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Abstract—The globalization of the Integrated Circuit (IC) sup-
ply chain has moved most of the design, fabrication, and testing
process from a single trusted entity to various untrusted third-
party entities worldwide. The risk of using untrusted third-Party
Intellectual Property (3PIP) is the possibility for adversaries
to insert malicious modifications known as Hardware Trojans
(HTs). These HTs can compromise the integrity, deteriorate the
performance, deny the service, and alter the functionality of
the design. While numerous HT detection methods have been
proposed in the literature, the crucial task of HT localization
is overlooked. Moreover, a few existing HT localization methods
have several weaknesses: reliance on a golden reference, inability
to generalize for all types of HT, lack of scalability, low lo-
calization resolution, and manual feature engineering/property
definition. To overcome their shortcomings, we propose a novel,
golden reference-free HT localization method at the pre-silicon
stage by leveraging Graph Convolutional Network (GCN). In
this work, we convert the circuit design to its intrinsic data
structure, graph and extract the node attributes. Afterward,
the graph convolution performs automatic feature extraction for
nodes to classify the nodes as Trojan or benign. Our approach is
automated and does not burden the designer with manual code
review. It locates the Trojan signals with 99.6% accuracy, 93.1%
F1-score, and a false-positive rate below 0.009%.

Index Terms—Hardware Trojan Localization; Hardware Secu-
rity; Graph Neural Network; Golden Reference-Free; Register
Transfer Level.

I. INTRODUCTION

The growing complexity of Integrated Circuits (IC), time-
to-market pressure, and expensive design and manufacturing
processes have promoted the globalization of the semicon-
ductor industry. Outsourcing the fabrication and depending
on third-party hardware Intellectual Property (IP) blocks and
Electronic design automation (EDA) tools raise the risk of
intentional and malicious manipulation of the circuit, known
as Hardware Trojan (HT). Figure 1 demonstrates the IC supply
chain and the involving parties which are vulnerable points of
HT insertion. Currently, HT is a significant hardware security
concern with devastating consequences such as denial of
service, malfunctioning, data leakage, and performance degra-
dation in the chip. The attackers usually design HT to be a tiny
circuit hidden inside the main design, normally inactive with
minimal effect on the chip’s functionality and specification.
The HT often gets triggered under rare circumstances, and
consequently, it can escape detection by routine simulation
and functional testing.

Trojan detection is crucial to ascertain the authenticity of
3PIPs and prevent the negative consequences of HTs. How-
ever, HT detection does not suffice to ensure the fabrication
of a trustworthy chip, and HT localization is the next essential
step. The hardware IPs fall into three classes based on their

format and level of abstraction; Soft IP (i.e., synthesizable
Verilog or VHDL source code), Firm IP (i.e., placed RTL
block and netlist), and Hard IP (i.e., physical layout and
GDSII). Soft IP is the most popular IP core, and IP trust
revolves around it. However, it has the most vulnerability
against HT insertion because the flexibility and high level of
abstraction in Register Transfer Level (RTL) codes facilitate
the HT design and implementation for the attacker [1].

Manual review of hardware design to pinpoint HT is very
time-consuming and error-prone, especially for an industrial-
level large design. Due to the paramount importance of the
HT threat, numerous defense mechanisms are proposed in
the literature to determine if the design is infested with HT.
Still, they fail to locate it in the IC design. Some works
analyze parameters, and side-channel data of circuits such as
polynomials of gate-level implementation [2], thermal map
[3], or path delays [4] to pinpoint the disturbance introduced
by HT. They have the premise that a trusted Trojan-free
reference design called golden reference exists to compare
against the parameters of the circuit under test, which is an
unrealistic assumption. In order to obtain the golden reference,
the whole process of IC design, test, and fabrication should
be performed by in-house trusted teams, EDA tools, and
manufacturing facilities that would be very expensive and
infeasible in practice.

HT defense methods based on formal verification and code
analysis define some properties for HT, analyze the hardware
design, and mark the areas satisfying the predefined proper-
ties. For example, [5] examines RTL codes using word-level
statistics of the inputs and tags the arithmetic blocks with rare
nets as vulnerable to HT. [6] flags the unused portion of the
circuit as malicious. [7] measures the degree of control that an
input signal has on the operation and outputs of the circuit and
marks weakly-affecting inputs as possible HT triggers. These
works narrow down the search space for HT. However, they
still burden the designer to manually review the suspicious
areas, which can be a large circuit due to low localization
resolution. Moreover, most of the existing solutions require
manual property definition or feature extraction, and they
fail to outline a comprehensive set of properties or features
representing all kinds of HTs. Consequently, they are effective
only for particular HTs.

There is an increasing trend to explore the graph represen-
tation of hardware for security purposes [8] because hardware
design is a non-Eulicidian structural data that shares similar
properties with a graph. The graph is a mathematical structure
that represents the relation between pairs of objects. It pre-
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Fig. 1. IC supply chain which is vulnerable to HT insertion in different stages.

serves the topological information that makes it the best match
for modeling the fundamental objects in the hardware design
process [9]. For instance, the graph is leveraged to represent
the hardware design in [10], [8] for HT mitigation. Still, Graph
matching algorithms fail to recognize unknown HTs and are
not scalable to large designs due to high complexity.

Deep learning has introduced potent techniques that revolu-
tionized many fields of study [11], but it operates on Euclidean
data and cannot be directly used for hardware design. The
current deep learning models for HT mitigation examine the
side-channel emissions of the fabricated chip, which are time-
series data [12]. To fill the gap and apply machine learning
to hardware design, we convert the design from the textual
format of HDL code to a graph and leverage GCN, which is
like deep learning operating on graphs. A recent work [13]
proposes a graph classification model based on a graph neural
network to find whether the circuit is infested with HT or not,
but it fails to locate the Trojan.

In order to overcome the shortcomings of current ap-
proaches, we propose a novel, golden reference-free HT
localization method in the pre-silicon stage. We generate a
graph representation for the hardware design, assign attributes
to nodes in the graph, classify nodes, and locate the Trojan in
HDL code based on the graph node’s class. Our node classifi-
cation model is based on GCN that automatically aggregates
the features in graph nodes through the graph convolution
operation. We create a dataset of hardware designs by inserting
HT benchmarks from TrustHub [14] to different circuits. Our
methodology is trained on this dataset to learn the behavior and
features of Trojan nodes. Then, the trained model can locate
the Trojan nodes based on their malicious abnormal behavior
in even new and unknown Trojans in a fully automated process
without any need for manual review.

A. Research Challenges

HT detection and localization is a difficult problem and the
current solutions suffer from the following shortcomings:
• Reliance on golden reference: A Trojan-free circuit

called golden reference for comparison with the circuit
under test is not available in the real world, and the golden
reference-dependent methods are not practical.

• Unable to generalize: Various types of HTs are discov-
ered so far, and new HT designs are continuously intro-
duced. Due to the variety in HT design and specification,
defining a template or some properties that describe all
HTs is challenging. Consequently, many countermeasures

fail to generalize and are limited to known HTs or only
HTs with a specific trigger or payload.

• Low localization resolution: Some works output the
areas of the circuit that are vulnerable to HT insertion
and due to low localization resolution, they burden the
designer with an exhaustive review of suspicious regions.

• Manual feature extraction: Algorithmic and classic
machine learning approaches rely on an expert to define
properties and extract features from the circuit, which is
error-prone and exhausting.

• Scalability: With the increased complexity of ICs, scala-
bility has become an essential characteristic of any circuit
analysis tool, but complex algorithms fail to scale for
large designs.

B. Contributions

In this paper, we surmount the aforementioned research
challenges and propose a novel, golden reference-free ap-
proach for HT localization that is fully automated with no need
for manual revision by experts. To the best of our knowledge,
this is the first work to apply GCN for HT localization. Our
contributions can be summarized as:
• The hardware design HDL code is converted to data-flow

graph using hardware design toolkit [15]. We develop an
algorithm to extract the attributes of nodes and assign an
attribute vector to each one.

• We construct a node classification model based on GCN
that automatically aggregates the features for each node in
the graph representation of hardware design, learns their
behavior, and marks the malicious nodes.

• We develop a Trojan labeling algorithm that provides
a mapping from HDL code to its graph and labels the
nodes in the graph as Trojan or benign. This algorithm
determines the HT label vector of the training dataset,
which is deployed by the GCN model for training and
calculating classification loss.

• We survey the existing pre-silicon HT detection and
localization methods and their shortcomings to picture
the current state and challenges of this research area as
well as the potential of graph learning for advancement
in hardware security.

II. RELATED WORKS AND BACKGROUNDS

A. Hardware Trojan Detection

Due to the severity of the HT threat, its detection is
extensively studied in the literature, while the importance of
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HT localization is overlooked. In this section, we survey the
approaches that answer whether the design is contaminated
with HT but cannot locate the Trojan.

1) Graph similarity algorithm: : Graph is shown to be a
natural and potent representation of hardware design [9]. In
this regard, [10] attempt to detect HT by examination of the
similarity between data/control flow graphs of the Trojan and
the circuit under test. [8] further advances the graph matching
algorithm by creating a new graph similarity heuristic for
hardware security applications. In addition to the lack of
scalability and high complexity of graph matching algorithm
(NP-complete), this approach is challenged with new types of
HT as their detection range is limited to known HTs and fails
to generalize.

2) Machine learning: : Machine learning introduces pow-
erful data-driven models that, through the iterative process
of training on a dataset, perform optimization to minimize
the prediction error and learn to infer correct prediction for
a test subject. Since most machine learning models work
with Euclidean data, they are mainly used in the side-channel
analysis for post-silicon hardware security applications [16],
[12], [17]. Machine learning models for HT detection in pre-
silicon are proposed that are trained on the features extracted
from the circuit or its graph representation. For instance,
Trojan-net features derived from gate-level netlist are exploited
by support vector machine [18] and multi-layer neural network
[19]. Others apply gradient boosting [20], probabilistic neural
network [21], or high-level behavior classification model of
artificial immune system [22] on the features extracted from
abstract syntax tree, control flow graph, and data/control-flow
graphs of RTL design, respectively. Reliance on a golden refer-
ence is one of the shortcomings of many classification models.
Moreover, another common problem with classic machine
learning models is the manual feature extraction which is error-
prone and highly depends on the developer’s knowledge of
hardware design. Deep learning models eliminate this problem
with automated feature extraction, which is recently employed
by [13]. It classifies the data-flow graph of RTL design using
a graph neural network.

3) Formal verification: : Formal verification translates the
circuit to proof checking format and proves it satisfies the pre-
defined security properties. The limited detection range is the
main weakness of this method as it is difficult to define a set
of properties that generalizes to the various types of HT. For
example, [23] and even its advanced version [24] can only
expose HT payloads that leak data. Information flow tracking
is a formal method for security verification, deployed in [25],
[26], [27]. The model checking used in formal verification
approaches encounters state explosion and cannot scale for
large designs.

4) Test pattern generation: : HT evades detection by
the routine verification test and simulations because it is a
tiny circuit with negligible effect on circuit functionality and
specification. Thus, test pattern generation methods produce a
set of test vectors more likely to activate the HT [28], [29]. The
stand-alone method is usually insufficient, and it is bundled
with other techniques such as side-channel analysis [30].

B. Hardware Trojan Localization

The majority of defense mechanisms against HT focus
on its detection, and there are inadequate works with the
capability to locate the Trojan circuit. For example, [4], [3]
perform HT localization with the assumptions that the design
pipeline is trusted, and the attacker resides in the foundry. Both
works have the unrealistic premise that a golden reference is
available. [4] proposes an SAT-based test pattern generation
scheme that detects and locates the Trojan inserted by foundry
by comparing the timing and path delays of the suspicious
IC with a golden IC. [3] extracts Trojan activity factor from
the redundant thermal map and performs HT localization by
comparing the thermal side-channel of the target chip with the
golden reference.

Code analysis is one of the conventional pre-silicon HT
defense mechanisms that inspects the HDL code to ascertain
suspicious signals in the circuit, and it is mainly restricted
to combinational logic. In this technique, the code is scanned
based on coverage metrics (toggle, line, state, etc.) to find the
potential areas of HT presence. Different methods propose
various definitions for a suspicious area, such as unused
circuit identification [31], weakly affecting inputs [7], and
low dependence on functional inputs [32]. Due to exclusive
definition of HT, later [6] defeats [31] and [32] and [7] get
bypassed by the new HT attack [33]. [5] proposes a framework
to analyze RTL codes using word-level statistics of the inputs.
It locates the arithmetic blocks with rare nets to be reviewed as
candidates vulnerable to HT and can only identify HTs that
are always on or triggered by current inputs. Code analysis
suggests the circuit areas susceptible to HT insertion and
cannot actually locate the HT or even guarantee its detection.

[2] introduces a formal method based on symbolic algebra
by extracting polynomials from the gate-level implementation
of the untrustworthy IP and comparing them with the golden
reference polynomials. [34] leverages principal features of
social network analysis to outline the relation between design
properties and locate HT. This approach applies only to
combinational Trojans.

C. Graph in Hardware Applications

Hardware design is non-Eulicidian structural data that
shares similar properties with a graph. The graph is a mathe-
matical structure that represents the relation between pairs of
objects. It preserves the topological information that makes
it the best match for modeling the fundamental objects in
the hardware design process. Thus, the graph is leveraged to
represent the hardware in numerous Electronic Design Au-
tomation (EDA) problems which shift the problem to choosing
the appropriate algorithm from the many well-known graph
algorithms and apply it directly or with a slight change to solve
the problem. However, developing an effective approach for
each problem is still challenging. Furthermore, many problems
are NP-hard with large sizes which makes efficiency a major
concern and leads to scalability issue. To tackle the complexity
issue, data-driven learning techniques have grabbed much
attention. The classical machine learning models include an
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Fig. 2. Overview of our HT localization methodology in training and inference phases.

initial step of manual feature extraction which is followed by
model training based on a large set of data instances [9].

The next generation of machine learning models lever-
ages convolutional layers in deep learning models, making
the feature extraction process automated through learning.
Recently, deep learning models are developed with high re-
siliency against adversarial attacks [35]. Although that deep
learning has improved the performance in various applications,
it cannot be directly applied to graphs because it is originally
developed for Euclidean data, and notable extra endeavors
are needed to extract features from graphs and encode the
structural information. In response, the graph learning method
is introduced, which defines the convolutional operation on
graphs and automates the feature extraction from graphs.
There have been a few works investigating the advantages
of graph learning for the hardware security [13], [36], [37]
and hardware design automation such as test point insertion
[38], and power estimation in simulation [39]. In this work,
we leverage a state-of-the-art machine learning model, GCN,
to model the hardware for security purposes.

III. METHODOLOGY

In this paper, we propose an automated pipeline to locate
Trojan circuit at RTL that includes several steps, as depicted
in Figure 2; i) converting hardware design to graph, ii)
extracting the node attributes, iii) labeling Trojan nodes, iv)
node classification, and v) HT localization in HDL. In the
following sections, we define our problem formulation and
threat model and then, we elaborate on the aforementioned
steps for localization.

A. Problem Formulation and Threat Model

The main target of our methodology is to locate the Trojan
circuit inside hardware design at RTL. The model’s input is an
HDL code which is later converted to a graph. The graph rep-
resentation is further processed, and the graph learning model
classifies the graph nodes as Trojan or benign. Eventually, the

model outputs a list of malicious signals and operations in the
HDL code corresponding to Trojan nodes in the graph.

The graph learning model, GCN, is trained on a dataset
of graphs derived from HT benchmarks in which the labels
of the nodes are known. Our dataset only includes the HT-
infested designs, not any Trojan-free design. Our approach is
golden reference-free and able to perform HT localization on
unknown HTs. To demonstrate these characteristics, we train
our model on a set of circuits and test it on the circuits not
observed by the model before in the training stage. Therefore,
the model locates Trojan nodes in the circuit under test while it
has not seen its golden reference or HT benchmark. Moreover,
we make no assumption about the HT payload or trigger type,
and the fundamental features of Trojan nodes are automatically
aggregated and learned by convolutional layers in our GCN.

An attacker may manipulate the hardware design at any pre-
silicon stage of the IC supply chain in our threat model (refer
to Figure 1), but eventually, the HDL code should be available
for our methodology to perform HT localization. Therefore,
multiple attack scenarios are feasible. The attacker can be a
rogue in-house designer, an untrusted 3PIP design company, or
a 3P-EDA tool provider who tampers with the HDL code. The
adversary may alter the design in the low level of abstractions,
such as netlist and physical layout. In this case, we assume
that the RTL code is obtained by reverse engineering.

B. Hardware Design Conversion to Graph

A circuit is described using Hardware Description Lan-
guages (HDL) at the design stage, such as Verilog and VHDL.
The HDL code has a textual format with predetermined syntax
and cannot be directly used as data for machine learning. Thus,
we convert the HDL code to a graph that embeds the design
features and preserves the topological information.

HDL code comprises modules, signals, and operations.
Modules are used to cluster parts of circuits and better express
the hierarchy in the hardware design, but they do not affect the
design specification. On the other hand, signals and operations
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Fig. 3. The Verilog code of AES-T1800 Trojan benchmark.

fundamentally describe the hardware design. A signal can be
a register or wire in HDL code, and it carries a value that is
changed through an operation or assignment. For instance, the
Verilog code for the AES-T1800 HT benchmark is shown in
Figure 3 with its corresponding data-flow graph in Figure 4.

To convert HDL to graph, we combine the modules to have
a single HDL code for the whole design. Afterward, we parse
it and extract the data dependency subgraphs for all signals in
HDL code using a hardware design tool called PyVerilog [15].
Each signal subgraph is a tree that expresses how the value
of root signals depends on the operations and other signals in
the design. We connect the common nodes in the subgraphs
to construct one data-flow graph per hardware. The extracted
graph G = (V,E) is a directed homogeneous graph in which
each node is named after its corresponding signal/operation
in the HDL code, and an edge eij indicates that node vi
depends on node vj . Lastly, the graph is processed to remove
standalone nodes such as clk node in the data-flow graph of
AES-T1800 HT benchmark, depicted in Figure 4.

C. Node Attribute Extraction

The initial data-flow graph G = (V,E) expresses the
flow of information and connections between components in
the circuit, but it does not differentiate between the nodes.
Therefore, we develop a node analyzer to extract the type
of nodes from their name, which Pyverilog generates during
graph generation. Then, the analyzer assigns an attribute vector
to each node which is further used as an input feature to GCN.
Nodes can be categorized as constant, signal, or operation.
The constant nodes represent numbers and are tagged as
numeric regardless of their value. The signal nodes are derived
from a wire or register in the HDL code and tagged as input,
output, or signal based on their position in the circuit. The
operation nodes are related to the operands and conditional
statements in the HDL code. They have a wide variety,
including gates (not, and, or, xor, etc.), branch, conditional
operands (equal, less than, greater than, etc.), Part select,
and concatenation. We have detected 28 different types of
operation nodes which sums up the total numbers of the node
types to 32. The tags are independent of the circuit design
and they represent all the possible types of nodes that can be
generated by our graph generation pipeline for any HDL code.

Fig. 4. The data-flow graph and node attributes of AES-T1800 Trojan
benchmark, shown in Figure 3.

Some examples of node tags are demonstrated in Figure 4.
After tagging nodes, we generate an attribute vector for each
node by performing one-hot encoding on tags. Therefore, the
new directed graph with N nodes and F different tags is
defined by A ∈ RN×N and X ∈ RN×F where A is an
asymmetric adjacency matrix, and X is the matrix of node
attributes.

D. Trojan Labeling Algorithm

Although HT circuit is known in HDL codes used for train-
ing the GCN, the graph representation of the circuit does not
have any notion of Trojan. Therefore, we develop an algorithm
to determine the HT nodes in the graph representation of HT
benchmarks. The algorithm has an HDL processing step in
which a keyword is added to the signals and modules of the
HT circuit. This keyword will be visible in the name of signal
nodes of the HT circuit, but the constant and operation nodes
will not be affected. So, after graph generation, the labeling
algorithm iterates among the nodes and flags the operation
and constant nodes as 2 (can be Trojan), the signal node with
the keyword as 1 (definitely Trojan), and the rest of the signal
nodes as 0 (not Trojan). Thus, the flag of signal nodes is known
to be Trojan, or benign. The flag of constant and operation
nodes are modified based on the rules that the operation nodes
applied to Trojan nodes are part of the HT circuit and the
constant nodes inherit the flag of their parent operation node.
Algorithm 1 and Figure 6 show how the algorithm traverses
the graph starting from root nodes and modifies the number 2
flags based on these rules until there is no flag of 2 left and all
nodes are marked either as Trojan or benign. The algorithm
results in a Trojan label vector Y ∈ [0, 1]

N for each graph
with N nodes in which the malicious nodes are marked as 1.
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Fig. 5. The architecture of our GCN model for node classification.

This label vector is further used as the classification label of
the training dataset to train the GCN model. Note that this step
is only once performed for the training dataset in the training
stage, and it is not required in the inference stage when the
model is already trained and ready to locate HT in a circuit.

Algorithm 1: Trojan Nodes Labeling Algorithm
Input: Nodes name list name, Nodes type list type.
Input: Signal nodes tag SIG, Operation nodes tag
OP , Numeric node tag NUM .

Output: Trojan label vector lbl.
Initialize queue = a list of root node.
Initialize left = a set of all nodes.
Initialize visited = an empty set.
foreach node ni in left do

if (type[ni] is OP or NUM ) then
lbl[ni] = 2

else if (type[ni] is SIG) and (TJ in name[ni])
then
lbl[ni] = 1

else
lbl[ni] = 0

while left is not empty do
if queue is empty then

node = left.pop()
add node to queue

else
parent = queue.pop()
if lbl[parent] != 2 then

remove parent from left
add parent to visited
foreach child ci of parent do

if ci not in visited then
if lbl[ci] == 2 then

lbl[ci] = lbl[parent]
add ci to visited
add ci to queue

else
add parent to left

return Trojan label vector lbl

E. Graph Convolutional Networks

Traditionally, deep learning models often use an array/stack
of trainable filters such as convolutional neural networks
to extract meaningful features for grid-like structured data.
Inspired by those works, we adopt the GCN layer as our
trainable filter from [40]. GCN is devised to embed nodes with
different features while taking the topological information in
non-euclidean data into account. The input of the GCN model
is a graph G = (V,E) is represented by adjacency matrix
A ∈ N × N and node attribute matrix X ∈ N × F where
N is the number of nodes. F is the length of each node
attribute vector in our model. Each graph convolution layer
aggregates information from immediate node neighbors and
update nodes through a process called message passing based
on the following formula:

H(l+1) = σ(ÃH(l)W (l)) (1)

Here, l denotes the layer number, and H(0) is the initial
node features that equal to X , the node attributes matrix.
W (l) is a layer-specific trainable weight matrix. σ(.) denotes
the activation function that is Rectified Linear Unit (ReLU)
in our model. To perform graph convolution, the normalized
adjacency matrix Ã is computed by:

Ã = D̂−
1
2 ÂD̂−

1
2 (2)

where D̂ is the diagonal degree matrix to solve the problem of
scale change of the feature vectors after multiplication by the
matrix A. It is calculated by D̂ =

∑
j Âij and Â is derived

from Â = A + IN where IN is the identity matrix that adds
self-loop connection to A, adjacency matrix of graph G, to
make sure each node embeds its previous value from last
iteration as well as new data from its neighbors.

Stacking the graph convolution layers, we create a GCN that
is able to integrate information from a larger set of neighbors.
Our model architecture is illustrated in Figure 5. It comprises
three convolution layers with a ReLU activation function and
one last convolution layer connected to a layer of Softmax
units to classify each node as Trojan or benign and generate
the predicted node label Y . It concludes the computations of
our GCN model as below:

Z = Softmax(Ãσ(Ãσ(Ãσ(ÃXW (0))W (1))W (2))W (3))
(3)
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where Z ∈ [0, 1]
2 indicates the predicted node labels in which

[1, 0] denotes Trojan and [0, 1] denotes benign node.
Training: Figure 2 summarize the training process and

units. The first step in training is preparing a training dataset
based on the GCN model requirement. Thus, the HDL codes
are converted to data-flow graphs in which the nodes have
been assigned an attribute vector and a label (Trojan/benign).
The attribute vectors feed information about each node’s
characteristic to the model, and the labels are used to calculate
the error due to the node misclassification. Training is an
iterative optimization process that modifies the weights in
GCN to minimize its classification error, anointed as the loss.
We use Adam optimizer [41], a conventional optimization
technique for efficient gradient descent to minimize the loss
L. We utilize the cross-entropy loss function to calculate the
error over all nodes in a graph using this formula:

L = −
∑
i∈V

C∑
j=0

Yij ln(Zij) (4)

where C is the number of classes which is two (Trojan and
benign), and the j indicated the dimension of the output vector.
V is the set of nodes in a graph, and i iterates over them. Y
is the actual label of nodes obtained from the Trojan node
labeling algorithm, and Z is the predicted label. Note that L
is node classification loss for one graph, and total loss is the
summation of all graphs loss.

Inference: At the inference stage that the model is trained,
we use it to test new hardware design, as shown in Fig-
ure 2. After label prediction, the node labels are passed to
HT localization in the HDL unit. It employs the mapping
between graph nodes and HDL signals to mark malicious
signals in HDL code based on Trojan nodes in the graph. We
also perform HT detection by counting the number of nodes
predicted to be Trojan and label the circuit as Trojan-free if
the number of Trojan nodes is lower than a threshold and,
basically, negligible compared to the size of the design. The
user can set the threshold depending on their target sensitivity.

IV. EVALUATION

A. Experimental Setup

We construct and assess our GCN model on the graph
representation of a dataset, consisted of 49 Trojan-infested
RTL codes that are listed in Table IV. The limited number
of graphs in our dataset is not problematic since our machine
learning model is for node classification, and each graph
contains thousands of nodes, refer to Table III. An extensive
dataset enhances the model’s performance and capability to
learn a generic knowledge of HT and learning-based model is
easily adaptable by adding new circuits and Trojans to training
for further generalization. Our dataset comprises three base
circuits that contain various HTs. AES, DES, and RC5 are
encryption cores with different algorithms that get an input
number as plaintext along with a secret key and output the
encrypted number known as ciphertext. The AES samples are
derived from the TrustHub benchmark [14] which is the most
popular open hardware Trojan datasets used in the literature.
The RC5 and DES are open-source designs in which we
insert the Trojan circuits extracted from AES-Txx benchmarks.

Fig. 6. The flowchart of Trojan labeling algorithm.

However, some of TrustHub HT benchmarks are specific to
AES and cannot be inserted in RC5 or DES circuits due to
dependency on the internal signals of AES. In Table III, the
first part of benchmark name represents the base circuit and
the second part, shows the type of Trojan inserted in the base
circuit. For example, DES-T100 shows DES circuit infected
with T100 Trojan from TrustHub dataset. All the algorithms
and models are implemented in the Python language. We use
PyTorch and the Geometric extension library to build the
graph learning model. The GCN model training and testing
are performed by NVIDIA GeForce GTX 1080 graphics card.

We use the leave-one-out approach for evaluation. We report
test results on a circuit infected with a HT benchmark while
the model is trained on other circuits and HTs. We change the
test circuit and repeat training on the rest again. The process
is repeated until all samples are tested. In this scenario, the
circuit under test and its HT are not seen by the model in
training which indicates the capability of model to locate HT
in unknown circuits and HTs. In all evaluations, we define the
positive sample as Trojan node class and the negative sample
as benign node class. For example, true positive represents the
Trojan nodes that are correctly classified as Trojan.

B. Comparing HT Localization Methods

In this section, we compare our model with other HT
localization methods in the literature that are elaborated in
Section II. u A quantitative comparison is challenging due
to a couple of reasons. Firstly, the dataset and experiment
conditions are very varied among different works. For exam-
ple, [31], [7], [32], [2] papers propose various ideas to locate
the HT nodes in the circuit, and they demonstrate promising
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TABLE I
COMPARING THE HT LOCALIZATION METHODS IN THE LITERATURE.

Method Stage Golden
chip-Free Automated Localization

Resolution
HT

diversity Performance

GCN (ours) Pre-S2 Yes Yes High High HT localization with 99.6% accuracy and 98.9% precision
Social network [34] Pre-S Yes No High Low HT localization with 97.3% accuracy and less than 2% false positive
Code analysis [5] Pre-S Yes No Low Low Activity estimation with less than 2% error to flag low-activity as HT
VeriTrust [32] Pre-S Yes No Low Low HT localization with 100% recall and 11.5% precision
FANCI [7] Pre-S Yes No Low Low HT localization with 100% recall and less than 8% false positive
UCI [31] Pre-S Yes No Low Low HT localization with 100% recall and 7.5% precision
Symbolic algebra[2] Pre-S No No High High HT localization with 100% recall and 74% precision
Thermal map [3] Post-S3 No No Low High Successfully locates the HTs with less than 20 gates
Path delay [4] Post-S No No High High HT localization with 100% recall and 0.56% false positive rate

TABLE II
THE PERFORMANCE OF HT DETECTION.

Circuit AES DES RC5
Classified as Trojan node 1 2 0
Classified as benign node 13437 10210 2106

Total nodes 13438 10212 2106
Classified as Trojan/total 7.44e-5 1.95e-4 0
HT detection accuracy 100%

TABLE III
THE SUMMARY OF DATASET AND HT LOCALIZATION PERFORMANCE.

Benchmark All AES-Txx DES-Txx RC5-Txx
Accuracy 99.6% 99.8% 99.8% 99.2%
F1-score 93.1% 93.2% 92.2% 93.1%
Precision 99.0% 99.8% 97.5% 99.4%

Recall 88.0% 88.0% 87.9% 88.0%
# of nodes 2000-14000 13438 10212 2106

Time < 500ms 222ms 162ms 37ms

results on their limited sets of benchmarks. However, each one
reveals the shortcomings of the former method against distinct
Trojans. Secondly, diverse techniques are used for localization
with varied evaluation metrics that are not comparable. For
example, [5] reports the error in activity estimation, which is
further used for marking low-activity regions as vulnerable to
HT. On the other hand, [34] and our approach demonstrate
accuracy in finding the Trojan nodes. Although the direct
quantitative comparison is not feasible, we provide numeric
evaluation of different methods performance in terms of how
successful they were to locate HT (using accuracy, recall, and
error metrics), how many benign nodes were mislabled as HT
(using false positive rate and precision metrics) in Table I. The
comparison shows the superior perfomance of our model in
sucessfully detecting HT nodes with very low false positive.
The metrics definition are elaborated in Section IV-C.

We study them from qualitative aspects such as pre-
silicon or post-silicon HT localization, golden reference-free,
automated feature extraction/property definition, localization
resolution, and the ability to detect various types of Trojans.
According to Table I, our compelling model surmounts the
shortcomings of the state-of-the-art. The post-silicon tech-
niques postpone the HT localization until after fabrications,
when the HT removal is very time-consuming and expensive.
Therefore, it is crucial to locate and remove Trojans inserted
in the design stage early before manufacturing. On the other
hand, pre-silicon HT localization approaches mostly suffer
from low resolutions because they cannot detect the Trojan
nodes specifically. Instead, they mark the suspicious areas that
are prone to HT insertion. Thus, they require further manual
revision of circuit partitions to check for Trojan nodes, and
their localization process is not automated.

C. HT Detection and Localization Performance

After finding the best model and architecture which is
elaborated in Sections IV-D and IV-E, we construct our final
model.The evaluation results per benchmark are reported in
Table IV. We also include the number of Trojan nodes and
the ratio of Trojan nodes to total nodes in the graph to reflect
the effect of HT size. We consider several evaluation metrics to
assess the performance from different perspectives. The most
common metric for classification is accuracy which expresses
the correctly classified nodes over all nodes. Accuracy is
intuitive but does not suffice since class distribution between
nodes is not uniform. Thus, we look into the F1-score, the
weighted average of recall and precision.

Recall expresses the ability to find all Trojan nodes in a
design. On the other hand, precision is an indicator of False
Positive (FP) and expresses the proportion of the nodes our
model labels as Trojan, actually are Trojan.The combination of
precision and recall metrics examines the model’s performance
in detecting Trojan nodes while avoiding mislabeling benign
nodes as Trojan. We count True Positive (TP), False Negative
(FN), and FP and calculate these metrics as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
(5)

Fβscore =
(1 + β2) ∗ P ∗R
β2 ∗ P +R

(6)

Accuracy =
TP + TN

TP + TN + FN + FP
(7)

HT nodes = TP + FN (8)

HT/total ratio =
TP + FN

TP + TN + FN + FP
(9)

We provide a summary of results in Table III in which the
average of metrics are calculated for each circuit as well as
average node classification time. It can be observed that high
accuracy and F1-score in HT localization are maintained for
all circuits regardless of size. The computation and timing of
HT localization depend on the size of the circuit. Studying the
timing in diverse designs, it is observed that HT localization
time scales linearly with the number of nodes in the graph
representation of the circuit, which makes it scalable for
large designs. In conclusion, our GCN model exhibits high
performance in locating the HT nodes with low false positives
(below 0.009%) in less than 1 second. Further, we study the
performance of our model in HT detection by testing it for
the HT-free circuits of AES, DES, and RC5. The number of
nodes classified as Trojan/benign is mentioned in Table II.
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Fig. 7. Performance of various graph neural network models and architectures.

Fig. 8. Performance of GCN model with different class weights.

These results show that our model can determine if the design
is healthy as it finds only few false Trojan nodes in a design
graph with thousands of nodes that is negligible.

D. The Best Graph Neural Network Architecture

There are plenty of graph neural networks candidates with
various hyper-parameters to choose as our node classification
model. Thus, we devise an experiment in which we construct
and test different models to find the best model and archi-
tecture for our application. In this experiment, we implement
3 different graph learning model including GCN [40], graph
attention network (GAT) [42], and local extrema convolution
(LEC) [43] with different architectures (2-layer to 4-layer).
The evaluation results are illustrated in Figure 7. F1-score is
the main evaluation metrics for comparison because it is the
average of precision and recall and represents the two key
expected qualities; detecting all Trojan nodes and having low
false positives. The LEC model shows the worst performance,
and by increasing the number of layers, its performance drops.
On the contrary, the GCN and GAT models are improved
by stacking more layers while GCN relatively exhibits better
performance. Therefore, The GCN model with four layers is
chosen for node classification.

E. Compensation for Unbalanced Dataset

A standard step of developing machine learning models is
to find the best settings for the model based on the problem.
One of the challenges of Trojan localization is the small size
of the HT circuit that results in an unbalanced dataset for
machine learning. In our dataset, the ratio of HT nodes to
total nodes is between 0.001-0.020 (refer to Table IV), which
means the distribution of node classes is not uniform, and one

TABLE IV
HT LOCALIZATION PERFORMANCE, NUMBER OF TROJAN NODES, AND

THEIR RATIO TO TOTAL NODES FOR ALL BENCHMARKS.

Benchmark Acc 1 F1
score

Prec 2 Recall HT
nodes

HT/total
ratio

AES-T100 100% 99.4% 100% 98.8% 481 3.46%
AES-T200 100% 99.4% 100% 98.8% 486 3.40%
AES-T300 99.5% 94.7% 98.6% 91.0% 635 5.33%
AES-T400 99.9% 94.2% 100% 89.1% 110 0.71%
AES-T500 99.8% 85.4% 100% 74.5% 94 0.69%
AES-T600 99.9% 89.9% 100% 81.6% 87 0.64%
AES-T700 99.8% 97.8% 100% 95.7% 562 3.98%
AES-T800 99.8% 97.6% 100% 95.2% 628 4.42%
AES-T900 99.8% 97.8% 99.8% 96.0% 569 4.03%

AES-T1000 99.9% 98.4% 100% 96.8% 503 3.73%
AES-T1100 99.9% 97.7% 100% 95.6% 568 3.21%
AES-T1200 99.9% 98.3% 100% 96.7% 509 3.51%
AES-T1300 99.1% 87.5% 100% 77.8% 688 3.87%
AES-T1400 99.5% 94.1% 98.8% 89.9% 723 4.05%
AES-T1500 99.5% 92.1% 98.6% 86.4% 664 3.15%
AES-T1600 99.9% 92.2% 100% 85.5% 179 0.82%
AES-T1700 99.9% 89.0% 100% 80.2% 86 0.45%
AES-T1800 99.9% 83.3% 100% 71.4% 27 0.17%
AES-T1900 100% 82.8% 100% 70.6% 34 0.17%
DES-T100 99.9% 99.2% 99.8% 98.5% 481 4.50%
DES-T200 99.9% 99.2% 99.8% 98.6% 486 4.54%
DES-T400 99.9% 94.3% 98.0% 90.9% 110 1.07%
DES-T500 99.8% 84.8% 98.6% 74.5% 94 0.91%
DES-T600 99.8% 90.0% 98.6% 82.8% 87 0.84%
DES-T700 99.8% 97.6% 99.8% 95.6% 562 5.22%
DES-T800 99.6% 96.7% 98.2% 95.2% 628 5.79%
DES-T900 99.7% 97.4% 99.6% 95.3% 569 5.28%

DES-T1000 99.8% 98.1% 99.6% 96.6% 503 4.69%
DES-T1100 99.7% 96.9% 98.2% 95.6% 568 5.27%
DES-T1200 99.8% 98.2% 99.6% 96.9% 509 4.75%
DES-T1600 99.7% 91.6% 98.7% 85.5% 179 1.72%
DES-T1700 99.7% 83.6% 87.3% 80.2% 86 0.84%
DES-T1800 99.9% 80.2% 90.0% 72.3% 27 0.26%
DES-T1900 99.9% 81.4% 96.0% 70.6% 34 0.33%
RC5-T100 99.8% 99.4% 100% 98.8% 481 18.59%
RC5-T200 99.8% 99.4% 100% 98.8% 486 18.76%
RC5-T400 99.5% 94.2% 100% 89.1% 110 4.96%
RC5-T500 98.9% 85.4% 100% 74.5% 94 4.27%
RC5-T600 99.3% 90.0% 98.6% 82.8% 87 3.97%
RC5-T700 99.1% 97.9% 100% 95.9% 562 21.06%
RC5-T800 98.9% 97.5% 99.7% 95.4% 628 22.96%
RC5-T900 99.0% 97.5% 99.6% 95.4% 569 21.27%
RC5-T1000 99.3% 98.2% 100% 96.4% 503 19.28%
RC5-T1100 99.1% 97.7% 100% 95.6% 568 21.24%
RC5-T1200 99.3% 98.1% 99.8% 96.5% 509 19.46%
RC5-T1600 98.8% 91.9% 99.4% 85.5% 179 7.83%
RC5-T1700 99.2% 88.5% 98.6% 80.2% 86 3.93%
RC5-T1800 99.6% 83.3% 95.2% 74.1% 27 1.27%
RC5-T1900 99.5% 82.8% 100% 70.6% 34 1.59%

Average 99.6% 93.1% 98.9% 88.4% 356 5.84%
1Accuracy 2Precision

class of nodes is more common. The unbalanced dataset can
affect the model’s performance and push it to label all nodes
as the dominant class, the benign node class. To tackle this
problem, we assign a higher weight to the Trojan class in
loss calculation that compensates for the minority of Trojan
nodes and forces the model to label more nodes as Trojan.
We devise an experiment to find the optimum value for class
weight by altering the relative weight of Trojan class to benign
class among these values: 1:1 (none), 3:1 (low), 6:1 (high), and
21:1 (super). In the evaluation results in Figure 8, we notice
that increasing the weight of Trojan continuously increases
the recall as more Trojan nodes are found. Still, after some
point, it deteriorates the overall performance (F1-score) as the
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false positive sample increases, and consequently, the precision
drops. Therefore, The best class weight with the highest F1-
score is 6:1 and we use this value for further evaluations.

V. CONCLUSION

In this paper, we create a novel, golden reference-free HT
localization methodology that converts the hardware design to
a graph, performs node classification on it using GCN, and
outputs the malicious circuit corresponding to Trojan nodes.
Our methodology is fully automated without any need for
manual feature extraction or code inspection. Our evaluation
demonstrate that it locate Trojan with 99.6% accuracy, 93.1%
F1-score, and false positive rate below 0.009%.
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