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a Graph Oriented Language for Databases 

R. Post P. De Bra 



Abstract 

A simple and powerful graph transformation language for databases is defined whose operations are 

themselves graphs. It was designed to remedy some of the shortcomings of the GOOD language (see [20]), 
particularly, its restricted syntax for operations and its dependence on the rather awkward abstraction 

operator. 

The new language, GOLD, has only one operation; operations of GOOD are included as special cases. 

Thanks to a new idea, the core pattern, many more forms of node addition can be specified with this one 

operation; abstraction becomes superfluous. Due to its capability to add multiple nodes at once, GOLD 

surpasses GOOD in expressive power: queries are always generic - determinate in the sense of [2] - but 

they are not restricted to be constructive in the sense of [10J. 

The simpler forms of the GOLD operation have straightforward interpretations. Instead of imposing syn

tactic restrictions, the GOLD definition extends the semantics to cover a very broad range of expressions. 



1 Introduction 

1.1 Purpose 

There is an ever increasing interest in database systems that represent information as a network structure. 

In such systems, end-users, including novices, need to become comfortable with the network structure 

and actively employ that structure to find the information they need. It is very helpful to have a direct 
manipulation interface, in which network structure is displayed Oll-screen and users can move around by 
pointing and clicking. Many systems do provide such a graphical navigation facility, for instance, the 

influential NoteCards hypertext system [23]. Clearly, a wide range of information systems can benefit 
from this approach, in particular, hypertext systems and object oriented databases. 

The language presented in this report serves as a basis for a similar graphical interface for querying. 

Queries are expressed as graph transformations, which has two major advantages. It allows us to perform 
querying for structure, as opposed to the content search that is customary in hypertext; and it solves the 

problem of representing query results in a manner suitable to the navigation mechanism. Besides ad-hoc 
user queries, the language can describe other mechanisms involving implicit or automatically generated 
nodes and links. 

There is an elegant way of describing graph transformations in a manner suitable for a graphical interface: 
draw a prototypical graph and modifications to that graph. The graph is then embedded into the existing 
instance in every possible way, causing the modifications to take effect wherever a match is found. 

Combining such transformations into programs leads to a database programming language, standing out 
from other object oriented query languages in two ways: its database instances are plain graphs, and 

its operations are designed to be visualized as graphs themselves. Essentially, we have a graph grammar 

formalism, treated as a database programming language. 

This idea was modeled in the GOOD database model and language described in [20, 21]. The language 
presented in this report, GOLD (Graph Oriented Language for Databases), is a close relative. While 

GOOD has five operations to perform different types of graph transformations, GOLD has only one 
operation) obtained by allowing a very liberal syntax and adding a new feature) the core pattern) to 

express grouping. (In section 3.6, the relationship will be exposed in more detail.) 

The result is a very compact, elegant language that is more powerful than its predecessor. More expres
sions are meaningful; as a result, more queries can be expressed in a straightforward way, some of which 

cannot be expressed in GOOD at all. 

Other query languages have been designed to operate on graphs) some with a diagrammatic representation 

of queries - see, for example, [4], [8], [9], and [13]. GOOD and GOLD are in a special position by the fact 
that their operations express graph transformations, whereas most other languages express some type 

of aggregating selection similar to the SQL SELECT clause. Very similar to our language is GraphLog 
[161, in which queries are also graphs that act as patterns over the existing database instance. However, 

GraphLog queries do not specify modifications to this graph; hence, there is no way to specify the addition 

of new nodes, and no way to specify deletion. As a consequence, it is a considerably weaker language: 

not only are new nodes inherently present in certain queries (e. g., the creation of annotations or indexes), 

but they also provide an elegant aid in composing complex queries - see the closing section for further 

discussion. 

This report is structured as follows. After a brief informal introduction of the language, a formal definition 

is given and its correctness is established. Then, by syntactically restricting the GOLD operation and 
studying the expressive power of the languages thus obtained. The relationship with the GOOD language 
is exposed in detail. 

This part of the report is focused on the fundamentals of the language; examples have been chosen with 

the purpose of introducing its basic features, not to expose its value in practical situations. Besides, we 

have intentionally omitted all sugarings and enhancements inessential to its operation. 
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In the closing section, we present our motivation for using GOLD as a hypertext query language, com

paring its features to those of other languages. We also mention some of the additions and modifications 

necessary to turn the language into a practical tool. 

1.2 Introductory examples 

Let us first consider a toy' example database instance in GOLD: some persons with children and mar

riages indicated (figure 1). Note that a database instance is simply a directed graph; every node (a 

marriedd-;t<?-""'Olarried-to 

has-ch ld has-ch ld 

:.t<:!,....-dCtliarr ed-to 

has-ch ld has-chil has-ch ld 

Figure 1: Example instance 

rectangle) has a label (indicating its type) and every edge edges (an arrow) also has a label (indicating 

the name of a node property, or a binary relationship between nodes). 

As an example query, consider the request to find all persons with a grandparent. We must first decide 

how to represent the result. Suppose we indicate a person with a grandfather by making a node labeled 

'Grandchild' point to that person with an arrow labeled 'is'. Three conceivable results of this request are 

given in figure 2. 

1 In practice, instances will usually have more types of nodes and edges: for example, every person will have a name. 
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married-to married. to married·to married. to 

haa.c ild 

mar ied_to 

~r-'i'~ 

i. i. i. 

grandchildren (collectively) grandchildren (individually) 

grandchildren (per grandparent) 

Figure 2: Indicating grandchildren) three interpretations 

Note that the results differ only in the way the resulting nodes are grouped_ In the first instance) one node 

is created for aU grandchildren collectively; in the second, there is a node for each grandchild; in the third 

example, nodes are created per grandparent, with the proviso that for the two rightmost grandparents, 

who have the same grandchildren, only one node is created. The GOLD operation features a way for the 

user to specify this grouping.' In other query languages, the issue of how to represent the query result 

is usually not handled in the language itself; in GOLD, queries are represented as graph manipulations, 

and the issue is of direct importance. Still, for simple queries there will rarely be need to create more 

than one new node. 

Figure 3 displays three GOLD operations that respectively produce the three results of figure 2 when 

applied to the example instance of figure l. 

2This grouping feature is absent from GOOD, in which sequences of operations would be required to express most cases. 
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I Person I 

h ~child h ..s-child 

I Person I 

h fs--child h .s-child 

I Person 
i. 

Grandchild I I Person 
i. 

Gra.ndchild I 

grandchildren (collectively) grandchildren (individually) 

Person Grandchild 
i. 

grandchildren (per grandparent) 

Figure 3: Three operations to yield the respective results in the previous figure 

As apparent from figure 3, an operation is a pattern, in which the emboldened elements specify elements 

whose presence is required in the resulting instance. To specify grouping of new nodes, we distinguish 

a core pattern inside the non-bold part of the pattern. This is visualized by underlining its nodes and 

edges3 

GOLD is somewhat sophisticated in its way of deciding which nodes and edges to create. First of all, 

if for some embedding all emboldened elements in the pattern can already be matched in the existing 

instance, then nothing new is created for that embedding. Secondly, if for two embeddings, exactly the 

same instance extension must be made in order for the emboldened part to match, then this new part is 

created only once. This principle will be called sharing of new nodes. 

For example, in the third instance of figure 2, where grandchildren are grouped by grandparent, two 

grandparents have the same set of children, and this set is created only once. It would be quite pointless 

to create two indistinguishable copies. 

The mutual differences between the three example instances are due to the different merging of new 

nodes: respectively, no merging at all, merging by parent, or merging by grandparent. This principle is 

called 'merging' because the new parts for embeddings are combined regardless of whether they constitute 

identical copies. Merging is controlled by the user, by means of the core pattern. 

Deletion of nodes and edges can be specified by drawing them with dashed lines. For example, the 

operation in figure 4 deletes all persons with at least one child, leaving 4 isolated persons in the example 

instance. 

A more complex example is provided in figure 5. 

3 Initially, only color was used to mark core patterns, but this does not suffice for all purposes. 
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;-------1 
: Person: _____ .,_.J 

, , , 
ha,;-child , , , , 

B 
Figure 4: Deleting all parents 

has-chi d 

has-chi d 
'd 

Figure 5: Restructuring the representation of marriages 

has-chi d 

The operation on the left restructures the representation of marriages, resulting in the instance on the 

right when applied to the example instance in figure 1. Assuming that a marriage is represented as a 

pair of edges between persons, these arrows are replaced with a 'Marriage' node from which two 'partner' 
edges leave. At the same time, any children that were placed under married persons directly are now 

placed under their marriages instead. 

The arbitrary mixing of additions and deletions in one operation and the use of a core pattern are the 

main differences between GOLD and its predecessor, GOOD [7, 20, 21], 

Operations can be composed into sequences. A special bracket can be put around sequences to indicate 

iteration; an iterated sequence is executed until its net effect is zero. For example, in figure 6, we have 

two operations, the second of which is iterated, together computing a transitive closure. 
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has- . d 

has ancestor 

Figure 6: Transitive closure involves iteration 

2 Language definition 

2.1 Data model 

Let NN, EL, NL be countably infinite sets, called the universe of nodes, edge labels, and node labels, 

respectively. Let A : NN - NL be a function (the node labeling function). 

A (database) instance is a directed, labeled graph (N, E), where N is a finite set of nodes and E is a 

finite set of labeled edges, each of the form (n,a,m), where n,m E N and a EEL. For any instance 

I = (N, E), we write N(I) for Nand E(I) for E. Pattern is a synonym for instance. 

Definition 2.1 An embedding of a pattern .J into an instance I is a function f mapping the nodes of 

.J to those of I such that labels and edges are preserved. A bijective embedding whose inverse is an 

embedding is caned an isomorphism. An isomorphism of an instance onto itself is an automorphism; the 

set of automorphisms of an instance I will be denoted as Aut(I). 
o 

Note that embed dings need not be injective. 

2.2 Operation syntax and semantics 

An operation is given by a source pattern and modifications to it. Within the source pattern, we distin

guish a core pattern. Nodes and edges may be deleted from the source pattern, leaving a deletion pattern; 

they may be added, resulting in an addition pattern. In all, we have a four-tuple of subpatterns: 
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Je 

.. ' .... 
' . 

JD -"':--.-'--

!!I,' 

, 
, , 

:f3 

! Q :. @] 
L ..... l ,.,:' :'0: 

..... 

..' 

Figure 7: A legal GOLD operation 

for the deletion pattern, the core pattern, the source pattern, and the addition pattern, respectively. The 

subpattern relations are: 

JD < Js 

Je ::; Js 

Js ::; JA 

An example is given in figure 7. 

A new (or added element (edge or node) of an operation is an element in JA that is not in Js; a deleted 

element (edge or node) is an element in Js that is not in JD' 

The idea is to find all embeddings of the source pattern in the source instance, and, for every embedding, 

delete all deleted elements and add all added elements. However, as shown in the grandchildren example 

(figure 2), we may wish to have a common added part for several embeddings. 

To arrive at a deterministic interpretation in all cases, the following measures were taken:4 

• the core pattern allows users to disambiguate queries by themselves: extensions for two embed dings 

equal on the core pattern are merged; 

• additional rules of interpretation, amongst which is the sharing of extensions, remove all remaining 

ambiguity. 

These rules are fairly simple, leading to an intuitive and computationally feasible semantics; furthermore, 

most of the operations of GOOD are included as special cases (cf. theorem 3.12), which allows us to apply 

most of the experience from studying and using GOOD, which has a working implementation (see [18]. 

If an operation t can transform an instance I into another instance I', this will be denoted as I ~ I'. 
Operations can create new nodes, whose identities are chosen at random. It will be seen (lemma A.2) 

.. Another approach is to have a nondeterministic language, as was done in the G-Log specification language - see [27]. 
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that operations are completely deterministic up to this choice; nevertheless, we must regard the effect of 
an operation as a relation on database instances. 

Definition 2.2 For any operation t = (:fD' :fe, :fs, :f.), and instances I,I' E U, I ~ I' under the 
following conditions: 

Write I" = (N(I)UN(I'), E(I)UE(I'». I is the source instance; I' is the target instance; I" is the 
D 

addition instance. 

Let F be the set of embed dings of the source pattern into the source instance that cannot be extended 
to embeddings of the addition pattern into the source instance. 

An embedding g of the addition pattern into the addition instance is an injective extension of an I E F, 

if g includes I and maps all new pattern nodes injectively to new instance nodes. 

There must be a function,., mapping aU I E F to embeddings from :fA into I", such that 

o 

1. (new nodes to new nodes) for all I E F, ,.,U) is an injective extension of I; 

2. (merging) for all ".I, E F, if" and" are identical on :fe, they are also identical on every new 

node of :fA; 

3. (sharing) for all "," E F, if the ranges of ,.,(,,) and ,.,(,,) constitute isomorphic extensions of 
I, i. e. there is an isomorphism on I" that fixes I and maps one range to the other, then ,.,Ud and 

,.,(,,) map the nodes of :fA \:fs to the same set of nodes in I";" 

4. (no unnecessary merging or sharing) for all I,," E F, if neither merging nor sharing applies, the 

ranges of ,.,Ud and ,.,(,,) are disjoint on the new nodes of I"; 

5. (merging belore sharing) for all " E F, if (n" a, n,) is an edge between two nodes in the range 

of ,.,Ud, not both in I, then there is an " E F, equal to I, on :fe, such that for some edge 

(m"a,m,) E :lA, '1(1,)(m,) = n, and '1(h)(m,) = n,; 

6. (minimality) every new node and edge of I" is in the range of some '1(1); 

7. (deletion after addition) I' is the maximal subinstance of I" which does not contain any nodes 

or edges that some embedding from :fs to I maps a node or edge in :fs \:fD to. 

GOLD is deterministic up to the choice of neW node identities. Furthermore, the identities of existing 

nodes do not affect the outcome of operations. This property is known in literature as determinacy, and 

is universally regarded as a fundamental property of query languages. See appendix A.I for details. It 

can be formally defined as follows. 

Definition 2.3 Let R be a (two-place) relation on a set of instances. R is determinate if we have, for 

all instances I, ,1:" I 3, I., if (I" I,) is in R and I, and I3 are isomorphic, then (I3, I.) is in R if and 
only if I, and I. are isomorphic by the same isomorphism. 
o 

The ensuing definition of database transformations follows [2]. 

Definition 2.4 Let S be a finite set of node and edge labels. A database transformation over S is a 

relation on the instances over the labels in S that is 

5I.e. the mappings are not necessarily pointwise equal on these nodes. 
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o 

• determinate; 

• computable: an effective procedure exists to compute a result on every possible input instance for 
which a result is defined. 

We can now formally state our claim concerning GOLD: 

Theorem 2.1 All GOLD programs express database transformations. 
o 

In addition, GOLD operations define a result on all instances. In this respect, GOLD is different from 

its close relative, GOOD (see [19, 20]), which leaves results undefined in some cases. For details, see 

appendix A.l. 

2.3 Program syntax and semantics 

Programs are defined recursively as follows. Every operation is a program. If PI and P2 are programs, 

their sequential composition, denoted Pl;P2, is also a program. The empty program is denoted A. If pis 

a program, the iteration of p, denoted p*, is also a program. 

Nodes, once deleted, can never reappear as new nodes.6 The auxiliary relation I J} I' will denote the 
N 

property that P can transform I into I' without deleting any node in N. 

Definition 2.5 If P is a program, and n is a number, then the notation pn stands for a certain program 

determined as follows: 

• pO denotes A; 

• pI denotes P; 

• pn+! denotes pn; p for all n > O. 

o 

Definition 2.6 For all sets of nodes N, operations t, programs p, PI, P2, and instances Z, I': 

o 

I~I 
N 

I d:. I' 
N 

IP~' I' 
N 

I g}I' 
N 

N ~ N(I) 

{=> 
D 

I d:. I' II N ~ N(I)nN(I') 

{=> 3I" E U : I ~ I" II I" g I' 
D N N 

{=> 3n E IN : I ~ I' II I' l> I' 
D N N 

This four-place relation can now be used to define the effect of programs in GOLD: 7 

6Without this property, many of our observations on expressive power in section 3 become incorrect. 

1 For I:::!.. I', t can now be read either as an operation or as a program; this is hannless, since in both readings, the same 

relation is expressed. 
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Definition 2.7 For all programs P and instances I, I' : 

I !;. I' <==> I!;. I' 
D X 

where X '" N(I)nN(I') 

o 

From this definition, the following laws of equivalence between programs almost immediately follow: 

P.;(P2;P3) - (PI;P2);P3 

PI - A;PI ~ PI;A 

A* - A 
** p1 PI -

Pi;Pl = p1 =:: P1i pi := pi;pi 

Whenever a GOLD program does not define a result instance for some source instance, this is due to an 

iteration that fails to reach a fixpoint. Furthermore, GOLD programs, like operations, are determinate. 
For details, see appendix A.1. 
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3 Expressive power of GOLD 

We have seen in theorem 2.1 that GOLD programs express only (determinate) database transformations. 
In the following we will study the classes of database transformations expressible in GOLD, and we 

will study the role of various features of the GOLD operation in detail. This is done by breaking up the 

operation in parts, and imposing further syntactic constraints; by exact characterizations of the expressive 

power of the sublanguages of GOLD thus obtained, we provide some insight in the contributions of the 

features that are dropped along the way. In particular, a detailed comparison will be made between 

GOLD and its relative, GOOD. 

3.1 Constructiveness: a strong form of determinacy 

The concept of determinacy was defined in definition 2.3; a stronger notion of determinacy was introduced 

in [7] and, in (10], was named constructiveness. 

Definition 3.1 An instance transformation (Il,I2) is constructive if there is a group homomorphism 
that maps every automorphism of II to an automorphism of I, that is identical on their common nodes. 

A database transformation is constructive if it contains only constructive instance transformations. 
o 

An example of a non-constructive transformation is given in figure 8. In [7, 10], it was shown that 

a non-constructive instance transformation 

(the new part is indicated in bold) its constructive approximation 

Figure 8: A non-constructive instance transformation 

constructiveness essentially requires that new nodes are not mutually dependent (in our case, connected 

with edges) at the time they are created. In a constructive language, we can approximate non-constructive 

results by having multiple copies of the new part (as shown at the right of figure 8). Therefore, constructive 
languages are also characterized as languages unable to perform copy elimination. 

This is particularly relevant here because GOLD, unlike, for example, GOOD, can perform non-constructive 
transformations. 

3.2 Expressive power of full GOLD 

The following definitions of expressive power are used in literature. 
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Definition 3.2 A database language is a set of expressions, each of which expresses, in the context of a 

given set of instances, a database transformation (over this set). 

A database language L is (determinate) complete if for every finite set of labels S, every database 

transformation over S is expressible in L. 

It is (determinate) instance complete if every instance transformation is expressible in L, i. e., is part of 

some database transformation expressible in L. 

A database language L is constructive complete if for every finite set of labels S, every constructive 

database transformation over S is expressible in L. 

It is constructive instance complete if every constructive instance transformation is expressible in L, i. e., 

is part of some database transformation expressible in L. 
o 

To study the expressive power of GOLD, we will curtail its operation and observe how expressive power is 

affected. General GOLD can express all constructive database transformations and some non-constructive 

ones: 

Theorem 3.1 GOLD is not determinate complete, but is instance complete and constructive complete. 

o 

In essence, the fact that GOLD can contain arbitrarily large addition patterns makes it instance level 

complete; it is not fully determinate complete, because it can be shown that arbitrarily large addition 

patterns are also required to express any generic instance transformation in GOLD. Another way of 

stating this result is to say that GOLD can perform copy elimination of copies of predefined shape, or 

copies of bounded size. 

To prove the theorem, we will split it up into the lemmas 3.2, 3.3, 3.4, of which it is an immediate 

consequence. 

Lemma 3.2 There is a database transformation which is not expressible in GOLD. 
o 

The proof is given in appendix A.2. 

Lemma 3.3 Every instance transformation can be expressed in GOLD. 
o 

For a proof, see appendix A.3. 

Lemma 3.4 Every constructive database transformation can be expressed in GOLD. 
o 

Proof This immediately follows from theorem 3.1 below, which states that a sublanguage of GOLD 

expresses exactly all constructive database transformations. 

o 
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3.3 GOLD with separated operators 

We will now disallow the combination of node and edge operations, and of addition and deletion. This 

will be shown not to affect expressive power. 

Definition 3.3 A GOLD operation t = (:To, :Te, :Ts, :TA) is an (n-edge) edge addition if it has n added 

edges, and no other added or deleted elements; it is an (n-edge) edge deletion) if it has n deleted edges, 

an no other added or deleted elements; it is an (n-node) node addition if it has n added nodes, possibly 
some added edges incident to these nodes, and no other added or deleted elements. it is an (n-node) 

node deletion) if it has n deleted nodes, possibly some deleted edges incident to these nodes, and no other 

added or deleted elements. 
o 

Note that these definitions refer to syntax; a 2-edge addition can very well add 3 edges to a particular 
instance. 

Let GOLDsep be the subset of GOLD in which only node additions, node deletions, edge additions, and 

edge deletions are allowed. Thus, operations are separated into four types; hence the name. 

Lemma 3.5 GOLDsep and GOLD have equal expressive power. 
o 

The proof is given in appendix AA. 

3.4 GOLD with only single addition or deletion 

We can impose a further separation by requiring operations to have only one added or deleted node or 

edge. This restriction can be imposed independently on all four operations in GOLDsep . We will denote 
the resulting sub languages as GOLD sUbscripted with a subset of the symbols {lnd, Ina, led, lea}. For 

instance, GOLD{1nd, lea} denotes GOLD in which only node additions, I-node node deletions, 1-edge 

edge additions, and edge deletions are allowed. The following theorem says that expressive power is 

decreased if and only if this restriction is placed on node addition. This is in full agreement with the 
abovementioned observation, that constructiveness requires nodes to be dependent only on existing nodes 

at the moment of creation. 

Theorem 3.6 If GOLD X is a language as just described, then 

• it expresses exactly all database transformations expressed by GOLD, if 1na is not in X; 

• it expresses exactly all constructive database transformations, if Ina is in X. 

o 

Most cases are proved by suitable simulations of n-fold operations by means of 1-fold operations. These 

are easy to find. The technique is the same as that used in lemma 3.5: using new labels, the edges or 

nodes to be deleted or added are marked, then the actual deletion or addition takes place with a sequence 

of operations. 

We consider the additional expressiveness of n~node addition over I-node addition as an accidental prop
erty of the language. Non-constructive transformations, certainly the restricted ones expressible in GOLD, 
do not appear to be very important in practice. More interesting is the fact that when imposing the 

restriction to Ina, we still have a constructive complete language. In particular, we will define GOLD! 

to be the language GOLD{1na}' Then 
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Corollary 3.1 GOLD I is constructive complete. 
o 

This follows from theorems 3.11 and 3.12, given below. 

3.5 GOLD without core patterns 

Note that core patterns are effectively ignored except in node additions. To be precise, the following 
lemma holds. 

Lemma 3.1 Let II = (.lD,.lel,.l5>.lA) and 12 = (.lD,.le2,.ls,.l.) be GOLD operations, such that 

N(.led = N(.le2) or .l. = .ls. Then II and 12 express the same database transformation. 
o 

However, in node additions, their presence is vital: removing core patterns from the language decreases 

expressive power. 

A GOLD operation I = (.lD, .le,.ls, .lA) is a plain operation if .le = .ls. (This effectively removes the 

core pattern feature; hence the name 'plain'.) 

Let GOLDpiain be the subset of GOLD I in which only plain operations are allowed. 

Lemma 3.8 GOLDpiain cannot express all constructive database transformations, although it can ex

press all constructive instance transformations. 
o 

The proof can be obtained by analogy to the reasoning followed in [11]. Essentially, it can be shown 

that in GOLDpiain' arbitrarily many edges connecting a new node to the source pattern are required 

in order to express all constructive instance transformations. An example of a non-expressible database 

transformation is one that points out a-clusters of A-labeled nodes, where an (a-cluster' is a maximal set 

of A-nodes connected with paths of labeled a-labeled edges, and clustering is done by creating, for each 

cluster, a new A-labeled node and a-labeled edges from this node to every existing A-labeled node in the 

cluster. 

3.6 GOOD as GOLD 

Let GOLDtup be the subset of GOLDpiain in which in all node additions, the new node has no incoming 

edges, and all outgoing edges have different labels. This is node addition as it appears in GOOD. The 

name stems from the fact that in this language, node addition effectively creates instantiations of tuples 
over existing nodes, provided that we view the outgoing edges of new nodes as tuple attributes. 

Lemma 3.9 GOLDtup cannot express all constructive instance transformations. 
o 

The reasoning required for this proof appears in [10] and [11], where node creation operators are used that 

can be shown to be equivalent to node addition in GOLDplain' A non-expressible instance transformation 

is shown in figure 9. 
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Figure 9: An instance transformation that cannot be expressed in GOLDtup 

3.6.1 GOOD operations are special cases of the GOLD operator 

We can now substantiate that GOLD was obtained from GOOD by relaxing syntactic restrictions and 

adding the core pattern construct. 

Theorem 3.10 The four operations of GOLDtup are both syntactically and semantically identical to 

the operations with identical names in GOOD. 

o 

For more details, see appendix A.5. 

3.6.2 Core patterns versus abstraction 

Previous lemmas show that without an addition of some sort, GOLDtup will not be constructive complete. 
In GOLD the core pattern feature fulfills this role. In GOOD, an extra operation is used to obtain 

constructive completeness: abstraction. We will use a definition similar to that in [20, 21J. 

Definition 3.4 An abstraction is given by a tuple (.1, m, K, a, (J) in which .1 is a pattern, m is a node 

of.l, K is a node label, and a,{3 are edge labels. 
o 

To understand the semantics of abstraction, it is necessary to view outgoing edges with identical labels 

as representing a grouping of the nodes that these edges point to: 

Definition 3.5 If I is an instance, n is a node of Z I and a is an edge label, the a-set of n is the set of 

nodes m such that (n, a, m) is an edge of I. 
o 

The effect of abstractions is defined as follows. 

Definition 3.6 Given two instances I,I' and an abstraction t = (.l,m,K,a,{3), I d} I' if I' is a 
minimal superinstance of I such that all new edges in I' leave a new node in I', and for all nodes f( m) 

selected by the embeddings f of.l into I there is a K-Iabeled node with {3-edges to exactly those nodes 

of I with a-sets identical to the a-set of f(m). 
o 

An example of abstraction can be found in figure 10. The edge ex is drawn as a dashed arrow J leaving the 

node m; K and {3 are represented as an emboldened K-Iabeled node with a {3-labeled edge to m. 
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Figure 10: Abstraction: partitioning married persons according to children 

Theorem 3.11 GOLDtup with abstraction expresses exactly all constructive database transformations. 

D 

A proof can be found in, for example, [IOJ. 

The basic proposition of this report is the equivalence of abstraction and core patterns. 

Theorem 3.12 GOLDtup with abstraction and GOLD l have equal expressive power. 
D 

For a proof, it suffices to provide simulations for both directions. These are easy to find; details are in 

appendix A.6. 

Abstraction is convenient in some cases, but in general we regard core patterns as a much more intuitive 

means to achieve the same level of expressive power. They provide a grouping facility which is useful 
in many cases; obviously, the minimal set of examples in this report does not suffice to bear out the 

practical applications of core patterns. 

Abstraction was introduced partly because it provides the expressive power of a powerset operator while 

being computable in polynomial time (see [11]). From the language definition above, it will be clear that 

operations with core patterns share this advantage. For more details, see section A.1.2. 

3.6.3 Another alternative: the contraction operation 

The contraction operator is somewhat simpler to understand than abstraction. It 'merges' nodes by 

replacing them with a single new node that takes over all edges incident to any of these nodes. 

We mention it here to show yet another way of achieving constructive completeness. 

Definition 3.7 A contraction is given by a tuple (.1, n, m) where .1 is a pattern, of which nand mare 

nodes. 
D 

The effect of contractions can be defined as follows. 

Definition 3.8 Given two instances I,I' and an contraction t = (:1, n, m), I ~ I' iff I' is a minimal 
instance such that for all embeddings f of .1 in I, there is an embedding g, of.1 in I', such that 
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• for all I, I(n) is not in I', and 9,(n) is not in I; 

• for all I, 9, and I are equal except on n; 

• for all 11,'" 9,.(n) =9,,(n) if and only if !J(m) = f,(m). 

o 

Using the known GOOD operators (node addition, edge addition, node deletion, and edge deletion), we 

have algorithms to transform every abstraction operation into a program using contraction, and vice 

versa. To be precise, these programs produce programs equivalent for all instances except some that use 

some specific edge or node labels.8 

It is easy to simulate contraction by means of abstraction. The idea behind a simulation of abstraction 
with contraction is that ordinary GOOD operations can already simulate abstraction 'up to copy': too 

many 'representants' of the new nodes may be created. It is possible to relate two nodes with an edge if 
and only if they are representants of the same abstraction-created node. Contraction can then be used 

to merge the resulting clusters of nodes into single nodes. 

(A formal proof is omitted.) 

It is interesting to note that, like addition, contraction can be generalized to work on more than one 
node. Instead of a single node, larger subinstances are collapsed, specified by a pattern. This leads to 

an language equally expressive to GOLD: it can perform copy elimination for copies of bounded size. It 

is also possible to devise a full copy elimination operation, which lifts the language to full completeness, 
but we have found no such operation that naturally fits in the pattern embedding paradigm. Details have 

been omitted from this report. 

8This is unavoidable, as any simulation requires the use of (some sma.ll amount of) 'fresh' node or edge labels which are 

assumed not to occur in any of the instances the operation is applied to. When applied to instances that do contain such 
labels, the simulation and the original operation may have different effects. 
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4 Discussion and concluding remarks 

We have introduced a graphical query language for databases and hypertext environments, that can be 
used to pose queries and updates to a network structure by means of direct manipulation. 

This report was written to describe its visualization, using a basic set of examples; to provide a formal 

definition; and to expose the fundamental properties of the language regarding expressive power. There

fore, we have stripped down the language to its bare bones, and we have done very little to convince the 

reader of its practical usefulness. It will now be discussed briefly why we consider GOLD an improvement 

over existing database and hypertext query languages. 

4.1 Purpose of GOLD 

Querying in hypertext is often ill-supported, or is limited to querying for the content or attribute values 

of nodes. GOLD supports structure-based queries: it assumes that the hypertext forms a labeled graph, 

in which labels and structures recur in systematic patterns, making it useful to query for such patterns" 

In other words, the hypertext structure must form a semantic network. (We can include content-based 

querying by allowing node and edge labels to be computed dynamically from content information.) 

Many hypertexts, though not all, can be viewed as forming a semantic network in this manner. If they 

do, graphical browsing tools, that display the surroundings of the current node, are particularly useful, 

because the structure on display will be meaningful to the user. Such tools allow for a direct manipulation 

style of browsing; GOLD makes it possible to seamlessly integrate querying and browsing. 

Because of its purpose, GOLD differs from many other database query languages in several respects: 

• it is a visual language; 

• it operates on labeled graphs; 

• it transforms the database instance. 

We will discuss these differences below. 

4.2 GOLD is a visual language 

At first sight, the fact that GOLD is a visual language is its most striking feature. However, there 

are many visual query languages, and GOLD does not claim to open a radical new approach to visual 

querying. It does differ from most visual languages by the fact that it represents queries as graphs acting 

as patterns on the instance. Some languages use the same principle (GraphLog [16], GOOD [20], the 
language of Catarci et al. [13]); many others are based on forms and condition boxes (for example, QBE 

[30J and VQL [28]). 

Besides, the gap between textual and visual languages is not that big. Some textual query languages can 

easily be given visual counterparts, for example, the hypertext query languages of [4J and [9J. Generally 
speaking, it is not always possible to provide suitable visual expressions for all constructs; there is also 

a danger of cluttering the visual language with constructs and elements, which makes expressions large 
and hard to understand. A possible solution is a hybridic language; see, for example, the object SQL 

presented in [5J. GOLD was designed to be fully graphical, and hence, has a very simple syntax that is 

very easy to visualize. Still, many queries in textual languages are directly expressible GOLD queries. 

(See however the section on extensions, page 21.) 

9 A straightforward. ITlodel of a hypertext as a GOLD instance does not capture anything of the content of hypertext 

nodes. Content can be captured with extra nodes, or we can extend GOLD for this purpose (cf. section 4.5). 
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Conversely, it is a trivial exercise to design textual versions of GOLD;'O figure 11 gives example textual 
representations of the marriage query of figure 5. 

CREATE Karriage m, m partner PI, m partner PI, m child Pa 

DELETE PI married-to P2, PI has-child Pa, P2 has-child Pa 

FROM Person PI, P2 

WHERE PI married-to P2, PI has-child Pa, P2 has-child Pa 

GROUP BY PI, P2 

To aid legibility, deleted elements are listed twice. 

Figure 11: The marriage restructuring query, presented textually 

Observe that in the textual representation, the pattern formed by the nodes and edges is much harder to 
detect. It is for patterns like this one, with few nodes and a moderate number of edges between them, 

that the graph-based style of GOLD is most useful. If patterns consist only of paths, regular expressions 
are an exquisite formalism to specify them textually. If there are too many nodes or edges, the graph 

will be too large or too dense to be transparent for the user. 

4.3 GOLD operates on graphs 

GOLD uses labeled graphs as its data model. In a hypertext environment, nodes and links are modelled 
directly, capturing the end-user's view of the information in a simple and intuitive fashion. 

This simplicity is deliberate: it makes the language easy to understand and easy to use. A simple graph
based model lends itself particularly well for a graphical interface. As mentioned in the introduction, 
graphical browsing aids are common in hypertext systems; graphical querying aids are similarly useful. 

GOLD can easily be adapted to operate on more complex data models. It remains to be seen to what 
extent the language will remain easy to understand and to use. ll 

As a result, much of the additional structure common in hypertext cannot be expressed directly; for 

example, we do not support a notion of composite nodes or context, contrary to some hypertext models 
[12, 17, 22, 26]; we have only one-to-one links; and we do not explicitly model node anchors, which more 

or less discards hypertexts in which nodes are large documents. For some applications, having direct 

support for such features may outweigh the added complexity it brings to the language. It is yet to be 
studied how to provide such support in GOLD. 

In a general database context, the simplicity of the GOLD data model is even more striking. In comparison 
to NIAM [29], GOLD can model only binary relations between objects; compared to IFO [1] or the IQL 

data model [2], there is no notion of subclassing, nor is there a tuple or set construct to form complex 
values. As an example of a model containing all these features, consider PSM [25], which is basically 

NIAM extended with the features of IFO. By necessity, the visualization of database schemes in PSM 
employs far more graphical conventions than needed in GOLD. Drawing instances or queries in the same 

fashion would require even more conventions and use up far more screen real estate. Not surprisingly, 

the PSM query language proposed in [24] is textual. 

We may need some extensions to GOLD (see section 4.5), hut generally consider its simplicity a virtue, 

not a handicap. Features such as non-binary relations, composite nodes, and tuple or set aggregation can 

be represented by introducing extra nodes, so there is no real need to support them directly. 

101. e., apart from the literal mathematical notation, which is far too illegible to be of practical use. 

11 The same question can be asked for the models themselves. For example, end users can be trusted not to think of 
infonnation in tenns of sets and tuples. 
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4.4 GOLD transforms the database instance 

In the relational database model, a database instance consists of tables (relations). A query, applied to 
an instance, will produce a relation. 

Similarly, queries in object-based languages mostly yield sets of objects or sets of values. Gram [3, 4], a 
hypertext query language which operates on labeled graphs, yielding sets of paths. In [4], both an algebra 

version and an SQL version of Gram are presented that remain very close to their relational and object 

based counterparts. 

By contrast, GOLD queries yield a transformed instance. (In this respect, GOLD is identical to GOOD 
[20).) By expressing queries explicitly as modifications to the instance, browsing and using query results 

no longer requires special representations or tools. Modifications made for queries will normally be 

'virtual'; they won't permanently change the database, but will rather provide a temporary modification 

or view. Updates can be made by telling the system to record this temporary instance as the new one. 

Compare this to Gram queries, which yield sets of paths in the instance. Sets of paths are not a very 

useful concept for the user, and it is unclear how to present them. In [4], the authors propose two ways 

of using Gram. Firstly, they let Gram queries define virtual links, one link for every pair of nodes in a 

path yielded by the query. It is more natural to let the creation of the links itself be specified as part of 

the query. This is what happens in a GOLD edge addition. Secondly, they use Gram queries to delimit 

the scope of navigation, by restricting navigation to the nodes and links present in a query result. This 

can be expressed more naturally with GOLD deletions. Not only is the GOLD approach more natural, 

it is also much more flexible, allowing the creation and deletion of virtual edges and nodes in ways that 

are hard if not impossible to mimic with Gram. 

These objections hold for all languages of this type, for example, the hypertext query language of [9], 

and versions of object SQL. 

Much closer to GOLD is the GraphLog language [14, 15, 16). In fact, our edge additions are almost 

identical to the corresponding GraphLog operations. The basic difference remains that GraphLog queries 
express selections of nodes and edges, whereas GOLD expresses instance transformations, and as a result 

is more powerful. This is mainly due to the support of (virtual) node creation, which has important 

practical advantages. 12 

• First of all, the user is given more control over how to express query results. For example, the user 

may be interested in a certain set of paths, but, instead of creating virtual links between existing 

nodes, may wish to create one new node with links to the endpoints of those paths. 

• Secondly, a much wider range of queries becomes available, because the structure of the result can 

be more complex. For example, in the persons example used in the introduction, we may wish to 

provide a 'tour of generations', creating one node for each generation, with 'next' links in between 
and 'has as member' links to persons. Queries such as these can easily be expressed in GOLD. 

Node creation allows the user to keep the original hypertext separated from the virtual structure 
defined on it for navigational purposes; this can do much to improve clarity.13 

• Lastly, node creation can be essential in expressing intermediate results of a complex query. Some 

queries, even some that do not yield any new nodes, can only be expressed in GOLD using inter

mediate nodes. Apart from that, intermediate nodes are simply convenient in many situations. In 

effect, they bring the power of non-binary relations and nested values within a purely graph-based 

model. When working in such a model, this is an elegant way to obtain a powerful querying vehicle. 

Like GraphLog and GOLD, the visual query language in [13) expresses queries as graphs that effectively 

12GraphLog makes up for this to some extent by means of the blob. a one-to-many edge, and by the facility to contract 

existing nodes. 

13Apart from that, if obeyed strictly, this rule has implementational advantages - it avoids having to put virtual link 
anchors inside existing nodes. 
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act as patterns on the instance. Its queries express selections, and result nodes are created to point out 

the results of queries. However, we prefer a direct specification of instance transformations as occurring 
in GOLD. Besides, the language has some limitations that make it weaker than GOLD. 

4.5 Some sugaring is necessary 

The power of GOLD is not obtained at the expense of simplicity. We have stressed that GOLD is a 

language with a very simple syntax and, for most expressions, a straightforward semantics. This does 
not necessarily mean that all GOLD programs are easy to understand. In fact, the language as presented 

here is a little oversimplified, something we did to bring out the fundamental properties without being 

distracted by non-essential features. The language will only be truly simple if queries in similar languages, 

such as GraphLog and Gram, look at least as easy when expressed in GOLD. 

This is not always the case, basically for two reasons. One is the compactness of the GOLD operation, 

stemming from the fact that we allow non-injective embeddings, we do not create nodes that already 

exist, and we perform merging and sharing of new nodes, all in one operation. The interaction of these 

features is not very complicated for simple operations, but it is possible to write operations in which they 

do interact in a complicated way (cf. the marriage example, figure 5 on page 5. Especially the first two 
features are hardly used in practice. For this reason, we are considering to introduce injective embeddings 

and forced node addition, maybe by means of extra syntactic marking. 

The second reason why GOLD as presented here can be awkward to use is that some fairly trivial 

manipulations take long sequences of operations, which makes it hard to catch the general intention of 

programs at first glance.14 Typical tasks are forcing injective embeddings, forcing addition of nodes in 
the presence of similar ones, and simulating negation in patterns; these are all straightforward to simulate 

with few operations, but the resulting programs look pretty obscure. To a lesser extent, this also holds 

for path walking operations, which require iterations - unfortunately, not all iterations are as concise as 

the ancestor computation in figure 6, page 6. Some of this is remedied by marking nodes as suggested in 
the previous paragraph; negation and path walking are best supported by allowing in operations regular 

expressions with negation to be used in the place of plain edge labels. GraphLog and textual languages 
[4, 9J also have this feature. 

Another insufficiency is in our lack of support for plain values, such as integers or strings. Practice 

demands at least the presence of a simple way to indicate (integer or string) attribute values to nodes, 

and to indicate common comparisons and computations on them in operations. A remedy is to allow the 

labeling of instance nodes with attribute fields, and the labeling of pattern nodes with expressions over 

attribute fields. 

These extensions do not affect the observations on expressive power made in section 3. The suggestion 

to make node addition forced does not affect the range of manipulations that can be performed; neither 

do the other extensions, which all concern pattern matching, not the subsequent manipulation. 

It is easy to come with new extensions and formally define them; the difficulty lies in finding visualizations 

that keep expressions easy to use. In particular, expr~ssions that employ few features must remain simple 

enough to be immediately clear for the novice user. 

4.6 GOLD as compared to GOOD 

In the two previous sections, we compared GOLD to similar languages, and proposed some extensions to 

improve its practicality. The GOOD model and language [20J did not occur in that discussion because 

it is like GOLD in every aspect mentioned. We will now summarize the differences between the two 
languages. 

14The proofs in section A.5 are ample evidence. 
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In GOLD, GOOD's operations are generalized to one general operation. Thanks to the greatly relaxed 
syntax that results, users can directly express many queries which take several operations in GOOD. In the 
previous section, other ways of achieving this were mentioned; similar extensions are actually implemented 

in the existing GOOD implementation [18], which is based on the syntax extensions and sugarings defined 

in the report [6].15 The core pattern, which allows users to control the way in which nodes are added, 

further extends the range of directly expressible queries. We expect this will greatly improve ease of use. 

While this practical benefit was the main reason for their introduction, core patterns also remove the 

need for the abstraction operator. Furthermore, the possibility of adding multiple, interconnected nodes 
at once lifts expressive power to above that of GOOD and other constructive languages. More details are 

given in the appendix, section A.5. 

Finally, there are minor differences in the data model. GOOD distinguishes between printable and 
nonprintable nodes, without providing any means of dealing with printable values. It also distinguishes 
between nonfunctional and functional edges; we may include the specification of this constraint and others 

in some version of GOLD. 

Further, GOLD has no notion of database scheme;'· new node and edge labels can be added on the fly. 

In conclusion, GOLD is more compact and flexible than GOOD, while maintaining its benefits. We have 

taken care to design the language as a superset of GOOD. With the extensions mentioned above, it will 

largely be a superset of other languages as well, GraphLog in particular. 

4.7 A system based on GOLD 

Obviously, GOLD can only be useful with a smart graphical interface. The graphical representations of 

database instances and programs used in this report simply run off the screen for nontrivial examples. 

The interface will rely on techniques to selectively display instances and programs, and to aid in the 
composition of queries. Also important is a smooth integration between querying and navigation. The 

GOOD implementation (cf. [18]) proves that such an interface is practically feasible. 

In conclusion, we regard GOLD as a solid basis for a graphical query interface. In comparison to similar 

languages} its power} compactness and flexibility are substantial improvements. 

Acknowledgement 

The work described in this report has greatly benefited from discussions with Jan Paredaens, Marc 

Andries, and Jan Ridders. 
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A Proofs of theorems 

In this appendix, we prove some of the theorems appearing in the report. In section A.1, the correctness 
of GOLD is established, that is, the property that GOLD programs express only determinate database 
transformations. 

In further sections, several theorems are proved from section 3, co~cerning the expressive power of sub
languages of GOLD. 

A.I Correctness of GOLD 

GOLD is designed as an imperative database programming language. We use a well-known correctness 

criterion for such languages, known as determinacy: the property that programs are deterministic up to 
the choice of new node identities. 

This appendix discusses this notion in some detail, and proves that GOLD is indeed determinate (theo
rem 2.1). In the first section, we discuss some subtleties concerning the definition of determinacy; in the 

second section, we prove determinacy of single operations; in the third section, we generalize this result 

to programs. 

A.L1 Determinacy: defining correctness of operations 

In GOLD, the identities of nodes are inaccessible to the user. In the pictorial representation of instances 

(for example, figure 1), node identities are not given explicitly; to be precise, the picture represents some 
instance out of an isomorphism class, without specifying which one exactly. Likewise, the language cannot 
use node identifiers directly; all it has is patterns, which means that node identities can be used only in 

equality tests. 

This property of database languages is known as genericity; it arose from the desire to describe databases 
as structural descriptions of objects that may have an existence apart from this description. For instance, 

if GOLD is used as a hypertext language, and nodes are hypertext nodes, then these hypertext nodes exist 
apart from their status as labeled points in a GOLD database instance: they have contents, appearance, 

and possibly a certain behavior, not all of which is captured in the instance description, and they can be 

accessed and modified by other programs than the GOLD query processor alone. 

Retaining genericity, we want database transformations to be deterministic, up to the choice of new node 

identities. 

This is the property known as determinacy, defined in definition 2.3 on page 8. 

Note that determinacy places an effective restriction on the possible instances resulting from a given 

instance. This can be seen by taking, in the definition, II = I2 and I3 = I 4. Hence, the following 
definition is meaningful. 

Definition A.1 An instance transformation is a pair of instances that is part of a database transforma

tion. 
o 

For example, if I is an instance consisting of two nodes labeled A, II is an instance consisting of one 

of these, and I" is an instance consisting of one isolated A-node not in I, then (I,IJI) is an instance 

transformation, whereas (I, I') is not. 
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These examples also serve to point out that determinacy is a stronger notion than determinism up to 
isomorphism, a notion which could be defined as follows. 

Definition A.2 Let S be a set of labels, let U be the set of instances over S, and let R be a relation on 

U. Then R"', pronounced R modulo isomorphism, is the relation on the isomorphism classes of U, given 

by 

[I]", R'" [I']", = I R I' 
D 

for all instances I, I' E U. 

R is said to be deterministic modulo isomorphism if Rt.!! is a partial function. 
o 

We will state without proof the following fact. 

Proposition A.I All determinate relations are deterministic up to isomorphism. The reverse does not 

hold in general; it does hold, however, for all relations that relate only instances with disjoint sets of 

nodes. 
o 

A.1.2 Operations are determinate 

Lemma A.2 Every GOLD operation, considered on instances over labels in a finite set S, expresses a 

database transformation over S. 
o 

As explained in the text, this means that we have an effective restriction on the range of possible instance 
transformations. To be precise, we have 

Corollary A.I With the semantics defined in the text, it holds that between any two instances that 

may result from the same operation applied to the same source instance, there is an isomorphism that 
fixes all nodes remaining from the original instance. 
D 

In this section, we will prove lemma A.2 in detail. 

Definition 2.2 on page 8 assigns a semantics to all GOLD operations: for all operations t, it defines as 

its effect a relation on the universe of instances, by defining for all pair of instances I, I' whether or not 

I ,b I' holds. It must be proved that, for all t, when this relation is restricted to all instances over a 
finite set of labels S, it is computable and determinate. 

As to computability, consider the following program. Its inputs are an arbitrary GOLD operation, 

t = (.JD1.JC,.JS,.JA), and an arbitrary GOLD instance, Ij its output is an instance, I'. 

F := 0; I' := I; 

for all embeddings f of ;75 in I 
do 

if f cannot be extended to an embedding of ;7. in I 

then add f to F 
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fi 
od 
C* F is as in definition 2.2 *) 
for all I in F 
do 

if some previous I' in F is equal to I on Jc 
then 

NJ := NJ'; 
I : = I' on all nodes not in I 

else 
NJ := for all nodes m in N(JA) , N(Js) a copy, c(m) 

fi; 

9 := IUc; 

for all node. m in NJ 
do 

od 

for all edges (nl, a, n2) where m = nl or m = n2 

do 
if not present, add to I' the edge (g(nJ), n, g(n2) 

od 

for all embedding. I of Js in I 
if for some previous /' in F, between the extensions spanned by 

NJ and NJ, with incident edges and node. 

there is an isomorphism that fixes I 

then 

fi 

od 

remove from III N, with all incident edges 

.et I equal to !' on all new nodes 

Co each embedding I has now been modified to ~(/) 

for an ~ .uch that the definition is met *) 
(* I' nov contains the addition instance, I" *) 

for all embeddings I of Js in I 
do 

remove all deleted node. with incident edge. and all deleted edge. 
od 

The running time of this program is best split in two: the time required to find the embeddings, and the 
time spent on rest of the computation. The latter is linearly dependent on the number of embeddings 

found; the former, in a naive approach, requires O(nm), where n is the number of instance nodes and m 

is the number of pattern nodes. Hence, the algorithm is polynomial in the instance size. Obviously, nm 

is unacceptable in practice, but we will usually have dense instances, small and dense patterns, and a 

number of embeddings roughly proportional to the size of the instance, rather than a higher polynomial. 
With existing fast pattern matching techniques, we may be able to have linear running time or better. 17 

Lemma A.3 This program always yields an instance I'i for that instance, I ~ I' holds. 

D 

Proof The lemma obviously holds if we may assume that before the last loop, I' always contains the 

addition instance I" = IuI' for some I' for which I ~ I'. 

To prove that this is the case, it is sufficient to prove the claim that the embed dings f are modified to 

~(f) for a certain choice of ~ such that the six criteria posed in the definition (def. 2.2, p. 8) are all met. 

17 Further study is in order before we can make any more detailed predictions about expected running time. 

25 



This will be left as an exercise to the reader. 

o 
The second step is to prove that operations are determinate. This will be done in two steps (lem

mas A.4,A.5). 

Lemma A.4 Given instances 71,I2,I3,74 with an isomorphism i from II to I 2, a transformation t such 

that II ='> I a, and an isomorphism i' between Ia and I. which agrees with i on the common nodes of II 

and Ia and the common nodes of I2 and I., I2 ='> I. holds. 
o 

Figure 12: Going from isomorphism to transformation 

Proof Assume such III., t, i, and i'. Take F to be the set of embeddings of :fs in II that have no 

extension to an embedding of :fA in II, and F' identically for I 2. Take I"I = IIUIa and I"2 = I 2UI •. 

Note that F' = {i 0 f I f E F}, and that iUi' is an isomorphism from I"I to I"2. 

Take an 'I that maps all f in F to embeddings of :fA to I" I such that the six criteria of definition 2.2 are 

met. Take 'I' = (iUi') 0 'I 0 (iUi,)-l Then, 'I' maps all f in F to embeddings of :fA to I"2 such that the 

six criteria of the definition 2.2 are met. This is left for the reader to verify. 

Since 7"2 is the addition instance LaU'I4, where 74 is, as required, 7"2 minus all deleted nodes and edges, 
t 

I2 :} I. must hold. 

o 

Lemma A.5 Given instances I 1,I2 ,I3 ,I4 with an isomorphism i from II to I21 and a transformation t 

such that II ='> Ia and I2 ='> I., there exists an isomorphism between I3 and I. which agrees with i on 

the common nodes of I I and I3 and the common nodes of I2 and I •. 

o 

Figure 13: Going from transformation to isomorphism 

This isomorphism can be found as follows: 
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• take i; 

• delete all pairs involving nodes deleted by t; 

• choose an embedding extension '1 from II to I3 and '1' from I2 to I 4 ; 

• choose a set of source pattern embeddings I into II such that all new nodes of I3 are in the range 
of exactly one extension '1(1); 

• for all these embeddings I and added pattern nodes m, add the pair ('I(/)(m), 'I'(i ol)(m)) to the 
isomorphism. 

It is quite straightforward to show that this construction is possible and does indeed yield an isomorphism 

i' which agrees with i on their common nodes. 

This will now be described in more detail. 

Assume four instances II, I 2, Is, I4 and an operation t for which II d} Is and I d} I 4. 

Take I"I = II UI3 and I", = IuI •. 

Take FI and F, as the set of embed dings of Js in II and I" respectively, that can not be extended to 

embeddings of JA in the same instance. 

Let ~ be defined on FI and on F, as the relation 

" ~" $=> II restricted to N(Jc) = " restricted to N(Jc) 

" 
(1) 

Note that F, = {i 0 I I I E Fd and that for all ",,, E F, " ~ " iff i 0 " ~ i 0 f,. 

Consider functions 'II : F -> Emb(JA,I"t) and 'I' : F -> Emb(JA,I",) for which, mutatis mutandis, 
the conditions posed in the definition hold. 

For all I E F, '11(/) and '1,(i 0 J) are equal on the nodes of N(.7s), and injective on the nodes in 
N(JA)\N(Js); hence, there is a bijection from the range of '11(/) to that of '1,(/) that maps, for all 

mE N(JA)' '11(/)(m) to '11 (/)(m). This bijection will be denoted as hI· 

Lemma A.6 For every I E F, h, is an embedding from I"I restricted to the range of '11(/) to I", 

restricted to the range of 'I,(i 0 I). 
o 

Proof For all I E F, the following holds. 

Since '11 (/) and 'I, (I) are both embed dings, all nodes n in the range of 'II (/) have the same node label 

as h,(n). 

For an arbitrary edge ofI"I, (nl,a,n,) with nl and n, in the range of '11(/), if it is an edge of II, then 
(i(nl)' a, i(n,)) is in I", which is a superinstance of I,; ifit is not in II, then, by condition 6, there must 

be some I' E FI,ml,m, E N(JA) such that (ml,a,m,) E E(JA) and 'II (/')(ml) = nl,'1I(/')(m,) = n,. 

If ml, m, E N(I), then, by condition 1, 'II(/')(md = nl = h,(ntJ and 'II(/')(m,) = n, = h,(n,), so 
(h,(nt), a, h,(n,)) is an edge of I",; ifnot, then, by 5, w.l.o.g. it may be assumed that I ~ 1', and hence, 
for both nl and n" '1,(i 0 I')(n;) = h,(n;), which follows from 1 if n; E N(Js), and from 2 otherwise. 

Consequently, (h,(nl),a,h,(n,)) = ('1,(i 0 I')(md,a, 'I,(i 0 I')(m,)) is an edge of I",. 

o 
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Lemma A.7 For all f E F, h,! is an embedding. 
o 

Proof Reversing the roles of I"1 and Z"2 in the previolls definitions, another bijection hj is obtained 

that is easily seen to be equal to h,! for every f E F. Apply lemma A.6, mutatis mutandis, to hj. 

o 

Consider a maximal set T of embed dings f E F that contains only embed dings with disjoint ranges: 

Since'" is an equivalence relation, such a T exists. 

Lemma A.S For all different 11, h E T, no new node is in the domain of both h hand h". 
o 

Proof An immediate consequence of the definition. 

o 

Lemma A.9 For all different 11, hE T, no new node is in the range of both h" and h". 
o 

Proof Again, reverse the roles of II/I and 7"2, to show that the previous lemma applies to h J 1 . 

o 

(2) 

Combining these lemmas, and the fact that all h J fix the old nodes, it follows that there exists a bijection 

h from a subset of N(II/d to a subset of N(II/2), defined by 

h D U hJ 
JET 

Let i' be the bijection defined as 

i' = hUidN(I,) 
D 

where idN(I,) is the identity function on N(Id. Then: 

Lemma A.10 i' is an isomorphism from II/! to II/2 that on N(Id is equal to i, and whose inverse is 

equal to ;' on N(I2 ). 

o 

Proof By conditions 6, 2, and 3, all new nodes of N(II/d must be in the domain of hJ for some f E T; 

similarly, all new nodes of N(II/ 2) must be in the domain of hI' for some f E T. By 6, 2, 3, and 5, all 

new edges in I"1 must run between two nodes in the same hJ for some f E T; similarly, all new edges 

in 7"2 run between two nodes in the range of the same hI for some f E T. By lemmas A.6-A.9, h is 

a bijection which is an embedding in both directions. By construction of the hI, h agrees with i on all 

nodes of II and Z2; the lemma follows. 
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o 

We can now prove lemma A.5. 

D = {f(m) I f E Emb(Js,I2) 1\ mE N(Js)\N(JD)} 

Since h is the identity on D, from lemma A.lO it follows that h restricted to the nodes not in D is an 

isomorphism between I3 and I. that fixes all original nodes. 

o 
From lemmas A.3, AA, and A.5, the main lemma, A.2, immediately follows. 

A.1.3 Correctness of programs 

We must now generalize these results to programs, and obtain theorem A.13. 

From lemma A.3, we know that all GOLD operations yield results on all instances. For programs in 

general, this is not the case. This is due to the unbounded iteration present in the language. It is well 

known that languages need this possibility of infinite looping in order to achieve Turing-completeness; 
since we want GOLD, a general graph manipulation language, to be Turing-complete, restricting the 

absence of results to the case of unbounded looping is in a sense the best we can do. 

Definition A.3 Let p be a program and n be a number. The expansion of p up to n, denoted eXn(p), 

is inductively defined to be the following program: 

o 

• A, if n = 0 or p can be written as A, using the given laws of equivalence (cf. equations 1 on page 10) 

if necessary; 

• t; eXn _l(Q), if p can be written as tj q again using the given laws of equivalence as necessary. 

Note that all programs fall in exactly one category; consequently, every program has exactly one expansion 

up to n for each n. Now we can state, without proof, an obvious property of iteration: 

Lemma A.ll For all instances I,I', and programs p, if I J} I', then there is an n E IN such that 

I ,,~p) I'. 

o 

Equally obvious is the following: 

Lemma A.12 All GOLD programs express computable relations. 
o 

To prove theorem 2.1, we further need to establish 

Lemma A.13 All GOLD programs express determinate relations. 
o 
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~I3 

'/ : . '. 
t . 
~~ 

I3 

Figure 14: Going from program to isomorphism 

Proof The single operation is determinate by lemma A.2. From lemma A.l1, it follows that we only 

need to consider programs without iteration. All such programs are all determinate: trivially so if their 
length is 0 or 1. If their length is n > 1, they can be written as p; q, where p and q are both shorter than 
n. 

Now consider instances III I 2J L3, 1"4 with an isomorphism i from II to I2 and such that II ~ I 3. We are 

to prove that I2 ~ I. iff there is an isomorphism i' from I3 to I. which agrees with i on their common 

nodes. Let X be the set of nodes common to II and I 3. From definition 2.7, we observe that II ~ I3 

holds iff there is an instance I5 such that II J> I5 and I5 ~ I 3. For this Is, we have II J> I 5, I5 ~ I 3, 
X X 

and X ~ N(Is). 

IfI2 ~ I., there is an analogous instance I6 between I2 and I 6. Assuming that p and q are determinate, 
we can construct an isomorphism from Is to 76 that agrees with i on their common nodes, and from that 

isomorphism, an isomorphism i' that agrees with it, and, thanks to the fact that X ~ N(I5), agrees with 
i. 

On the other hand, if there is an isomorphism i' from I3 to I. which agrees with i on all common nodes, 
then it is easy to construct an I6 such that there is a suitable isomorphism from Is to I 6. 

t 
Il~ t 

Is~ 

", if 
t I2 .. -. 

t 
". 
"~ 1"3 

Figure 15: Going from isomorphism to program 

o 

From lemmas A.12, A.13, theorem 2.1 follows immediately. 

A.2 A database transformation not expressible in GOLD 

In this section, we prove lemma3.2: there is a database transformation which is not expressible in GOLD. 
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Proof Consider an infinite sequence of nodes ai, a" ... , all labeled A, two nodes blo b, labeled B, 
an infinite sequence of nodes CI,C" ... , all labeled C, and an edge label a. For all n E IN, define the 
instances 

D 

I'n = 
D 

{(a"a,a'+1) 11::; i < 2n} 

) 

( {bl,b"CI,''''Cn}, 

{ (c" a, c(' mod 'n )+1) 11 ::; i < 2n} U {(c" a, b(, mod ')+1) 11 ::; i < 2n} 

For an illustration, see figure 16. Note that there exists a database transformation, say R, which contains 

I3 I'3 

Figure 16: Instances I3 and I'3 constructed in the non-completeness proof. 

(In,X'n) for all n E IN. Suppose that any such transformation is expressed by some GOLD program, p. 

Then let k be some prime number greater than the largest number of added nodes in all operations used 

in p. Supposedly, Ik !} I' k. Some operation t of p must add one of the new nodes in I' k; we will show 
that either t or some previous operation must contain at least 2k added nodes, thereby contradicting the 

existence of p. This proves that R is not expressible in GOLD. 

!fIk,!} I' k, then alsoIk ~ I' k, where q is the stepwise iteration expansion eXp(l) (cf. definition A.3, page 29, 

for some suitable I E IN. 

The automorphisms on instances also define a permutation group on the subsets of their nodes: if I" is 

an instance with some automorphism a, a acts on sets of nodes in I" as a(X) = {a(x) I x EX}. 

Consider the instance properties PI, P, defined as follows: for any instance I", PI (I") holds if the nodes 

bl , b, are in I", and some automorphism of I" swaps bl , b,; for any instance I", P,(I") holds if PI (I") 

and there is a subset X of nodes in I", such that, if 

Y :0 
D 

YI = 
D 

Y, = 
D 

{a(X) I a any automorphism of I"} 

{ZEYlbIEZ} 

Y \ YI 

then both YI and Y, have k elements, and all bl , b, swapping automorphisms of I" fully cycle the elements 

ofY. (Note that all X E YI contain bl , while all X E Y, contain b,.) 

We will prove that for all instances II,I, and transformations t, if we have P,(I,) but only PI(IJ), and 

I ob I', then t must have at least 2k added nodes. There is at least one such t in q, since P,{I,) holds 

(take X = {bloC}, where C is a new node), but P,(IJ) does not hold; further, PI{IJ) and PI{I,) hold, 

hence PI also holds for all intermediate instances. 
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Consider instances II,I, and transformations t, such that P,(I2) and PI(I!) hold, but not P,(I!); 

further, I =1> I'. 

P2(I2) holds, so we may assume X, Y, Y I , Y2 as defined above. 

Suppose that one of the sets in Y consists of nodes in II. P2(I,) holds, 80 some bl , b2 swapping auto

morphism a2 ofI2 cycles all elements ofY; theorem 2.1 implies that there is an automorphism al that is 
equal to a2 on their common nodes. This implies that all elements of Yare subsets of nodes in II, and 

P2(Id holds, contradicting our initial assumption. 

Therefore, some X E Y contains nodes not in IIi hence, t must be a node addition; hence, II must be a 

subinstance of I 2, and all automorphisms of II are automorphisms of I2 restricted to the nodes of II. 

Let Yn,w be the set consisting of all X E Y restricted to the new nodes in I,; let Yold be the set consisting 

of all X E Y restricted to nodes of I, also in II' 

Consider the set A of automorphisms of I, that swap bl , b,. They all cycle Y with period 2k, mapping 

new nodes only to new nodes, old nodes only to old nodes. Since, by assumption, P,(I!) does not hold, 

Yold must be cycled with period 2. Hence, Yn,w must be cycled with period 2k. Hence, there must be at 

least 2k new nodes. 

How does t add these nodes? Choose an embedding extension ry which meets the criteria imposed in the 

definition of operation semantics (definition 2.2). All new nodes are in the range of some ry(f) for some, 

possibly the same, source pattern embedding f. Pick such an embedding f. The range of f (a set of 

nodes in I!) is cycled by the automorphisms in A. None of these automorphisms can cycle any subset 

of the range of f with period 2k, for this would allow us to prove that P,(I!) holds, contradicting the 
assumption that it doesn't. As a consequence, all new nodes must be in the ranges of the extension ry(f) 

for the same source pattern embedding f. Therefore, t must contain at least 2k added nodes. 

o 

A.3 Every instance transformation is expressible in GOLD 

In this section, we prove lemma 3.3: every (determinate) instance transformation is expressible in GOLD. 

Proof Consider an instance transformation (I, I'). Consider an edge label <> not used in I or I'. Let 

Ia be the instance equal to I plus additional edges (n, <>, m) for all pairs of different nodes n, m in I. 

Let I' a be the instance equal to I plus additional edges (n, <>, n) for all nodes n in I. Then, if 

(I,I,I,Ia) 

D 

(I,I/alI/olI/a) 

we obviously have 

I '!:$,:l 'La 

Note that the embeddings of Ia onto itself are exactly the automorphisms of I; the identity in particular 

is an embedding. If all nodes of I' are in I, then, with 

t3 = (I' \I,Ia,Ia,I'UIa) 

we have 

Ia ~I' 

If not, take a node label A not used in I or I', take an A-labeled node n, take 

II = ({n},0) 
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IA = I'UII 

Io = (0,0) 

t3 = (I'\I,IQ,IQ,IA) 

t, = (Io,II,II,II) 

and we have 

Ia t~:, I' 

This is obvious from the fact that the identity is a source pattern embedding which, due to the A-labeled 
node, cannot be extended to an addition pattern embedding into I; this identity clearly has the identity 
on IA as an injective extension. Because all embeddings are automorphisms and (I,I') is an instance 
transformation, no other nodes than those of IA are present in the result of t3. This also guarantees that 

the deletion step of t3 removes exactly those nodes and edges from I that lack in I'. The result is I', or, 
in the second case, I with an extra A-labeled node; this node exactly is removed by t,. 

o 

A.4 Simulating combined operations with separate ones 

In this section, we prove lemma 3.2: GOLD and GOLDsep are equally expressive. 

Proof As all GOLDsep programs are GOLD programs, all we need to do is prove that all GOLD 
programs can be simulated with sequences of node additions, node deletions, edge additions, and edge 

additions. Replace all non-GOLDsep operations t = (.JD'.JC'.JS'.J.) with a sequence of GOLDsep 
operations t' constructed as follows. 

For every edge label a used in a deleted edge, choose a new edge label, (l'-. Chose one more new special 

edge label, -. 

Let .J) be the addition pattern restricted to the nodes of .Js. For every edge label a used in an added 
edge of .:7/, choose a new edge label, a+. Let .:JA" be ..1/ where all added edges labeled 0' are replaced 

with edges labeled a+. Let .J)" be the union of .J/ and .J/', i. e., with both the a-edges and the 
a+-edges. Let .J/III be .J. without all added edges of .J/. 

Let .JD' be .Js where all deleted nodes carry an extra edge to themselves, labeled -, and where for all 
deleted edges labeled a, a new edge is placed alongside labeled a-. Let .JD" be the union of .JD' and 

.J/', i. e. it is .Js with all additional edges a+, a-, and -. Let .JDIII be .Js with all deleted edges 
removed that run between non-deleted nodes. Finally, let .J; be .JD" from which all deleted nodes of 

.Js in t have been removed, and let .JD"" be .Js' from which all marking edges a+; a-, - have been 
removed. 

tl (.Js, .Jc, .Js, .J/') 

t2 = (.Js,.Jc, .Js, .JD') 

t3 (.Js, .Jc, .JSI .J/
III

) 

t, = (:1s 1 Jc,.:J/', 3/") 

ts (.J. III.J. .J" J ") D , c, DID 

ts = (J "".J. J' J ") D 1 C, S, D 

Here, h indicates the edges to be added; t2 indicates the edges and nodes to be deleted; t3 performs the 

node addition; t, adds the edges not added by t3; ts deletes the nodes marked for deletion; ts deletes 
the edges marked for deletion, and removes all marking edges. An example is given in figure 17; in that 

example, the operations t l , t4 and ts are trivial and have been omitted. It is easy to see that tf behaves 
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t6 

Figure 17: Construction example: separated operations for the marriage example 

identically to t on all instances in which none of the new labels a+, a-, - occur. Therefore, every 
database transformation over some set of labels S can be simulated in this fashion, provided that the 
new labels are chosen outside of S.18 

o 

A.S GOOD operations are subsumed in GOLD 

In this section, we will show that, except abstraction, the operations of GOOD are those of GOLDtup' 

This was stated in lemma 3.10. 

Apart from notational differences between GOLDtup and GOOD, there is one details that needs to be 

dealt with: the fact that edges in GOOD can be functional. To be precise, an edge label in GOOD 

is either functional or non-functional, and it is prohibited for instances to have a node from which two 
edges leave with the same functional edge label. As a result, edge additions in GOOD can produce results 

that are not instances because they violate this functionality criterion. In that case, the result is left 
undefined. GOLDtu does define a result in such cases. A similar situation holds for node addition: in 

GOOD, it is required that the edges leaving the new node are functional edges. As a result, node addition 

in GOLDtup applies to more cases than in GOOD: those cases in which an edge departing from the new 

node violates the functionality criterion in the instance to which the operation is applied. 

When we say that the operations of GOLDtup are identical to the operations in GOOD, we mean that 

they are identical on all cases in which the corresponding GOOD operation defines a result. The GOOD 

operations leave the result undefined exactly when the GOLDtup operations produce an instance that 

violates the functionality criterion. This condition is easily checked with a GOLDtup program. 

An accessible source for the definition of GOOD is [20]. However, the definition given there lacks an 

iteration construct. More complete references are [6], [19]. We will not repeat these definitions, but 

substitute them in the following, more exact rewording of lemma 3.10. 

Lemma A.14 I,I' be instances and t an operation of GOLDtup' Then 

• ift is a node addition, let m be the added node, let f{ be the label of m, and let (m, ai, mi) be its 

outgoing edges. Then, I d:, I'iff I' is a minimal superinstance of I for which 

- for each embedding i of :Is in I, there exists a f{-labeled node in I' such that for all j, 

(n, ai, i(mi)) is an edge in I'; 

18Unfortunately, it is impossible to have simulations without using at least one extra edge or node label. 
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o 

- each edge in I' leaving a node of I is also an edge of I; 

- no two edges with identical labels leave the same new node in I'. 

• if t is an edge addition, let (mj, "'j, mj) be its added edges. Then, I ob I'iff I' is the minimal 
superinstance of I for which 

- for each embedding i of :Is in I and allj, (i(mj), "'j, i(mj)} are edges in I'. 

• if t is a node deletion, let m be the deleted node. Then, I ob I'iff I' is the maximal subinstance 
of I for which 

- for each embedding i of :Is in I, i( m) is not a node in I'. 

• if t is an edge deletion, let (mj, "'j, mj) be its deleted edges. Then, I ob I'iff I' is the maximal 
subinstance of I for which 

- for each embedding i of :Is in I and all j, (;(mj), "'j, i( mj)} are not edges in I'. 

These claims are straightforward to verify, and we will leave this to the reader. Note that in all cases except 

node additions, the embedding extension 7J required in definition 2.2 necessarily maps every embedding 

to itself. 

A.6 Equivalence of core patterns and abstraction 

In this section, we demonstrate the equal expressive power of the core pattern feature on one hand and 

the abstraction operation on the other, by providing simulations of one using the other. 

A.6.1 Simulating core patterns with abstraction 

We will now give a construction to replace (nontrivial usage of) core patterns with abstractions; an 

example of this construction is given in figure 18. 
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Let t = (:/D. :/e. :/s. :/A) be a node addition III GOLD,. Let n be the added node of t; say it has label 

t"A 

~~\ I 
~/ 

t8 

t3 

Figure 18: Construction example: simulating core patterns with abstraction for the marriage example 
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K. Let (n,ai,m;) be the edges incident to n. Let a,~a,{3,'Y be edge labels. Let 

.J) = .JA with an extra edge (n, a, n) 

.:1/' = .JA with an extra edge {n, {3, n) 

.JI = ({n},0) 

.J, = {{n}, {(n,a, n), (n,{3, n)}) 

tl = (.JA, .JA, .JA, .J)) 

t, = (.Js, .Js, .Js, .JA) 

t3 = (.JA, .JA, .JA, .JAil) 

t. = (.JI, .J" .J" .J,) 

Let :13 be an instance of which both .:JAil and Borne instance :lB are subinstances, such that some 

isomorphism from .J/ to .JB fixes all nodes of .Je, .J/ and .JB have all different nodes except those in 

.Je, and every edge of .J3 is in either .J) or .JB' Let .J. be .J3 with the additional edge (n, 'Y, i( n)). Let 

t5 = 

.J5 

(.J3, .J3, .J3, .J.) 

({n},{{n,'Y,n)}) 

Let n' be some K-labeled node not equal to n. Define the abstraction 

t6 = (.J5,n',K,'Y,a) 

For all edges (n, ai, mil, define the patterns 

.Ji,S ({n,mi,n'},{{n,ai,mi)}) 

.Ji,A = .Ji,S with the additional edge (n',<>,mi) 

ti,A (:1;,s, .Ji,S, :1;,s, .Ji,A) 

Then let PI be a program consisting of all ta,A, arbitrarily ordered into a sequence. Let nIl nz be two 

K -labeled nodes, and 

.J6 = ({nl,n,},{{n,,<>,nl),{nl,'Y,n,)}) 

.J7 = .J6 with the additional edge {n" {3, n, 

t7 (.J6, .J7, .J7, .J7) 

Io (0,0) 

t8 (.Jo, .J5, .J5, .J5) 

Let 38 be an instance of which both :7/' and some instance .:JB are subinstances, such that some 

isomorphism i from .J) to .J B fixes all nodes of .JA II except n, and no edges run between nand i( n). Let 

If 

.J9 = .J8 with the additional edge (n, 'Y, i(n)) 

t9 = (.J8, .J9, .J9, .J9) 

then, for all instances I, I' in which none of the edge labels <>, ~a, {3, 'Y occur, it holds that I ~ I' iff 

I ~I'. The proof is tedious and has been omitted. 

A.6.2 Simulating abstraction with core patterns 

An example of the following construction is provided in figure 19, which displays its results on the 

abstraction of figure 10. 
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Let t = {:T, m, K, a, fJ} be an abstraction. Let X be the set of node labels C for which there is a node m' 

labeled C such that the edge {m, a, m'} is in:T. Let B be the node label of m. Let a, ~a, fJ, ~fJ, '"(, ~'"(, 6, f, ( 

tl,Peraon t2,Penon 

EJ 
~has.child 

I Pe~.on I 

ts,Peraon t3 

t5 

f 

'"( 

L-____ J ••• 1 Perlonl 

t8 t9 

fame ~hildrer Fame ~hildr+ I pe,rsonl 

(: ~ol 

I~tl I pe!son I I pe!sonl 

t11 t12 t13 t14 

I Peraon I 

'"(: 

I Pe~.on I 

.f..~. 

[lame Childr+.' 

t 15 t 16 

Figure 19: Example simulation of abstraction with core patterns 
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be edge labels. Let n be a new node labeled K. 

:1! = :1 with additional edge (m, 6, m) 

:1, = :1 with additional node n and edge (n, /3, m) 

I, = (:1,:1,J.:T,) 

Let b" b, be two nodes labeled B. For all C in X, let e be a node labeled C, and let PC be a see 
t1,e; t2,C; 13,c; 14.c, where there transformations are as follows: 

:1"c = ({b"e},0) 

:1"c = ({b" e}, {(b" a, e)}} 

:13,C = ({b" e}, {(b" ~a, e)}} 

:14,C = ({b" e}, {(b" a, e), (b" ~a,e)}} 

I"c = (J, ,C, J, ,C, :1, ,C, :13,C) 

12,c = (:1"c, :14,C, :14,C, :14,C) 

:15,C = ({ b" b" e}, {(b" 6, b,), (b" 6, b,), (b" a, e), (b" a, e)}} 

:1s,c = :15 with additional edge (b" r, b,) 

13P (:15,C, :15,C, :15,C, :1s,c), 

:17,C = ({b" b" e}, {(b" a, e), (b" ~a, e)}} 

:1s,c = :15 with additional edge (b" r, b,) 

14,c = (:17,C, :1s,c, :1s,c, :1s,c) 

Is,e = (:1"c, :13P, :13,C, :13,C) 

Let P2 be a program consisting of all PC, arbitrarily ordered into a sequence. 

:13 = ({b"b,}{(b,,6,b,},(b,,6,b,}}) 

J3 with additional edge (b" ~r, b,) 

I, = (:13, :13, :13.:T4) 

:14 = 
J5 

:16 

13 

J7 

:1s = 

:13 with additional edge (b" ~r, b,) 

({b"b,}{(b"r,b,)}) 
:15 with additional edge (b" ~r, b,) 

(:15, :15,:15, J6) 

({m, n}{ (n, /3, m), (m, 6, m)}) 

:17 with additional edge (n, c, n) 

14 = (:17, :17, :17, :1s) 

:19 = :1s without the edge (n, /3, m) 

:110 = :19 with additional edge (n, ~/3, m) 

15 (:19, :110, :1'0, :11O) 
:111 = ({m,n}{(n,/3,m)}) 

= :111 with additional edge (n, ~/3, m) 

16 = (:111, :1", J12, :112) 

({ n, b" b,}, {(n, /3, b,), (n, ~/3, b,), (b" r, b,)}) 

:1'3 with additional edge (n, c, n) 

= (:1'3, :1'4, :1'4, :114) 
({ n, b" b,}, {(n, /3, b,), (n, /3, b,), (b" ~r, b,)} 

:1'6 :1'5 with additional edge (n, c, n) 

Is = (:1'5, :1'6, :1'6, :1'6) 
:1'7 = ({n,b"b,},{(n,/3,b,},(n,c,n}}) 

:1,s :117 with additional edge (b" r, b,) 

19 = (:117, :1,s, J,s, J,s) 
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:1J9 = ({n, bl , b2 }, {(n, (, bl ), (n, t, n), (b!,'y, b2)}) 

:120 = :1J8 without nand (-edge 

tlO (.720, ({ n}, 0), .718, .719, .719) 

.721 = ({n, bJ}, 0) 

.722 = .721 with additional edge (n, (, bl ) 

.723 = .722 with additional edge (n, 'Y, b,) 

tl1 = (.722,.7'2,.7'2,.7'3) 

tl2 = (.721,.722,.722,.722) 

.724 = .721 with additional edge (n, ~f3, bl ) 

tl3 = (.722, .722, .722, .724) 

.725 = ({b l ,b2 },0) 

.7'6 = .725 with additional edge (b l , ~'Y, b,) 

tl4 = (.725, .7'6, .726, .726) 

.727 = .725 with additional edge (b l , 'Y, b,) 

tl5 = (.725, .727, .7'7, .7'7) 

.728 = ({bJ},0) 

.729 = .728 with additional edge (b l , 6, bl ) 

tl6 = (.728, .729, .7'9, .729) 

.730 = ({n},0) 

.731 = .730 with additional edge (n, 'Y, n) 

tl7 = (.730, .730, .730, .730) 

If 

then, for all instances 'I, 'I' in which none of the edge labels a, -'0:, /3, -,{3, "'( 1 ....,,.. 1 6, f 1 ( occur 1 it holds that 

I,b I' iff I!:. I'. 

The proof is tedious again, and has been omitted. 
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