

GOLD : a graph oriented language for databases

Citation for published version (APA):
Post, R., & De Bra, P. M. E. (1993). GOLD : a graph oriented language for databases. (Computing science
notes; Vol. 9329). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/4620cdf7-8b33-43c6-8cc1-ff1e1ed6d86e

Eindhoven University of Technology

Department of Mathematics and Computing Science

GOLD

a Graph Oriented Language for Databases

by

R. Post and P. De Bra
93/29

Computing Science Note 93/29
Eindhoven, September 1993

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

GOLD

a Graph Oriented Language for Databases

R. Post P. De Bra

Abstract

A simple and powerful graph transformation language for databases is defined whose operations are

themselves graphs. It was designed to remedy some of the shortcomings of the GOOD language (see [20]),
particularly, its restricted syntax for operations and its dependence on the rather awkward abstraction

operator.

The new language, GOLD, has only one operation; operations of GOOD are included as special cases.

Thanks to a new idea, the core pattern, many more forms of node addition can be specified with this one

operation; abstraction becomes superfluous. Due to its capability to add multiple nodes at once, GOLD

surpasses GOOD in expressive power: queries are always generic - determinate in the sense of [2] - but

they are not restricted to be constructive in the sense of [10J.

The simpler forms of the GOLD operation have straightforward interpretations. Instead of imposing syn

tactic restrictions, the GOLD definition extends the semantics to cover a very broad range of expressions.

1 Introduction

1.1 Purpose

There is an ever increasing interest in database systems that represent information as a network structure.

In such systems, end-users, including novices, need to become comfortable with the network structure

and actively employ that structure to find the information they need. It is very helpful to have a direct
manipulation interface, in which network structure is displayed Oll-screen and users can move around by
pointing and clicking. Many systems do provide such a graphical navigation facility, for instance, the

influential NoteCards hypertext system [23]. Clearly, a wide range of information systems can benefit
from this approach, in particular, hypertext systems and object oriented databases.

The language presented in this report serves as a basis for a similar graphical interface for querying.

Queries are expressed as graph transformations, which has two major advantages. It allows us to perform
querying for structure, as opposed to the content search that is customary in hypertext; and it solves the

problem of representing query results in a manner suitable to the navigation mechanism. Besides ad-hoc
user queries, the language can describe other mechanisms involving implicit or automatically generated
nodes and links.

There is an elegant way of describing graph transformations in a manner suitable for a graphical interface:
draw a prototypical graph and modifications to that graph. The graph is then embedded into the existing
instance in every possible way, causing the modifications to take effect wherever a match is found.

Combining such transformations into programs leads to a database programming language, standing out
from other object oriented query languages in two ways: its database instances are plain graphs, and

its operations are designed to be visualized as graphs themselves. Essentially, we have a graph grammar

formalism, treated as a database programming language.

This idea was modeled in the GOOD database model and language described in [20, 21]. The language
presented in this report, GOLD (Graph Oriented Language for Databases), is a close relative. While

GOOD has five operations to perform different types of graph transformations, GOLD has only one
operation) obtained by allowing a very liberal syntax and adding a new feature) the core pattern) to

express grouping. (In section 3.6, the relationship will be exposed in more detail.)

The result is a very compact, elegant language that is more powerful than its predecessor. More expres
sions are meaningful; as a result, more queries can be expressed in a straightforward way, some of which

cannot be expressed in GOOD at all.

Other query languages have been designed to operate on graphs) some with a diagrammatic representation

of queries - see, for example, [4], [8], [9], and [13]. GOOD and GOLD are in a special position by the fact
that their operations express graph transformations, whereas most other languages express some type

of aggregating selection similar to the SQL SELECT clause. Very similar to our language is GraphLog
[161, in which queries are also graphs that act as patterns over the existing database instance. However,

GraphLog queries do not specify modifications to this graph; hence, there is no way to specify the addition

of new nodes, and no way to specify deletion. As a consequence, it is a considerably weaker language:

not only are new nodes inherently present in certain queries (e. g., the creation of annotations or indexes),

but they also provide an elegant aid in composing complex queries - see the closing section for further

discussion.

This report is structured as follows. After a brief informal introduction of the language, a formal definition

is given and its correctness is established. Then, by syntactically restricting the GOLD operation and
studying the expressive power of the languages thus obtained. The relationship with the GOOD language
is exposed in detail.

This part of the report is focused on the fundamentals of the language; examples have been chosen with

the purpose of introducing its basic features, not to expose its value in practical situations. Besides, we

have intentionally omitted all sugarings and enhancements inessential to its operation.

1

In the closing section, we present our motivation for using GOLD as a hypertext query language, com

paring its features to those of other languages. We also mention some of the additions and modifications

necessary to turn the language into a practical tool.

1.2 Introductory examples

Let us first consider a toy' example database instance in GOLD: some persons with children and mar

riages indicated (figure 1). Note that a database instance is simply a directed graph; every node (a

marriedd-;t<?-""'Olarried-to

has-ch ld has-ch ld

:.t<:!,....-dCtliarr ed-to

has-ch ld has-chil has-ch ld

Figure 1: Example instance

rectangle) has a label (indicating its type) and every edge edges (an arrow) also has a label (indicating

the name of a node property, or a binary relationship between nodes).

As an example query, consider the request to find all persons with a grandparent. We must first decide

how to represent the result. Suppose we indicate a person with a grandfather by making a node labeled

'Grandchild' point to that person with an arrow labeled 'is'. Three conceivable results of this request are

given in figure 2.

1 In practice, instances will usually have more types of nodes and edges: for example, every person will have a name.

2

married-to married. to married·to married. to

haa.c ild

mar ied_to

~r-'i'~

i. i. i.

grandchildren (collectively) grandchildren (individually)

grandchildren (per grandparent)

Figure 2: Indicating grandchildren) three interpretations

Note that the results differ only in the way the resulting nodes are grouped_ In the first instance) one node

is created for aU grandchildren collectively; in the second, there is a node for each grandchild; in the third

example, nodes are created per grandparent, with the proviso that for the two rightmost grandparents,

who have the same grandchildren, only one node is created. The GOLD operation features a way for the

user to specify this grouping.' In other query languages, the issue of how to represent the query result

is usually not handled in the language itself; in GOLD, queries are represented as graph manipulations,

and the issue is of direct importance. Still, for simple queries there will rarely be need to create more

than one new node.

Figure 3 displays three GOLD operations that respectively produce the three results of figure 2 when

applied to the example instance of figure l.

2This grouping feature is absent from GOOD, in which sequences of operations would be required to express most cases.

3

I Person I

h ~child h ..s-child

I Person I

h fs--child h .s-child

I Person
i.

Grandchild I I Person
i.

Gra.ndchild I

grandchildren (collectively) grandchildren (individually)

Person Grandchild
i.

grandchildren (per grandparent)

Figure 3: Three operations to yield the respective results in the previous figure

As apparent from figure 3, an operation is a pattern, in which the emboldened elements specify elements

whose presence is required in the resulting instance. To specify grouping of new nodes, we distinguish

a core pattern inside the non-bold part of the pattern. This is visualized by underlining its nodes and

edges3

GOLD is somewhat sophisticated in its way of deciding which nodes and edges to create. First of all,

if for some embedding all emboldened elements in the pattern can already be matched in the existing

instance, then nothing new is created for that embedding. Secondly, if for two embeddings, exactly the

same instance extension must be made in order for the emboldened part to match, then this new part is

created only once. This principle will be called sharing of new nodes.

For example, in the third instance of figure 2, where grandchildren are grouped by grandparent, two

grandparents have the same set of children, and this set is created only once. It would be quite pointless

to create two indistinguishable copies.

The mutual differences between the three example instances are due to the different merging of new

nodes: respectively, no merging at all, merging by parent, or merging by grandparent. This principle is

called 'merging' because the new parts for embeddings are combined regardless of whether they constitute

identical copies. Merging is controlled by the user, by means of the core pattern.

Deletion of nodes and edges can be specified by drawing them with dashed lines. For example, the

operation in figure 4 deletes all persons with at least one child, leaving 4 isolated persons in the example

instance.

A more complex example is provided in figure 5.

3 Initially, only color was used to mark core patterns, but this does not suffice for all purposes.

4

;-------1
: Person: _____ .,_.J

, , ,
ha,;-child , , , ,

B
Figure 4: Deleting all parents

has-chi d

has-chi d
'd

Figure 5: Restructuring the representation of marriages

has-chi d

The operation on the left restructures the representation of marriages, resulting in the instance on the

right when applied to the example instance in figure 1. Assuming that a marriage is represented as a

pair of edges between persons, these arrows are replaced with a 'Marriage' node from which two 'partner'
edges leave. At the same time, any children that were placed under married persons directly are now

placed under their marriages instead.

The arbitrary mixing of additions and deletions in one operation and the use of a core pattern are the

main differences between GOLD and its predecessor, GOOD [7, 20, 21],

Operations can be composed into sequences. A special bracket can be put around sequences to indicate

iteration; an iterated sequence is executed until its net effect is zero. For example, in figure 6, we have

two operations, the second of which is iterated, together computing a transitive closure.

5

has- . d

has ancestor

Figure 6: Transitive closure involves iteration

2 Language definition

2.1 Data model

Let NN, EL, NL be countably infinite sets, called the universe of nodes, edge labels, and node labels,

respectively. Let A : NN - NL be a function (the node labeling function).

A (database) instance is a directed, labeled graph (N, E), where N is a finite set of nodes and E is a

finite set of labeled edges, each of the form (n,a,m), where n,m E N and a EEL. For any instance

I = (N, E), we write N(I) for Nand E(I) for E. Pattern is a synonym for instance.

Definition 2.1 An embedding of a pattern .J into an instance I is a function f mapping the nodes of

.J to those of I such that labels and edges are preserved. A bijective embedding whose inverse is an

embedding is caned an isomorphism. An isomorphism of an instance onto itself is an automorphism; the

set of automorphisms of an instance I will be denoted as Aut(I).
o

Note that embed dings need not be injective.

2.2 Operation syntax and semantics

An operation is given by a source pattern and modifications to it. Within the source pattern, we distin

guish a core pattern. Nodes and edges may be deleted from the source pattern, leaving a deletion pattern;

they may be added, resulting in an addition pattern. In all, we have a four-tuple of subpatterns:

6

Je

.. '
' .

JD -"':--.-'--

!!I,'

,
, ,

:f3

! Q :. @]
L l ,.,:' :'0:

.....

..'

Figure 7: A legal GOLD operation

for the deletion pattern, the core pattern, the source pattern, and the addition pattern, respectively. The

subpattern relations are:

JD < Js

Je ::; Js

Js ::; JA

An example is given in figure 7.

A new (or added element (edge or node) of an operation is an element in JA that is not in Js; a deleted

element (edge or node) is an element in Js that is not in JD'

The idea is to find all embeddings of the source pattern in the source instance, and, for every embedding,

delete all deleted elements and add all added elements. However, as shown in the grandchildren example

(figure 2), we may wish to have a common added part for several embeddings.

To arrive at a deterministic interpretation in all cases, the following measures were taken:4

• the core pattern allows users to disambiguate queries by themselves: extensions for two embed dings

equal on the core pattern are merged;

• additional rules of interpretation, amongst which is the sharing of extensions, remove all remaining

ambiguity.

These rules are fairly simple, leading to an intuitive and computationally feasible semantics; furthermore,

most of the operations of GOOD are included as special cases (cf. theorem 3.12), which allows us to apply

most of the experience from studying and using GOOD, which has a working implementation (see [18].

If an operation t can transform an instance I into another instance I', this will be denoted as I ~ I'.
Operations can create new nodes, whose identities are chosen at random. It will be seen (lemma A.2)

.. Another approach is to have a nondeterministic language, as was done in the G-Log specification language - see [27].

7

that operations are completely deterministic up to this choice; nevertheless, we must regard the effect of
an operation as a relation on database instances.

Definition 2.2 For any operation t = (:fD' :fe, :fs, :f.), and instances I,I' E U, I ~ I' under the
following conditions:

Write I" = (N(I)UN(I'), E(I)UE(I'». I is the source instance; I' is the target instance; I" is the
D

addition instance.

Let F be the set of embed dings of the source pattern into the source instance that cannot be extended
to embeddings of the addition pattern into the source instance.

An embedding g of the addition pattern into the addition instance is an injective extension of an I E F,

if g includes I and maps all new pattern nodes injectively to new instance nodes.

There must be a function,., mapping aU I E F to embeddings from :fA into I", such that

o

1. (new nodes to new nodes) for all I E F, ,.,U) is an injective extension of I;

2. (merging) for all ".I, E F, if" and" are identical on :fe, they are also identical on every new

node of :fA;

3. (sharing) for all "," E F, if the ranges of ,.,(,,) and ,.,(,,) constitute isomorphic extensions of
I, i. e. there is an isomorphism on I" that fixes I and maps one range to the other, then ,.,Ud and

,.,(,,) map the nodes of :fA \:fs to the same set of nodes in I";"

4. (no unnecessary merging or sharing) for all I,," E F, if neither merging nor sharing applies, the

ranges of ,.,Ud and ,.,(,,) are disjoint on the new nodes of I";

5. (merging belore sharing) for all " E F, if (n" a, n,) is an edge between two nodes in the range

of ,.,Ud, not both in I, then there is an " E F, equal to I, on :fe, such that for some edge

(m"a,m,) E :lA, '1(1,)(m,) = n, and '1(h)(m,) = n,;

6. (minimality) every new node and edge of I" is in the range of some '1(1);

7. (deletion after addition) I' is the maximal subinstance of I" which does not contain any nodes

or edges that some embedding from :fs to I maps a node or edge in :fs \:fD to.

GOLD is deterministic up to the choice of neW node identities. Furthermore, the identities of existing

nodes do not affect the outcome of operations. This property is known in literature as determinacy, and

is universally regarded as a fundamental property of query languages. See appendix A.I for details. It

can be formally defined as follows.

Definition 2.3 Let R be a (two-place) relation on a set of instances. R is determinate if we have, for

all instances I, ,1:" I 3, I., if (I" I,) is in R and I, and I3 are isomorphic, then (I3, I.) is in R if and
only if I, and I. are isomorphic by the same isomorphism.
o

The ensuing definition of database transformations follows [2].

Definition 2.4 Let S be a finite set of node and edge labels. A database transformation over S is a

relation on the instances over the labels in S that is

5I.e. the mappings are not necessarily pointwise equal on these nodes.

8

o

• determinate;

• computable: an effective procedure exists to compute a result on every possible input instance for
which a result is defined.

We can now formally state our claim concerning GOLD:

Theorem 2.1 All GOLD programs express database transformations.
o

In addition, GOLD operations define a result on all instances. In this respect, GOLD is different from

its close relative, GOOD (see [19, 20]), which leaves results undefined in some cases. For details, see

appendix A.l.

2.3 Program syntax and semantics

Programs are defined recursively as follows. Every operation is a program. If PI and P2 are programs,

their sequential composition, denoted Pl;P2, is also a program. The empty program is denoted A. If pis

a program, the iteration of p, denoted p*, is also a program.

Nodes, once deleted, can never reappear as new nodes.6 The auxiliary relation I J} I' will denote the
N

property that P can transform I into I' without deleting any node in N.

Definition 2.5 If P is a program, and n is a number, then the notation pn stands for a certain program

determined as follows:

• pO denotes A;

• pI denotes P;

• pn+! denotes pn; p for all n > O.

o

Definition 2.6 For all sets of nodes N, operations t, programs p, PI, P2, and instances Z, I':

o

I~I
N

I d:. I'
N

IP~' I'
N

I g}I'
N

N ~ N(I)

{=>
D

I d:. I' II N ~ N(I)nN(I')

{=> 3I" E U : I ~ I" II I" g I'
D N N

{=> 3n E IN : I ~ I' II I' l> I'
D N N

This four-place relation can now be used to define the effect of programs in GOLD: 7

6Without this property, many of our observations on expressive power in section 3 become incorrect.

1 For I:::!.. I', t can now be read either as an operation or as a program; this is hannless, since in both readings, the same

relation is expressed.

9

Definition 2.7 For all programs P and instances I, I' :

I !;. I' <==> I!;. I'
D X

where X '" N(I)nN(I')

o

From this definition, the following laws of equivalence between programs almost immediately follow:

P.;(P2;P3) - (PI;P2);P3

PI - A;PI ~ PI;A

A* - A
** p1 PI -

Pi;Pl = p1 =:: P1i pi := pi;pi

Whenever a GOLD program does not define a result instance for some source instance, this is due to an

iteration that fails to reach a fixpoint. Furthermore, GOLD programs, like operations, are determinate.
For details, see appendix A.1.

10

3 Expressive power of GOLD

We have seen in theorem 2.1 that GOLD programs express only (determinate) database transformations.
In the following we will study the classes of database transformations expressible in GOLD, and we

will study the role of various features of the GOLD operation in detail. This is done by breaking up the

operation in parts, and imposing further syntactic constraints; by exact characterizations of the expressive

power of the sublanguages of GOLD thus obtained, we provide some insight in the contributions of the

features that are dropped along the way. In particular, a detailed comparison will be made between

GOLD and its relative, GOOD.

3.1 Constructiveness: a strong form of determinacy

The concept of determinacy was defined in definition 2.3; a stronger notion of determinacy was introduced

in [7] and, in (10], was named constructiveness.

Definition 3.1 An instance transformation (Il,I2) is constructive if there is a group homomorphism
that maps every automorphism of II to an automorphism of I, that is identical on their common nodes.

A database transformation is constructive if it contains only constructive instance transformations.
o

An example of a non-constructive transformation is given in figure 8. In [7, 10], it was shown that

a non-constructive instance transformation

(the new part is indicated in bold) its constructive approximation

Figure 8: A non-constructive instance transformation

constructiveness essentially requires that new nodes are not mutually dependent (in our case, connected

with edges) at the time they are created. In a constructive language, we can approximate non-constructive

results by having multiple copies of the new part (as shown at the right of figure 8). Therefore, constructive
languages are also characterized as languages unable to perform copy elimination.

This is particularly relevant here because GOLD, unlike, for example, GOOD, can perform non-constructive
transformations.

3.2 Expressive power of full GOLD

The following definitions of expressive power are used in literature.

11

Definition 3.2 A database language is a set of expressions, each of which expresses, in the context of a

given set of instances, a database transformation (over this set).

A database language L is (determinate) complete if for every finite set of labels S, every database

transformation over S is expressible in L.

It is (determinate) instance complete if every instance transformation is expressible in L, i. e., is part of

some database transformation expressible in L.

A database language L is constructive complete if for every finite set of labels S, every constructive

database transformation over S is expressible in L.

It is constructive instance complete if every constructive instance transformation is expressible in L, i. e.,

is part of some database transformation expressible in L.
o

To study the expressive power of GOLD, we will curtail its operation and observe how expressive power is

affected. General GOLD can express all constructive database transformations and some non-constructive

ones:

Theorem 3.1 GOLD is not determinate complete, but is instance complete and constructive complete.

o

In essence, the fact that GOLD can contain arbitrarily large addition patterns makes it instance level

complete; it is not fully determinate complete, because it can be shown that arbitrarily large addition

patterns are also required to express any generic instance transformation in GOLD. Another way of

stating this result is to say that GOLD can perform copy elimination of copies of predefined shape, or

copies of bounded size.

To prove the theorem, we will split it up into the lemmas 3.2, 3.3, 3.4, of which it is an immediate

consequence.

Lemma 3.2 There is a database transformation which is not expressible in GOLD.
o

The proof is given in appendix A.2.

Lemma 3.3 Every instance transformation can be expressed in GOLD.
o

For a proof, see appendix A.3.

Lemma 3.4 Every constructive database transformation can be expressed in GOLD.
o

Proof This immediately follows from theorem 3.1 below, which states that a sublanguage of GOLD

expresses exactly all constructive database transformations.

o

12

3.3 GOLD with separated operators

We will now disallow the combination of node and edge operations, and of addition and deletion. This

will be shown not to affect expressive power.

Definition 3.3 A GOLD operation t = (:To, :Te, :Ts, :TA) is an (n-edge) edge addition if it has n added

edges, and no other added or deleted elements; it is an (n-edge) edge deletion) if it has n deleted edges,

an no other added or deleted elements; it is an (n-node) node addition if it has n added nodes, possibly
some added edges incident to these nodes, and no other added or deleted elements. it is an (n-node)

node deletion) if it has n deleted nodes, possibly some deleted edges incident to these nodes, and no other

added or deleted elements.
o

Note that these definitions refer to syntax; a 2-edge addition can very well add 3 edges to a particular
instance.

Let GOLDsep be the subset of GOLD in which only node additions, node deletions, edge additions, and

edge deletions are allowed. Thus, operations are separated into four types; hence the name.

Lemma 3.5 GOLDsep and GOLD have equal expressive power.
o

The proof is given in appendix AA.

3.4 GOLD with only single addition or deletion

We can impose a further separation by requiring operations to have only one added or deleted node or

edge. This restriction can be imposed independently on all four operations in GOLDsep . We will denote
the resulting sub languages as GOLD sUbscripted with a subset of the symbols {lnd, Ina, led, lea}. For

instance, GOLD{1nd, lea} denotes GOLD in which only node additions, I-node node deletions, 1-edge

edge additions, and edge deletions are allowed. The following theorem says that expressive power is

decreased if and only if this restriction is placed on node addition. This is in full agreement with the
abovementioned observation, that constructiveness requires nodes to be dependent only on existing nodes

at the moment of creation.

Theorem 3.6 If GOLD X is a language as just described, then

• it expresses exactly all database transformations expressed by GOLD, if 1na is not in X;

• it expresses exactly all constructive database transformations, if Ina is in X.

o

Most cases are proved by suitable simulations of n-fold operations by means of 1-fold operations. These

are easy to find. The technique is the same as that used in lemma 3.5: using new labels, the edges or

nodes to be deleted or added are marked, then the actual deletion or addition takes place with a sequence

of operations.

We consider the additional expressiveness of n~node addition over I-node addition as an accidental prop
erty of the language. Non-constructive transformations, certainly the restricted ones expressible in GOLD,
do not appear to be very important in practice. More interesting is the fact that when imposing the

restriction to Ina, we still have a constructive complete language. In particular, we will define GOLD!

to be the language GOLD{1na}' Then

13

Corollary 3.1 GOLD I is constructive complete.
o

This follows from theorems 3.11 and 3.12, given below.

3.5 GOLD without core patterns

Note that core patterns are effectively ignored except in node additions. To be precise, the following
lemma holds.

Lemma 3.1 Let II = (.lD,.lel,.l5>.lA) and 12 = (.lD,.le2,.ls,.l.) be GOLD operations, such that

N(.led = N(.le2) or .l. = .ls. Then II and 12 express the same database transformation.
o

However, in node additions, their presence is vital: removing core patterns from the language decreases

expressive power.

A GOLD operation I = (.lD, .le,.ls, .lA) is a plain operation if .le = .ls. (This effectively removes the

core pattern feature; hence the name 'plain'.)

Let GOLDpiain be the subset of GOLD I in which only plain operations are allowed.

Lemma 3.8 GOLDpiain cannot express all constructive database transformations, although it can ex

press all constructive instance transformations.
o

The proof can be obtained by analogy to the reasoning followed in [11]. Essentially, it can be shown

that in GOLDpiain' arbitrarily many edges connecting a new node to the source pattern are required

in order to express all constructive instance transformations. An example of a non-expressible database

transformation is one that points out a-clusters of A-labeled nodes, where an (a-cluster' is a maximal set

of A-nodes connected with paths of labeled a-labeled edges, and clustering is done by creating, for each

cluster, a new A-labeled node and a-labeled edges from this node to every existing A-labeled node in the

cluster.

3.6 GOOD as GOLD

Let GOLDtup be the subset of GOLDpiain in which in all node additions, the new node has no incoming

edges, and all outgoing edges have different labels. This is node addition as it appears in GOOD. The

name stems from the fact that in this language, node addition effectively creates instantiations of tuples
over existing nodes, provided that we view the outgoing edges of new nodes as tuple attributes.

Lemma 3.9 GOLDtup cannot express all constructive instance transformations.
o

The reasoning required for this proof appears in [10] and [11], where node creation operators are used that

can be shown to be equivalent to node addition in GOLDplain' A non-expressible instance transformation

is shown in figure 9.

14

Figure 9: An instance transformation that cannot be expressed in GOLDtup

3.6.1 GOOD operations are special cases of the GOLD operator

We can now substantiate that GOLD was obtained from GOOD by relaxing syntactic restrictions and

adding the core pattern construct.

Theorem 3.10 The four operations of GOLDtup are both syntactically and semantically identical to

the operations with identical names in GOOD.

o

For more details, see appendix A.5.

3.6.2 Core patterns versus abstraction

Previous lemmas show that without an addition of some sort, GOLDtup will not be constructive complete.
In GOLD the core pattern feature fulfills this role. In GOOD, an extra operation is used to obtain

constructive completeness: abstraction. We will use a definition similar to that in [20, 21J.

Definition 3.4 An abstraction is given by a tuple (.1, m, K, a, (J) in which .1 is a pattern, m is a node

of.l, K is a node label, and a,{3 are edge labels.
o

To understand the semantics of abstraction, it is necessary to view outgoing edges with identical labels

as representing a grouping of the nodes that these edges point to:

Definition 3.5 If I is an instance, n is a node of Z I and a is an edge label, the a-set of n is the set of

nodes m such that (n, a, m) is an edge of I.
o

The effect of abstractions is defined as follows.

Definition 3.6 Given two instances I,I' and an abstraction t = (.l,m,K,a,{3), I d} I' if I' is a
minimal superinstance of I such that all new edges in I' leave a new node in I', and for all nodes f(m)

selected by the embeddings f of.l into I there is a K-Iabeled node with {3-edges to exactly those nodes

of I with a-sets identical to the a-set of f(m).
o

An example of abstraction can be found in figure 10. The edge ex is drawn as a dashed arrow J leaving the

node m; K and {3 are represented as an emboldened K-Iabeled node with a {3-labeled edge to m.

15

same children

of

,
has-ch~d , ,

t

Figure 10: Abstraction: partitioning married persons according to children

Theorem 3.11 GOLDtup with abstraction expresses exactly all constructive database transformations.

D

A proof can be found in, for example, [IOJ.

The basic proposition of this report is the equivalence of abstraction and core patterns.

Theorem 3.12 GOLDtup with abstraction and GOLD l have equal expressive power.
D

For a proof, it suffices to provide simulations for both directions. These are easy to find; details are in

appendix A.6.

Abstraction is convenient in some cases, but in general we regard core patterns as a much more intuitive

means to achieve the same level of expressive power. They provide a grouping facility which is useful
in many cases; obviously, the minimal set of examples in this report does not suffice to bear out the

practical applications of core patterns.

Abstraction was introduced partly because it provides the expressive power of a powerset operator while

being computable in polynomial time (see [11]). From the language definition above, it will be clear that

operations with core patterns share this advantage. For more details, see section A.1.2.

3.6.3 Another alternative: the contraction operation

The contraction operator is somewhat simpler to understand than abstraction. It 'merges' nodes by

replacing them with a single new node that takes over all edges incident to any of these nodes.

We mention it here to show yet another way of achieving constructive completeness.

Definition 3.7 A contraction is given by a tuple (.1, n, m) where .1 is a pattern, of which nand mare

nodes.
D

The effect of contractions can be defined as follows.

Definition 3.8 Given two instances I,I' and an contraction t = (:1, n, m), I ~ I' iff I' is a minimal
instance such that for all embeddings f of .1 in I, there is an embedding g, of.1 in I', such that

16

• for all I, I(n) is not in I', and 9,(n) is not in I;

• for all I, 9, and I are equal except on n;

• for all 11,'" 9,.(n) =9,,(n) if and only if !J(m) = f,(m).

o

Using the known GOOD operators (node addition, edge addition, node deletion, and edge deletion), we

have algorithms to transform every abstraction operation into a program using contraction, and vice

versa. To be precise, these programs produce programs equivalent for all instances except some that use

some specific edge or node labels.8

It is easy to simulate contraction by means of abstraction. The idea behind a simulation of abstraction
with contraction is that ordinary GOOD operations can already simulate abstraction 'up to copy': too

many 'representants' of the new nodes may be created. It is possible to relate two nodes with an edge if
and only if they are representants of the same abstraction-created node. Contraction can then be used

to merge the resulting clusters of nodes into single nodes.

(A formal proof is omitted.)

It is interesting to note that, like addition, contraction can be generalized to work on more than one
node. Instead of a single node, larger subinstances are collapsed, specified by a pattern. This leads to

an language equally expressive to GOLD: it can perform copy elimination for copies of bounded size. It

is also possible to devise a full copy elimination operation, which lifts the language to full completeness,
but we have found no such operation that naturally fits in the pattern embedding paradigm. Details have

been omitted from this report.

8This is unavoidable, as any simulation requires the use of (some sma.ll amount of) 'fresh' node or edge labels which are

assumed not to occur in any of the instances the operation is applied to. When applied to instances that do contain such
labels, the simulation and the original operation may have different effects.

17

4 Discussion and concluding remarks

We have introduced a graphical query language for databases and hypertext environments, that can be
used to pose queries and updates to a network structure by means of direct manipulation.

This report was written to describe its visualization, using a basic set of examples; to provide a formal

definition; and to expose the fundamental properties of the language regarding expressive power. There

fore, we have stripped down the language to its bare bones, and we have done very little to convince the

reader of its practical usefulness. It will now be discussed briefly why we consider GOLD an improvement

over existing database and hypertext query languages.

4.1 Purpose of GOLD

Querying in hypertext is often ill-supported, or is limited to querying for the content or attribute values

of nodes. GOLD supports structure-based queries: it assumes that the hypertext forms a labeled graph,

in which labels and structures recur in systematic patterns, making it useful to query for such patterns"

In other words, the hypertext structure must form a semantic network. (We can include content-based

querying by allowing node and edge labels to be computed dynamically from content information.)

Many hypertexts, though not all, can be viewed as forming a semantic network in this manner. If they

do, graphical browsing tools, that display the surroundings of the current node, are particularly useful,

because the structure on display will be meaningful to the user. Such tools allow for a direct manipulation

style of browsing; GOLD makes it possible to seamlessly integrate querying and browsing.

Because of its purpose, GOLD differs from many other database query languages in several respects:

• it is a visual language;

• it operates on labeled graphs;

• it transforms the database instance.

We will discuss these differences below.

4.2 GOLD is a visual language

At first sight, the fact that GOLD is a visual language is its most striking feature. However, there

are many visual query languages, and GOLD does not claim to open a radical new approach to visual

querying. It does differ from most visual languages by the fact that it represents queries as graphs acting

as patterns on the instance. Some languages use the same principle (GraphLog [16], GOOD [20], the
language of Catarci et al. [13]); many others are based on forms and condition boxes (for example, QBE

[30J and VQL [28]).

Besides, the gap between textual and visual languages is not that big. Some textual query languages can

easily be given visual counterparts, for example, the hypertext query languages of [4J and [9J. Generally
speaking, it is not always possible to provide suitable visual expressions for all constructs; there is also

a danger of cluttering the visual language with constructs and elements, which makes expressions large
and hard to understand. A possible solution is a hybridic language; see, for example, the object SQL

presented in [5J. GOLD was designed to be fully graphical, and hence, has a very simple syntax that is

very easy to visualize. Still, many queries in textual languages are directly expressible GOLD queries.

(See however the section on extensions, page 21.)

9 A straightforward. ITlodel of a hypertext as a GOLD instance does not capture anything of the content of hypertext

nodes. Content can be captured with extra nodes, or we can extend GOLD for this purpose (cf. section 4.5).

18

Conversely, it is a trivial exercise to design textual versions of GOLD;'O figure 11 gives example textual
representations of the marriage query of figure 5.

CREATE Karriage m, m partner PI, m partner PI, m child Pa

DELETE PI married-to P2, PI has-child Pa, P2 has-child Pa

FROM Person PI, P2

WHERE PI married-to P2, PI has-child Pa, P2 has-child Pa

GROUP BY PI, P2

To aid legibility, deleted elements are listed twice.

Figure 11: The marriage restructuring query, presented textually

Observe that in the textual representation, the pattern formed by the nodes and edges is much harder to
detect. It is for patterns like this one, with few nodes and a moderate number of edges between them,

that the graph-based style of GOLD is most useful. If patterns consist only of paths, regular expressions
are an exquisite formalism to specify them textually. If there are too many nodes or edges, the graph

will be too large or too dense to be transparent for the user.

4.3 GOLD operates on graphs

GOLD uses labeled graphs as its data model. In a hypertext environment, nodes and links are modelled
directly, capturing the end-user's view of the information in a simple and intuitive fashion.

This simplicity is deliberate: it makes the language easy to understand and easy to use. A simple graph
based model lends itself particularly well for a graphical interface. As mentioned in the introduction,
graphical browsing aids are common in hypertext systems; graphical querying aids are similarly useful.

GOLD can easily be adapted to operate on more complex data models. It remains to be seen to what
extent the language will remain easy to understand and to use. ll

As a result, much of the additional structure common in hypertext cannot be expressed directly; for

example, we do not support a notion of composite nodes or context, contrary to some hypertext models
[12, 17, 22, 26]; we have only one-to-one links; and we do not explicitly model node anchors, which more

or less discards hypertexts in which nodes are large documents. For some applications, having direct

support for such features may outweigh the added complexity it brings to the language. It is yet to be
studied how to provide such support in GOLD.

In a general database context, the simplicity of the GOLD data model is even more striking. In comparison
to NIAM [29], GOLD can model only binary relations between objects; compared to IFO [1] or the IQL

data model [2], there is no notion of subclassing, nor is there a tuple or set construct to form complex
values. As an example of a model containing all these features, consider PSM [25], which is basically

NIAM extended with the features of IFO. By necessity, the visualization of database schemes in PSM
employs far more graphical conventions than needed in GOLD. Drawing instances or queries in the same

fashion would require even more conventions and use up far more screen real estate. Not surprisingly,

the PSM query language proposed in [24] is textual.

We may need some extensions to GOLD (see section 4.5), hut generally consider its simplicity a virtue,

not a handicap. Features such as non-binary relations, composite nodes, and tuple or set aggregation can

be represented by introducing extra nodes, so there is no real need to support them directly.

101. e., apart from the literal mathematical notation, which is far too illegible to be of practical use.

11 The same question can be asked for the models themselves. For example, end users can be trusted not to think of
infonnation in tenns of sets and tuples.

19

4.4 GOLD transforms the database instance

In the relational database model, a database instance consists of tables (relations). A query, applied to
an instance, will produce a relation.

Similarly, queries in object-based languages mostly yield sets of objects or sets of values. Gram [3, 4], a
hypertext query language which operates on labeled graphs, yielding sets of paths. In [4], both an algebra

version and an SQL version of Gram are presented that remain very close to their relational and object

based counterparts.

By contrast, GOLD queries yield a transformed instance. (In this respect, GOLD is identical to GOOD
[20).) By expressing queries explicitly as modifications to the instance, browsing and using query results

no longer requires special representations or tools. Modifications made for queries will normally be

'virtual'; they won't permanently change the database, but will rather provide a temporary modification

or view. Updates can be made by telling the system to record this temporary instance as the new one.

Compare this to Gram queries, which yield sets of paths in the instance. Sets of paths are not a very

useful concept for the user, and it is unclear how to present them. In [4], the authors propose two ways

of using Gram. Firstly, they let Gram queries define virtual links, one link for every pair of nodes in a

path yielded by the query. It is more natural to let the creation of the links itself be specified as part of

the query. This is what happens in a GOLD edge addition. Secondly, they use Gram queries to delimit

the scope of navigation, by restricting navigation to the nodes and links present in a query result. This

can be expressed more naturally with GOLD deletions. Not only is the GOLD approach more natural,

it is also much more flexible, allowing the creation and deletion of virtual edges and nodes in ways that

are hard if not impossible to mimic with Gram.

These objections hold for all languages of this type, for example, the hypertext query language of [9],

and versions of object SQL.

Much closer to GOLD is the GraphLog language [14, 15, 16). In fact, our edge additions are almost

identical to the corresponding GraphLog operations. The basic difference remains that GraphLog queries
express selections of nodes and edges, whereas GOLD expresses instance transformations, and as a result

is more powerful. This is mainly due to the support of (virtual) node creation, which has important

practical advantages. 12

• First of all, the user is given more control over how to express query results. For example, the user

may be interested in a certain set of paths, but, instead of creating virtual links between existing

nodes, may wish to create one new node with links to the endpoints of those paths.

• Secondly, a much wider range of queries becomes available, because the structure of the result can

be more complex. For example, in the persons example used in the introduction, we may wish to

provide a 'tour of generations', creating one node for each generation, with 'next' links in between
and 'has as member' links to persons. Queries such as these can easily be expressed in GOLD.

Node creation allows the user to keep the original hypertext separated from the virtual structure
defined on it for navigational purposes; this can do much to improve clarity.13

• Lastly, node creation can be essential in expressing intermediate results of a complex query. Some

queries, even some that do not yield any new nodes, can only be expressed in GOLD using inter

mediate nodes. Apart from that, intermediate nodes are simply convenient in many situations. In

effect, they bring the power of non-binary relations and nested values within a purely graph-based

model. When working in such a model, this is an elegant way to obtain a powerful querying vehicle.

Like GraphLog and GOLD, the visual query language in [13) expresses queries as graphs that effectively

12GraphLog makes up for this to some extent by means of the blob. a one-to-many edge, and by the facility to contract

existing nodes.

13Apart from that, if obeyed strictly, this rule has implementational advantages - it avoids having to put virtual link
anchors inside existing nodes.

20

act as patterns on the instance. Its queries express selections, and result nodes are created to point out

the results of queries. However, we prefer a direct specification of instance transformations as occurring
in GOLD. Besides, the language has some limitations that make it weaker than GOLD.

4.5 Some sugaring is necessary

The power of GOLD is not obtained at the expense of simplicity. We have stressed that GOLD is a

language with a very simple syntax and, for most expressions, a straightforward semantics. This does
not necessarily mean that all GOLD programs are easy to understand. In fact, the language as presented

here is a little oversimplified, something we did to bring out the fundamental properties without being

distracted by non-essential features. The language will only be truly simple if queries in similar languages,

such as GraphLog and Gram, look at least as easy when expressed in GOLD.

This is not always the case, basically for two reasons. One is the compactness of the GOLD operation,

stemming from the fact that we allow non-injective embeddings, we do not create nodes that already

exist, and we perform merging and sharing of new nodes, all in one operation. The interaction of these

features is not very complicated for simple operations, but it is possible to write operations in which they

do interact in a complicated way (cf. the marriage example, figure 5 on page 5. Especially the first two
features are hardly used in practice. For this reason, we are considering to introduce injective embeddings

and forced node addition, maybe by means of extra syntactic marking.

The second reason why GOLD as presented here can be awkward to use is that some fairly trivial

manipulations take long sequences of operations, which makes it hard to catch the general intention of

programs at first glance.14 Typical tasks are forcing injective embeddings, forcing addition of nodes in
the presence of similar ones, and simulating negation in patterns; these are all straightforward to simulate

with few operations, but the resulting programs look pretty obscure. To a lesser extent, this also holds

for path walking operations, which require iterations - unfortunately, not all iterations are as concise as

the ancestor computation in figure 6, page 6. Some of this is remedied by marking nodes as suggested in
the previous paragraph; negation and path walking are best supported by allowing in operations regular

expressions with negation to be used in the place of plain edge labels. GraphLog and textual languages
[4, 9J also have this feature.

Another insufficiency is in our lack of support for plain values, such as integers or strings. Practice

demands at least the presence of a simple way to indicate (integer or string) attribute values to nodes,

and to indicate common comparisons and computations on them in operations. A remedy is to allow the

labeling of instance nodes with attribute fields, and the labeling of pattern nodes with expressions over

attribute fields.

These extensions do not affect the observations on expressive power made in section 3. The suggestion

to make node addition forced does not affect the range of manipulations that can be performed; neither

do the other extensions, which all concern pattern matching, not the subsequent manipulation.

It is easy to come with new extensions and formally define them; the difficulty lies in finding visualizations

that keep expressions easy to use. In particular, expr~ssions that employ few features must remain simple

enough to be immediately clear for the novice user.

4.6 GOLD as compared to GOOD

In the two previous sections, we compared GOLD to similar languages, and proposed some extensions to

improve its practicality. The GOOD model and language [20J did not occur in that discussion because

it is like GOLD in every aspect mentioned. We will now summarize the differences between the two
languages.

14The proofs in section A.5 are ample evidence.

21

In GOLD, GOOD's operations are generalized to one general operation. Thanks to the greatly relaxed
syntax that results, users can directly express many queries which take several operations in GOOD. In the
previous section, other ways of achieving this were mentioned; similar extensions are actually implemented

in the existing GOOD implementation [18], which is based on the syntax extensions and sugarings defined

in the report [6].15 The core pattern, which allows users to control the way in which nodes are added,

further extends the range of directly expressible queries. We expect this will greatly improve ease of use.

While this practical benefit was the main reason for their introduction, core patterns also remove the

need for the abstraction operator. Furthermore, the possibility of adding multiple, interconnected nodes
at once lifts expressive power to above that of GOOD and other constructive languages. More details are

given in the appendix, section A.5.

Finally, there are minor differences in the data model. GOOD distinguishes between printable and
nonprintable nodes, without providing any means of dealing with printable values. It also distinguishes
between nonfunctional and functional edges; we may include the specification of this constraint and others

in some version of GOLD.

Further, GOLD has no notion of database scheme;'· new node and edge labels can be added on the fly.

In conclusion, GOLD is more compact and flexible than GOOD, while maintaining its benefits. We have

taken care to design the language as a superset of GOOD. With the extensions mentioned above, it will

largely be a superset of other languages as well, GraphLog in particular.

4.7 A system based on GOLD

Obviously, GOLD can only be useful with a smart graphical interface. The graphical representations of

database instances and programs used in this report simply run off the screen for nontrivial examples.

The interface will rely on techniques to selectively display instances and programs, and to aid in the
composition of queries. Also important is a smooth integration between querying and navigation. The

GOOD implementation (cf. [18]) proves that such an interface is practically feasible.

In conclusion, we regard GOLD as a solid basis for a graphical query interface. In comparison to similar

languages} its power} compactness and flexibility are substantial improvements.

Acknowledgement

The work described in this report has greatly benefited from discussions with Jan Paredaens, Marc

Andries, and Jan Ridders.

150ur approach differs from the approach taken there, in that we define our constructs not as macro' (shorthands for

GOOD programs), but instead provide a direct definition for their interpretation. Besides, our constructs are different

our single operation has many more syntactic possibilities, and the core pattern is completely new.

16 A ,cherne for an inltance I can be defined as an instance in which no two nodes carry the same label and upon which

I has an embedding. A scheme is an important practical tool in working with a database, even more so if we extend it with

graphical notations to express certain constraints on instances. Like the discussion of other tools, this is outside the scope

of the present report.

22

A Proofs of theorems

In this appendix, we prove some of the theorems appearing in the report. In section A.1, the correctness
of GOLD is established, that is, the property that GOLD programs express only determinate database
transformations.

In further sections, several theorems are proved from section 3, co~cerning the expressive power of sub
languages of GOLD.

A.I Correctness of GOLD

GOLD is designed as an imperative database programming language. We use a well-known correctness

criterion for such languages, known as determinacy: the property that programs are deterministic up to
the choice of new node identities.

This appendix discusses this notion in some detail, and proves that GOLD is indeed determinate (theo
rem 2.1). In the first section, we discuss some subtleties concerning the definition of determinacy; in the

second section, we prove determinacy of single operations; in the third section, we generalize this result

to programs.

A.L1 Determinacy: defining correctness of operations

In GOLD, the identities of nodes are inaccessible to the user. In the pictorial representation of instances

(for example, figure 1), node identities are not given explicitly; to be precise, the picture represents some
instance out of an isomorphism class, without specifying which one exactly. Likewise, the language cannot
use node identifiers directly; all it has is patterns, which means that node identities can be used only in

equality tests.

This property of database languages is known as genericity; it arose from the desire to describe databases
as structural descriptions of objects that may have an existence apart from this description. For instance,

if GOLD is used as a hypertext language, and nodes are hypertext nodes, then these hypertext nodes exist
apart from their status as labeled points in a GOLD database instance: they have contents, appearance,

and possibly a certain behavior, not all of which is captured in the instance description, and they can be

accessed and modified by other programs than the GOLD query processor alone.

Retaining genericity, we want database transformations to be deterministic, up to the choice of new node

identities.

This is the property known as determinacy, defined in definition 2.3 on page 8.

Note that determinacy places an effective restriction on the possible instances resulting from a given

instance. This can be seen by taking, in the definition, II = I2 and I3 = I 4. Hence, the following
definition is meaningful.

Definition A.1 An instance transformation is a pair of instances that is part of a database transforma

tion.
o

For example, if I is an instance consisting of two nodes labeled A, II is an instance consisting of one

of these, and I" is an instance consisting of one isolated A-node not in I, then (I,IJI) is an instance

transformation, whereas (I, I') is not.

23

These examples also serve to point out that determinacy is a stronger notion than determinism up to
isomorphism, a notion which could be defined as follows.

Definition A.2 Let S be a set of labels, let U be the set of instances over S, and let R be a relation on

U. Then R"', pronounced R modulo isomorphism, is the relation on the isomorphism classes of U, given

by

[I]", R'" [I']", = I R I'
D

for all instances I, I' E U.

R is said to be deterministic modulo isomorphism if Rt.!! is a partial function.
o

We will state without proof the following fact.

Proposition A.I All determinate relations are deterministic up to isomorphism. The reverse does not

hold in general; it does hold, however, for all relations that relate only instances with disjoint sets of

nodes.
o

A.1.2 Operations are determinate

Lemma A.2 Every GOLD operation, considered on instances over labels in a finite set S, expresses a

database transformation over S.
o

As explained in the text, this means that we have an effective restriction on the range of possible instance
transformations. To be precise, we have

Corollary A.I With the semantics defined in the text, it holds that between any two instances that

may result from the same operation applied to the same source instance, there is an isomorphism that
fixes all nodes remaining from the original instance.
D

In this section, we will prove lemma A.2 in detail.

Definition 2.2 on page 8 assigns a semantics to all GOLD operations: for all operations t, it defines as

its effect a relation on the universe of instances, by defining for all pair of instances I, I' whether or not

I ,b I' holds. It must be proved that, for all t, when this relation is restricted to all instances over a
finite set of labels S, it is computable and determinate.

As to computability, consider the following program. Its inputs are an arbitrary GOLD operation,

t = (.JD1.JC,.JS,.JA), and an arbitrary GOLD instance, Ij its output is an instance, I'.

F := 0; I' := I;

for all embeddings f of ;75 in I
do

if f cannot be extended to an embedding of ;7. in I

then add f to F

24

fi
od
C* F is as in definition 2.2 *)
for all I in F
do

if some previous I' in F is equal to I on Jc
then

NJ := NJ';
I : = I' on all nodes not in I

else
NJ := for all nodes m in N(JA) , N(Js) a copy, c(m)

fi;

9 := IUc;

for all node. m in NJ
do

od

for all edges (nl, a, n2) where m = nl or m = n2

do
if not present, add to I' the edge (g(nJ), n, g(n2)

od

for all embedding. I of Js in I
if for some previous /' in F, between the extensions spanned by

NJ and NJ, with incident edges and node.

there is an isomorphism that fixes I

then

fi

od

remove from III N, with all incident edges

.et I equal to !' on all new nodes

Co each embedding I has now been modified to ~(/)

for an ~ .uch that the definition is met *)
(* I' nov contains the addition instance, I" *)

for all embeddings I of Js in I
do

remove all deleted node. with incident edge. and all deleted edge.
od

The running time of this program is best split in two: the time required to find the embeddings, and the
time spent on rest of the computation. The latter is linearly dependent on the number of embeddings

found; the former, in a naive approach, requires O(nm), where n is the number of instance nodes and m

is the number of pattern nodes. Hence, the algorithm is polynomial in the instance size. Obviously, nm

is unacceptable in practice, but we will usually have dense instances, small and dense patterns, and a

number of embeddings roughly proportional to the size of the instance, rather than a higher polynomial.
With existing fast pattern matching techniques, we may be able to have linear running time or better. 17

Lemma A.3 This program always yields an instance I'i for that instance, I ~ I' holds.

D

Proof The lemma obviously holds if we may assume that before the last loop, I' always contains the

addition instance I" = IuI' for some I' for which I ~ I'.

To prove that this is the case, it is sufficient to prove the claim that the embed dings f are modified to

~(f) for a certain choice of ~ such that the six criteria posed in the definition (def. 2.2, p. 8) are all met.

17 Further study is in order before we can make any more detailed predictions about expected running time.

25

This will be left as an exercise to the reader.

o
The second step is to prove that operations are determinate. This will be done in two steps (lem

mas A.4,A.5).

Lemma A.4 Given instances 71,I2,I3,74 with an isomorphism i from II to I 2, a transformation t such

that II ='> I a, and an isomorphism i' between Ia and I. which agrees with i on the common nodes of II

and Ia and the common nodes of I2 and I., I2 ='> I. holds.
o

Figure 12: Going from isomorphism to transformation

Proof Assume such III., t, i, and i'. Take F to be the set of embeddings of :fs in II that have no

extension to an embedding of :fA in II, and F' identically for I 2. Take I"I = IIUIa and I"2 = I 2UI •.

Note that F' = {i 0 f I f E F}, and that iUi' is an isomorphism from I"I to I"2.

Take an 'I that maps all f in F to embeddings of :fA to I" I such that the six criteria of definition 2.2 are

met. Take 'I' = (iUi') 0 'I 0 (iUi,)-l Then, 'I' maps all f in F to embeddings of :fA to I"2 such that the

six criteria of the definition 2.2 are met. This is left for the reader to verify.

Since 7"2 is the addition instance LaU'I4, where 74 is, as required, 7"2 minus all deleted nodes and edges,
t

I2 :} I. must hold.

o

Lemma A.5 Given instances I 1,I2 ,I3 ,I4 with an isomorphism i from II to I21 and a transformation t

such that II ='> Ia and I2 ='> I., there exists an isomorphism between I3 and I. which agrees with i on

the common nodes of I I and I3 and the common nodes of I2 and I •.

o

Figure 13: Going from transformation to isomorphism

This isomorphism can be found as follows:

26

• take i;

• delete all pairs involving nodes deleted by t;

• choose an embedding extension '1 from II to I3 and '1' from I2 to I 4 ;

• choose a set of source pattern embeddings I into II such that all new nodes of I3 are in the range
of exactly one extension '1(1);

• for all these embeddings I and added pattern nodes m, add the pair ('I(/)(m), 'I'(i ol)(m)) to the
isomorphism.

It is quite straightforward to show that this construction is possible and does indeed yield an isomorphism

i' which agrees with i on their common nodes.

This will now be described in more detail.

Assume four instances II, I 2, Is, I4 and an operation t for which II d} Is and I d} I 4.

Take I"I = II UI3 and I", = IuI •.

Take FI and F, as the set of embed dings of Js in II and I" respectively, that can not be extended to

embeddings of JA in the same instance.

Let ~ be defined on FI and on F, as the relation

" ~" $=> II restricted to N(Jc) = " restricted to N(Jc)

"
(1)

Note that F, = {i 0 I I I E Fd and that for all ",,, E F, " ~ " iff i 0 " ~ i 0 f,.

Consider functions 'II : F -> Emb(JA,I"t) and 'I' : F -> Emb(JA,I",) for which, mutatis mutandis,
the conditions posed in the definition hold.

For all I E F, '11(/) and '1,(i 0 J) are equal on the nodes of N(.7s), and injective on the nodes in
N(JA)\N(Js); hence, there is a bijection from the range of '11(/) to that of '1,(/) that maps, for all

mE N(JA)' '11(/)(m) to '11 (/)(m). This bijection will be denoted as hI·

Lemma A.6 For every I E F, h, is an embedding from I"I restricted to the range of '11(/) to I",

restricted to the range of 'I,(i 0 I).
o

Proof For all I E F, the following holds.

Since '11 (/) and 'I, (I) are both embed dings, all nodes n in the range of 'II (/) have the same node label

as h,(n).

For an arbitrary edge ofI"I, (nl,a,n,) with nl and n, in the range of '11(/), if it is an edge of II, then
(i(nl)' a, i(n,)) is in I", which is a superinstance of I,; ifit is not in II, then, by condition 6, there must

be some I' E FI,ml,m, E N(JA) such that (ml,a,m,) E E(JA) and 'II (/')(ml) = nl,'1I(/')(m,) = n,.

If ml, m, E N(I), then, by condition 1, 'II(/')(md = nl = h,(ntJ and 'II(/')(m,) = n, = h,(n,), so
(h,(nt), a, h,(n,)) is an edge of I",; ifnot, then, by 5, w.l.o.g. it may be assumed that I ~ 1', and hence,
for both nl and n" '1,(i 0 I')(n;) = h,(n;), which follows from 1 if n; E N(Js), and from 2 otherwise.

Consequently, (h,(nl),a,h,(n,)) = ('1,(i 0 I')(md,a, 'I,(i 0 I')(m,)) is an edge of I",.

o

27

Lemma A.7 For all f E F, h,! is an embedding.
o

Proof Reversing the roles of I"1 and Z"2 in the previolls definitions, another bijection hj is obtained

that is easily seen to be equal to h,! for every f E F. Apply lemma A.6, mutatis mutandis, to hj.

o

Consider a maximal set T of embed dings f E F that contains only embed dings with disjoint ranges:

Since'" is an equivalence relation, such a T exists.

Lemma A.S For all different 11, h E T, no new node is in the domain of both h hand h".
o

Proof An immediate consequence of the definition.

o

Lemma A.9 For all different 11, hE T, no new node is in the range of both h" and h".
o

Proof Again, reverse the roles of II/I and 7"2, to show that the previous lemma applies to h J 1 .

o

(2)

Combining these lemmas, and the fact that all h J fix the old nodes, it follows that there exists a bijection

h from a subset of N(II/d to a subset of N(II/2), defined by

h D U hJ
JET

Let i' be the bijection defined as

i' = hUidN(I,)
D

where idN(I,) is the identity function on N(Id. Then:

Lemma A.10 i' is an isomorphism from II/! to II/2 that on N(Id is equal to i, and whose inverse is

equal to ;' on N(I2).

o

Proof By conditions 6, 2, and 3, all new nodes of N(II/d must be in the domain of hJ for some f E T;

similarly, all new nodes of N(II/ 2) must be in the domain of hI' for some f E T. By 6, 2, 3, and 5, all

new edges in I"1 must run between two nodes in the same hJ for some f E T; similarly, all new edges

in 7"2 run between two nodes in the range of the same hI for some f E T. By lemmas A.6-A.9, h is

a bijection which is an embedding in both directions. By construction of the hI, h agrees with i on all

nodes of II and Z2; the lemma follows.

28

o

We can now prove lemma A.5.

D = {f(m) I f E Emb(Js,I2) 1\ mE N(Js)\N(JD)}

Since h is the identity on D, from lemma A.lO it follows that h restricted to the nodes not in D is an

isomorphism between I3 and I. that fixes all original nodes.

o
From lemmas A.3, AA, and A.5, the main lemma, A.2, immediately follows.

A.1.3 Correctness of programs

We must now generalize these results to programs, and obtain theorem A.13.

From lemma A.3, we know that all GOLD operations yield results on all instances. For programs in

general, this is not the case. This is due to the unbounded iteration present in the language. It is well

known that languages need this possibility of infinite looping in order to achieve Turing-completeness;
since we want GOLD, a general graph manipulation language, to be Turing-complete, restricting the

absence of results to the case of unbounded looping is in a sense the best we can do.

Definition A.3 Let p be a program and n be a number. The expansion of p up to n, denoted eXn(p),

is inductively defined to be the following program:

o

• A, if n = 0 or p can be written as A, using the given laws of equivalence (cf. equations 1 on page 10)

if necessary;

• t; eXn _l(Q), if p can be written as tj q again using the given laws of equivalence as necessary.

Note that all programs fall in exactly one category; consequently, every program has exactly one expansion

up to n for each n. Now we can state, without proof, an obvious property of iteration:

Lemma A.ll For all instances I,I', and programs p, if I J} I', then there is an n E IN such that

I ,,~p) I'.

o

Equally obvious is the following:

Lemma A.12 All GOLD programs express computable relations.
o

To prove theorem 2.1, we further need to establish

Lemma A.13 All GOLD programs express determinate relations.
o

29

t

~I3

'/ : . '.
t .
~~

I3

Figure 14: Going from program to isomorphism

Proof The single operation is determinate by lemma A.2. From lemma A.l1, it follows that we only

need to consider programs without iteration. All such programs are all determinate: trivially so if their
length is 0 or 1. If their length is n > 1, they can be written as p; q, where p and q are both shorter than
n.

Now consider instances III I 2J L3, 1"4 with an isomorphism i from II to I2 and such that II ~ I 3. We are

to prove that I2 ~ I. iff there is an isomorphism i' from I3 to I. which agrees with i on their common

nodes. Let X be the set of nodes common to II and I 3. From definition 2.7, we observe that II ~ I3

holds iff there is an instance I5 such that II J> I5 and I5 ~ I 3. For this Is, we have II J> I 5, I5 ~ I 3,
X X

and X ~ N(Is).

IfI2 ~ I., there is an analogous instance I6 between I2 and I 6. Assuming that p and q are determinate,
we can construct an isomorphism from Is to 76 that agrees with i on their common nodes, and from that

isomorphism, an isomorphism i' that agrees with it, and, thanks to the fact that X ~ N(I5), agrees with
i.

On the other hand, if there is an isomorphism i' from I3 to I. which agrees with i on all common nodes,
then it is easy to construct an I6 such that there is a suitable isomorphism from Is to I 6.

t
Il~ t

Is~

", if
t I2 .. -.

t
".
"~ 1"3

Figure 15: Going from isomorphism to program

o

From lemmas A.12, A.13, theorem 2.1 follows immediately.

A.2 A database transformation not expressible in GOLD

In this section, we prove lemma3.2: there is a database transformation which is not expressible in GOLD.

30

Proof Consider an infinite sequence of nodes ai, a" ... , all labeled A, two nodes blo b, labeled B,
an infinite sequence of nodes CI,C" ... , all labeled C, and an edge label a. For all n E IN, define the
instances

D

I'n =
D

{(a"a,a'+1) 11::; i < 2n}

)

({bl,b"CI,''''Cn},

{ (c" a, c(' mod 'n)+1) 11 ::; i < 2n} U {(c" a, b(, mod ')+1) 11 ::; i < 2n}

For an illustration, see figure 16. Note that there exists a database transformation, say R, which contains

I3 I'3

Figure 16: Instances I3 and I'3 constructed in the non-completeness proof.

(In,X'n) for all n E IN. Suppose that any such transformation is expressed by some GOLD program, p.

Then let k be some prime number greater than the largest number of added nodes in all operations used

in p. Supposedly, Ik !} I' k. Some operation t of p must add one of the new nodes in I' k; we will show
that either t or some previous operation must contain at least 2k added nodes, thereby contradicting the

existence of p. This proves that R is not expressible in GOLD.

!fIk,!} I' k, then alsoIk ~ I' k, where q is the stepwise iteration expansion eXp(l) (cf. definition A.3, page 29,

for some suitable I E IN.

The automorphisms on instances also define a permutation group on the subsets of their nodes: if I" is

an instance with some automorphism a, a acts on sets of nodes in I" as a(X) = {a(x) I x EX}.

Consider the instance properties PI, P, defined as follows: for any instance I", PI (I") holds if the nodes

bl , b, are in I", and some automorphism of I" swaps bl , b,; for any instance I", P,(I") holds if PI (I")

and there is a subset X of nodes in I", such that, if

Y :0
D

YI =
D

Y, =
D

{a(X) I a any automorphism of I"}

{ZEYlbIEZ}

Y \ YI

then both YI and Y, have k elements, and all bl , b, swapping automorphisms of I" fully cycle the elements

ofY. (Note that all X E YI contain bl , while all X E Y, contain b,.)

We will prove that for all instances II,I, and transformations t, if we have P,(I,) but only PI(IJ), and

I ob I', then t must have at least 2k added nodes. There is at least one such t in q, since P,{I,) holds

(take X = {bloC}, where C is a new node), but P,(IJ) does not hold; further, PI{IJ) and PI{I,) hold,

hence PI also holds for all intermediate instances.

31

Consider instances II,I, and transformations t, such that P,(I2) and PI(I!) hold, but not P,(I!);

further, I =1> I'.

P2(I2) holds, so we may assume X, Y, Y I , Y2 as defined above.

Suppose that one of the sets in Y consists of nodes in II. P2(I,) holds, 80 some bl , b2 swapping auto

morphism a2 ofI2 cycles all elements ofY; theorem 2.1 implies that there is an automorphism al that is
equal to a2 on their common nodes. This implies that all elements of Yare subsets of nodes in II, and

P2(Id holds, contradicting our initial assumption.

Therefore, some X E Y contains nodes not in IIi hence, t must be a node addition; hence, II must be a

subinstance of I 2, and all automorphisms of II are automorphisms of I2 restricted to the nodes of II.

Let Yn,w be the set consisting of all X E Y restricted to the new nodes in I,; let Yold be the set consisting

of all X E Y restricted to nodes of I, also in II'

Consider the set A of automorphisms of I, that swap bl , b,. They all cycle Y with period 2k, mapping

new nodes only to new nodes, old nodes only to old nodes. Since, by assumption, P,(I!) does not hold,

Yold must be cycled with period 2. Hence, Yn,w must be cycled with period 2k. Hence, there must be at

least 2k new nodes.

How does t add these nodes? Choose an embedding extension ry which meets the criteria imposed in the

definition of operation semantics (definition 2.2). All new nodes are in the range of some ry(f) for some,

possibly the same, source pattern embedding f. Pick such an embedding f. The range of f (a set of

nodes in I!) is cycled by the automorphisms in A. None of these automorphisms can cycle any subset

of the range of f with period 2k, for this would allow us to prove that P,(I!) holds, contradicting the
assumption that it doesn't. As a consequence, all new nodes must be in the ranges of the extension ry(f)

for the same source pattern embedding f. Therefore, t must contain at least 2k added nodes.

o

A.3 Every instance transformation is expressible in GOLD

In this section, we prove lemma 3.3: every (determinate) instance transformation is expressible in GOLD.

Proof Consider an instance transformation (I, I'). Consider an edge label <> not used in I or I'. Let

Ia be the instance equal to I plus additional edges (n, <>, m) for all pairs of different nodes n, m in I.

Let I' a be the instance equal to I plus additional edges (n, <>, n) for all nodes n in I. Then, if

(I,I,I,Ia)

D

(I,I/alI/olI/a)

we obviously have

I '!:$,:l 'La

Note that the embeddings of Ia onto itself are exactly the automorphisms of I; the identity in particular

is an embedding. If all nodes of I' are in I, then, with

t3 = (I' \I,Ia,Ia,I'UIa)

we have

Ia ~I'

If not, take a node label A not used in I or I', take an A-labeled node n, take

II = ({n},0)

32

IA = I'UII

Io = (0,0)

t3 = (I'\I,IQ,IQ,IA)

t, = (Io,II,II,II)

and we have

Ia t~:, I'

This is obvious from the fact that the identity is a source pattern embedding which, due to the A-labeled
node, cannot be extended to an addition pattern embedding into I; this identity clearly has the identity
on IA as an injective extension. Because all embeddings are automorphisms and (I,I') is an instance
transformation, no other nodes than those of IA are present in the result of t3. This also guarantees that

the deletion step of t3 removes exactly those nodes and edges from I that lack in I'. The result is I', or,
in the second case, I with an extra A-labeled node; this node exactly is removed by t,.

o

A.4 Simulating combined operations with separate ones

In this section, we prove lemma 3.2: GOLD and GOLDsep are equally expressive.

Proof As all GOLDsep programs are GOLD programs, all we need to do is prove that all GOLD
programs can be simulated with sequences of node additions, node deletions, edge additions, and edge

additions. Replace all non-GOLDsep operations t = (.JD'.JC'.JS'.J.) with a sequence of GOLDsep
operations t' constructed as follows.

For every edge label a used in a deleted edge, choose a new edge label, (l'-. Chose one more new special

edge label, -.

Let .J) be the addition pattern restricted to the nodes of .Js. For every edge label a used in an added
edge of .:7/, choose a new edge label, a+. Let .:JA" be ..1/ where all added edges labeled 0' are replaced

with edges labeled a+. Let .J)" be the union of .J/ and .J/', i. e., with both the a-edges and the
a+-edges. Let .J/III be .J. without all added edges of .J/.

Let .JD' be .Js where all deleted nodes carry an extra edge to themselves, labeled -, and where for all
deleted edges labeled a, a new edge is placed alongside labeled a-. Let .JD" be the union of .JD' and

.J/', i. e. it is .Js with all additional edges a+, a-, and -. Let .JDIII be .Js with all deleted edges
removed that run between non-deleted nodes. Finally, let .J; be .JD" from which all deleted nodes of

.Js in t have been removed, and let .JD"" be .Js' from which all marking edges a+; a-, - have been
removed.

tl (.Js, .Jc, .Js, .J/')

t2 = (.Js,.Jc, .Js, .JD')

t3 (.Js, .Jc, .JSI .J/
III

)

t, = (:1s 1 Jc,.:J/', 3/")

ts (.J. III.J. .J" J ") D , c, DID

ts = (J "".J. J' J ") D 1 C, S, D

Here, h indicates the edges to be added; t2 indicates the edges and nodes to be deleted; t3 performs the

node addition; t, adds the edges not added by t3; ts deletes the nodes marked for deletion; ts deletes
the edges marked for deletion, and removes all marking edges. An example is given in figure 17; in that

example, the operations t l , t4 and ts are trivial and have been omitted. It is easy to see that tf behaves

33

t6

Figure 17: Construction example: separated operations for the marriage example

identically to t on all instances in which none of the new labels a+, a-, - occur. Therefore, every
database transformation over some set of labels S can be simulated in this fashion, provided that the
new labels are chosen outside of S.18

o

A.S GOOD operations are subsumed in GOLD

In this section, we will show that, except abstraction, the operations of GOOD are those of GOLDtup'

This was stated in lemma 3.10.

Apart from notational differences between GOLDtup and GOOD, there is one details that needs to be

dealt with: the fact that edges in GOOD can be functional. To be precise, an edge label in GOOD

is either functional or non-functional, and it is prohibited for instances to have a node from which two
edges leave with the same functional edge label. As a result, edge additions in GOOD can produce results

that are not instances because they violate this functionality criterion. In that case, the result is left
undefined. GOLDtu does define a result in such cases. A similar situation holds for node addition: in

GOOD, it is required that the edges leaving the new node are functional edges. As a result, node addition

in GOLDtup applies to more cases than in GOOD: those cases in which an edge departing from the new

node violates the functionality criterion in the instance to which the operation is applied.

When we say that the operations of GOLDtup are identical to the operations in GOOD, we mean that

they are identical on all cases in which the corresponding GOOD operation defines a result. The GOOD

operations leave the result undefined exactly when the GOLDtup operations produce an instance that

violates the functionality criterion. This condition is easily checked with a GOLDtup program.

An accessible source for the definition of GOOD is [20]. However, the definition given there lacks an

iteration construct. More complete references are [6], [19]. We will not repeat these definitions, but

substitute them in the following, more exact rewording of lemma 3.10.

Lemma A.14 I,I' be instances and t an operation of GOLDtup' Then

• ift is a node addition, let m be the added node, let f{ be the label of m, and let (m, ai, mi) be its

outgoing edges. Then, I d:, I'iff I' is a minimal superinstance of I for which

- for each embedding i of :Is in I, there exists a f{-labeled node in I' such that for all j,

(n, ai, i(mi)) is an edge in I';

18Unfortunately, it is impossible to have simulations without using at least one extra edge or node label.

34

o

- each edge in I' leaving a node of I is also an edge of I;

- no two edges with identical labels leave the same new node in I'.

• if t is an edge addition, let (mj, "'j, mj) be its added edges. Then, I ob I'iff I' is the minimal
superinstance of I for which

- for each embedding i of :Is in I and allj, (i(mj), "'j, i(mj)} are edges in I'.

• if t is a node deletion, let m be the deleted node. Then, I ob I'iff I' is the maximal subinstance
of I for which

- for each embedding i of :Is in I, i(m) is not a node in I'.

• if t is an edge deletion, let (mj, "'j, mj) be its deleted edges. Then, I ob I'iff I' is the maximal
subinstance of I for which

- for each embedding i of :Is in I and all j, (;(mj), "'j, i(mj)} are not edges in I'.

These claims are straightforward to verify, and we will leave this to the reader. Note that in all cases except

node additions, the embedding extension 7J required in definition 2.2 necessarily maps every embedding

to itself.

A.6 Equivalence of core patterns and abstraction

In this section, we demonstrate the equal expressive power of the core pattern feature on one hand and

the abstraction operation on the other, by providing simulations of one using the other.

A.6.1 Simulating core patterns with abstraction

We will now give a construction to replace (nontrivial usage of) core patterns with abstractions; an

example of this construction is given in figure 18.

35

Let t = (:/D. :/e. :/s. :/A) be a node addition III GOLD,. Let n be the added node of t; say it has label

t"A

~~\ I
~/

t8

t3

Figure 18: Construction example: simulating core patterns with abstraction for the marriage example

36

K. Let (n,ai,m;) be the edges incident to n. Let a,~a,{3,'Y be edge labels. Let

.J) = .JA with an extra edge (n, a, n)

.:1/' = .JA with an extra edge {n, {3, n)

.JI = ({n},0)

.J, = {{n}, {(n,a, n), (n,{3, n)})

tl = (.JA, .JA, .JA, .J))

t, = (.Js, .Js, .Js, .JA)

t3 = (.JA, .JA, .JA, .JAil)

t. = (.JI, .J" .J" .J,)

Let :13 be an instance of which both .:JAil and Borne instance :lB are subinstances, such that some

isomorphism from .J/ to .JB fixes all nodes of .Je, .J/ and .JB have all different nodes except those in

.Je, and every edge of .J3 is in either .J) or .JB' Let .J. be .J3 with the additional edge (n, 'Y, i(n)). Let

t5 =

.J5

(.J3, .J3, .J3, .J.)

({n},{{n,'Y,n)})

Let n' be some K-labeled node not equal to n. Define the abstraction

t6 = (.J5,n',K,'Y,a)

For all edges (n, ai, mil, define the patterns

.Ji,S ({n,mi,n'},{{n,ai,mi)})

.Ji,A = .Ji,S with the additional edge (n',<>,mi)

ti,A (:1;,s, .Ji,S, :1;,s, .Ji,A)

Then let PI be a program consisting of all ta,A, arbitrarily ordered into a sequence. Let nIl nz be two

K -labeled nodes, and

.J6 = ({nl,n,},{{n,,<>,nl),{nl,'Y,n,)})

.J7 = .J6 with the additional edge {n" {3, n,

t7 (.J6, .J7, .J7, .J7)

Io (0,0)

t8 (.Jo, .J5, .J5, .J5)

Let 38 be an instance of which both :7/' and some instance .:JB are subinstances, such that some

isomorphism i from .J) to .J B fixes all nodes of .JA II except n, and no edges run between nand i(n). Let

If

.J9 = .J8 with the additional edge (n, 'Y, i(n))

t9 = (.J8, .J9, .J9, .J9)

then, for all instances I, I' in which none of the edge labels <>, ~a, {3, 'Y occur, it holds that I ~ I' iff

I ~I'. The proof is tedious and has been omitted.

A.6.2 Simulating abstraction with core patterns

An example of the following construction is provided in figure 19, which displays its results on the

abstraction of figure 10.

37

Let t = {:T, m, K, a, fJ} be an abstraction. Let X be the set of node labels C for which there is a node m'

labeled C such that the edge {m, a, m'} is in:T. Let B be the node label of m. Let a, ~a, fJ, ~fJ, '"(, ~'"(, 6, f, (

tl,Peraon t2,Penon

EJ
~has.child

I Pe~.on I

ts,Peraon t3

t5

f

'"(

L-____ J ••• 1 Perlonl

t8 t9

fame ~hildrer Fame ~hildr+ I pe,rsonl

(: ~ol

I~tl I pe!son I I pe!sonl

t11 t12 t13 t14

I Peraon I

'"(:

I Pe~.on I

.f..~.

[lame Childr+.'

t 15 t 16

Figure 19: Example simulation of abstraction with core patterns

38

be edge labels. Let n be a new node labeled K.

:1! = :1 with additional edge (m, 6, m)

:1, = :1 with additional node n and edge (n, /3, m)

I, = (:1,:1,J.:T,)

Let b" b, be two nodes labeled B. For all C in X, let e be a node labeled C, and let PC be a see
t1,e; t2,C; 13,c; 14.c, where there transformations are as follows:

:1"c = ({b"e},0)

:1"c = ({b" e}, {(b" a, e)}}

:13,C = ({b" e}, {(b" ~a, e)}}

:14,C = ({b" e}, {(b" a, e), (b" ~a,e)}}

I"c = (J, ,C, J, ,C, :1, ,C, :13,C)

12,c = (:1"c, :14,C, :14,C, :14,C)

:15,C = ({ b" b" e}, {(b" 6, b,), (b" 6, b,), (b" a, e), (b" a, e)}}

:1s,c = :15 with additional edge (b" r, b,)

13P (:15,C, :15,C, :15,C, :1s,c),

:17,C = ({b" b" e}, {(b" a, e), (b" ~a, e)}}

:1s,c = :15 with additional edge (b" r, b,)

14,c = (:17,C, :1s,c, :1s,c, :1s,c)

Is,e = (:1"c, :13P, :13,C, :13,C)

Let P2 be a program consisting of all PC, arbitrarily ordered into a sequence.

:13 = ({b"b,}{(b,,6,b,},(b,,6,b,}})

J3 with additional edge (b" ~r, b,)

I, = (:13, :13, :13.:T4)

:14 =
J5

:16

13

J7

:1s =

:13 with additional edge (b" ~r, b,)

({b"b,}{(b"r,b,)})
:15 with additional edge (b" ~r, b,)

(:15, :15,:15, J6)

({m, n}{ (n, /3, m), (m, 6, m)})

:17 with additional edge (n, c, n)

14 = (:17, :17, :17, :1s)

:19 = :1s without the edge (n, /3, m)

:110 = :19 with additional edge (n, ~/3, m)

15 (:19, :110, :1'0, :11O)
:111 = ({m,n}{(n,/3,m)})

= :111 with additional edge (n, ~/3, m)

16 = (:111, :1", J12, :112)

({ n, b" b,}, {(n, /3, b,), (n, ~/3, b,), (b" r, b,)})

:1'3 with additional edge (n, c, n)

= (:1'3, :1'4, :1'4, :114)
({ n, b" b,}, {(n, /3, b,), (n, /3, b,), (b" ~r, b,)}

:1'6 :1'5 with additional edge (n, c, n)

Is = (:1'5, :1'6, :1'6, :1'6)
:1'7 = ({n,b"b,},{(n,/3,b,},(n,c,n}})

:1,s :117 with additional edge (b" r, b,)

19 = (:117, :1,s, J,s, J,s)

39

:1J9 = ({n, bl , b2 }, {(n, (, bl), (n, t, n), (b!,'y, b2)})

:120 = :1J8 without nand (-edge

tlO (.720, ({ n}, 0), .718, .719, .719)

.721 = ({n, bJ}, 0)

.722 = .721 with additional edge (n, (, bl)

.723 = .722 with additional edge (n, 'Y, b,)

tl1 = (.722,.7'2,.7'2,.7'3)

tl2 = (.721,.722,.722,.722)

.724 = .721 with additional edge (n, ~f3, bl)

tl3 = (.722, .722, .722, .724)

.725 = ({b l ,b2 },0)

.7'6 = .725 with additional edge (b l , ~'Y, b,)

tl4 = (.725, .7'6, .726, .726)

.727 = .725 with additional edge (b l , 'Y, b,)

tl5 = (.725, .727, .7'7, .7'7)

.728 = ({bJ},0)

.729 = .728 with additional edge (b l , 6, bl)

tl6 = (.728, .729, .7'9, .729)

.730 = ({n},0)

.731 = .730 with additional edge (n, 'Y, n)

tl7 = (.730, .730, .730, .730)

If

then, for all instances 'I, 'I' in which none of the edge labels a, -'0:, /3, -,{3, "'(1,,.. 1 6, f 1 (occur 1 it holds that

I,b I' iff I!:. I'.

The proof is tedious again, and has been omitted.

40

References

[1] ABITEBOUL, S., AND HULL, R. IFO: a formal semantic database model. ACM Trans. Database

Syst. 12,4 (Dec. 1987),525-565.

[2] ABITEBOUL, S., AND KANELLAKIS, P. Object identity as a query language primitive. In ACM

SIGMOD Inti. Con! on Management of Data (1989).

[3] AMANN, B., AND SCHOLL, M. Gram: A graph data model and query language. In Hyper/ext '92

(Milano, italy, 1992), D. Lucarella, J. Nanard, M. Nanard, and P. Paolini, Eds., Association for

Computing Machinery.

[4] AMANN, B., AND SCHOLL, M. Database query navigation. Submitted to EDBT'93, 1993.

[5] ANDRIES, M., AND ENGELS, G. A Hybrid Query Language for the Extended Entity Relationship

Model. Tech. rep., Leiden University, Dept. of Compo Science, 1993. (in preparation).

[6] ANDRIES, M., AND PAREDAENS, J. Macro's for the GOOD-transformation language. Tech. Rep.

91-20, University of Antwerp (VIA), Apr. 1991.

[7] ANDRIES, M., AND PAREDAENS, J. A language for generic graph-transformations. In Graph

Theoretic Concepts in Computer Science, Int. Workshop WG 91 (1992), vol. 570 of Lecture Notes

in Computer Science, Springer, pp. 63-74.

[8] ANDRIES, M., PAREDAENS, J., AND VAN DEN BUSSCHE, J. A graph- and object-oriented coun

terpart for SQL. In Proceedings of The Second Far-East Workshop on Future Database Systems

(Singapore, Apr. 1992), Q. Chen, Y. Kambayashi, and R. Sacks-Davis, Eds., vol. 3 of Advanced

Database Research and Development Series, World Scientific, pp. 276-285.

[9] BEERI, C., AND KORNATZKY, Y. A logical query language for hypertext systems. In Proc. of the

First European Con! on Hyper/ext (Paris, France, nov 1990).

[10] BUSSCHE, J. V., GUCHT, D. V., ANDRIES, M., AND GYSSENS, M. On the completeness of

object-creating query languages. In IEEE Symp. on Foundations of Computer Science (1992).

[11] BUSSCHE, J. V., AND PAREDAENS, J. The expressive power of structured values in pure OODBs.

In ACM SIGMOD Inti. Con! on Management of Data (1991), pp. 291-299.

[12] CASANOVA, M. A., ET AL. The nested context model for hyperdocuments. In Proceedings of the

ACM Conference on Hyper/ext (Dallas, Texas, 1991), Association for Computing Machinery.

[13] CATARCI, T., SANTUCCI, G., AND ANGELACCIO, M. Fundamental graphical primitives for visual

query languages. Information Systems 18, 2 (1993), 75-98.

[14] CONSENS, M., AND MENDELZON, A. Expressing structural hypertext queries in GraphLog. In

Hyper/ext'89 Con! (nov 1989).

(15] CONSENS, M'l AND MENDELZON, A. GraphLog: a visual formalism for real life recursion. In Proc.

of the ACM Symp. Principles of Database Systems (1990).

[16] CRUZ, I., MENDELZON, A., AND WOOD, P. A graphical query language supporting recursion. In

ACM SIGMOD Inti. Conf. on Management of Data (1987), pp. 323-330.

[17] FRANCA GARZOTTO, P. P .. D. S. HDM - a model for the design of hypertext applications. In

Proceedings of the ACM Conference on Hyper/ext (1991).

[18] GEMIS, M., PAREDAENS, J., THYSSENS, I., AND VAN DEN BUSSCHE, J. GOOD: A graph-oriented

object database system. In SIGMOD Conference Proceedings (1993).

[19] GYSSENS, M., PAREDAENS, J., BUSSCHE, J. V., AND GUCHT, D. V. A graph-oriented object

database model. Tech. rep., University of Antwerp (VIA), 1990.

[20] GYSSENS, M., PAREDAENS, J., AND GUCHT, D. V. A graph-oriented object database model. In

Proc. of the ACM Symp. Principles of Database Systems (Mar. 1990).

41

[21] GYSSENS, M., PAREDAENS, J., AND GUCHT, J. V. A graph-oriented object model for database
end-user interfaces. ACM SIGMOD Inti. Conf. on Management of Data 19, 2 (May 1990).

[22] HALASZ, F., AND SCHWARTZ, M. The Dexter hypertext reference model. In Proc. of the Hypertext

Standardization Workshop Gan 1990).

[23] HALASZ, F. G. Reflections on NoteCards: Seven issues for the next generation of hypermedia
systems. Communications of the ACM 31, 7 (1988), 836-85l.

[24] HOFSTEDE, A. T., PROPER, H., AND WEIDE, T. V. D. Formal definition ofa conceptual language for

the description and manipulation of information models. Tech. Rep. 92-16, University of Nijmegen,

Dept. of Informatics, Toernooiveld 1, Nijmegen, the Netherlands, July 1992.

[25] HOFSTEDE, A. T., AND WEIDE, T. V. D. Expressiveness in data modelling. Tech. Rep. 91/07,

University of Nijmegen, Dept. of Informatics, Toernooiveld 1, Nijmegen, the Netherlands, July 1991.

[26] LANGE, D. A formal model of hypertext. In Proc. of the Hypertext Standardization Workshop Gan

1990).

[27] PAREDAENS, J., P.PEELMAN, AND TANCA, L. Deductive languages: A graph-based approach. In
Proceedings 32rd International Workshop on Foundations of Models and Languages for Data and

Objects (Aigen, Austria, Sept. 1991).

[28] VADAPARTY I K., ASLANDOGAN, Y., AND OZSOYOGLU, G. Towards a unified visual database access.

In ACM SIGMOD Inti. Conf. on Management of Data (1993), pp. 357-366.

[29] WINTRAECKEN, J. The NIAM Information Analysis Method: Theory and Practice. Kluwer Aca

demic Publishers, 1990.

[30] ZLOOF, M. Query-by-example: a data base language. IBM Systems J. 16,4 (1977), 324-343.

42

Contents

1 Introduction

1.1 Purpose .

1.2 Introductory examples

2 Language definition

2.1 Data model ...

2.2 Operation syntax and semantics

2.3 Program syntax and semantics .

3 Expressive power of GOLD

4

3.1 Constructiveness: a strong form of determinacy.

3.2 Expressive power of full GOLD .

3.3 GOLD with separated operators

3.4 GOLD with only single addition or deletion

3.5 GOLD without core patterns

3.6 GOOD as GOLD

3.6.1 GOOD operations are special cases of the GOLD operator.

3.6.2 Core patterns versus abstraction

3.6.3 Another alternative: the contraction operation

Discussion and concluding remarks

4.1 Purpose of GOLD

4.2 GOLD is a visual language

4.3 GOLD operates on graphs .

4.4 GOLD transforms the database instance

4.5 Some sugaring is necessary

4.6 GOLD as compared to GOOD

4.7 A system based on GOLD ...

A Proofs of theorems

A.l Correctness of GOLD

1

1

2

6

6

6

9

11

11

11

13

13

14

14

15

15

16

18

18

18

19

20

21

21

22

23

23

A.l.! Determinacy: defining correctness of operations

A.l.2 Operations are determinate

A.l.3 Correctness of programs . .

A.2 A database transformation not expressible in GOLD

A.3 Every instance transformation is expressible in GOLD

A.4 Simulating combined operations with separate ones .

A.5 GOOD operations are subsumed in GOLD

A.6 Equivalence of core patterns and abstraction

A.G.! Simulating core patterns with abstraction

A.6.2 Simulating abstraction with core patterns

23

24

29

30

32

33

34

35

35

37

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
1. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 I. Coenen
I. Zwiers
W.-P. de Roever

92/02 I. Coenen
J. Hooman

92/03 I.C.M. Baeten
I.A. Bergstra

92/04 I.P.H.W.v.d.Eijnde

92/05 I.P.H.W.v.d.Eijnde

92/06 I.C.M. Baeten
I.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. N ederpeJt
F. Kamareddine

92/09 R C. B ackhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
I.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 I.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.NederpeJt
F. Kamareddine

92/19 I.C.M.Baeten
I.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pAS.

The fine· structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 p.o. Moerland

93/08 J. Verhoosel

93/09 KM. van Hee

93/10 KM. van Hee

93/11 KM. van Hee

93/12 K.M. van Hee

93/l3 K.M. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: SpeCification Language, p. 89.

92/22 R. Nederpelt
F.Kamareddine

92/23 F .Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.C.M. Baeten
J.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. IS.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 I.C.M. Baeten
I.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. NederpeJt

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDaS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi -dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

	Abstract
	1. Introduction
	1.1 Purpose
	1.2 Introductory examples
	2. Language definition
	2.1 Data model
	2.2 Operation syntax and semantics
	2.3 Program syntax and semantics
	3. Expressive power of GOLD
	3.1 Constructiveness: a strong form of determinacy
	3.2 Expressive power of full GOLD
	3.3 GOLD with separated operators
	3.4 GOLD with only single addition or deletion
	3.5 GOLD without core patterns
	3.6 GOOD as GOLD
	3.6.1 GOOD operations are special cases of the GOLD operator
	3.6.2 Core patterns versus abstraction
	3.6.3 Another alternative: the constraction operation
	4. Discussion and concluding remarks
	4.1 Purpose of GOLD
	4.2 GOLD is visual language
	4.3 GOLD operates on graphs
	4.4 GOLD transforms the database instance
	4.5 Some surgaring is necessary
	4.6 GOLD as compared to GOOD
	4.7 A system based on GOLD
	A: Proofs of theorem
	References

