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ABSTRACT

Gold nanorods (NRs) have plasmon-resonant absorption and

scattering in the near-infrared (NIR) region, making them

attractive probes for in vitro and in vivo imaging. In the cellular

environment, NRs can provide scattering contrast for darkfield

microscopy, or emit a strong two-photon luminescence due to

plasmon-enhanced two-photon absorption. NRs have also been

employed in biomedical imaging modalities such as optical

coherence tomography or photoacoustic tomography. Careful

control over surface chemistry enhances the capacity of NRs as

biological imaging agents by enabling cell-specific targeting, and

by increasing their dispersion stability and circulation lifetimes.

NRs can also efficiently convert optical energy into heat, and

inflict localized damage to tumor cells. Laser-induced heating

of NRs can disrupt cell membrane integrity and homeostasis,

resulting in Ca2+ influx and the depolymerization of the

intracellular actin network. The combination of plasmon-

resonant optical properties, intense local photothermal effects

and robust surface chemistry render gold NRs as promising

theragnostic agents.

INTRODUCTION

Plasmon-resonant gold nanostructures (1–5) are of great

interest for optical imaging due to their remarkable capacity

to absorb and scatter light at visible and near-infrared (NIR)

regions (6–11). These optical properties depend on nanopar-

ticle size, shape and dielectric environment (7,12–14), enabling

their application as novel imaging and sensing probes (15–21).

Gold nanoparticles can also convert optical energy into heat

via nonradiative electron relaxation dynamics (22–24), endow-

ing them with intense photothermal properties (25–35). Such

localized heating effects can be directed toward the eradication

of diseased tissue, providing a noninvasive alternative to

surgery (36). Colloidal gold is well known to be biologically

inert and has been used in vivo since the 1950s, namely as

adjuvants in radiotherapies (37), but the consideration of such

nanoparticles as photothermal agents is relatively recent.

Gold nanorods (NRs) are especially attractive for their

highly efficient absorption in the NIR region, a spectral

window which permits photons to penetrate biological tissues

with relatively high transmittivity. NRs with well-defined

shapes and sizes are readily synthesized by seeded growth

methods (38,39), and their longitudinal plasmon resonances

(LPRs) can be finely tuned as a function of aspect ratio. NRs

support a larger absorption cross-section at NIR frequencies

per unit volume than most other nanostructures and have

narrower linewidths due to reduced radiative damping effects

(40), with consequently higher optothermal conversion effi-

ciencies (23). The LPRs can also support nonlinear optical

effects, such as a plasmon-enhanced two-photon luminescence

(TPL) (18,41). Moreover, the LPRs are sensitive to the

polarization of the incident excitation; by slightly adjusting

the wavelength of a continuous-wave (cw) polarized laser,

individual NRs could be aligned for several minutes in an

optical trap (42). These properties give rise to many exciting

possibilities to deploy NRs for biological imaging and photo-

thermal therapy, as illustrated in Fig. 1.

In this article we review recent developments in the

application of NRs as multifunctional agents for biological

imaging and for targeted photothermal therapies. In the

section Synthesis and Bioconjugation of Gold NRs, we

summarize various bioconjugation methods and discuss the

importance of removing residual cetyltrimethylammonium

bromide (CTAB), a cytotoxic surfactant used in NR synthesis.

In the section In Vitro and In Vivo Imaging with Gold NRs, we

discuss the optical imaging modalities supported by NRs, with

a particular focus on TPL and its application toward in vitro

and in vivo imaging. Lastly, in the section Photothermal

Effects of Gold NRs, we discuss several examples involving the

use of functionalized NRs as photothermal agents for

the selective elimination of cancer cells, with insights into the

mechanism of photothermolysis.

SYNTHESIS AND BIOCONJUGATION
OF GOLD NRs

Gold NRs can be prepared in gram quantities in micellar

solutions composed of CTAB, a cationic surfactant (38,39).

While the exact conditions may vary according to the recipe,

these syntheses are easily reproduced and can yield NRs with
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stable absorption peaks ranging from visible to NIR wave-

lengths (see Fig. 2), if care is taken to consume or quench

unreacted gold chloride at the end of the synthesis (43). NRs

with LPRs in the range of 750–900 nm have lengths on the

order of 50 nm, a size compatible with long blood circulation

and permeation into tumor sites via their leaky vasculatures.

However, cytotoxicity (44) and nonspecific cellular uptake (45)

related to the presence of CTAB may result in collateral injury

to healthy cells or tissues, and the introduction of improperly

passivated NRs to the blood pool will likely result in their

rapid clearance by the reticuloendothelial system (RES). The

complete removal of CTAB, followed by a robust method of

surface modification, is required to produce stable NR

suspensions with long circulation lifetimes and specific target-

ing to diseased cells.

The critical micelle concentration of CTAB (ca 1 mMM) is

much higher than the reported threshold for cytotoxicity

(IC50 < 1 lMM), raising some practical challenges for main-

taining stable dispersions of NRs (44,46). At least three

methods have been reported to reduce the amount of CTAB to

below cytotoxic levels without severely compromising disper-

sion stability. One involves simple surfactant exchange: CTAB

can be partitioned into chloroform and gradually exchanged

with phosphatidylcholine (PC), resulting in markedly lower

cytotoxicity toward HeLa cells (47). A more common

approach involves the displacement of CTAB by sterically

stabilizing surfactants, particularly nonionic polymers such as

polyethyleneglycol (PEG) chains terminating in chemisorptive

groups such as thiols or dithiocarbamates (DTC) (9,45,48).

Removal of CTAB in these cases is generally achieved by

membrane dialysis, such that PEG-coated NRs are hardly

susceptible to nonspecific cell uptake (45). Other polyelectro-

lytes have recently been examined for their effects on cell

uptake and toxicity, some of which are surprisingly biocom-

patible (49). For detoxification of gold NRs on a larger scale, it

has recently been shown that polystyrenesulfonate (PSS) can

serve as a mild detergent and enable the removal of CTAB by

ultrafiltration and surfactant exchange, to the extent that no

significant toxicity is observed at NR concentrations as high as

85 lg mL)1 (50). In the course of this study, it was shown that

polyelectrolyte-stabilized NRs were vulnerable to shear forces

or gradual desorption, and that the desorbed coatings could

also be highly cytotoxic if contaminated with significant

amounts of CTAB.

Cytotoxicity issues aside, there are numerous examples of

methods for conjugating NRs with biomolecular labels for cell

targeting or intracellular delivery, such as folic acid (33,34),

antibodies (9,19,31,48,51) and DNA (52,53), introduced by

various surface functionalization methods as illustrated in

Fig. 3. Several specific examples are discussed in more detail

below.

Figure 1. Photophysical processes in gold nanorods. Near-infrared
irradiation induces the excitation of a longitudinal plasmon resonance
mode, resulting mostly in absorption but also some resonant light
scattering. An electronic transition from the d- band to sp- band occurs
with two-photon absorption, generating an electron-hole pair; recom-
bination of separated charges results in two-photon luminescence
(TPL) emission. Heat is also generated as a consequence of electron-
phonon collisions.

Figure 2. Gold nanorods (NRs) with tunable optical absorptions at visible and near-infrared wavelengths. (a) Optical absorption spectra of gold
NRs with different aspect ratios (a–e). (b) Color wheel, with reference to gold NRs labeled a–e. TR = transverse resonance.
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Antibody-conjugated nanorods (antibody-NRs)

Antibodies, with their variety and ability to combine high

affinity with high specificity, have been widely used in the

targeted delivery of nanoparticles. Antibodies have been

conjugated to NRs using different linkers for applications in

multiplex biosensing, cancer cell imaging and photothermal

therapy. Liao and Hafner prepared antibody-NRs using

succinimidyl 6-[3¢-(2-pyridyldithio)-propionamido]hexanoate

(LC-SPDP), a heterobifunctional cross-linking agent (48).

LC-SPDP has a disulfide group that can bind to the NR

surface upon reductive cleavage, and an NHS ester for linking

primary amines with antibodies. Yu and Irudayaraj developed

antibody-NRs into multiplex biosensors based on localized

surface plasmon resonance shifts, using 11-mercaptoundeca-

noic acid as a linker for protein conjugation (19). Huang et al.

adsorbed antibodies for epidermal growth factor receptor

(anti-EGFR) onto PSS-coated NRs, and used these to

selectively identify cancer cells using conventional and dark-

field microscopy (31). Anti-EGFR-NRs can also be used as

labels for cancer cells, based on their polarized Raman spectral

emissions (9) or their intrinsic TPL signals (51). The antibody-

NRs have also been used as photothermal agents to selectively

damage cancer cells by NIR laser irradiation (31).

Folate-conjugated nanorods (F-NRs)

Folic acid is an ideal candidate for ligand-based targeting, as

numerous examples of folate-conjugated drug carriers have

been shown to be transported into cells through receptor-

mediated endocytosis (54,55). The high-affinity folate receptor

is a highly selective tumor marker overexpressed by over one-

third of human cancer cell lines (56). Folate derivatives with

oligoethyleneglycol spacers have been tethered onto NRs by in

situ DTC formation, a recently developed method for the

robust functionalization of gold surfaces (33,34,57). The

targeted delivery, cellular uptake and photothermal effects of

F-NRs have been studied extensively by TPL imaging, to be

further discussed in the sections In Vitro and In Vivo Imaging

with Gold NRs and Photothermal Effects of Gold NRs.

PEG conjugated nanorods (PEG-NRs)

Polyethyleneglycol has well-established ‘‘stealth’’ properties

that can shield nanoparticles from fouling by serum proteins

(opsonization) and can reduce their rate of clearance by the

RES (58). NRs with PEG coatings can be prepared by

chemisorption as described above, resulting in lower cytotox-

icity (59) and nonspecific cellular uptake (45), and improved

in vivo circulation following intravenous injection in murine

models (59). Niidome et al. (59) compared the biodistribution

of CTAB-NRs and PEG-NRs in mice, and found that 30% of

the Au from CTAB-NRs was found in the liver 0.5 h after

intravenous (i.v.) injection. In contrast, PEG-NRs remained in

the blood for a much longer period, with 35% of the Au

accumulated in the liver after a 72 h period.

DNA-functionalized NRs

Gold NRs have been coated with DNA with subsequent

photothermal desorption upon NIR irradiation to investigate

the potential of phototriggered gene therapy. Takahashi et al.

treated PC-coated NRs with plasmid DNA to form a NR–

DNA complex, whose stability was confirmed by electropho-

retic mobility in an agarose gel (52). NIR laser pulses at higher

power resulted in a shape transformation (melting) of NRs

into spheres and subsequent release of DNA. The application

of photothermal DNA release for exogenous control of

localized gene expression was demonstrated by Chen et al.,

using a thiolated version of enhanced green fluorescence DNA

mixed with gold NRs (53). Internalization of these NR-DNA

conjugates by HeLa cells with subsequent exposure to femto-

second (fs) NIR laser pulses at low power resulted in both a

rod-to-sphere transformation and the release of DNA to the

Figure 3. Surface functionalization of gold nanorods (NRs). (a)
Electrostatic adsorption onto polyelectrolyte-coated gold NRs.
(b) Conjugation of amine-terminated biotin by carbodiimide coupling
(102). (c) Cu-catalyzed ‘‘click’’ addition of alkyne-terminated mole-
cules onto azide-labeled surface (103). (d) Chemisorption of thiolated
bioconjugates (48,53,59). (e) Chemisorption of amine-terminated
bioconjugates by in situ dithiocarbamate (DTC) formation (33,34,
45,57).
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cytoplasm. As a result, green fluorescence protein (GFP)

expression was specifically observed in cells exposed to local

NIR irradiation, thereby demonstrating the potential of using

NR–DNA conjugates and NIR irradiation for local gene

expression in specific cells with remote control.

IN VITRO AND IN VIVO IMAGING WITH
GOLD NRs

NIR-absorbing NRs have considerable advantages over

molecular dyes and fluorophores as contrast agents for NIR

imaging applications. First, their absorption cross-sections are

many times greater than organic molecules; second, their

photophysical properties are much more robust against

photobleaching effects and other forms of optical fatigue

under comparable levels of illumination. Here we review

several biological imaging modalities based on the NIR-

absorbing properties of gold NRs, with a special emphasis on

TPL as a recently established mode of nonlinear optical

imaging.

Two-photon luminescence

Nanorods and other plasmon-resonant nanoparticles are

readily visualized under darkfield conditions based on their

large scattering cross-sections (see section TPL analysis by far-

field microscopy). However, plasmons can also be used to

enhance photophysical processes resulting in luminescence, a

fact that is rapidly gaining appreciation. This may seem

counterintuitive at first, as gold is well known to quench the

emission of nearby fluorophores because of back-electron

transfer (60,61). However, gold itself is able to produce a weak

photoemission via interband transitions, and can be enhanced

by many orders of magnitude when coupled with an appro-

priate plasmon excitation (62,63). For example, linear photo-

luminescence from gold NRs can be enhanced by a factor of

over a million compared with bulk gold (64), and NRs

subjected to pulsed laser excitation are able to emit a strong

TPL (18,41,65). The benefits of TPL imaging are manifold: (1)

multiphoton processes have a nonlinear dependence on exci-

tation intensity and can be resolved in the axial direction to

provide three-dimensional (3D) spatial resolution; (2) TPL can

be excited at NIR frequencies between 800 and 1300 nm, the

window of greatest transmittivity through biological tissue; (3)

the TPL can be spectrally separated from tissue autofluores-

cence; (4) the power densities required for TPL imaging are

orders of magnitude below the damage threshold of biological

tissue. It is abundantly clear that TPL imaging is well suited

for early detection of neoplastic cells and tissues, especially

with plasmon-resonant contrast agents such as NRs. Several

works have now shown the potential of NRs in cellular and

intravital TPL imaging (18,34,45,51), and will be discussed in

detail below.

Photoluminescence from noble metals was first reported by

Mooradian in 1969 (62). Luminescence is generated in a three-

step process: (1) excitation of electrons from the d- to the

sp- band to generate electron-hole pairs, (2) scattering of

electrons and holes on the picosecond (ps) timescale with

partial energy transfer to the phonon lattice and (3) electron-

hole recombination resulting in photoemission. Single-photon

luminescence from NRs can be amplified 6–7 orders of

magnitude via resonant coupling with localized plasmons,

presumably unrelated to the LPR mode (64). TPL from

nanostructured gold was first reported by Boyd et al. in 1986

(63), but the efficiency of photoemission from the gold film is

low. However, gold NRs, with their LPR peaks tuned to NIR

frequencies, are particularly well suited as TPL-based imaging

agents. The characteristics and mechanism of TPL have been

investigated by both far-field (18,65) and near-field (41,66)

optical scanning techniques.

TPL analysis by far-field microscopy. The TPL of single NRs

has been investigated by Wang et al. using a laser-scanning

far-field microscopy (18). A fs-pulsed Ti:sapphire laser with

tunable emission wavelengths was used to generate TPL from

NRs dispersed on a glass coverslip. A typical emission

spectrum of a single nanorod is shown in Fig. 4a, which was

excited by a laser tuned to its LPR peak at 786 nm. The broad

emission spectrum in the visible (400–650 nm) region includes

the electron-hole recombination near the X and L symmetry

points, which is at 518 and 654 nm for bulk fcc gold,

respectively (63). The nonlinear nature of the signal was

confirmed by correlating luminescence intensity with excitation

power as the incident pulse energy was varied between 1 and

2 pJ (18). A quadratic relation of the signal intensity on the

excitation power was observed, with slope values of 1.97 and

2.17 for the increasing and decreasing power curves, respec-

tively (Fig. 4b). The laser fluence absorbed by a single nanorod

was approximately 15 fJ per pulse, well below the established

stability threshold of 60 fJ (7).

To determine the relationship between the TPL and the

LPR, the TPL intensity of NRs at different excitation

wavelengths was collated with the NR extinction spectrum

(Fig. 4c). The excitation spectrum has a peak intensity at

820 nm and is coincident with the LPR band, indicating that

the TPL from NRs can be attributed to their plasmon-

enhanced two-photon absorption cross-section. This has been

confirmed by comparing the TPL intensities of NRs with

different plasmon resonance peaks (kmax = 660, 786 and

804 nm) using the same laser excitation source (kex = 785 nm)

(Fig. 4d). The NRs with LPR peaks near the excitation

wavelength clearly produce stronger TPL signals than the off-

resonant NRs, consistent with a recent study on the TPL

characteristics of gold NRs produced by lithographic methods

(65).

The TPL intensity of gold NRs is dependent on the

polarization of incident excitation, and thus enhanced when

the incident field is aligned with the LPR along the nanorod

axis. Horizontally and vertically polarized excitations pro-

duced TPL signals with the same average brightness, indicating

these emissions were generated by individual NRs (e.g. spots 1

and 2, Fig. 5a,b), whereas brighter spots were presumed to be

clusters of NRs (e.g. spot 3). All TPL emissions from single

NRs were observed to be sensitive to the incident polarization

and followed a cos4 function (Fig. 5c), similar to that

established for the two-photon excitation of single fluorescent

molecules. This relation further confirms that the TPL signals

are generated by a coherent two-photon absorption process.

However, the TPL emission from NRs is essentially depolar-

ized (Fig. 5d), similar to second-harmonic generation (67), but

in contrast to conventional plasmon-resonant scattering pro-

cesses which retain most of the incident polarization (17,40).

24 Ling Tong et al.



The depolarization is in accord with the TPL emission

generated by electron-hole recombination as originally pro-

posed by Mooradian (62).

TPL analysis by near-field microscopy. TPL from plasmonic

nanostructures has also been studied by Okamoto and

coworkers (41,66) using scanning near-field optical micros-

copy, revealing complementary information on their emission

and polarization characteristics. A typical TPL spectrum of a

single NR of submicron dimensions showed two peaks at 650

and 550 nm, which were close to the theoretical values (630

and 520 nm) based on the energy of electron-hole recombina-

tion near the X and L symmetry points of the Brillouin zone,

corresponding respectively to the (0 0 1) and (1 1 1) lattice

planes in the gold crystal (66). The photoluminescence lifetime

ranged from 0.8 to 2 ns, depending on the size and shape of the

particles and the detection wavelength. The relatively long

lifetime indicated the photoluminescence was emitted by the

recombination of excited electron-hole pairs located very close

to the Fermi surface.

A polarization-dependent study of photoluminescence

intensity on both incident excitation and near-field emission

revealed a cos2 dependence, which was explained by present-

ing the two-photon excitation as a pair of sequential one-

photon processes (41). Initially, an electron in the sp

conduction band is excited by the first photon from below

the Fermi surface to above it via an intraband transition,

resulting in a charge-separated state within the conduction

band. A second photon excites an electron from the d- band

to the sp- band, transferring the hole to the d- band.

Eventually, an electron-hole recombination event results in

luminescence. The first transition is resonant with photons

polarized along the nanorod axis but the polarization

information is rapidly lost after excitation, whereas the

second transition is polarization insensitive. The emission was

also found to be independent of the polarization of the

incident field, similar to that observed by far-field micros-

copy. Therefore, the photoluminescence polarization follows

a cos2 dependence, and does not depend on a plasmon-

enhanced absorption as is the case of the smaller NRs (18).

These observations are not in conflict because the submicron

NRs used in the near-field study do not have the appropriate

aspect ratio to support a dipolar plasmon resonance at NIR

frequencies (7,14).

Scanning near-field optical microscopy (SNOM) imaging

enables the TPL from the longer gold NRs to be characterized

with high spatial resolution, and revealed the intensities to be

strongest at the ends (68). This has been attributed to the

so-called ‘‘lightning rod’’ effect, in which the local electric field

is greatly intensified by its confinement at the NR tip. In

addition, a characteristic oscillating pattern was observed

and attributed to periodic amplitude modulations of the

wavefunctions for standing-wave plasmon modes (41,66).

These features correspond well with calculated local-density-

of-state maps: by comparing the SNOM images of NRs having

various lengths but similar diameters, the number of oscilla-

tions increases with the aspect ratio while the plasmon

wavevector is essentially constant, producing a well-defined

Figure 4. Characterization of two-photon luminescence (TPL) from gold nanorods (NRs) by far-field microscopy. (a) A typical TPL spectrum
from a single NR excited by fs-pulsed laser centered at its longitudinal plasmon resonance peak at 786 nm. The laser power was 1.5 mW and
acquisition time was 1 s. The spectrum was cut off at 650 nm by an IR blocker. (b) Quadratic dependence of TPL emission intensity on excitation
power. The data were obtained by increasing the excitation pulse energy from 1 to 2 pJ, then decreasing the power accordingly. Signal intensities
were integrated over an area of 250 · 250 lm2 (18). (c) TPL excitation spectrum (circles with error bars, right y-axis) compared with NR extinction.
The peak at 820 nm corresponds to the longitudinal plasmon mode. The same power (0.17 mW) was used for all excitation wavelengths (18).
(d) TPL spectra of three NR solutions with resonance peaks at 660 nm (square), 786 nm (circle) and 804 nm (triangle), irradiated by the
same excitation laser (785 nm, 3 mW; acquisition time 60 s). TPL spectra were cut off at 650 nm by an IR blocker.

Photochemistry and Photobiology, 2009, 85 25



dispersion relation (69). The influence of the excitation

wavelength on the TPL intensity produced by submicron

NRs further supports standing-wave plasmon modes as the

basis for the observed spatial modulations.

In vitro TPL imaging of cultured cells with gold NRs. TPL

imaging has proved to be useful for characterizing cellular

uptake of gold NRs. One such study involves the targeted

delivery of F-NRs to KB cells (a tumor cell line derived from

human oral epithelium) overexpressing the high-affinity folate

receptor, which is known to internalize folic acid conjugates by

receptor-mediated endocytosis (Fig. 6a) (34). Upon incubation

with KB cells for 6 h prior to TPL imaging, F-NRs were

present in high density on the surface of the outer membrane

(Fig. 6b); in contrast, F-NRs incubated with NIH ⁄ 3T3 fibro-

blast cells for a comparable period showed little or no labeling

(Fig. 6c). F-NR uptake by KB cells was found to be relatively

slow: complete internalization was observed after incubation

for 17 h, with the F-NRs localized around the perinuclear

region (Fig. 6d). The linescan intensity in Fig. 6d illustrates the

high signal-to-background ratio of the TPL contrast generated

by internalized NRs (Fig. 6e). The intracellular migration of

F-NRs was further characterized by single-particle tracking

analysis and exhibited a bidirectional motion between the

nucleus and the plasma membrane, suggestive of directed

transport along microtubules (34).

The issue of nonspecific cellular uptake using NRs with

different surface coatings has also been investigated by TPL

microscopy (45). Nonspecific uptake is a critical issue which

must be addressed prior to clinical applications of NRs and

other types of nanoparticles. NRs coated with CTAB,

bis(p-sulfonatophenyl)phenylphosphine (BSP) and methylated

PEG (introduced by in situ DTC formation) were incubated

with KB cells for a 24 h period, then washed and evaluated for

TPL signal intensities. The highest levels of nonspecific cell

uptake were observed with CTAB-NRs, presumably due to the

fusogenic nature of the cationic CTAB. Appreciable uptake

was also observed with the anionic BSP coating, but was

greatly reduced in the case of mPEG-NRs (ca 6% relative to

CTAB-NRs).

In vitro TPL imaging with NRs has also been performed in

3D, using cancer cells supported in a collagen matrix to mimic

epithelial tissue (51). EGFR-overexpressing A431 skin cancer

cells were labeled with anti-EGFR-conjugated NRs, which

Figure 5. Polarization-dependent two-photon luminescence (TPL)
intensities of gold nanorods (NRs) (18). (a, b) Pseudocolor images
with horizontal (h = 0�) and vertical (h = 90�) excitation polariza-
tions, respectively. Single NRs could be identified by their similar
range of intensities (e.g. spots 1, 2); brighter spots were considered to
be clusters of NRs (e.g. spot 3). The image size is 25 · 25 lm2. (c)
Polarization dependence of the TPL intensity (solid dots) for a single
NR (spot 2). The excitation polarization was rotated clockwise from
)90� to +90� in 10� increments. The TPL signal fits a cos4 function,
offset by 6.8� (red curve). (d) The TPL emission (solid dots) from the
same NR (spot 2) measured by rotating a polarizer before the detector.
The reflected excitation beam was linearly polarized at the detector site
(solid curve), but the TPL emission was essentially depolarized.

Figure 6. In vitro cellular imaging with folate-conjugated nanorods
(F-NRs) (34). (a) Folate-oligoethyleneglycol ligands, conjugated onto
NR surface by in situ dithiocarbamate formation. (b) F-NRs bound to
the KB cell surface after incubation for 6 h. (c) Almost no F-NRs were
associated with NIH ⁄ 3T3 cells, which do not overexpress the high-
affinity folate receptor. (d) F-NRs were internalized into KB cells and
delivered to the perinuclear area after incubation for 17 h. (e) Two-
photon luminescence intensity profile across green line in (d).
Bar = 10 lm.
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could be imaged with a penetration depth of 75 lm using 60

times less laser power than that needed to induce two-photon

autofluorescence (TPAF) from cellular components. Conse-

quently, the TPL from NRs was 3 orders of magnitude

brighter than the background TPAF emission, and no damage

to the tissue phantom was observed.

In vivo TPL imaging with gold NRs. TPL imaging provides

high 3D spatial resolution and sufficient penetration depth to

monitor biological events in vivo. Wang et al. provided the first

demonstration of intravital TPL imaging by monitoring NRs

flowing through the blood vessels in a mouse earlobe (18).

Picomolar concentrations of CTAB-NRs were introduced by

tail vein injection, and then presumably diluted in the blood

pool to femtomolar levels prior to real-time TPL imaging

(Fig. 7). The TPL signals were approximately three times

higher than the background autofluorescence, and the uniform

intensities of the emissions in the single-frame image suggest

that most of these were generated by single NRs (Fig. 7d). No

TPL signals were detected 30 min after injection, indicating the

clearance of CTAB-NRs from circulation. However, we and

others have observed that PEG-NRs have much longer

circulation times, with a half-life on the order of several hours

(59).

Darkfield microscopy

Optical microscopies and imaging modalities based on reso-

nant light scattering remain highly popular, fueled by the

continuous developments in detector sensitivity and optical

resolving power. Darkfield microscopy is a particularly versa-

tile method for imaging biological samples: although the

extinction cross-section of gold NRs is dominated by absorp-

tion (98), the amount of scattering produced is more than

sufficient for single-particle detection against a dark back-

ground (40). In principle, resonant scattering at NIR wave-

lengths (ca 800 nm) should provide the maximum reduction

in background Rayleigh scattering. Ironically, many of the

studies discussed below do not employ the stronger NIR

resonance of NRs, because the transverse plasmon mode

provides sufficient scattering intensity at the more convenient

visible wavelengths.

Gold NRs have proved to be useful contrast agents for

cellular imaging by darkfield microscopy (70). For example,

antibody-labeled NRs can selectively label malignant carci-

noma cell lines in the presence of normal human keratino-

cytes, by recognition of their cell-surface EGFRs (31). This

approach has also been used to monitor the targeted delivery

of NRs conjugated with transferrin or cell-penetrating

peptides (71,72). Darkfield microscopy can support multiplex

labeling strategies, as demonstrated by the simultaneous

detection of NRs with different aspect ratios, targeted

toward separate cell-surface biomarkers on human breast

epithelial cells (73). Darkfield imaging can even be used to

measure tissue properties: submicron-length NRs were

embedded in a cardiac fibroblast network to track local

deformations induced by mechanical stress in real-time

(74,75).

Optical coherence tomography

Optical coherence tomography (OCT) is a relatively recent

modality for biomedical imaging, with depth penetrations in

the low millimeter range, axial resolutions on the order of

10 lm and lateral resolutions in the low micron range (76,77).

OCT is noninvasive and analogous in several respects to

ultrasound imaging, except that reflections of NIR light are

detected rather than sound. This means that OCT can image

cellular and even subcellular structures, with 10–25 times

greater spatial resolution than that produced by ultrasound

imaging, and up to 100 times better than magnetic resonance

imaging or computed tomography (78). Recent technological

advances have made it possible to use OCT to image

nontransparent tissues, with application toward a broad range

of medical needs.

Optical coherence tomography typically generates images

based on morphology-dependent scattering, but can also do so

by differential absorption contrast (spectroscopic mode) or by

differences in absorption-scattering profiles. OCT methods

based on modulations in optical absorption or scattering can

benefit significantly from NIR-active contrast agents such as

gold NRs (79,80). However, the mode of contrast generation

should be considered: while NRs have been employed in

conventional backscattering OCT, their optical response is

dominated by absorption, so a very high concentration would

be required to produce detectable contrast (79). NIR-absorb-

ing NRs are much better suited to support OCT modalities

based on differential absorption or backscattering albedo (the

ratio of backscattering to total extinction), which have the

advantage of producing contrast in tissues with intrinsically

Figure 7. In vivo two-photon luminescence (TPL) imaging of nanorods
(NRs) in blood vessels (18). (a) Transmission image with two blood
vessels indicated. (b) TPL image of CTAB-NRs (red dots) flowing
through blood vessels. The image was compiled by stacking 300 frames
collected continuously at a rate of 1.12 s per frame. (c) Overlay of
transmission image (blue) and a single-frame TPL image. Two NRs
(red) are superimposed by a linescan. (d) TPL intensity profile from the
linescan in (c). Bar = 20 lm.
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high scattering cross-sections. This has been demonstrated

with NRs in highly backscattering tissue phantoms, with an

estimated detection limit as low as 30 p.p.m. (79). The narrow

absorption linewidths of gold NRs can also be used to enhance

a spectroscopic mode of OCT, and was recently investigated

for producing contrast in an excised sample of human breast

invasive ductal carcinoma (81). While the polarization-depen-

dent extinction of gold NRs has not yet been exploited for

OCT imaging, this parameter may also provide another

mechanism for contrast generation by absorption-based

modalities.

Photoacoustic tomography

Gold NRs also support optoacoustic properties that originate

from photoinduced cavitation effects. The cavitation process

begins on the subpicosecond timescale with the thermaliza-

tion of conduction electrons, followed immediately with

electron–phonon interactions and temperature increases of

hundreds or even thousands of degrees (82). This superheat-

ing results in plasma formation and microbubble expansion,

followed by its collapse with an acoustic shockwave (83). The

expansion and collapse of cavitation bubbles occur on a

microsecond timescale, and are easily detected by ultrasonic

transducers.

Photoacoustic tomography (PAT) is an emerging noninva-

sive imaging technique based on NIR-induced photoacoustic

effects (84). PAT combines NIR absorption with acoustic

detection, providing much higher spatial resolution than pure

ultrasonic imaging: laser pulses probe biological structures

with micron-scale resolution, compared with the millimeter

resolution of ultrasound waves. However, the low diffusion of

propagating acoustic waves permits greater coherence than

reflected optical signals, which would be rapidly attenuated by

scattering in biological tissue (85). The depth resolution of

PAT can be several centimeters in biological tissue, whereas

pure optical imaging is limited to depths on the millimeter

scale (86,87).

Near-infrared-absorbing gold NRs have recently been

employed as contrast agents for PAT, which would otherwise

rely on the intrinsic differences in optical absorption within

tissue for contrast. PAT images of nude mice were significantly

enhanced by the injection of NRs, which could enhance

differences in signal intensity with concentration gradients as

low as 1.25 pMM (Fig. 8) (88). Other examples involving NRs as

PAT contrast agents include quantitative flow analysis in

biological tissues (89) and the distribution kinetics of drug

delivery systems (90).

PHOTOTHERMAL EFFECTS OF GOLD NRs

The appeal of gold NRs as contrast agents for imaging is

amplified exponentially by their additional capability to serve

as photothermal agents, with as high as 96% of the absorbed

photons converted into heat by nonradiative processes (98).

NIR irradiation of NRs embedded in polyurethane using a

20 mW laser raised the temperature by over 100�C within

1 min (23). The in vitro photothermal effects of NRs have been

reported by a number of groups on cultured tumor cells

(31,33,91,92), as well on parasitic protozoans (93), macro-

phage (94) and bacterial pathogens (95,96). The potential of

using NRs for in vivo photothermal therapy has recently been

demonstrated by Dickerson et al. who exploited the enhanced

permeation and retention effect for the accumulation of

PEG–NRs in tumor xenografts in mice, with partial tumor

resorption upon NIR irradiation (97).

Gold NRs exhibit a high optothermal conversion efficiency,

with a larger absorption cross-section at NIR frequencies per

unit volume than most other types of nanostructures (98). The

absorption of light energy is essentially instantaneous, and

faster than the relaxation processes which mediate its release as

heat. While initial photon absorption rates are on the fs

timescale, the electron–phonon transition is on the order of a

few ps, and heat diffusion to the surrounding media generally

requires tens to hundreds of ps (82). At low powers or photon

densities, heat diffusion is efficient and the result is a

measurable increase in temperature, in accord with the widely

appreciated concept of local hyperthermia. At high photon

densities, the repetitive absorption of photons by gold NRs

can exceed the rate of heat diffusion and lead to an extremely

rapid rise in local temperature and superheating, resulting in

cavitation effects (see section Photoacoustic tomography). We

attempt to differentiate these two different mechanisms below,

both of which lead to cell injury and death but with potentially

different phenotypes.

Localized heating is generally considered the primary

mechanism of photoactivated injury inflicted by gold NRs

(31,33,34,91,92,94,95) and other plasmon-resonant particles

(25–27,32,35,99). Aqueous suspensions of NRs irradiated at

plasmon resonance have been examined by IR thermography,

and observed to raise the solution temperature by 26� in 5 min

when irradiated at just 20 mW of laser power (23). Huang

et al. reported the first example of using antibody-NRs to kill

cancer cells by widefield NIR irradiation (31). Malignant HSC

and HOC cells (derived from human squamous cell carcinoma)

overexpressing the EGF receptor were cultured with

nonmalignant HaCaT cells (keratinocytes) and treated with

Figure 8. Nanorods (NRs) as contrast agents for photoacoustic tomography (PAT) (88). (a) PAT image of a nude mouse (white outline) prior to
injection of NRs. (b) PAT contrast after NR injection. Reprinted with permission from the American Chemical Society.
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anti-EGFR-NRs, then washed and exposed to a cw Ti:sap-

phire laser at 800 nm for several minutes at variable powers.

The malignant tumor cells were densely coated with NRs and

killed by photothermolysis at a threshold laser power of

10 W cm)2, whereas the nonmalignant cells were only sparsely

coated with NRs, and succumbed to photothermolysis at

20 W cm)2. Huff et al. characterized the hyperthermic effect

of F-NRs on KB cells at the single-cell level using a scanning

laser microscope and found that KB cells with either internal-

ized or membrane-bound F-NRs were damaged upon 30 s of

cw-NIR irradiation at an incident power as low as 7.5 mW,

corresponding to a fluence of 30 J cm)2 (33). Affected cells

were strongly stained with ethidium bromide and exhibited a

dramatic membrane blebbing response (Fig. 9a,b), whereas

KB cells without F-NRs did not experience photothermal

damage even at an incident power of 60 mW. In addition,

NIH ⁄ 3T3 cells lacking the folate receptor were not labeled

with F-NRs, and did not experience photothermal damage at

the highest laser powers used (Fig. 9c,d).

The mechanism of photoactivated cell injury by F-NRs was

studied in detail by Tong et al. (34). First, it was determined

that the subcellular localization of the F-NRs strongly affected

their ability to deliver the maximum effect, in accord with

other studies involving targeted gold nanoparticle clusters (99).

The threshold cw laser power needed to induce membrane

blebbing in KB cells with internalized F-NRs was determined

to be 60 mW, whereas cells with membrane-bound F-NRs

experienced blebbing when exposed to a laser power of 6 mW

(a fluence of 24 J cm)2), a difference of an order of magnitude.

Tumor cells with membrane-bound F-NRs were also exposed

to fs-pulsed NIR laser irradiation, and experienced bleb

formation at a threshold power of 0.75 mW, or a fluence of

only 3 J cm)2.

It was also determined that membrane bleb formation, the

most obvious phenotype of KB cell necrosis, is not the direct

result of NR-mediated photothermolysis (34). First, fluores-

cence confocal microscopy using KB cells expressing actin-

GFP revealed a gross redistribution of the cytoskeletal

infrastructure after NR-labeled cells were exposed to NIR

irradiation, with strong correlation with membrane blebbing.

This redistribution occurred regardless of the distribution of F-

NRs on or within the KB cell, and confirmed the active role of

actin depolymerization in the blebbing process. Second, a

Ca2+-sensitive dye (Oregon Green) was used to establish

evidence of an intracellular calcium increase immediately

following photothermolysis, suggesting that membrane bleb-

bing was induced chemically, not thermally. This hypothesis

was validated by incubating KB cells with membrane-bound

F-NRs in Ca2+-free buffer, and exposing them to NIR laser

irradiation (Fig. 10a,b). No membrane blebs or other mor-

phological changes could be observed after laser treatment, but

the addition of millimolar CaCl2 resulted immediately in

membrane blebbing, with subsequent positive staining by

Oregon Green (Fig. 10c).

Figure 9. Photothermolysis mediated by folate-conjugated nanorods
(F-NRs) (34). (a, b) KB cells with membrane-bound F-NRs (red)
exposed to fs-pulsed near-infrared laser irradiation (0.75 mW, 81.4 s)
experienced membrane damage and blebbing. The loss of membrane
integrity was indicated by ethidium bromide nuclear staining (yellow).
(c, d) NIH-3T3 cells were unresponsive to F-NRs and did not suffer
photoinduced damage at the same condition. Bar = 10 lm.

Figure 10. Ca2+-dependent membrane blebbing during nanorod (NR)-mediated photothermolysis (34). (a, b) No blebbing was observed for folate-
conjugated nanorod (F-NR)-labeled KB cells in Ca2+-free PBS after fs-pulsed laser irradiation at 3 mW for 61.5 s. (c) Blebs were immediately
produced upon addition of 0.9 mMM Ca2+. Incubation with 2.5 lMM ethidium bromide (red) and 2 lMM Oregon Green for 20 min indicated a
compromise in membrane integrity and an elevation in intracellular Ca2+. For all experiments, cells were incubated with F-NRs for 6 h, and
washed five times in Ca2+-free PBS. Amounts of dyes and reagents are at final concentrations in the cell culture medium. Bar = 10 lm.
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How do the F-NRs contribute toward the membrane

blebbing response? Cavitation effects, promoted by the high

photon density intrinsic to confocal laser scanning microscopy,

are the most likely reason for the observed downstream

response (26,30,83,99–101). Photoacoustic bursts provide the

basis for ‘‘optoporation’’ events that can compromise the

integrity of the cell membrane, permitting free exchange

between intracellular and extracellular space and the disrup-

tion of cell homeostasis. In the case of the study above (34),

NR-mediated cavitation is presumed to be responsible for the

rapid influx of Ca2+, which activates a number of proteases

and signaling pathways that contribute toward the degrada-

tion of the actin filament network, and ultimately to mem-

brane blebbing.

SUMMARY AND OUTLOOK

Near-infrared-absorbing gold NRs can be used as optical

contrast agents in a number of imaging modalities, and are

also highly efficient transducers of light energy into heat. The

gold NR surface can be functionalized with biomolecular

species such as antibodies and folic acid for targeted cell

delivery, and considerable progress has been made to remove

the cytotoxic surfactant CTAB, which can also interfere with

selective cell labeling and uptake. The many examples dis-

cussed above illustrate the exciting potential of using func-

tionalized NRs for theragnostics, by coupling biomedical

imaging with photothermal therapy to provide a noninvasive

alternative to surgery for cancer treatments. Preclinical eval-

uation of derivative NRs remains an outstanding issue, and

additional in vivo experiments are needed to test the translation

potential of this method. Well-defined surface chemistry will

play a vital role in the continued development of NR-based

theragnostics, which may one day result in a medical nano-

technology that is potent, selective and safe.
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