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Abstract

Gold(I) complexes react with 4-allenyl arenes in an exo fashion to furnish vinyl-substituted
benzocycles. Phosphite gold(I) monocations were found to be optimal, and the catalyst was
tolerant of ethers, esters, and pyrroles. Reactions proceeded in unpurified solvent at room
temperature.

The Friedel-Crafts reaction has been a part of many successful transformations in organic
chemistry.1 The reaction has been accelerated by strong acids and by stoichiometric and
catalytic quantities of various metals. Recent developments on the topic of catalytic
cycloarylation reactions include the gold-(I)-catalyzed arylation of allenes2,3 by indoles
(Widenhoefer4) and pyrroles (Nelson5) and the gold(III)-catalyzed hydroarylation of
alkynes reported by He6 (Scheme 1). Hashmi has also shown that intermolecular addition of
furans to allenes can be achieved.7 The mechanisms are presumed to proceed by an initiating
allene activation by the electrophilic gold(I) cation.

Related to these first demonstrations is our recent gold(I)-catalyzed cycloisomerization of
1,6-ene-allenes8 (eq 1). The proposed mechanism paralleled the Nelson/Widenhoefer
systems with gold(I) acting as an allene activator for intramolecular attack by the alkene to
generate an intermediate carbenium ion. Elimination and protodeauration yielded the
vinylcyclohexene with variable regiocontrol.
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(1)

Arenes exhibit a wide range of π-nucleophilicities as characterized by the Mayr N values,9
which quantify and rank their rates of reaction with a common electrophile. Comparing
these values to the allene activations reported in the literature revealed a focus on alkene (N
= −1.00 to 1.20) and heteroaromatic (furan/indole/pyrrole; N = 3.60–7.00) nucleophiles
(Scheme 2).10

Since a number of interesting nucleophiles occupy the spectrum between alkenes and N-
heterocycles, we initiated efforts to examine arene-allene cycloisomerizations. One expected
benefit was the rearomatization-driven regioselective elimination to products. To develop
this concept, we began with the relatively activated dimethoxy substrate 2 and the optimum
catalyst for the ene-allene cycloisomerization 3,5-xylyl-BINAP-(AuCl)2/AgBF4.
Gratifyingly, the desired vinylated product 3 was obtained, but the rate was slower than
desired (>16 h for full conversion).

To improve the reaction rate, a number of alternative catalysts were examined. The best of
these was the triphenylphosphite-derived catalyst11 1, which was an easily prepared,
colorless, crystalline material that was bench stable for several weeks.12 The less basic
phosphite ligand13 generated a catalyst that was significantly more effective (Scheme 3).14
The reaction produces benzocyclic products that are similar to those reported by Ma15 from
Brønsted activation of allylic alcohols and by Cook16 utilizing In(III)-mediated atom-
transfer cyclization.

As shown in Table 1, dichloromethane in combination with the SbF6− counterion was
optimum with regard to rate and yield of 3. Under these conditions, the catalyst load could
be reduced to 3 mol % with reasonable reaction times and little change in yield.

Utilizing the standard protocol shown in Scheme 3, a variety of arene nucleophiles were
examined (Table 2). Generally speaking, the scope was limited to electron-rich arenes but
was tolerant of ethers, acetals, and, not surprisingly, a pyrrole.5 The naphthalene substrate
(Mayr parameter9 N = −3.9) was especially well-behaved. Unfortunately, coordinating
aromatics such as triazoles, isoxazoles, and oxazoles were not effective, likely due to
nonproductive coordination to the gold(I) catalyst. Substrates for this chemistry were
obtained from the benzylation of monoallenylmalonate4b with base in THF/DMF.17

In cases where the arene nucleophile N parameter was sufficiently high, the catalyst loading
could be lowered to further increase reaction efficiency (Table 3, entry 7). The catalyst was
also tolerant of substitution at the allene terminus and variation of the malonate linker
(Scheme 4).
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To ensure that the above transformations were indeed proceeding by gold catalysis, a series
of control experiments were carried out. Interestingly, 3 was obtained from 2 using
stoichiometric amounts of silver but only at higher temperature and longer reaction times
(Table 3). Catalytic quantities of triflic acid (5 mol %), HNTf2 (1 mol %), or HBF4 (1 and 5
mol %) did not produce 3, ruling out the possibility of a Brønsted pathway. As expected,
leaving out the halide abstraction agent did not provide an active catalyst, reinforcing the
notion of a P(OPh)3Au+ active catalyst.

With less activated aryl rings, such as the 4-tert-Bu substrate 20, a major byproduct was
allene hydration to methyl ketone 21 (eq 2). The N value of ~ −4.0 for a tert-butylphenyl
group likely represents the lower limit for sufficient π-nucleophilicity to add to the Au+-
activated allene. More electron-deficient arenes (NO2Ar, BrAr, IAr, etc.) were cleanly
converted to the methyl ketone with no trace of cycloisomerized product. A related
transformation was recently reported.18

(2)

Attempts to minimize the allene hydration by using anhydrous CH2Cl2 and adding4ÅMS
only led to low conversions (<30%, 72 h). We speculate that the adventitious water acts as a
proton shuttle to modulate the rearomatization and protodeauration steps of the mechanism.
19

In summary, a highly electrophilic phosphite gold(I) catalyst has been applied to the
intramolecular allene hydroarylation reaction, producing vinylbenzocycles in good to
excellent yields. The catalyst is tolerant of trace water and oxygen, it is bench-stable, and it
can be utilized in air with unpurified commercial solvent.

Experimental Section
Representative Cycloisomerization Procedure

To a 5mL vial charged with a stirbar, 1 (27.2 mg, 0.05 mmol, 1.0 equiv), and AgSbF6 (24.0
mg, 0.07 mmol, 1.4 equiv) was added dichloromethane (1.0 mL) by syringe, at which point
a white-gray suspension formed. After 2 min, 2 (168 mg, 0.5 mmol, 10 equiv) was added by
pipet. The suspension turned deep green within 20 min. After 6 h, the reaction was loaded
directly onto a silica flash column and purified with 1:7 ethyl acetate/hexanes. Yield: 85% of
3 as a clear oil. 1H NMR (400 MHz, CDCl3): δ 6.23 (s, 2H), 5.74 (m, 1H), 4.90 (d, 1H, J =
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10.4 Hz), 4.68 (d, 1H, J = 17.2 Hz), 3.77 (s, 3H), 3.70 (s, 3H), 3.66 (s, 3H), 3.64 (s, 3H),
3.34 (d, 1H, J = 16 Hz), 2.99 (d, 1H, J = 16.4 Hz), 2.48 (m, 1H), 2.29 (m, 1H). 13C (100
MHz): δ 171.8, 171.7, 159.1, 158.6, 141.3, 135.8, 113.3, 104.3, 97.1, 55.3, 55.2, 52.6, 52.4,
35.4, 35.0, 34.3. HRMS-ESI+: 357.131 calcd for C18H22O6 + Na, found 357.131.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Recent Gold(I)-Catalyzed Allene Arylations4,5
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Scheme 2.
Representative N Values8 for π-Nucleophiles

Tarselli and Gagné Page 6

J Org Chem. Author manuscript; available in PMC 2010 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 3.
Optimized Conditions with Activated Substrate 2
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Scheme 4.
Variation in Linker/Allene Substitution
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Table 1

Optimization of Solvent and Silver Counterion for the Conversion of 2 to 3 (Scheme 3)a

entry solventb X− conversionc (% 3)d

1 CH2Cl2 OTf 92

2 toluene OTf 52

3 hexane OTf 73

4 Et2O OTf 20

5 THF OTf 36

6 MeNO2 OTf 55

7 CH2Cl2 BF4 100 (75)

8 CH2Cl2 NTf2 79 (80)

9 CH2Cl2 PF6 35 (72)

10 CH2Cl2 SbF6 89 (88)

11 CH2Cl2 OTs 51 (58)

12 CH2Cl2 ClO4 92 (76)

a
Reaction conditions: 5 mol % of 1, 7 mol % of AgX, 0.2 M in 2 at rt.

b
Commercial bottles of dichloromethane, hexane, nitromethane, and ether were used without prior purification.

c
As determined by GC integration against remaining SM.

d
Fraction of all products that was the desired cyclic isomer.
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Table 3

Control Experimentsa Using 2 to Test for Ag+ or H+ Background Catalysis

catalyst amount time, temp products

1 5 mol% 16 h, rt nr

AgSbF6 5 mol% 16 h, rt nr

AgSbF6 100 mol % 14 h, 35 °C 90% 3

TfOH 1 mol % 6 h, rt <5% conv

TfOH 5 mol % 6 h, rt 30% conv, <1% 3c

HNTf2
b 1 mol % 6 h, rt nr

HBF4•OEt2 1 mol % 6 h, rt nr

HBF4•OEt2 5 mol % 6 h, rt nr

a
Reaction conditions: 0.2 M 2 in CH2Cl2, in air at rt. Conversion was monitored by GC.

b
Tf = trifluoromethanesulfonyl.

c
Six products were observed by GC–MS, the predominant (~30%) being allene hydrolysis to the methyl ketone (m/z = 352).
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