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ABSTRACT 

We review the dispersion-theory calculation of the Goldberger- 

Treiman discrepancy A = 1 - mgA/(f, g). Our estimate is still some 

way from the experimental value. The latter and its SU(3). counter- 

parts can be used to determine the chiral-symmetry-breaking 

parameter c appearing in the (3,3) + (3,3) Hamiltonian u. + cu3. We 

find c M -1 in agreement with its determination from phenomenological 

o terms. 
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I. INTRODUCTION AND FORMALISM 

‘1 
Tke validity or otherwise of the proposed (3,3) + (x,3) model for the break- 

sing of the chiral SU(3) x SU(3) symmetry can be tested in various ways. In a 

previous paper2 w.e have compared the predictions of the model against pheno- 

menological u terms, concluding that the generally large values of these quanti- 

ties can be reconciled with the model only if the parameter c occurring in the 

symmetry-breaking Hamiltonian H’ = u. + cu8 takes the value c M -1, rather 

than the value c z -1.25 derived from the pseudoscalar meson mass formula. 

An alternative means of probing the value of c is provided by the Goldberger- 

Treiman (G-T) relation3 and its SU(3) counterparts. This is connected to the 

above determination in two ways. First, the discrepancy between the experi- 

mental value f, M 93 MeV found from T - ,u v decay4 and the theoretical pre- 

diction f GT = mNgA/g M 87 
7r 

MeV can be reduced slightly if the coupling of 

the (T(E ) particle to pions is large, which, in the (T model, directly follows from 

the large value5 (M 70 MeV) of the nN u term a(nN). Second, the SU(3) G-T 

discrepancies afford an independent determination of c provided that the hyperon 

coupling constants are known. In fact, as we shall see, the determination is 

rather insensitive to SU(3) breaking of these couplings and indeed leads to 

c M -1, but cannot credibly be stretched to accommodate the canonical value 

c ~-1.25. 

Both of these aspects of the G-T relation have been discussed in the litera- 

ture before. However4 previous evaluations of the G-T discrepancy by means of 

dispersion relations 
6,7 ’ 

are marred by errors and do not use the connection 

between the (T meson coupling constants and the ?TN (T term. Our treatment of 

the SU(3) relations is more detailed than that of Dashen’ and has the advantage 

of a now clearer experimental situation as regards the hyperon coupling constants. 
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The objects of our study will be the G-T discrepancies A, which for nNN 

,is defjned as6 

A 
mgA 

nNN 
El- - 

f7r 5 

Numerically this discrepancy is found to be 

A 
TNN 

= 0.058 f 0.013 (2) 

using the values 
9,lO 

m=m 
N 

= 938.9 MeV, gA = gA(0) = 1.25, fn = 93.0 MeV, 

and” g = i+N = 13.40. 

The formalism for the first aspect of our work has been set up by Pagels. 
6 

One begins by defining the nucleon-nucleon matrix element of the axial-vector 

current as l2 ’ l3 

. - 
TP’)~J~@~~P) > = i u(P’) ( % 7-j j Yp + hA(q2)q,]- . 

r,u(p) e-lq ’ x 

(3) 

where q =p’ - p. 

Taking the divergence one has 

< N(p’) 1 a - Aj (0) i N(p)> = D(s2, $P’) 7 J -~~5u(p) ,, (4) 

where 

D(s2) =mgA(s2) + 4 q2 hA(q2) (5) 

which can be separated into a contribution from the pion pole plus the background: 

W?, = Dpleh2j + w12) (6) 

Evaluating the pole term at q2 = 0 leads to 

D(o) = “gA = f* g + D(O) (7) 
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One then assumes an unsubtracted dispersion relation for B(q2): 
, I 

00 4 

D(0) = + 

I 
Im B(t) q- (8) 

9P2 

The PCAC relation, ij . A =p2 f, @, connects6 -i 
D(q ) to the pionic form factor 

K(q2’) of the nucleon, leading to 

Ins(t) = /J2flig q , 
I-1 -t 

where K(t) is normalized to unity at q2 = t = p2. 

Thus Eq. (8) can be rewritten as 

2 O3 
E(O) = fn g $- 

/ 

dt 
h K(t) > 

9P 
2 t(p2- t) 

(9) 

(10) 

and Eq. (7) as 

co 
mg A A z=l--= dt 

nNN 
f7r g 

ll 
/ 

Im K(t) . (11) 

gE.1 
2 t(t -p2) 

This can be interpreted as a once-subtracted dispersion relation in the pionic 

form factor of the nucleon, A being thus a measure of the varianee of this 

quantity between q2 =p2 and q2 = 0: 

A 
TNN = K(p2) - K(0) (12) 

The contributions to the dispersion integral will be examined in Section II, 

where the differences with previous work will be carefully pointed out. The 

value of the u term o(nN) and the form of the low-energy approximation to the 

$=O TN amplitude will prove to be important, as discussed in Section III. 



I 

The second aspect of our work has been discussed briefly by Dashen. 
8,14 

, 

Here me evaluates the non-pole part of D(0) in Eq. (7) in terms of the structure 

‘of the chiral-symmetry breaking Hamiltonian: 

D(O) = 9 2N,8-~3(0)i N> = - 4 i<NI [Qi, H’]/N> . (13) 

In the (3 ,s) + (2,3) model H’ takes the form 

H’ = u. + cu3 

and the relevant commutators in Eq. (13) are 

[Qi, d] = - i dijk Vk 

Thus, from this point of view 

E(0) = - d- 2 +c 
(?r )NN 

. - 2&- 

and so 

A 
TNN 

(14) 

(15) 

(16) 

(17) 

The SU(3) analogues of this relation can be used to eliminate the unknown 

quantity tvT)~N in favor of hyperon discrepancy functions AKNZ: , AHNn. This 

analysis is discussed in Section IV, where, in particular, the insensitivity of 

the derived relation to SU(3) breaking is pointed out. 

Following these calculations a discussion of the experimental discrepancy 

of A 
TNN 

and the status of the GMOR model is given in Section V. 
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II. SATURATION OF THE DISPERSION RELATION 

WR now re -examine estimates 6,7 of A rNN obtained by saturating (11) with 

the lowest lying intermediate states. Barring the existence of a heavy pion or 

15 
a large 37r enhancement, it has been shown 

16 
that the contribution from the 3n 

intermediate state is completely negligible. Furthermore the high-energy con- 

tribution, i. e. the contribution from values of t > 4 m2, has been shown 
17 

to be 

bounded by 0.01. Thus we can restrict our attention to the resonant p7r and or 

intermediate states and take the upper limit of integration in Eq. (11) as 4 m2. 

The contributions are shown diagrammatically in Fig. 1. 

FIG. 1 

In the absence of a complete representation of the right hand amplitudes 

7ru - NR and 7rp - NT, we can only attempt an estimate thereof using s- , u- and 

t-channel pole terms. 

We consider first, then, the s- and u-channel nucleon poles, leading to the 

contributions shown diagrammatically in Figs. 2(a) and (b). 

7r- > 

(1 

T- l - 
q 

FIG. 2a FIG. 2b 
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These poles are the first approximations to a fixed-t dispersion calculation of 

the rig&-hand amplitude; in this spirit their couplings are to be taken as 

constants, as previous authors have done. 697 

A. pr Intermediate State 

The couplings necessary for this calculation are defined by the following 

phenomenological Hamiltonians. 

H = 
7rNN g~NN ~ ‘i Y5 NH1 

H 
PTT 

= gp~~ i ‘ijk lI*l (q + q’)P c; rIk 

(18) 

(19) 

HpNN = gpNN 
N(p’) ($ TV) [Fyy’ + Fli cpv@’ - p)‘/2m] pisv NtP) (20) 

where, by vector dominance, F 
v v 
1, F2 are respectively the Dirac and Pauli iso- 

vector couplings, with the values V 
F 1 = 1, Fz = K v = 3.7, and g 

P’” 
wpNN= gp> 

with gz/4r M 2.8, as determined by the width’ I? x 150 MeV. 
Pr= 

The contribution to the absorptive part of K is then calculated to be 
18 

, for 

(m +/.J)~ < t < 4m2, 
P -- 

N g2 
b KpTW = & $! it P 

where 

ttt - 0-n -j.~)~) (t - (m +j~)~)l’~ $QP = 
2 h 

p = s 3 (4m2 - p 

and 

A = 
4PQp 

tP t-mz-iJ2 

(22) 

(23) 

(24) 
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When inserted into the dispersion integral and evaluated numerically, this 

gives a.,contribution to A 

AN@) = 0. 015 , 

in agreement with the calculation of Braathen. 7 

.The inclusion of the pion pole, Fig. 3, 

(25) 

FIG. 

leads to a contribution to the absorptive part 

and to A 

g2 
Im KFr(t) = - 6 a 

4 Q”& 

AS(pr) = - 0.0055 

(26) 

(27) 

B. or Intermediate State 

In the calculation of the contribution from this intermediate statewe will 

differ in some important respects from previous treatments. Let us, however, 

first calculate the absorptive part for a O+ a-particle of arbitrary mass m. and 

couP1ings &NN’ guTn defined, by the phenomenological Hamiltonians 

H 
UNN = guNN NN$u 

H =g 
umr mm 

(28) 

(29) 



From Figs. 2a and 2b we obtain an absorptive part 
’ , 

aN 
rn-~ KuT tt) = 

gumrguNN . 
4n F tt 

1 -m2,+p2) . - 
2P& 

tan-’ Ac (30) 

As discussed in the next Section we-will use the values of the couplings gcrr, 

as given in the c model, 
19 

guNN 
viz. 

g - g t&-p2), U7m - 2m 

and a mass m = 500 MeV, somewhat lower than the mass of the physical E 
u 

particle. 
9 We choose this value to agree with the pion-nucleon CT term and in 

recognition of the fact that as far as the u particle is concerned we are not 

including closed loops, which renormalize the mass upwards. 
20 

With these parameters the calculated contribution to A is 
21 

AN(") = 0.01 (33) 

The self-energy diagram, Fig. 3, gives an absorptive part 
18 

g2 
Im K;r(t) = - p 

t - mi+p2 

4t(t -/J2) ’ 
. (34) 

which gives a negligible contribution to A when inserted in the dispersion 

integral, Eq. (11). ? 

C. Resonant Contributions 

So far our discussion has been limited to the inclusion of nucleon poles in 

the s- and u-channels of the amplitudes Q -+-NE and 7ro - Nz. In the absence 

of a reliable method of estimating the continuum contribution,we can consider 

the inclusion of higher mass resonances in these channels. The structure of 



the resonance spectrum is such that these resonances do not contribute as much 

- as ,mig&t have been expected. The reasons for this are as follows: 

. (i) For the p 7r intermediate state, the A(1236) contribution is suppressed 

(apart from the mass factor) by the Ml nature of the p NA vertex near reso- 

22 
nance . Higher resonant contributions will be suppressed primarily because 

of the mass factor, and as an optimistic estimate we may hope for at most 

Aproper(p 7r) M 0. 02 

for the proper p r contribution. 

(ii) For the u7r intermediate state A(1236) is excluded by isospin invariance. 

Higher resonances such as N’(1470), N’(l520), N’(1535) etc. appear’ to be rather 

weakly coupled to the EN system. Hence, assuming that the combined resonance 

contributions add, it seems that the most we can hope for is 

A(on) M 0.015 

D. Strange Particle Intermediate States 

The next highest mass intermediate states would be the strange counter- 

parts of (A) and (B), viz. K&Kand KE respectively. The couplings of K* and K 

can be related by SU(3) to those of p and 7r, giving an overall Clebsch-Cordon 

factor ~0.4 for the Dirac coupling and 0.2 for the Pauli coupling. Combined 

with a large reduction factor from higher masses in the dispersion relation, the 

effect is to make the K*K contribution negligible. Since the u (E ) is predominantly 

a unitary singlet, 
23 

the couplings of the K and the u cannot be so directly 

related, but barring an unforseen enhancement, the mass effect in the disper- 

sion relation should have the same result of also making the KR contribution 

negligible. 
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To sum up, our calculated contributions to A, Eqs. (25), (27) and (33), 

amounL to 0.02. Our value for A( p7r) agrees with that given by Braathen (Ref. 7, 

Table 5) and is greater than that of Pagels (Ref. 16, footnote 9) because of the 

inclusion of the Pauli term and the use of a larger value of g2. Our value for 
P 

A(uT) is positive and greater than the A( ET) of Braathen 
24 

because of a different 

evaluation of the UT contribution, as discussed in the next section. 

In addition to the calculated contributions we have looked at possible reso- 

nance contributions and estimated that they may amount to some 0.01. Finally, 

there is the high energy contribution, from states with invariant masses greater 

than 2m, which, given the assumptions of Pagels, 
6,17 

is bounded by 0.01. It 

is interesting, however, that a reasonable cutoff of 2 GeV leads to a p7r high 

energy contribution’ to A of 0.028. 

In spite of the increase over previous estimates, with a possible total con- 

tribution of, say, 0.035, we are still some way from the present experimental 

value, Eq. (2). However, the discrepancy is small enough that one may hope 

for an ultimate reconciliation. It may be that the high energy bound of Ref. 6, 

and the assumptions made therein, holds the key to the puzzle. 

. - 



III. THE u MODEL AND THE nN aTERM 

Thaparameters of the u meson used in Section II are intimately related to 

the value of the nN u term, 

u(nN) = < N 1 EQL , i &A”] 1 N> . (35) 

This can be obtained by an extrapolation of the background (non-pole) forward 

iso topic -even 1 nN amplitude 

F(+)(v , t) = x(+) + v Et+) _ g”/, 

25 
to the on-shell sub-threshold point v =o, t =2p2: 

pt++(), 23) = a(nN + 0 ( p4) 
f2 -iI- 

or to the double off-shell point8 v 
2 

=0, t =Owithq2 =q’ =0: . 

j$“)(O, 0; q2 =q’2 =O) = - a0 

f2 
lr 

(36) 

(37) 

Phenomenological analyses using both these methods seem to be 2,5,26 
converging 

on a value of u(nN) M 70 MeV. 

The final term in Eq. (36), which arises from the difference between the 

nucleon pole contributions as evaluated in dispersion theory in contrast to field 

theory, is crucial to what follows, and has been noted by several authors. In 

-t+) the presence of this term the t-channel “a dominance” model for F reads2 7 

F(+)(v , t) M 
2 guNNgunn A 

m2c-t m 
(39) 
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The u model couplings (31) and (32) then ensure that F -(++v , t) vanishes at 
I 

the onshell point v = 0, t = ,u2: 

F(++O, p2) M 0 (40) 

which is a good approximation 
26 28 

to the required vanishing of the amplitude at 

the off-shell Adler consistency point v = 0, t = p2, q2 = 0, q’2 = p2, Thus we 

may have some confidence in the couplings (31) and (32), or at least in their 

product, which is all that enters into the calculation of A(ur). 

Parenthetically, we may remark that a similar situation obtains with the 

isotopic-odd forward scattering amplitude and the p couplings. The t-channel 

“p dominance” model 2g for F(-) = A(-) + v St-) implies 

v -I. F(-)(v ,t) x 
!z pnxgpNN _ g2 

m2-t 2m2 
P 

(4 1) 

The value of gp we have used in Section II, which is in fact that given by the 

30 
KSFR relation 

2 

!fLL- 

m2 2f2 
P 7r 

(4 2) 

is such as to cast (41) into the form of the Adler-Weisberger relation 
31 

with the 

G-T value for gA. Once the O(p2) background is taken into account, it can be 

shown that (4.1) is in good agreement with the low energy data for various values 

of v and t near threshold. 
26 

, 

Returning to the question of the u couplings, we note that the difference 

between our evaluation of the u‘?r contribution and that of Pagels’ derives from 

the extra term in Eq. (39), in the absence of which the values of the TN scatter- 

ing lengths constrained guNN gonn to be small. Since gunK was regarded as 
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, 

fixed by the width ru --L 71* , the net result was to suppress guNN and hence the 
, 

trian@e graph contributions, leaving only a small (negative) self-energy 

‘contribution. 

Our attitude is to keep the u model relations (31) and (32) for the couplings 

and then allow the value of the u term to determine the effective mass to be 

used in the calculation. The connection is provided by confronting (37) with (39), 

which gives 
32 

u(nN) M g&dmu)2 m (43) 

where, to this order of accuracy we have used the G-T relation itself and have 

neglected the pion mass relative to the u mass. 

There is some ambiguity at this stage. Since we are using the lowest-order 

unrenormalized 
33 

couplings for U, we should perhaps for consistency take gA = 1 

in Eq. (43). An input u term of the order of 70 MeV would then lead to 

m2 
U 

x 13p2, or mu NN 500 MeV. Given this value of mu, the u model relations 

then give 

g U7i-T 
M 12/J, (44) 

while guNN as always is constrained to have the value g. 

In principle (44) can be compared directly with experiment in the form of 

the u width. 34’ 35 Unfortunately the experimental situation is rather confused, 

we have the above-mentioned renormalization ambiguity, and the narrow width 

approximation is not obviously a very appropriate one. 



We wish, however, to make the following observation. According to the 
, , - 

34 
narroy.-width approximation (NWA) the u width is given by 

I? 
3 gcr7r 2 = 

u -7r7r 2 
47rmE 

tm -u -4E.l 
2 l/2 

) 

which, for m2 ~13 p 2 
U 

, has the value 

I? z4p M 550 MeV u --L 7r7r 

(45) 

within the range of experiment. 36 
Although the use of the NWA is not a priori 

very reasonable for a width of this magnitude, the general feature of this approxi- 

mation is that a coupling larger than the physical one is needed to obtain agree- 

ment with a given physical width. (For example, the TN A coupling derived 

from the A width in NWA is 40% greater than the physical coupling. 36) Thus 

the neglect in (43) of the factor gi, the G-T approximation, and the neglect of 

p2 compared to rn:, which would have led to a (factor of 2) larger physical 

coupling constant, to some extent takes account of this effect. We therefore 

take the attitude of using the coupling constant (44) and at the same time ignoring 

finite width effects . 

With u(nN) x 70 MeV, leading, as we have seen,to ru M mu M 500 MeV, 

the u model may be taken as a reasonable approximation to reality. By way of 

contrast we note thatif u(nN) were very small, say u(7rN) M 15 MeV, then the o 

model would lead to mu M 1100 MeV, g,, M 30~ and lYu M 2000 MeV, and 

would not then be physically relevant. 

The difference of our u contribution from BraathenDs E contribution lies in 

the fact that we have taken guNN to be fixed by the u model and determined mu 

from the pion-nucleon u term, leading to a not unreasonable value for I’ 
U’ 
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Braathen, on the other hand, took m E and lYE as input, leading to a much- 
I 

reduced value for gE NN. Comparison of the resulting A’s shows the sensitivity 

6f the calculation to such factors. 
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IV. SU(3) x SU(3) CHIRAL SYMMETRY BREAKING I 

Wenow turn to the use of the G-T relation to probe the nature of the 

symmetry breaking Hamiltonian H’. In particular, if this is assumed to have 

the (3,s) + (3,3) form HI ,=uo + cu8, the G-T relation provides an independent 

determination of the value of c. 

Equation (17) on its own will not suffice, since we have no way of evaluating 

tvTJ~N’ The method of procedure will therefore be to eliminate this quantity by 

means of the SU(3) generalizations of Eq. (17). Defining the K”pA and KfpZo 

discrepancies as 

KNA 

A 
4 (“n +“N)gA 

KN*f l- 
fK gKNA 

and 

KNZ 

AKm = l- 
L-3 tmz+mN)gA 

fKgKNZ 
, 

we have37, as analogues of (17), 

1 
‘KNR = fKgKNA 

$2 - l/2 c v 

U3 
( K)NA 

1 
AKNh = fKgKNx 

J2 - l/2 c ; 

~$3 
( K)NZ 

(47) 

(AS) 

(49) 

(5 0’) 

The matrix elements of v’appearing in (49) and (50) are related in SU(3) 

according to 

(51) 
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in which we have an unknown fv(dv = 1 - fv). This, however, may be eliminated 

between- the two equations, leading to the relation 
8,14,38 ( q 

&+c =2f, gnNN 4?rNN 

Jii- &c, ’ - fi gKNA4k, + gKNX4KNZ 
(52) 

If one further assumes exact kaon PCAC in the operator sense, the left- 

hand side of (52) becomes frm2dfKmg, in agreement with GMOR. In this case 

(52) is then equivalent to the sum rules derived by Dashen and Weinstein. 14’8 

We prefer, however, to follow the philosophy of Furlan and Paver 
14 and regard 

(52) as the baryon analogue of the GMOR meson mass formula from which we 

can independently derive the value of c. 

The procedure we will adopt in analyzing (52) is first of all to assume 

SU(3) invariance for the baryon couplings to mesons and axial currents, 
39 

viz. 

. gpfi = 2g dpdni-fpfpfi ( ) . (53) 

and 

Pfi 
gA = 2gA dA dpfi - fA fpfi 

( > 
, (54) 

withdp+fp = dA +fA = 1, and then afterwards to examine the effects of 

SU(3) breaking. ,i 

In the case of exact SU(3), Eq. (52) can be recast in the form 

- - = ; 4s88[(t - +zgym~;-;-2mN -f*m;gy-- & +c 
C 

(55) 

Remarkably we see that fp does not appear here, i. e. , that the relation 

is independent 
40 of the d./f ratio for the strong coupling constants once these 

are assumed to obey SU(3). Moreover the dependence on the parameter fA is 



greatly suppressed by the factor (mz: - mn). The remaining terms in the right- 
1 I 

hand dezominator are all SU(3) breaking effects, and are of such a magnitude 

measured against ArNN that the value of c derived from (55) is considerably 

different from the canonical GMOR value of -1.25. 

A single angle fit to hyperon semileptonic decays gives 39 

dA/fA = 1.7 , 

corresponding to fA - - 0.37, while, with the aid of the nonrenormalization 

theorem42 for Kp3decay, fIff?, can be’determined from the value 43 of 

fK/(fnf+(0)) to be fK/fr = 1.24 + 0.02. - For 4nNN we insert the experimental 

value given in Eq. (2) and obtain 

- 0.9 + 0.1 ‘GT= - (56) 

in remarkable agreement with the value obtained by an examination of aterms. 2 

The degree of deviation from the GMOR prediction is more fairly measured by 

the quantity (d2 + c)/c2 - &c), which, from (56), is 

= 0.3 + .06 
- 

(57) 

compared with the expected value 1 mJm 2 2 
K 

M 0.08, or8 frmi/fKmk NN 0.06. 

We now go back to examine our assumption of SU(3) invariance for the 

Pfi 
various couplings gpfi, gA . 

In the general case (52) can be written as 

(58) 

where 

(59) 



and 
-h 

c = - J3gY -I- gy) /%A 9 
( (61) 

which, in the SU(3) limit we have just been discussing, take on the values 

A=H=landC =fA. 

The experimental situation for the strong coupling constants appearing in 

(59) is as follows. lo All estimates of g2 Km/47r have been that this quantity is 

small, of the order of 2. Modern methods of extracting the coupling constants 

from KN scattering evaluate the combination gt 
2 

z (gKNn + 0.84 gkNx)/4?r. In 

the 1973 compilation 
10 the most reliable value was considered to be 

44 2 
gy = 

12.2 f 2.5; however, the value gt = 15.2 f 2.3 obtained by the Cutkosky con- 

formal mapping technique 
45 

was not mentioned. Furthermore, a recent experi- 

ment46 ’ indicates that gi = 19.8 f 4.4 within the zero range approximation, thus 

negating the original zero range estimates 
47 

of& 4. Hence, at the present 

time, we believe that fair estimates of the coupling constants are 

in reasonable agreement with the 

values would predict gth X/4n M 

= 14~1~2 

(62 1 

= 2&l ,. 

original evaluation of Kim. 
48 

Moreover these 

9 by SU(3), compared to the values . _ 

10.9 f 0.3, 12.9 f 0.8 ,obtained phenomenologically 
49,50 

from An partial-wave 

dispersion relations. Thus we will certainly believe SU(3) to the extent that it 

determines the signs of gKNA and gKNI: and hence deduce from (62) that 

gKNA 
=-13 -+l 

(63) 
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Substituting these values into (59) we find 

- A = 1 f 0.1 (64) 

The situation with regard to the SU3-Cabibbo theory of hyperon semi- 

leptonic decays has also improved recently. 41 
The e-v correlation measure- 

ments in A - pe; lead to the axial vector-to-vector ratio of gl/fl N 0.7 with 

10% error, which is significantly larger than previously reported. Since the 

Cabibbo estimate of gl/fl is (dA +-$- fA, gA x 0. 72, using dA/fA M 1.7 which is 

obtained from the remaining hyperon decays, 
39 we can evaluate (60) as 

B = 1 f 0.1 (65) 

As previously noted in the symmetry limit, the contribution of C in (58) is 

greatly suppressed by the factor (mz - m,), so that we may take C = fA without 

serious error. 

With these values (58) gives 

J2 +c = 0.058 f 0.013 
636) 

J-2 - kc 0.21 f 0.16 

While the error in the denominator of (66) is large, it is clear that the 

GMOR value of 0.06 - 0.08 for <2+c);<2-&) is still remote. We therefore 

arrive at the conclusion, bearing out the misgivings expressed in Ref. 8, that, 

given a symmetry-breaking Hamiltonian of the form u. + cu8, the value of c 

derived from the Goldberger-Treiman relation cannot be -1.25, but instead is 

close to -1, in agreement with the value obtained from phenomenological anal- 

yses of u terms. 
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V. DISCUSSION AND CONCLUSIONS 

Wz have discussed two aspects of the Goldberger-Treiman relation: the 

attempt to account for the experimental nN discrepancy arNN by means of dis- 

persion relations ,. and the use of this quantity and its SU(3) counterparts to test 

the nature of the chiral-symmetry-breaking Hamiltonian. 

The narrowing of the gap between the experimental and theoretical values 

of b arises from two factors: first, a not insignificant contribution from 
nNN 

the u 7~ intermediate states, ultimately connected to the large value of the TN g 

term, and second, a shift in the experimental parameters all in the direction of 

reducing the experimental value of AnNN. Thus gA has increased in time to the 

currently accepted value’ 1.25 * 0.01. The TN coupling constant g has tended 

to decrease with time, and indeed the most recent and most accurate determi- 

nation5’ g = 13.40 f 0.08, which we used in arriving at Eq. (2) is appreciably 

less than the more generally quoted 10 value g x 13.6,. The nucleon mass 52 has 

not, of course, varied to any appreciable extent, but the value to be used in Eq. 

(2) is actually the average of the neutron and proton masses, namely 938.9 MeV. 

From the ?T+ lifetime’ T =(2.6024 f 0.024)X 10 
-8 

set and using the value 12 

G = (1.026 f 0.001) X 10w5mB2, one can derive 
P 

fTOOs eA =(90.778 f 0.042) MeV 

Given fK/fn = 1.24 f 0.02, the ratio of K to 7r 
Et2 1.12 

rates implies 

cos eA = 0.976 f 0.001 

which leads to the value quoted in Section I along with its error: 

f, = (93.0 f l)MeV 

including the possible 1% radiative corrections to 7~ 
+ 

- h+ v . 

(67) 

(68) 
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These are the values we have used in Eq. 2 to obtain 4tTN together with its 

error, which, as we have seen, is large enough to make an ultimate agreement 
-c\ 

.between theory and experiment by no means improbable. The change from a 

few years ago6 arises from an increased theoretical estimate and a trend in the 

experimental numbers all in the direction of decreasing AzFN. 

As far as the second aspect is concerned,we have shown in the present 

paper and in Ref. 2 that two of the measures of SU(2) x SU(2) breaking noted by 

Li and Pagels, 
53 

namely 

A 
mgA 

nNN = 
l-- 

f7rg 
M 0.058 

and 

I 
m = ggg$ M 0.075, 

(69) 

(70 ) 

can be explained by the same chiral-symmetry-breaking mechanism H’ = u fcu 
0 8 

with c M - 1. 

The third measure, 

m2 
- x 0.077 , 

2” 

mK 

(7 1) 

seems difficult to reconcile with the first two. In the standard GMOR version 

of SU(3) X SU(3), c is related to the masses by soft pion, kaon and eta PCAC 

according to 

‘GMOR a (72) 



- 24 - 

The validity of the extrapolations involved in kaon and eta PCAC can certainly 
, 

- be queaioned, but the same value can be derived either by SU(3) symmetry 54 

for the quantities < 0 I vi I Pi > or 
55 

by SU(3) symmetry of the rni and only pion 

PCAC. There thus appears to be a rather fundamental clash between the first 

two derivations of c and the mass formula, which we have attempted2 to resolve 

in terms of some degree of SU(3) breaking of < 0 I vi I Pi > and of the vacuum. 
56 

If this resolution is not found convincing (and certainly, as we have shown, 

the value c = -1.25 is in violent disagreement with the SU(3) G-T relation (52), 

whose derivation is on very firm ground according to the standard approach), 

the conclusion to be drawn is that the irreducible (3,3) f (3,3) representation is 

not compatible with the data. The most plausible alternative, a reducible rep- 

resentation with a small admixture 
57 

of (8,8), has yet to be confronted with all 

the data in a systematic way. 
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FIGURE CAPTIONS 

1. p 7r and o7r intermediate state contributions to A. 

2a and 2b. s- and u-channel nucleon pole diagrams. 

3. t-channel pion pole diagram. 
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