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Abstract

Divide and Conquer is a well-established approach in

the literature that has efficiently solved a variety of prob-

lems. However, it is yet to be explored in full in solving

image super-resolution. To predict a sharp up-sampled im-

age, this work proposes a divide and conquer approach

based wide and deep network (WDN) that divides the 4×
up-sampling problem into 32 disjoint subproblems that can

be solved simultaneously and independently of each other.

Half of these subproblems deal with predicting the overall

features of the high-resolution image, while the remaining

are exclusively for predicting the finer details. Additionally,

a technique that is found to be more effective in calibrating

the pixel intensities has been proposed. Results obtained on

multiple datasets demonstrate the improved performance of

the proposed wide and deep network over state-of-the-art

methods.

1. Introduction

Image Super-Resolution refers to those set of techniques

that increase the resolution of an image while maintaining

its quality that is commonly measured in terms of Peak Sig-

nal to Noise Ratio (PSNR [29]), and Structural Similarity

(SSIM [97]) w.r.t. the ground-truth. Recent advances in dis-

play device technologies (Full HD and higher resolutions)

have brought a surge in the application of super-resolution

thus making it a prominent Computer Vision problem that

is gaining immense academic and commercial research in-

terests.

Most of the state-of-the-art super-resolution techniques

(as discussed in Section 1.1), follow the conventional prin-

ciple of ‘building a deeper network architecture and training

it on large datasets’, for instance, the deeply recursive ar-

chitecture proposed by Kim et al. [36], residual-in-residual

architecture proposed by Zhang et al. [91], and multi-scale
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Figure 1: Illustration of the proposed Wide and Deep Network

(WDN) for 4× up-sampling. Red lines indicate deep sub-networks

for all (low+high) frequency prediction. Blue lines indicate sub-

networks for high-frequency prediction. Width: 32, Depth: 270

layers

residual architecture proposed by Li et al. [40]. These meth-

ods have outperformed classic super-resolution techniques,

but they still have a significant scope for improvement.

This work attempts to improve the super-resolution per-

formance by proposing an alternate design of a deep neural

network that works on the principle of divide and conquer

and is much wider than existing state-of-the-art networks.

We name our network as WDN due to its wide and deep

architectural design. Such a design has the advantage of

parallel execution, as wider networks can utilise multiple

processing units in parallel. Moreover, the divide and con-

quer approach also gives an advantage of better learning on

wider networks as with this approach a complex problem

can be divided into multiple subproblems and then each

sub-network along the width of the wide network can be

trained to solve a specific subproblem. This eventually leads

to increased expertise of the sub-networks in solving sub-

problems of one particular type, ultimately improving the

overall performance.

As illustrated in Figure 1, we divide the 4× up-sampling

problem into 32 disjoint subproblems. Half of these sub-

problems are of predicting the all-frequency (low and high-

frequency) details of different disjoint parts of the ground-

truth image, while the remaining half are exclusively for

predicting the high-frequency details (fine details) of those

parts. Half of the subproblems have been created for high-

frequency prediction as it is one of the core problems of

super-resolution that requires special attention and whose

solution brings sharpness in the final result. The expected
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outcome of the model is generated as a weighted function

that merges the computed 32 sub-solutions.

Apart from a wider design, this work also introduces a

technique (inspired by Srivastava et al. [63]) to calibrate

the negative pixels of the feature maps that are generated

within the network. This technique improves the overall

performance of the network by calibrating the pixel inten-

sities based on a self-learned pixel relevance value; here,

the relevance indicates the relevance of the pixels in the up-

sampling task.

1.1. Related work

Super-resolution has garnered much attention in the re-

cent past, especially with the advent of deep neural net-

works, and this has resulted in numerous works on super-

resolution in a very short period.

For instance, [58, 32, 87, 33, 36, 58, 15, 1, 64, 43, 26,

16, 12, 70, 92, 40, 53, 79, 22, 57, 59, 4, 60, 78, 66] are some

deep networks for super-resolution. These approaches map

the low-resolution input to high-resolution output using a

variety of different and novel architectures such as sub-pixel

convolutional network, recursive convolutional network and

residual networks. Unlike our network WDN, they neither

recognise the importance of high-frequency prediction nor

take explicit measures to predict it.

There are a few deep networks that do realise the im-

portance of high-frequency prediction such as [54, 39, 67,

83, 48, 86, 6, 7, 88, 80, 11, 44, 75, 76, 94], these techniques

use the concepts of generative adversarial networks, percep-

tual loss, or both. Application of these concepts implicitly

work towards the prediction of high-frequency details, sub-

sequently generating realistic-looking results. Perceptual

loss attempts to minimise the difference between the model

prediction and ground-truth in some feature space that is

created by another convolutional network such as VGG-16

[61]. On the other hand, adversarial networks focus on

training, until the network can bluff a trained discriminator

in distinguishing between the network’s prediction and the

actual ground-truth. WDN’s approach in generating realis-

tic results is entirely different from these approaches. WDN

neither has a discriminator nor perceptual loss. It makes a

direct attempt to explicitly predict the fine textures in the

upsampled image using wide and deep convolutional neural

network architecture.

Apart from the use of adversarial training and percep-

tual loss, some methods have developed other architectures

as well that have helped in predicting the high-frequency

details. For instance, [35, 13, 38, 74, 17, 21, 82, 28, 91,

23, 9, 90, 34, 19, 37, 49, 77, 62, 14] have proposed and

used residual architectures to preserve the high-frequency

details. Such architectures also help in avoiding vanish-

ing gradients, subsequently helping in building and train-

ing deeper network. Some other approaches, for instance

[84, 81, 65, 41], have gone a step ahead and developed

recurrent-residual architectures to improve the results fur-

ther. Recurrent-residual architectures help in addressing the

long-term dependency problem, that causes the initial lay-

ers to have little influence on the deeper ones. In addition

to the residual and recurrent residual architecture-based ap-

proaches, the methods such as [20, 93, 3, 52, 2, 95, 47] have

come up with a variety of architectural design such as recur-

rent, cascaded, encoder-decoder, or ensemble-based; to pre-

serve the high-frequency details. Lastly, methods that have

attempted to increase their width to some extent for solving

super-resolution are [50, 8, 51, 42, 56, 30, 46, 85, 10, 96,

31, 55, 24].

Unlike our network WDN, none of the cited techniques

above has progressed in the direction of ‘wide networks

with divide and conquer principle’. The ones that have

attempted to build wide networks have an entirely differ-

ent working principle as compared to ours. In this work,

we divide the single problem of predicting an up-sampled

image into multiple subproblems of predicting the disjoint

segments of the up-sampled image and their corresponding

high-frequency details. We conquer/solve all the subprob-

lems and merge their sub-solutions to generate the final out-

put. Our work takes care of high-frequency details ‘explic-

itly’ and has separate networks exclusively for its predic-

tion. To the best of our knowledge, such ideas have not

been used in any of the cited works, and as we show later

in Section 3, these ideas help us in building a network that

outperforms the cited state-of-the-art techniques.

2. Wide and Deep Network (WDN)

2.1. Division into 32 subproblems

As stated earlier, we divide the 4× image up-sampling

problem into 32 disjoint subproblems. Sixteen of these sub-

problems are of predicting the 16 disjoint subsets of pixels

of the ground-truth image. These subsets are created by

dividing the full set of pixels of the ground truth image us-

ing space-to-depth [69] as illustrated in Figure 2a. Each

such subset is a low-resolution image in itself. Illustrating

this with an example: if the ground truth image is of shape

4H×4W×C (H: Height, W: Width, C: Channel), space-to-

depth generates 16 images of shape H×W×C, this is the

same shape as that of the input low-resolution image (in

4× up-sampling). Hence, the 16 out of 32 subproblems are

for predicting the 16 images without performing any up or

down-sampling.

However, in an up-sampling problem, one of the most

challenging tasks is to predict the high-frequency details,

as details of this frequency are lost the maximum in a low-

resolution image. Here, the high-frequency details refer to

the pixel intensities of those areas of the image where in-

tensity changes rapidly in a small neighbourhood, like, ob-
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(a) All-frequency detail / (low and high)-frequency detail.

(b) High-frequency detail.

Figure 2: Illustration of Space-to-Depth (S2D) [69] and Depth-to-

Space (D2S) [68] operations on a) all (low and high) frequency

image, and b) high-frequency image. Low-resolution images on

the right show one set of the ground truths for 32 deep networks.

ject edges. Inaccurate prediction of the high-frequency de-

tails results in the generation of a blurred up-sampled image

when compared with the ground truth. Hence to give spe-

cial attention to the high-frequency details, 16 additional

subproblems are created that exclusively predict only the

high-frequency details of the 16 pixel-subsets generated be-

fore. This is illustrated in Figure 2b.

Succinctly speaking, the 16 subproblems of predicting

the all-frequency (low and high) details for the 16 subsets

of pixels along with 16 subproblems of predicting only the

high-frequency details for the same subsets together con-

stitute the 32 subproblems into which the 4× image super-

resolution problem is divided in this work.

2.2. Network design

As the sensitivity to the Luminance change is high in hu-

man beings, our wide and deep network (WDN) is set up

to up-sample (4×) the Luminance (Y) channel of the im-

age. The remaining channels are up-sampled using a simple

bi-cubic interpolation. To solve the 32 subproblems, WDN

consists of two modules: the prediction module and the out-

put module. These modules are described in the following

sections.

2.2.1 Prediction module

Prediction module has 32 (width) deep networks, connected

in parallel as illustrated in Figure 3. Each network is trained

to predict the solution of one of the 32 subproblems defined

in Section 2.1. The 32 deep networks can be grouped into

two categories: 1) 16 networks for all-frequency prediction,

and 2) 16 networks for high-frequency prediction. The ar-

chitecture of each deep network is given in Figure 4.
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Figure 3: Wide and Deep Network: The pre-processed input is

further processed by 16 all-frequency prediction networks and 16

high-frequency prediction networks simultaneously. All the 32

outputs are then aggregated and forwarded to the output module

for predicting the final up-sampled image. ‘S’ within a diamond

represents the extraction of high-frequency details using the pro-

cedure described in Section 2.3.

(a) Architecture of the individual deep networks.

(b) Residual block. (c) Sequential block.

Figure 4: The architecture of the deep networks in prediction mod-

ule. Pixel calibration has been described in Section 2.4. K: Kernel

Size, C: No. of output feature maps, S: Stride

To generate the input for all-frequency prediction net-

works, Luminance channel Y (in YCbCr colour-space) is

extracted from the given colour image of shape 4H×4W×3.

The extracted channel is scaled in the range [0, 1] and is

downsampled to generate the low-resolution image. In-

stead of up-sampling the generated low-resolution image,

WDN works upon refining its bi-cubically interpolated

high-resolution version. Hence, the low-resolution image is

upsampled using bi-cubic interpolation. Finally, space-to-

depth [69] is applied to the upsampled image to generate the

input that is of shape H×W×16. The high-frequency maps

of these 16 channels are the input to the high-frequency pre-
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diction sub-networks of WDN. During inference, the pro-

cess starts directly from the bi-cubic upsampling step.

The 16 disjoint ground truths for the all-frequency pre-

diction networks are generated by applying space-to-depth

[69]] on the Luminance channel of the given ground-truth

(scaled in the range 0 − 1). Mean squared error and dis-

similarity measure (using SSIM [97]) as shown in Eq. 1 are

minimised to train the individual deep-networks.

L = (
1

n

n
∑

i=1

(yigt − yipred)
2)× λ

+ (1.0− SSIM(ygt, ypred))× (1.0− λ)

(1)

where ygt is the ground-truth, ypred is the prediction, λ is

the weighting parameter and is set to 0.16, n is the number

of pixels.

The 16 disjoint ground truths for the high-frequency

prediction networks are generated by extracting high-

frequency map from the Luminance channel of the given

ground-truth and then applying space-to-depth over it. Hu-

ber loss by Huber et al. [27] as shown in Eq. 2 (with

δ = 0.1) between the predicted output and the ground truth

is minimised to train the individual deep-networks.

Lδ(a) =

{

1

2
a2 for |a| ≤ δ,

δ(|a| − 1

2
δ), otherwise.

a = ygt − ypred;

(2)

where ygt is the ground-truth, ypred is the prediction, δ

is the point where the Huber loss function changes from

quadratic to linear.

The aggregation of all the 32 sub-solutions is also the

responsibility of this module. For aggregation, the 16 all-

frequency feature maps (each of size H×W×1) are pro-

cessed by Depth-to-space [68], as shown in Figure 2 to gen-

erate a single feature map of size 4H×4W×1. The same

operation is performed with the 16 feature maps having the

high-frequency details to generate another feature map of

size 4H×4W×1. These two up-sampled feature maps are

concatenated on the channel dimension. The resultant fea-

ture map, i.e. of shape 4H×4W×2, is further processed by

the output module that fuses and refines the two channels

for generating the final output.

2.2.2 Output module

This module performs the fusion of the concatenated data

coming from the prediction module. It accepts the high-

frequency and all-frequency feature maps generated by the

prediction module that is of shape 4H×4W×2 and fuses

them together to predict a single sharper up-sampled image

of shape 4H×4W×1.

The architecture of this module is similar to the one

shown in Figure 4a but with only twenty residual blocks.

The loss minimised to train this module is the weighted sum

of Mean squared error and Dissimilarity metric as shown in

Eq. 1 between the predicted up-sampled image and the cor-

responding ground truth.

We now describe the high-frequency map extraction pro-

cedure and the pixel calibration technique that has been fre-

quently used in the proposed architecture.

2.3. Extraction of high­frequency map

To extract the high-frequency map from the given image

(scaled in range 0-1), Sobel filters X and Y are applied on

it to generate Dx, Dy , that are the approximations of the

derivatives for the horizontal and vertical changes.

X =





+1 0 −1
+2 0 −2
+1 0 −1



 , Y =





+1 +2 +1
0 0 0
−1 −2 −1





Dx, Dy are used to compute the high-frequency map, using

Eq. 3.

high-frequency map = S

(

√

D2
x + D2

y

)

S scales the values in range [0, 1]

(3)

2.4. Pixel calibration technique

The pixel calibration technique calibrates the pixel val-

ues by taking into account pixel relevance in the up-

sampling task. It is a self-learned, non-linear complex layer

(i.e. a layer built with multiple layers and activations) and is

applied after each convolutional layer, in place of the typical

activation function, to scale up or down the pixel/feature in-

tensities of the input feature map. Since the relative impor-

tance values of the pixels are learned and computed from the

pixels themselves, this layer is considered as self-learned.

To calibrate the pixels of a feature map, we compute the

relevance score of each pixel of the feature map in the range

[0-1] using a two-dimensional convolution operation with

Sigmoid activation. We also computed the irrelevance score

of each pixel by subtracting its relevance score from one.

Finally, to calibrate the negative pixels, we weigh the pos-

itive pixel values with relevance score and all values of the

feature map with irrelevance scores, before summing them

up to generate the calibrated output, as shown in Eq. 4.

Calibrate(x) = (relu(x)× U) + (x× (1.0− U))

U = sigmoid(conv2d(x))
(4)

where conv2D has a stride of 1, kernel size of 3 and its

number of output feature maps is the same as the number of

feature maps in x. U is interpreted as the relevance score,
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Table 1: Results obtained on 4× scaling factor for quantitative comparison with the current state-of-the-art methods. All SSIM values have

been multiplied by 100.

Dataset Metric [64] [65] [28] [3] [90] [48] [23] [24] [41] [92] [42] [14] [91] WDN

Set5
PSNR 31.68 31.74 31.82 31.92 31.96 32.27 32.47 32.53 32.56 32.61 32.62 32.70 32.73 32.89

SSIM 88.88 88.93 89.03 89.03 89.30 89.38 89.80 89.92 89.92 90.03 89.84 90.13 90.13 90.54

Set14
PSNR 28.21 28.26 28.25 28.42 28.35 28.71 28.82 28.86 28.87 28.92 28.94 29.05 28.98 29.09

SSIM 77.20 77.23 77.30 77.62 77.70 78.35 78.60 78.78 78.81 78.93 79.01 79.21 79.10 79.36

B100
PSNR 27.38 27.40 27.41 27.44 27.49 27.64 27.72 27.75 27.77 27.80 27.79 27.86 27.85 27.96

SSIM 72.84 72.81 72.97 73.04 73.40 73.78 74.00 74.28 74.19 74.34 74.37 74.57 74.55 74.89

Urban100
PSNR 25.44 25.50 25.41 25.63 25.68 - 27.08 26.79 26.73 26.82 26.86 27.23 27.10 27.35

SSIM 76.38 76.30 76.32 76.88 77.30 - 79.50 80.68 80.43 80.69 80.80 81.69 81.42 82.06

The design of this technique has its roots in the work of

Srivastava et al. [63], but our version is conceptually differ-

ent from it. The cited work had the idea of ‘transform and

carry’. However, in the domain of super-resolution, relat-

ing transform and carry with the relevance and irrelevance

scores seemed more logical to us. Thus, we modified Sri-

vastava et al. [63] to suit our purpose and ‘instead of acti-

vating the transformed (Conv2d) version of the input feature

map (x) we activated the input feature map directly with-

out transformation’. We refer the reader to Srivastava et

al. [63], to have a better understanding of the stated differ-

ence. Our empirical observations in Table 4 indicates that

the proposed variation generates much better results than

the original version. The details required to train WDN are

described next.

2.5. Training procedure

The prediction module is trained and frozen before the

training of the output module begins. All the trainable

weights of the model are initialised with Glorot initialisa-

tion [18] and tuned with Adam Optimiser having β1 = 0.5

and β2 = 0.9 at a learning rate of 10−4. The training is per-

formed until no significant improvement is observed in the

validation data for three consecutive epochs. We use 800

images from the DIV2K dataset by Timofte et al. [73] as the

training set. Some of the common augmentation techniques

such as random 1) cropping, 2) rotation and 3) horizontal

flipping, have been used to increase the size of the training

data.

3. Experiments and analysis

3.1. Datasets and evaluation metric

We performed extensive experiments on four publicly

available datasets, Set5 by Bevilacqua et al. [5, 71], Set14

by Zeyde et al. [89], B100 by Martin et al. [45, 72], and Ur-

ban100 by Huang et al. [25] to evaluate the performance

and efficiency of our proposed Wide and Deep network

(WDN) in terms of the standard PSNR [29] and SSIM [97]

metrics. In this section, we present the results that were

obtained upon conducting those experiments.

3.2. Comparison with the state­of­the­art

Figure 5 and 6 shows the output of our model, along with

the outputs of other state-of-the-art models for visual com-

parison. It can be observed that the up-sampled image gen-

erated by our model is sharper and visually more similar to

the ground truth than other images.

To quantitatively compare the performance of our model

with other state-of-the-art models, we computed the average

of the PSNR/SSIM values between all the predicted images

and their corresponding ground-truths on Y (Luminance)

channel within a dataset. Table 1 shows the results on Set5,

Set14, B100, and Urban100 datasets, obtained by current

state-of-the-art methods and WDN. It is evident that WDN

outperforms all the cited methods. For this improved per-

formance of our model, we credit to the: 1) Core principle

of divide and conquer, 2) Wide and deep network architec-

ture, and 3) Pixel calibration technique.

3.3. Performance on 2× and 3× scaling factors

To evaluate the performance of our approach on other

scaling factors, WDN was architecturally modified as fol-

lows: 1) For 2× scaling, the network width was set to eight,

i.e. four deep networks for predicting the all-frequency de-

tails and the other four for predicting the high-frequency de-

tails. 2) For 3× scaling, the network width was set to eigh-

teen, i.e. nine deep networks for predicting the all-frequency

details and the other nine for predicting the high-frequency

details. The overall approach of divide and conquer with

the aggregation of sub-solutions, and high-frequency fusion

in output module remained the same. The results that were

obtained are shown in Table 2 for quantitative comparison.

It is evident from the results that WDN outperforms all the

cited methods in 2×, and 3× up-sampling, due to the rea-

sons as mentioned in Section 3.2.

3.4. Ablation studies

3.4.1 Effectiveness of the high-frequency fusion

The Output module can be configured in three modes: 1)

Disabled mode: In this mode, the up-sampled image gener-

ated by the prediction module is considered as the final out-
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(a) IDN [28] (b) CARN [3] (c) DBPN [23] (d) EDSR [42] (e) WDN (f) GT cropped

(g) IDN [28] (h) CARN [3] (i) DBPN [23] (j) EDSR [42] (k) RCAN [91] (l) WDN (m) GT cropped

(n) IDN [28] (o) CARN [3] (p) DBPN [23] (q) EDSR [42] (r) RCAN [91] (s) WDN (t) GT cropped

Figure 5: Visualisation of the upsampled images for qualitative comparison with the current state-of-the-art methods on 4× scaling factor.

Better viewed on-screen after zooming.

(a) IDN [28] (b) CARN [3] (c) DBPN [23] (d) EDSR [42] (e) WDN (f) GT cropped

(g) IDN [28] (h) CARN [3] (i) DBPN [23] (j) EDSR [42] (k) WDN (l) GT cropped

(m) IDN [28] (n) CARN [3] (o) DBPN [23] (p) EDSR [42] (q) WDN (r) GT cropped

Figure 6: Visualisation of the upsampled images for qualitative comparison with the current state-of-the-art methods on 4× scaling factor.

Better viewed on-screen after zooming.

put and Output module is not used. 2) Refinement mode:

In this mode, the Output module does not fuse the high-

frequency details with the up-sampled image but refines the

predicted up-sampled image generated after aggregation of

sub-solutions without using any high-frequency details, 3)

Fusion mode: In this mode, the output module fuses the

high-frequency details with the up-sampled image, as pro-

posed in this paper. The test results obtained under these

settings are presented in Table 3.

It can be observed that, when the Output module is dis-

abled, the results are the lowest. This is because all the

images generated by different deep networks of the pre-

diction module requires combined processing/refinement.

Thus, when the Output module is set to refinement mode,

the results are improved. A significant increase is observed

when the Output module is used for high-frequency fusion,

as proposed in this work. It can be inferred from these re-

sults that the explicit prediction of the high-frequency de-

tails and its fusion with the up-sampled image is indeed

effective and high-frequency prediction plays an important

role in the up-sampling task.

3.4.2 Effectiveness of the pixel calibration technique

To analyse the efficacy of pixel calibration, we trained the

network after replacing the calibration layer with some of
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Table 2: Results obtained on 2× and 3× scaling factors for quanti-

tative comparison with current state-of-the-art methods. All SSIM

values have been multiplied by 100.

(a) Comparing on 2× scaling factor.

Dataset Metric [42] [92] [91] WDN

Set5
PSNR 38.20 38.30 38.33 38.42

SSIM 96.06 96.16 96.17 96.26

Set14
PSNR 34.02 34.10 34.23 34.31

SSIM 92.04 92.18 92.25 92.39

B100
PSNR 32.37 32.40 32.46 32.53

SSIM 90.18 90.22 90.31 90.40

Urban100
PSNR 33.10 33.09 33.54 33.73

SSIM 93.63 93.68 93.99 94.28

(b) Comparing on 3× scaling factor.

Dataset Metric [42] [92] [91] WDN

Set5
PSNR 34.76 34.78 34.85 34.90

SSIM 92.90 93.00 93.05 93.11

Set14
PSNR 30.66 30.67 30.76 30.83

SSIM 84.81 84.82 84.94 85.01

B100
PSNR 29.32 29.33 29.39 29.42

SSIM 81.04 81.05 81.22 81.29

Urban100
PSNR 29.02 29.00 29.31 29.44

SSIM 86.85 86.83 87.36 87.51

Table 3: Results obtained upon setting the Output module in differ-

ent modes. Output module mode: 1-Disabled, 2-Refinement, and

3-Fusion mode. All SSIM values have been multiplied by 100.

Dataset Mode→ 1 2 3

Set5
PSNR 32.71 32.77 32.89

SSIM 90.16 90.32 90.54

Set14
PSNR 29.01 29.03 29.09

SSIM 79.15 79.20 79.36

B100
PSNR 27.83 27.88 27.96

SSIM 74.50 74.64 74.89

Urban100
PSNR 27.12 27.22 27.35

SSIM 81.41 81.70 82.06

the possible alternatives that are 1) ReLU layer, 2) ReLU

with Batch normalisation, and 3) Configuration proposed by

Srivastava et al. [63]. The test results that were obtained are

shown in Table 4. It can be observed in these results that the

model performs the worst with the use of only ReLU layer.

These results are improved with the use of ReLU + Batch

Normalisation together. Much better results are obtained

with the configuration proposed by Srivastava et al. [63],

and the proposed calibration technique gives the best results

among other possible alternatives. The effectiveness of the

proposed pixel calibration in identifying the relevance of the

pixels for the up-sampling task can be inferred from these

results.

Table 4: Results obtained upon replacing the pixel calibration with

possible alternatives. Configuration: 1) ReLU, 2) ReLU with

Batch normalisation, 3) Config. given by Srivastava et al. [63],

and 4) Pixel calibration as described in this work. All SSIM val-

ues have been multiplied by 100.

Dataset Config.→ 1 2 3 4

Set5
PSNR 31.49 31.84 32.70 32.89

SSIM 88.74 89.09 90.11 90.54

Set14
PSNR 28.06 28.23 28.96 29.09

SSIM 76.89 77.25 79.14 79.36

B100
PSNR 26.32 27.42 27.86 27.96

SSIM 71.04 72.95 74.59 74.89

Urban100
PSNR 25.02 25.60 27.07 27.35

SSIM 76.11 76.80 81.36 82.06

Table 5: Results obtained by varying the number of Residual

blocks. All SSIM values have been multiplied by 100.

Dataset Metric 50 75 100 125 150

Set5
PSNR 32.61 32.72 32.89 32.69 32.57

SSIM 89.66 89.95 90.54 89.86 89.54

Set14
PSNR 28.85 28.97 29.09 28.94 28.85

SSIM 78.68 78.94 79.36 78.87 78.60

B100
PSNR 27.79 27.86 27.96 27.83 27.75

SSIM 74.38 74.58 74.89 74.50 74.25

Urban
100

PSNR 27.05 27.15 27.35 27.13 27.01

SSIM 81.14 81.40 82.06 81.31 81.02

3.4.3 Effect of the number of residual blocks

To study the effects of the ‘number of residual blocks’ on

PSNR/SSIM values, the network was trained and tested by

varying the number of residual blocks. Table 5 presents

the results that were obtained. It can be observed that the

model with 100-layers performed the best among other op-

tions tried upon that might be over/under-fitting the data.

3.4.4 Effect of the number of sequential blocks

Further, to analyse the effects of the ‘number of sequential

blocks’ on PSNR/SSIM values, the network was trained and

tested by varying the number of sequential blocks. Table 6

contains the results that were obtained. It can be observed

that the effects of the change are not much. Still, it can

be said that setting up the sequential blocks to five gives

optimal performance.

3.4.5 Analysis of the number of subproblems

For the 4× up-sampling scale, the super-resolution prob-

lem was divided into 16 subproblems of predicting the all-

frequency details and 16 subproblems of predicting the cor-

responding high-frequency details. The size of 16 was cho-

sen so that there is no up or down-sampling involved in

solving any of the subproblems. Mathematically, if the low-

resolution input is of size H×W and the ground truth is of
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Table 6: Results obtained by varying the number of Sequential

blocks. All SSIM values have been multiplied by 100.

Dataset Metric 3 4 5 6 7

Set5
PSNR 32.88 32.89 32.89 32.87 32.85

SSIM 90.50 90.52 90.54 90.55 90.55

Set14
PSNR 29.05 29.08 29.09 29.09 29.07

SSIM 79.29 79.34 79.36 79.34 79.31

B100
PSNR 27.94 27.96 27.96 27.97 27.95

SSIM 74.82 74.84 74.89 74.85 74.84

Urban
100

PSNR 27.34 27.36 27.35 27.33 27.31

SSIM 82.01 82.03 82.06 82.06 82.00

Table 7: Results obtained with the different number of subprob-

lems. All SSIM values have been multiplied by 100.

Dataset Config.→ 4+4 16+16 64+64

Set5
PSNR 32.34 32.89 29.60

SSIM 88.67 90.54 81.20

Set14
PSNR 28.57 29.09 26.23

SSIM 77.80 79.36 71.43

B100
PSNR 27.57 27.96 24.96

SSIM 73.63 74.89 66.74

Urban100
PSNR 26.78 27.35 24.48

SSIM 80.21 82.06 73.33

size 4H×4W, then the 16 subproblems are of predicting im-

ages, each of size H×W i.e. the same size as that of the

input. The same reason was for dividing 2× up-sampling

problem into four subproblems and 3× up-sampling prob-

lem into nine subproblems of predicting the all-frequency

details. We also analysed the effect of the other number

of subproblems in 4× up-sampling scale. Specifically, the

problem was divided into 4 + 4 and 64 + 64 subproblems to

predict all and high-frequency details.

To work upon with the four subproblems, space-to-depth

was appropriately reconfigured to generate only four sub-

sets of pixels. The last convolutional layer that is shown in

Figure 4a was replaced with Convolutional Transpose layer

with a stride of two, as now each subproblem required 2×
up-sampling. Similarly, for the 64 subproblems, the last

convolutional layer was updated with a stride of two, as

each subproblem required 2× down-sampling. An equiv-

alent number of subproblems were also created for predict-

ing the high-frequency details, in both the cases. We present

the results of changing the number of subproblems to 4 + 4

and 64 + 64 for the 4× up-sampling scale in Table 7.

It can be observed that the best results are obtained on

16 + 16 division of the subproblem. This is the case that

has no up-sampling or down-sampling involved. The results

also indicate that the 4 + 4 division of subproblems, can be

further divided to utilise the divide and conquer approach

better. The excessive number of the subproblem in 64 + 64

division is also not good as with this division, a significant

amount of relevant information is lost in the down-sampled

image. Moreover, the 64 + 64 division requires a very heavy

network that might not be feasible always.

4. Summary, limitation, and future work

In this work, we proposed a wide and deep network

(WDN) based on divide and conquer approach, to solve

the image super-resolution problem. Particularly, we di-

vided the 4× up-sampling problem into 32 disjoint, simul-

taneously solvable subproblems. Half of these subprob-

lems were for predicting the overall features, while the rest

were for predicting the finer details. We also proposed a

technique to calibrate pixel/feature intensities. We demon-

strated that our approach outperforms current state-of-the-

art methods, both qualitatively and quantitatively on four

publicly available datasets. We performed extensive abla-

tion studies and empirically verified the efficacy of various

components/ideas used in our approach.

The proposed model can be trained faster if the 32 deep

networks of the prediction module are trained simultane-

ously, but this requires multiple graphics processing units

or tensor processing unit. The hardware requirements get

further increased if the up-sampling scale is 8×, as that re-

quires a network with a width of 128 (i.e. 128 deep-nets).

However, as each deep network in the prediction module is

designed to be independent of the others, hence all the net-

works can also be trained one at a time on a single GPU

when limited hardware is available. The output module can

be separately trained after the training of all deep networks

of the prediction module is complete. This will increase

the training time for obvious reasons but will not have any

effect on the accuracy.

The idea of solving a problem using the divide & con-

quer technique with deep networks connected in parallel

can easily be adapted to solve other problems like video

super-resolution, and deblurring. Moreover, in the super-

resolution problem itself, the architecture of each deep net-

work can be further improved. In the future, we plan to

work in these directions.
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