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Abstract: Noble metal nanoparticles have been sought after in cancer nanomedicine during the past
two decades, owing to the unique localized surface plasmon resonance that induces strong absorption
and scattering properties of the nanoparticles. A popular application of noble metal nanoparticles
is photothermal therapy, which destroys cancer cells by heat generated by laser irradiation of the
nanoparticles. Gold nanorods have stood out as one of the major types of noble metal nanoparticles
for photothermal therapy due to the facile tuning of their optical properties in the tissue penetrative
near infrared region, strong photothermal conversion efficiency, and long blood circulation half-life
after surface modification with stealthy polymers. In this review, we will summarize the optical
properties of gold nanorods and their applications in photothermal therapy. We will also discuss the
recent strategies to improve gold nanorod-assisted photothermal therapy through combination with
chemotherapy and photodynamic therapy.
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1. Introduction

In 2020, over 9 million people died of cancer and over 19 million new cancer cases
were reported globally making cancer one of the deadliest diseases currently afflicting
humankind [1]. Being a genetic disease characterized as an out-of- control proliferation
of abnormal cells [2], cancer has been managed with novel treatments and more efficient
early detection methods, but many of these treatments have serious side effects that require
immediate mitigation [3].

Currently, mainstream treatment options are chemotherapy, radiotherapy, immunother-
apy, and surgery. However, each of these treatments have significant shortcomings [4].
For example, due to the heterogeneity of cancer, chemotherapy, which is used to target
quickly dividing cancerous cells, has the side effect of non-specific harm to normal cells [5].
Additionally, many chemotherapy drugs become ineffectual over time as cancerous cells
quickly develop a resistance [6]. On the other hand, surgery, which is often used as a
frontline defense for removing primary tumors, is invasive and can increase the risk of
developing secondary cancers [7], while radiotherapy and immunotherapy can negatively
impact the immune system [8,9].

To combat the complexity of cancer and the associated risks with current treatment
options, attempts have been made to increase the efficacy and lower the safety risks of
available therapeutic strategies. Among these attempts is photothermal therapy (PTT), a
technique in which various sources of electromagnetic energy such as visible light, infrared,
near infrared, radio waves, or microwaves, are used to heat localized areas of tissue in order
to kill cancer cells via light-to-heat conversion [10]. However, due to the low absorption
efficiency of tissue and the limited efficacy of many externally administered photothermal
agents such as organic dyes, the adoption of PTT in clinical settings has been limited.

In the last two decades, the emergence of photothermally active nanoparticles have
garnered new attention for PTT, reviving it as relevant strategy for non-invasive removal of
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cancerous tumors [4,11]. A number of nanoplatforms have been reported, including metal
nanoparticles of various compositions, shapes and structures, carbon nanoparticles and
nanotubes, graphene oxide, and some other inorganic nanoparticles such as copper chalco-
genide [12–20]. The most popular type of NPs are near infrared (NIR)-absorbing AuNPs,
including Au nanoshells, Au nanorods (AuNRs), Au nanocages, hollow Au nanospheres,
and Au nanostars [21–23]. These nanoplatforms exhibit high photothermal properties,
superior to previously used non- metal materials. The NIR light is beneficial for deep tissue
penetration. Additionally, these particles have shown excellent biocompatibility and func-
tionality, making them a viable alternative to other less effective externally administered
agents. This gives rise to an enhanced form of PTT known as plasmonic photothermal
therapy (PPTT) [24].

Of the existing NIR-absorbing Au nanoplatforms, AuNRs are especially intriguing
for PTT due to their outstanding properties [25–27]. AuNRs are small, only about 40 nm
in length and 10 nm in width [12]. However, the prototype Au nanoshells are more than
100 nm in diameter [28]. High quality AuNRs can be facilely prepared by the classic seed-
mediated growth method [29,30], which is easier than the synthesis of Au nanoshells and
nanocages. AuNRs exhibit excellent optical tunability by changing the aspect ratio (AR,
length/width) of the particle [31]. Changing the AR can be facility achieved by changing
the concentration of silver nitrate in the seed-mediated growth method [14]. It is also shown
that AuNRs exhibit superior photothermal heat generation and blood circulation half-life
(t1/2 = 17 h) [32] compared to Au nanoshells (t1/2 = 3–4 h) [33]. Furthermore, AuNRs can
be easily conjugated with a plethora of bioactive and cancer killing species, opening the
door for combination therapy such as PPTT + chemotherapy or PPTT + photodynamic
therapy (PDT).

In this review, we start with a brief synopsis of the localized surface plasmon res-
onance (LSPR) property of AuNRs and their tuning by the dimension of the particles.
This is followed by photothermal property that bases the PPTT. The PPTT is discussed
by the tumor targeting mechanisms, passive and active tumor targeting. Combinational
therapies with AuNRs are discussed based on the type of loaded drugs and are classi-
fied into PPTT + Chemotherapy and PPTT + PDT. The PPTT + chemotherapy is further
discussed in terms of the mechanisms of drug releases that include mainly pH depen-
dent, photo/thermo-responsive, and enzymatic drug release. At the end, we outline
future direction of AuNR-assisted PPTT as well as barriers that need to be overcome for
clinical applications.

2. Optical Properties of Gold Nanorods (AuNRs)
2.1. Localized Surface Plasmon Resonance (LSPR)

As a metallic particle is reduced to a size comparable to or smaller than the electron
mean free path (about 100 nm), the particle exhibits a unique photophysical phenomenon
called localized surface plasmon resonance (LSPR) [25]. When electromagnetic radiation is
shined onto such a plasmonic nanoscale metallic particle, the oscillating electromagnetic
field interacts with the conduction band electrons of the particle, causing the electrons
to oscillate coherently with the incident field and thereby inducing charge separation on
the particle. At a specific frequency, the amplitude of the oscillation attains a maximum,
thereby reaching plasmon resonance [34]. This resonance induces strong absorption and
scattering (extinction) of the incident light, particularly when the NP consists of noble
metals such as Au or silver (Ag). It is this resonance which confers the unique photothermal
properties to AuNRs.

The intensity of the LSPR band as well as the peak absorption wavelength depends on
many physical properties of the NP, such as size, shape, charge density, and composition,
as was first described by Gustav Mie in the early 1900s [35]. For example, Au colloid
exhibits longer LSPR wavelength than silver colloid of the same size, whereas both metals
demonstrate shorter wavelengths as the particle sizes are decreased [36]. Additionally,
it is usually observed that Ag colloid yields higher scattering efficiencies than that of
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the same shape and size particles of Au colloid. Since physical characteristics play such
important roles in LSPR, it is desirable and possible to design NPs of certain size, shape, and
composition to have particular LSPR. For example, AuNRs are tunable in that their LSPR
can be easily adjusted to desired wavelengths by altering certain synthesis parameters,
such as the chemical concentrations of reagents [29,30,37]. This has important implications
for PPTT as only certain wavelengths of light are effective for treatment, specifically in the
NIR region.

In traditional PTT, various wavelengths of light such has microwaves, visible, and UV
are used since it is the tissue itself being targeted. However, in PPTT the incident light is
directed onto the NPs themselves in order to heat the surrounding tissue [38]. Since these
NPs are injected into the deep tissue, a wavelength of light must be chosen that will not be
easily absorbed by the water and hemoglobin contained within the tissue, and must also
possess enough energy to penetrate down to the NPs to irradiate them. The wavelengths
of light fulfilling these requirements are in the NIR window ranging from approximately
700 nm to 2500 nm, where wavelengths ranging from about 700 nm to 1000 nm are typically
used as tissue increasingly absorbs wavelengths starting at 950 nm [39–41]. By altering
the physical dimensions of the AuNRs, UV radiation can more efficiently be absorbed or
scattered by the particles.

AuNRs are inherently anisotropic, a characteristic which manifests as two distinct
regions of extinction, known as the longitudinal and the transverse peaks that corresponds
to the electron oscillations along the long axis and short axis, respectively (Figure 1). By
varying the length of the AuNRs, different ARs can be generated which result in shifted
UV–visible spectra [42]. Along the longitudinal axis, the surface plasmon oscillation results
in an absorption band with a longer, redshifted wavelength as the AR is increased, while the
transverse absorption band remains relatively unchanged. The optical behavior responsible
for these effects has been well understood using Gans theory [43].

Adjusting the optical window for AuNRs can be accomplished using the seed-mediated
synthesis approach [29,44]. In a typical procedure, 2–5 nm of AuNPs were synthesized by
reduction of chloroauric acid (2 mL, 0.25 mM) with ice-cold sodium borohydride (120 µL,
10 mM) in the presence of 0.1 M cetrimonium bromide (CTAB). A 10 mL of growth solution
containing 0.5 mM chloroauric acid, 0.1 M CTAB, and 80 µM silver nitrate was prepared,
followed by the reduction of the chloroauric acid in the growth solution with ascorbic acid
(0.14 mL, 80 mM). To the reduced growth solution, 14 µL of the seed solution is injected
and AuNRs with AR of 3.5 will be formed within 2 h. By adjusting the concentration of
silver nitrate in the growth solution, AuNRs with different ARs are formed, with higher
concentration of silver nitrate leading to AuNRs of higher ARs. The mechanism of the
formation of AuNRs has been demonstrated to be the symmetry breaking of small AuNPs
by preferential deposition of Ag atoms or the binding of CTAB [29]. Symmetry breaking
leads to the formation of stable Au {111} faces and less stable Au {100} faces. Thus, Au
atoms are preferentially deposited onto Au {100} faces, leading to the formation of rod
shape nanoparticles.

Recently, Gonzalez-Rubio reported the novel synthesis of high quality AuNRs by
disconnecting symmetry breaking from the seeded growth process [45]. The authors added
n-decanol as the co-surfactant to prepare small AuNRs as the seeds. The use of n-decanol
provides a more-rigid micellar system to make seeds in high yield. The growth of AuNRs
from anisotropic small AuNR seeds greatly improves the reproducibility of AuNR synthesis
by avoiding the irreproducibility during the symmetry breaking step using the 2–5 nm Au
nanosphere as the seeds in the traditional synthesis. This new and robust method can make
uniform AuNRs with LSPR from 600 nm to 1270 nm, allowing fine control of the dimension
of AuNRs and the corresponding optical properties from NIR to far-red spectral window.
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Figure 1. Optical Properties of AuNRs. (A) Schematic of the coherent and collective electron oscil-
lations along the long and short axes of AuNRs resulting in longitudinal and transverse LSPR bands, 
respectively. Blue line is electric field and red line is magnetic field. (B) Dependence of LSPR of 
AuNRs on the aspect ratio (AR). Increasing AR leads to red shift of the longitudinal LSPR. (C) Pho-
tographic picture of the solution of AuNRs with different ARs. (D−F) TEM images of AuNRs with 
aspect ratio of 2.9 (C), 4.0 (D), and 4.6 (E). 

2.2. Photothermal Property 
Generating the heat necessary for the destruction of cancer cells via plasmonic NPs 

takes place through a series of photo-physical processes [46]. The formation of a hot me-
tallic lattice by the absorbed light occurs via two distinct processes: electron–electron re-
laxation and electron–phonon relaxation. Extremely hot electron temperatures are achiev-
able with these processes as temperatures can approach several thousands of degrees kel-
vin while lattice temperatures of a few tens of degrees can be attained. Heating of the local 
environment is then achieved through phonon–phonon relaxation of the lattice, which is 
the main route by which cancer cells can be destroyed or their functions dramatically al-
tered. Tuning the AuNR LSPR bands allows for strong absorption of the incident light, 
resulting in more efficient heating of the local environment and therefore more efficient 
cancer cell destruction.  
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Figure 1. Optical Properties of AuNRs. (A) Schematic of the coherent and collective electron oscillations
along the long and short axes of AuNRs resulting in longitudinal and transverse LSPR bands, respectively.
Blue line is electric field and red line is magnetic field. (B) Dependence of LSPR of AuNRs on the
aspect ratio (AR). Increasing AR leads to red shift of the longitudinal LSPR. (C) Photographic picture
of the solution of AuNRs with different ARs. (D–F) TEM images of AuNRs with aspect ratio of
2.9 (C), 4.0 (D), and 4.6 (E).

2.2. Photothermal Property

Generating the heat necessary for the destruction of cancer cells via plasmonic NPs
takes place through a series of photo-physical processes [46]. The formation of a hot metallic
lattice by the absorbed light occurs via two distinct processes: electron–electron relaxation
and electron–phonon relaxation. Extremely hot electron temperatures are achievable
with these processes as temperatures can approach several thousands of degrees kelvin
while lattice temperatures of a few tens of degrees can be attained. Heating of the local
environment is then achieved through phonon–phonon relaxation of the lattice, which
is the main route by which cancer cells can be destroyed or their functions dramatically
altered. Tuning the AuNR LSPR bands allows for strong absorption of the incident light,
resulting in more efficient heating of the local environment and therefore more efficient
cancer cell destruction.
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The photothermal conversion efficiency (PCE), η is calculated using the following equation:

η =
hS (Tmax − Tamb)− Qdis

I(1 − 10−A)
(1)

where h is the heat transfer coefficient, S is the surface area of the container, Tmax is the
maximum equilibrium temperature, Tamb is the ambient temperature of the surroundings,
Qdis is a parameter expressing the laser-induced heat input by the container, I is the laser
power, and A is the absorbance of the NPs at the laser wavelength [47]. Qdis (mW) is
determined using water as the control by:

Qdis = 103 m C ∆T/t (2)

Kim et al. summarized the PCE of AuNPs of various shapes and structures including
AuNRs, Au nanoshells, and Au nanocages [48]. AuNRs have a PCE of 50% or higher
depending on the AR and the wavelength of the illumination laser [49,50]. The PCE of
AuNRs is higher than Au nanoshells and comparable to Au nanocages [48].

3. Plasmonic Photothermal Therapy (PPTT)

One of the primary concerns of cancer is the spreading and invasion of cancer cells.
These collections of abnormal cells essentially poison the surrounding healthy tissue by
blocking nutrients and oxygen while allowing waste product concentrations to increase.
As cancer progresses, cancerous cells from these tumors can become dislodged and migrate
to other parts of the body in a process called metastasis. Oftentimes, these metastatic sites
develop secondary tumors in which the cells resemble those of the primary tumor [51].
This process of metastasis and tumor formation is responsible for 90% of cancer related
human deaths [52].

To target cancerous tumors effectively, therapeutics must have some specificity for
tumor cells, otherwise the therapy will non-specifically attack surround healthy tissue
resulting in no net benefit of the therapy. Traditional PTT uses light of various wavelengths
to directly irradiate cancerous tissue. However, healthy tissue is damaged in the process as
the therapy is inherently nonspecific [53,54]. This process allows the AuNRs to be targeted
instead of direct irradiation of the tissue, resulting in more specific approach of PTT known
as PPTT.

3.1. PPTT with Passively Targeting AuNRs

In the late 1990s and early 2000s, several groups began demonstrating that various
NPs could be taken up by cancerous cells and utilized for enhanced PTT [55]. However, it
soon became clear that the circulation time and accumulation of NPs in cells needed to be
improved. While AuNRs can be taken up by cells, this passive accumulation is limited due
to the body’s natural defense mechanisms, specifically by phagocytic clearance through
the reticuloendothelial system (RES) [56]. It is therefore necessary to develop methods that
allow the AuNRs to evade the immune system.

Over the years, bioconjugation methods have been developed to ‘hide’ NPs to increase
their retention time in the bloodstream as well as increase their concentration at tumor
sites. One of the most successful methods of increasing the biocompatibility of AuNRs is
PEGylation, which is to coat AuNPs with polyethylene glycol (PEG) [57]. In this method,
the toxic stabilizing surfactant, CTAB that coats the AuNRs and helps maintain uniform
dispersion of AuNRs, is replaced by a thiol–terminated PEG group. The retention time,
cellular uptake, and overall biocompatibility of AuNRs are greatly enhanced due to the
affinity of PEG for lipid membranes and their low immune response [58–60]. The studies
by Huang et al. using inductively coupled plasma mass spectrometry (ICP-MS), showed
that the blood half-life time for the PEGylatied AuNRs was 12.5 h, which is 3 to 6 h longer
than AuNRs linked with active targeting peptides such as single-chain variable fragment
of epidermal growth factor receptor (Sv-EGFR), aminoterminalfragment (ATF), and cyclic
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arginine-glycine-aspartate (c-RGD) peptide [61] (Figure 2A). In contrast, the CTAB-capped
AuNRs were cleared from the blood circulation within 15 min while the PEGylated AuNRs
were mainly accumulated in spleen while the CTAB-coated AuNRs are accumulated in
liver [62].

The research by Huang et al. also showed that the uptake of PEGylated AuNRs by RES
organs such as liver and spleen was also significantly lower than AuNRs with targeting
ligands Sv-EGFR, ATF, or c-RGD peptide (Figure 2B) [61]. This is not surprising since the
targeting ligands make the AuNRs less stealthy and more susceptible to clearance by the
immune system. It is interesting to see that targeting ligands do not always have higher
tumor uptake than PEGylated NPs. As a matter of fact, the AuNRs conjugated with c-RGD
peptide had lower tumor uptake than the PEGylated AuNRs (Figure 2C). This is due to the
much faster blood clearance and higher RES uptake of the c-RGD conjugated AuNRs than
the PEGylated AuNRs.
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In 2008, Dickerson et al. demonstrated the feasibility of in vivo NIR PPTT with
PEGylated AuNRs [63]. In this study, AuNRs with AR of 4.0 were modified with methoxy-
PEG-thiol (mPEG-SH) with molecular weight of 5000. Mice bearing head and neck HSC-3
xenografts were administrated with PEGylated AuNRs either via tail vein or by direct
injection into tumor. AuNRs inside tumors can be clearly visualized by NIR imaging due to
the attenuation of light by the absorption of AuNRs (Figure 2D). For the treatment, tumors
were exposed to NIR light (1.7–1.9 W/cm2, 6 mm in diameter) with a small and portable
808 nm diode laser for 10 min. Thermal measurements showed a temperature increase
of tumor interstitial by over 20 ◦C for both direct and intravenous PPTT (Figure 2E,F).
By monitoring tumor growth after treatment, the authors observed a >74% decrease in
average tumor growth for intravenously-treated HSC-3 xenografts and a >96% decrease
in average tumor growth for directly treated group at day 13 (relative to control tumors)
(Figure 2G). Moreover, resorption of >57% of the directly treated tumors and 25% of the
intravenously-treated tumors was observed over the monitoring period. The dramatic
inhibition of tumor growth in the squamous cell carcinoma xenograft model suggests high
clinical potential of PPTT with PEGylated AuNRs.

Currently, PEGylation remain the most widely used surface functionalization for pas-
sive PPTT [64]. However, Chitosan, a natural polymer, is another popular biocompatible
chemical with which to functionalize AuNRs, due to its ability to act as a backbone for
thiomers excellent biocompatibility, biodegradable nature, cheap cost, and ease of modifica-
tion using functional groups [65,66]. Additionally, chitosan can be used to increase specific
tumor targeting as well as increase circulation time [39]. Choi et al. conjugated AuNRs
with chitosan and found the particles displayed long circulation time and good tumor
accumulation, as well as enhanced tumor targeting as opposed to AuNRs not conjugated
with chitosan [67]. In their studies, the group incubated their chitosan coated AuNRs with
tumor and fibroblast cells, which were then irradiated with 780 nm light of various power
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densities for 4 min. The cells were then stained with acridine orange and propidium iodide
to characterize cell viability. The group found that the chitosan coated AuNRs accumulated
mainly in the tumor SCC7 cells leading to enhanced cell death while the normal NIH/3T3
cells were not nearly as affected by the photothermolysis effect. To examine the in vivo
effects of the chitosan coated AuNRs, the group injected the nanoparticles into the tail vein
of athymic nude mice bearing bilateral SCC7 tumors. After 24 h, the tumors were excised
and the distribution of AuNRs was analyzed using an inductively coupled plasma atomic
emission spectrometer. The analysis revealed that the chitosan coated AuNRs had over
20% accumulation in the tumors whereas control PEG-modified AuNRs had only about 7%
tumor accumulation. To analyze the therapeutic effect of the chitosan coated AuNRs, the
researchers irradiated the mice with NIR laser radiation at 808 nm (4 W/cm2, 4 min) and
found that no tumor growth was observed after 1 week of irradiation, thus demonstrating
the effectiveness of chitosan coated AuNRs for photothermal therapy.

Besides PEG and chitosan, other large or small molecules have been used in in the
past decade, including mercaptopropionic acid, hydrogel, chondroitin sulfate A, and
albumin [68–71]. In addition, research has been combing AuNRs with other materials
such as fluorescent rare-earth nanoparticles and gold nanoclusters, graphene, mesoporous
silica, and block copolymer to make nanocomposites to increase PPTT efficacy and or add
diagnostic modalities [72–77].

Tissue penetration of the NIR light is critical for PPTT in vivo. A computational
study by Cheong et al. using Monte Carlo simulations demonstrated the effectiveness
of PPTT by tumor position and the type of tissue [78]. It was found that the type of
tissue was more important than the distance of the tumor from the skin. Tissue with
high scattering coefficient would reduce the photons to reach tumors. Tissue with high
absorption coefficient would additionally cause heating of the tissue. Using bladder cancer
as the disease model, the results show that PPTT was proven viable only when tumors
was directly beneath the surface of the skin. When the tumors were positioned at the
bottom half or at the side of the bladder, alternative treatments have been used to achieve
effective treatment such as increasing laser power and cooling the skin to minimize heating
of normal tissue.

3.2. PPTT with Actively Targeting AuNRs

Specific cancer targeting is an inherently difficult task due to the heterogeneity of
the disease. Thus, one of the primary goals of cancer therapeutics is the construction and
effective implementation of target–specific therapies. Therefore, in addition to modify NPs
to enhance their overall biocompatibility, intense research has been directed to develop
methods to functionalize AuNRs with target–specific entities. Tumor–specific recognition
molecules such as antibodies, folic acid, transferrin, and hyaluronic acid have been used
with success by many groups [79–81].

In 2006, Huang et al. demonstrated for the first time the practicality of NIR PPTT,
using AuNRs functionalized with anti-EGFR antibodies to specifically target EGFR-positive
head and neck cancer cells in vitro [82] (Figure 3A). The AuNRs were synthesized to have
a longitudinal extinction maximum wavelength at approximately 800 nm and then were
incubated with anti-EGFR antibodies. Afterward, the anti-EGFR/AuNRs were incubated
with head and neck cancer cells or nonmalignant epithelial cells for 30 min. Then, a
continuous wave Ti:sapphire laser at 800 nm with a spot size of 1 mm was shined on the
cancer cells for 4 min. Using this method, they found that the cancer cells were destroyed
with half the laser energy (10 W/cm2) than the normal cells, demonstrating selective cancer
cell therapy with PPTT and targeted AuNRs.

Since 2006, PPTT with active targeting AuNRs have been intensively investigated [83].
For examples, Turcheniuk et al. conjugated Tat protein to AuNR-reduced graphene oxide
core-shell nanocomplex to target glioblastoma astrocytoma (U87MG) cells. Tumor sup-
pression was observed upon low dose (0.7 W/cm2) of NIR light at 800 nm [84]. Kang
et al. linked trastuzumab to AuNRs via porphyrin to target epidermal growth factor
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2 receptor (Erb2 or HER2)-positive breast cancer. In addition to the targeted PPTT, the
trastuzumab-AuNR complex also provide a targeted chemotherapy [85] (Figure 3B). Zhang
et al. functionalized AuNRs with folic acid to target and treat melanoma cancer in a
temperature-controlled manner [86]. Increasing temperature from 43 ◦C to 49 ◦C dramati-
cally increased the fractions of dead cells. It also dramatically increased the proportion of
cell death by necrosis from 10% to 50%.
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Reprinted/adapted with permission from Ref. [82]. Copyright © 2010, American Chemical Society.
(B) PPTT of BT474 breast cancer cells with trastuzumab-conjugated AuNRs. Reprinted/adapted with
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Wang, N.; Jiang, Q.; Yan, C.; et al. (C) PPTT of MDA-MB-231 xenograft tumors with tumor acidity and
CD44 dual targeting hyaluronic acid-coated AuNRs. (Left) Schematic of the targeting mechanism.
(Right) Tumor volume at different days of post-treatment with 808 nm NIR laser and the hyaluronic
acid-coated AuNRs. Reprinted/adapted with permission from Ref. [87]. Copyright © 2019, Elsevier.

To further increase the efficiency of cancer-specific targeting, Li et al. functionalized
AuNRs with hyaluronic acid linked with pH-sensitive groups [87] [Figure 3C]. Hyaluronic
acid has a preferential binding for the CD44 glycoprotein receptors that are overexpressed
on many types of cancer cells [88]. Thus, the AuNRs preferentially accumulated into the
acidic tumor sites and then were selectively uptaken by CD44-positive cancer cells. This
dual tumor acidity and CD44 targeting not only benefits PPTT, but also chemotherapy that
requires intracellular uptake of chemotherapeutic agents. DNA has also been successfully
functionalized onto AuNRs via ligand exchange mechanisms which greatly improves
the biocompatibility and functionality of the NPs [89]. Other groups have successfully
immobilized DNA onto AuNRs along with various cancer drugs due to the ability of many
drugs to bind DNA by intercalation [79]. For example, Wang et al. designed doxorubicin
(DOX) loaded AuNRs by first coating the nanorods with calf thymus deoxyribonucleic
acid via electrostatic interaction, then mixing the rods with DOX. The group found that the
DNA/DOX AuNRs displayed good biocompatibility as well as enhanced toxicity vs. free
DOX, due to the preferential uptake of the AuNRs by treated 4T1 mammary cancer cells.
Up to date, many other ligands have been used for active PPTT with AuNRs, including
RGD, folate, chondroitin sulfate, zwitterionic stealth peptide, and most of them were used
to target surface protein markers on tumor cells [90–94].

3.3. Temperature Distribution of PPTT In Vitro and In Vivo

To effectively treat cancer, the temperature control and distribution in cancerous tissues
are critically important. Heat transport in tissues have been studied for decades and it is
now mainly based on the application of Penne’s equation [95]. A number of theoretical
and simulation studies have been performed to investigate the temperature distribution
of photothermal nanoparticles under laser irradiation in vitro and in vivo. For examples,
Huang et al. theoretically studied the spatiotemporal temperature distribution of AuNR
solution in a well that was irradiated with a laser using the Penne’s bioheat equation with
an additional term counting energy release by nanoparticles under laser irradiation [96].
The model predicted that the highest temperature was located along the well axis where the
laser is focused while the coolest temperature was near the wall at the surface of the fluid,
in agreement with experimental results. The authors further studied both experimentally
and theoretically the cell death by irradiating AuNR solution on top of cell monolayer. They
found that the extracellular hyperthermia is effective in killing cancer cells, rationalizing
the effectiveness of passive PPTT when AuNRs are located out of cancer cells in tumors.

To understand the minimum temperature required for cell destruction, Huang et al.
predicted the temperature rise on the basis of a numerical model [97]. The model considered
both heat generation by the laser irradiation of the nanoparticles and heat depletion into
the surroundings by conduction. These two processes were modeled into a temperature
calculation algorithm using Fourier heat equation. The studies predicted the nanoparticle
concentration and laser power in order to induce a defined temperature to kill cancer cells.
It was estimated that the temperature was raised to 73–77 ◦C for gold nanoparticles with
optical density (OD) of 0.159 with laser power of 150 mW. To reach the same temperature
for the gold nanoparticles with OD of 0.03, the laser power needs to be increased to 450 mW.

The studies by von Maltzahn et al. have helped us to understand the temperature
distribution of AuNR-assisted PPTT in the tumor model [30]. They simulated temperature
distribution of injected PEGylated AuNRs in tumor by finite element modeling as well
as temperature on tumor surface and various depths in tumor for intravenously injected
PEGylated AuNRs and saline mice. The studies showed that tumor surface temperature
increased to 70 ◦C, matching experimental data. They also predicted that the entire tumor
volume would be heated to over 60 ◦C at 5 min after laser irradiation (2 W/cm2). These
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computational studies well explained the effectiveness of tumor ablation using PPTT and
AuNRs. A more thorough computational study was performed later by Kannadorai and
Liu using the Pennes equation and first-order thermal-chemical rate equation to model
the temperature and thermal damage distributions in spherical tumors with AuNRs [98].
This method helps optimize nanoparticle concentration, laser power density, and exposure
time for PPTT of deep-seated tumors. Differently, Manuchehrabadi et al. used Monte Carlo
method to simulate the temperature rise of PPTT in tumors. Their results showed that
permanent thermal damage occurs in the tumor injected with the 250 OD AuNR solution
after heating for 15 min while 50 OD AuNR would not completely eradiate tumor.

3.4. Mechanisms of PPTT

PTT causes cell damage by hyperthermia. However, the photothermal activities of
AuNPs in PPTT extend beyond simple hyperthermia. The studies by Tong et al. in 2007
laid a foundation for understanding cell death for PPTT. They incubated KB cells with
folate-conjugated AuNRs, treated the cells with NIR irradiation, and monitored cell death
in real-time with two-photon luminescence (TPL) and bright field imaging [99]. They
found that AuNRs mediated cancer cell death by compromising membrane integrity and
cavitation. The membrane perforation led to influx of Ca2+, followed by degradation of
actin network. This induced dramatic blebbing of plasma membrane, which was observed
within seconds after laser irradiation. The Ca2+ influx also induces injury of mitochondria,
as evidenced on macrophage cell damage after PPTT [100]. Huang et al. also found that
the efficacy of photothermolysis of cancer cells depends on the location of the AuNRs.
The AuNRs on cell membrane are 10 times more effective than AuNRs inside cells in cell
destruction. Depending on the type of laser, PPTT caused cell death either by apoptosis or
necrosis. The continuous wave laser has been found to cause cell death by apoptosis while
nanosecond pulsed laser led to cell necrosis [101].

Mechanistic studies of AuNRs in vivo were conducted in 2017 by Ali et al. using
proteomic analysis in mouse tumor tissues [102]. The authors firstly optimized the con-
centration (2.5 nM), laser power (2 W/cm2), and surface ligands (rifampicin) to achieve
maximal induction of apoptosis of tumor cells. The proteomic analysis revealed several
death pathways mainly the apoptosis and cell death by releasing neutrophil extracellular
traps (NETs) that were contributed by Pin1 and IL18-related signaling. Cytochrome c
and p53 related apoptosis were observed to contribute the enhanced PPTT effect by the
ligand conjugated AuNRs. Furthermore, they found that AuNRs aggerated after PPTT by
differential interference contrast microscopy, due to the release of surface ligands after laser
irradiation. Certainly, the aggregation of AuNRs alters the optical property and thus the
phothermal efficacy by the particles. The combined effects of active tumor cell targeting
and particle aggregation contributed the more effective treatment with ligand-conjugated
AuNRs than passive PEGylated AuNRs. Their studies further showed that the AuNRs did
not induce toxicity in vivo during the 15-month of study time, indicating long-term safety
of AuNRs for PPTT.

4. PPTT + Chemotherapy

The ability to make biocompatible AuNRs and functionalize them with a plethora
of bioactive, specific tumor targeting agents has spurred researchers to further improve
PPTT via combination with chemotherapy. Many groups have demonstrated dramatic
improvements in the efficiency of chemotherapy by combining the temperature effects of
PPTT with the ability of AuNRs to carry many drugs and specifically transport them to
tumor sites. These studies have shown that combinatorial PPTT + chemotherapy greatly
improves chemotherapy efficacy. Additionally, specific drug–release mechanisms have
also been engineered for many different types of nanoparticles including AuNRs, making
them not only being able to transport chemotherapeutic drugs to specific locations, but
also function as controlled drug–release devices. To achieve effective chemotherapy, drug
molecules need to be released from AuNRs in order to enter cells and nucleus. Three
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major drug release mechanisms have been used in PPTT + chemotherapy and they are pH,
photo/thermo, and enzyme responsive mechanisms.

4.1. pH Dependent Drug Release

It is typically found that within the environment of cancer cells, the pH ranges between
6.4 and 7.0 while the environment of normal cells ranges from around 7.2 to 7.4 [103]. The
difference in the two distinct cellular environments makes it possible to design chemical
drug–release mechanisms for these specific cellular environments, typically by either
chemical cleavage or a change in charge between chemical species.

A common pH responsive method for the delivery of DOX into cancer cells is through
a cleavable hydrazone linkage. In this method, hydrazine is coated onto AuNRs and
is able to react with DOX via the ketone groups of the drug, thus creating a cleavable
AuNR–hydrazone–DOX linkage. The linkage is then cleaved once it enters the lower
pH cancerous environment due to the pH sensitive bond. Chen et al. constructed DOX
carrying AuNRs via a-lipoyl-u-doxorubicinyl PEG with a hydrazone linker (LA-PEGHyd-
DOX) [104] Figure 4A). They found that in a cellular pH environment of 7.4, only 17% of
DOX was released after a 24-h incubation time. However, 90% of DOX was released in the
lower pH cancerous environment (pH = 4.5) during the same time interval. During their
in vitro experiments, they demonstrated that human liver carcinoma cells (HepG2) treated
with the AuNRs@DOX displayed a dead cell population of >60% upon laser irradiation
while their control AuNRs@PEG treatment displayed only 30%, confirming the benefit of
combinatorial therapy.

In another study, Abbasian et al. constructed pH sensitive AuNR–cored biodegradable
micelles by first coating AuNRs with a triblock copolymer containing a thiol end group [105].
A solution containing the conjugated AuNRs was incubated with DOX for 48 h at room
temperature where the DOX was integrated into the polymer via the electrostatic force.
Then, they conducted a series of in vitro pH responsiveness tests of the DOX functionalized
AuNRs in pH solutions of 4, 5.4, and 7.4 where they found the percentage of drug release
was 70, 50.8, and 22%, respectively, demonstrating the pH dependent release of DOX.
In their cytotoxicity tests, the group found that their AuNRs@polymer decreased the
viability of MCF7 breast cancer cells to about 65% when laser irradiated, while their
AuNRs@polymer/DOX reduced the cell viability to about 21% upon laser irradiation.
Furthermore, when AuNRs@polymer/DOX were not irradiated, the cell viability was about
55%, demonstrating the improved effects of the combinatorial PPTT and DOX treatment.

4.2. Photo/Thermo-Responsive Drug Release

Many polymers are thermoresponsive in that they can either be shrunk when heat
is applied [106,107], or they can become degraded if their melting point is lower than
the local temperatures produced upon irradiation. Drugs can be encapsulated within
polymers conjugated to AuNRs and then released once the AuNRs are irradiated after
reaching a cancerous target. For example, Liao et al. designed AuNRs encapsulated by
an amphiphilic block polymer which contained an appropriate hydrophilic/hydrophobic
ratio to self–assemble into polymersomes [108] (Figure 4B). DOX was inserted into the
polymersomes due to the amphiphilic nature of the polymer, then the AuNRs and Dox
co-loaded polymersomes (P-GNRs-DOX) were incubated with C26 tumor cells. Upon
irradiation by an NIR laser, the group observed a 73.22% reduction in live cells, while only
a 57.48% reduction in live cells was observed when the P-GNRs-DOX were not irradiated
by the laser. One time treatment with P-GNRs-DOX and laser irradiation completely
eradicated tumor in the C26 mouse model. In contrast, chemotherapy with free DOX
after four dosages still did not completely inhibit tumor growth. PPTT alone did not
completely destroy tumors, either, since 30% of the mice grew new tumors after 14 days.
Thus, the P-GNRs-DOX, which only requires a single light irradiation, is very promising
for cancer therapy by combined PPTT and chemotherapy with a light-activated drug
release mechanism.
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DNA based self-assembled targeted NIR responsive AuNRs were developed by Xiao
et al. [109]. The platform consisted of 3 distinct functional components: complementary
DNA strands for drug transport, photothermally active AuNRs, and PEG layer to evade
the immune system. DOX was used for the chemotherapy agent, which was able to bind to
the DNA by intercalation, and the amount of drug loading was controllable by adjusting
the number of complementary DNA strands. Additionally, one strand of the DNA (termed
the capture strand) was thiolated which allowed it to be anchored to the surface of the
AuNRs. The other complementary strand (termed the targeting strand) was constructed
by N-hydroxysuccinimide (NHS) terminated (TCG) oligonucleotide (ONT) with NH2-
termniated PEG-folic acid for cancer cell targeting. Upon NIR irradiation, DOX was able to
be release from the AuNRs as light causes complimentary DNA strands to unwind.

In their in vivo studies, the group demonstrated significantly higher tumor reduction
using the functionalized AuNRs containing DOX vs. the control group contain no DOX.

Tang et al. developed “smart” polymer shell functionalized AuNRs responsive to
heat/NIR by using poly(N-iso-propylacrylamide) (PNIPAM) which, through a phase
transition, was able to change from a hydrophilic, water swollen state to a hydrophobic
state [110]. First, AuNRs were modified by a mesoporous silica coating, yielding a “shelled”
AuNR, then PNIPAM was added to the AuNRs@SiO2 which allowed DOX to be absorbed
into the complex. The group found that at 37 ◦C the release percentage of DOX was only 10%
after 24 h, however, increasing temperature yielded higher DOX release percentages. At
43 ◦C for example, it was found that 70% of the DOX has been release from the nanoparticles,
demonstrating the temperature–dependent release of DOX.

4.3. Enzymatic Drug Release

It has been shown some enzymes are over expressed in cancerous environments [111],
and since enzymes are able to catalyze the breaking of specific cleavable chemical bonds,
another opportunity for specific cancer targeting and drug release is possible through the
usage of enzymes [112]. Zhu et al. loaded PTX and chemically conjugated curcumin (CUR)
onto AuNRs with an 11-mercaptoundecanoic acid (MUA) linker. Then, they conjugated
with a c-RGD peptide specific to target the αvβ3 integrin receptor overexpressed on the
surfaces of some tumor cells [113] (Figure 4C). Based on their design, the release behavior of
PTX and CUR should have no influence on each other since CUR is released by enzymatic
hydrolysis through the engineered CUR chemical bonds and PTX is released by hydropho-
bic interaction with cell membrane. To test this hypothesis, the group performed a series of
in vitro experiments where they found in the presence of esterase, an enzyme known to be
over expressed in some cancer cells, CUR was released in increasing amounts as the esterase
concentration was increased. On the other hand, PTX demonstrated no obvious release
under the same conditions. However, under the environment of an imitated lipophilic
plasma membrane, they found that more than 70% of the loaded PTX was released while
almost none (<5%) of the CUR molecules was released, demonstrating independent dual
release mechanism for the drug-loaded AuNR complex.

Another example is the studies by Liu et al. who created functionalized AuNRs with a
two-stage sequence disassembly property, allowing for greater tumor accumulation and
penetration [114]. The platform was constructed with amphiphilic block copolymers and
the reduction-responsive prodrug DOX which was conjugated to the AuNRs by disulfide
-linked poly(acrylic acid). Essentially, a PEG shell surrounded the DOX–coated AuNRs,
thus during the first stage of release the AuNRs were able to avoid the immune system
and retain a high circulation time resulting in greater tumor accumulation efficiency. In
the next stage, the PEG shell was removed and the DOX–coated AuNR clusters were able
to assemble into single entities, thereby more able to penetrate to the solid tumor. The
group found that after the AuNRs entered the more acidic environment of a tumor, high
concentrations of naturally glutathione present were reduced, and thus DOX was released
into the tumor environment in significant amounts.
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Figure 4. PPTT + chemotherapy using AuNRs. (A) Dox-conjugated pH-responsive AuNRs for
PPTT + chemotherapy. Left: Schematic of the synthesis of the AuNR conjugates and its application
for combined PPTT and chemotherapy. Right: Average HepG2 tumor volume of the mice at different
days after different treatments. Cited from Ref. [104]. * indicates significant difference at p < 0.05 and
** indicates significant difference at p < 0.01. Copyright@2018, Chen, J.; Li, X.; Zhao, X.; Wu, Q.; Zhu, H.;
Mao, Z.; Gao, C. (B) Dox-conjugated light-sensitive AuNRs for PPTT + chemotherapy. Left: Schematic
of the preparation of P-GNRs-Dox and light sensitive drug release mechanism. Right: Relative C26
tumor volume of the mice at different days after different treatments. * indicates significant difference
at p < 0.05. Cited from Ref. [108]. Copyright @2015, Liao, J.; Li, W.; Peng, J.; Enzu, Q.; Li, H.; Wei, Y.;
Zhang, X.; Qian, Z. (C) Paclitaxel (PTX)/CUR/AuNRs@c-RGD complex for PPTT + chemotherapy.
Left: Schematic of the preparation and application of the complex for PPTT + chemotherapy. PTX is
released by hydrophobic interaction and CUR is released by enzymatic hydrolysis. Right: Average



Bioengineering 2022, 9, 200 15 of 24

A549 tumor volume of the mice at different days after different treatments. Cited from Ref. [113].
* indicates significant difference at p < 0.05. * p < 0.05 vs. PTX/CUR/AuNRs@CRGD and # p < 0.05
vs. PEG/AuNRs@cRGD+laser. Copyright@2019, Zhu, F.; Tan, G.; Zhong, Y.; Jiang, Y.; Cai, L.; Yu, Z.;
Liu, S.; Ren, F.

4.4. Other Release Mechanisms

In 2014, Huang’s group developed a PPTT + chemotherapy method with drug release
through partitioning of hydrophobic PTX on AuNR within the lipophilic plasma mem-
brane [115]. In this work, PTX was loaded to AuNRs with high density (2.0 × 104 PTX per
AuNR) via nonspecific adsorption, followed by stabilization with PEG linked with MUA.
PTX was entrapped in the hydrophobic pocket formed by PEGy-MUA on the surface of
AuNRs, which allows direct cellular delivery of the hydrophobic drugs via the lipophilic
plasma membrane. Combined PPTT and chemotherapy with the PTX-loaded AuNRs was
shown to be highly effective in killing head and neck cancer cells and lung cancer cells,
superior to photothermal therapy or chemotherapy alone due to a synergistic effect.

Currently, PPTT + chemotherapy remains popular due to the combined advantages
of the two treatments [116–138]. While PPTT can quickly eradicate tumor without side
effect, the chemotherapy can eradicate tumor residue or metastasized cancer cells that
are inaccessible by laser irradiation. The two together generally have synergistic effect to
augment therapeutic efficacy. This is due to the fact that the AuNR-enabled laser heating
can generally increase cellular uptake of chemotherapeutic drugs.

5. PPTT + Photodynamic Therapy (PDT)

Another combinatorial therapy that has gained interest over the last few years is PPTT
with PDT. PDT relies on a unique species called photosensitizer (PS) that is excited after
absorbing incident photon energy. The energy from this excited state (electrons) is then
transferred to oxygen molecules to produce high energy reactive oxygen species (ROS) to
kill cancer cells.

In 2016, Bhana et al. reported a method to achieve combined PPTT and PDT by making
a silicon 2,3-napthalocyanine dihydroxide (SiNC)/AuNR complex [139] (Figure 5A). In this
study, SiNC was adsorbed onto AuNRs, followed by a stabilization via covalent binding
of alkylthiol linked PEG (AT-PEG). Their studies showed that the SiNC loading efficiency
depended on the AT chain length. Increasing the chain length of AT resulted in an increase
in loading efficiency, but a decrease in release rate. The combined PPTT and PDT resulted in
17.3% cell viability for KB-3-1 cells and 18.3% for SK-BR-3 cells. However, the cell viability
was much higher under PPTT alone, with 40.7% for KB-3-1 cells and 33.9% for SK-BR-3
cells. The cell viability for PDT alone was also much higher, with 58.4% for KB-3-1 cells and
59.9% for SK-BR-3 cells. This study clearly showed that the PPTT and PDT combination
treatment was much more effective in killing cancer cells than PPTT or PDT alone.

Aptamers have been used in many biotechnology applications, especially as molec-
ular switches [140,141]. Aptamers can also be used in PPTT and PDT. Aptamer switch
probe (ASP)–modified AuNRs were designed by Wang et al. in which AuNRs were
constructed to transport chlorin e6-polyvinylpyrrolidone (Ce6-PVP) to target leukemia
cells [142] (Figure 5B). When the nanosystems came into contact with cancer cells, the ASP
changed confirmation, thereby releasing Ce6 from the surface and thus creating ROS and
destroying cancer cells. The ROS generation is controlled by varying the distance between
a quencher and the photosensitizer via aptamer switches, effecting the quenching and
recovery of photosensitizer fluorescence. Upon white light irradiation, ROS are generated
leading to cancer cell death. The group found that treatment of cells by PDT alone resulted
in 80% cell viability, whereas under PPTT alone resulted in a cell viability of 63%. However,
PPTT + PDT therapy resulted in a cell viability of 40%, demonstrating the effectiveness of
their combinatorial nanosystem.
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Other PS agents have also been used for PPTT + PDT with AuNRs [143–147]. For exam-
ples, Jin et al. combined methylene blue with AuNRs in a hydrogel to form a PPTT + PDT
complex with multiple advantages including excellent cancer cell ablation efficiency, con-
trollable mechanical properties, excellent stability, and good cytocompatibility [146]. In the
studies by Tian et al., platinum-based metallacycle-core star polymers were combined with
AuNRs to achieve triple therapy of PPTT, PDT, and chemotherapy [147].
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6. Conclusions and Outlook

AuNRs have thus shown outstanding optical properties suitable for NIR PPTT. They
have tunable LSPR in the NIR window by controlling the AR of the particles, with pho-
tothermal conversion efficiency 50% and above. Intensive in vitro and in vivo studies have
demonstrated their potential for future clinical use. By manipulating surface chemistry
and drug release mechanism, AuNRs can carry a variety of chemotherapeutic drugs for
combinational PPTT and chemotherapy. A number of drug release mechanisms have been
utilized, including pH, photo/thermal, enzyme, and partition-based drug releases. This
combined PPTT and chemotherapy has dominated current research interests in the field of
nanotherapeutics using AuNRs. AuNRs can also carry photosensitizers for simultaneous
PPTT and PDT under a single NIR irradiation. It is now clear that these combinational
treatments are more effective than individual treatments alone, with or without synergis-
tic effects.

An emerging new direction for PPTT is to combine PPTT with immunotherapy to
eradicate primary tumors while treating and inhibiting metastasis [148–157]. Cancer
metastasis is the major cause of cancer death. Preventing or treating cancer metastasis
would largely increase patient survival. The work by Chen et al. presented an early attempt
to treat metastasized cancer by combining PPTT with AuNRs and checkpoint-blockade
immunotherapy [148]. This was carried out by co-encapsulating imiquimod (R837), a
Toll-like-receptor-7 agonist with AuNRs using poly(lactic-co-glycolic) (PLGA) acid. The
nanoparticles not only ablated primary tumor, but also generated tumor-associated antigens
to give vaccine-like functions. The generated immunological responses attacked remaining
tumor cells in mice for metastasis inhibition. Using the combination of PPTT with immune-
checkpoint inhibition, Liu et al. achieved synergistic treatment and completely eradicated
primary tumor cells and distance untreated tumors in some mice with bladder cancer [150].
In the studies by Nam et al., the immunotherapy for disseminated tumors was triggered
by combined PPTT and chemotherapy [152]. The PPTT alone can also trigger immune
response to prevent metastasis by perturbating metastasis-related pathways [156]. This
PPTT-induced vaccination has high promises to address the challenges in treatment of late
stages of cancer whereas PPTT is inaccessible and chemotherapy has limitations due to
drug resistance. It is expected that this PPTT-immunotherapy will be the next generation of
cancer therapy using photothermal nanoparticles [157].

Nonetheless, several parameters remain to be addressed before approval by FDA for
clinical use. As with other hard inorganic nanomaterials, AuNRs are not biodegradable.
Although AuNRs are biocompatible, the long-term toxicity is not known. As the biodistri-
bution studies have shown that majority of AuNRs are uptaken to liver and spleen. New
strategies are needed to enhance the efficiency of tumor accumulation in order to further
improve the therapeutic efficacies. Further, mechanisms for tumor extravasation, fate of
AuNRs after treatment, and interactions with blood components in circulation remain to be
investigated and understood well before use on patients.
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