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Abstract

Let α = (1+
√
5)/2, the golden ratio, and β = −1/α = (1−

√
5)/2. Let Fn and Ln

be the Fibonacci and Lucas numbers, defined by Fn = (αn−βn)/
√
5 and Ln = αn+βn,

for all non-negative integers. We derive base α expansions of log Fn, logLn, arctan
1

Fn

and arctan
1

Ln
for all positive integers n.

Keywords: Fibonacci number, Lucas number, logarithm, arctangent, inverse tangent, golden
ratio, non-integer base expansion, BBP-type formula.

1 Introduction

Let α denote the golden ratio; that is α = (1 +
√
5)/2. Let β = −1/α = (1 −

√
5)/2. Thus

αβ = −1 and α + β = 1. Let Fn and Ln be the Fibonacci and Lucas numbers, defined by
Fn = (αn − βn)/

√
5 and Ln = αn + βn, for all non-negative integers n.
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Let b be any non-zero number whose magnitude is greater than unity. Let n and s be
positive integers. A convergent series of the form

C =

∞
∑

k=0

1

bk

(

a1
(kn + 1)s

+
a2

(kn + 2)s
+ · · ·+ an

(kn+ n)s

)

, (1.1)

where a1, a2, . . ., an are certain numbers, defines a base b, length n and degree s expansion
of the mathematical constant C.

If b is an integer and ak are rational numbers, then (1.1) is referred to as a BBP-type
formula, after the initials of the authors of the paper [4] in which such an expansion was first
presented for π and some other mathematical constants. Any mathematical constant that
possesses a base b BBP-type formula has the property that its n−th digit in base b could be
calculated directly, without needing to compute any of the previous n− 1 digits. Although
the infinite series presented in this paper have the structure of BBP-type formulas, it must
be clearly stated that the series do not yield digit extraction since here the base b = αn is
not an integer and the ak are not rational numbers; rather the series correspond to base α
expansions of the mathematical constants concerned.

Our goal in this paper is to derive base α expansion formulas for the logarithm and the
inverse tangent of all Fibonacci and Lucas numbers. We will often give the expansion using
the compact P−notation for BBP-type formulas, introduced by Bailey and Crandall [5],
namely,

C = P (s, b, n, A) =

∞
∑

k=0

1

bk

n
∑

j=1

aj
(kn+ j)s

,

where s and n are integers and, in this present paper, b is an integer power of α and
A = (a1, a2, . . . , an) is a vector of rational multiples of powers of β. For example, we will
show (see (2.20)) that

logF3 = log 2 =

∞
∑

k=0

1

α12k

(

β2

6k + 1
+

3β4

6k + 2
+

4β6

6k + 3
+

3β8

6k + 4
+

β10

6k + 5

)

,

which, in the P−notation, can be written as

logF3 = log 2 = P (1, α12, 6, (β2, 3β4, 4β6, 3β8, β10, 0)).

Base α expansions have also been studied or reported by Bailey and Crandall [5], Chan [7, 8],
Zhang [12], Borwein and Chamberland [6], Cloitre [9], Adegoke [2], Wei [11], and more
recently Kristensen and Mathiasen [10].

2 Base α expansions of logarithms

The base α expansions of the logarithms of Fibonacci and Lucas numbers are presented in
Theorems 2.3 and 2.4 but first we state a couple of Lemmata upon which the results are
based.
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Let

Li1(x) = − log(1− x) =

∞
∑

k=1

xk

k
=

∞
∑

k=0

xk x

k + 1
, −1 ≤ x < 1.

Lemma 2.1. If |b| > 1, t > 0 and m and n are arbitrary positive integers, then,

Li1

(

1

b t

)

=
∞
∑

k=0

1

btmk

m
∑

j=1

1/b tj

(mk + j)
, (2.1)

Li1

(

− 1

b t

)

=
∞
∑

k=0

1

b2tnk

2n
∑

j=1

(−1)j/b tj

(2nk + j)
. (2.2)

Proof. We have

Li1

(

1

b t

)

=
∞
∑

k=0

1

b tk

1/b t

k + 1
,

from which (2.1) follows upon using the identity

∞
∑

k=0

fk =

∞
∑

k=0

m
∑

j=1

fmk+j−1, (2.3)

with

fk =
1

btk+t

1

k + 1
.

The proof of (2.2) is similar, with m = 2n in (2.3).

Lemma 2.2. If r is an integer, then,

logLr = r Li1

(

1

α2

)

− Li1

(

(−1)r+1

α2r

)

, (2.4)

logFr = (r − 2) Li1

(

1

α2

)

+ Li1

(

1

α4

)

− Li1

(

(−1)r

α2r

)

, r 6= 0. (2.5)

Proof. We have

Li1

(

−βr

αr

)

= − log

(

αr + βr

αr

)

= − log

(

Lr

αr

)

= − logLr + r logα, (2.6)

in which setting r = 1 gives

logα = Li1

(

1

α2

)

. (2.7)

Using (2.7) in (2.6) gives (2.4).
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Also,

Li1

(

βr

αr

)

= − log

(

αr − βr

αr

)

= − log

(

Fr

√
5

αr

)

= − logFr + r logα− log
√
5, (2.8)

in which setting r = 2 gives

log
√
5 = 2 logα− Li1

(

1

α4

)

= 2Li1

(

1

α2

)

− Li1

(

1

α4

)

, (2.9)

where we used (2.7). Identity (2.5) follows from (2.8) and (2.9).

Theorem 2.3. If r is an integer, then,

logFr =

∞
∑

k=0

1

α4rk

r
∑

j=1

β4j−2(r − 2 + rδj,(r+1)/2)

2rk + 2j − 1
+

∞
∑

k=0

1

α4rk

r−1
∑

j=1

β4jr

2rk + 2j
, r odd, (2.10)

logFr =

∞
∑

k=0

1

α4rk

r
∑

j=1

(r − 2)β4j−2

2rk + 2j − 1
+

∞
∑

k=0

1

α4rk

r−1
∑

j=1

β4jr(1− δj,r/2)

2rk + 2j
, r even. (2.11)

Here and throughout this paper, δmn denotes the Kronecker delta symbol whose value is
unity when m equals n and zero otherwise.

Proof. We prove (2.11). When r is even, (2.5) reads

logFr = (r − 2) Li1

(

1

α2

)

+ Li1

(

1

α4

)

− Li1

(

1

α2r

)

, r 6= 0. (2.12)

We proceed to write the three Li1 terms in a common base α4r, using (2.1) with appropriate
t and m choices. Thus,

Li1

(

1

α2

)

=

∞
∑

k=0

1

α4rk

2r
∑

j=1

1/α2j

2rk + j
, (2.13)

Li1

(

1

α4

)

=
∞
∑

k=0

1

α4rk

r
∑

j=1

1/α4j

rk + j
, (2.14)

Li1

(

1

α2r

)

=
∞
∑

k=0

1

α4rk

(

1/α2r

2k + 1
+

1/α4r

2k + 2

)

. (2.15)

Using (2.13), (2.14) and (2.15) in (2.12) gives

logFr =

∞
∑

k=0

1

α4rk

2r
∑

j=1

β2j(r − 2)

2rk + j
+

∞
∑

k=0

1

α4rk

r
∑

j=1

2β4j

2rk + 2j

−
∞
∑

k=0

1

α4rk

(

rβ2r

2rk + r
+

rβ4r

2rk + 2r

)

.

(2.16)
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Using the summation identity

2r
∑

j=1

fj =
r
∑

j=1

f2j +
r
∑

j=1

f2j−1 (2.17)

to write its inner sum, the first term on the right hand side of (2.16) can be written as

∞
∑

k=0

1

α4rk

2r
∑

j=1

β2j(r − 2)

2rk + j
=

∞
∑

k=0

1

α4rk

r
∑

j=1

β4j(r − 2)

2rk + 2j
+

∞
∑

k=0

1

α4rk

r
∑

j=1

β4j−2(r − 2)

2rk + 2j − 1
. (2.18)

Using (2.18) in (2.16) yields (2.11).

Identities (2.10) and (2.11) written in the P−notation are

logFr = P (1, α4r, 2r, (a1, a2, . . . , a2r)) (2.19)

where for 1 ≤ j ≤ r,

a2j−1 = β4j−2(r − 2 + rδj,(r+1)/2), a2j = β4jr(1− δrj), r odd;

and
a2j−1 = (r − 2)β4j−2, a2j = β4jr(1− δj,r/2 − δj,r), r even.

Examples.

logF3 = log 2 = P (1, α12, 6, (β2, 3β4, 4β6, 3β8, β10, 0)), (2.20)

logF5 = log 5 = P (1, α20, 10, (3β2, 5β4, 3β6, 5β8, 8β10,

5β12, 3β14, 5β16, 3β18, 0)),
(2.21)

logF4 = log 3 = P (1, α16, 8, (2β2, 4β4, 2β6, 0, 2β10, 4β12, 2β14, 0)), (2.22)

logF8 = log 21 = P (1, α32, 16, (6β2, 8β4, 6β6, 8β8, 6β10, 8β12, 6β14,

0, 6β18, 8β20, 6β22, 8β24, 6β26, 8β28, 6β30, 0)),
(2.23)

logF12 = log 144 = P (1, α48, 24, (10 β2, 12 β4, 10 β6, 12 β8, 10 β10,

12 β12, 10 β14, 12 β16, 10 β18, 12 β20, 10 β22, 0,

10 β26, 12 β28, 10 β30, 12 β32, 10 β34, 12 β36,

10 β38, 12 β40, 10 β42, 12 β44, 10 β46, 0)).

(2.24)
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Theorem 2.4. If r is an integer, then,

logLr =
∞
∑

k=0

1

α2rk

r−1
∑

j=1

β2jr

rk + j
, r odd, (2.25)

logLr =
∞
∑

k=0

1

α4rk

2r−1
∑

j=1

β2jr(1 + δrj)

2rk + j
, r even. (2.26)

Proof. We prove (2.25). If r is an odd integer, (2.4) gives

logLr = r Li1

(

1

α2

)

− Li1

(

1

α2r

)

. (2.27)

With

Li1

(

1

α2

)

=
∞
∑

k=0

1

α2rk

r
∑

j=1

1/α2j

rk + j

and

Li1

(

1

α2r

)

=

∞
∑

k=0

1

α2rk

r/α2r

rk + r

in (2.27); identity (2.25) follows.

Identities (2.25) and (2.26) in the P−notation are

logLr = P (1, α2r, r, (a1, a2, . . . , ar)), r odd, (2.28)

with
aj = rβ2j(1− δrj), 1 ≤ j ≤ r,

and
logLr = P (1, α4r, 2r, (a1, a2, . . . , a2r)), r even, (2.29)

with
aj = rβ2j(1 + δjr − δj,2r), 1 ≤ j ≤ 2r.

Examples.

logL2 = log 3 =

∞
∑

k=0

1

α8k

(

2β2

4k + 1
+

4β4

4k + 2
+

2β6

4k + 3

)

; (2.30)

that is,
log 3 = P (1, α8, 4, (2β2, 4β4, 2β6, 0)). (2.31)

logL3 = log 4 = P (1, α6, 3, (3β2, 3β4, 0)), (2.32)

logL4 = log 7 = 4β2P (1, α16, 8, (1, β2, β4, 2β6, β8, β10, β12, 0)), (2.33)

logL6 = log 18 = P (1, α24, 12, (6β2, 6β4, 6β6, 6β8, 6β10,

12β12, 6β14, 6β16, 6β18, 6β20, 6β22, 0)).
(2.34)
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3 Base α expansions of inverse tangents

The base α expansions of the inverse tangent of Fibonacci and Lucas numbers are stated in
Theorems 3.4–3.8 but first we collect some required identities in Lemmata 3.1–3.3.

Lemma 3.1. If r is an integer, then,

αr − α−r =

{

Fr

√
5, r even;

Lr, r odd;
(3.1)

αr + α−r =

{

Lr r even;

Fr

√
5, r odd.

(3.2)

Lemma 3.2. If r and m are integers, then,

arctan
1

αr−m
− arctan

1

αr+m
=















arctan
(

Lm/(Fr

√
5)
)

, m odd, r odd,
arctan(Lm/Lr), m odd, r even,
arctan(Fm/Fr), m evev, r odd,

arctan(Fm

√
5/Lr), m even, r even;

(3.3)

arctan
1

αr−m
+ arctan

1

αr+m
=















arctan(Fm

√
5/Lr), m odd, r odd,

arctan(Fm/Fr), m odd, r even,
arctan(Lm/Lr), m even, r odd,

arctan
(

Lm/(Fr

√
5)
)

, m even, r even.

(3.4)

Proof. The arctangent subtraction and addition formulas give

arctan
1

αr−m
− arctan

1

αr+m
= arctan

(

αr(αm − α−m)

α2r + 1

)

,

arctan
1

αr−m
+ arctan

1

αr+m
= arctan

(

αr(αm + α−m)

α2r − 1

)

;

and hence the stated identities upon the use of Lemma 3.1.

Lemma 3.3. If r is an integer, then,

α2r − 1 = αrLr, β2r − 1 = βrLr, r odd, (3.5)

α2r − 1 = αrFr

√
5, β2r − 1 = −βrFr

√
5, r even, (3.6)

α2r + 1 = αrFr

√
5, β2r + 1 = −βrFr

√
5, r odd, (3.7)

α2r + 1 = αrLr, β2r + 1 = βrLr, r even. (3.8)
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Theorem 3.4. If r is an odd integer greater than unity, then,

arctan
1

Fr

= P (1, α4(r2−4), 4(r2 − 4), (a1, a2, . . . , a4(r2−4))), (3.9)

where the only non-zero constants aj are given by

a(r−2)(4j−3) = −β(r−2)(4j−3)(r − 2), j = 1, 2, . . . , r + 2,

a(r−2)(4j−1) = β(r−2)(4j−1)(r − 2), j = 1, 2, . . . , r + 2,

a(r+2)(4j−3) = β(r+2)(4j−3)(r + 2), j = 1, 2, . . . , r − 2,

a(r+2)(4j−1) = −β(r+2)(4j−1)(r + 2), j = 1, 2, . . . , r − 2,

a(r−2)(r+2) = (−1)(r+1)/24βr2−4

and

a3(r−2)(r+2) = (−1)(r−1)/24β3(r2−4).

Proof. With r an odd number, m = 2 in (3.3) gives

arctan
1

Fr
= arctan

1

αr−2
− arctan

1

αr+2
.

The following identity, proved in [1, Identity (10)]:

n
√
n arctan

(

1√
n

)

=
∞
∑

k=0

1

n2k

(

n

4k + 1
− 1

4k + 3

)

(3.10)

gives

arctan
1

αr−2
=

∞
∑

k=0

1

α(r−2)(4k+3)

(

α2r−4

4k + 1
− 1

4k + 3

)

and

arctan
1

αr+2
=

∞
∑

k=0

1

α(r+2)(4k+3)

(

α2r+4

4k + 1
− 1

4k + 3

)

,

or, by (2.3),

arctan
1

αr−2
=

∞
∑

k=0

1

α(4r2−16)k

r+2
∑

j=1

(

α−(r−2)(4j−3)

4(r + 2)k + 4j − 3
− α−(r−2)(4j−1)

4(r + 2)k + 4j − 1

)

and

arctan
1

αr+2
=

∞
∑

k=0

1

α(4r2−16)k

r−2
∑

j=1

(

α−(r+2)(4j−3)

4(r − 2)k + 4j − 3
− α−(r+2)(4j−1)

4(r − 2)k + 4j − 1

)

.
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Thus,

arctan
1

Fr
=

∞
∑

k=0

1

α(4r2−16)k
×

(

r+2
∑

j=1

( −β(r−2)(4j−3)(r − 2)

4(r2 − 4)k + (r − 2)(4j − 3)
+

β(r−2)(4j−1)(r − 2)

4(r2 − 4)k + (r − 2)(4j − 1)

)

+

r−2
∑

j=1

(

β(r+2)(4j−3)(r + 2)

4(r2 − 4)k + (r + 2)(4j − 3)
− β(r+2)(4j−1)(r + 2)

4(r2 − 4)k + (r + 2)(4j − 1)

)

)

.

(3.11)

Identity (3.9) is (3.11) expressed in the P−notation.

Examples.

arctan
1

F3
= arctan

1

2
= P (1, α20, 20, (−β, 0, β3, 0, 4 β5, 0, β7, 0,−β9, 0, β11,

0,−β13, 0,−4 β15, 0,−β17, 0, β19, 0)),
(3.12)

arctan
1

F5
= arctan

1

5
= P (1, α84, 84, (0, 0,−3 β3, 0, 0, 0, 7 β7, 0, 3 β9, 0, 0, 0, 0, 0,−3 β15,

0, 0, 0, 0, 0,−4 β21, 0, 0, 0, 0, 0,−3 β27, 0, 0, 0, 0, 0, 3 β33,

0, 7 β35, 0, 0, 0,−3 β39, 0, 0, 0, 0, 0, 3 β45, 0, 0, 0,−7 β49,

0,−3 β51, 0, 0, 0, 0, 0, 3 β57, 0, 0, 0, 0, 0, 4 β63, 0, 0, 0, 0, 0,

3 β69, 0, 0, 0, 0, 0,−3 β75, 0,−7 β77, 0, 0, 0, 3 β81, 0, 0, 0)),

(3.13)

arctan
1

F7
= arctan

1

13
= P (1, α180, 180, (0, 0, 0, 0,−5 β5, 0, 0, 0, 9 β9, 0, 0, 0, 0, 0, 5 β15,

0, 0, 0, 0, 0, 0, 0, 0, 0,−5 β25, 0,−9 β27, 0, 0, 0, 0, 0, 0, 0,

5 β35, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4 β45, 0, 0, 0, 0, 0, 0, 0, 0, 0,

5 β55, 0, 0, 0, 0, 0, 0, 0,−9 β63, 0,−5 β65, 0, 0, 0, 0, 0,

0, 0, 0, 0, 5 β75, 0, 0, 0, 0, 0, 9 β81, 0, 0, 0,−5 β85, 0, 0,

0, 0, 0, 0, 0, 0, 0, 5 β95, 0, 0, 0,−9 β99, 0, 0, 0, 0, 0,

− 5 β105, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5 β115, 0, 9 β117, 0, 0, 0,

0, 0, 0, 0,−5 β125, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4 β135,

0, 0, 0, 0, 0, 0, 0, 0, 0,−5 β145, 0, 0, 0, 0, 0, 0, 0, 9 β153, 0,

5 β155, 0, 0, 0, 0, 0, 0, 0, 0, 0,−5 β165, 0, 0, 0, 0, 0,−9 β171,

0, 0, 0, 5 β175, 0, 0, 0, 0, 0)).

(3.14)

9



Theorem 3.5. If r is a positive even integer, then,

arctan
1

Fr
= P (1, α4(r2−1), 4(r2 − 1), (a1, a2, . . . , a4(r2−1))), (3.15)

where the only non-zero constants aj are given by

a(r−1)(4j−3) = −β(r−1)(4j−3)(r − 1), j = 1, 2, . . . , r + 1,

a(r−1)(4j−1) = β(r−1)(4j−1)(r − 1), j = 1, 2, . . . , r + 1,

a(r+1)(4j−3) = −β(r+1)(4j−3)(r + 1), j = 1, 2, . . . , r − 1,

a(r+1)(4j−1) = β(r+1)(4j−1)(r + 1), j = 1, 2, . . . , r − 1,

a(r−1)(r+1) = (−1)r/22βr2−1

and

a3(r−1)(r+1) = (−1)(r+2)/22β3(r2−1).

Proof. Setting m = 1 in (3.4) gives

arctan
1

Fr
= arctan

1

αr−1
+ arctan

1

αr+1
, r even.

The proof now proceeds as in that of Theorem 3.4.

Examples.

arctan
1

F2
=

π

4
= P (1, α12, 12, (−β, 0,−2 β3, 0,−β5, 0, β7, 0, 2 β9, 0, β11, 0)), (3.16)

arctan
1

F4

= arctan
1

3
= P (1, α60, 60, (0, 0,−3 β3, 0,−5 β5, 0, 0, 0, 3 β9, 0, 0, 0, 0, 0, 2 β15,

0, 0, 0, 0, 0, 3 β21, 0, 0, 0,−5 β25, 0,−3 β27, 0, 0, 0, 0, 0, 3 β33,

0, 5 β35, 0, 0, 0,−3 β39, 0, 0, 0, 0, 0,−2 β45, 0, 0, 0, 0, 0,−3 β51,

0, 0, 0, 5 β55, 0, 3 β57, 0, 0, 0)).

(3.17)

Theorem 3.6. If r is a positive even integer, then,

arctan
1

Lr
= P (1, α4(r2−1), 4(r2 − 1), (a1, a2, . . . , a4(r2−1))), (3.18)

where the only non-zero constants aj are given by

a(r−1)(4j−3) = −β(r−1)(4j−3)(r − 1), j = 1, 2, . . . , r + 1,

10



a(r−1)(4j−1) = β(r−1)(4j−1)(r − 1), j = 1, 2, . . . , r + 1,

a(r+1)(4j−3) = β(r+1)(4j−3)(r + 1), j = 1, 2, . . . , r − 1,

a(r+1)(4j−1) = −β(r+1)(4j−1)(r + 1), j = 1, 2, . . . , r − 1,

a(r−1)(r+1) = (−1)(r+2)/2 2r βr2−1

and

a3(r−1)(r+1) = (−1)r/2 2r β3(r2−1).

Proof. Setting m = 1 in (3.3) gives

arctan
1

Lr
= arctan

1

αr−1
− arctan

1

αr+1
, r even.

The proof now proceeds as in that of Theorem 3.4.

Examples.

arctan
1

L2

= arctan
1

3
= (1, α12, 12, (−β, 0, 4 β3, 0,−β5, 0, β7, 0,−4 β9, 0, β11, 0)), (3.19)

arctan
1

L4

= arctan
1

7
= (1, α60, 60, (0, 0,−3 β3, 0, 5 β5, 0, 0, 0, 3 β9, 0, 0, 0, 0, 0,−8 β15,

0, 0, 0, 0, 0, 3 β21, 0, 0, 0, 5 β25, 0,−3 β27, 0, 0, 0, 0, 0, 3 β33,

0,−5 β35, 0, 0, 0,−3 β39, 0, 0, 0, 0, 0, 8 β45, 0, 0, 0, 0, 0,

− 3 β51, 0, 0, 0,−5 β55, 0, 3 β57, 0, 0, 0)).

(3.20)

Theorem 3.7. If r is an integer, then,

∞
∑

k=0

1

α12rk

(

βr

12k + 1
+

2β3r

12k + 3
+

β5r

12k + 5
− β7r

12k + 7
− 2β9r

12k + 9
− β11r

12k + 11

)

=







− arctan
(

1
Lr

)

, r odd,

arctan
(

1
Fr

√
5

)

, r even;

(3.21)

that is,

P (1, α12r, 12, (βr, 0, 2β3r, 0, β5r, 0,−β7r, 0,−2β9r, 0,−β11r, 0))

=







− arctan
(

1
Lr

)

, r odd,

arctan
(

1
Fr

√
5

)

, r even.

(3.22)
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Proof. In [1, Identity (27)], it was shown that

n2
√
n arctan

( √
n

n− 1

)

=
∞
∑

k=0

1

(−n3)k

(

n2

6k + 1
+

2n

6k + 3
+

1

6k + 5

)

.

In base n6, length 12, this is

n2
√
n arctan

( √
n

n− 1

)

=
∞
∑

k=0

1

n6k

(

n2

12k + 1
+

2n

12k + 3
+

1

12k + 5
− 1/n

12k + 7
− 2/n2

12k + 9
− 1/n3

12k + 11

)

.

(3.23)

Identity (3.21) follows upon setting n = α2r in (3.23) and making use of (3.5) and (3.6).

Examples.
π

4
= P (1, α12, 12, (−β, 0,−2β3, 0,−β5, 0, β7, 0, 2β9, 0, β11, 0)), (3.24)

arctan

(

1

4

)

= P (1, α12, 12, (−β3, 0,−2β9, 0,−β15, 0, β21, 0, 2β27, 0, β33, 0)), (3.25)

arctan

(

1√
5

)

= P (1, α12, 12, (β2, 0, 2β6, 0, β10, 0,−β14, 0,−2β18, 0,−β22, 0)), (3.26)

arctan

(

1

3
√
5

)

= P (1, α12, 12, (β4, 0, 2β12, 0, β20, 0,−β28, 0,−2β36, 0,−β44, 0)). (3.27)

Remark. Identity (3.24) is the same golden ratio base expansion of π that was obtained in
Theorem 3.5.

Theorem 3.8. If r is an integer, then,

∞

∑

k=0

1

α4rk

(

2βr

4k + 1
− 2β3r

4k + 3

)

=







− arctan
(

2
Lr

)

, r odd,

arctan
(

2
Fr

√
5

)

, r even;
(3.28)

that is

P (1, α4r, 4, (2βr, 0,−2β3r, 0)) =







− arctan
(

2
Lr

)

, r odd,

arctan
(

2
Fr

√
5

)

, r even.
(3.29)

Proof. Setting x = βr in the identity

2 arctanx = arctan

(

2x

1− x2

)
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and using (3.5) and (3.6), we have

2 arctan
1

αr
=







arctan
(

2
Lr

)

, r odd,

arctan
(

2
Fr

√
5

)

, r even.
(3.30)

Setting n = α2r in (3.10) and comparing with (3.30), we obtain (3.28).

Examples.

arctan
2

L3

= arctan
1

2
= P (1, α12, 4, (−2β3, 0, 2β9, 0)), (3.31)

arctan

(

2

F2

√
5

)

= arctan
2√
5
= P (1, α8, 4, (2β2, 0,−2β6, 0)). (3.32)

4 Zero relations

Zero relations are expansion formulas that evaluate to zero. They are useful in the determi-
nation and classification of new expansion formulas. A base α expansion is not considered
new if it can be written as a linear combination of existing formulas and known zero relations.

4.1 Zero relations arising from the logarithm formulas

Zero relation from log(F 2
3 /L3) = 0

Theorem 4.1. We have

∞
∑

k=0

1

α12k

(

1

6k + 1
− 3β2

6k + 2
− 8β4

6k + 3
− 3β6

6k + 4
+

β8

6k + 5

)

= 0;

that is,

0 = P (1, α12, 6, (1,−3β2,−8β4,−3β6, β8, 0)).

Proof. We have
2 logF3 − logL3 = 0. (4.1)

The expansion of logL3 given in (2.32) has the following base α12, length 12 version:

logL3 = P (1, α12, 6, (3β2, 3β4, 0, 3β8, 3β10, 0)). (4.2)

Use of (2.20) and (4.2) in (4.1) yields the zero relation stated in Theorem 4.1.

13



Zero relation from log(L6/(F
2
4F3)) = 0

Theorem 4.2. We have

0 = P (1, α48, 24, (1,−5 β2,−2 β4, 3 β6, β8, 4 β10, β12, 3 β14,

− 2 β16,−5 β18, β20, 0, β24,−5 β26,−2 β28, 3 β30, β32,

4 β34, β36, 3 β38,−2 β40,−5 β42, β44, 0)).

Proof. Write logF3, logF4 and logL6, that is, identities (2.20), (2.22) and (2.34), respec-
tively, in the common base α48 and common length 24 and use

logL6 − 2 logF4 − logF3 = 0.

Zero relation from log(F12/(F
4
3L

2
2)) = 0

Theorem 4.3. We have

0 = P (1, α48, 24, (1,−4 β2,−5 β4, 0, β8, 2 β10, β12, 0,−5 β16,−4 β18, β20, 0,

β24,−4 β26,−5 β28, 0, β32, 2 β34, β36, 0,−5 β40,−4 β42, β44, 0)).

Proof. Write logF3, logF12 and logL2 from (2.20), (2.24) and (2.31), in common base α48

and consider
logF12 − 4 logF3 − 2 logL2 = 0.

4.2 Zero relations arising from the inverse tangent formulas

Zero relation from 2 arctan(2/L3) + arctan(2/L5)− arctan(2/L1) = 0

Theorem 4.4. We have

0 = P (1, α60, 60, (1, 0,−7 β2, 0,−4 β4, 0,−β6, 0, 7 β8, 0,−β10, 0, b12, 0,−2 β14,

0, β16, 0,−β18, 0, 7 β20, 0,−β22, 0,−4 β24, 0,−7 β26, 0, β28, 0,−β30, 0,

7 β32, 0, 4 β34, 0, β36, 0,−7 β38, 0, β40, 0,−β42, 0, 2 β44, 0,−β46, 0,

β48, 0,−7 β50, 0, β52, 0, 4 β54, 0, 7 β56, 0,−β58, 0)).

Proof. Using the addition and subtraction formulas for inverse tangents, it is readily verified
that

arctan

(

2

L1

)

− arctan

(

2

L3

)

= arctan

(

3

4

)

and

arctan

(

2

L5

)

+ arctan

(

2

L3

)

= arctan

(

3

4

)

;
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so that

2 arctan

(

2

L3

)

+ arctan

(

2

L5

)

− arctan

(

2

L1

)

= 0,

from which the zero relation follows upon use of (3.29).

Remark. The zero relation stated in Theorem 4.4 can also be obtained directly from

arctan
1

F3
= arctan

2

L3
,

by writing (3.12) and (3.31) in the common base α60 and common length 60; or from

arctan
1

F4
= arctan

1

L2
,

using (3.17) and (3.19).

Zero relation from
2 arctan(1/L1)− 2 arctan(2/(F2

√
5))− arctan(2/(F6

√
5)) = 0

Theorem 4.5. We have

0 = P (1, α24, 24, (1, 4 β, 2 β2, 0, β4, 2 β5,−β6, 0,−2 β8, 4 β9,−β10, 0, β12,−4 β13,

2 β14, 0, β16,−2 β17,−β18, 0,−2 β20,−4 β21,−β22, 0)).

Proof. The identity

π

2
− arctan

(

2√
5

)

= arctan

(

1

4
√
5

)

+ arctan

(

2√
5

)

= arctan

(√
5

2

)

can be arranged as

2 arctan

(

1

L1

)

− 2 arctan

(

2

F2

√
5

)

− arctan

(

2

F6

√
5

)

= 0

which, on account of (3.29), gives the stated zero relation.

5 Other degree 1 base α expansions and zero relations

Base α expansions of logα

Theorem 5.1.
logα = P (1, α, 2, (0,−β)). (5.1)
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Proof. We have

logα =
1

2
Li1

(

1

α

)

=
1

2

∞
∑

k=0

1

αk

1/α

k + 1
=

∞
∑

k=0

1

αk

−β

2k + 2
.

Theorem 5.2.
logα = P (1, α2, 2, (0, 2β2)). (5.2)

Proof. We have

logα = Li1

(

1

α2

)

=

∞
∑

k=0

1

α2k

1/α2

k + 1
=

∞
∑

k=0

1

α2k

2β2

2k + 2
.

Another base α expansion of log 2

Theorem 5.3.
log 2 = P (1, α3, 3, (−β, β2, 2β3)). (5.3)

Proof. A straightforward consequence of the identity

log 2 = Li1

(

1

α

)

− Li1

(

1

α3

)

.

Another base α expansion of log 5

Theorem 5.4.
log 5 = P (1, α4, 2, (4 β2, 0)). (5.4)

Proof. A consequence of the identity

log 5 = 2 Li1

(

1

α2

)

− 2 Li1

(

− 1

α2

)

.
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A length 2, base α zero relation

Theorem 5.5.
P (1, α2, 2, (1, 3 β)) = 0. (5.5)

Proof. Follows from

Li1

(

1

α2

)

+ Li1

(

− 1

α

)

= 0.

Remark. Relation (5.5) also follows from (5.1) and (5.2).

A length 12, base α zero relation

Theorem 5.6.

P (1, α12, 12, (1, β,−2 β2, 5 β3, β4, 10 β5, β6, 5 β7,−2 β8, β9, β10, 2 β11)) = 0.

Proof. Follows fron (2.20) and (5.3).

A length 10, base α zero relation

Theorem 5.7.

P (1, α20, 10, (1,−5 β2, β4,−5 β6,−4 β8,−5 β10, β12,−5 β14, β16, 0)) = 0.

Proof. Ensues from (2.21) and (5.4).

A length 5, base α zero relation

Theorem 5.8.
P (1, α5, 5, (β, 1,−β,−β4,−2 β4)) = 0. (5.6)

Proof. Setting p = 2 cosx in the identity

∞
∑

k=1

pk cos(kx)

k
= −1

2
log(1− 2p cosx+ p2)

produces
∞
∑

k=1

(2 cosx)k cos(kx)

k
= 0. (5.7)

Now 2 cos(2π/5) = −β.
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Thus, setting x = 2π/5 in (5.7) gives

∞
∑

k=0

1

α5k

(

β

5k + 1
+

1

5k + 2
− β

5k + 3
− β4

5k + 4
− 2β4

5k + 5

)

= 0;

since

cos

(

2π

5
(5j − 4)

)

=
−β

2
= cos

(

2π

5
(5j − 1)

)

, j = 1, 2, . . .

and

cos

(

2π

5
(5j − 2)

)

=
1

2β
= cos

(

2π

5
(5j − 5)

)

, j = 1, 2, . . .
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