG Android App was initially 
hosted on the IISc website due to restrictions 
by Google and Apple in hosting COVID-related 
apps on their online app stores, it has recently 
received approval to be hosted on the Google Play 
Store, with v0.5 currently available there since 

early August, 2020. An ad hoc iOS version is also 
being tested since the last week of August, 2020.

5.2  Federated Deployment

While GCG is designed for institutional use, con-
tact tracing for users from the same institutions 
who interact outside the campus is also captured. 
This benefit can be further enhanced through a 
federated deployment for institutions that are 
spatially close to each other, such as a cluster of 
college campuses and software tech-parks in the 
same neighborhood. Here, the chances of physical 
interaction between users from different organi-
zations are high, e.g., visiting the same local caf-
eteria or grocery store.
In this federated deployment (Fig. 11), individual 
institutions would maintain their independent 
GCG deployments. But in addition, they would 
share the strictly anonymized contact graph for 
their institution with a trusted data broker, such 
as a non-profit agency or a neutral university. 
This data broker would then stitch these graphs 
together based on contacts between unique 
device ids that span graphs from different insti-
tutions. This can then be used to trigger “glocal” 
analytics—a global combination of local clusters 
that are near each other—and share more accu-
rate proximity scores with the users of individual 
institutions, as well as perform more effective 
contact tracing across institutions in the same 
community. A key requirement to preserving 
privacy is that no personal data should be shared 
with this trusted broker, and any de-anonymiza-
tion for contact tracing should strictly be handled 
at the local institution.

This can further be complemented through 
the use of national or regional-scale contact trac-
ing apps, even if used by a smaller fraction of 
users who are mobile. This can help link clusters 
of GCG contacts within institutions, and allow 
with contact tracing beyond the institutional 

Figure 9: A visualization of the contact graph of 

a subset of app users for a single day. The size of 

the nodes is proportional to their degree central-

ity.

Figure 10: Number of GCG installations at IISc 

over time.
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premises as well. However, care should be taken 
to sandbox the regional and institutional datasets 
to avoid privacy loss.

5.3  Research Opportunities

The availability of fine-grained contact trac-
ing data has opened opportunities for new 
research on infection spreading. Classic epidemi-
ological models are compartmentalized formula-
tions that classify the population into different 
states such as S (Susceptible), E (Exposed), I 

(infected), and R (removed/recovered). Based on 
the progression patterns of a disease, different 
models such as SI, SIS, SIR, and SEIR models12, 14, 

35, 36 have been proposed. These models are appli-
cable to large populations and can estimate the 
time evolution of the fraction of individuals in 
different states over time and can identify the 
peak number of infections for different Repro-
duction Numbers. The assumptions in these 
models are, however, coarse and their utility is 
hence limited. They can be used to take higher-
level policy decisions such as deciding the dura-
tion of lockdowns, planning hospital bed-capacity 
over time, etc. However, the input data for these 
models are tightly related to the testing rates, 
which in the case of COVID-19 was very low dur-
ing the initial few months.

Research in the past two decades has extended 
such compartmentalized models to static or time-
varying contact networks30, 58, 59, 61. In a static 
network, a node, if infected, can potentially infect 
any other nodes that it comes in contact with, 
regardless of the time of contact. But in dynamic 
networks, temporal ordering is preserved. That is, 
if an individual A comes in contact with a person 
B before B and C interacted, then A faces no risk 
from C. This can correct for the over-prediction 
of infection rates from static models. With Blue-
tooth-based mobile contact tracing, it is possi-
ble to include both duration of contact and the 

Reproduction Number: 

Reproduction Number R0 of 

a pandemic is the number 

of individuals expected to 

be infected in a population 

as a direct result of a single 

person being infected, when 

all the other individuals are 

susceptible to the disease, i.e., 

have not been vaccinated or 

have not already acquired the 

disease.

signal strength, which is a proxy for the distance 
between the phone users during their interac-
tion, to make better predictions of the transmis-
sion rates. Results from simulated experiments by 
Kretzschmar et al.38, indicate reduced reproduc-
tion numbers when contact tracing is performed 
using mobile apps as the delay in alerting vulner-
able individuals is reduced to a minimum. Apart 
from identifying primary and higher-order con-
tacts quickly, contact data allow us to identify the 
most vulnerable users through either simulations 
of network models assuming hypothetical initial 
conditions or centrality measures. Most centrality 
scores from network science are defined on static 
graphs, and it would be interesting to develop 
better centrality measures that can be used to find 
the nodes with higher spreading capabilities in a 
temporal network. Identifying such individuals 
can in-turn be used to device adaptive testing and 
vaccination strategies, which can help improve 
the estimates of the health states of the popula-
tion, especially when testing is expensive, or its 
availability is limited.

Another major opportunity with centralized 
contact tracing is the ability to influence social 
distancing behavior using alerts and scores. Cre-
ating control groups and providing such infor-
mation to one of them and observing their 
contact patterns for a limited subsequent period 
can throw light on the effect of such scores. Such 
randomized control trials can help quantify the 
effectiveness of contact tracing apps even in the 
absence of COVID-19 case data.

5.4  Challenges

One of the key challenges with digital contact 
tracing is user adoption. As highlighted in Sect. 2, 
digital contact tracing requires a large fraction 
of users within the community to use it before 
it becomes effective. Having only a small sam-
ple of individuals use the app makes it difficult 
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Figure 11: Federated deployment of GCG across Institutions.
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to identify the true sources of infection, because 
of which paths between infected individuals and 
their primary and higher-order contacts may go 
undetected.

However, our experience with institutional-
level contact tracing appears more promising 
than that employed by governments at a national 
level in terms of the fraction of users installing 
an app and the duration for which they had it 
installed on their phones. In fact, recent reports 
indicate that even 15% of user adoption of con-
tact tracing apps can have a meaningful impact 
of 6–8% reduction in COVID infections and 
death10. That said, not all workplaces are captive 
environments. In such cases, neighborhood or 
regional deployments of contact tracing apps may 
be required since they are more likely to interact 
with people outside their cluster. Further, people 
may also interact during activities outside work-
places and their institutional contact tracing app 
can be ineffective during these periods.

We frequently observe app users turn off their 
Bluetooth or GPS, because of which the contact 
trace data collected are curtailed. Users may do 
so to save battery—even though our experience 
shows that the Android app consumes less than 
10% of batter in an entire day—or when they 
perceive a lower risk based on their current activ-
ity and environmental conditions. These factors 
can dramatically offset the promises offered by 
network-based epidemiological models in identi-
fying risk-prone individuals and in contact trac-
ing to contain the spread of infection. It is also 
extremely difficult to impute such missing data 
and no assumption can be confidently justified.

Although digital contact tracing apps have 
several potential advantages, validating its use-
fulness is tough. The difference between the two 
approaches can be best demonstrated when there 
are COVID positive app users who have shared 
data for continuous periods. In practice, it is wise 
to use data from such tools in conjunction with 
manual contact tracing since there would be gaps 
in data due to user behavior or technology limi-
tations. Building robust epidemiological models 
is all the more challenging because they contain 
several parameters that have to be calibrated from 
sparse and missing data. Heavy reliance on digi-
tal contact tracing apps can also exclude fractions 
of the community who use feature phones. Visi-
tors to institutions such as delivery providers can 
also be missed out but can contribute to virus 
spreading.

Digital contact tracing is still in its infancy. 
It is important that individuals understand the 
data shared, risks, and benefits before fully using 

such apps. Communicating these details to a lay 
audience can be challenging and misconceptions 
about what such apps collect and can do are not 
uncommon.

6  Conclusions

In this article, we have described the various 
dimensions of digital contact tracing for man-
aging the COVID-19 pandemic. We have high-
lighted the approaches taken by diverse apps 
globally and their pros and cons. We have pro-
posed GoCoronaGo as an institutional contact 
tracing app, whose design choices attempt to bal-
ance the privacy of individuals with the safety of 
the community in performing rapid multi-hop 
contact tracing. We have offered a detailed tech-
nical description of the GCG App, its backend 
services, and analytics. This platform is currently 
being validated at the IISc university campus, 
with additional campus deployments under-
way. We have shared our early experiences with 
the deployment over the past few months, in the 
midst of the COVID-19 epidemic, and the oppor-
tunities and challenges that lie ahead. Given the 
evolving nature of COVID-19, our continued 
experience with this contact tracing platform 
at IISc and other campuses can serve as a role 
model, or a cautionary tale, in managing the pan-
demic in the ensuing months and years.
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