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Gold Nanorods Mediate Tumor Cell Death by Compromising
Membrane Integrity**

By Ling Tong, Yan Zhao, Terry B. Huff, Matthew N. Hansen, Alexander Wei,* and Ji-Xin Cheng*

Light-activated therapies can be used to eradicate diseased

cells and tissues in a non-invasive manner. Much attention has

been focused on the emerging potential of photothermolysis

(also referred to as optical hyperthermia), which involves the

conversion of absorbed light into heat via nonradiative mech-

anisms. Photoactivated effects can be localized and intensified

by employing exogenous agents with large absorption cross-

sections, confining damage to areas of interest with minimal

collateral effects.[1] In particular, targeted photothermolysis

may be most effective when mediated by photothermal agents

that absorb strongly at near-infrared (NIR) frequencies, to en-

able deeper penetration into biological tissues.[2]

Among the many materials investigated for NIR photoacti-

vated imaging and therapy, plasmon-resonant gold nanorods

(GNRs) and nanoshells appear to be some of the most effec-

tive agents to date.[3–7] GNRs can be prepared with lengths on

the order of 50 nm,[8–10] a size compatible with long blood re-

sidency and permeation into tumors via their leaky vascula-

tures. GNRs support longitudinal plasmon resonances at NIR

frequencies with higher quality factors than those of spherical

gold nanoparticles at comparable resonance frequencies[11,12]

and are highly efficient at converting light energy into heat,

particularly if embedded in media of low thermal conductiv-

ity.[13] Recently, GNRs have been shown to be capable of gen-

erating two-photon luminescence (TPL) at sufficient intensi-

ties for single-particle detection and in vivo imaging.[14,15] This

latter property permits the real-time imaging of GNRs during

their simultaneous application as photothermal agents in bio-

logical systems.[16]

While the therapeutic potential of nanoparticle-mediated

photothermolysis is widely recognized, many causal relation-

ships between local photothermal effects and cell injury re-

main to be defined. Heat-induced cell injury has traditionally

been viewed as a systemic effect, characterized by phenotypic

responses such as membrane blebbing, depolymerization of

cytoskeletal filaments, thermal inactivation of membrane pro-

teins and mitochondria, or increased production of heat shock

proteins.[17–19] These individual outcomes may be resolved at

the subcellular level by using targeted nanoparticle delivery

to administer localized photothermal effects.[20–25] For exam-

ple, nanosecond laser pulses have been used to induce cavita-

tion in cells containing gold nanoparticles, resulting in transi-

ent increases in membrane permeability and inactivation of

adsorbed proteins.[20,21] These processes are quite distinct

from those based on systemic changes in temperature.

In this work we investigate the mechanisms and extent of

photothermal injury inflicted by GNRs targeted to cell-sur-

face receptors. Folate-conjugated GNRs were monitored in

real time by TPL microscopy, and were observed to be partic-

ularly effective at inducing tumor cell necrosis when localized

on the cell membrane. The mechanistic insights in this study

reveal that the photothermal activity of GNRs and other

nanoparticles extends beyond simple hyperthermia, and can

be directed for maximum damage to cells using an appropri-

ate targeting mechanism.

GNRs (kmax = 765 nm) were prepared as previously de-

scribed[8,9] and functionalized with a folic acid conjugate by in

situ dithiocarbamate formation, a recently developed method

for the robust functionalization of gold surfaces (Fig. 1).[16,26]

The folate-conjugated nanorods (F-NRs) were targeted to-

ward the plasma membrane of malignant KB cells, a tumor

cell line known to overexpress the high-affinity folate recep-

tor.[27] Cells were observed to be densely coated with F-NRs
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Figure 1. (A) Transmission electron micrograph (JEOL 2000FX, 200 kV)
of gold nanorods (kmax = 765 nm), prepared by seeded growth method.
(B) Folate–oligoethyleneglycol ligands, conjugated onto gold nanorod
surfaces by in situ dithiocarbamate formation.



after 6 h incubation using TPL microscopy (Fig. 2A); the

membrane-bound F-NRs could be dislodged by washing the

cells with a pH 3.3 buffer. F-NRs were also applied to cul-

tured NIH-3T3 cells having low folate receptor expression

with little binding observed after 6 h, confirming the targeted

nature of nanorod adsorption (Fig. 2C). The receptor-bound

F-NRs were very slowly internalized, but observed to be fully

translocated to the perinuclear region after 17 h (Fig. 2B).

The intracellular translocation of F-NRs by KB cells was

further characterized by single particle tracking analysis and

exhibited a bidirectional motion towards the nucleus and the

plasma membrane, fully consistent with a directed motion

model (Fig. S2). The profile for F-NR cell uptake is in stark

contrast to that of molecular folate conjugates, which under

similar conditions have an uptake rate on the order of min-

utes.[28]

KB cells incubated with F-NRs were scanned

continuously for 81.4 s (49 scans, 1.66 s per scan)

with a tightly focused continuous-wave (cw) laser

beam, tuned to the plasmon resonance at 765 nm.

Cells with membrane-bound F-NRs (Fig. 3A and

B) suffered from photoactivated damage after

scanning in cw mode, at powers as low as 6 mW

at the sample (mean power density and fluence

of 388.8 W cm–2 and 24 J cm–2, respectively). Evi-

dence for photoinduced injury includes heavy nu-

clear staining by ethidium bromide (EB), indicat-

ing loss of membrane integrity,[29] accompanied by

extensive and irreversible membrane blebbing, a

generally accepted sign of cell death.[30]

The threshold for photoinduced damage is

strongly affected by the site of F-NR localization,
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Figure 2. Targeted adsorption and uptake of folate-conjugated GNRs (F-NRs, red) by
KB cells overexpressing folate receptors (imaged in transmission mode, grey). (A) A
high density of F-NRs was observed on the surface of KB cells after 6 h incubation at
37 °C. (B) F-NRs were internalized into KB cells and delivered to the perinuclear region
after 17 h incubation. (C) No binding was observed of F-NRs to NIH-3T3 cells, which
express folate receptors at a low level. Scale bar = 10 lm.

Figure 3. Site-dependent photothermolysis mediated by F-NRs (red). (A,B) Cells with membrane-bound F-NRs exposed to cw NIR laser irradiation
experienced membrane perforation and blebbing at 6 mW power. The loss of membrane integrity was indicated by EB staining (yellow). (C,D) Cells
with internalized F-NRs required 60 mW to produce a similar level of response. (E,F) F-NRs internalized in KB cells labeled by folate-Bodipy (green)
were exposed to laser irradiation at 60 mW, resulting in both membrane blebbing and disappearance (melting) of the F-NRs. (G,H) NIH-3T3 cells were
unresponsive to F-NRs, and did not suffer photoinduced damage upon 60 mW laser irradiation. (I,J) Cells with membrane-bound F-NRs exposed to
fs-pulsed laser irradiation produced membrane blebbing at 0.75 mW. (K,L) Cells with internalized F-NRs remained viable after fs-pulsed irradiation at
4.50 mW, as indicated by a strong calcein signal (green).



similar to a recently reported case involving gold nanoclus-

ters.[23] Cells with internalized F-NRs (Fig. 3C and D) re-

quired a cw irradiation power of 60 mW to induce a mem-

brane blebbing response, an order of magnitude greater than

in the case of membrane-bound F-NRs. The temporal locali-

zation of membrane-bound F-NRs noted above suggests an

optimum time window for photoactivated therapy, following

the delivery of nanorods to cell surfaces but prior to their in-

ternalization.

Several factors may contribute toward the greater efficacy

of the latter: i) thermal disruption of the membrane provides

the most direct opportunity to inflict cell damage; ii) the accu-

mulation of nanorods on the surface focuses photothermal ef-

fects into a confined area; and iii) the relatively low thermal

conductivity of the cell membrane may contribute toward

larger temperature gradients with subsequently more intense

hyperthermic effects.[13] It is also worth mentioning that the

TPL signals were greatly diminished after cw irradiation at

high power, signifying that most of the GNRs had melted and

were no longer resonant at NIR frequencies.

To verify that blebbing was due to morphological changes

in the membrane, KB cells with internalized F-NRs were

treated with folate-Bodipy for 30 min prior to cw irradiation

(Fig. 3E). The boundary of the resulting blebs was clearly

fluorescent (Fig. 3F), confirming photoinduced deformation

of the cell membrane. In control experiments, cells devoid of

nanorods were unaffected by either cw or fs-pulsed irradiation

at the powers used in our studies (Fig. 3G and H) and cells

with internalized F-NRs were healthy after 24 h of dark

incubation (Fig. S3). These results indicate that the observed

cell injuries are due solely to F-NR-mediated photothermal

effects.

Membrane-bound F-NRs were even more effective at

inflicting photoinduced injury under femtosecond (fs)-pulsed

laser irradiation. Tumor cells with membrane-bound F-NRs

exhibited strong EB staining and blebbing (Fig. 3I and J) after

scanning at a reduced average power of 0.75 mW, correspond-

ing to a pulse energy of 9.7 pJ (mean power density and flu-

ence of 48.6 W cm–2 and 3 J cm–2, respectively). KB cells with

membrane-bound F-NRs were monitored in real time while

exposed to a fs-pulsed laser beam, and produced clearly visi-

ble membrane blebs within 10 s of irradiation (Supporting

Fig. S4). In contrast, KB cells with internalized F-NRs re-

mained viable after fs-pulsed irradiation at a higher power of

4.5 mW (Fig. 3K and L), as indicated by a strong intracellular

calcein fluorescence. The site-dependent photoinduced dam-

age under fs-pulsed conditions is consistent with the results

above using cw irradiation.

The increased efficiency of photothermolysis under

fs-pulsed conditions can be attributed to the ultrafast electron

dynamics involved in plasmon-mediated heating. The photo-

thermal activity of GNRs is driven primarily by thermaliza-

tion of the conduction electrons on the fs timescale, followed

by electron–phonon relaxation on the picosecond timescale

and subsequent thermalization of the phonon lattice.[31] GNRs

also have a plasmon-enhanced two-photon absorption cross

section[14,32] which further increases the population and energy

of photoexcited electrons under fs-pulsed conditions. Elec-

tronic thermalization is followed by transient plasmon bleach-

ing, the recovery rate of which is on the order of picosec-

onds.[31] Such plasmon bleaching has little effect on the

absorption efficiency of GNRs exposed to a train of fs pulses

with nanosecond intervals for plasmon relaxation; on the

other hand, GNRs under cw irradiation are continuously satu-

rated, which reduces their absorption efficiency and overall

photothermal energy conversion.

It must be noted that ultrafast laser pulses of sufficiently

high energy can be applied directly toward single-cell laser

surgery with subcellular precision,[33] as demonstrated re-

cently by the intracellular scission of actin filaments.[34] How-

ever, the threshold for optical breakdown in the absence of a

photosensitizing agent requires pulse energies in the nano-

joule range.[33–35] In the presence of GNRs, the threshold for

photoinduced damage is reduced to pulse energies in the pico-

joule range.

With respect to the mechanisms of F-NR-mediated cell

death, several recent studies have shown that the photother-

mal response of plasmon-resonant nanoparticles is intimately

linked with cavitation dynamics.[20–25] The gradient for cavita-

tion-induced heating declines sharply from the epicenter, such

that direct thermolysis would be limited to targeted cells near

the sites of photothermal transduction.[20,23,24] Cavitation is

also responsible for transient bubble formation, which can

expand by as much as several microns during their microsec-

ond lifespans.[22,33] These microbubbles have been proposed

to cause a temporary rupture in cell membranes,[20,21,25] there-

by increasing their permeability to EB and other chemical

agents.

In our study, the most dramatic effect of F-NR-mediated

photothermolysis was the blebbing of the plasma membrane,

which occurred within seconds of laser irradiation (Fig. 3).

However, bleb formation could not be the direct product of

cavitation, as the rates of growth were several orders of mag-

nitude slower than the timescale for microbubble expansion.

Furthermore, blebbing was often induced at sites remote from

the F-NRs. This could be observed in real time while monitor-

ing KB cells with membrane-bound F-NRs by bright-field and

TPL imaging: Exposure to a fs-pulsed laser with 0.75 mW at

the sample resulted in bleb formation and the retraction of

filopodia within seconds, both close to and far away from the

F-NR binding sites (see Supporting Movie 1).

We hypothesized that the blebbing response was due to the

disruption of actin filaments, which form a dense 3D network

beneath the cell membrane to provide mechanical support

and sustain cell shape. This was tested by using KB cells

expressing actin-GFP, followed by incubation with F-NRs for

17 h. Exposing these cells to cw laser irradiation (90 mW) for

a 81.4 s scan period resulted in membrane blebbing and

retraction of filopodia, accompanied by a nonuniform redistri-

bution of actin-GFP and a 53% decrease in overall fluores-

cence intensity (Fig. 4A and B). KB cells without F-NRs were

also exposed to cw laser irradiation and did not experience
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membrane blebbing (Fig. 4C and D), although actin-GFP

fluorescence decreased by 17.5% due to photobleaching

(Fig. 4E). In a second control experiment, KB cells without F-

NRs were treated for 2 h with cytochalasin D, a potent inhibi-

tor of actin polymerization. These cells exhibited membrane

blebs similar to those induced by F-NRs, again accompanied

by an attenuated and nonuniform distribution of actin-GFP

(Fig. 4F). The blebbing response to F-NR-mediated photo-

thermolysis can thus be correlated with the degradation of the

intracellular actin network.

We further considered whether actin filament disruption

could be due to an influx of Ca2+, mediated by cavitation-

induced perforation of the cell membrane. Elevated concen-

trations of intracellular Ca2+ can result in the detachment of

actin filaments from the plasma membrane via the activation

of proteases such as calpain.[36] Toxins such as HgCl2
[37] and

maitotoxin[38] have also been shown to induce membrane

blebs by increasing Ca2+ influx. To examine the role of Ca2+ in

photoinduced cell injury, we irradiated KB cells with mem-

brane-bound F-NRs in Ca2+-free phosphate-buffered saline

(PBS) as well as in PBS containing 0.9 mM Ca2+ (100 mg L–1

CaCl2), using fs-pulsed laser irradiation at 3 mW for a 61.5 s

scan period. For KB cells irradiated in the presence of Ca2+,

membrane blebbing was observed immediately after laser

irradiation and accompanied by EB staining, indicating

increased membrane permeability (Fig. 5A–C). A strong Ore-

gon Green signal was also produced in the cytoplasm

(Fig. 5C), confirming an increased level of intracellular Ca2+

in response to the photoinduced injury. For KB cells in

Ca2+-free PBS, strong EB staining was also observed, but no

blebs were produced (Fig. 5D–F). In a separate experiment,

F-NR labeled cells were first irradiated in Ca2+-free PBS and

confirmed to have normal morphologies (Fig. 5G, H), where-

upon treatment with Ca2+ resulted in immediate bleb forma-

tion (Fig. 5I). Collectively, these results demonstrate that

membrane blebbing is a consequence of Ca2+ influx into cells

that occurs during F-NR-mediated photothermolysis. It

should be noted that in addition to membrane blebbing, Ca2+

influx is responsible for inducing a variety of secondary dam-

ages, many of which lead to cell death.[36]

In summary, folate-conjugated gold nanorods can be tar-

geted to tumor cells in a site-dependent manner for maximum

delivery of photoinduced injury using NIR irradiation. The

photothermolysis of KB cells is most effective when F-NRs

are adsorbed to the cell surface prior to uptake, with a tenfold

difference in damage threshold relative to cells with internal-

ized F-NRs. The nanorods’ efficacy is further intensified

under fs-pulsed excitation conditions, due to the increased

efficiency of NIR absorption and photothermal energy con-

version. Cell death is attributed to the disruption of the

plasma membrane as a consequence of F-NR-mediated

cavitation. Membrane perforation led to an influx of extracel-

lular Ca2+ followed by degradation of the actin network, pro-

ducing a dramatic blebbing response. Nanorods targeted to

other cell-surface biomarkers can be expected to produce

similar membrane-compromising effects. These results are a

significant departure from earlier assumptions regarding

nanoparticle-mediated hyperthermia, and provide a founda-

tion for developing targeted photothermolysis for cancer ther-

apy.

Experimental

Preparation and Characterization of F-NRs. Gold nanorods with
longitudinal plasmon resonances centered at 765 nm were prepared
in high yields in the presence of cetyltrimethylammonium bromide
(CTAB) and silver nitrate using seeded growth conditions,[8] then
treated with sodium sulfide 30 min after injection of the seed solution
to arrest further growth and changes in their optical resonances.[9] The
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Figure 4. F-NR-mediated disruption of actin filaments in actin-GFP
(green) transfected KB cells. (A) KB cell with internalized F-NRs (red)
before cw laser irradiation. (B) Membrane blebbing accompanied by re-
distribution of actin-GFP and loss of fluorescence, after an 81.4 s expo-
sure to cw irradiation at 90 mW. (C,D) KB cells without F-NRs, which did
not experience membrane blebbing after exposure to cw irradiation at
90 mW. (E) Histogram showing the decrease in actin-GFP fluorescence
intensity in cells with and without F-NR labeling (N=5) after cw
irradiation. The minor reduction of fluorescence in cells without F-NR
labeling is attributed to photobleaching. (F) Blebbing, redistribution of
actin-GFP, and loss of fluorescence in KB cells after 2 h treatment with
cytochalasin D (5 lg mL–1). Scale bar = 10 lm.



nanorods were centrifuged and redispersed in deionized water two
times (24000 g, 5 min per cycle) to remove CTAB and residual inor-
ganic species, then diluted to an optical density (O.D.) of 1.0–1.2. Par-
ticle size analysis by transmission electron microscopy indicated a
mean length and aspect ratio of 46.5 nm and 3.7, respectively.

Amine-terminated oligoethyleneglycol chains were tethered onto
nanorods by in situ dithiocarbamate formation, a recently developed
method for the robust functionalization of gold surfaces.[16,26] An
aqueous suspension of CTAB-coated nanorods (3 mL, O.D. 1) was
treated with a mixed-bed ion-exchange resin (Amberlite MB-3, Sig-
ma) for 10 h at room temperature, then decanted and treated while
stirring with a 10-mM solution of O,O′-bis(2-aminoethyl)octade-
caethylene glycol (Fluka) adjusted to pH 9.5 (1 mL), followed by a
saturated solution (28 mM) of freshly distilled CS2 (0.1 mL). The mix-
ture was stirred for 12 h, then subjected to membrane dialysis for 2 h
(MWCO 6000-8000). The amine-coated nanorods were then treated
with a 10 lM DMSO solution of N-hydroxysuccinimidyl folate
(0.2 mL) prepared according to literature procedure,[27] followed by
additional dialysis for a complete removal of CTAB molecules from
the nanorod solution. The latter step is necessary to prevent nonspeci-
fic nanorod uptake.[39] This procedure yielded a stable dispersion of
F-NRs with an absorption maximum at 765 nm and a final optical

density close to 1. The absorption spectra of the nanorods
used in this study were not significantly affected by sur-
face functionalization. The nanorod concentration is on
the order of 0.2 nM, estimated from recent experimental
measurements of extinction coefficients.[40] The mean hy-
drodynamic diameter of the F-NRs was determined to be
81.5 nm by TPL correlation spectroscopy (Supporting
Fig. S1).

Cell Culture. KB cells and NIH/3T3 cells were cultured
at 37 °C in a humidified atmosphere containing 5% CO2

and grown continuously in folate-deficient RPMI
1640 medium (Invitrogen) containing 10% fetal bovine
serum (Sigma) and 1% penicillin-streptomycin (Invitro-
gen). In a typical experiment, a 1-mL suspension of KB
cells (105 cells mL–1) was plated onto a coverslip-bot-
tomed Petri dish (MatTek), grown for 2-3 days, then
treated with an aliquot of F-NRs (100 lL) and main-
tained at 37 °C with periodic monitoring.

Two-photon Luminescence Imaging. A femtosecond
(fs) Ti:Sapphire laser (Mira 900, Coherent Inc.) with a
duration of 200 fs and a repetition rate of 77 MHz was
used for TPL imaging of nanorods. The laser beam was
directed into a scanning confocal microscope (FV300/
IX70, Olympus America Inc.) equipped with a 60X
water-immersion objective (NA = 1.2). The excitation
power used was 0.75 mW at the sample, unless otherwise
noted. Consecutive real-time images (movies) were re-
corded at a speed of 0.6 frames per second, using the
TPL signal to visualize nanorods and the transmission sig-
nal to visualize KB cells.

F-NR Mediated Photothermolysis. KB cells incubated
with F-NRs were rinsed with fresh RPMI 1640 medium
prior to scanning with the Ti:sapphire laser, which could
be readily switched between fs-pulsed and cw mode. Cells
were irradiated at 765 nm using either mode under con-
stant average power, ranging from 0.75 to 60 mW at the
sample. The mean power density was calculated by divid-
ing the average laser power with the scanning area. The
exposure time for individual nanorods was calculated as
follows. Typically, a 39.3 × 39.3 lm2 area was scanned at a
rate of 1.66 s per scan. Each scan was compiled with
512 × 512 pixels (pixel area = 77 × 77 nm2; exposure
time = 6.3 ls per pixel per scan). The focal spot area was
calculated as pd2/4, where d = 0.61 k/NA is the full width
at half maximum of the beam waist. In one scan, the ex-
posure time for a nanorod was calculated as (focal spot
area / pixel area) × 6.3 ls = 0.126 ms. The total illumina-

tion time was calculated as the product of 0.126 ms times the number
of scans.

Cell death was determined using 2.5 lM ethidium bromide (EB), a
nuclear stain used to test membrane integrity;[29] cell viability was de-
termined using 2.5 lM calcein AM.[5,20] For enhanced observation of
the plasma membrane morphology, KB cells were treated with
100 nM folate–boron dipyrromethene difluoride conjugate (folate–
Bodipy) which binds to the folate receptor on the cell surface. For
monitoring the integrity of actin filaments, KB cells were transfected
with plasmids encoded for b-actin conjugated to green fluorescent
protein (actin–GFP) using a transfection agent (FuGENE 6), three
days prior to photothermal treatment. For pharmacological disruption
of actin filaments, KB cells were incubated with 5 lg mL–1 cytochala-
sin D for 2 h prior to observation. To study the role of Ca2+ in mem-
brane blebbing, F-NR labeled KB cells were washed with PBS with-
out Ca2+ or with 0.9 mM Ca2+ (100 mg L–1 CaCl2) for 5 times then
exposed to laser irradiation. In addition to testing membrane integrity
with 2.5 lM EB, irradiated cells were treated with 2 lM Oregon
Green 488 (BAPTA-2 AM, Invitrogen) as an indicator of intracellu-
lar Ca2+. Fluorescence imaging was carried out on a confocal micro-
scope (FV300/I70, Olympus). A 488-nm Ar+ laser was used for excita-
tion with 37.5 lW at the sample. The amount of all dyes and reagents
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Figure 5. Membrane blebbing is induced by Ca2+ influx during F-NR-mediated photo-
thermolysis. (A,B) Cells with membrane-bound F-NRs (red) in PBS containing
0.9 mM Ca2+ (100 mg/L CaCl2) exhibited blebbing after exposure to fs-pulsed laser ir-
radiation at 3 mW for 61.5 s. (C) Incubation with 2.5 lM EB (red) and 2 lM Oregon
Green 488 for 20 min indicated a compromise in membrane integrity and an eleva-
tion in intracellular Ca2+, respectively. (D, E) Cells with membrane-bound F-NRs in
Ca2+-free PBS were visibly unchanged by fs-pulsed laser irradiation at 3 mW. (F) Incu-
bation with 2.5 lM EB for 15 min revealed perforation of the cell membrane.
(G–I) F-NR labeled KB cells in Ca2+-free PBS were unaffected by fs-pulsed irradiation
as described above, but immediately produced blebs upon exposure to 0.9 mM Ca2+.
For all experiments, cells were incubated with F-NRs for 6 h, then washed 5 times in
PBS with 0.9 mM Ca2+ (A–C) or without Ca2+ (D–H). Amounts of dyes and reagents
are described as final concentrations in the cell culture medium. Scale bar = 10 lm.



reported here are provided as final concentrations, following dilution
in the cell culture medium.
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