
MATHEMATICAL COMMUNICATIONS 333
Math. Commun. 19(2014), 333–342

Golden maps between Golden Riemannian manifolds and

constancy of certain maps
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Abstract. We first introduce Golden maps between Golden Riemannian manifolds, give
an example and show that such map is harmonic. Then we investigate the constancy of
certain maps from Golden Riemannian manifolds to various manifolds by imposing the
holomorphic-like map condition. Then we consider the reverse case and show that all such
maps are constant.
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1. Introduction

Manifolds equipped with certain differential-geometric structures possess rich geo-
metric structures and such manifolds and maps between them have been studied
widely in differential geometry. Indeed, almost complex manifolds, almost contact
manifolds and almost product manifolds and maps between such manifolds have
been studied extensively by many authors. Such manifolds are defined by a (1, 1)-
tensor field Φ such that the square of Φ satisfies certain conditions, like Φ2 = −I,
Φ2 = I or Φ2 = −I + η ⊗ ξ, where η and ξ are 1-form and a vector field.

The number ϕ = (1 +
√
5)/2 = 1, 618... which is a solution of the equation

x2 − x − 1 = 0, represents the golden ratio. Geometrically, Golden ratio implies
that if a unit segment is divided into two subsegments, then both the ratio of the
entire segment to the major subsegment and the ratio of the major subsegment
to the minor subsegment must equal ϕ. The Golden ratio has been used in many
different areas, particularly, in arts and architecture. Being inspired by the Golden
ratio, the notion of Golden manifold M was defined in [4] by a tensor field Φ on M
satisfying Φ2 = Φ+ I. The authors studied properties of Golden manifolds and they
showed that Φ is an automorphism of the tangent bundle TM and its eigenvalues
are ϕ and 1− ϕ. They also defined Golden Riemannian manifolds and investigated
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their submanifolds in [5]. Moreover, the integrability of Golden structures has been
investigated in [8].

To compare two manifolds or to study the geometry of a manifold M by using
another manifold N , it is useful to define a map F from M to N by imposing certain
conditions on F . In this manner, holomorphic maps between two complex manifolds
have nice geometric properties. For instance, any holomorphic map between Kaehler
manifolds is harmonic [6]. By adapting the notion of holomophic maps, similar maps
defined between almost contact manifolds [9] and other manifolds endowed with a
geometric structure.

In this paper, we study a new map between Golden Riemannian manifolds by
imposing a holomorphic-like condition for the first time as far as we know. We
show that such map is a harmonic map, and then we obtain certain conditions for
such maps to be totally geodesic. We also provide a simple elementary example.
Moreover, we also check the existence of such maps between Golden Riemannian
manifolds and another manifold equipped with a differentiable structure (almost
complex, almost contact, almost product, almost para-contact) and surprisingly we
find that there are no non-constant such maps.

2. Preliminaries

In this section, we give a brief information for almost complex manifolds, almost
contact metric manifolds, almost product manifolds, almost para-contact metric
manifolds, Golden Riemannian manifolds. We note that throughout this paper all
manifolds and bundles, along with sections and connections, are assumed to be of
class C∞. A map is always a C∞ map between manifolds.

2.1. Almost complex manifolds

Let M ′ be a 2n− dimensional real manifold. An almost complex structure J on M ′

is a tensor field J : TM ′ → TM ′ such that

J2 = −I, (1)

where I is the identity transformation. Then (M ′, J) is called an almost complex
manifold [13].

A smooth map ϕ : M ′
1 → M ′

2 between almost complex manifolds (M ′
1, J1) and

(M ′
2, J2) is called an almost complex (or holomorphic) map if dϕ (J1X) = J2dϕ (X)

for X ∈ Γ (TM ′
1) , where J1 and J2 are complex structures of M ′

1 and M ′
2, respec-

tively.

2.2. Almost contact metric manifolds

An n−dimensional differentiable manifold M is said to have an almost contact struc-
ture (φ, ξ, η) if it carries a tensor field φ of type (1, 1), a vector field ξ and 1− form
η on M , respectively, such that

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η (ξ) = 1, (2)
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where I is the identity transformation. The almost contact structure is said to be
normal if N + 2dη ⊗ ξ = 0, where N is the Nijenhuis tensor of φ. Suppose that a
Riemannian metric tensor g is given in M and satisfies the condition

g (φX, φY ) = g (X,Y )− η (X) η (Y ) , η (X) = g (X, ξ) . (3)

Then (M,φ, ξ, η, g) is called an almost contact metric manifold [3].

2.3. Almost product manifolds

Let N be an n−dimensional manifold with a tensor of type (1, 1) such that

F 2 = I, (4)

where I is the identity transformation. Then we say that N is an almost product
manifold with almost product structure F. We put

Q =
1

2
(I + F ) , Q

′

=
1

2
(I − F ) . (5)

Then we have

Q+Q
′

= I, Q2 = Q, Q
′2 = Q

′

, QQ
′

= Q′Q = 0 (6)

and
F = Q−Q′. (7)

If an almost product manifold N admits a Riemannian metric g such that

g (FX,FY ) = g (X,Y )

for any vector fields X and Y on N, then N is called an almost product Riemannian
manifold [13].

2.4. Almost para-contact metric manifolds

An n−dimensional differentiable manifold N ′ is said to have an almost para-contact
structure (φ′, ξ′, η′) if it carries a tensor field φ′ of type (1, 1) , a vector field ξ′ and
a 1−form η′ on N ′, respectively, such that

φ′2 = I − η′ ⊗ ξ′, η′ (ξ′) = 1, φ′ξ′ = 0, η′ ◦ φ′ = 0 (8)

where I is the identity tranformation. Suppose that a Riemannian metric tensor g′

is given in N ′ and satisfies the condition

g′ (φ′X,φ′Y ) = g′ (X,Y )− η′ (X) η′ (Y ) (9)

g′ (X, ξ) = η′ (X) , g′ (X,φ′Y ) = −g′ (φ′X,Y ) (10)

for any vector fields X and Y on N ′, then (N ′, φ′, ξ′, η′, g′) is called an almost para-
contact metric manifold [11, 14].
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2.5. Golden Riemannian manifolds

Let
(

M̄, g
)

be a Riemannian manifold. A golden structure on
(

M̄, g
)

is an (1, 1)
tensor field P which satisfies the equation

P 2 = P + I, (11)

where I is the identity transformation. We say that the metric g is P compatible if

g (PX, Y ) = g (X,PY ) (12)

for all X,Y ∈ Γ
(

TM̄
)

. If we substitute PX into X in (12), equation (12) may also
written as

g (PX,PY ) = g
(

P 2X,Y
)

= g ((P + I)X,Y ) = g (PX, Y ) + g (X,Y ) .

The Riemannian metric (12) is called P−compatible and
(

M̄, P, g
)

is named a
Golden Riemannian manifold [4]. It is known ([4]) that a Golden structure P is
integrable if the Nijenhuis tensor NP vanishes. In [8], the authors show that a
Golden structure is integrable if and only if ∇P = 0, where ∇ is the Levi-Civita
connection of g.

2.6. Harmonic maps

Let (M, gM ) and (N, gN) be Riemannian manifolds and suppose that P : M → N
is a smooth mapping between them. Then the differential dP of P can be viewed
as a section of the bundle Hom

(

TM,P−1TN
)

→ M, where P−1TN is the pull-

back bundle which has fibres
(

P−1TN
)

p
= TP (p)N, p ∈ M. Hom

(

TM,P−1TN
)

has a connection ∇ induced from the Levi-Civita connection ∇M and the pullback
connection. Then the second fundamental form of P is given by

∇dP (X,Y ) = ∇P
XdP (Y )− dP

(

∇M
X Y

)

(13)

for X,Y ∈ Γ (TM) . It is known that the second fundamental form is symmetric. A
smooth map P : (M, gM ) → (N, gN ) is said to be harmonic if trace ∇dP = 0. The
tension field of P is the section τ (P ) of Γ

(

P−1TN
)

defined by

τ (P ) = divdP =

m
∑

i=1

∇dP (ei, ei) , (14)

where {e1, ..., em} is a local orthonormal frame on M. Then it follows that P is
harmonic if and only if τ (P ) = 0. For more information, see [1].

3. Golden maps between Golden manifolds

In this section, we give a new notion, namely a Golden map, and show that such
map is harmonic. We also investigate conditions for a Golden map to be totally
geodesic.
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Definition 1. Let ϕ be a smooth map from a Golden Riemannian manifold (M,P, g)
to a Golden Riemannian manifold (N,P ′, g′). Then ϕ is called a Golden map if the
following condition is satisfied.

dϕP = P ′dϕ . (15)

We provide the following elementary example.

Example 1. Let ϕ : R4 → R
2 be a map defined by

ϕ (x1, x2, x3, x4) =

(

x1 + x2

4
,
x3 + x4

4

)

.

Then, by direct calculations

ker dϕ = span

{

X1 =
∂

∂x1
− ∂

∂x2
, X2 =

∂

∂x3
− ∂

∂x4

}

and

(kerdϕ )⊥ = span

{

Z1 =
∂

∂x1
+

∂

∂x2
, Z2 =

∂

∂x3
+

∂

∂x4

}

.

Then considering Golden structures on R
4 and R

2 defined by

Φ (a1, a2, a3, a4) = (φa1, φa2, (1− φ) a3, (1− φ) a4)

and
Φ′ (a1, a2) = (φa1, (1− φ) a2) ,

where φ and 1 − φ are eigenvalues of Golden structures [4]. It is easy to see that
dϕ (PZ1) = P ′dϕ (Z1) and dϕ (PZ2) = P ′dϕ (Z2) . Thus ϕ is a Golden map.

From now on, when we mention a Golden Riemannian manifold, we will assume
that its almost Golden structure is integrable.

Lemma 1. Let ϕ be a Golden map from a Golden Riemannian manifold (M,P, g)
to a Golden Riemannian manifold (N,P ′, g′) such that dϕP = P ′dϕ is satisfied.
Then we have

(∇dϕ ) (X,PY ) = (∇dϕ ) (PX, Y ) (16)

for X,Y ∈ Γ (TM) .

Proof. For X,Y ∈ Γ (TM) , from (13) and (11) we have

(∇dϕ ) (X,PY ) = ∇ϕ
Xdϕ

(

P 2Y − Y
)

− dϕ
(

∇M
X PY

)

.

Then using (15) we get

(∇dϕ ) (X,PY ) = ∇ϕ
XP ′2dϕ (Y )−∇ϕ

Xdϕ (Y )− dϕ
(

∇M
X PY

)

.

Since P ′ is integrable, from (11) we obtain

(∇dϕ ) (X,PY ) = P ′∇ϕ
Xdϕ (Y )− dϕ

(

∇M
X PY

)

.
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Integrable P and (15) also imply

(∇dϕ ) (X,PY ) = P ′
(

∇ϕ
Xdϕ (Y )− dϕ

(

∇M
X Y

))

.

Thus using (13) we arrive at

(∇dϕ ) (X,PY ) = P ′ (∇dϕ ) (X,Y ) . (17)

Since ∇dϕ is symmetric, we obtain (16).

The following theorem shows that a Golden map is a harmonic map.

Theorem 1. Every Golden map from a Golden Riemannian manifold (M,P, g) to
a Golden Riemannian manifold (N,P ′, g′) is harmonic.

Proof. First, from (16) and (17), we find

(∇dϕ ) (PX,PY ) = P ′2 (∇dϕ ) (X,Y ) . (18)

Let {e1, e2, ..., en} be a basis of TpM, p ∈ M. Since P is an isomorphism, from [12]
we know that {Pe1, P e2, ..., P en} is also a basis of TpM, p ∈ M. Then from (11) and
(18), we have

n
∑

i=1

(∇dϕ ) (Pei, P ei) =

n
∑

i=1

P ′ (∇dϕ) (ei, ei) +

n
∑

i=1

(∇dϕ ) (ei, ei)

τ (ϕ) = P ′τ (ϕ) + τ (ϕ) ,

which gives
P ′τ (ϕ) = 0.

Since P ′ is an isomorphism on N , we get

τ (ϕ) = 0,

which completes the proof.

Remark 1. We note that for any C2 real valued function f defined on an open subset
of a Riemannian manifold M , the equation △f = 0 is called Laplace’s equation and
solutions are called harmonic functions on U . Let F : M −→ N be a smooth map
between Riemannian manifolds. Then F is called a harmonic morphism if, for every
harmonic function f : V −→ R defined an open subset V of N with F−1(V ) non-
empty, the composition f ◦F is harmonic on F−1(V ). A smooth map F : M −→ N
between Riemannian manifolds is a harmonic morphism if and only if F is both
harmonic and horizontally weakly conformal [7] and [10]. In this respect, a Golden
map is a good candidate for a harmonic morphism.

We now give a necessary and sufficient condition for a map ϕ to be totally
geodesic. We recall that a map ϕ is totally geodesic if ∇dϕ = 0. A geometric
interpretation of a totally geodesic map is that it maps every geodesic in the total
manifold into a geodesic in the base manifold in proportion to arc lengths.
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Theorem 2. Let ϕ be Golden map from a Golden Riemannian manifold (M,P, g)
to a Golden Riemannian manifold (N,P ′, g′) . Then ϕ is totally geodesic if and only
if

(∇dϕ ) (PX,PY ) = P ′ (∇dϕ ) (X,Y ) , (19)

for X,Y ∈ Γ (TM) .

Proof. It is obvious from (18).

4. Constancy of some maps from Golden Riemannian mani-

folds

In this section we investigate constancy of certain maps from Golden Riemannian
manifolds or to Golden manifolds by imposing holomorphic-like conditions. We first
check the situation for a map between Golden Riemannian manifolds and almost
complex manifolds.

Theorem 3. Let ϕ be a smooth map from a Golden Riemannian manifold
(

M̄, P, g
)

to an almost complex manifold (M ′, J) such that the condition dϕP = Jdϕ is satis-
fied. Then ϕ is a constant map.

Proof. Let
(

M̄, P, g
)

be a Golden Riemannian manifold and (M ′, J) an almost
complex manifold. Suppose that ϕ : M̄ → M ′ satisfies

dϕ (PX) = Jdϕ (X) , X ∈ Γ
(

TM̄
)

. (20)

Then apply J to the above equation and using (1) and (11), we get

dϕ (PX) + dϕ (X) = −dϕ (X) , X ∈ Γ
(

TM̄
)

. (21)

Applying J to (21) again and using (20), we have

dϕ (PX) + dϕ (X) + Jdϕ (X) = −Jdϕ (X) , X ∈ Γ
(

TM̄
)

. (22)

Then (20) implies that

−3dϕ (PX) = dϕ (X) , X ∈ Γ
(

TM̄
)

. (23)

From (21) and (23) we obtain

dϕ (X) = 0,

which shows that ϕ is constant.

In a similar way, we have the following result.

Theorem 4. Let ϕ be a smooth map from an almost complex manifold (M ′, J) to
a Golden Riemannian manifold

(

M̄, P, g
)

such that the condition dϕJ = Pdϕ is
satisfied. Then ϕ is a constant map.
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Remark 2. Besides holomorphic maps, anti-holomorphic maps have also been stud-
ied by many authors under the condition J ′dF = −dFJ , where F is a map be-
tween almost complex manifolds and J, J ′ are almost complex structures, respec-
tively. By following similar computations above, one can find that the notion of
anti-holomorphic maps does not work for Golden manifolds.

The following result shows that a smooth map satisfying a compatible condition
between Golden Riemannian manifolds and almost contact metric manifolds is also
constant.

Theorem 5. Let ϕ be a smooth map from a Golden Riemannian manifold
(

M̄, P, g
)

to an almost contact metric manifold (M,φ, ξ, η, g) such that the condition dϕP =
φdϕ is satisfied. Then ϕ is a constant map.

Proof. Let
(

M̄, P, g
)

be a Golden Riemannian manifold and (M,φ, ξ, η, g) an almost
contact metric manifold. Suppose that ϕ : M̄ → M satisfies

dϕ (PX) = φdϕ (X) , X ∈ Γ
(

TM̄
)

. (24)

Then apply φ to the above equation and using (2) and (11), we get

dϕ (PX) = −2dϕ (X) + η (dϕ (X)) ξ, X ∈ Γ
(

TM̄
)

. (25)

Then applying φ to (25) again and using (24) and (2), we have

−3dϕ (PX) = dϕ (X) . (26)

From (25) and (26), we obtain

−5dϕ (PX) = η (dϕ (X)) ξ, X ∈ Γ
(

TM̄
)

. (27)

Again applying φ to (27), we get

φdϕ (X) = 0, X ∈ Γ
(

TM̄
)

. (28)

Using (28) in (27) we conclude that

η (dϕ (X)) = 0, X ∈ Γ
(

TM̄
)

. (29)

Then applying ϕ to (29) we get

−dϕ (X) + η (dϕ (X)) ξ = 0

which gives
dϕ (X) = 0.

This completes the proof.

In a similar way, we have the following result.

Theorem 6. Let ϕ be a smooth map from an almost contact metric manifold
(M,φ, ξ, η, g) to a Golden Riemannian manifold

(

M̄, P, g
)

such that the condition
dϕφ = Pdϕ is satisfied. Then ϕ is a constant map.
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We now check a similar situation for a map between Golden Riemannian mani-
folds and almost product manifolds.

Theorem 7. Let ϕ be a smooth map from a Golden Riemannian manifold
(

M̄, P, g
)

to an almost product manifold (N,F ) such that the condition dϕP = Fdϕ is satisfied.
Then ϕ is a constant map.

Proof. Let
(

M̄, P, g
)

be a Golden Riemannian manifold and (N,F ) an almost prod-
uct manifold. Suppose that ϕ : M̄ → N satisfies

dϕ (PX) = Fdϕ (X) , X ∈ Γ
(

TM̄
)

. (30)

Then apply F to the above equation and using (4) and (11), we get

dϕ (PX) = 0, X ∈ Γ
(

TM̄
)

. (31)

Applying F to (31) again and using (30), we have

dϕ (PX) = −dϕ(X), X ∈ Γ
(

TM̄
)

. (32)

From (32) and (31) we obtain
dϕ (X) = 0,

which shows that ϕ is constant.

In a similar way, we have the following result.

Theorem 8. Let ϕ be a smooth map from an almost product manifold (N,F ) to
a Golden Riemannian manifold

(

M̄, P, g
)

such that the condition dϕF = Pdϕ is
satisfied. Then ϕ is a constant map.

Finally, we check the same problem for almost para-contact metric manifolds.

Theorem 9. Let ϕ be a smooth map from a Golden Riemannian manifold
(

M̄, P, g
)

to an almost para-contact metric manifold (N ′, φ′, ξ′, η′, g′) such that the condition
dϕP = φ′dϕ is satisfied. Then ϕ is a constant map.

Proof. Let
(

M̄, P, g
)

be a Golden Riemannian manifold and (N ′, φ′, ξ′, η′, g′) an
almost para-contact metric manifold. Suppose that ϕ : M̄ → N ′ satisfies

dϕ (PX) = φ′dϕ (X) , X ∈ Γ
(

TM̄
)

. (33)

Then apply φ′ to the above equation and using (8) and (11), we get

dϕ (PX) + dϕ (X) = dϕ (X)− η′ (dϕ (X)) ξ′, X ∈ Γ
(

TM̄
)

. (34)

Then applying φ′ to (34) again and using (33) and (8), we have

dϕ (PX) = −dϕ (X) . (35)

From (34) and (35), we obtain

dϕ (X) = η′ (dϕ (X)) ξ′, X ∈ Γ
(

TM̄
)

. (36)

Again applying φ′ to (36), we get

φ′dϕ (X) = 0, X ∈ Γ
(

TM̄
)

. (37)

From (37) we have dϕ (X) = 0, which shows that ϕ is constant.
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In a similar way, we have the following result.

Theorem 10. Let ϕ be a smooth map from an almost para-contact metric manifold
(N ′, φ′, ξ′, η′, g′) to a Golden Riemannian manifold

(

M̄, P, g
)

such that the condition
dϕφ′ = Pdϕ is satisfied. Then ϕ is a constant map.
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