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Abstract

The Binet formula for Fibonacci numbers is treated as a q-number and a

q-operator with Golden ratio bases q = ϕ and Q = −1/ϕ, and the

corresponding Fibonacci or Golden calculus is developed. A quantum harmonic

oscillator for this Golden calculus is derived so that its spectrum is given only

by Fibonacci numbers. The ratio of successive energy levels is found to be the

Golden sequence, and for asymptotic states in the limit n → ∞ it appears as

the Golden ratio. We call this oscillator the Golden oscillator. Using double

Golden bosons, the Golden angular momentum and its representation in terms

of Fibonacci numbers and the Golden ratio are derived. Relations of Fibonacci

calculus with a q-deformed fermion oscillator and entangled N-qubit states are

indicated.

PACS numbers: 02.20.Uw, 02.10.De

(Some figures may appear in colour only in the online journal)

1. Introduction

Fibonacci numbers have been known from ancient times as ‘nature’s numbering system’, and

have applications to the growth of every living thing, from natural plants (e.g. branches of

trees, the arrangement of leaves) to human proportions and architecture (the Golden section)

[1]. The numbers satisfy the recursion relation

F1 = F2 = 1 (initial condition),

Fn = Fn−1 + Fn−2, for n � 2 (recursion formula).

The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, . . .. For these numbers, starting from

de Moivre, Lame and Binet, the next representation is known as the Binet formula [1]:

Fn = ϕn − ϕ′n

ϕ − ϕ′ , (1)
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where ϕ and ϕ′ are the positive and negative roots of the equation

x2 − x − 1 = 0.

These roots are explicitly

ϕ = 1 +
√

5

2
, ϕ′ = 1 −

√
5

2
= − 1

ϕ
. (2)

Number ϕ is known as the Golden ratio or the Golden section. There are countless works

devoted to the application of the Golden ratio in many fields, from natural phenomena to

architecture and music.

Fibonacci numbers can be considered as a particular realization of Fibonacci polynomials

Fn(a):

F1(a) = 1, F2(a) = a

Fn+1(a) = aFn(a) + Fn−1(a), for n � 2,

when a = 1: Fn(1) = Fn. For a = 2, it gives Fn(2)—the Pell numbers. The Binet representation

for these polynomials is easy to see as

Fn(a) =
qn −

(

− 1
q

)n

q −
(

− 1
q

) , (3)

where parameter a = q − 1
q
, so that q = a+

√
a2+4
2

and − 1
q

= a−
√

a2+4
2

are roots of the quadratic

equation x2 = ax + 1.

Here we note that the Binet formula can be considered as a special realization of the so-

called q-numbers in q-calculus with two bases: q and Q = − 1
q
. The (Q, q) calculus generalizes

Jackson’s q-calculus to two parameters. In the particular case when Q = 1, it becomes the

non-symmetrical calculus and in another case, when Q = 1
q
, it reduces to the symmetrical

q-calculus. The (Q, q) two parametric quantum algebras have been introduced in connection

with the generalized quantum q-harmonic oscillator [2, 3]. The corresponding calculus is

mentioned in a convenient form for the generalization of the q-calculus in [4].

Recently, we found that the (Q, q) calculus appears naturally in the construction of

the q-binomial formula for Q-commutative elements. It was inspired by non-commutative

q-binomials, introduced for the description of the q-Hermite polynomial solutions of

the q-heat equation in [5]. Alternatively, with the operator version of this calculus [6], we

constructed the AKNS hierarchy of integrable systems, where Q = R is the recursion operator

of the AKNS hierarchy and q is the spectral parameter.

In this paper, we would like to explore the possibility of interpreting the Binet formula for

Fibonacci polynomials and Fibonacci numbers as q-numbers, and develop the corresponding

q-calculus. There are several motivations for studing this calculus.

1.1. Generalized q-deformed fermion algebra

In addition to q-bosonic quantum algebras, several attempts were made to construct q-

deformed fermionic oscillators [7, 8]. These fermionic quantum algebras were applied to

several problems, as the dynamic mass generation of quarks and nuclear pairing [9, 10], and

as descriptive of higher order effects in many-body interactions in nuclei [11, 12].

A non-trivial q-deformation of the fermion oscillator algebra has been proposed in [7]:

fq f +
q + √

q f +
q fq = q− N

2 , (4)

[N, f +
q ] = f +

q , [N, fq] = − fq; f 2
q �= 0. (5)
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In this q-deformed fermionic oscillator algebra, the Pauli exclusion principle is no longer valid.

The oscillator allows more than two q-fermions in a given quantum state and admits fermion–

boson transmutation. For such q-fermion algebra, the Fock space construction requires one to

introduce the ‘fermionic q-numbers’ [7],

[n]F
q = q− n

2 − (−1)nq
n
2

q− 1
2 + q

1
2

. (6)

For generic q, this representation is infinite dimensional. In the limit q → 1, the Fock space

reduces to two states: the vacuum state and one-fermion state, so that the Pauli principle

gets recovered. Here, we note that this fermionic q-number (6) under substitution q → 1√
q

becomes the Binet formula (3) for Fibonacci polynomials Fn(
1√
q
− √

q), and for Golden ratio

base q = 1
ϕ2 , it gives Fibonacci numbers (1). This relation allows us to connect Fibonacci

polynomials and Fibonacci numbers, considered as q-numbers, with fermionic q-numbers

of [7]. Statistical properties of these q-deformed fermions were investigated in [13] for a

description of fractional statistics. Later it was shown [14] that thermodynamics of these

generalized fermions should involve the q-calculus with the Jackson-type q-derivative in the

form of

Dx f (x) = 1

x

f (q−1x) − f (−qx)

q + q−1
. (7)

Here, we find that with the substitution q → 1
q
, this derivative becomes the Fibonacci derivative

which we introduce in (47), and for q → 1
ϕ

, it becomes the Golden derivative (48). The above

consideration indicates that the Fibonacci q-calculus is a natural language for describing

q-deformed fermions and their statistics.

1.2. Hecke condition for the R-matrix

Another connection is related to the quantum integrable systems approach to the theory of

quantum groups via the solution of the Yang–Baxter equation for the R-matrix [15]. If one

introduces the R̂-matrix, R̂ = P R, where P is the permutation matrix, then this invertible

R̂-matrix obeys a characteristic equation. For two roots, this equation is known as the form of

the Hecke condition:

(R̂ − q)

(

R̂ + 1

q

)

= 0 (8)

or

R̂2 = aR̂ + I. (9)

By studying representations of the braid group satisfying this quadratic relation, Jones obtained

a polynomial invariant in two variables for oriented links [16]. If in calculating higher powers

of matrix R̂ we repeatedly apply the Hecke condition (9), then as a result we obtain

R̂n = Fn(a)R̂ + Fn−1(a)I, (10)

where Fn(a) = aFn−1(a) + Fn−2(a) are Fibonacci polynomials (3) with a = q − 1
q
.

1.3. Entangled N-qubit spin coherent states

Another motivation comes from quantum information theory. The unit of quantum information,

the qubit, in the spin coherent state representation

|ψ〉 = 1
√

1 + |ψ |2

(

1

ψ

)

(11)
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is parametrized by the complex number ψ ∈ C, given by the stereographic projection

ψ = tan θ
2

eiφ, of the Bloch sphere for the qubit

|θ, φ〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉. (12)

For an arbitrary representation j of su(2), the scalar product of two coherent states is

〈φ|ψ〉 = (1 + φ̄ψ)2 j

(1 + |φ|2) j(1 + |ψ |2) j
, (13)

and the orthogonality condition 〈φ|ψ〉 = 0 implies 1 + φ̄ ψ = 0. This constraint relates

two states: one at point φ and another at the negative-symmetric point in the unit circle

φ = − 1

ψ̄
[17]. Geometrically, these points correspond to antipodal points on the Bloch sphere,

M(x, y, z) and M∗(−x,−y,−z). In accordance with these points, we have recently constructed

a maximally entangled set of orthonormal two-qubit coherent states [17],

|P±〉 = 1√
2

(

|ψ〉|ψ〉 ±
∣

∣

∣

∣

− 1

ψ̄

〉 ∣

∣

∣

∣

− 1

ψ̄

〉)

, (14)

|G±〉 = 1√
2

(

|ψ〉
∣

∣

∣

∣

− 1

ψ̄

〉

±
∣

∣

∣

∣

− 1

ψ̄

〉

|ψ〉
)

, (15)

with concurrence C = 1. These states generalize the Bell states and reduce to the last ones

in the limit ψ → 0 and − 1

ψ̄
→ ∞. This construction can be extended to arbitrary N-qubit

coherent states [18]. The first set of N-qubit entangled states expanded in the computational

basis is

|ψ〉N −
∣

∣ − 1

ψ̄

〉N

ψ + 1

ψ̄

= F1(α, β)(|10 · · · 0〉 + |01 · · · 0〉 + · · · |00 · · · 1〉) (16)

+ F2(α, β)(|110 · · · 0〉 + |101 · · · 0〉 + · · · |00 · · · 11〉) (17)

· · · + FN (α, β)(|111 · · · 1〉. (18)

This is characterized by the set of complex Fibonacci polynomials

Fn(α, β) =
ψn −

(

− 1

ψ̄

)n

ψ + ψ̄−1
, (19)

with a reccurrence relation

Fn+1(α, β) = αFn(α, β) + βFn−1(α, β), (20)

where α = ψ − 1

ψ̄
and β = ψ

ψ̄
. Another set of entangled N-qubit coherent states is

|ψ〉N +
∣

∣

∣

∣

− 1

ψ̄

〉N

= |00 · · · 0〉 + L1(α, β)(|10 · · · 0〉 + |01 · · · 0〉 + · · · |00 · · · 1〉) (21)

+ L2(α, β)(|110 · · · 0〉 + |101 · · · 0〉 + · · · |00 · · · 11〉) (22)

· · · + LN (α, β)(|111 · · · 1〉, (23)

and it is characterized by complex Lucas polynomials Ln(α, β) = ψn + (− 1

ψ̄
)n. In the N = 3

qubit case, for particular ψ → 0, − 1

ψ̄
→ ∞, it gives a maximally entangled GHZ state. In

the above Binet representations of complex polynomials Fn(α, β) and Ln(α, β), the negative-

symmetric points ψ and − 1

ψ̄
are the roots of the complex quadratic equation z2 = αz + β.

4
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From the polar representation of the complex numbers ψ = q eiφ and z = r eiφ , we obtain

r2 = ar + 1, where a = q − 1
q

and rn = rFn(a) + Fn−1(a), with Fibonacci polynomials Fn(a)

(3). The complex Fibonacci polynomials are related to standard Fibonacci polynomials by the

formula

Fn(α, β) = Fn(a) eiφ(n−1) (24)

and

Ln(α, β) = Ln(a) einφ, (25)

where φ = arg ψ. The complex parameter α = ψ − 1

ψ̄
has a simple geometrical meaning as

a complex difference between symmetrical points in a unit circle. The interesting point here

is that the symmetric points under the unit circle appear in the problem of vortex images in a

circular domain [19], where these points correspond to the line vortex at ψ and its image in the

circle at 1

ψ̄
. Then parameter a = |α|, α = a eiφ , in Fibonacci polynomials has a geometrical

meaning as the distance between the vortex and its image. In the particular case when this

distance is equal to 1, a = q − 1
q

= 1, the position of the vortex is at the Golden ratio distance

from the origin r = ϕ = 1+
√

5
2

and Fibonacci polynomials turn into Fibonacci numbers. In

this case, the line interval connecting the vortex and the negative-symmetric point intersects

the unit circle at a point which divides this interval into two parts of length ϕ and 1
ϕ

.

The above motivations show that the Fibonacci q-calculus is interesting and rich in

applications to develop. In the first part of this paper, we systematically introduce basic

elements of this calculus as Fibonacci numbers, Fibonacci derivative and Fibonacci integral.

Then we construct the quantum harmonic oscillator for the Golden q-calculus case, so that

its spectrum is given only by Fibonacci numbers and the ratio of successive energy levels is

given as the Golden sequence. For asymptotic states at n → ∞, it appears as the Golden ratio.

Although some results for the harmonic oscillator with generic Q − q and their reductions to

symmetrical and non-symmetrical cases are known [20–22], we think that the special case with

negative-symmetrical and the Golden ratio bases has not been described before in the literature.

Due to the importance and wide applicability of Fibonacci numbers in different fields, we think

that the explicit realization of them in the form of a quantum oscillator with a Golden ratio base,

which we call the Golden quantum oscillator, deserves to be studied. In particular, a realization

of this type of calculus could describe the Golden ratio in non-commutative geometry and

q-deformed fermions with fractional statistics.

Finally, our Golden oscillator should not be confused with the Fibonacci oscillator of [2],

with the generic bases q1 and q2, though it is a particular case of it. In that paper, the Fibonacci

calculus and its relation with the Golden ratio and Binet formula, as well as asymptotic

properties of energy levels, have not been discussed.

2. Golden q-calculus

In the (Q, q) calculus we have the number

[n]Q,q = Qn − qn

Q − q
. (26)

If Q = − 1
q
, then this q-number gives Fibonacci polynomials

Fn(a) =
qn −

(

− 1
q

)n

q −
(

− 1
q

) = [n]
q

F , (27)

5
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where a = q − 1
q
. In a special case with Q = ϕ = 1+

√
5

2
and q = ϕ′ = 1−

√
5

2
= − 1

ϕ
, (26)

becomes Binet’s formula for Fibonacci numbers as (ϕ, ϕ′) numbers:

Fn = ϕn − ϕ′n

ϕ − ϕ′ = [n]ϕ,ϕ′ ≡ [n]F . (28)

This definition can be extended to an arbitrary real number x,

[x]ϕ,ϕ′ ≡ [x]F = ϕx − ϕ′x

ϕ − ϕ′ =
ϕx −

(

− 1
ϕ

)x

ϕ + 1
ϕ

≡ Fx, (29)

though due to a negative sign for the second base, it is not a real number for general x,

Fx = 1

ϕ + 1
ϕ

(

ϕx − eiπx 1

ϕx

)

= 1√
5

(

ϕx − eiπx 1

ϕx

)

. (30)

Instead of the real number x, we can consider the complex numbers z = x + iy,

Example. It is easy to see that

lim
n→∞

[n + 1]F

[n]F

= lim
n→∞

Fn+1

Fn

= ϕ.

The addition formula for Golden numbers is given in the form

[n + m]F = Fn+m = ϕnFm +
(

− 1

ϕ

)m

Fn. (31)

Using (28) we can obtain

ϕN = ϕFN + FN−1, ϕ′N = ϕ′FN + FN−1, (32)

and the above formula (31) can be rewritten as

Fn+m = FnFm−1 + Fn+1Fm

= Fn−1Fm + FnFm+1. (33)

The substraction formula can be obtained from it by changing m → −m as

Fn−m = [n − m]F = ϕn[−m]F +
(

− 1

ϕ

)−m

[n]F , (34)

or by using the equality

[−n]F = −(−1)−n[n]F

it can also be written as

[n − m]F =
(

− 1

ϕ

)−m

([n]F − ϕn−m[m]F )

=
(

− 1

ϕ

)−m

Fn − ϕn

(−1)m
Fm, (35)

or

Fn−m =
(

− 1

ϕ

)−m

Fn − ϕn

(−1)m
Fm. (36)

Definition (higher Fibonacci numbers).

F (m)
n ≡ (ϕm)n − (ϕ′m)n

ϕm − ϕ′m = [n]ϕm,ϕ′m (37)

and F (1)
n ≡ Fn.

6
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By the definition, the multiplication rule for Golden numbers is given by the following

formula

[nm]ϕ,− 1
ϕ

= Fnm = [n]ϕ,− 1
ϕ
[m]ϕn,(− 1

ϕ
)

n = FnF (n)
m , (38)

and the division rule is
[m

n

]

ϕ,ϕ′
= [m]ϕ,ϕ′

[n]ϕm/n,ϕ′m/n

=
[m]ϕ1/n,ϕ′1/n

[n]ϕ1/n,ϕ′1/n

Fm
n

= Fm

F
( m

n
)

n

= F
( 1

n
)

m

F
( 1

n
)

n

. (39)

Higher Fibonacci numbers can be written as a ratio of Fibonacci numbers:

F (m)
n = Fmn

Fm

. (40)

From definition (28), we have the following relation:

F−n = (−1)n+1Fn. (41)

For any real x, y,

[x + y]F = ϕx[y]F +
(

− 1

ϕ

)y

[x]F

= ϕy[x]F +
(

− 1

ϕ

)x

[y]F , (42)

which are written in terms of Fibonacci numbers as follows:

Fx+y = ϕxFy +
(

− 1

ϕ

)y

Fx

= ϕyFx +
(

− 1

ϕ

)x

Fy. (43)

For real x, we have the Fibonacci recurrence relation:

[x]F = [x − 1]F + [x − 2]F ⇒ Fx = Fx−1 + Fx−2. (44)

Example. Golden π ,

Fπ = [π ]F ≃ 4.730 68 + 0.093 9706i

3. Fibonacci and Golden derivative

Now we introduce the Fibonacci derivative operator

F
q

x d
d x

=
qx d

d x −
(

− 1
q

)x d
d x

q + q−1
=

[

x
d

d x

]q

F

(45)

and the Golden derivative operator

Fx d
d x

= ϕx d
d x − ϕ′x d

d x

ϕ − ϕ′ =
[

x
d

d x

]

F

. (46)

Then the Fibonacci derivative of the function f (x) is

F
q

x d
d x

f (x) = D
q

F f (x) =
f (qx) − f

(

− x
q

)

(

q + 1
q

)

x
, (47)

7
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and for the Golden derivative we have

Fx d
d x

f (x) = DF f (x) =
f (ϕx) − f

(

− x
ϕ

)

(

ϕ + 1
ϕ

)

x
=

(

Mϕ − M− 1
ϕ

)

f (x)
(

ϕ + 1
ϕ

x
) . (48)

Here, arguments are scaled by the Golden ratio: x → ϕx and x → − x
ϕ

. It can be written in

terms of the Golden ratio dilatation operator

Mϕ f (x) = f (ϕx),

where f (x) is a smooth function and its operator form can also be written as

Mϕ = ϕ
x

d
d x =

(

1 +
√

5

2

)x d
d x

.

We call the function A(x) the Golden periodic function if

DF A(x) = 0, (49)

which implies

A(ϕx) = A

(

− 1

ϕ
x

)

. (50)

As an example of the Golden periodic function, we have

A(x) = sin

(

π

ln ϕ
ln |x|

)

. (51)

Example 1. Application of the Golden derivative operator DF on xn generates Fibonacci

numbers:

DF xn = Fnxn−1

or

Fn = DF xn

xn−1
.

Example 2.

DF ex =
∞

∑

n=0

Fn

n!
xn

or

DF ex = eϕx − e− x
ϕ

ϕ + 1
ϕ

=
2 e

x
2 sinh

√
5

2
x

√
5x

=
∞

∑

n=0

Fn

n!
xn.

For x = 1, this gives the next summation formula:

∞
∑

n=0

Fn

n!
= e

1
2

sinh
√

5
2√

5
2

. (52)

8
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3.1. Golden Leibnitz rule

We derive the Golden Leibnitz rule

DF ( f (x)g(x)) = DF f (x)g(ϕx) + f

(

− x

ϕ

)

DF g(x). (53)

By symmetry, the second form of the Leibnitz rule can be derived as

DF ( f (x)g(x)) = DF f (x)g

(

− x

ϕ

)

+ f (ϕx)DF g(x). (54)

These formulas can be rewritten explicitly in a symmetrical form

DF ( f (x)g(x)) = DF f (x)

(

g(ϕx) + g
(

− x
ϕ

)

2

)

+ DF g(x)

(

f (ϕx) + f
(

− x
ϕ

)

2

)

. (55)

A more general form of the Golden Leibnitz formula is given with an arbitrary α,

DF ( f (x)g(x)) =
(

α f

(

− x

ϕ

)

+ (1 − α) f (ϕx)

)

DF g(x)

+
(

αg(ϕx) + (1 − α)g

(

− x

ϕ

))

DF f (x).

Now we may compute the Golden derivative of the quotient of f (x) and g(x). From (53),

we have

DF

(

f (x)

g(x)

)

= DF f (x)g(ϕx) − DF g(x) f (ϕx)

g(ϕx)g(− x
ϕ
)

. (56)

However, if we use (54), we obtain

DF

(

f (x)

g(x)

)

=
DF f (x)g(− x

ϕ
) − DF g(x) f (− x

ϕ
)

g(ϕx)g(− x
ϕ
)

. (57)

In addition to formulas (56) and (57), one may determine one more representation in a

symmetrical form

DF

(

f (x)

g(x)

)

= 1

2

DF f (x)
(

g
(

− x
ϕ

)

+ g(ϕx)
)

− DF g(x)
(

f
(

− x
ϕ

)

+ f (ϕx)
)

g(ϕx)g
(

− x
ϕ

) . (58)

In particular applications, one of these forms could be more useful than others.

3.2. Golden Taylor expansion

Theorem 3.2.1. Let the Golden derivative operator DF be a linear operator on the space of

polynomials, and

Pn(x) ≡ xn

Fn!
≡ xn

F1F2...Fn

satisfy the following conditions:

(i) P0(0) = 1 and Pn(0) = 0 for any n � 1;

(ii) deg Pn = n;

(iii) DF Pn(x) = Pn−1(x) for any n � 1, and DF (1) = 0. Then, for any polynomial f (x) of

degree N, one has the following Taylor formula:

f (x) =
N

∑

n=0

(Dn
F f )(0)Pn(x) =

N
∑

n=0

(Dn
F f )(0)

xn

Fn!
.

9
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In the limit N → ∞ (when it exists), this formula can determine some new function:

fF (x) =
∞

∑

n=0

(Dn
F f )(0)

xn

Fn!
, (59)

which we call the Golden (or Fibonacci) function.

Example (Golden exponential). The Golden exponential functions are defined as

ex
F ≡

∞
∑

n=0

xn

Fn!
; Ex

F ≡
∞

∑

n=0

(−1)
n(n−1)

2
xn

Fn!
, (60)

and for x = 1, we obtain the Fibonacci natural base as follows:

e1
F ≡

∞
∑

n=0

1

Fn!
≡ eF .

Both of these functions are entire analytic functions. For the second function, we explicitly

have

Ex
F = 1 + x

F1!
− x2

F2!
− x3

F3!
+ x4

F4!
+ x5

F5!
− x6

F6!
− x7

F7!
+ x8

F8!
+ x9

F9!
− · · · . (61)

The Golden derivative of these exponential functions is found as

DF ekx
F = kekx

F ,

DF Ekx
F = kE−kx

F

for an arbitrary constant k (or F-periodic function). These two functions then give the general

solution of the hyperbolic F-oscillator equation
(

D2
F − k2

)

φ(x) = 0, (62)

as

φ(x) = Aekx
F + Be−kx

F , (63)

and the elliptic F-oscillator equation
(

D2
F + k2

)

φ(x) = 0, (64)

as

φ(x) = AEkx
F + BE−kx

F . (65)

For an imaginary argument, we next have Euler formulas

eix
F = cosF x + i sinF x, (66)

E ix
F = coshF x + i sinhF x, (67)

and relations

coshF x = cosF x, (68)

sinhF x = sinF x, (69)

where

coshF x ≡ Ex
F + E−x

F

2
, sinhF x ≡ Ex

F − E−x
F

2
. (70)

We note here that these relations are valid due to the alternating character of the second

exponential function (61).

10
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Example (F-oscillator). For an F-oscillator with frequency ω,

D2
F x + ω2x = 0, (71)

the general solution is

x(t) = aEωt
F + bE−ωt

F = a′ coshFωt + b′ sinhFωt = a′ cosF ωt + b′ sinF ωt. (72)

3.3. Golden binomial

The Golden binomial is defined as

(x + y)n
F = (x + ϕn−1y)(x − ϕn−3y) · · · (x + (−1)n−1ϕ−n+1y) (73)

and it has n-zeros at the Golden ratio powers
x

y
= −ϕn−1,

x

y
= −ϕn−3, . . . ,

x

y
= −ϕ−n+1.

For the Golden binomial, the next expansion is valid

(x + y)n
F ≡ (x + y)n

ϕ,− 1
ϕ

=
n

∑

k=0

[n

k

]

F
(−1)

k(k−1)

2 xn−kyk

=
n

∑

k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)

2 xn−kyk. (74)

The proof is easy by induction.

The application of the Golden derivative to the Golden binomial gives

Dx
F (x + y)n

F = Fn(x + y)n−1
F ,

D
y

F (x + y)n
F = Fn(x − y)n−1

F ,

which means

Dx
F

(x + y)n
F

Fn!
= (x + y)n−1

F

Fn−1!
,

D
y

F

(x + y)n
F

Fn!
= (x − y)n−1

F

Fn−1!
.

From
(

D
y

F

)n
(x + y)n

F ,

for n = 2k, we have
(

D
y

F

)2k
(x + y)2k

F = (−1)kF2k!

and for n = 2k + 1, we obtain
(

D
y

F

)2k+1
(x + y)2k+1

F = (−1)kF2k+1!.

If we introduce an F-exponential function of two arguments

eF (t + x)F ≡
∞

∑

n=0

(t + x)n
F

Fn!
, (75)

then, applying the above formulas, we have

Dt
F eF (t + x)F = eF (t + x)F , (76)

11
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Dx
F eF (t + x)F = eF (t − x)F , (77)

(

Dx
F

)2
eF (t + x)F = Dx

F eF (t − x)F = −eF (t + x)F . (78)

As a result, we find the solution of the Golden heat equation is
[

Dt
F +

(

Dx
F

)2]
eF (t + x)F = 0. (79)

In terms of the Golden binomial, we introduce the Golden polynomials

Pn(x) = (x − a)n
F

Fn!
, (80)

where n = 1, 2, . . ., and P0(x) = 1 with property

Dx
F Pn(x) = Pn−1(x). (81)

For even and odd polynomials, we have the following product representations:

P2n(x) = 1

F2n!

n
∏

k=1

(x − (−1)n+kϕ2k−1a)(x + (−1)n+kϕ−2k+1a), (82)

P2n+1(x) = (x − (−1)na)

F2n+1!

n
∏

k=1

(x − (−1)n+kϕ2ka)(x − (−1)n+kϕ−2ka). (83)

By using (32) it is easy to find that

ϕ2k + 1

ϕ2k
= F2k + 2F2k−1, (84)

ϕ2k+1 − 1

ϕ2k+1
= F2k+1 + 2F2k. (85)

Then we can rewrite our polynomials in terms of just Fibonacci numbers:

P2n(x) = 1

F2n!

n
∏

k=1

(x2 − (−1)n+k(F2k−1 + 2F2k−2)xa − a2), (86)

P2n+1(x) = (x − (−1)na)

F2n+1!

n
∏

k=1

(x2 − (−1)n+k(F2k + 2F2k−1)xa + a2). (87)

The first few polynomials are

P1(x) = (x − a) (88)

P3(x) = 1
2
(x + a)(x2 − 3xa + a2) (89)

P5(x) = 1
2·3·5 (x − a)(x2 + 3xa + a2)(x2 − 7xa + a2) (90)

P7(x) = 1
2·3·5·8·13

(x + a)(x2 − 3xa + a2)(x2 + 7xa + a2)(x2 − 18xa + a2) (91)

...

P2(x) = (x2 − xa − a2) (92)

P4(x) = 1
2·3 (x2 + xa − a2)(x2 − 4xa − a2) (93)

P6(x) = 1
2·3·5·8 (x2 − xa − a2)(x2 + 4xa − a2)(x2 − 11xa − a2) (94)

...

12
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3.4. Noncommutative Golden ratio and Golden binomials

By choosing q = − 1
ϕ

and Q = ϕ, in the general Q-commutative q-binomial [23], where

ϕ is the Golden section, we obtain the Binet–Fibonacci binomial formula for the Golden

non-commutative plane (yx = ϕxy) (it should be compared with the Golden ratio b = ϕa):

(x + y)n

− 1
ϕ

= (x + y)

(

x +
(

− 1

ϕ

)

y

)

(

x +
(

− 1

ϕ

)2

y

)

· · ·
(

x +
(

− 1

ϕ

)n−1

y

)

=
n

∑

k=0

[n

k

]

ϕ,− 1
ϕ

(

− 1

ϕ

)
k(k−1)

2

xn−kyk

=
n

∑

k=0

Fn!

Fk!Fn−k!

(

− 1

ϕ

)
k(k−1)

2

xn−kyk, (95)

where Fn are the Fibonacci numbers.

3.5. Golden Pascal triangle

The Golden binomial coefficients are defined by
[n

k

]

F
= [n]F !

[n − k]F ![k]F !
= Fn!

Fn−k!Fk!
, (96)

with n and k being the non-negative integers, n � k and are called the Fibonomials. Using the

addition formula for Golden numbers (31), we write the following expression:

Fn = Fn−k+k =
(

− 1

ϕ

)k

Fn−k + ϕn−kFk,

and from (32) it can be written as follows:

Fn = Fn−k−1Fk + Fn−kFk+1

= Fn−kFk−1 + Fn−k+1Fk. (97)

With the above definition (96) we have next recursion formulas

[n

k

]

F
=

(

− 1
ϕ

)k
[n − 1]F !

[k]F ![n − k − 1]F !
+ ϕn−k[n − 1]F !

[n − k]F ![k − 1]F !

=
(

− 1

ϕ

)k [

n − 1

k

]

F

+ ϕn−k

[

n − 1

k − 1

]

F

(98)

= ϕk

[

n − 1

k

]

F

+
(

− 1

ϕ

)n−k [

n − 1

k − 1

]

F

. (99)

These two rules determine the multiple Golden Pascal triangle, where 1 � k � n − 1. Then,

we can construct the Golden Pascal triangle as follows:

1

ւ ց

1 1

ւ ց − 1
ϕ

ϕ ւ ց

1 [2]F 1

ւ ց (− 1
ϕ
)2 ϕ ւ ց − 1

ϕ
ϕ2 ւ ց

· · · · · · · · ·

13
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3.6. Remarkable limit

From the Golden binomial expansion (74), we have

(1 + y)n
F =

n
∑

k=0

[n

k

]

F
(−1)

k(k−1)

2 yk

=
n

∑

k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)

2 yk. (100)

Then,
(

1 + y

ϕn

)n

F

=
n

∑

k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)

2
yk

ϕnk
(101)

or by opening Fibonomials and taking the limit

lim
n→∞

(

1 + y

ϕn

)n

F

=
∞

∑

k=0

1

Fk!
(−1)

k(k−1)

2
yk

ϕ
k(k−1)

2 (ϕ + 1
ϕ
)k

, (102)

lim
n→∞

(

1 + y

ϕn

)n

F

=
∞

∑

k=0

1

[k]−ϕ2 !

(

yϕ

ϕ2 + 1

)k

, (103)

where we introduced the q-number [k]q = 1 + q + · · · + qk−1, with base q = −ϕ2, so that

[k]−ϕ2 = 1 + (−ϕ2) + · · · + (−ϕ2)k−1 = (−ϕ2)k − 1

(−ϕ2) − 1
. (104)

The last expression allows us to rewrite the limit in terms of the Jackson q-exponential function

eq(x) with q = −ϕ2,

lim
n→∞

(

1 + y

ϕn

)n

F

= e−ϕ2

(

yϕ

ϕ2 + 1

)

, (105)

or finally we have the remarkable limit

lim
n→∞

(

1 + y

ϕn

)n

F

= e−ϕ2

(

y√
5

)

. (106)

In a particular case, this gives

lim
n→∞

(

1 +
√

5

ϕn

)n

F

= e−ϕ2 (1). (107)

3.7. Golden integral

3.7.1. Golden anti-derivative.

Definition 3.7.1. The function G(x) is the Golden anti-derivative of g(x) if DF G(x) = g(x)

and is denoted by

G(x) =
∫

g(x) dF x. (108)

Then,

DF G(x) = 0 ⇒ G(x) = C − constant

or

DF G(x) = 0 ⇒ G(ϕx) = G

(

− x

ϕ

)

,

the Golden ‘periodic’ function.

14
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3.7.2. Golden–Jackson integral. By inverting equation (48) and expanding the inverse

operator, we find the Jackson-type representation for the anti-derivative:

G(x) =
∫

g

(

x

ϕ

)

dQx = (1 − Q)x

∞
∑

k=0

Qk f

(

x

ϕ
Qk

)

, (109)

where the base Q ≡ − 1
ϕ2 .

4. Golden oscillator

Now we construct the quantum oscillator with a spectrum in the form of Fibonacci numbers.

Since in this oscillator the base in commutation relations is the ϕ-Golden ratio, we call it the

Golden oscillator. The algebraic relations for the Golden Oscillator are

bb+ − ϕb+b =
(

− 1

ϕ

)N

(110)

or

bb+ + 1

ϕ
b+b = ϕN, (111)

where N is the Hermitian number operator and ϕ is the deformation parameter. The bosonic

Golden oscillator is defined by three operators b+, b and N which satisfy the commutation

relations:

[N, b+] = b+, [N, b] = −b. (112)

By using the definition of the Golden number operator

[N]F =
ϕN − (− 1

ϕ
)N

ϕ + 1
ϕ

≡ FN,

we find the following equalities:

[N + 1]F − ϕ[N]F =
(

− 1

ϕ

)N

(113)

[N + 1]F + 1

ϕ
[N]F = ϕN . (114)

Here, the operator (−1)N = eiπN .

Comparing the above operator relations with the algebraic relations (110) and (111), we

have

b+b = [N]F , bb+ = [N + 1]F .

Here we should note that the number operator N is not equal to b+b as in the ordinary oscillator

case. Properties of Fibonacci numbers (32) are also valid for the Fibonacci operators. By using

these and the algebraic relations (110) and (111), we find the Fibonacci recurrence rule, but

for operators

FN+1 = FN + FN−1. (115)

Proposition 4.1.

[[N]F , b+] = {[N]F − [N − 1]F}b+

= b+{[N + 1]F − [N]F}. (116)
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Proposition 4.2. We have the following equality for n = 0, 1, 2, . . .:

[[N]n
F , b+] = {[N]n

F − [N − 1]n
F}b+. (117)

Proof 4.3. By using mathematical induction, showing the above equality is not difficult. �

Corollary 4.4. For any function expandable to power series (analytic in some domain)

F(x) =
∑∞

n=0 cnxn, we have the following relation:

[F([N]F ), b+] = {F([N]F ) − F([N − 1]F )}b+

= b+{F([N + 1]F ) − F([N]F )} (118)

and

b+F([N + 1]F ) = F([N]F )b+ (119)

or

F(N)b+ = b+F(N + 1). (120)

By using the eigenvalue problem for the number operator

N|n〉F = n|n〉F ,

[N]F |n〉F = FN |n〉F = [n]F |n〉F = Fn|n〉F ,

we obtain Fibonacci numbers as eigenvalues of [N]F = FN operator, where we call FN the

Fibonacci operator and denote its eigenstates as |n〉ϕ,− 1
ϕ

≡ |n〉F . The basis in the Fock space

is defined by the repeated action of the creation operator b+ on the vacuum state, which is

annihilated by b|0〉F = 0,

|n〉F = (b+)n

√
F1 · F2 · · · · · Fn

|0〉F , (121)

where [n]F ! = F1 · F2 · · · · · Fn. Then we have

b+|n〉F =
√

Fn+1|n + 1〉F , (122)

b|n〉F =
√

Fn|n − 1〉F . (123)

The number operator N in terms of FN is written in two different forms according to even

or odd eigenstates N|n〉F = n|n〉F . For n = 2k, we obtain

N = logϕ

(√
5

2
FN +

√

5

4
F2

N + 1

)

, (124)

and for n = 2k + 1,

N = logϕ

(√
5

2
FN −

√

5

4
F2

N − 1

)

, (125)

where [N]F is a Fibonacci number operator

[N]F =
ϕN − (− 1

ϕ
)N

ϕ − (− 1
ϕ
)

= FN .

As a result, the Fibonacci numbers are the example of (q, Q) numbers with two bases,

and one of the bases is the Golden ratio. This is why we call the corresponding q-oscillator a

16
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Figure 1. Quantum Fibonacci tree for the Golden oscillator.

Golden oscillator or a Binet–Fibonacci oscillator. The Hamiltonian for the Golden oscillator

due to the operator relation (115) is written as a Fibonacci number operator:

H = �ω

2
(b+b + bb+) = �ω

2
([N + 1]F + [N]F ) = �ω

2
FN+2,

where bb+ = [N + 1]F = FN+1, b+b = [N]F = FN . Here we note that our Hamiltonian is

different from the q-deformed fermion Hamiltonian [7]. According to our Hamiltonian, the

energy spectrum of this oscillator is written in terms of the Fibonacci number sequence:

En = �ω

2

(

[n]ϕ,− 1
ϕ

+ [n + 1]ϕ,− 1
ϕ

)

= �ω

2
(Fn + Fn+1) = �ω

2
Fn+2,

or

En = �ω

2
Fn+2.

The first energy eigenvalue,

E0 = �ω

2
F2 = �ω

2
,

is exactly the same as the ground state energy in the ordinary case. Higher energy excited

states are given by the Fibonacci sequence:

E1 = �ω

2
F3 = �ω, E2 = 3�ω

2
, E3 = 5�ω

2
, . . . .

In figure 1, we show the quantum Fibonacci tree for this oscillator.

The difference between the two consecutive energy levels of our oscillator is not

equidistant and is found as

△En = En+1 − En = �ω

2
Fn+1.

The ratio of two successive energy levels En+1

En
= Fn+3

Fn+2
gives the Golden sequence, and for the

limiting case of higher excited states n → ∞, it is the Golden ratio

lim
n→∞

En+1

En

= lim
n→∞

Fn+3

Fn+2

= lim
n→∞

[n + 3]F

[n + 2]F

= 1 +
√

5

2
= ϕ ≈ 1.618 033 9887.

This property of asymptotic energy levels to be proportional to each other by a Golden ratio

leads us to call this oscillator a Golden oscillator.
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We have the following relations between Golden creation and annihilation operators and

the standard creation and annihilation operators:

b+ = a+
√

FN+1

N + 1
=

√

FN

N
a+, (126)

b =
√

FN+1

N + 1
a = a

√

FN

N
, (127)

which we call nonlinear unitary transformation, where [a, a+] = 1. As a result of these

relations, we can obtain the commutation relation between b+ and b as

[b, b+] = bb+ − b+b = FN+1 − FN .

In [7] the Hamiltonian of the q-fermion oscillator was taken as

HF
q = 1

2
�ω(b+b − bb+). (128)

By using the previous formula, we have the representation of this Hamiltonian in terms of the

Fibonacci operator:

HF
q = 1

2
�ω(FN − FN+1). (129)

Finally, using the property of Fibonacci operators, we find the q-fermion Hamiltonian as a

Fibonacci operator:

HF
q = − 1

2
�ωFN−1. (130)

To compare n-particle states for Golden and standard oscillators, we consider the following

relations. From (126) and (127), we have

(b+)n =
(

b+
√

FN+1

N + 1

)n

= (b+)n

√

FN+n

N + n
...

FN+2

N + 2

FN+1

N + 1

= (b+)n

√

FN+n!

FN!

N!

(N + n)!
. (131)

By taking the Hermitian conjugate of this result, we obtain

bn
q =

√

FN+n!

FN!

N!

(N + n)!
an. (132)

Our next step is to show that the same set of eigenvectors |n〉 expands the whole Hilbert space

both for the standard harmonic oscillator and for the Golden one. Firstly, we consider that

the vacuum state |0〉 for an ordinary quantum harmonic oscillator satisfies a|0〉 = 0, and the

vacuum state |0〉F for the Golden quantum harmonic oscillator satisfies b|0〉F = 0. From (127)

we have

b|0〉F =
√

FN+1

N + 1
a|0〉F = 0,

which gives

a|0〉F = 0.
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Alternatively, if a|0〉F = 0, it implies b|0〉F = 0. Therefore, the vacuum state |0〉 for the

ordinary oscillator is exactly the same as for the Golden oscillator vacuum state |0〉 ≡ |0〉F .

By applying (b+)n to the vacuum state |0〉F and using N|n〉F = n|n〉F , we have

(b+)n|0〉F = (b+)n

√

FN+n!

FN!

N!

(N + n)!
|0〉F

=
√

Fn!

n!
(b+)n|0〉, (133)

which implies that

|n〉F = |n〉.
As a result, we find that both the standard and the Golden harmonic oscillators have the same

set of eigenstates, but with different energy eigenvalues. If for the standard oscillator the

eigenstates are determined by the positive integer numbers n, En = �ω
(

n + 1
2

)

, then for the

Golden oscillator they are given by the Fibonacci numbers Fn, En = �ω
2

Fn+2.

To obtain wavefunctions in the coordinate representation, the simplest way is to represent

the bosonic operators a and a+ in terms of coordinate and momenta, so that the wavefunctions

would just be standard bosonic oscillator wavefunctions in terms of Hermite polynomials.

However, in this form, the representation of the operators b and b+ is quite complicated.

Another form of the wavefunction is related to the q-coordinate and q-momentum for the

operators b and b+, but with a complicated structure of the wavefunctions. One more

representation of the wavefunctions is the holomorphic representation of Fock, which requires

the application of the Fibonacci derivative operator. These questions would be described in

our future work.

4.1. Golden angular momentum

The double Golden oscillator algebra suF (2) determines the Golden quantum angular

momentum operators, defined as

JF
+ = b+

1 b2, JF
− = b+

2 b1, JF
z = N1 − N2

2
,

and satisfying the commutation relations

[JF
+, JF

−] = (−1)N2 F2Jz
= −(−1)N1 F−2Jz

, (134)

[JF
z , JF

±] = ±JF
±, (135)

where the Binet–Fibonacci Golden operator is

FN =
ϕN − (− 1

ϕ
)N

ϕ + 1
ϕ

= [N]F .

The Golden quantum angular momentum operators JF
± may be written in terms of Fibonacci

operators and standard quantum angular momentum operators J± as

JF
+ = J+

√

FN1+1

N1 + 1

√

FN2

N2

=
√

FN1

N1

√

FN2+1

N2 + 1
J+ (136)

JF
− = J−

√

FN1

N1

√

FN2+1

N2 + 1
=

√

FN1+1

N1 + 1

√

FN2

N2

J−. (137)

19



J. Phys. A: Math. Theor. 45 (2012) 015303 O K Pashaev and S Nalci

The Casimir operator for the Binet–Fibonacci case is

CF = (−1)−Jz
(

FJz
FJz+1 + (−1)−N2 JF

−JF
+
)

= (−1)−Jz
(

−FJz
FJz−1 + (−1)−N2 JF

+JF
−
)

. (138)

The angular momentum operators JF
± and JF

z act on the state | j, m〉F as

JF
+| j, m〉F =

√

Fj−mFj+m+1| j, m + 1〉F , (139)

JF
−| j, m〉F =

√

Fj+mFj−m+1| j, m − 1〉F , (140)

JF
z | j, m〉F = m| j, m〉F . (141)

If the eigenvalues of the Casimir operator CF
j are determined by the product of two successive

Fibonacci numbers

CF
j = (−1)− jFjFj+1,

then the asymptotic ratio of two successive eigenvalues of the Casimir operator gives the

Golden ratio square:

lim
j→∞

(−1)− jFjFj+1

(−1)− j+1Fj−1Fj

= −ϕ2.

We can also construct the representation of our F-deformed angular momentum algebra

in terms of the double Golden boson representation b1, b2. The actions of F-deformed angular

momentum operators to the state |n1, n2〉F are given as follows:

JF
+|n1, n2〉F = b+

1 b2|n1, n2〉F =
√

Fn1+1Fn2
|n1 + 1, n2 − 1〉F , (142)

JF
−|n1, n2〉F = b+

2 b1|n1, n2〉F =
√

Fn1
Fn2+1|n1 − 1, n2 + 1〉F , (143)

JF
z |n1, n2〉F = 1

2
(N1 − N2)|n1, n2〉F = 1

2
(n1 − n2)|n1, n2〉F . (144)

The above expressions reduce to the familiar ones (139)–(141) provided we define

j ≡ n1 + n2

2
, m ≡ n1 − n2

2

|n1, n2〉F ≡ | j, m〉F ,

and substitute

n1 → j + m, n2 → j − m.
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4.2. Symmetrical suiϕ(2) quantum algebra

As an example of the symmetrical q-deformed suq(2) algebra, we choose the base as qi = iϕ

and q j = i 1
ϕ
; then our complex equation for the base becomes

(iϕ)2 = i(iϕ) − 1.

The ϕ-deformed symmetrical angular momentum operators remain the same as J
(s)
± , J(s)

z . The

symmetrical quantum algebra with base (iϕ, i
ϕ
) becomes

[J
ϕ
+, J

ϕ
−] = [2Jz] i

ϕ
= [2Jz]iϕ, i

ϕ
(−1)( 1

2
−Jz), (145)

where

[2Jz] i
ϕ

= ϕ2Jz − ϕ−2Jz

ϕ − ϕ−1

and

[J(s)
z , J

(s)
± ] = ±J

(s)
± . (146)

4.3. s̃uF (2) algebra

One of the special cases of the symmetrical s̃u(q,Q)(2) algebra is constructed by choosing the

Binet–Fibonacci case (q = ϕ, Q = − 1
ϕ
). The generators of the s̃uF (2) algebra J̃

ϕ
±, J̃ϕ

z are

given in terms of double bosons b1, b2 as follows:

J̃F
+ = (−1)−

N2
2 b+

1 b2, (147)

J̃F
− = b+

2 b1(−1)−
N2
2 , (148)

J̃F
z = Jz. (149)

satisfying the anti-commutation relation

J̃F
+J̃F

− + J̃F
−J̃F

+ = {J̃F
+, J̃F

−} = [2Jz]F , (150)

and [J̃F
z , J̃F

±] = ±J̃F
±. The Casimir operator is written in the following forms:

C̃F = (−1)Jz{Fjz Fjz+1 − J̃F
−J̃F

+}
= (−1)Jz{J̃F

+J̃F
− − Fjz Fjz−1}. (151)

The actions of the F-deformed angular momentum operators to the states | j, m〉F are

J̃F
+| j, m〉F = (−1)

j−m

2

√

Fj−mFj+m+1| j, m + 1〉F , (152)

J̃F
−| j, m〉F = (−1)

j−m

2

√

Fj+mFj−m+1| j, m − 1〉F , (153)

J̃F
z | j, m〉F = m| j, m〉F . (154)

And the eigenvalues of Casimir operators are given by

C̃F | j, m〉F = {(−1)mFmFm+1 − (−1) jFj−mFj+m+1}| j, m〉F

= {(−1) jFj−m+1Fj+m − (−1)mFmFm−1}| j, m〉F .
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5. Conclusions

By interpreting the Binet formula for Fibonacci polynomials and Fibonacci numbers as q-

numbers, we have developed a special version of q-calculus with negative-inverse points.

From one side these points are specific for the spin coherent state description of qubits

in quantum information theory, providing a unique pair of one-qubit orthogonal states. In

terms of these states, maximally entangled two-, three- and arbitrary N-qubit states can be

derived. The expansion of these states on the computational basis is determined by Fibonacci

polynomials and Lucas polynomials. So the Fibonacci calculus developed here can have

potential application in quantum information theory. In a stereographic projection picture of

these states, the argument of Fibonacci polynomials has interpretation of a distance between

symmetric points in a unit circle. Another potential application is related to the method of

images in the problem of point vortices in circular domains, as advocated a long time ago by

Poincare [24]. Here, the vortex and its image are located at symmetric points and the Kirchhoff

energy of configuration depends on the distance between them. This distance is determined

by the parameter a in Fibonacci polynomials and is equal to 1 for a vortex at the Golden ratio

distance ϕ.

When this paper had already been submitted to the journal, we learned that Parthasarathy

and Viswanathan in their study of the q-deformed fermion oscillator in 1991 [7] had introduced

the fermion q-number, which coincides exactly with the Fibonacci polynomial as a q-number

in the Binet representation. According to this, we expect that our results would be useful in

describing such an oscillator, the corresponding coherent states and fractional statistics. In

particular, we expect that it could be a useful tool to study the entanglement of q-fermionic

states.
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