
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Going Beyond the Sandbox: An Overview of the New Security
Architecture in the Java Development Kit 1.2

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers
JavaSoft, Sun Microsystems, Inc.



Going Beyond the Sandbox: An Overview of the New Security

Architecture in the JavaTM Development Kit 1.2

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers

JavaSoft, Sun Microsystems, Inc.

fgong,mrm,hemma,schemersg@eng.sun.com

Abstract

This paper describes the new security architec-

ture that has been implemented as part of JDK1.2,

the forthcoming JavaTM Development Kit. In going

beyond the sandbox security model in the original

release of Java, JDK1.2 provides �ne-grained ac-

cess control via an easily con�gurable security pol-

icy. Moreover, JDK1.2 introduces the concept of

protection domain and a few related security prim-

itives that help to make the underlying protection

mechanism more robust.

1 Introduction

Since the inception of Java [8, 11], there has been
strong and growing interest around the security of
Java as well as new security issues raised by the
deployment of Java. From a technology provider's
point of view, Java security includes two aspects [6]:

� Provide Java (primarily through JDK) as a se-
cure, ready-built platform on which to run Java
enabled applications in a secure fashion.

� Provide security tools and services imple-
mented in Java that enable a wider range of
security-sensitive applications, for example, in
the enterprise world.

This paper focuses on issues related to the �rst
aspect, where the customers for such technologies
include vendors that bundle or embed Java in their
products (such as browsers and operating systems).
It is worth emphasizing that this work by itself

does not claim to break signi�cant new ground in
terms of the theory of computer security. Instead,
it o�ers a real world example where well-known se-
curity principles [5, 12, 13, 16] are put into engi-
neering practice to construct a practical and widely
deployed secure system.

1.1 The Original Security Model

The original security model provided by Java is
known as the sandbox model, which exists in order
to provide a very restricted environment in which
to run untrusted code (called applet) obtained from
the open network. The essence of the sandbox
model, as illustrated by Figure 1, is that local code is
trusted to have full access to vital system resources
(such as the �le system) while downloaded remote
code is not trusted and can access only the limited
resources provided inside the sandbox.

Figure 1: JDK1.0.x Security Model

This sandbox model is deployed through the Java
Development Toolkit in versions 1.0.x, and is gen-
erally adopted by applications built with JDK, in-
cluding Java-enabled web browsers.
Overall security is enforced through a number of

mechanisms. First of all, the language is designed
to be type-safe, and easy to use. The hope is that
the burden on the programmer is such that it is less
likely to make subtle mistakes, compared with using
other programming languages such as C or C++.
Language features such as automatic memory man-



agement, garbage collection, and range checking on
strings and arrays are examples of how the language
helps the programmer to write safer code.
Second, compilers and a bytecode veri�er ensure

that only legitimate Java code is executed. The
bytecode veri�er, together with the Java virtual ma-
chine, guarantees language type safety at run time.
Moreover, a class loader de�nes a local name

space, which is used to ensure that an untrusted
applet cannot interfere with the running of other
Java programs.
Finally, access to crucial system resources is me-

diated by the Java virtual machine and is checked in
advance by a SecurityManager class that restricts
to the minimum the actions of untrusted code.
JDK1.1.x introduced the concept of signed ap-

plet. In this extended model, as shown in Figure 2,
a correctly digitally signed applet is treated as if it is
trusted local code if the signature key is recognized
as trusted by the end system that receives the ap-
plet. Signed applets, together with their signatures,
are delivered in the JAR (Java Archive) format.

Figure 2: JDK1.1 Security Model

The rest of this paper focuses on the new sys-
tem security features. Discussion of various lan-
guage safety issues can be found elsewhere (e.g.,
[3, 4, 19, 21]).

1.2 Evolving the Sandbox Model

The new security architecture in JDK1.2, as illus-
trated in Figure 3, is introduced primarily for the
following purposes.

� Fine-grained access control.

This capability has existed in Java from the be-
ginning, but to use it, the application writer has

Figure 3: JDK1.2 Security Model

to do substantial programming (e.g., by sub-
classing and customizing the SecurityManager
and ClassLoader classes).

HotJava is such an example application. How-
ever, such programming is extremely security
sensitive and requires sophisticated skills and
in-depth knowledge of computer security. The
new architecture makes this exercise simpler
and safer.

� Easily con�gurable security policy.

Once again, this feature exists in Java but is
not easy to use. This design goal implies that
the security and its implementation or enforce-
ment mechanism should be clearly separated.
Moreover, because writing security code is not
straightforward, it is desirable to allow appli-
cation builders and users to con�gure security
policies without having to program.

� Easily extensible access control structure.

Up to JDK1.1, to create a new access permis-
sion, one has to add a new check() method
to the SecurityManager class. The new ar-
chitecture allows typed permissions and au-
tomatic handling. No new method in the
SecurityManager class needs to be created in
most cases. (Actually, we have not encountered
a situation where a new method must be cre-
ated.)

� Extension of security checks to all Java pro-
grams, including applets as well as applications.

There should not be a built-in concept that all
local code is trusted. Instead, local code should
be subjected to the same security controls as
applets, although one should have the choice



to declare that the policy on local code (or re-
mote code) be the most liberal (thus local code
e�ectively runs as totally trusted). The same
principle applies to signed applets and applica-
tions.

Finally, we also take this opportunity to make
internal structural adjustment in order to reduce
the risks of creating subtle security holes in pro-
grams. This e�ort involves revising the design
and implementation of the SecurityManager and
ClassLoader classes as well as the underlying ac-
cess control checking mechanism.

1.3 Related Work

The fundamental ideas adopted in the new secu-
rity architecture have roots in the last 40 years of
computer security research, such as the overall idea
of access control list [10]. We followed some of the
Unix conventions in specifying access permissions
to the �le system and other system resources, but
signi�cantly, our design has been inspired by the
concept of protection domains and the work deal-
ing with mutually suspicious programs in Multics
[17, 15], and right ampli�cation in Hydra [9, 20].
One novel feature, which is not present in oper-

ating systems such as Unix or MS-DOS, is that we
implement the least-privilege principle by automat-

ically intersecting the sets of permissions granted to
protection domains that are involved in a call se-
quence. This way, a programming error in system
or application software is less likely to be exploitable
as a security hole.
Note that although the Java Virtual Machine

(JVM) typically runs over another hosting operat-
ing system such as Solaris, it may also run directly
over hardware as in the case of the network com-
puter JavaStation running JavaOS [14]. To main-
tain platform independence, our architecture does
not depend on security features provided by an un-
derlying operating system.
Furthermore, our architecture does not override

the protection mechanisms in the underlying oper-
ating system. For example, by con�guring a �ne-
grained access control policy, a user may grant spe-
ci�c permissions to certain software, but this is ef-
fective only if the underlying operating system itself
has granted the user those permissions.
Another signi�cant character of JDK is that its

protection mechanisms are language-based, within a
single address space. This feature is a major distinc-
tion from more traditional operating systems, but
is very much related to recent works on software-
based protection and safe kernel extensions (e.g.,

[2, 1, 18]), where various research teams have lately
aimed for some of the same goals with di�erent pro-
gramming techniques.

2 New Protection Mechanisms

This section covers the concept and implementa-
tion of some important new primitives introduced in
JDK1.2, namely, security policy, access permission,
protection domain, access control checking, privi-
leged operation, and Java class loading and resolu-
tion.

2.1 Security Policy

There is a system security policy, set by the user
or by a system administrator, that is represented
by a policy object, which is instantiated from the
class java.security.Policy. There could be mul-
tiple instances of the policy object, although only
one is \in e�ect" at any time. This policy object
maintains a runtime representation of the policy, is
typically instantiated at the Java virtual machine
start-up time, and can be changed later via a secure
mechanism.

In abstract terms, the security policy is a mapping
from a set of properties that characterize running
code to a set of access permissions that is granted
to the concerned code.1

Currently, a piece of code is fully characterized
by its origin (its location as speci�ed by a URL)
and the set of public keys that correspond to the
set of private keys that have been used to sign
the code using one or more digital signature algo-
rithms. Such characteristics are captured in the
class java.security.CodeSource, which can be
viewed as a natural extension of the concept of a
code base within HTML. (It is important not to con-
fuse CodeSourcewith the CodeBase tag in HTML.)
Wild cards are used to denote \any location" or
\unsigned".

Informally speaking, for a code source to match
an entry given in the policy, both the URL informa-
tion and the signature informationmust match. For
URL matching, if the code source's URL is a pre�x
of an entry's URL, we consider this a match. For
signature matching, if one public key corresponding
to a signature in the code source matches the key of
a signer in the policy entry, we consider it a match.

1In the future, the security policy can be extended to in-

clude and consider information such user authentication and

delegation.



When a code source matches multiple policy en-
tries, for example, when the code is signed with mul-
tiple signatures, permissions granted are additive in
that the code is given all permissions contained in
all the matching entries. For example, if code signed
with key A gets permission X and code signed by
key B gets permission Y, then code signed by both
A and B gets permissions X and Y.

Veri�cation of signed code uses a new package of
certi�cate java.security.cert that fully supports
the processing of X.509v3 certi�cates.

The policy within the Java runtime is set via a
programming API. We also specify an external pol-
icy representation in the form of an ASCII policy
con�guration �le. Such a �le essentially contains a
list of entries, each being a pair, consisting of a code
source and its permissions. In such a �le, a public
key is signi�ed by an alias { the string name of the
signer { where we provide a separate mechanism to
create aliases and import their matching public keys
and certi�cates.

2.2 Permission

We have introduced a new hierarchy of typed
and parameterized access permissions that is rooted
by an abstract class java.security.Permission.
Other permissions are subclassed either from the
Permission class or one of its subclasses, and gen-
erally should belong to their own packages.

For example, the permission representing �le
system access is located in the Java I/O pack-
age, as java.io.FilePermission. Other permis-
sion classes that are introduced in JDK1.2 include:
java.net.SocketPermission for access to network
resources, java.lang.RuntimePermission for ac-
cess to runtime system resources such as properties,
and java.awt.AWTPermision for access to window-
ing resources. In other words, access methods and
parameters to most of the controlled resources, in-
cluding access to Java properties and packages, are
represented by the new permission classes.

A crucial abstract method in the Permission

class that needs to be implemented for each new
class of permission is the implies method. Basi-
cally, a.implies(b) == true means that, if one is
granted permission a, then one is naturally granted
permission b. This is the basis for all access control
decisions.

For convenience, we also created abstract classes
java.security.PermissionCollection and
java.security.Permissions that are subclasses
of the Permission class. PermissionCollection

is a collection (i.e., a set that allows dupli-

cates) of Permission objects for a category
(such as FilePermission), for ease of grouping.
Permissions is a heterogeneous collection of col-
lections of Permission objects.

Not every permission class must support a corre-
sponding collection class. When they do, it is crucial
to implement the correct semantics for the implies
method in the corresponding permission collection
classes. For example, FilePermission can get added
to the FilePermissionCollection object in any
order, so the latter must know how to correctly com-
pare a permission with a permission collection.

Typically, each permission consists of a target and
an action thus, informally, a permission implies an-
other if and only if both the target and the action of
the former respectively implies those of the latter.

Take FilePermission for example. There are
two kinds of targets: a directory and a �le. There
are four ways to express a �le target: path,
path/file, path/*, and path/-. path/* denotes
all �les and directories in the directory path, and
path/- denotes all �les and directories under the
subtree of the �le system starting at path. The ac-
tions include read, write, execute, and delete.

Therefore, \read �le /tmp/abc" is a permission,
and can be created using the following Java code:

p = new FilePermission("/tmp/abc", "read");

Permission (/tmp/*, read) implies permission
(/tmp/abc, read), but not vice versa. Permission
(/home/gong/-, read,write) implies permission
(/home/gong/public html/index.html, read).

In the case of SocketPermission, a net target
consists of an IP address and a range of port num-
bers. Actions include connect, listen, accept,
and others. One SocketPermission implies another
if and only if the former covers the same IP address
and the port numbers for the same set of actions.

Applications are free to add new categories of per-
missions. Note that a piece of Java code can cre-
ate any number of permission objects, but such ac-
tions do not grant the code the corresponding access
rights. What matters is that permission objects the
Java runtime system associates with the Java code
through the concept of protection domains.

2.3 Protection Domain

A new class java.security.ProtectionDomain
is package-private, and is transparent to most Java
developers. It serves as a useful level of indirec-
tion in that permissions are granted to protection
domains, to which classes and objects belong, and



not to classes and objects directly.2 In other words,
a domain can be scoped by the set of objects that
correspond to a principal, where a principal is an
entity in the computer system to which authoriza-
tions (and as a result, accountability) are granted
[16]. The Java sandbox in JDK1.0.2 is one example
of a protection domain with a �xed boundary.

In JDK1.2, protection domains are created \on
demand", based on code source. Each class belongs
to one and only one domain. The Java runtime
maintains the mapping from code (classes and ob-
jects) to their protection domains and then to their
permissions.

Protection domain also serves as a convenient
point for grouping and isolation between units of
protection within the Java runtime. For example, it
is possible to separate di�erent domains from inter-
acting with each other. Any permitted interaction
must be either through system code or explicitly al-
lowed by the domains concerned.

The above point brings up the issue of accessibil-
ity, which is orthogonal to security. In the Java vir-
tual machine, a class is distinguished by itself plus
the class loader instance that loaded the class. In
other words, a class loader de�nes a distinct name
space and can be used to isolate and protect code
within one protection domain if the loader refuses to
load code from di�erent domains (and with di�erent
permissions).

On the other hand, it is sometimes desirable to
allow code from di�erent domains to interact with
each other { for example, in the case of an appli-
cation made up from Java Beans signed by di�er-
ent public keys, the beans should be able to ac-
cess each other (which is the purpose of the ap-
plication) although the runtime environment may
insist that di�erent beans are loaded into di�erent
domains. The AppletClassLoader class used by
the appletviewer in JDK1.2 will load classes from
di�erent domains.

One protection domain is special: the system do-
main, which consists of system code that is loaded
with a null class loader (basically all classes located
on CLASSPATH) and is given special privileges. It
is important that all protected external resources,
such as the �le system, the networking facility, and
the screen and keyboard, are directly accessible only
via system code.

2In the future, protection domains can be further char-

acterized by user authentication and delegation so that the

same code could obtain di�erent permissions when running

\on behalf of" of di�erent principals.

2.4 Domain-Based Access Control

The decision of granting access to controlled re-
sources can only be made within the right context,
which must provide answers to questions such as
\who is requesting what, on whose behalf". Of-
ten, a thread is the right context for access control.
Less frequently, access control decisions have to be
carried out among multiple threads that must co-
operate in obtaining the right context information.
This section focuses on the former, as it is the most
common case encountered in building JDK1.2.

A thread of execution may occur completely
within a single protection domain (i.e., all classes
and objects involved in the thread belong to the
identical protection domain) or may involve multi-
ple domains such as an application domain and also
the system domain.

For example, an application that prints a message
out will have to interact with the system domain
that is the only access point to an output stream.
In this case, it is crucial that at any time the appli-
cation domain does not gain additional permissions
by calling the system domain. Otherwise, there can
be security serious implications.

In the reverse situation where a system domain in-
vokes a method from an application domain, such as
when the AWT system code calls an applet's paint
method to display the applet, it is again crucial that
at any time the e�ective access rights are the same
as current rights enabled in the application domain.

In other words, a less "powerful" domain cannot
gain additional permissions as a result of calling a
more powerful domain; whereas a more powerful do-
main must lose its power when calling a less pow-
erful domain. This principle of least privilege is ap-
plied to a thread that transverses multiple protec-
tion domains.

Up to JDK1.1, any code that performs an ac-
cess control decision relies on explicitly knowing
its caller's status (i.e., being system code or applet
code). This is fragile in that it is often insu�ciently
secure to know only the caller's status but also the
caller's caller's status and so on. At this point, plac-
ing this discovery process explicitly on the typical
programmer becomes a serious burden, and can be
error-prone.

To relieve this burden by automating the ac-
cess checking process, JDK1.2 introduces a new
class java.security.AccessController. Instead
of trying to discover the history of callers and
their status within a thread, any code can query
the access controller as to whether a permission
would succeed if performed right now. This is



done by calling the checkPermissionmethod of the
AccessController class with a Permission object
that represents the permission in question.

By default, the access controller will return
silently only if all callers in the thread his-
tory (e.g., all classes on the call stack) be-
long to domains that have been granted the
said permission. Otherwise, it throws a
java.security.AccessControlException, which
is a subclass of java.lang.SecurityException,
usually printing the reason of denial.
This default behavior is obviously the most se-

cure but is limiting in some cases where a piece of
code wants to temporarily exercise its own permis-
sions that are not available directly to its callers.
For example, an applet may not have direct access
to certain system properties, but the system code
servicing the applet may need to obtain some prop-
erties in order to complete its tasks.

For such exceptional cases, we provide a prim-
itive, via static methods beginPrivileged and
endPrivileged in the AccessController class. By
calling beginPrivileged, a piece of code is telling
the Java runtime system to ignore the status of its
callers and that it itself is taking responsibility in
exercising its permissions.

To summarize, a simple and prudent rule of
thumb for calculating permissions is the following:

� The permission of an execution thread is the
intersection of the permissions of all protection
domains transversed by the execution thread.

� When some code calls the beginPrivileged

primitive, the permission of the execution
thread includes a permission if it is allowed by
the said code's protection domain and by all
protection domains that are called or entered
directly or indirectly subsequently.

� When a new thread is created, it inherits from
its parent thread the current security context
(i.e., the set of protection domains present in
the parent at child creation time). This inheri-
tance is transitive.

In following the above rule, the access con-
troller examines the call history and the permissions
granted to the relevant protection domains, and to
return silently if the request is granted or throw a
security exception if the request is denied.

There are two obvious strategies for implement-
ing this access control rule. In an \eager evalua-
tion" implementation, whenever a thread enters a
new protection domain or exits from one, the set of

e�ective permissions is updated dynamically. The
bene�t is that checking whether a permission is al-
lowed is simpli�ed and can be faster in many cases.
The disadvantage is that, because permission check-
ing occurs much less frequently than cross-domain
calls, a large percentage of permission updates may
be useless e�ort.

JDK1.2 employs a \lazy evaluation" implementa-
tion where, whenever a permission checking is re-
quested, the thread state (as re
ected by the cur-
rent thread stack or its equivalent) is examined and
a decision is reached to either deny or grant the
particular access requested. One potential down-
side of this approach is performance penalty at per-
mission checking time, although this penalty would
have been incurred anyway in the "eager evalua-
tion" approach (albeit at earlier times and spread
out among each cross-domain call). In our imple-
mentation, performance of this algorithm is quite
acceptable3, so we feel that lazy evaluation is the
most economical approach overall.

2.5 Revised SecurityManager

Up to JDK1.1., when access to a critical system
resource (such as �le I/O and network I/O) is re-
quested, the resource handling code directly or in-
directly invokes the appropriate check method on
the installed java.lang.SecurityManager to eval-
uate the request and decide if the request should be
granted or denied.

JDK1.2 maintains backward compatibility in that
all check() methods in SecurityManager are still
supported, but we have changed their default im-
plementations to invoke AccessController, when-
ever feasible, with the appropriate permission ob-
ject. This class, which has been abstract up to
JDK1.1.x, is made concrete in JDK1.2.

To illustrate the usage of the new access con-
trol mechanism, let us examine a small example for
checking �le access. In earlier versions of the JDK,
the following code is typical:

ClassLoader loader =

this.getClass().getClassLoader();

if (loader != null) {

SecurityManager security =

System.getSecurityManager();

if (security != null) {

security.checkRead("path/file");

}

}

3For details of the implementation of protection domain,

and a discussion on performance and optimization tech-

niques, please refer to [7].



Under the new architecture, the check typically
should be invoked whether or not there is a class-
loader associated with a calling class. It should be
simply:

FilePermission p =

new FilePermission("path/file", "read");

AccessController.checkPermission(p);

Note that there are legacy cases (for example, in
some browsers) where whether there is an instance
of the SecurityManager class installed signi�es one
or the other security state that may result in dif-
ferent actions being taken. We currently do not
change this aspect of the SecurityManager usage,
but would encourage application developers to use
the techniques introduced in this new version of the
JDK in their future programming.
Moreover, we have not revised system code to

always call AccessController (and not check-
ing for the existence of a classloader), because
of the potential of existing software subclassing
the SecurityManager and customizing these check
methods.
To use the privilege primitive, the following code

sample should be followed:

try {

AccessController.beginPrivileged();

(some sensitive code)

} finally {

AccessController.endPrivileged();

}

Some important points about being privileged.
Firstly, this concept only exists within a single
thread. That is, a protection domain being so priv-
ileged is scoped by the thread within which the call
to become privileged is made. Other threads are not
a�ected.
Secondly, in this example, the body of code within

try-�nally is privileged. However, it will lose its
privilege if it calls (from within the privileged block)
code that is less privileged.
Moreover, although it is a good idea to use

beginPrivileged and endPrivileged in pairs as
this clearly scopes the privileged code, we have
to deal with the case when endPrivileged is not
called, because forgetting to disable a privilege can
be very dangerous. To reduce or eliminate the risk,
we have put in additional mechanism to safe guard
this primitive.

2.6 Secure Class Loading

The class java.security.SecureClassLoader is
a concrete implementation of the abstract class

java.lang.ClassLoader that loads classes and
records the protection domains they belong to. It
also provides methods to load a class from byte-
code stored in a byte array, an URL, and an
InputStream. This class can be extended to include
new methods, but most existing methods are �nal,
as this class is signi�cant for security.

All applets and applications (except for system
classes) are loaded by a SecureClassLoader either
directly or indirectly (in which case, it is probably
loaded by another classloader that itself is loaded
by a SecureClassLoader).

SecureClassLoader's loadClass methods en-
force the following search algorithm where, if the
desired class (by the given name) is not found, the
next step is taken. If the class is still not found
after the last step, a ClassNotFoundException is
thrown.

1. See if the class is already loaded and resolved

2. See if the class requested is a system class. if so,
load the class with the null system classloader.

3. Attempt to �nd the class in a customizable way,
using a non-�nal method findAppClass, which
by default will try to �nd the class in a second
local search path that is de�ned by a property
named java.app.class.path.

Note that in step 2, all classes on the search
path CLASSPATH are treated as system classes,
whereas in step 3, all classes on the search path
java.app.class.path are considered non-system
classes.4

Programmers who must write class loaders
should, whenever feasible, subclass from the con-
crete SecureClassLoader class, and not directly
from the abstract class java.lang.ClassLoader.

A subclass of SecureClassLoadermay choose to
overwrite the findAppClassmethod in order to cus-
tomize class searching and loading. For example,
the AppletClassLoader caches all raw class mate-
rials found inside a JAR �le. Thus, it is reasonable
for the AppletClassLoader, which is a subclass of
the SecureClassLoader, to use findAppClass to
look into its own cache. A class introduced in such
a fashion is guaranteed not to be a system class,
and is subjected to the same security policy as its
loading class.

4The path java.app.class.path is currently speci�ed in

a platform dependent format. There might be a future need

to develop a generic Path class that not only provides plat-

form independentpath names but also makes dynamicalpath

manipulation easier.



Often a class may refer to an another class and
thus cause the second class belonging to another
domain to be loaded. Typically the second class is
loaded by the same classloader that loaded the �rst
class, except when either class is a system class, in
which case the system class is loaded with a null
classloader.

2.7 Extending Security to Applications

To apply the same security policy to applications
found on the local �le system, we provide a new class
java.security.Main, which can be used in the fol-
lowing fashion in place of the traditional command
java application to invoke a local application:

java java.security.Main application

This usage makes sure that any local applica-
tion on the java.app.class.path is loaded with
a SecureClassLoader and therefore is subjected to
the security policy that is being enforced. Clearly,
non-system classes that are stored on the local
�le system should all be on this path, not on the
CLASSPATH.

3 Discussion

In this section, we discuss a number of open ques-
tions and possible improvement to the current archi-
tecture. But we start by discussing how a developer
or user is impacted by the new architecture.

3.1 Utilizing the New Architecture

For a user of the built-in appletviewer or a new
version of a browser that deploys this new security
architecture, the user can continue to do things the
same way as before, which means that the same
policy in JDK1.1.x will apply.

On the other hand, a \power user" can use the
PolicyTool built-in for JDK1.2 (or an equivalent
one shipped with the browser) to customize the se-
curity policy, thus utilizing the full bene�t of the
new security architecture. Such customization may
involve setting up a certi�cate store, which can be
done via the KeyTool.

The typical application developer, in general,
needs to do nothing special because, when the appli-
cation is run on top of JDK1.2, the security features
are invoked automatically. Except that the devel-
oper might want to use the built-in tools to package
the resulting application into JAR �les, and may
choose to digitally sign them.

For a software library developer whose code con-
trols certain resources, the developer may need to
extend the existing permission class hierarchy to
create application-speci�c permissions. The devel-
oper may also need to learn to use features provided
by the AccessController class, such as the privi-
lege primitive.

3.2 Handling Non-Class Content

When running applets or applications with signed
content, the JAR and Manifest speci�cations on
code signing allow a very 
exible format. Recall
that classes within the same archive can be un-
signed, signed with one key, or signed with multiple
keys. Other resources within the archive, such as
audio clips and graphic images, can also be signed
or unsigned.
This 
exibility brings about the issue of inter-

pretation. The following questions need to be
answered, especially when not all signatures are
granted the same privileges. Should images and au-
dio clips be required to be signed with the same key
if any class in the archive is signed? If images and
audio �les are signed with di�erent keys, can they
be placed in the same appletviewer (or browser
page), or should they be sent to di�erent viewers?
These questions are not easy to answer, and re-

quire consistency across platforms and products to
be most e�ective. Our intermediate approach is
to provide a simple answer { all images and audio
clips are forwarded to be processed whether they
are signed or not. This temporary solution will be
improved once a consensus is reached.

3.3 Enabling Fine-Grained Privileges

The privileged primitive discussed earlier in a
sense \enables" all permissions granted to a domain.
We can contemplate to enrich the construct so that
a protection domain can request to enable privi-
lege for only some of its granted permissions. This
should further reduce the security impact of making
a programmingmistake. For example, the code seg-
ment below illustrates how to turn on the privilege
of only reading everything in the "/tmp" directory.

FilePermission p =

new FilePermission("/tmp/*", "read");

try {

AccessController.beginPrivileged(p);

some sensitive code

} finally {

AccessController.endPrivileged(p);

}



3.4 Extending Protection Domains

The �rst possibility is to subdivide the system do-
main. For convenience, we can think of the system
domain as a single, big collection of all system code.
For better protection, though, system code should
be run in multiple system domains, where each do-
main protects a particular type of resource and is
given a special set of rights. For example, if �le sys-
tem code and network system code run in separate
domains, where the former has no rights to the net-
working resources and the latter has no rights to the
�le system resources, the risks and consequence of
an error or security 
aw in one system domain is
more likely to be con�ned within its boundary.

Moreover, protection domains currently are cre-
ated transparently as a result of class loading. It
might be desirable to provide explicit primitives to
create a new domain. Often, a domain supports in-
heritance in that a sub-domain automatically inher-
its the parent domain's security attributes, except
in certain cases where the parent further restricts or
expands the sub-domain explicitly.
Finally, each domain (system or application) may

also implement additional protection of its internal
resources within its own domain boundary. Because
the semantics of such protection is unlikely to be
predictable by the JDK, the protection system at
this level is best left to the application develop-
ers. Nevertheless, JDK1.2 provides SignedObject,
Guard, and GuardedObject classes that simplify a
developer's task.

4 Summary and Future Work

This paper gives an overview of the motivation
and the new security architecture implemented in
JDK1.2. Although we do not break new theo-
retical ground in computer security, we attempt
to distill the best practices from research in the
past four decades, such as clear separation between
security policy and implementation, and engineer
them into a widely deployed programming platform.
Our implementation has a number of novel aspects
that demonstrate beyond the doubt the e�ciency
of language-based protection mechanisms. The suc-
cess of this development e�ort also highlights the
excellent extensibility of the Java platform.

In future releases, we are investigating user au-
thentication techniques, an explicit principal con-
cept, a general mechanism for cross-protection-
domain authorization, and the \running-on-behalf"
style delegation. We are also working towards ad-

ditional features such as arbitrary grouping of per-
missions, the composition of security policies, and
resource consumption management, which is rela-
tively easy to implement in some cases, e.g., when
limiting the number of windows any application can
pop up at any one time, but more di�cult in other
cases, e.g., when limiting memory or �le system us-
age.

Acknowledgments

Additional members of the JavaSoft security
group, including Gigi Ankeny, Charlie Lai, Jan
Luehe, and Je� Nisewanger, made signi�cant con-
tributions during the course of the design and im-
plementation of new security features in JDK1.2.
Other members of the JavaSoft community, no-
tably Josh Bloch, Sheng Liang, Roger Riggs, Nakul
Saraiya, and Bill Shannon, provided invaluable in-
sight, detailed reviews, and much needed technical
assistance.

We are grateful for support from Dick Neiss, Jon
Kannegaard, and Alan Baratz, for technical guid-
ance from James Gosling, Graham Hamilton, and
Jim Mitchell, and for indispensable collaboration
from the testing and documentation groups. We
received numerous suggestions from our corporate
partners and licensees, whom we could not fully list
here.

References

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G.
Sirer, M. Fiuchynski, D. Becker, S. Eggers, and

C. Chambers. Extensibility, Safety, and Per-
formance in the SPIN Operating System. In
Proceedings of the 15th ACM Symposium on

Operating Systems Principles, pages 251{266,
Colorado, December 1995. Published as ACM
Operating System Review 29(5):251{266, 1995.

[2] J.S. Chase, H.M. Levy, M.J. Feeley, and E.D.
Lazowska. Sharing and Protection in a Single-
Address-Space Operating System. ACM Trans-

actions on Computer Systems, 12(4):271{307,
November 1994.

[3] D. Dean. The Security of Static Typing with
Dynamic Linking. In Proceedings of the 4th

ACM Conference on Computer and Communi-

cations Security, pages 18{27, Zurich, Switzer-
land, April 1997.



[4] D. Dean, E.W. Felten, and D.S. Wallach. Java
Security: From HotJava to Netscape and Be-
yond. In Proceedings of the IEEE Symposium

on Research in Security and Privacy, pages
190{200, Oakland, California, May 1996.

[5] M. Gasser. Building a Secure Computer Sys-

tem. Van Nostrand Reinhold Co., New York,
1988.

[6] L. Gong. Java Security: Present and Near
Future. IEEE Micro, 17(3):14{19, May/June
1997.

[7] L. Gong and R. Schemers. Implementing Pro-
tection Domains in the JavaTM Development Kit
1.2. In Proceedings of the Internet Society Sym-
posium on Network and Distributed System Se-

curity, San Diego, California, March 1998.

[8] J. Gosling, Bill Joy, and Guy Steele. The

Java Language Speci�cation. Addison-Wesley,
Menlo Park, California, August 1996.

[9] A.K. Jones. Protection in Programmed Sys-

tems. Ph.D. dissertation, Carnegie-Mellon Uni-
versity, Pittsburgh, PA 15213, June 1973.

[10] B.W. Lampson. Protection. In Proceedings

of the 5th Princeton Symposium on Informa-

tion Sciences and Systems, Princeton Univer-
sity, March 1971. Reprinted in ACM Operating
Systems Review, 8(1):18{24, January, 1974.

[11] T. Lindholm and F. Yellin. The Java Virtual

Machine Speci�cation. Addison-Wesley, Menlo
Park, California, 1997.

[12] P.G. Neumann. Computer-Related Risks.

Addison-Wesley, Menlo Park, California, 1995.

[13] U.S. General Accounting O�ce. Information
Security: Computer Attacks at Department
of Defense Pose Increasing Risks. Technical
Report GAO/AIMD-96-84, Washington, D.C.
20548, May 1996.

[14] S. Ritchie. Systems Programming in Java.
IEEE Micro, 17(3):30{35, May/June 1997.

[15] J.H. Saltzer. Protection and the Control of In-
formation Sharing in Multics. Communications
of the ACM, 17(7):388{402, July 1974.

[16] J.H. Saltzer and M.D. Schroeder. The Pro-
tection of Information in Computer Systems.
Proceedings of the IEEE, 63(9):1278{1308,
September 1975.

[17] M.D. Schroeder. Cooperation of Mutually

Suspicious Subsystems in a Computer Utility.
Ph.D. dissertation, Massachusetts Institute of
Technology, Cambridge, MA 02139, September
1972.

[18] M. I. Seltzer, Y. Endo, C. Small, and K. A.
Smith. Dealing with Disaster: Surviving Mis-
behaved Kernel Extensions. In Proceedings of

the 2nd USENIX Symposium on Operating Sys-

tems Design and Implementation, pages 213{
227, Seattle, Washington, October 1996. Pub-
lished as ACM Operating Systems Review, 30,
special winter issue, 1996.

[19] T. Thorn. Programming Languages for Mobile
Code. ACM Cumpting Surveys, 29(3):213{239,
September 1997.

[20] W.A. Wulf, R. Levin, and S.P. Harbison. HY-
DRA/C.mmp { An Experimental Computer

System. McGraw-Hill, 1981.

[21] F. Yellin. Low Level Security in Java. In Pro-

ceedings of the 4th International World Wide

Web Conference, Boston, Massachusetts, De-
cember 1995.


