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Abstract

Let a = (14+/5)/2, the golden ratio, and 8 = —1/a = (1 —/5)/2. Let F,, and L,
be the Fibonacci and Lucas numbers, defined by F,, = (o™ —£")/v/5 and L,, = o + 3",

for all non-negative integers. We derive base a expansions of log F;,, log L,,, arctan R
n

1 e
and arctan I for all positive integers n.
n

Keywords: Fibonacci number, Lucas number, logarithm, arctangent, inverse tangent, golden
ratio, non-integer base expansion, BBP-type formula.
1 Introduction

Let a denote the golden ratio; that is o = (1 ++/5)/2. Let f = —1/a = (1 —+/5)/2. Thus
af = —1and a+ 8 = 1. Let F,, and L, be the Fibonacci and Lucas numbers, defined by
F, = (a® — ") /V/5 and L, = o™ + ", for all non-negative integers n.
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Let b be any non-zero number whose magnitude is greater than unity. Let n and s be
positive integers. A convergent series of the form

> 1 aq [¢5) (7%
c-S L S 1.1
kzzob’f ((/fn+1)s+(/€n+2)s+ +(lm—|—n)s)’ (1.1)
where aq, as, ..., a, are certain numbers, defines a base b, length n and degree s expansion

of the mathematical constant C.

If b is an integer and aj are rational numbers, then (1.1) is referred to as a BBP-type
formula, after the initials of the authors of the paper [4] in which such an expansion was first
presented for m and some other mathematical constants. Any mathematical constant that
possesses a base b BBP-type formula has the property that its n—th digit in base b could be
calculated directly, without needing to compute any of the previous n — 1 digits. Although
the infinite series presented in this paper have the structure of BBP-type formulas, it must
be clearly stated that the series do not yield digit extraction since here the base b = o™ is
not an integer and the a; are not rational numbers; rather the series correspond to base «
expansions of the mathematical constants concerned.

Our goal in this paper is to derive base o expansion formulas for the logarithm and the
inverse tangent of all Fibonacci and Lucas numbers. We will often give the expansion using
the compact P—notation for BBP-type formulas, introduced by Bailey and Crandall [5],
namely,

C=PsbnA)=> > "t
b (kn+ )

where s and n are integers and, in this present paper, b is an integer power of a and
A = (a1, as,...,a,) is a vector of rational multiples of powers of 5. For example, we will
show (see (2.20)) that

00 1 52 354 456 358 BlO
log F5 = log 2 =
og '3 = log kzoauk(6k+1+6k+2+6k+3+6k+4+6k+5 ’

which, in the P—notation, can be written as
log Fy = log 2 = P(1,a',6, (8% 38", 45°, 38, 8, 0)).

Base « expansions have also been studied or reported by Bailey and Crandall [5], Chan [7, 8],
Zhang [12], Borwein and Chamberland [6], Cloitre [9], Adegoke [2], Wei [11], and more
recently Kristensen and Mathiasen [10].

2 Base a expansions of logarithms
The base « expansions of the logarithms of Fibonacci and Lucas numbers are presented in

Theorems 2.3 and 2.4 but first we state a couple of Lemmata upon which the results are
based.



Let

: R
Lij(x) = logl—x—Z? Zxk T -1<z <.

Lemma 2.1. If|b| > 1, t > 0 and m and n are arbitrary positive integers, then,

( ) thm’fzmj mlJibjjj

Li, <—%) = i bztlnk 3 E2n/3: J/rbjt;

ka = Zz.fmk—l—]—lv
k=0 k=0 j=1
with
1 1
o=

The proof of (2.2) is similar, with m = 2n in (2.3).

Lemma 2.2. Ifr is an integer, then,

_1\r+1
lOgLr = ’T’Lil (%) — Lll (( 12 ) s
«Q a“"
(1 (1 (=)
log F, = (r — 2) Li (?) + Liy <¥) —Li ( o ) , 1#0.

Proof. We have

r T T L
Li (—ﬁ—) ~log (a A ) — —log (—) — _log L, +rloga,
ar ar a’

in which setting r = 1 gives

Using (2.7) in (2.6) gives (2.4).

(2.1)

(2.2)

(2.4)

(2.5)

(2.6)

(2.7)



Also,
T r __ Qar Fr
Li (5 ) = —log (a Tﬁ ) = —log< \T/S) = —log F. + rloga —log V5, (2.8)
a a

O[T

in which setting r = 2 gives

1 1 1
log v/5 = 2log a — Li, <—4) = 2Li, (—2) — Li; <—4) , (2.9)
« « «

where we used (2.7). Identity (2.5) follows from (2.8) and (2.9).

Theorem 2.3. If r is an integer, then,

1 54] 2(7" -2 + 7"5 ,(r4-1) /2 > 1 ! ﬁ4j’l"
osf, =317y zwz Lol (10
k=0 7

2rk +2j5 — 1 — 2rk + 2y

2)pY2 X1 — BYr(1 — 8r/2)
log F, = . 2.11
08 Z e Z 2k +2j — 1 Z a4rk wk+2j roeven (2.11)

Here and throughout this paper, 9,,, denotes the Kronecker delta symbol whose value is
unity when m equals n and zero otherwise.

Proof. We prove (2.11). When r is even, (2.5) reads

(1 . (1 (1
lOg Fr = (7‘ — 2) L11 (?) + L11 (g) - L11 (oﬂ?d) y r % 0. (212)

ar

We proceed to write the three Li; terms in a common base o*", using (2.1) with appropriate

t and m choices. Thus,
2r

( ) Z o/“‘k Z 2%??;" (2.13)
Ly <é) - Z a4rk Z :,{{f; (2.14)

(1) 1 1/a2f 1/a*
= <a2r) B Zaﬂﬂ”k <2k+1 Tr2) (2.15)

k=0
Using (2.13), (2.14) and (2.15) in (2.12) gives

1 B%(r —2) . 2pY
log F = Z 4rkz 2k + j ;a4rk22rk+2]

0 1 Tﬁ2r N ,,,547’
p otk \2rk+r  2rk+2r )’

(2.16)




Using the summation identity

2r r r
ij :Zf2j+z.f2j—l (2.17)
j=1 j=1 j=1

to write its inner sum, the first term on the right hand side of (2.16) can be written as

1 Pr—2) & Bl(r—2) BY2(r — 2)
E = E E g g 2.18
o/l’“"C 2rk + 7 o/l’“"C 2rk + 27 P o/““’f 27’k +25 -1 ( )

Using (2.18) in (2.16) yields (2.11).

U
Identities (2.10) and (2.11) written in the P—notation are
log F, = P(1,a",2r, (a1, as, . . ., as)) (2.19)
where for 1 < j <,
agj—1 = BV (r = 2416, 11y2), a2 = BYr(1—46,5), rodd;
and ' '
agj—1 = (r—2)BY2 ag; = BYr(1 — 8,2 — 6;,), r even.
Ezxamples.
log F3 = log2 = P(1,a'%,6, (5% 35% 4% 35%, 81°,0)), (2.20)
log F5 = log5 = P(1,0,10, (36% 54", 35°,54° 83", (2.21)
54'2,351,55,35%,0)), ’
log Fy = log 3 = P(1,0'%,8, (28,48, 26°,0,25"°,48', 28", 0)), (2.22)
log Fy = log21 = P(1,a™,16, (68 83",64° 85° 65,83, 64", (2.23)
log 1o = log 144 = P(1,a™,24, (10 %,12 3*,10 8%, 12 3®, 10 B*°,
1252, 10 51,12 8% 10 B8, 12 8%, 10 8*, 0,
g g B g g B (2.24)

10 BQG’ 12 528’ 10 5307 12 B32’ 10 5347 12 B?}ﬁ’
10 8%,12 8%,10 6%, 12 8*,10 6%, 0)).



Theorem 2.4. If r is an integer, then,

log L, = Z a21rk Z 52JT 7 r odd,

2r—1

1 B¥r(1 + 5,7
log L, = Z R okt r even.

Proof. We prove (2.25). If r is an odd mteger, (2.4) gives

With

and

1 1
log L, —rLll( ) L11< 2).
a? "

() =X e A

o0

(1 1 r/a®
Lll (a27’) - Z a27"k ’l"k‘—i—’l"

k=0

n (2.27); identity (2.25) follows.
Identities (2.25) and (2.26) in the P—notation are

with

and

with

Ezxamples.

that is,

log L, :P(l,a%,r, (ay,aq,...,a,)), rodd,
aj :Tﬁ2j(1—(57«j), 1 Sj ST,
log L, = P(1,a™,2r, (a1, as, ..., as)), 7 even,

CLj = 7,52]‘(1 -+ 5jr — (Sj’gr), 1 S j S 2r.

=1 232 4 285 '\
logLQ_log?’_;W<4k+1+4k+2+4k+3

log3 = P(1,a% 4, (26%,454,25°,0)).
log Ly = log4 = P(1,a53, (352 353%0)),

10gL4 = 10g7 = 4B2P(1,Oél6,8, (17B27B472567B87B10751270))7

log Lg = log 18 = P(1,a**,12, (65 65*,65°,65%,65'°,
1282,68',65'9,65',65%,65%%,0)).
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(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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3 Base a expansions of inverse tangents

The base « expansions of the inverse tangent of Fibonacci and Lucas numbers are stated in
Theorems 3.4-3.8 but first we collect some required identities in Lemmata 3.1-3.3.

Lemma 3.1. Ifr is an integer, then,

- — F.A\/5, 1 even;

o —« _{Lr7 - odd: (3.1)
. | L 7 even;

@ e = { F\/5, 1 odd. (3:2)

Lemma 3.2. Ifr and m are integers, then,

arctan (L,,/(F.V/5)),  m odd, r odd,

1 arctan(L,,/L,), m odd, r even,
arctan ar—m arctan artm ) arctan(F,,/F,), m evev, r odd, (3.3)
arctan(F,,v/5/L,), m even, r even;
arctan(F,,v/5/L,), m odd, r odd,
) arctan(F,,/F,), m odd, r even,
arctan ar—m +arctan amtm ) arctan(L,,/L,), m even, r odd, (3-4)
arctan (L, /(F,V/5)),  m even, r even.
Proof. The arctangent subtraction and addition formulas give
1 a’ (@™ —a™™)
arctan — arctan = arctan ,
Qr—m artm a27’ +1
1 a (™ +a™™)
arctan + arctan = arctan ;
Qr—m artm OZ2T -1
and hence the stated identities upon the use of Lemma 3.1. O

Lemma 3.3. Ifr is an integer, then,

o —1=a"L,, [ —1=p"L,, r odd (3.5)
o —1=a"F5, B —1=—8"F~\5, 71 even, (3.6)
o +1=a"FN5, B¥+1=—F"FE5 1 odd (3.7)
o +1=a"L,, [ +1=p"L,, 7 even. (3.8)



Theorem 3.4. If r is an odd integer greater than unity, then,

1
arctan — = P(1, Qd? =), 4(r* — 4), (ay, a, . . . , Qa(r2_1))),s

where the only non-zero constants a; are given by

ag-zyuj—z = —BUIW N —2), =12, r+2

A(r—2)(45-1) = B(T_z)(4j_1) (’l" - 2)’ ] - ]-7 2a N 27
A(r42)(45-3) = 6(T+2)(4j_3) (’l" + 2)’ ] = ]-7 2a cees T 27

apiayaj-ny = =BT (4 2), =120 -2

T 7,,2_
Afr—ayri2) = (—1)TD/245m 4

and
r— r2—
as(r—2)rt2) = (—1)H248307 ),

Proof. With r an odd number, m = 2 in (3.3) gives

1
arctan — = arctan — arctan .
ar—2 ar+2

IS

The following identity, proved in [1, Identity (10)]:

. 1 =1 n 1
ny/n arctan (| — = —_— —
Vn c=n \dk+1 4k+3

gives s 2% —4

arctan % = kz_% a(r_2}(4k+3) (40;{; 1 4k1+ 3)
and oo 2r+4

arctan o/“1+2 = kz—(] a(r+2)1(4k+3) (40;{; +1 4]<;1+ 3)’
or, by (2.3),

o 1 r+2 o~ (r=2(4j-3) a—(r=2)(4ji-1)
arctan a2 ; a(4r2=16)k ~ (4(7“ +2)k+4j -3 A(r+2)k+4j—1

and

o 1 r—2 a—(r+2)(4i-3) o~ (r+2)(4i—-1)
<4(r—2)k+4j—3 CAr—2)k+4j—1

1
arctan —— = E — 5
art2 q4r?—=16)k '
k=0 j=1

(3.10)



arctanf = Z pNZETSR X
" k=0
42 _5(7“—2)(4]’—3) (,,,. o 2) N 5(7“—2)(4]’—1) (’f’ _ 2)
=t A2 =Dk + (r—2)(45—3) 40?2 —4Dk+(r—2)45-1)
. r—2 ( 6(r+2)(4j—3) (,r, + 2) B 6(T+2)(4j_1)(’r’ + 2) )
= A2 =k + (r+2)45—-3) 42 —4)k+(r+2)45-1) '
(3.11)
Identity (3.9) is (3.11) expressed in the P—notation. O

Ezxamples.

1 1
arctan — = arctan — = P(1,a°,20, (3,0, %,0,48°,0,57,0,—3°,0, %,
i 5 = Pl (—B,0,5%,0,44°,0,87,0,—8°,0, 8 2

07 _5137 07 _4B157 07 _5177 07 5197 O))v

1 1
arctan — = arctan — = P(1,a,84,(0,0, -3 %0,0,0,75%,0,35%0,0,0,0,0, —3 3,

F 5
0,0,0,0,0,—44%,0,0,0,0,0,—337,0,0,0,0,0,3 5%,
0,73%,0,0,0,—33%,0,0,0,0,0,35%,0,0,0, -7 5%,
0,—3/°,0,0,0,0,0,33°,0,0,0,0,0,45%,0,0,0,0,0,
35%,0,0,0,0,0,—-3 57,0, -75",0,0,0,3 5%,0,0,0)),

(3.13)
arctanFi? = arctanl—lg = P(1,a" 180, (0,0,0,0,—53°,0,0,0,9 5°,0,0,0,0,0,5 5'°,

0,0,0,0,0,0,0,0,0,—5/3%,0,—937.,0,0,0,0,0,0,0,
55%.0,0,0,0,0,0,0,0,0,4 3%.0,0,0,0,0,0,0,0,0,
553%.0,0,0,0,0,0,0,—95%,0,—53%,0,0,0,0,0,
0,0,0,0,55,0,0,0,0,0,95%,0,0,0,—55%,0,0,
0,0,0,0,0,0,0,55%,0,0,0,—95%,0,0,0,0,0,
—54'9.0,0,0,0,0,0,0,0,0,535,0,957,0,0,0,
0,0,0,0,—53'%,0,0,0,0,0,0,0,0,0, —4 33,
0,0,0,0,0,0,0,0,0,—535,0,0,0,0,0,0,0,9 33,0,
531%5,0,0,0,0,0,0,0,0,0,—5 /%5 0,0,0,0,0, —9 g™,
0,0,0,53'°,0,0,0,0,0)).
(3.14)



Theorem 3.5. If r is a positive even integer, then,

1
arctan = P(1,a*"Y 4(r* = 1), (a1, as, . .. , Qa(r2-1))); (3.15)

T

where the only non-zero constants a; are given by
ap-nyaj-z = —BCIE I —1), =12 r+1,

ag—nyaj—ny = BrIE DG 1) =120 +1,

apinyajz = =BTy j=1,2,,r— 1,

apanyaj—ny = BUTVE 41y =12, 0 =1,
a1y = (=1)7287 7

and

T 7”2—
A3(r—1)(r+1) = (—1)( +2)/2253( b,

Proof. Setting m = 1 in (3.4) gives

1 1
arctan — = arctan 7 tarctan ——=, 7 even.
. ar— ar—i—l
The proof now proceeds as in that of Theorem 3.4. O
Ezxamples.
1
arctan - = % = P(1,a",12,(=3,0,-28°,0,—-8°,0,57,0,2 8°,0, ', 0)), (3.16)
2

1 1
arctan - = arctan 5= P(1,a%,60, (0,0, -3 %0, -5 4°,0,0,0,33%,0,0,0,0,0,2 3,

4
07 07 07 07 07 35217 07 07 07 _55257 07 -3 B277 07 07 07 07 07 3ﬁ337
07 5 5357 07 07 07 _35397 07 07 07 07 07 —2 /8457 07 07 07 07 07 -3 /8517

0,0,0,543%,0,33°7,0,0,0)).
(3.17)

Theorem 3.6. If r is a positive even integer, then,

1
arctan —— = P(L, a1 4(r2 — 1), (a1, a9, - ., a2 1)), (3.18)

T

where the only non-zero constants a; are given by

ag-tyj-z = —BUIE I —1), j=12,. . r+1,

10



A(r-1)(4j-1) = ﬁ(r_l)(‘lj_l)(r -1), j=12...r+1,
A(r41)(4j—3) = U@ 4 1), j=1,2,...,r—1,

appnyj-ny = —BUTVE (4 1), =12, 0 =1,

Ar—1)(r41) = (_1)(r+2)/2 9 ﬁﬂ_l

and

T T‘2—
A3(r—1)(r+1) = (=1) 2 2r 53( b,

Proof. Setting m = 1 in (3.3) gives

1
arctan L_r = arctan i arctan pYISE 7 even.

The proof now proceeds as in that of Theorem 3.4. O

Ezamples.

1 1
arctan 7 = arctan 5 = (1,a'%,12,(=B,0,48%,0,—-5°,0,37,0,—43°,0,8,0)), (3.19)
2
1 1 60 3 5 9 15
arctanL— :arctan? = (1,a",60,(0,0,-33°,0,55°,0,0,0,33°,0,0,0,0,0, -8 3°°,
4
07070707073B21707O7075/625707_3B27707O70707073/6337
07 =5 ﬁ35a070a07 _3ﬁ39a070aO>0a078545a070a070a09
- 3551a070a07 _5ﬁ5570a3ﬁ57a070?0))‘

(3.20)
Theorem 3.7. Ifr is an integer, then,
© g 933" 3or g 9397 gur
£ 12k <12k:+1 Tk 3 T T2ke5 1247 12k19 12k:+11)
— arctan (L% .7 oodd, (3:21)
N arctan ( Frl\/é , T even;
that is,
P(1,a'% .12, (87,0,26%,0, 8,0, — 87,0, —23°", 0, — 17, 0))
— arctan (L% , 1 odd, (3.22)
N arctan ( Frl\/g , T even.

11



Proof. In [1, Identity (27)], it was shown that

) . vn _ :
n“y/n arctan — ;(—ng’)k 6k+1+6k‘+3+6k+5

In base n%, length 12, this is

n
n?y/n arctan <L)

n—1
(3.23)

_il n? N 2n N 1 1/n 2/n? 1/n?
_kzonﬁk 12k+1 12k +3  12k+5 12k+7 12k+9 12k+11)°

Identity (3.21) follows upon setting n = " in (3.23) and making use of (3.5) and (3.6).

]
Ezxamples.

% = P(]-> 0412, 127 (_ﬁa O> _2539 Oa _557 Oa ﬁ’?) Oa 2597 O> 5119 0))7 (324)

1
arctan (Z) - P(la a12a 127 (_539 Oa _2ﬁ9> Oa _5157 O> 521, O> 2ﬁ277 O> 5337 0))7 (325)

1
arctan (ﬁ) = P(17 0412, 127 (527 07 2B67 07 Blov 07 _B147 07 _2B187 07 _5227 0))7 (326)

1
arctan (3—\/5) = P(1,a'%,12,(54,0,28%,0, 62,0, -5%,0,-25%,0, - 5*,0)). ~ (3.27)

Remark. Identity (3.24) is the same golden ratio base expansion of 7 that was obtained in
Theorem 3.5.

Theorem 3.8. If r is an integer, then,

= r 3r — arctan (l . 7 odd,
2 ozi”f (4/3@1 N Ajfir 3) - . (3.28)
=0 arctan ( ) T oeven;
that is
— arctan (Ll , 1 odd,
P(1,a",4,(28",0,-28",0)) = S (3.29)
arctan (WE , T even.

Proof. Setting x = " in the identity

2x
2arctanz = arctan [ ———
1 —22

12



and using (3.5) and (3.6), we have

1 arctan Ll), r odd,
2arctan — = ' (3.30)
Q arctan FT2\/5> , T even.
Setting n = a*" in (3.10) and comparing with (3.30), we obtain (3.28). O
Ezamples.
2 1
arctan .= arctan 5= P(1,a" 4, (—26%0,25°,0)), (3.31)
3
arctan( 2 ) — arctan —= = P(1,0%4,(28%,0,-243°,0)). (3.32)
Fz\/g \/g ) Y ) ) Y Y

4 Zero relations

Zero relations are expansion formulas that evaluate to zero. They are useful in the determi-
nation and classification of new expansion formulas. A base « expansion is not considered
new if it can be written as a linear combination of existing formulas and known zero relations.

4.1 Zero relations arising from the logarithm formulas
Zero relation from log(F?/L3) =0
Theorem 4.1. We have

i1 1_3ﬁ2_854_356+ﬁ8 o
koal?k 6k+1 6k+2 6k+3 6k+4 6k+5)

that s,
0= P(17 Oé12, 6? (]-7 _352a _8ﬁ47 _3667 687 O))

Proof. We have
QIOgFg — lOg L3 =0. (41)

The expansion of log L3 given in (2.32) has the following base a'?, length 12 version:
log Ly = P(1,a'?,6, (36% 36%,0,33%,35",0)). (4.2)

Use of (2.20) and (4.2) in (4.1) yields the zero relation stated in Theorem 4.1.
U
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Zero relation from log(Lg¢/(F7F3)) =0
Theorem 4.2. We have
0= P(1,0"®,24, (1, —5 8%, —2 8*,3 85, 8% 4 8°, 512, 3 B4,
_ 916 5318 520 () g2 _5 3% _9 s 3580 gs2
4 5%, 5%,3 6%, —2 810, _5 32, M ().

Proof. Write log F3, log Fy and log Lg, that is, identities (2.20), (2.22) and (2.34), respec-
tively, in the common base a*® and common length 24 and use

IOgLG — 210gF4 — IOgFg = 0.

Zero relation from log(Fio/(F3{L3)) =0
Theorem 4.3. We have
0= P(]-> a48> 24> (1a —4 527 =5 547 O> 589 2 5109 512, O> =5 ﬁ16a —4 518, 620’ Oa
B247 _45267 -5 B287 07 B327 2 5347 5367 07 -5 B407 —4 B427 B447 0))

Proof. Write log F3, log Fi5 and log Ly from (2.20), (2.24) and (2.31), in common base o*®
and consider
lOgF12 —4 lOgFg -2 IOgLQ =0.

4.2 Zero relations arising from the inverse tangent formulas

Zero relation from 2arctan(2/L3) + arctan(2/L;) — arctan(2/L,) = 0
Theorem 4.4. We have
0= P(]-> a60> 607 (1a 07 _762a 07 —4 ﬁ47 Oa _569 Oa 7ﬁ8a 07 _ﬁ107 Oa b127 07 —2 ﬁl4a
07 5167 07 _B187 07 7B207 07 _B227 07 _45247 07 _75267 07 B287 07 _5307 07
7ﬁ32a 07 4 5347 Oa ﬁ367 Oa _75387 Oa ﬁ40a 07 _ﬁ427 Oa 2 ﬁ44a 07 _ﬁ467 Oa
548a 07 _765()’ 07 552, 07 4 5547 Oa 7ﬁ56a 07 _ﬁ58> 0))

Proof. Using the addition and subtraction formulas for inverse tangents, it is readily verified

that
t 2 t 2 t 3
arctan | — | — arctan ( — | = arctan | —
T I T I, r 1
t 2 -+ t 2 t 3
arctan [ — arctan [ — | = arctan | = | ;
r I r I T 1)
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so that
2arct 2 + arct 2 t 2 0
arctan | — arctan | — | —arctan [ — | =
L3 L5 Ll ’
from which the zero relation follows upon use of (3.29). O

Remark. The zero relation stated in Theorem 4.4 can also be obtained directly from

2
arctan — = arctan —
F3 Ly’

by writing (3.12) and (3.31) in the common base a® and common length 60; or from

1
arctan — = arctan —

F4 Lg’
using (3.17) and (3.19).

Zero relation from
2arctan(1/L;) — 2arctan(2/(Fy\/5)) — arctan(2/(Fsv/5)) = 0
Theorem 4.5. We have
0= P(1,a*,24,(1,4 3,2 8%,0,8* 28°, —p% 0, —23%,48° —p'°,0, 32 —4 3,
2 6149 0’ 6167 -9 517’ _518’ O, -9 6209 —4 6219 _6229 0))
Proof. The identity

s 2 1 2
— —arctan | — | = arctan | ——= | 4+ arctan { —
2 <\/S ) (4\/5 ) <\/5 )

= arctan | —
2
can be arranged as

1 2 2
2arctan | — | — 2 arctan — arctan =0
<L1) <F2\/5) <F6\/3)

which, on account of (3.29), gives the stated zero relation. O

5 Other degree 1 base a expansions and zero relations

Base a expansions of log «

Theorem 5.1.
IOgOé:P(].,Oé,Q,(O,—ﬂ)). (51)
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Proof. We have

Theorem 5.2.

Proof. We have

Another base a expansion of log 2

Theorem 5.3.
log2 = P(1,0° 3, (=B, 8% 26%)).

Proof. A straightforward consequence of the identity

1 1
o «v

Another base a expansion of log5

Theorem 5.4.
log5 = P(1,a",2, (4 8%,0)),

Proof. A consequence of the identity

1 1
s 210 (1) 2 (1)
@) @)
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A length 2, base a zero relation

Theorem 5.5.
P(1,0%,2,(1,38)) = 0.

1 1
(L) en () <o
(6% (6%

Remark. Relation (5.5) also follows from (5.1) and (5.2).

Proof. Follows from

A length 12, base o zero relation

Theorem 5.6.

P(1,a',12,(1, 8, -2 8% 5 8%, 84,10 8%, 8%, 5 87, =2 8%, 3%, 1%, 2 ') = 0.

Proof. Follows fron (2.20) and (5.3).

A length 10, base a zero relation

Theorem 5.7.

P(17a20’ 10’ (17 -5 ﬁ2’ﬁ4’ -5 567 _4£;87 -5 ﬁ107512’ -5 514’ﬁ1670)) = 0.

Proof. Ensues from (2.21) and (5.4).

A length 5, base a zero relation

Theorem 5.8.
P(17 OK5, 57 (ﬁ7 17 _57 _547 _2 ﬁ4)) = 0

Proof. Setting p = 2 cosz in the identity

Z ]%s(k‘x) = ——log(1 — 2pcosx + p?)
k=1

2
produces
2. (2cos x)" cos(kx)
> - = 0.
k=1

Now 2 cos(27/5) = —p.

17
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Thus, setting z = 27/5 in (5.7) gives

ii AP S B A A W
a® \5k+1 5k+2 b5k+3 5bk+4 5k+5)

k=0

since
cos <2§(5j —4)) = %ﬁ = cos (%(53‘ — 1)) ., 1=1,2,...
and
cos <2§(5j — 2)) = % = cos (2%(53' — 5)) ., J=1,2...
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