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Abstract

Gaussian mixture alignment is a family of approaches

that are frequently used for robustly solving the point-set

registration problem. However, since they use local optimi-

sation, they are susceptible to local minima and can only

guarantee local optimality. Consequently, their accuracy

is strongly dependent on the quality of the initialisation.

This paper presents the first globally-optimal solution to

the 3D rigid Gaussian mixture alignment problem under

the L2 distance between mixtures. The algorithm, named

GOGMA, employs a branch-and-bound approach to search

the space of 3D rigid motions SE(3), guaranteeing global

optimality regardless of the initialisation. The geometry of

SE(3) was used to find novel upper and lower bounds for

the objective function and local optimisation was integrated

into the scheme to accelerate convergence without voiding

the optimality guarantee. The evaluation empirically sup-

ported the optimality proof and showed that the method

performed much more robustly on two challenging datasets

than an existing globally-optimal registration solution.

1. Introduction

Gaussian Mixture Alignment (GMA), the problem of

finding the transformation that best aligns one Gaussian

mixture with another, has been investigated extensively in

computer vision and robotics. It has a natural applica-

tion to point-set registration, which endeavours to solve the

same problem as GMA for discrete point-sets in R
n. In-

deed, the Iterative Closest Point (ICP) algorithm [4, 56] and

several other local registration algorithms [11, 10, 47, 33]

can be interpreted as special cases of GMA [25]. Applica-

tions include merging multiple partial scans into a complete

model [5, 24]; using registration results as fitness scores for

object recognition [26, 3]; registering a view into a global

coordinate system for sensor localisation [34, 37]; and find-

ing relative poses between sensors [52, 20].

The dominant solution for 2D and 3D rigid registration

is the ICP algorithm [4, 56] and variants, due to its concep-

tual simplicity, ease of use and good performance. How-
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ever, ICP is limited by its assumption that closest point

pairs should correspond, which fails when the point-sets

are not coarsely aligned, or the moving ‘model’ point-set is

not a proper subset of the static ‘scene’ point-set. The for-

mer means that, without a good initialisation, ICP is very

susceptible to local minima, producing erroneous estimates

without a reliable means of detecting failure. The latter

regularly occurs, since differing sensor viewpoints and dy-

namic objects lead to occlusion and partial-overlap.

Gaussian mixture alignment [10, 47, 25, 8] was intro-

duced to address these shortcomings. By aligning point-sets

without establishing explicit point correspondences, GMA

is less sensitive to missing correspondences from partial

overlap or occlusion and mitigate the problem of local min-

ima by widening the basin of convergence. Robust objec-

tive functions can also be applied, such as the L2 distance

between mixtures [25, 8]. However, GMA still requires a

good initialisation and cannot guarantee global optimality.

Go-ICP [54, 53] was the first globally-optimal algorithm

for the 3D rigid registration problem defined by ICP. Specif-

ically, it used a branch-and-bound approach to find the

global minimum of the ICP error metric, the L2 norm of

closest-point residuals. Despite solving the problem of local

minima, Go-ICP inherits the non-robust ICP cost function

that is susceptible to occlusion and partial overlap. Yang

et al. [54] proposed a trimming strategy to handle outlier

correspondences. However, this increased the runtime and

required an additional trimming parameter to be set.

This work is the first to propose a globally-optimal so-

lution to the 3D Gaussian mixture alignment problem un-

der Euclidean (rigid) transformations. It inherits the ro-

bust L2 density distance objective function of L2 GMA

while avoiding the problem of local minima. The method,

named GOGMA, employs the branch-and-bound algorithm

to guarantee global optimality regardless of initialisation,

using a parametrisation of SE(3) space that facilitates

branching. The pivotal contribution is the derivation of the

objective function bounds using the geometry of SE(3). In

addition, local GMA optimisation is applied whenever the

algorithm finds a better transformation, to accelerate con-

vergence without voiding the optimality guarantee.
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2. Related Work

The large quantity of work published on ICP, its vari-

ants and other registration techniques precludes a compre-

hensive list. The reader is directed to the surveys on ICP

variants [40, 37] and recent 3D point-set and mesh regis-

tration techniques [46] for additional background. To im-

prove the robustness of ICP to occlusion and partial over-

lap, approaches included trimming [9] and outlier rejec-

tion [56, 22]. To enlarge ICP’s basin of convergence, ap-

proaches included LM-ICP [19], which used the Levenberg-

Marquardt algorithm [32] and a distance transform to opti-

mise the ICP error, without establishing explicit point cor-

respondences. The family of Gaussian mixture alignment

approaches also sought to improve robustness to poor ini-

tialisations, noise and outliers. Notable GMA-related al-

gorithms for rigid and non-rigid registration include Robust

Point Matching [12], Coherent Point Drift [33], Kernel Cor-

relation [47] and GMMReg [25]. GMMReg [25] defines

an equally-weighted Gaussian at every point in the set with

identical and isotropic covariances and minimises the robust

L2 distance between densities. The Normal Distributions

Transform (NDT) algorithm [30, 45] defines Gaussians for

every cell in a grid and estimates full data-driven covari-

ances. SVR [8] uses an SVM to construct a Gaussian mix-

ture with non-uniform weights that adapts to the structure

of the point-set and is robust to occlusion and partial over-

lap. While more robust than ICP, these methods all employ

local optimisation, which is dependent on the initial pose.

There are many heuristic or stochastic methods for

global alignment that are not guaranteed to converge. One

class utilises stochastic optimisation techniques, such as

particle filtering [42], genetic algorithms [44, 39] and sim-

ulated annealing [5, 36]. Another class is feature-based

alignment, which exploits the transformation invariance of

a local descriptor to build sparse feature correspondences,

such as fast point feature histograms [41]. The transfor-

mation can be found from the correspondences using ran-

dom sampling [41], greedy algorithms [26], Hough trans-

forms [50] or branch-and-bound [21, 2]. SUPER 4PCS [31]

is a recent example of a method that uses random sampling

without features. It is a four-points congruent sets method

that exploits a clever data structure to achieve linear-time

performance, extending the original 4PCS algorithm [1].

In contrast, globally-optimal techniques avoid local min-

ima by searching the entire transformation space, often us-

ing the branch-and-bound paradigm. Existing 3D meth-

ods [29, 35, 6, 54] are often very slow or make restric-

tive assumptions about the point-sets, correspondences or

transformations. For example, Li and Hartley [29] min-

imised a Lipschitzized L2 error function using branch-and-

bound, but assumed that the point-sets were the same size

and the transformation was pure rotation. Olsson et al. [35]

found optimal solutions to point-to-point/line/plane regis-

tration using branch-and-bound and bilinear relaxation of

rotation quaternions, but assumed correspondences were

known. Recently, Bustos et al. [6] achieved efficient run-

times using stereographic projection techniques for optimal

3D alignment, but assumed that translation was known. Fi-

nally, Yang et al. [54, 53] proposed the Go-ICP algorithm,

which finds the optimal solution to the closest point L2 er-

ror between point-sets and is accelerated by using local ICP

as a sub-routine. However, it is sensitive to occlusion and

partial overlap, due to its non-robust cost function. The pro-

posed trimming strategy goes some way to alleviating this,

but increases the runtime, requires an estimate of the over-

lap percentage and may lead to ambiguity in the solution.

The rest of the paper is organised as follows: we out-

line Gaussian mixture alignment in Section 3, we develop a

parametrisation of the domain of 3D motions, a branching

strategy and a derivation of the bounds in Section 4, we pro-

pose an algorithm for globally-optimal GMA in Section 5

and we evaluate the its performance in Section 6.

3. Gaussian Mixture Alignment

The alignment of Gaussian Mixture Models (GMMs)

to solve the point-set registration task is a well-studied

problem [10, 47, 30, 25, 8]. GMMs can be constructed

from point-set data using Kernel Density Estimation (KDE)

[25, 17, 13, 51], Expectation Maximisation (EM) [15, 16] or

a Support Vector Machine (SVM) [8]. Once the point-sets

are in GMM form, the registration problem can be posed

as minimising a discrepancy measure between GMMs. We

use the L2 distance formulation of Jian and Vemuri [25],

which can be expressed in closed-form and efficiently im-

plemented. The L2E estimator minimises the L2 distance

between densities and is inherently robust to outliers [43].

Let GX ={xi, σ
2
iX , φX

i }mi=1 and GY ={yj , σ
2
jY , φ

Y
j }nj=1

be GMMs constructed from point-setsX andY , with means

xi and yj , variances σ2
iX and σ2

jY , mixture weights φX
i and

φY
j and number of components m and n respectively. Also

let T (G,R, t) be the function that rigidly transforms G with

rotation R ∈ SO(3) and translation t ∈ R
3. The L2 dis-

tance D between transformed GX and GY is given by

D(R, t) =

∫

R
3

(p (p|T (GX ,R, t))− p (p|GY))2 dp (1)

where p (p|G) is the probability of observing a point p

given a mixture model G = {µi, σ
2
i , φi}ℓi=1, that is

p (p|G) =
ℓ

∑

i=1

φiN
(

p
∣

∣µi, σ
2
i

)

(2)

where N
(

p
∣

∣µ, σ2
)

is the probability of the Gaussian at p.

Expanding (1), [p (p|T (GX ,R, t))]
2

is invariant under rigid

transformations and [p (p|GY)]2 is independent of (R, t).
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The integral of the −2p (p|T (GX ,R, t)) p (p|GY) term has

a closed form, derived by applying the identity

∫

R
3

N
(

p
∣

∣µ1, σ
2
1

)

N
(

p
∣

∣µ2, σ
2
2

)

dp

= N
(

0
∣

∣µ1 − µ2, σ
2
1 + σ2

2

)

. (3)

Therefore, by substituting in (2) and (3), the objective func-

tion for Gaussian Mixture Alignment (GMA) is given by

f (R, t) = −
∫

R
3

p (p|T (GX ,R, t)) p (p|GY) dp

= −
m
∑

i=1

n
∑

j=1

φX
i φY

j N
(

0
∣

∣Rxi+ t− yj , σ
2
iX+ σ2

jY

)

= −
m
∑

i=1

n
∑

j=1

φX
i φY

j

Z
exp



− [eij (R, t)]
2

2
[

σ2
iX + σ2

jY

]



 (4)

where Z is the normalisation factor and eij (R, t) is the

pairwise residual error. For local GMA, we use the quasi-

Newton L-BFGS-B algorithm [7] to minimise (4).

4. Branch-and-Bound

Branch-and-Bound (BB) [27] is a global optimisation

technique that is frequently used to solve non-convex

and NP-hard problems [28]. To apply the technique to

3D GMA, a suitable means of parametrising and branch-

ing (partitioning) the domain of 3D rigid transformations

SE(3) must be found, as well as an efficient way to find the

upper and lower bounds of each branch. The latter is critical

for the time and memory efficiency of the algorithm, since

tight bounds that are quick to evaluate reduce the search

space by allowing suboptimal branches to be pruned.

4.1. Parametrising and Branching the Domain

For the globally-optimal alignment problem, the objec-

tive function (4) must be minimised over the domain of 3D

motions, that is, the group SE(3) = SO(3)×R3. One min-

imal parametrisation of SO(3) is the angle-axis representa-

tion, where a rotation is parametrised as a 3-vector r with a

rotation angle ‖r‖ and rotation axis r/‖r‖. We use the no-

tation Rr ∈ SO(3) to denote the rotation matrix obtained

from the matrix exponential map of the skew-symmetric

matrix [r]× induced by r. The Rodrigues’ rotation formula

can be used to efficiently calculate this mapping. The space

of all 3D rotations can therefore be represented as a solid

ball of radius π in R
3. The mapping is one-to-one on the in-

terior of the π-ball and two-to-one on the surface. For ease

of manipulation, we use the 3D cube circumscribing the π-

ball as the rotation domain [29]. The translation domain is

chosen as the bounded cube [−τ, τ ]3. If the GMMs were

constructed from point-sets scaled to fit within [−0.5, 0.5]3,

π

(a) Rotation Domain

τ

(b) Translation Domain

Figure 1. Parametrisation of SE(3). (a) The rotation space SO(3)
is parametrised by angle-axis 3-vectors within a solid radius-π

ball. (b) The translation space R
3 is parametrised by 3-vectors

within a cube of half side-length τ . The joint domain is branched

using a hyperoctree data structure, with a sub-hypercube depicted

as two sub-cubes in the rotation and translation dimensions.

β

O

Rr0
x

(a) Rotation Uncertainty Region

ρ
x+ t0

(b) Translation Uncertainty Region

Figure 2. Uncertainty region induced by hypercube C = Cr ×Ct.

(a) Rotation uncertainty region for Cr with centre Rr0
x. The op-

timal rotation of x may be anywhere within the heavily-shaded

umbrella-shaped uncertainty region, which is entirely contained

by the lightly-shaded spherical cap defined by Rr0
x and β.

(b) Translation uncertainty region for Ct with centre x + t0. The

optimal translation of x may be anywhere within the cube, which

is entirely contained by the circumscribed sphere with radius ρ.

choosing τ = 1 would ensure that the domain covered every

feasible translation. In practice, a smaller τ is acceptable, if

a minimum detectable bounding box overlap is acceptable.

Together, these domains form a 6D hypercube, shown

separately in Figure 1. During BB, the hypercube is

branched using a hyperoctree data structure. The uncer-

tainty region induced by a hypercube on a point x is shown

for rotation and translation separately in Figure 2. The

transformed point may lie anywhere in the uncertainty re-

gion, which is the Minkowski sum of a spherical patch and

a cube for rotation and translation dimensions respectively.

4.2. Bounding the Branches

The success of a BB algorithm is predicated on the qual-

ity of its bounds. For rigid 3D Gaussian mixture alignment,

the GMA objective function (4) within a transformation do-

main Cr×Ct needs to be bounded. To simplify the bounds,

the GMMs are assumed to have isotropic covariances. The

translation component t ∈ Ct can be bounded by a sin-

gle value ρ by observing that the translation cube can be

inscribed in a sphere (Figure 2b), as in [54].
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Lemma 1. (Translation sphere radius) Given a 3D point x

and a translation cube Ct of half side-length δt centred at

t0, then ∀t ∈ Ct,

‖(x+ t)− (x+ t0)‖ 6
√
3δt

.
= ρ. (5)

Proof. Inequality (5) can be derived by observing that

‖(x+t)− (x+t0)‖ = ‖t−t0‖ and max ‖t−t0‖ =
√
3δt

(the half space diagonal) for t ∈ Ct.

To bound the rotation component r ∈ Cr, Lemmas 1 and

2 from [23] are used. For reference, the relevant parts are

merged into Lemma 2, as in [53]. The lemma indicates that

the angle between two rotated vectors is less than or equal to

the Euclidean distance between their rotations’ angle-axis

representations in R
3.

Lemma 2. For an arbitrary vector x and two rotations,

represented as Rr1
and Rr2

in matrix form and r1 and r2
in angle-axis form,

∠(Rr1
x, Rr2

x) 6 ‖r1 − r2‖. (6)

From this, the maximum angle β between a vector x ro-

tated by r0 and x rotated by r ∈ Cr can be found as follows.

Lemma 3. (Maximum aperture angle) Given a 3D point x

and a rotation cube Cr of half side-length δr centred at r0,

then ∀r ∈ Cr,

∠(Rrx,Rr0
x) 6 min(

√
3δr, π)

.
= β. (7)

Proof. Inequality (7) can be derived as follows:

∠(Rrx,Rr0
x) 6 min(‖r− r0‖, π) (8)

6 min(
√
3δr, π) (9)

where (8) follows from Lemma 2 and (9) follows from

max ‖r− r0‖ =
√
3δr (the half space diagonal of the rota-

tion cube) for r ∈ Cr.

As a first step towards bounding the GMA objective

function, bounds for the pairwise residual error eij(Rr, t)
need to be found. This eij(Rr, t) represents the minimal L2

distance between the Gaussian means (Rrxi+t) and yj for

(r, t) ∈ (Cr × Ct). For convenience, let y′
j = (yj − t0).

Theorem 1. (Bounds of the pairwise residual error) For

the 3D transformation domain Cr × Ct centred at (r0, t0)
with translation sphere radius ρ, the upper bound ēij and

the lower bound
¯
eij of the optimal pairwise residual error

eij(Rr, t) for xi and yj can be chosen as

ēij(Rr, t) = eij(Rr0
, t0) (10)

¯
eij(Rr, t) = max

(

∣

∣‖xi‖ − ‖yj − t0‖
∣

∣− ρ, 0
)

. (11)

Proof. The validity of the upper bound ēij follows from the

error eij at a specific point within the domain being larger

than the minimal error within the domain, that is

eij(Rr0
, t0) > min

∀(r,t)∈(Cr×Ct)
eij(Rr, t). (12)

The validity of the lower bound
¯
eij is proved as follows.

Observe that ∀(r, t) ∈ (Cr × Ct),

eij(Rr, t) = ‖Rrxi + t− yj‖ (13)

= ‖Rrxi − (yj − t0)− (t0 − t)‖ (14)

>
∣

∣‖Rrxi − y′
j‖ − ‖(t0 − t)‖

∣

∣ (15)

> max
(

‖Rrxi − y′
j‖ − ‖(t0 − t)‖, 0

)

(16)

> max
(

‖Rrxi − y′
j‖ − ρ, 0

)

(17)

> max
(
∣

∣‖Rrxi‖ − ‖y′
j‖
∣

∣− ρ, 0
)

(18)

= max
(∣

∣‖xi‖ − ‖yj − t0‖
∣

∣− ρ, 0
)

(19)

where (14) adds and subtracts t0, (15) follows from the re-

verse triangle inequality ‖x−y‖ > |‖x‖−‖y‖|, (16) from

the absolute value of a quantity being positive, (17) follows

from (5), and (18) from the reverse triangle inequality.

The geometric intuition of Theorem 1 is that all valid

points (Rrxi + t) lie within ρ of the rotation sphere cen-

tred at t0 with radius ‖xi‖. However, the gap between this

‘sphere distance’ pairwise lower bound and the pairwise up-

per bound does not converge to zero as the sub-cube sizes

decrease, since the lower bound is independent of the ro-

tation sub-cube size δr. We can find a converging lower

bound by observing that all valid points, neglecting transla-

tion uncertainty, lie on a spherical cap. Letting x0
i = Rr0

xi,

the spherical cap is defined by the sphere of radius ‖xi‖
centred at t0 with the constraint that ∠

(

x0
i ,x

)

6 β for

all points (x + t0) on the cap. Now let x′
i = Rxi be an

arbitrary point on the origin-centred spherical cap and let

x∗
ij = Rxi be the point coplanar with x0

i and y′
j on the

edge of the spherical cap, such that ∠
(

x0
i ,x

∗
ij

)

= β.

Theorem 2. (Tight lower bound of the pairwise residual

error) For the 3D transformation domain Cr × Ct centred

at (r0, t0) with translation sphere radius ρ, the lower bound

¯
eij of the optimal pairwise residual error eij(Rr, t) for xi

and yj can be chosen as

¯
eij(Rr, t)=











max
[

∣

∣‖xi‖−‖y′
j‖
∣

∣−ρ, 0
]

for α6β

max
[

‖x∗
ij−y′

j‖−ρ, 0
]

for α>β
(20)

where α and β are shown in Figure 3 and are given by

α = ∠
(

x0
i ,y

′
j

)

(21)

β = ∠
(

x0
i ,x

∗
ij

)

= min(
√
3δr, π). (22)
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Proof. Observe that ∀(r, t) ∈ (Cr × Ct),

eij(Rr, t) > max
(

‖Rrxi − y′
j‖ − ρ, 0

)

(23)

> max
(

min ‖Rrxi − y′
j‖ − ρ, 0

)

(24)

> max
(

min ‖x′
i − y′

j‖ − ρ, 0
)

(25)

=











max
[

∣

∣‖xi‖−‖y′
j‖
∣

∣−ρ, 0
]

for α6β

max
[

‖x∗
ij−y′

j‖−ρ, 0
]

for α>β
(26)

where (23) is transferred from (17), (25) states that the min-

imum distance to a constrained point on the spherical cap is

greater than or equal to the minimum distance to an uncon-

strained point on the cap and (26) is from Theorem 3.

Theorem 3. (Spherical cap distance) For the spherical cap

defined by the vector x′
i+t0 constrained by ∠(x′

i,x
0
i ) 6 β,

the minimum distance from a point yj to the spherical cap

is given by

min‖x′
i+t0−yj‖=

{
∣

∣‖xi‖ − ‖yj − t0‖
∣

∣ for α6β

‖x∗
ij − (yj − t0)‖ for α>β

(27)

where α and β are as per Theorem 2, shown in Figure 3.

Proof. Dropping the subscripts and translating everything

by (−t0), an arbitrary point x′ on the spherical cap can be

expressed as the rotation of the point x0 about the sphere

centre towards y′ by an angle γ ∈ [0, β], followed by a

rotation of this intermediate vector about the axis x0 by θ.

By two applications of the Rodrigues’ rotation formula,

x′ =

[

cγ −
cα sγ cθ

sα

]

x0+
sγ
sα

x0 × y′

‖y′‖ +
sγ cθ ‖x‖
sα ‖y′‖ y′ (28)

where sA = sinA and cA = cosA. By substitution, the

squared distance between the point y′ and an arbitrary point

on the spherical cap is given by

‖x′−y′‖2=‖x‖2+‖y′‖2−2 [cαcγ+sαsγcθ]‖x‖‖y′‖ (29)

and is minimised when θ = 0. Therefore,

min ‖x′−y′‖2= ‖x‖2+‖y′‖2−2 cos[α−γ]‖x‖‖y′‖. (30)

When α 6 β (Case 1), (30) is minimised when γ = α:

min ‖x′ − y′‖2 = (‖x‖ − ‖y′‖)2 (31)

∴ min ‖x′ − y′‖ =
∣

∣‖x‖ − ‖y′‖
∣

∣ for α 6 β. (32)

When α > β (Case 2), (30) is minimised when γ = β:

min ‖x′ − y′‖2 = ‖x∗ − y′‖2 (33)

∴ min ‖x′ − y′‖ = ‖x∗ − y′‖ for α > β. (34)

The full proof is left for the appendix.

t0

Rr0
xi+t0

||xi||

yj

||yj − t0||
¯
e′ij (Rr, t)

ē′ij (Rr, t)

β
α

(a) Case 1: yj is within the rotation cone (α 6 β).

t0

Rr0
xi+t0

||xi||

α yj

||yj − t0||β

¯
e′ij (Rr, t)

ē′ij (Rr, t)

x∗
ij + t0

(b) Case 2: yj is outside the rotation cone (α > β).
Figure 3. Upper and lower bound of the pairwise residual error,

neglecting translation. A 2D cross-section of the plane defined by

points {Rr0
xi + t0,yj , t0} is shown.

The geometric intuition, shown in Figure 3, for Theo-

rems 2 and 3 is that the minimum distance to the spheri-

cal cap is equal to (i) the radial distance to the sphere if y

lies within the rotation cone (α 6 β) or (ii) the distance to

the edge of the cap. This ‘spherical cap distance’ pairwise

lower bound is a tighter bound than (11) and the gap be-

tween it and the upper bound converges to zero. This can

be shown by observing that the size of the spherical cap di-

minishes with the size of the rotation sub-cube (7) and like-

wise for the translation sphere and translation sub-cube (5).

It is also a tighter bound than that in [54], which uses the

distance to a sphere enclosing the spherical cap.

The bounds of the objective function are found by sum-

ming the kernelised upper and lower bounds of the pairwise

residual errors in (10) and (20) for all m×n Gaussian pairs.

Corollary 1. (Bounds of the objective function) For the

3D transformation domain Cr × Ct centred at (r0, t0)
with translation sphere radius ρ, the upper bound f̄ and

the lower bound
¯
f of the optimal objective function value

f(Rr, t) can be chosen as

f̄ (Rr, t)=−
m
∑

i=1

n
∑

j=1

φX
i φY

j

Z
exp

[

− [ēij (Rr, t)]
2

2
[

σ2
iX

+ σ2
jY

]

]

(35)

¯
f (Rr, t)=−

m
∑

i=1

n
∑

j=1

φX
i φY

j

Z
exp

[

− [
¯
eij (Rr, t)]

2

2
[

σ2
iX

+ σ2
jY

]

]

. (36)
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5. The GOGMA Algorithm

The Globally-Optimal Gaussian Mixture Alignment

(GOGMA) algorithm is outlined in Algorithm 1. It em-

ploys branch-and-bound with depth-first search using a

priority queue where the priority is inverse to the lower

bound (Line 4). The algorithm terminates with ǫ-optimality,

whereby the difference between the best function value f∗

so far and the global lower bound
¯
f is less than ǫ (Line 5).

In this implementation, the upper and lower bounds

of 4096 sub-cubes are found simultaneously on the GPU

(Line 6). A higher branching factor can be used, although

memory considerations must be taken into account to en-

sure that the priority queue does not increase much faster

than it can be pruned. A branching factor of 4096 per-

forms well and does not require a high-end GPU. Other than

bound calculation, the code is executed entirely on the CPU.

Lines 1 and 8 show how the local Gaussian Mixture

Alignment (GMA) algorithm is integrated. Firstly, the best-

so-far function value f∗ and the associated transformation

parameters are initialised using GMA (Line 1). Within the

main loop, GMA is run whenever the BB algorithm finds

a sub-cube Ci that has an upper bound less than the best-

so-far function value f∗ (Line 8). GMA is initialised with

(r0i, t0i), the centre transformation of Ci. In this way, BB

and GMA collaborate, with GMA quickly converging to

the closest local minimum and BB guiding the search into

the convergence basins of increasingly lower local minima.

Hence, BB jumps the search out of local minima and GMA

accelerates convergence by refining f∗. Importantly, the

faster f∗ is refined, the more sub-cubes are discarded, since

those with lower bounds higher than f∗ are culled (Line 9).

The algorithm is designed in such a way that early ter-

mination outputs the best-so-far transformation. Hence, if a

limit is set on the runtime, a best-guess transformation can

be provided for those alignments that exceed the threshold.

While ǫ-optimality will not be guaranteed for them, in prac-

tise this is often adequate. In view of this, and to accelerate

the removal of redundant sub-cubes, Line 8 may be mod-

ified such that GMA is run for every sub-cube of the first

subdivision and f∗ is updated with the best function value

of that batch. We denote this as batch-initialised GOGMA.

6. Experimental Results

GOGMA was evaluated using many different point-sets,

including 3D data collected in the lab and in the field. In

order to test the algorithms across a uniformly-distributed

sample of SO(3), the 72 base grid rotations from Incremen-

tal Successive Orthogonal Images (ISOI) [55] were used.

Translation perturbations were not applied, since centring

and scaling the point-sets to [−1, 1]3 before conversion to

GMM removes these perturbations. The transformation do-

main was set to be [−π, π]3×[−0.5, 0.5]3. This corresponds

to a minimum detectable bounding box overlap of ~42%.

Algorithm 1 GOGMA: An algorithm for globally-optimal

Gaussian mixture alignment in SE(3)

Input: mixture models GX and GY , parametrised by means

x and y respectively, variances σ2 and mixture weights

φ; threshold ǫ; initial transformation hypercube C =
Cr × Ct centred at (r0, t0).

Output: ǫ-optimal value f∗ and corresponding r∗, t∗.

1: Run GMA: (f∗, r∗, t∗)← GMA(r0, t0)
2: Add hypercube C to priority queue Q
3: loop

4: Remove cube C with lowest lower-bound
¯
f from Q

5: if f∗ −
¯
f 6 ǫ then Terminate

6: In parallel, evaluate f̄i and
¯
fi for all sub-cubes of C

7: for all sub-cubes Ci do

8: if f̄i < f∗ then (f∗, r∗, t∗)← GMA(r0i, t0i)
9: if

¯
fi < f∗ then Add Ci to queue: Q← Ci

Except where otherwise specified, the convergence

threshold was set to ǫ = 0.1, the number of Gaussian com-

ponents was set to m,n ≈ 50, batch initialisation was used

and the GMMs were Support Vector–parametrised Gaus-

sian Mixtures (SVGMs), whereby an SVM and a mapping

are used to efficiently construct an adaptive GMM from

point-set data [8]. SVGMs allow the user to specify the ap-

proximate number of components and set equal variances

automatically, based on the desired number of components.

Although GOGMA is a general-purpose Gaussian mix-

ture alignment algorithm, the runtime results include the

time required for GMM construction, to facilitate compari-

son with other point-set registration algorithms. All exper-

iments were run on a PC with a 3.7GHz Quad Core CPU

with 32GB of RAM and a Nvidia GeForce GTX 980 GPU.

The GOGMA code is written in unoptimised C++ and uses

the VXL numerics library [49] for local GMA optimisation.

It is crucial to observe that finding the global optimum

does not necessarily imply finding the ground-truth trans-

formation. For GMMs that describe partially overlapping

point-sets, there may exist an alignment that produces a

smaller function value than the ground-truth alignment.

However, the L2 density distance objective function is much

less susceptible to partial overlap than others [8], including

the L2 norm closest point error that is minimised by ICP.

6.1. Optimality

To demonstrate optimality of the algorithm with respect

to the objective function, the reconstructed DRAGON [14]

and BUNNY [48] point-sets were aligned with transformed

copies of themselves, using the 72 ISOI rotations. Identical

point-sets were required to obtain the ground-truth optimal

objective function values. The global optimum was found

for all 144 registrations, with mean separations from the op-

timal value being 9×10−8 and 3×10−7 and mean runtimes

being 17s and 14s for DRAGON and BUNNY respectively.
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Figure 4. Evolution of the upper and lower bounds for the recon-

structed DRAGON and BUNNY models. The objective function

value is plotted against time. Note the logarithmic scale.

Table 1. Effect of GMM type on the accuracy and runtime of the

GOGMA algorithm. The mean/max translation error (in metres),

rotation error (in degrees) and runtime (in seconds) are reported.

GMM Type SVGM KDE EM

Translation 0.004/0.008 0.14/0.21 0.02/0.18

Rotation 1.5/2.7 116/167 7.2/80

Runtime 34/50 15/15 4960/4965

For batch initialisation, the mean runtimes were 33s and

29s. The evolution of the global upper and lower bounds is

shown in Figure 4. It can be seen that BB and GMA collab-

orate to reduce the upper bound: BB guides the search into

the convergence basins of increasingly lower local minima

and GMA refines the bound by jumping to the nearest local

minimum. Discontinuities in the lower bound occur when

an entire sub-cube level has been explored. With batch ini-

tialisation, the global minimum is generally captured at the

start of the algorithm. The remaining time is spent increas-

ing the lower bound until ǫ-optimality can be guaranteed.

While sometimes slower for simpler datasets or larger ǫ, it

usually reduces runtime and is the preferred setting.

6.2. FullyOverlapping Registration

In these experiments, we evaluated the performance of

GOGMA by aligning single-view partial scans with a full

3D model. We used the DRAGON dataset, consisting of

one reconstructed model (DRAGON-RECON) and 15 partial

scans (DRAGON-STAND). The 72 base ISOI rotations were

used as the initial transformations for the partial scans. For

the standard parameter settings, GOGMA found the correct

alignment in all 1080 cases, as shown in Table 1 (SVGM).

To investigate the effect of other GMM types on the ac-

curacy and runtime of the algorithm, we repeated the ex-

periment with fixed-bandwidth Kernel Density Estimation

(KDE) [25] and Expectation Maximisation (EM) [15]. The

number of components was fixed (m,n = 50), but the vari-

ances and mixture weights were set by the algorithms. For

KDE, the variance was found by parameter search and the

point-sets were randomly downsampled to m points. The

results were poor, due to the small number of components

imposed by GOGMA for tractability. The EM results show

that it is a suitable input to GOGMA in terms of alignment
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Figure 5. Mean runtime of GOGMA on the DRAGON dataset with

respect to different factors, for the alignment of DRAGON-RECON

with point-set 0 of DRAGON-STAND, transformed by 72 uniformly

distributed rotations. Note the logarithmic scale in (c).

accuracy, however the implementation [18] took 4 663s to

process the model and ~256s to process each scan, making

it impractical unless more efficiently implemented. Consid-

ering both speed and accuracy, SVGMs are recommended.

To investigate the effect of other factors on the runtime,

one was varied while the others were kept at the defaults.

The 72 ISOI rotations were applied to scan 0 and the mean

runtimes were reported for standard and batch initialisa-

tions. The scan, aligned by GOGMA, is shown in Figure 5a

in red. The results for differing numbers of Gaussian com-

ponents m,n are shown in Figure 5b. The quadratic shape

reflects the O(mn) per-iteration complexity. The results for

differing values of the convergence threshold ǫ are shown

in Figure 5c. For values of ǫ close to zero, the runtime in-

creases steeply, while larger values allow the algorithm to

terminate quicker, albeit with a looser optimality guarantee.

We found that ǫ=0.1 was a suitable default, having a 100%

success rate. The runtime is also affected by the quality

of the lower bound, as shown in Figure 5d. The GOGMA

lower bound is tighter than the Go-ICP lower bound [54],

which uses the distance to an uncertainty sphere containing

the spherical cap, as reflected in the runtimes.

6.3. PartiallyOverlapping Registration

To evaluate the performance of GOGMA on large-scale

field datasets, we used the two challenging laser scanner

datasets in Table 2 [38]. STAIRS is a structured in/outdoor

dataset with large and rapid variations in scanned volumes.

WOOD-SUMMER is an unstructured outdoor dataset with

dynamic objects. The symmetric inlier fraction was used

to calculate the overlap: the fraction of points from the joint
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Table 2. Characteristics of the large-scale field datasets [38].

Dataset STAIRS WOOD-SUMMER

# Point-Sets 31 37

Mean # Points 191 000 182 000

Mean Overlap 76% 77%

Table 3. Alignment results for STAIRS. The mean translation error

(in metres), rotation error (in degrees), coarse (C), medium (M)

and fine (F) registration inlier rates (defined in the text) and mean

runtime (in seconds) are reported. GOGMA is denoted by [*],

GOGMA with refinement by [*]+, Go-ICP with ǫ=10−4 by [54]a,

Go-ICP with ǫ=5×10−5 by [54]b, ICP by [4] and CPD by [33].

Method [*] [*]+ [54]a [54]b [4] [33]

Translation 0.26 0.04 1.63 1.17 4.67 5.24

Rotation 1.25 0.32 30.9 19.4 107 88.8

Inlier % (C) 100 100 71.8 80.9 15.5 38.8

Inlier % (M) 100 100 48.5 51.9 13.4 28.6

Inlier % (F) 80.0 99.7 19.6 21.2 6.5 7.1

Runtime 49.6 71.2 31.6 103 0.38 4.2

Table 4. Alignment results for WOOD-SUMMER.

Method [*] [*]+ [54]a [54]b [4] [33]

Translation 0.72 0.13 1.33 0.69 7.37 8.13

Rotation 3.09 0.68 9.66 5.19 109 90.7

Inlier % (C) 100 100 78.2 84.1 11.3 39.5

Inlier % (M) 75.0 99.9 36.6 64.5 10.8 19.3

Inlier % (F) 16.7 99.9 13.2 27.5 5.4 0.8

Runtime 29.5 49.6 26.2 77.7 0.44 4.2

(a) STAIRS point-sets 4 & 5 (b) WOOD-SUMMER point-sets 0 & 1

Figure 6. Qualitative results for two large-scale datasets. The blue

scan was aligned by GOGMA from an arbitrary initial pose against

the red scan, followed by GMA refinement. Best viewed in colour.

set within 10d̄ of a point from the other point-set, where d̄ is

the mean closest point distance. Sequential point-sets were

aligned using GOGMA with/out refinement, Go-ICP [54],

ICP [4] and CPD [33] with the 72 ISOI rotations as initial

transformations. GOGMA was refined by running GMA

from the output transformation with m,n ≈ 1000 compo-

nents. The coarse, medium and fine registration inlier rates

are defined as the fraction of alignments with translation

and rotation errors less than 2m/10◦, 1m/5◦ and 0.5m/2.5◦

respectively. Tables 3 and 4 and Figure 6 show the results.

GOGMA significantly outperformed Go-ICP in these ex-

periments, finding the correct transformation in all cases

under the coarse criterion. Crucially, the success of the re-

finement step in finding the correct transformation in virtu-

ally all cases under the fine criterion indicates that GOGMA

found the correct alignment, up to the granularity of the 50

Table 5. Sensor localisation results for APARTMENT. The mean

translation error (in metres), rotation error (in degrees), runtime

(in seconds) and fine (F) registration inlier rates are reported.

Room Scan A B C D

Translation 0.16 0.22 0.40 0.35

Rotation 0.93 0.89 1.95 2.35

Inlier % (F) 100 100 100 100

Runtime 328 383 379 409

A

C

B

D

Figure 7. Coarse pose estimates (black spheres) of the sensor lo-

cations for 4 room scans (red, blue, green and purple) found by

aligning each scan with the entire map (grey) using GOGMA.

component representation. Go-ICP performed poorly with

the loose convergence threshold ǫ = 10−4 and N = 50
points. With ǫ an order of magnitude smaller (10−5), N
an order of magnitude greater (500), or any trimming, the

runtime became prohibitively slow. The tightest feasible ǫ
(5×10−5) failed to coarsely align 19% of cases for STAIRS

and 16% for WOOD-SUMMER. Finally, the results show

that ICP and CPD both perform poorly without a good pose

prior, converging to local minima for most initialisations.

A specific application is the kidnapped robot problem:

finding the pose of a sensor within a 3D map. We perturbed

4 scans of different rooms in the APARTMENT dataset [38]

by the 72 ISOI rotations to simulate being lost and used

GOGMA to localise the scans within the map. As shown in

Table 5 and Figure 7, all positions were correctly localised.

7. Conclusion

In this paper, we have introduced a globally-optimal so-

lution to 3D Gaussian mixture alignment under the L2 dis-

tance, with an application to point-set registration. The

method applies the branch-and-bound algorithm to guaran-

tee global optimality regardless of initialisation and uses lo-

cal optimisation to accelerate convergence. The pivotal con-

tribution is the derivation of the objective function bounds

using the geometry of SE(3). The algorithm performed

very well on challenging field datasets, due to an objec-

tive function that is robust to outliers induced by partial-

overlap and occlusion. There are several areas that warrant

further investigation. Firstly, runtime benefits could be re-

alised by implementing the local optimisation on the GPU.

Dynamic branching factors would allow more parallelism

for the same memory requirements. Finally, extending the

lower bound to handle full covariances would enable the al-

gorithm to be applied to more general Gaussian mixtures.
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