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Abstract 27 

Background: Obesity is a high risk for multiple metabolic disorders due to excessive influx of energy, 28 

glucose and lipid, often from a western based diet. Low-grade inflammation plays a key role in the 29 

progression of such metabolic disorders. The anti-inflammatory property of bulk gold has been used 30 

in treating rheumatoid arthritis in the clinic, not its form at nanoscale. Previously we found that pure 31 

gold nanoparticles (AuNPs, 21nm) also possess anti-inflammatory effects on the retroperitoneal fat 32 

tissue following intraperitoneal injection, by downregulating tumor necrosis factor (TNF) α. However, 33 

whether such an effect can change the risk of metabolic disorders in the obese has not been well 34 

studied.  35 

The study employed C57BL/6 mice fed a pellet high fat diet (HFD, 43% as fat) that were treated daily 36 

with AuNPs [low (HFD-LAu) or high (HFD-HAu) dose] via intraperitoneal injection for 9 weeks. In 37 

the in vitro study, RAW264.7 macrophages and 3T3-L1 adipocytes were cultured with low and high 38 

concentrations of AuNPs alone or together.  39 

 40 

Results: The HFD-fed mice showed a significant increase in fat mass, glucose intolerance, 41 

dyslipidemia, and liver steatosis. The HFD-LAu group showed an 8% reduction in body weight, 42 

ameliorated hyperlipidemia, and normal glucose tolerance; while the HFD-HAu group had a 5% 43 

reduction in body weight with significant improvement in their glucose intolerance and 44 

hyperlipidemia. The underlying mechanism may be attributed to a reduction in adipose and hepatic 45 

local proinflammatory cytokine production, eg.TNFα. In vitro studies of co-cultured murine 46 

RAW264.7 macrophage and 3T3-L1 adipocytes supported this proposed mechanism.  47 

 48 

Conclusion: AuNPs demonstrate a promising profile for potential management of obesity related 49 

glucose and lipid disorders and are useful as a research tool for the study of biological mechanisms.  50 

 51 

 52 
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Background 53 

Obesity is an important risk factor for multiple metabolic disorders, including glucose intolerance 54 

and hyperlipidemia. The current global surge in obesity has seen a staggering 800% increase in 55 

demand for weight-loss surgical procedures over the last decade, as a means of controlling these 56 

metabolic disorders (1) . This increase is also driven by the disappointingly low success rate of 57 

weight-loss medications and interventions, as well as the difficulties faced by individuals trying to 58 

maintain ideal body weight following initial weight loss. For example, in a recent trial, the latest 59 

approved injectable weight loss medication, Liraglutide (Saxenda) has been shown to induce ~6% of 60 

total body weight loss after 56 weeks of treatment (2). However, this weight loss effect required daily 61 

adherence to a strict low-caloric diet and ongoing support by dieticians, making its implementation 62 

difficult to achieve outside of a closely controlled environment (2). Therefore, there still remains an 63 

urgent and growing need for effective strategies to deal with the global obesity pandemic. Herein, we 64 

present intriguing evidence that gold nanoparticles (AuNPs) may serve as a novel therapeutic agent 65 

in the treatment and control of obesity and its related blood glucose and lipid disorders.  66 

 67 

There is already historical precedence for the use and application of bulk gold and gold salts within 68 

clinical practice (3). It is now becoming evident that AuNPs share similar therapeutic potentials (4). 69 

Nanomaterials have been widely applied in medicine as biochemical sensors, contrast agents in 70 

imaging, and drug delivery vehicles revolutionizing current disease treatment and diagnosis (4). 71 

However, the function and toxicity of AuNPs differ subtantially depending on the size and shape with 72 

AuNPs larger than 15 nm comparatively nontoxic (5).  73 

 74 

Previously, we injected unmodified spherical AuNPs of 21 nm diameter into chow-fed lean mice (6). 75 

The AuNPs accumulated rapidly in the abdominal fat tissue after a single intraperitoneal (IP) injection. 76 

AuNP-treated mice showed significant reduction in abdominal fat mass compared to non-treated 77 

control mice, along with reduced mRNA expression of the pro-inflammatory cytokines, tumor 78 
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necrosis factor (TNF)-α, in the abdominal fat tissue (6). This is of great interest, as TNF-α has been 79 

frequently linked to the comorbidities related to obesity (7). In chronic obesity, excess triglyceride 80 

storage in the fat tissue can up-regulate adipose triglyceride lipase (ATGL) to increase basal lipolysis 81 

(8). Consequently, adipose tissue macrophage (ATM) infiltration and accumulation into the fat tissue 82 

is also increased, which promotes inflammatory responses in the adipose tissue by directly engaging 83 

toll-like receptors (TLR) to induce production of cytokines, such as TNFα (9). For these reasons, 84 

TNFα expression is positively correlated with body mass index, hyperlipidemia, insulin resistance, 85 

and glucose intolerance (10, 11). Either reducing ATM recruitment or inhibiting ATM cytokine 86 

release can lead to fat loss and improved insulin sensitivity in obese mice (9, 12). This highlights the 87 

essential roles of ATM-related cytokines in the development of metabolic disorders in obesity. The 88 

down-regulation of pro-inflammatory cytokines in our previous study was linked to reduced ATM 89 

activity, rather than reduced cell number (6). In addition, the abdominal fat loss induced AuNP 90 

treatment was also of interest for its potential to treat obesity.  91 

 92 

Although the anti-inflammatory property of bulk gold and AuNPs has been clinically used for treating 93 

rheumatoid arthritis (3), the injectable AuNP preparation has not been reported for managing 94 

adiposity and metabolic disorders in obesity. Therefore, in the current study we IP injected AuNPs 95 

into mice fed a high-fat diet (HFD) for 9 weeks to examine the effect on fat accumulation and obesity 96 

related metabolic disorders. In addition, our in vitro studies investigated the direct impact of the 97 

AuNPs on adipocyte and macrophage interactions. The knowledge gained from this study will serve 98 

to inspire new, original and more effective therapeutic approaches that involve direct targeting of 99 

intracellular pathways in adipocytes and/or macrophage cells.   100 

 101 

 102 

 103 

Methods: 104 
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Animal experiments:  105 

Male C57Bl/6 mice (8 weeks, Animal Resource Centre, WA, Australia) were then randomly divided 106 

into 4 groups (n=20, Table 1). Control group (Chow-C) were fed chow (Gordon’s Specialty 107 

Stockfeeds, NSW, Australia) and injected with vehicle; HFD group (HFD-C) was fed a HFD (20 kJ/g, 108 

43% fat, Cat. SF03-020, Specialty Feeds, WA, Australia) ad libitum and injected with vehicle; low 109 

dose AuNP (HFD-LAu) group fed a HFD and received AuNP (0.785μg Au/g, IP); and high dose 110 

AuNP (HFD-HAu) group fed a HFD and received AuNP (7.85μg Au/g, IP) determined according to 111 

our previous study (6). The HFD has been repeatedly used to induce obesity in rodents by us (13-18). 112 

The chow-fed mice treated with AuNP was not adopted in this study as we have shown the fat loss 113 

effect in lean mice (6) and lean humans rarely requires weight loss treatment. AuNPs were prepared 114 

as previously described (6), and injection was performed at 10 am daily for nine weeks.  Food intake 115 

and body weight was monitored weekly. IP glucose tolerance test (IPGTT) was performed at 8 weeks 116 

in randomly selected mice from each group as previously described (15). The area under the curve 117 

(AUC) of glucose levels was calculated for each mouse. Tissues were harvested at 9 weeks after 118 

Pentothal (0.1 mg/g, IP, Abbott Diagnostics, NSW, Australia) anesthesia. Blood glucose was 119 

measured (Accu-Check®, Roche, CA, USA) and plasma was stored at -80°C. Heart, spleen, kidneys, 120 

liver, and abdominal fat pads were weighed and either fixed in 10% formalin or snap frozen in liquid 121 

nitrogen and stored at -80°C. All tissue analysis was performed in a blind manner and the results were 122 

only identified before data analysis. 123 

 124 

In vitro experiments see supplementary materials 125 

 126 

Biochemical analysis:  127 

Plasma and cell supernatant triglycerides were measured using an in house assay using glycerol 128 

standards (Sigma-Aldrich, MO, USA) and triglyceride reagent (Roche Diagnostics, NJ, USA). 129 

Nonesterified free fatty acid (NEFA) was measured using a NEFA kit (WAKO, Osaka, Japan) (19). 130 
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Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using 131 

commercial kits (Dialab Ltd., Vienna, Austria) as an indicator of liver cell damage. Plasma 132 

cholesterol concentration was measured using the Cholesterol CHOD-PAP with ATCS kit (Dialab 133 

Ltd., Vienna, Austria).  134 

 135 

Quantitative real-time PCR:  136 

Total RNA was isolated (n=5-10 randomly selected from each group, cells n=8-10) using TRI reagent 137 

(Sigma-Aldrich, MO, USA). First-strand cDNA was synthesised using M-MLV Reverse 138 

Transcriptase, RNase H Minus, Point Mutant Kit (Promega, WI, USA) (20, 21). Pre-optimized 139 

TaqMan® probe/primers (Supplementary Tables S1, Life Technologies, CA, USA) and SYBR® 140 

Green premiers (Supplementary Table S2, Bio-Rad, CA, USA) (22) were used for the real-time PCR 141 

(Eppendorf Realplex2, Hamburg, Germany). The genes of interest were normalized against the 142 

housekeeping gene 18s rRNA (Table S1). The average value of the control was assigned as the 143 

calibrator, against which all other samples are expressed as a fold difference.  144 

 145 

Immunohistochemistry: 146 

Formalin fixed liver and abdominal fat samples (n=5) were embedded in paraffin and sectioned (4 147 

µm). To explore F4/80 posative cells sections were incubated with a rabbit anti-mouse F4/80 (Abcam, 148 

Cambridge, UK)  primary antibodies, and visualised using the  horseradish peroxidase anti-rabbit 149 

Envision system (Dako Cytochemistry, Tokyo, Japan). The sections were then counterstained with 150 

haematoxylin. Three images from each section were captured and used for analysis. The F4/80-151 

expressing cells were counted and expressed as the percentage of total cell number for a sample total 152 

number of nuclei and the number of nuclei of for each field. 153 

 154 

 155 

Statistical analysis:  156 
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The results were expressed as mean ± standard error of the mean (S.E.M). The data was analyzed 157 

using one-way ANOVA, followed by post hoc Bonferroni tests (Statistica 10. StatSoft Inc. OK, USA), 158 

if normally distributed. If the data was not normally distributed, they were log transformed to achieve 159 

normality of distribution before they were analyzed. The glucose levels during IPGTT were analyzed 160 

using one-way ANOVA with repeat measures followed by post hoc Bonferroni test. P<0.05 was 161 

considered significant. 162 

 163 

Results 164 

1. In vivo Animal Study 165 

1.1. Anthropometry 166 

Four groups of mice started with similar body weight (Table 1). At 9 weeks post-treatment, the HFD-167 

fed (HFD-C) was 35% heavier than the Control (Chow-C) group, with significantly increased organ 168 

and fat masses, as well as blood lipid cholesterol and NEFA concentrations (P<0.05, Table 1). 169 

Adipocyte size was more than doubled in the HFD-C group (P<0.01 vs. Chow-C, Supplementary 170 

Figure S1). Plasma ALT and AST levels were ~3 and 5 times higher in the HFD-C group (P<0.05 vs. 171 

Chow-C, Table 1). Blood glucose levels during IPGTT were also significantly higher in the HFD-C 172 

group than the Chow-C, from 15–90 min post glucose injection (P<0.05, Figure 1a), with 60% greater 173 

AUC value (P< 0.05, Figure 1b). 174 

 175 

The two groups of mice treated with AuNPs consumed more energy than the Chow-C and HFD-C 176 

groups (P<0.05, Table 1). However, the body weights of the HFD-Lau and HFD-HAu groups were 177 

8% and 5% smaller than the HFD-C mice, respectively (P<0.05). Smaller fat masses were observed 178 

in the AuNP-treated mice (P<0.05 retroperitoneal, HFD-C vs. HFD-HAu; mesenteric, HFD-C vs. 179 

HFD-LAu and HFD-HAu, Table 1). However, the fat cell size was larger in the HFD-LAu group, but 180 

smaller in the HFD-HAu group (both P<0.01 vs. HFD-C, Figure S1). Both AuNP-treated groups had 181 

significantly lower blood lipid levels than the HFD-C group (P<0.05) with nearly normalized liver 182 
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AST and ALT levels (P<0.05, Table 1). These results suggest a lipid lowering effect by the AuNPs 183 

and long-term safety and benefit to the liver. During IPGTT (Figure 1a), the HFD-LAu group did not 184 

develop glucose intolerance; while the HFD-HAu group had significantly improved glucose 185 

clearance at 60–90 min (P<0.05 vs. HFD-C, Figure 1a). AUC showed similar changes as the blood 186 

glucose levels in all three HFD groups (Figure 1b). 187 

 188 

1.2 Organ distribution of the AuNPs 189 

After 9 weeks, trace amounts of gold where detected in the Chow-C and HFD-C mice (Supplementary 190 

Table S3) by inductively-coupled plasma-mass spectrometry (Supplementary material), which has 191 

also been observed in humans (3). In both the HFD-LAu and HFD-HAu groups, the highest 192 

concentration of gold was found in the abdominal fat tissue, followed by the spleen and the liver 193 

(P<0.05 vs. Chow-C and HFD-C, Supplementary Table S3). In the HFD-LAu group, gold was 194 

negligible in the kidney, brain and heart (Supplementary Table S3). In the HFD-HAu group, gold was 195 

still detectible in the kidney and brain, but not the heart (P<0.05 vs. Chow-C, HFD-C and HFD-LAu 196 

groups, Supplementary Table S3).  197 

 198 

1.3 mRNA expression of inflammatory and metabolic markers, and the percentage of 199 

macrophages in the fat and liver 200 

In the retroperitoneal fat, TNFα and TLR-4 mRNA levels were significantly up-regulated following 201 

long-term HFD consumption (P<0.05 vs. Chow-C, Figure 2a, b). On the other hand, serum amyloid 202 

A (SAA)-1 level was more than 5 times that of the control mice, however without statistical 203 

significance (Figure 2c). However, the percentage of macrophages was not changed by HFD 204 

consumption (Figure 2d). In the HFD-LAu group, TNFα and SAA-1 mRNA expression levels were 205 

significantly down-regulated (P<0.05 vs. HFD-C, Figure 2a,c); as was TLR-4 level by ~50% however 206 

without statistical significance (Figure 2b). In the HFD-HAu group, both TLR-4 and SAA-1 207 

expression levels were significantly reduced (P<0.05 vs. HFD-C, Figure 2b,c). The percentage of 208 
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macrophages was halved in HFD-LAu group although without statistical significance, which was not 209 

altered in HFD-HAu group (Figure 2d). 210 

 211 

In the liver, HFD consumption alone significantly up-regulated TNFα mRNA expression (P<0.05 vs. 212 

Chow-C, Figure 2e). SAA-1 mRNA levels were nearly doubled in the HFD-C group however without 213 

statistical significance (Figure 2g). The percentage of macrophages was significantly increased by 214 

HFD consumption (P<0.05 HFD-C vs. Chow-C, Figure 2h). Both TNFα and TLR-4 mRNA 215 

expression levels were significantly reduced by HFD-LAu treatment; however TLR-4 and SAA-1 216 

expression levels were increased in HFD-HAu group (P<0.05 vs. HFD-C, Figure 2). AuNP-treatment 217 

normalized the percentage of macrophages relative to control animals (P<0.05 vs. HFD-C, Figure 2h). 218 

 219 

In the fat tissue, mRNA levels of glucose transporter (GLUT)4 and adiponectin were significantly 220 

reduced; while ATGL, carnitine palmitoyl transferase (CPT-1α), and leptin were significantly 221 

increased following HFD consumption (P<0.05 vs. Chow-C, Figure 3a,b,c,g). Conversely, HFD-LAu 222 

treatment significantly lowered CPT-1α mRNA expression (P<0.05 vs. HFD-C, Figure 3c); while 223 

HFD-HAu treatment significantly down-regulated leptin, but increased adiponectin mRNA 224 

expression (P<0.05 vs. HFD-C, Figure 3e,g).  225 

 226 

In the liver, GLUT4 and Sterol regulatory element-binding transcription factor (SREBP)-1c mRNA 227 

expression levels were significantly up-regulated; while CPT-1α mRNA expression was significantly 228 

down-regulated following HFD consumption (P<0.05 vs. Chow-C, Figure 4a,c,d). Although fatty 229 

acid synthase (FASN) was increased by 35% and forkhead box O1 (FOXO1) expression was up-230 

regulated by more than 50%, neither was significant (Figure 4e,f). HFD-LAu group had significantly 231 

reduced SREBP-1c and FASN mRNA expression (P<0.05 vs. HFD-C, Figure 4d,e). The HFD-HAu 232 

group had significantly increased GLUT4 (P<0.05 vs. HFD-C, Figure 4a), and higher levels of 233 

FOXO1 compared to the Chow-C group (P<0.05, Figure 4f). 234 
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 235 

2 In vitro studies 236 

2.1 Effects of AuNPs on M cell lines 237 

Low concentration of AuNPs reduced cell viability at 24h and 72h post incubation (P<0.05 vs. M-238 

C, Supplementary Figure S2b,c). Cell viability was reduced in the M-HAu group across all three 239 

time points (P<0.05, 0.01 vs. M-C, Supplementary Figure S2a–c). Reactive oxygen species (ROS) 240 

levels were only significantly increased in the MHAu group at 24h (P<0.01 vs. M-C, 241 

Supplementary Figure S2e).  242 

 243 

TNFα mRNA expression was only significantly reduced in the MΦ-HAu group at 1h (P<0.05 vs. 244 

MΦ-C, Supplementary Figure S3a), but was significantly increased in both MΦ-LAu and MΦ-HAu 245 

groups at 24h (P<0.05 vs. MΦ-C, Supplementary Figure S3b). TLR-4 mRNA expression was 246 

significantly reduced in the MΦ-HAu group at both 1h and 72h (P<0.05 vs. MΦ-C, Supplementary 247 

Figure S3d,f). However, TLR-4 and TNFα protein levels were not changed by AuNPs, which were 248 

significantly increased in the positive control LPS incubated cells (P<0.05 vs. MΦ-C, Supplementary 249 

Figure S4a–c). However, AuNPs cannot suppress LPS induced increase in TLR-4 and TNFα protein 250 

levels (data not shown).  251 

 252 

2.2 Effects of AuNPs on 3T3-L1 adipocytes 253 

Cell viability of the mature 3T3-L1 adipocytes (Supplementary Figure S5a–c), and 3T3-L1 254 

differentiation from fibroblast (data not shown) were not affected by AuNPs. ROS production was 255 

increased in the AD-HAu group at 24h (P<0.05 vs. AD-C, Supplementary Figure S5e). Lipid 256 

accumulated was significantly reduced in the AD-HAu group at 1h (P<0.05 vs. AD-C, Supplementary 257 

Figure S5g); it was significantly increased by 9% in this group at 72h (P<0.01 vs. AD-C, 258 

Supplementary Figure S5i). In addition, adipocyte cell size was increased in the AD-LAu group at 259 

24h, however it was reduced in the AD-HAu group at 72 h (P<0.05 vs. AD-C, Supplementary Table 260 
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S4). Triglycerides levels secreted into the culture media were similar between the three groups at all 261 

time points (Supplementary Table S4). 262 

 263 

GLUT-4 mRNA levels were significantly down-regulated in both AD-LAu and AD-HAu at 72h 264 

(P<0.01,0.05 vs. AD-C, Supplementary Figure S6c). ATGL was significantly reduced in the AD-265 

LAu group at 24h (P<0.05 vs. AD-C, Supplementary Figure S6e). Under low ambient glucose 266 

concentration, glucose uptake was significantly reduced in the AD-HAu group at 60min (P<0.05 vs. 267 

AD-C, Supplementary Figure S7a); whereas under high ambient glucose concentration, glucose 268 

uptake was significantly increased at 5min in the AD-LAu group (P<0.05 vs. AD-C, Supplementary 269 

Figure S7b). 270 

 271 

2.3 Effects of AuNPs on adipocytes and macrophages in co-culture (MΦ+AD) 272 

In this co-culture system, cell viability and ROS production were similar among the groups at all 273 

three time points (Supplementary Figure S8). TLR-4 was significantly increased at 24h in the 274 

(MΦ+AD)-HAu group (P<0.05 vs. (MΦ+AD)-C, Supplementary Figure S9e). For the metabolic 275 

markers, at 24 h GLUT-4 and ATGL mRNA was significantly up-regulated in both (MΦ+AD)-LAu 276 

and (MΦ+AD)-HAu groups (P<0.05 vs. (MΦ+AD)-C, Supplementary Figure 9b,e). CPT-1α mRNA 277 

levels were up-regulated 1.3-fold in the (MΦ+AD)-HAu group versus the control group at 24 h 278 

(P<0.05 vs. (MΦ+AD)-C, Supplementary Figure 9h).  279 

 280 

Discussion  281 

In HFD-fed mice, AuNPs slowed down the development of obesity with significantly improved lipid 282 

metabolic profile. It also provided a marked protective effect against the development of glucose 283 

intolerance, which is recognized as a first step towards type 2 diabetes. In particular, the lower dose 284 

provided better outcomes. A reduction in local inflammation within the adipose tissue and the liver 285 

may service as the underlying mechanism; while the in vitro co-culturing data support AuNP’s 286 
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regulation of cellular interactions between macrophages and adipocytes as orchestrating these anti-287 

inflammatory events. 288 

 289 

In the current study, the males are not affected by periodical changes in sex hormones and are 290 

therefore used for this study to prove the concept. The mice fed a HFD ad libitum for 9 weeks showed 291 

a significant increase in their fat mass and developed glucose intolerance, dyslipidemia, and liver 292 

steatosis, which are consistent with our previous studies (15, 21, 23). Liver enzyme levels were also 293 

increased by several folds in the HFD-fed mice, suggesting liver cell damage. However, daily AuNP 294 

injection significantly ameliorated such effects by HFD consumption, with significant improvement 295 

in glucose and lipid metabolism. Liver enzyme changes may suggest a liver protection of AuNPs 296 

against dietary lipid influx induced liver damage.  297 

 298 

Clinical research suggests that loss of as little as 5% of total body weight can reduce the risk of 299 

developing type 2 diabetes by 58% (24). This benefit was well supported by the current study. The 300 

HFD-LAu group showed 8% less body weight and demonstrated normal glucose clearance during 301 

IPGTT, while the HFD-HAu group, with 5% less body weight, demonstrated significantly improved 302 

glycaemic control. It needs to be noted that this effect was achieved under the condition of free access 303 

to HFD without any restriction that employed by the human clinical trial (2). Their daily caloric intake 304 

was even higher than non-treated mice consuming HFD. This may be an adaptation to their reduced 305 

fat mass; where smaller fat mass may be due to increased CPT-1α expression to increase fatty acid 306 

oxidation for energy synthesis. Therefore, it can be postulated that combining the AuNP treatment 307 

with restricted energy intake to the level of the Chow-C group may exert more pronounced weight 308 

loss effect. This is yet to be confirmed by future studies. The low concentration of AuNP seems to 309 

exert a better effect than the high contraction. This may be due to the aggregative nature of the AuNPs 310 

at high concentration, which results in less free monodispersed AuNPs entering the tissue and the 311 

circulation, as well as impacting on the cells. The effects of AuNP are well known to be highly 312 
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dependent on particle size (25). As this was the first study to show the anti-obesity effect of the 313 

AuNPs, ip injection was chosen as it is the most convenient method of AuNP delivery. In future 314 

studies, we will test the efficacy of subcutaneous injection and oral delivery, which are the common 315 

administration method in humans.  In addition, for unknown reasons, the lower dose AuNPs seems 316 

to stimulate insulin secretion, which may have contributed to normalized glycaemic control in this 317 

group. This result warrants further investigation of the interaction between AuNPs and β-cells.  318 

 319 

Increased macrophage infiltration has been suggested to contribute to the low-grade inflammation 320 

state commonly associated with obesity (26). During HFD consumption, excessive fat accumulation 321 

in the abdominal fat tissue increases the recruitment of ATMs (27), producing pro-inflammatory 322 

cytokines (e.g. TNFα), which in turn drives obesity-related metabolic disorders (28, 29), (27, 30, 31). 323 

TNFα is known to reduce free fatty acid transporter and extracellular lipoprotein lipase activity, 324 

thereafter inhibit the uptake of fatty acids into fat cells, leading to hyperlipidemia and ectopic lipid 325 

storage (eg. in the liver); while local lipid accumulation is a key contributor to insulin resistance (32). 326 

TNFα itself can also interrupt insulin signaling, causing reduced glucose uptake (33). In this study, 327 

F4/80 expressing macrophages were increased in the liver following HFD consumption, and this was 328 

reduced by the treatment with AuNPs, demonstrating a direct anti-inflammatory effect. The 329 

percentage of F4/80 positive macrophages were not increased by HFD consumption in the abdominal 330 

fat tissue.  Longer HFD feeding duration may be need to observe increased macrophages in the fat 331 

tissue as shown in the other study, while the macrophages are not the only immune cells in the fat 332 

causing inflammatory responses (34).  We think that the increase in the liver and not in the fat 333 

represents different recruitment dynamics in this model. Irrespective of macrophage accumulation, 334 

TNFα and upstream TLR-4 mRNA expression were both increased. As such, fat derived adiponectin 335 

(insulin sensing promotor) and GLUT4 (insulin dependent glucose transporter) were significantly 336 

down-regulated in the HFD-C mice, resulting in glucose intolerance. The up-regulation of ATGL, 337 

CPT-1α and leptin in the fat tissue reflects an increase in lipid influx into the adipocytes, while 338 
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increased ATGL may contribute to nearly doubled blood NEFA levels following HFD consumption. 339 

Similar changes in TNFα were seen in the liver, resulting from excessive liver lipid storage which 340 

would activate the Kupffer cells (liver macrophage-like cells)(35). This inflammatory response in 341 

turn stimulates SREBP-1c which further activates FASN activity to increase lipogenesis (36),  leading 342 

to a fatty liver (36, 37). This study strongly points to an anti-inflammatory effect by the AuNPs, via 343 

suppressing pro-inflammatory cytokine production in both the fat and liver tissues, regardless of the 344 

impact on macrophage numbers.   345 

 346 

Interestingly, the changes in metabolic markers were not consistent in the HFD-LAu and HFD-HAu 347 

groups, suggesting different working mechanisms. In the HFD-Lau group, increased fat CPT-1α may 348 

increase lipid oxidation, resulting in a better blood lipid profile and smaller fat mass (38). Upon AuNP 349 

treatment, liver lipogenesis appeared to be suppressed with a synchronized down-regulation of 350 

SREBP-1c and FASN mRNA levels. Based on these observations, we propose that low dose AuNP 351 

could reduce hepatic ectopic lipid deposition to impede the development of obesity-associated fatty 352 

liver disease. In the HFD-HAu group, increases in fat GLUT4 and adiponectin is suggestive of an 353 

improved insulin response and glucose uptake. There was a drastic increase in GLUT4 by AuNP 354 

treatment in this group, which may contribute to significantly improved glucose clearance during 355 

IPGTT.  356 

 357 

The in vitro study allowed us to examine the impact of AuNPs on individual cell types, as well as 358 

their interactions via the use of a contact co-culture system. Interestingly, AuNPs induced 359 

inflammatory responses in macrophages cultured alone as foreign objectives; however this response 360 

seemed to be suppressed when grown in the presence of adipocytes. Increased oxidative stress has 361 

been suggested to be the major cause of organ toxicity (39). Increased ROS production appeared in 362 

macrophages treated with high concentration of AuNP in line with reduced cell viability; however 363 

such changes diminished with the co-culture with adipocytes suggesting unknown antioxidative 364 
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mechanism due to the interaction between these two cell types. Similarly, AuNP treatment of 365 

adipocytes cultured alone did not change their differentiation rate into mature adipocytes, nor 366 

metabolic markers. However, it did result in reduced lipid droplet size, which may contribute to slow-367 

down fat accumulation during HFD consumption. On the other hand, AuNP treatment of adipocytes 368 

co-cultured with macrophages resulted in metabolic marker change that may potentially improve lipid 369 

metabolism as well as glucose uptake. Given that the co-cultured adipocyte and macrophage more 370 

closely resembles conditions in vivo, this suggests that the same interactions may be occurring within 371 

the mice treated with AuNPs. These studies also highlight the limitation of using single-cell culture 372 

systems. Additionally, these changes were more prominent at 24h, suggesting daily administration of 373 

the AuNPs is desired to exert a continuous and more refined metabolic effect. 374 

 375 

Neutralization of circulating TNFα alone has been shown to increase insulin sensitivity and glucose 376 

uptake in peripheral tissues, although to date, such approaches have not been successfully translated 377 

into humans (27, 30, 31). This is perhaps due to the involvement of other pro-inflammatory cytokines 378 

yet to be defined. Therefore, altering macrophage responses may be the key to inhibit systemic 379 

inflammatory processes. AuNPs emerge as highly suitable candidates to carry out this task, with both 380 

TNFα and TLR-4 down-regulated upon AuNP administration, consistent with our previous acute 381 

study in lean mice (6). The uptake and elimination of the gold from tissues is still a key issue when 382 

considering long-term treatments. In line with previous studies, AuNPs were taken up into the 383 

surrounding abdominal fat after repeated IP administration, which were then able to enter the blood 384 

stream, from which they then distribute and accumulate within other organs (6, 40). 385 

 386 

Conclusions 387 

In conclusion, the alterations in the local pro-inflammatory cytokine environment by AuNPs may be 388 

the key underlying mechanism for the weight reduction in HFD-fed mice. Specifically, AuNP-treated 389 

mice were protected against the development of HFD-induced glucose intolerance as well as 390 
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hyperlipidemia. AuNPs may serve as a new paradigm to inspire treatments for weight loss and the 391 

prevention of obesity-related metabolic disorders and as a useful research tool to probe biological 392 

mechanisms. 393 
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Figure legends 547 

Figure 1 (a) intraperitoneal glucose tolerance test (IPGTT, glucose 2g/kg), (b) area under the curve 548 

(AUC) of the (a), at 8 weeks of treatment. Data are expressed in mean ± S.E.M. IPGTT difference in 549 

(a) were analyzed using one-way ANOVA with repeat measures followed by post hoc Bonferroni 550 

test. * P< 0.05, Chow-C and HFD-LAu vs. HFD-C at 15 min; † P< 0.05, Chow-C and HFD-LAu vs. 551 

HFD-C at 30 min; ‡ P< 0.05, Chow-C, HFD-LAu, and HFD-HAu vs. HFD-C at 60 min; γ P< 0.05, 552 

Chow-C, HFD-LAu, and HFD-HAu vs. HFD-C at 90 min. AUC difference in (b) were analyzed using 553 

one-way ANOVA followed by post hoc Bonferroni test. * P<0.05 vs. Chow-C group; † P<0.05 vs. 554 

HFD-C group; n=6. 555 

 556 

Figure 2 Retroperitoneal fat and liver mRNA expression of (a, e) TNFα, (b, f) TLR-4, (c, g) and 557 

SAA-1 in the Chow-C, HFD-C, HFD-LAu, and HFD-HAu mice at 9 weeks of treatment. The 558 

percentage of macrophage number and representative image of macrophage number in the abdominal 559 

fat (d) and liver (h) tissues by immunohistochemistry (IHC) staining at the same time point. Results 560 

are expressed as mean ± S.E.M, relative to 18s. Data were analyzed by one-way ANOVA followed 561 

by post hoc Bonferroni test. * P<0.05 vs. Chow-C; ** P<0.01 vs. Chow-C; † P<0.05 vs. HFD-C; †† 562 

P<0.01 vs. HFD-C. n=5-10. 563 

 564 

Figure 3 Retroperitoneal fat mRNA expression of (a) GLUT-4, (b) ATGL, (c) CPT-1α, (d) SREBP-565 

1c, (e) adiponectin, (f) FOXO1, and (g) leptin in Chow-C, HFD-C, HFD-LAu, and HFD-HAu mice 566 

at 9 weeks of treatment. Results are expressed as mean ± S.E.M, relative to 18s. Data were analyzed 567 

by one-way ANOVA followed by post hoc Bonferroni test. * P<0.05 vs. Chow-C; ** P<0.01 vs. 568 

Chow-C; † P<0.05 vs. HFD-C; †† P<0.01 vs. HFD-C; n=5-10.  569 

 570 

Figure 4 Liver mRNA expression of (a) GLUT-4, (b) ATGL, (c) CPT-1α, (d) SREBP-1c, (e) FASN, 571 

and (f) FOXO1 in Chow-C, HFD-C, HFD-LAu, and HFD-HAu mice at 9 weeks of treatment. Results 572 
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are expressed as mean ± S.E.M, relative to 18s. Data were analyzed by one-way ANOVA followed 573 

by post hoc Bonferroni test. * P<0.05 vs. Chow-C; ** P<0.01 vs. Chow-C; † P<0.05 vs. HFD-C; †† 574 

P<0.01 vs. HFD-C; n=5-10. 575 

 576 


