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Gödel's Incompleteness
Phenomenon�Computationally

Saeed Salehi

University of Tabriz & IPM (Iran)

Résumé : Nous soutenons que le théorème de complétude de Gödel est équi-
valent à la complétabilité de théories consistentes, et que son théorème d'in-
complétude est équivalent au fait que cette complétion n'est pas constructive,
en ce sens qu'il existe des théories consistantes et récursivement énumérables
qui ne peuvent être étendues à aucune théorie complète et consistente et récur-
sivement énumérable. Toutefois, n'importe quelle théorie consistente et déci-
dable peut être étendue à une théorie complète, consistente et décidable. Donc
la déduction et la consistence ne sont pas décidables en logique, et un analogue
du théorème de Rice est valable pour les théories récursivement énumérables :
toutes leurs propriétés non-triviales sont indécidables.

Abstract: We argue that Gödel's completeness theorem is equivalent to
completability of consistent theories, and Gödel's incompleteness theorem is
equivalent to the fact that this completion is not constructive, in the sense that
there are some consistent and recursively enumerable theories which cannot be
extended to any complete and consistent and recursively enumerable theory.
Though any consistent and decidable theory can be extended to a complete
and consistent and decidable theory. Thus deduction and consistency are not
decidable in logic, and an analogue of Rice's Theorem holds for recursively
enumerable theories: all the non-trivial properties of them are undecidable.

1 Introduction

The incompleteness theorem of Kurt Gödel has been regarded as the most
signi�cant mathematical result in the twentieth century, and Gödel's com-
pleteness theorem is a kind of the fundamental theorem of mathematical logic.

Philosophia Scientiæ, 18(3), 2014, 23�37.
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To avoid confusion between these two results, it is argued in the literature
that the completeness theorem is about the semantic completeness of �rst or-
der logic, and the incompleteness theorem is about the syntactic incomplete-
ness of su�ciently strong �rst order logical theories. In this paper we look
at these two theorems from another perspective. We will argue that Gödel's
completeness theorem is a kind of completability theorem, and Gödel-Rosser's
incompleteness theorem is a kind of incompletability theorem in a constructive
manner. By Gödel's semantic incompleteness theorem we mean the statement
that any sound and su�ciently strong and recursively enumerable theory is
incomplete. By Gödel-Rosser's incompleteness theorem we mean the state-
ment that any consistent and su�ciently strong and recursively enumerable
theory is incomplete. Gödel's original incompleteness theorem's assumption is
between soundness and consistency; it assumes ω−consistency of su�ciently
strong and recursively enumerable theories which are to be proved incomplete.

It is noted in the literature that the existence of a non-recursive but re-
cursively enumerable set can prove Gödel's semantic incompleteness theorem
(see e.g., [La�tte 2009] or [Li & Vitányi 2008]). This beautiful proof is most
likely �rst proposed by [Kleene 1936] and Church; below we will give an ac-
count of this proof after Theorem 12. A clever modi�cation of this proof
shows Gödel-Rosser's (stronger) incompleteness theorem, and in fact provides
an elementary and nice proof of Gödel-Rosser's theorem other than the clas-
sical Rosser's trick [Rosser 1936]. This is called Kleene's Symmetric Form of
Gödel's Incompleteness Theorem (see [Beklemishev 2010]) originally published
in [Kleene 1950] and later in the book [Kleene 1952]. Indeed, Gödel's semantic
incompleteness theorem is equivalent to the existence of a non-recursive but
recursively enumerable set, and also Gödel-Rosser's (constructive) incomplete-
ness theorem is equivalent to the existence of a pair of recursively (e�ectively)
inseparable recursively enumerable sets.

We will present a theory which is computability theoretic in nature, in a
�rst order language which does not contain any arithmetical operations like
addition or multiplication, nor set theoretic relation like membership nor sting
theoretic operation like concatenation. We will use a ternary relation symbol
τ which resembles Kleene's T predicate and our theory resembles Robinson's
R arithmetic (see [Tarski, Mostowski et al. 1953]). The proofs avoid using the
diagonal (or �xed-point) lemma which is highly counter-intuitive and a kind
of �pulling a rabbit out of the hat� (see [Wasserman 2008]); the proofs are also
constructive, in the sense that given a recursively enumerable theory that can
interpret our theory one can algorithmically produce an independent sentence.
For us the simplicity of the proofs and elementariness of the arguments are of
essential importance. Though we avoid coding sentences and proofs and other
syntactic notions, coding programs is needed for interpreting the τ relation.
We also do not need any mathematical de�nition for algorithms or programs
(like recursive functions or Turing machines etc); all we need is the �niteness



Gödel's Incompleteness Phenomenon�Computationally 25

of programs (every program is a �nite string of ascii1 codes) and the �niteness
of input and time of computation (which can be coded or measured by natural
numbers). So, Church's Thesis (that every intuitively computable function
is a recursive function, or a function de�ned rigorously in a mathematical
framework) is not used in the arguments.

2 Completeness and completability

In mathematical logic, a theory is said to be a set of sentences, in a �xed lan-
guage (see e.g., [Chiswell & Hodges 2007]; in [Kaye 2007] for example the word
�theory� does not appear in this sense at all, and instead �a set of sentences� is
used). Sometimes a theory is required to be closed under (logical) deduction,
i.e., a set of sentences T is called a theory if for any sentence ϕ which satis�es
T ` ϕ we have ϕ ∈ T (see e.g., [Enderton 2001]). Here, by a theory we mean
any set of sentences (not necessarily closed under deduction). Syntactic com-
pleteness of a theory is usually taken to be negation-completeness: a theory T
is complete when for any sentence ϕ, either T ` ϕ or T ` ¬ϕ. Let us look at
the completeness with respect to other connectives:

De�nition 1 (Completeness). A theory T is called

• ¬−complete when for any sentence ϕ:
T ` ¬ϕ ⇐⇒ T 6` ϕ.

• ∧−complete when for any sentences ϕ and ψ:
T ` ϕ ∧ ψ ⇐⇒ T ` ϕ and T ` ψ.

• ∨−complete when for any sentences ϕ and ψ:
T ` ϕ ∨ ψ ⇐⇒ T ` ϕ or T ` ψ.

• → −complete when for any sentences ϕ and ψ:
T ` ϕ→ ψ ⇐⇒ if T ` ϕ then T ` ψ.

• ∀−complete when for every formula ϕ(x):
T ` ∀xϕ(x) ⇐⇒ for every t, T ` ϕ(t).

• ∃−complete when for every formula ϕ(x):

T ` ∃xϕ(x) ⇐⇒ for some t, T ` ϕ(t). 3

Let us note that the half of ¬−completeness is consistency: a theory is
called consistent when for every sentence ϕ, if T ` ¬ϕ then T 6` ϕ. Usually,
the other half is called completeness, i.e., when if T 6` ϕ then T ` ¬ϕ for every
sentence ϕ.

Remark 2. Any theory is ∧−complete and ∀−complete (in �rst-order logic).
Also, half of ∨,→, ∃−completeness holds for all theories T ; i.e.,

� if T ` ϕ or T ` ψ, then T ` ϕ ∨ ψ;

1. www.ascii-code.com/.
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� if T ` ϕ→ ψ, then if T ` ϕ then T ` ψ;
� if T ` ϕ(t) for some t, then T ` ∃xϕ(x). 3

A maximally consistent theory is a theory T which cannot properly be
extended to a consistent theory; i.e., for any consistent theory T ′ which satis�es
T ⊆ T ′ we have T = T ′. The following is a classical result in mathematical
logic (see e.g., [van Dalen 2013]).

Remark 3. A consistent theory is ¬−complete if and only if is ∨−complete
if and only if is → −complete if and only if is maximally consistent. 3

Consistently maximizing a theory suggests using Zorn's Lemma or (equiv-
alently) the Axiom of Choice, which is non-constructive in general. To see if
one can do it constructively or not, we need to introduce some other notions.
Before that let us note that ∃−completing a theory can be done constructively.

Remark 4. Any arbitrary �rst-order consistent theory can be extended (con-
structively) to another consistent ∃−complete theory. 3

The main idea of the proof is that we add a countable set of constants
{c1, c2, · · · } to the language, and then enumerate all the couples of formulas
and variables in the extended language as 〈ϕ1, x1〉, 〈ϕ2, x2〉, · · · and �nally add
the sentences ∃x1ϕ1 → ϕ(cl1/x1), ∃x2ϕ2 → ϕ(cl2/x2), · · · successively to the
theory, where in each step cli is the �rst constant which does not appear in
ϕ1, . . . , ϕi and has not been used in earlier steps (see e.g., [Enderton 2001]).

Let us note that ∃−complete theories are sometimes called Henkin the-
ories or Henkin-complete or Henkin sets (see e.g., [van Dalen 2013]). These
are used for proving Gödel's Completeness Theorem by Henkin's proof. The
theory of a structure is the set of sentences (in the language of that structure)
which are true in that structure. It can be seen that theories of structures are
(¬, ∃)−complete theories. Conversely, for any (¬, ∃)−complete theory T one
can construct a structureM such that T is the theory ofM.

Remark 5. Any consistent theory can be extended to a (¬,∃)−complete the-
ory. Note that any (¬,∃)−complete theory is complete with respect to all the
other connectives. 3

Gödel's completeness theorem is usually proved by showing that any con-
sistent theory has a model (the model existence theorem�which is equivalent to
the original completeness theorem). Note that for proving the model existence
theorem it is shown that any consistent theory is extendible to a consistent
(¬,∃)−complete theory, which then de�nes a structure which is a model of
that theory. Thus, we can rephrase this theorem equivalently as follows.

Gödel's Completeness Theorem: Any �rst-order consistent theory can be
extended to a consistent (¬, ∃)−complete theory.
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This theorem can be considered as the fundamental theorem of logic, the
same way that we have the fundamental theorem of arithmetic, or the funda-
mental theorem of algebra, or the fundamental theorem of calculus. We could
also call this theorem, Gödel's Completability Theorem, for the above reasons.

3 Incompleteness and incompletability

We now turn our attention to constructive aspects of the above theorem. A
possibly in�nite set can be constructive when it is decidable or (at least) re-
cursively enumerable. A set D is decidable when there exists a single-input
algorithm which on any input x outputs Yes if x ∈ D and outputs No if x 6∈ D.
A set R is called recursively enumerable (re for short) when there exists an
input-free algorithm which outputs (generates) the elements of R (after run-
ning). It is a classical result in Computability Theory that there exists an re
set which is not decidable (though, any decidable set is re); see e.g., [Epstein
& Carnielli 2008]. For a theory T we can consider decidability or recursive
enumerability of either T as a set of sentences, or the set of derivable sen-
tences of T , i.e., Der(T ) = {ϕ | T ` ϕ}. It can be shown that if T is decidable
or re (as a set) then Der(T ) is re; of course when Der(T ) is re then T is
re as well, and by Craig's trick [Craig 1953] for such a theory there exists a
decidable set of sentences T̂ such that Der(T ) = Der(T̂ ). So, we consider re
theories only, and call theory T a decidable theory when Der(T ) is a decidable
set (of sentences). re theories are sometimes called axiomatizable theories (in
e.g., [Enderton 2001]). Below we will show that there exists some decidable
set of sentences (T ) whose set of derivable sentences is not decidable (though
it must be re of course).

De�nition 6 (re, Decidable and re-Completable). A consistent theory

• T is called an re theory when Der(T ) is an re set.

• T is called a decidable theory when Der(T ) is a decidable set.

• T is called re-completable when there exists a theory T ′ extending T
(i.e., T ⊆ T ′) such that T ′ is consistent, complete and re. 3

It is a classical fact that complete re theories are decidable (see e.g.,
[Enderton 2001]): since by recursive enumerability of T both {ϕ | T ` ϕ}
and {ϕ | T ` ¬ϕ} are re and by the completeness of T we have {ϕ | T 6` ϕ} =
{ϕ | T ` ¬ϕ}, so the set Der(T ) and its complement are both re and hence
decidable (by Kleene's Complementation Theorem�see e.g., [Berto 2009]).
Completeness is a logician's tool for decidability. Henkin's completion shows
that any re decidable theory is re�completable, see [Tarski, Mostowski et al.
1953]. The main idea is that having a decidable theory T we list all the sen-
tences in the language of T as ϕ1, ϕ2, · · · and then add ϕi or ¬ϕi in the ith
step to T as follows: let T0 = T and if Tj is de�ned let Tj+1 = Tj ∪ {ϕj} if
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Tj ∪ {ϕj} is consistent, otherwise let Tj+1 = Tj ∪ {¬ϕj}. Note that if Tj is
consistent, then Tj+1 will be consistent as well (if Tj∪{ϕj} is inconsistent then
Tj ∪ {¬ϕj} must be consistent). The theory T ′ =

⋃
i>0 Ti will be consistent

and complete. This was essentially Henkin's Construction for proving Gödel's
completeness theorem. The point is that if T is decidable then so is any Ti

since they are �nite extensions of T . Finally, T ′ is a decidable theory, because
for any given sentence ϕ it should appear in the list ϕ1, ϕ2, · · · , so say ϕ = ϕn.
Now, for i = 1, 2, . . . , n we can decide whether ϕi ∈ T ′ or ¬ϕi ∈ T ′ inductively;
and �nally we can decide whether T ′ ` ϕ or not (T 6` ϕ happens only when
T ′ ` ¬ϕ). So, for consistent re theories we have the following inclusions:

Complete =⇒ Decidable =⇒ re-Completable

Below we will see that the converse conclusions do not hold (Remark 10).
Whence, by contrapositing the above conclusions we will have the following
inclusions and non-inclusions for some consistent re theories:

=⇒ =⇒re-Incompletable Undecidable Incomplete6⇐= 6⇐=

Incomplete theories abound in mathematics: every theory which has �nite
models but does not �x the number of elements (e.g., theory of groups, rings,
�elds, lattices, etc.) is an incomplete theory. By encoding Turing machines
into a �rst order language one can obtain an undecidable theory (see e.g.,
[Boolos, Burgess et al. 2007]). But demonstrating an re-incompletable the-
ory is a di�cult task and it is in fact Gödel's Incompleteness Theorem. re-
incompletable theories are known as �essentially undecidable� theories in the
literature (starting from [Tarski, Mostowski et al. 1953]). Comparing Gödel's
Completeness Theorem with his Incompleteness Theorem, we come to the fol-
lowing conclusion.

Every consistent theory can be extended to a (¬, ∃)−complete theory (Gödel's
Completeness Theorem) and this completion preserves decidability, i.e., every
consistent and decidable theory can be extended to a consistent, decidable and
(¬, ∃)−complete theory. But this completion cannot be necessarily e�ective;
i.e., there are some consistent re theories whose all consistent completions are
non-re (Gödel's Incompleteness Theorem).

So, calling the completeness theorem of Gödel Completability Theorem
we can call (the �rst) incompleteness theorem of Gödel (and Rosser) re-
Incompletabiliy Theorem.



Gödel's Incompleteness Phenomenon�Computationally 29

3.1 An undecidable but RE-completable theory

In this paper we introduce an incomplete but re-completable theory (T ) and
a novel re-incompletable theory (S), and for that we consider the theory of
zero, successor and order in the set of natural numbers, i.e., the structure
〈N, 0, s, <〉 in which 0 is a constant symbol, s is a unary function symbol and
< is a binary relation symbol (interpreted as the zero element, the successor
function and the order relation, respectively). This theory is known to be
decidable [Enderton 2001], and in fact can be �nitely axiomatized as follows

A1 : ∀x∀y(x < y → y 6< x),

A2 : ∀x∀y∀z(x < y ∧ y < z → x < z),

A3 : ∀x∀y(x < y ∨ x = y ∨ y < x),

A4 : ∀x∀y(x < y ←→ s(x) < y ∨ s(x) = y),

A5 : ∀x(x 6< 0),

A6 : ∀x
(
0 < x→ ∃v(x = s(v))

)
.

The axioms A1, A2, A3 state that < is a (linear and transitive and antisymmet-
ric, thus a) total ordering, A4 states that every element has a successor (the
successor s(x) of x satis�es ∀y

(
x < y ↔ s(x) < y ∨ s(x) = y

)
), A5 states that

there exists a least element (namely 0) and �nally A6 states that every non-
zero element has a predecessor. One other advantage of the language {0, s, <}
is that we have terms for every natural number n ∈ N:

n is the {0, s}−term sn0 = s · · · s︸ ︷︷ ︸
n−times

0.

To the language {0, s, <} we add a ternary relation symbol τ interpreted as:

for e, x, t ∈ N the relation τ(e, x, t) holds when
e is a code for a single-input program which halts on input x by time t.

Timing of a program can be measured either by the number of steps that the
program runs or just by the conventional seconds, minutes, hours, etc., and
programs (say in a �xed programming language like C++) can be coded by
natural numbers as follows (for example): any such program is a (long) string
of ascii codes, and every ascii code can be thought of as 8 symbols of 0's
and 1's (so, there are 256 ascii codes). So, any program is a string of 0's and
1's (whose length is a multiple of 8). The set of 0,1-strings can be coded by
natural numbers in the following way:

λ 0 1 00 01 10 11 000 001 010 011 100 · · ·
0 1 2 3 4 5 6 7 8 9 10 11 · · ·

This coding works as follows: given a string of 0's and 1's (take for example
0110), put a 1 at the beginning of it (in our example 10110) and compute
its binary value (in our example 2+22+24=22) and subtract 1 from it (in
our example 21) to get the natural number which is the code of the original
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string. Conversely, given a natural number (for example 29) �nd the binary
representation of its successor (in our example 30=2+22+23+24=(11110)2)
and remove the 1 from its beginning (in our example 1110) to get the 0,1-
string which corresponds to the given natural number.

Whence, any program can be coded by a natural number constructively,
and if a natural number is a code for a program, then that program can be
decoded from that number algorithmically. Let us note the ternary relation τ
resembles Kleene's T Predicate (see [Kleene 1936]).

De�nition 7 (The Theory T ). Theory T is axiomatized by A1, A2, A3, A4,
A5 and A6 with the following set of sentences in the language {0, s, <, τ}:

A7 : {τ(e, x, t) | e, x, t ∈ N & N |= τ(e, x, t)} 3

The set of axioms A7 consists of the sentences τ(e, x, t) (recall that n is
the {0, s}−term representing the number n ∈ N) such that τ(e, x, t) holds in
reality (the single-input program with code e halts on input x by time t).

Remark 8 (re-completability of T ). The set of sentences in T is decidable
(given any n,m, k one can decide whether τ(n,m, k) holds or not), and thus
T is an re theory. It is also re-completable, since its extension by the sen-
tence ∀x∀y∀z

(
τ(x, y, z)

)
is a decidable theory (equivalent to the theory of the

structure 〈N, 0, s, <〉 which is decidable�see [Enderton 2001] ). 3

The theory T is undecidable, since the halting problem is undecidable (see
e.g., [Epstein & Carnielli 2008]): for any (single-input program with code)
e ∈ N and any (input) m ∈ N, let ϕe,m be the sentence ∃z τ(e,m, z). Then

T ` ϕe,m ⇐⇒ N |= τ(e,m, t) for some t
⇐⇒ the program e eventually halts on input m.

This can be shown directly, by incorporating the proof of the undecidability
of the halting problem.

Theorem 9 (Undecidability of T ). The theory T is undecidable.

Proof. If the set Der(T ) is decidable, then so is the set
D = {n ∈ N | T 6` ∃z τ(n, n, z)}.

Whence, there exists a program which on input n ∈ N halts whenever n ∈ D
(and when n 6∈ D then the program does not halt and loops forever). Let e be
a code for this (single-input) program. Then

the program (with code) e halts on input e ⇐⇒ N |= τ(e, e, k) for some k
⇐⇒ T ` ∃z τ(e, e, z) ⇐⇒ e 6∈ D ⇐⇒ (by e's de�nition) the program (with
code) e does not halt on input e. Contradiction!

Remark 10. Thus far, we have shown that an undecidable theory need not
be re-incompletable (T ). One can also show that an incomplete theory need
not be undecidable; to see this consider the theory {∃x∃y∀z(z = x ∨ z = y)}
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in the language of equality (=). This theory is decidable (holds in models of
at most two elements) but not complete, since can derive neither ∀x∀y(x = y)
nor ¬∀x∀y(x = y). 3

Corollary 11 (Undecidability of Consistency). It is not decidable whether a
given re theory is consistent or not.

Proof. By [T ` ϕ]⇐⇒ [T ∪ {¬ϕ} is inconsistent] if consistency of re theories
was decidable then every re theory would be decidable too.

Thus, we have shown the existence of an re theory (T ) which is undecid-
able but re-completable. Next, we show the existence of an re theory which
is not re-completable. Before that let us note that the above proof works for
any (consistent and re) theory T ⊇ T which is sound (i.e., N |= T ).

Theorem 12. There exists no complete, sound and re theory extending T .
In other words, the theory T cannot be soundly re-completed. o

This is essentially the semantic form of Gödel's �rst incompleteness the-
orem. As a corollary we have that the theory of 〈N, 0, s, <, τ〉 is not re (nor
decidable). Let us note that the above proof of the �rst (semantic) incomplete-
ness theorem of Gödel is some rephrasing of Kleene's proof (see [Kleene 1936]).
For a (single-input) program (with code) e letWe be the set of the inputs such
that e eventually halts on them, i.e., We ={n | N |= ∃z τ(e, n, z)}. By Turing's
results it is known that the set K = {n | n ∈Wn} is re but not decidable (see
e.g., [Epstein & Carnielli 2008]). Indeed, its complement K={n | n 6∈ Wn} is
not re because every re set is of the form Wm for some m (see e.g., [Epstein
& Carnielli 2008]) and for any n we have n ∈ (K \Wn) ∪ (Wn \K). On the
other hand for any re theory T the set

KT ={n | T ` “n ∈ K”}={n | T ` ¬∃z τ(n, n, z)}
is re. Now, if T is sound (N |= T ) then KT ⊆ K. The inclusion must be
proper because one of them (KT ) is re and the other one (K) is not re. If
KT = Wm (for some m ∈ N) then m ∈ K −KT : because if m ∈ KT (= Wm)
then m ∈ Wm and so m 6∈ K, and this contradicts the inclusion KT ⊆ K;
thus m 6∈ KT and so m 6∈Wm which implies that m ∈ K. Hence, the sentence
¬∃z τ(m,m, z) is true but unprovable in T ; thus T is incomplete.

3.2 An RE-incompletable theory

In the above arguments we used the soundness assumption of T (and T ).
Below, we will introduce a consistent and re theory S which is not re-
completable. Let π be a binary function symbol (representing some pairing�
for example π(n,m) = (n + m)2 + n) whose interpretation in N satis�es the
pairing condition: for any a, b, a′, b′ ∈ N we have N |= π(a, b) = π(a′, b′) if and
only if a = a′ and b = b′.
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De�nition 13 (The Theory S). The theory S is the extension of the theory
T by the following sets of sentences in the language {0, s, <, τ, π}:

A8 : {¬τ(e, x, t) | e, x, t ∈ N & N 6|= τ(e, x, t)}
A9 : {∀x

(
x < k ←→

∨
i<k x = i

)
| k ∈ N} 3

We now show that the theory S is not re-completable. Let us note that
Gödel's original �rst incompleteness theorem showed the existence of some
theory which was not soundly re-completable. Actually, Gödel used a syntac-
tic notion weaker than �soundness�, namely ω−consistency, which is stronger
than consistency itself. Nowadays it is known that Gödel's proof works for
an even weaker condition than ω−consistency, the so called 1-consistency (see
[Isaacson 2011]). It was then Rosser who showed that Gödel's theorem can
be proved without using the ω−consistency (even 1-consistency) assumption
(see [Rosser 1936] or e.g., [Boolos, Burgess et al. 2007]); so the theorem of
Gödel-Rosser states the existence of a consistent and re theory which is not
re-completable.

Theorem 14 (re-incompletability of S). If T is a consistent re theory that
extends S (i.e., T ⊇ S), then T is not complete.

Proof. Suppose T is a consistent and re extension of S. We show that T is
not complete. For any a, b ∈ N let ϕa,b be the sentence

∃x
(
τ(a, π(a, b), x) ∧ ∀y<x¬τ(b, π(a, b), y)

)
.

Let m be a code of a program which on input p ∈ N halts if and only if there
are some k, l ∈ N such that p = π(k, l) (in which case the numbers k and l
are unique) and there exists a proof of ϕk,l in T (i.e., T ` ϕk,l). So, if (i) p
is not in the range of the function π, or (ii) there are (unique) k, l such that
p = π(k, l) and T 6` ϕk,l, then the program does not halt on p. Whence, the
program with code m searches for a proof of ϕk,l in T on input π(k, l).

Also, let n be a code for a program which for an input p ∈ N halts if and
only if there are some (unique) k, l ∈ N such that p = π(k, l) and there exists a
proof of ¬ϕk,l in T (i.e., T ` ¬ϕk,l). So, if p is not in the range of the function
π or if there are (unique) k, l such that p = π(k, l) and T 6` ¬ϕk,l then the
program with code n does not halt on p. Again, this program searches for a
proof of ¬ϕk,l in T on input π(k, l).

We prove that ϕn,m is independent from T , i.e., T 6` ϕn,m and T 6` ¬ϕn,m.

(1) If T ` ϕn,m then by the consistency of T we have T 6` ¬ϕn,m. So,
on input π(n,m) the program with code m halts and the program with code
n does not halt. Whence, for some natural number t, N |= τ(m,π(n,m), t)
and for every natural number s, N 6|= τ(n, π(n,m), s). So by A7 and A8 for
that (�xed) t ∈ N we have T ` τ(m,π(n,m), t), and for every s ∈ N we have
T ` ¬τ(n, π(n,m), s). Thus, T `

∧
i6t¬τ(n, π(n,m), i), and so by A9, we

conclude that T ` ∀x6 t¬τ(n, π(n,m), x), therefore

(i) T ` ∀x
(
τ(n, π(n,m), x)→x>t

)
.
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Also by T ` τ(m,π(n,m), t) we get

(ii) T ` ∀x>t
(
∃y<x τ(m,π(n,m), y)

)
.

Combining these two conclusions we infer that
T ` ∀x

(
τ(n, π(n,m), x)→ ∃y<x τ(m,π(n,m), y)

)
.

On the other hand by the de�nition of ϕa,b we have
ϕn,m ≡ ∃x

(
τ(n, π(n,m), x) ∧ ∀y<x¬τ(m,π(n,m), y)

)
,

and so ¬ϕn,m ≡ ∀x
(
τ(n, π(n,m), x)→ ∃y<x τ(m,π(n,m), y)

)
.

Thus we deduced T ` ¬ϕn,m from the assumption T ` ϕn,m; contradiction!
Whence, T 6` ϕn,m.

(2) If T ` ¬ϕn,m then (again) by the consistency of T we have T 6` ϕn,m.
So, on input π(n,m) the program with code n halts and the program with code
m does not halt. Whence, for some natural number t, N |= τ(n, π(n,m), t)
and for every natural number s, N 6|= τ(m,π(n,m), s). Similarly to the above
we can conclude that T ` τ(n, π(n,m), t) and T ` ∀y < t¬τ(m,π(n,m), y).
Thus (for x = t) we have

T ` ∃x
(
τ(n, π(n,m), x) ∧ ∀y<x¬τ(m,π(n,m), y)

)
or T ` ϕn,m; contradiction! So, T 6` ¬ϕn,m.

Whence, T is not complete.

The above proof is e�ective, in the sense that given an re theory (by a code
for a program that generates its elements) that extends S one can generate
(algorithmically) a sentence which is independent from that theory. Let us
note that for proving re-incompletability of theories, it su�ces to interpret S
in them. So, the theories Q, R (see [Tarski, Mostowski et al. 1953]) and Peano's
Arithmetic PA are all re-incompletable (or, essentially undecidable).

4 Rice's theorem for RE theories

In this last section we show a variant of Rice's Theorem for logical theories.
In [Oliveira & Carnielli 2008] the authors (claimed to) had shown that an
analogue of Rice's theorem holds for �nitely axiomatizable �rst order theories.
Unfortunately, the result was too beautiful to be true [Oliveira & Carnielli
2009] and it turned out that Rice's theorem cannot hold for �nite theories.
However, we show that this theorem holds for re theories, a result which is
not too di�erent from Rice's original theorem. Recall that two theories T1 and
T2 are equivalent when they prove the same (and exactly the same) sentences
(i.e., Der(T1) = Der(T2)).

De�nition 15 (Property of Theories). A property of (�rst order logical) theo-
ries is a set of natural numbers P ⊆ N such that for any m,n ∈ N if the theory
generated by the program with code m is equivalent to the theory generated
by the program with code n, then m ∈ P ←→ n ∈ P.
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So, a theory is said to have the property P when a code for generating its
set belongs to P. A property of theories is a non-trivial property when some
theories have that property and some do not. 3

Example 16. The followings are some non-trivial properties of re theories:

• Universal Axiomatizability: theories axiomatizable by sentences of the

form ∀x1 . . .∀xnθ(x1, . . . , xn) for quanti�er-free θ's;

• Finite Axiomatizability: being equivalent to a �nite theory;

• Decidability (of the set of the theorems of the theory);

• Having a Finite Model;

• Completeness;

• Consistency. 3

Remark 17. For any non-trivial property P either (i) no inconsistent the-
ory has the property P or (ii) all inconsistent theories have the property P.
Because when an inconsistent theory breaks into P then all the other inconsis-
tent theories (being equivalent to each other) come in. 3

Before proving Rice's Theorem let us have a look at (a variant of) Craig's
trick. For an re theory T = {T1, T2, T3, · · · } the proof predicate �p is a proof
of ϕ in T �, for given sequence of sentences p and sentence ϕ, might not be
decidable when the set {T1, T2, T3, · · · } is not decidable. Note that �the se-
quence p is a proof of ϕ in T � when every element of p is either a (�rst order)
logical axiom (which can be decided) or is an element of T or can be deduced
from two previous elements by an inference rule, and the last element of p is
ϕ. Thus decidability of the set T is essential for the decidability of the proof
sequences of T . But if we consider the theory T̂ = {T̂1, T̂2, T̂3, · · · } where
T̂m =

∧
i6m Ti then the set T̂ is decidable, because if A is an algorithm that

outputs (generates) the in�nite sequence 〈T1, T2, T3, · · · 〉 in this order (in case
T is �nite the sequence is eventually constant), then for any given sentence
ψ we can decide if ψ ∈ T̂ or not by checking if ψ is a conjunction of some
sentences ψ = ψ1 ∧ · · · ∧ψm (if ψ is not of this form, then already ψ 6∈ T̂ ) such
that A's ith output is ψi for i = 1, . . . ,m (if not then again ψ 6∈ T̂ ). Whence
the predicate of being a proof of ϕ in T̂ , i.e., �the sequence p is a proof of
sentence ϕ in T̂ �, is decidable; moreover the theories T and T̂ are equivalent,
and the theory T̂ can be algorithmically constructed from given theory T .

Theorem 18 (Analogue of Rice's Theorem). All the non-trivial properties of
re theories are undecidable.

Proof. Assume a non-trivial property P of re theories is decidable, i.e., there
exists an algorithm which on input n ∈ N decides whether n ∈ P (i.e.,
whether the theory generated by the program with code n has the property P).
Without loss of generality we can assume that no inconsistent theory has the
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property P (otherwise take the complement of P). Fix a consistent re theory,
say, S = {S1, S2, S3, · · · } that has the property P (S could be �nite in which
case the sequence {Si}i is eventually constant) and �x a sentence ψ. For any
given re theory T we construct the theory T ′ = {T ′1, T ′2, T ′3, · · · } as follows: let
T ′k = Sk if k is not a (code of a) proof of ψ∧¬ψ in T̂ (see above); otherwise let
T ′k = ψ ∧ ¬ψ. Note that this construction is algorithmic, since being a (code
for a) proof of ψ ∧ ¬ψ in the decidable set T̂ is decidable (and the theory T̂
can be constructed algorithmically for a given re theory T ); moreover, the
theory T ′ is re. Now, if T is consistent then T ′ = S has the property P and
if T is not consistent then T ′ is an inconsistent theory (because then for some
k, T ′k = ψ ∧ ¬ψ) and so does not have the property P. Whence, for any re
theory T we have the re theory T ′ in such a way that[

T is consistent
]
⇐⇒

[
T ′ has the property P

]
.

Now by Corollary 11 the property P is not decidable.

Finally, we note that as a corollary to the above theorem, �nite axiomatiz-
ability of re theories is not a decidable property; and there exists a decidable
non-trivial property for �nite theories: for a �xed decidable theory (like the
theory {A1, · · ·, A6} in De�nition 7), say F , it is decidable whether a given
�nite theory T is included in F (i.e., if F can prove all the sentences of T ).
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