
Abstract We describe the peculiar conditions under

which optically driven gold nanoparticles (NPs) can

significantly increase temperature or even melt a sur-

rounding matrix. The heating and melting processes

occur under light illumination and involve the plasmon

resonance. For the matrix, we consider water, ice, and

polymer. Melting and heating the matrix becomes

possible if a nanoparticle size is large enough. Signifi-

cant enhancement of the heating effect can appear in

ensembles of NPs due to an increase of a volume of

metal and electric-field amplification.

Keywords Metal nanoparticles Æ Heat generation Æ
Plasmons

There has been a great deal of interest in recent years

in the development of biosensors and actuators based

on metal and semiconductor nanoparticles (NPs).

Metal NPs can efficiently quench [1] or enhance [2]

photoluminescence from attached quantum emitters.

The latter has been demonstrated for bio-conjugates

composed of Au NPs, linker molecules, and semicon-

ductor nanocrystals. Metal (gold) NPs have useful

thermal properties. Under optical illumination,

Au NPs efficiently create heat [3–8]. The heating

effect becomes especially strong under the plasmon

resonance conditions when the energy of incident

photons is close to the plasmon frequency of an Au

NP. In recent papers, the heating effect in Au NPs was

used for several purposes. The paper [3] reports

imaging of proteins labeled with Au NPs in cells, using

an all-optical method based on photo-thermal inter-

ference contrast. In the paper [4] the heating effect

from gold NPs is used for biomedical applications.

Another publication [5] described remote release of

materials (drugs) from a capsule containing Au NPs

excited with intense light. In the paper [7], the authors

assembled a superstructure Au-NP–polymer–CdTe-NP

with interesting thermal properties. Due to the exci-

ton–plasmon interaction, the optical emission of such a

superstructure is strongly temperature-dependent [7].

The study [8] characterized heat generation due to gold

NPs at the nanoscale level through the observation of

the melting process in the ice matrix. In particular, it

was found in Ref. [8] that the heating process has a

mesoscopic character and strongly depends on the

geometry of a NP ensemble.

Here we study theoretically the processes of heating

and melting due to single Au NPs and NP complexes.

We find the conditions and estimate the typical times to

significantly increase the temperature of the surround-

ing material. Our estimations show that using accessible

light intensities one can melt ice or polymer matrixes

around a single Au NP. The polymer is very common in

modern nanotechnology and has properties analogous

to the biological matter. Therefore, our results can be

useful to understand and design heating effects of Au

NPs embedded into biological and living systems. The

ice is a very convenient model system which can be

easily prepared and controlled. This system can be used
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to study experimentally mechanisms of heat generation

and transfer on nanoscale [8]. Here, we also describe

how to enhance the heating effects. For this, one can

use a collection of Au NPs where the heating

enhancement can come from the following factors: (1)

heat fluxes from different NPs can be added and (2) the

light-induced electric field inside a superstructure under

certain conditions can be strongly enhanced due to

collective plasmon resonances.

General equations

In the absence of phase transformations, heat transfer

in a system with NPs is described by the usual heat

transfer equation:

qðrÞcðrÞ @Tðr; tÞ
@t

¼ rkðrÞrTðr; tÞ þ Qðr; tÞ; ð1Þ

where T(r,t) is temperature as a function of coordinate

r and time t, q(r), c(r) and k(r) are the mass density,

specific heat, and thermal conductivity, respectively.

The local heat intensity Q(r,t) comes from light dissi-

pation in Au NPs:

Qðr; tÞ¼ jðr; tÞ �Eðr; tÞh it¼�1

2
Re ix

eðrÞ�1

4p
~EðrÞ~E�ðrÞ

� �
;

ð2Þ

where j(r,t) is the current density, Eðr; tÞ ¼
Re ~EðrÞ � e�ixt

� �
is the resulting electric field in the

system, and eðrÞis the dielectric constant. Here we as-

sume that the system is excited with the external laser

field E0ðtÞ ¼ Re ~E0ðtÞ � e�ixt
� �

. If light is turned on at

t = 0, the light intensity is given by

IðtÞ ¼ I0 ¼ cE2
0

ffiffiffiffi
e0

p
=8p for t > 0 and 0 at t < 0. Here e0

is the dielectric constant of matrix.

Heating of water due to a single NP

We first consider a single spherical NP of radius RNP

and dielectric constant em(x) (see inset in Fig. 1b). For

this case, the time-dependent solution of Eq. 1 is

known [6, 9]. In the limit t fi ¥, the temperature dis-

tribution outside the NP is given by a simple equation:

DTðrÞ ¼ VNPQ

4pk0

1

r
ðr > RNPÞ; ð3Þ

where k0 is the thermal conductivity of water. The rate

of heat dissipation Q depends on the induced electric

field inside Au NP and is given by the equation

Q ¼ �Re ix
eðrÞ � 1

8p
E2

0

3e0

2e0 þ em

����
����
2

" #
:

To calculate the local heat Q, we used the equation
~EðrÞ ¼ 3e0=ð2e0 þ emÞ½ �E0 for r < RNP [10]. The maxi-

mum temperature increase occurs at r = RNP:

DTmaxðI0Þ ¼
R2

NP

3k0
Re ix

1 � eðrÞ
8p

3e0

2e0 þ em

����
����
2

" #
8p � I0

c
ffiffiffiffi
e0

p ;

ð4Þ

where I0 is the light intensity inside the matrix. Fig-

ure 1 shows calculated DTmaxðI0;RNPÞ using the

dielectric constant of bulk Au [11]. We see from Eq. 4

that in order to achieve a visible heating effect of a few

K for typical light fluxes 103–106 W/cm2, one should

use NPs of relatively large radius ( ‡ 10 nm). The flux

2Æ 105 W/cm2corresponds to the laser power of 25 mW

and the laser spot diameter of 4 lm. The time dynamic

of heating for the case of water and Au NP is relatively

fast. At time t� 10 ns the temperature DT(r = 0) rises

to DTmax/2 (see inset of Fig. 1a). This characteristic
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Fig. 1 Calculated temperature increase at the surface of Au NP
in the water as a function of wavelength (a) and illumination
power (b). The graph (b) is given at the plasmon peak
wavelength. A matrix is the water with e0 = 1.8. Inset: spatial
distribution of temperature at different times
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time can be estimated as t ¼ s0 ¼ R2
NPðc0q0=kt0Þ � 6 ns

for RNP=30 nm. For t�DtAu, we can obtain an useful

asymptotic formula:

DTmaxðt; I0Þ ¼ DTmaxðI0Þ 1 � 1ffiffiffiffiffiffiffiffiffiffiffi
pt=s0

p
" #

:

We note that the thermal diffusion time in the gold NP,

DtAu ¼ R2
NP=KAu, is much shorter than that in the wa-

ter. Here KAu = kt Au/cAuqAu is the thermal diffusivity

of gold.

Melting of ice matrix due to a single NP

Heat flowing from an optically driven Au NP can melt

the matrix. In this case, the matrix around the NP be-

comes inhomogeneous in space and is described by the

dielectric constant e0(r) and thermal conductivity k0(r).

In the case of infinite matrix, our model should now

include a spherical shell of liquid around the NP

(Fig. 2a). For the three regions (Au, liquid, and solid),

we obtain the following stationary solutions (t fi ¥):

DTAuðrÞ ¼ A � Q � r2

6kAu
; DTliquidðrÞ ¼ B þ C

r
;

DTsolidðrÞ ¼
D

r
;

ð5Þ

where A,B,C, and D are unknown coefficients. Tem-

perature and energy flux, kt(r)Æ dT(r)/dr, at the inter-

faces should be continuous. From these boundary

conditions we obtain expressions for the coefficients in

Eq. 5. For example, D ¼ QR3
Au

3ksolid
. To find the position of

the solid–liquid boundary (Rb), we have to solve the

equation: DTðrÞ þ T0 ¼ Ttrans, where T0 ¼ Tðr ! 1Þ is

the equilibrium temperature of matrix and Ttrans is the

phase transition temperature. Then, we obtain:

Rb ¼ D

Ttrans � T0
¼ QR3

Au

3ksolidðTtrans � T0Þ
:

Figure 2b shows calculated spatial distribution of

temperature for the case of ice matrix at T0= – 2�C.

The inset of Fig. 2b includes the data for the water–ice

boundary (Rb > 30 nm). Melting occurs for

Q > Qmelting; this condition can also be written as

Rb > RAu or
QR2

Au

3ðTtrans�T0Þ[ksolid. In other words, heat

generated by the NP should exceed heat diffusion in

the ice. For the given parameters, melting occurs at

light fluxes I0 > 1.3Æ 104 W/cm2. The parameters of the

ice–water matrix are the following: Ttrans = 0�C,

kt,water = 0.6 W/mK, and kt,ice = 1.6 W/mK.

In the next step we are going to estimate the time to

melt ice around a NP. For this, we calculate the

amount of heat needed to melt ice and increase its

temperature. The time to establish steady state within

the volume 0 < r < Rmaxcan be estimated as

Dtmelting¼
1

VNPQ

�
cAuqAu

Z
Au

DTAuðrÞdV

þLiceqiceViceþciceqiceðTtrans�T0ÞVice:

þcwqw

Z
water

DTwðrÞdVþciceqice

Z
ice;Rb\r\Rmax

DTiceðrÞdV

�
;

ð6Þ

where Vice is the volume of melted ice. Note that the

upper limit r = Rmax should be kept finite since the

integral is not converging. We will choose Rmax large

enough so that Rmax > Rb. This insures us that the

melting process is accomplished at t < Dtmelting and

simultaneously the steady state is established in the

spatial region r < Rmax. The time Dtmelting is relatively

long because of a large latent heat needed to melt ice.
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Fig. 2 (a) Model of Au NP and melted ice matrix. (b) Calculated
temperature as a function of coordinate. Inset: the radius of
water–ice interface as a function of the light flux. A matrix is
described with ewater�eice = e0 = 1.8.
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This time Dtmelting is much longer than the character-

istic heat-diffusion times, R2
i =Ki ¼ R2

i � ðqici=kiÞ, in

metal, ice, and water: Dtmetal = (30 nm)2/KAu� 7 ps,

Dtice �(40 nm)2/Kice� 2 ns, Dtwater� (40 nm)2/Kwater�
10 ns. For Rmax = 100 nm, the times Dtmelting estimated

from Eq. 6 are in the sub-ms-range in the regime of

plasmon resonance (k� 500 nm).

Melting of a polymer shell due to a single Au NP

We now consider an Au NP covered with polymer

(Fig. 3a). In this system, heat released from the Au NP

can melt the polymer coating. First we are going to

consider a model of thin polymer shell including one

monolayer of molecules. As an example we describe

melting of one monolayer of the PEG polymer;

this polymer was used to assemble Au-NP complexes

in Ref. [7]. The linear size of such polymer changes

rapidly in the temperature region 20–60�C [12] due to

the conformation transition and we will approximate

its linear size as dpolymer = 3 nm+(T – 30�)/30�. This

formula gives 1.3 nm change of polymer length as

temperature increases from 20�C to 60�C. For this

problem, we can apply the formulas (5) and find the

position of the polymer–water interface as a function

of light flux:

Rb ¼ RAu þ dpolymer½TðRmÞ�; ð7Þ

where Rm ¼ RAu þ dpolymer=2. To write the above

equation we assumed that the polymer ‘‘feels’’ an

averaged temperature equal to the temperature in the

middle of the polymer shell at the position

r ¼ Rm ¼ RAu þ dpolymer=2. The closed equation for Rb

becomes

Rb ¼ RAu þ dpolymer½T0 þ BðRbÞ þ
CðRbÞ

RAu þ Rb�RAu

2

�: ð8Þ

In Fig. 3 we show a calculated radius of polymer

shell Rb as a function of light intensity. These data

demonstrate that the Au-NP with a polymer shell can

be used as an actuator. Assume now that a CdTe NP is

attached to the polymer shell, as it was realized

experimentally in recent paper [7]. The intensity of

photoluminescence (PL) and energy-dissipation rate of

CdTe NP strongly depend on the distance between the

CdTe NP and the Au surface. In Ref. [7], it was found

that the intensity of PL decreases with the distance Rb

and can be approximated by a simple formula

A þ B=R6
CdTeNP, where the position of the CdTe NP

with respect to the center of Au NP. Regarding non-

radiative energy losses of exciton in a CdTe NP, it is

known that, for the dipole–surface interaction, the

energy-dissipation rate decreases as 1/dpolymer
4 [13].

Since the polymer size increases with the light intensity

via the heating mechanism, PL spectra of the CdTe–

polymer–Au complex can strongly change with inten-

sity of light. A similar mechanism was recently

involved to explain the data of Ref. [7]. In particular,

the authors of Ref. [7] varied periodically temperature

and observed a periodic variation of PL emission from

the CdTe–polymer–Au complex. If the heating effect is

induced by light pulses, the size of polymer and the

emission of CdTe NP can be changed in time. For the

thermal diffusion time in such a complex, we obtain

R2
Auðqpolymercpolymer=kpolymerÞ � 5 ns. To make the

above estimate, we used the typical parameters of

polymers from Refs. [14] and [15]: Lpolymer = 200 KJ/

kg, qpolymer = 1000 kg/m3, cpolymer = 1000 kJ/kg K, and

kpolymer = 0.2 W/mK.
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In the next step, we consider an Au NP with a

thicker polymer shell. In this case, we can introduce

two phases in the polymer shell, melted and non-mel-

ted. These phases are shown in inset of Fig. 4 as phases

I and II. Again we write equations for DTi(r) for each

spherical shell and apply the boundary conditions at

each interface. The radii of the interfaces (Rb and Rp)

should be found from the equations:

DTðRbÞþT0 ¼Ttrans;

R3
p0 �R3

Au

	 

qpII ¼ R3

b �R3
Au

� �
qpI þ R3

p �R3
b

	 

qpII;

ð9Þ

where Rp0 is the polymer outer radius for the non-

melted phase and qpI(II) are the polymer densities. The

first equation describes the boundary between phases I

and II. The second comes from conservation of total

number of molecules in the polymer shell and includes

the polymer densities, qpI and qpII. The melted polymer

has typically a smaller density and therefore the size of

the polymer shell increases as polymer melts. The size

of polymer as a function of light intensity is show in

Fig. 4. Again we observe that the polymer size in-

creases with increasing light intensity. The times to

melt the polymer lie in the ms-regime.

In the end of this section, we should also note that

the heating effect from the Au NP coated with a

polymer can be stronger than that in water because

polymers may have smaller heat conductivities and

heat transfer from the Au-NP becomes reduced.

Heating in an ensemble of NPs

Au NPs can be assembled. For example, the paper [2]

reports assembly of Au NPs and CdTe nanowires in

cylindrical complexes where Au NPs play a role of

photonic amplifier. Putting several Au NPs together

can result in stronger enhancement of thermal effects

since heat fluxes from individual NPs can be added. If

the distance between NPs is larger than their size, we

can treat NPs as point-like sources of heat. Then, the

heat source in the thermal equation (1) can be written

as

Qðr; tÞ ¼
X

n

qnðtÞdðr � rnÞ;

where the coefficients qn(t) describe the heat produced

by the n-Au NP. The thermal state of the system

will approach the steady-state solution of Eq. 1 for

times t� l/Kmatrix, where l is the size of the NP com-

plex and Kmatrix is the thermal diffusivity of the

matrix. For typical parameters of polymers and

l = 1000 nm = 1 lm, we obtain an estimate l/Kmatrix�
5 ls. This estimate tells us that the thermal enhance-

ment in a 1 lm superstructure can be achieved with

laser pulses longer than 5 ls. In a superstructure of size

l, the temperature can be estimated by an integral:

DTtotðrÞ ¼
X

n

qn

4pk0

1

jr � rnj
� q0

4pk0

Z
V

DðrÞ
jr � r0j d3r0;

where D(r) is the spatial density of identical NPs with

qn = q0. For the temperature inside a superstructure of

arbitrary dimensionality m, we obtain estimates in the

limit NNP
1/m� 1:

DTtotðrÞ � DTmax;0
RAu

D
N

m�1
m

NP ðm ¼ 2 and 3Þ;

DTtotðrÞ � DTmax;0
RAu

D
ln½NNP�ðm ¼ 1Þ;

where DTmax,0 is the temperature increase at the sur-

face of NP for the case NNP = 1; this temperature is

given by Eq. 4. D and NNP are the average distance

between NPs and the total number of NPs in a com-

plex. The index m is 1, 2, and 3 for the 1D, 2D, and 3D

superstructures, correspondingly. We can see from the

above estimate that temperature grows with the num-

ber of NPs.
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We now consider NNP nanoparticles on a surface

between two mediums, water and substrate. The sta-

tionary solution of the heat equation for a NP at the

boundary of two mediums is given by Eq. 3 with the

substitution k0 ! �k0 ¼ ðkwater þ ksubstrateÞ=2. Figure 5

shows calculated temperature in the center of a square

array of 16 NPs (4 · 4) on the boundary of polymer

and water. The distance between NPs is equal to

D = 150 nm and their radii are 30 nm. We can see a

strong increase of temperature in the NP complex (red

curve in Fig. 5) compared to the case of a single NP

(blue curve). Just recently the experimental study [8]

demonstrated that the amount of generated heat

becomes strongly increased in the NP complexes

composed of several Au NPs.

Electric-field enhancement in the NP system

Au NPs also interact through the electric fields. At

large distances, the interaction is dipole–dipole; at

small distances, it has a multipole character. Now we

examine what happens with heat produced by two Au

NPs interacting via Coulomb fields. In this paper, we

will neglect the retardation effects; the latter is valid if

the size of a system is less than the photon wavelength.

Heat realized by the system per unit time is given by

Qtotðr; tÞ¼�1

2
Re ix

eAuðxÞ�1

4p

� � X
n¼1;2

Z
Vn

~EðrÞ~E�ðrÞd3r;

where the summation is taken over two NPs with n = 1

and 2. For numerical calculations of electric field, we

used the method of multipole expansion of surface

charges on NPs [16]. For the matrix, we assume a

polymer with dielectric constant e0 = 2.3. We see in

Fig. 6 that the total heat of two interacting NPs

depends on the polarization of light. If the electric field

of incident light is polarized along the ‘‘molecular’’ axis

(x), the total heat is increased. In the cases E0||y and

E0||z, the heat is reduced. This result shows that the

heating effect can be enhanced or suppressed due to

the inter-NP Coulomb interaction.

A random system of NPs can have ‘‘hot’’ spots

where the electric field and heating intensity are

greatly enhanced. A similar situation was observed in

the classical experiments on surface enhanced Raman

scattering (see e.g. [17]). The effect of hot spots can be

used to create very strong heating in certain parts of a

NP superstructure. One example is a system of three

NPs shown in the inset of Fig. 7. Two large NPs (n = 1

and 2) play a role of amplifiers, whereas a smaller NP

(n = 3) is a ‘‘heater’’. The data show that for E0|| x, the

heating rate of the NP3 is strongly enhanced whereas

for the other configurations it becomes slightly

decreased. Such a collective effect of NPs can be used

to strongly increase the heating intensity in certain

points of a superstructure.

Conclusions

We studied the effect of heating in the system com-

posed of Au NPs, water, ice, and polymer. Au NPs
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excited resonantly with light can increase temperature

and even melt a surrounding material. The collective

effects in NP superstructures can be used to strongly

amplify the heating effect and also to create local

areas of high temperature, hot spots. The latter

originates from collective plasmon resonances in a

superstructure.
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Fig. 7 Calculated rate of light energy dissipation in the small
NP3 in the presence of two large NPs (NP1 and 2). We also show
the dissipation rate of NP3 in the limit D fi ¥. Inset: Geometry
of the system
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