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Cardiovascular system and its functions under both physiological and pathophysiological
conditions have been studied for centuries. One of the most important steps in the
cardiovascular research was the possibility to record cardiac electrical activity. Since then,
numerous modifications and improvements have been introduced; however, an
electrocardiogram still represents a golden standard in this field. This paper overviews
possibilities of ECG recordings in research and clinical practice, deals with advantages and
disadvantages of various approaches, and summarizes possibilities of advanced data
analysis. Special emphasis is given to state-of-the-art deep learning techniques intensely
expanded in a wide range of clinical applications and offering promising prospects in
experimental branches. Since, according to the World Health Organization, cardiovascular
diseases are the main cause of death worldwide, studying electrical activity of the heart is
still of high importance for both experimental and clinical cardiology.

Keywords: electrocardiogram, ECG recording, animal model, deep learning, ECG analysis, artificial intelligence,
isolated heart, arrhythmia classification

1 INTRODUCTION

Cardiovascular disorders are the major cause of death in developed countries. Due to the change of
lifestyle, their incidence increases recently also in countries where cardiovascular morbidity and
consequent mortality have not been considered a problem until now. Enormous economic and social
burden of such situation promotes further research of both physiological and pathophysiological
cardiovascular processes.

Cardiac action starts with electrical event—membrane depolarization—which is then followed by
a mechanical response, e.g., cardiac muscle contraction. After this event, called systole, the cardiac
cycle continues with diastole (membrane repolarization and consequent muscle relaxation).
Obtaining quite detailed information about electrical activity of the heart seems to be technically
easier than obtaining comparably detailed information about mechanical events.

The first attempts to study electrical processes related to cardiac action were performed already in
the 19th century (AlGhatrif and Lindsay, 2012), based on the experience with recording electrical
current from skeletal muscles even a century earlier. The first successful recording of electrical
activity of human heart was achieved in 1887 by the British physician and physiologist Augustus
Waller (Besterman and Creese, 1979). His contribution to this area is so important that it is rather
unfair that his name is not mentioned together with the so-called father of electrocardiography,
Dutch physiologist and physician Willem Einthoven. Einthoven, a Nobel Prize winner in 1924, is
highly recognized since he standardized the whole method: he introduced the term
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“electrocardiogram” (ECG), reported a typical ECG of a healthy
man with five deflections labeled P, Q, R, S, and T, and, last but
not least, built a sort of the first ECG recorder based on a string
galvanometer. Soon after the first clinically relevant attempts to
record the human ECG curve, the method was used by other
researchers who improved the recording possibilities and thus
opened a new medical field—cardiology. Worth mentioning are
especially Wilson and Goldberger, who introduced the central
terminal thus enabled to record unipolar leads and their
augmented version. All other research in heart
electrophysiology proceeded from these key steps.

Concurrently to above-described milestones of ECG
development and its establishment into routine clinical use,
researchers were interested in electrical changes accompanying
the heart activity other than whole-body models. The
fundamental approach in this area is the isolated heart model.
First, successful isolation and perfusion of frog heart were
achieved by Elias Cyon and Carl Ludwig (Zimmer, 1998).
Then, a model of isolated perfused mammalian heart was
introduced by H. Newell Martin and Oscar Langendorff. The
latter invented and published in 1895 a perfusion setup which is
suitable for all hearts with a coronary system. Nutrition is
supplied to the heart muscle by perfusion solution,
administered via a cannula inserted into the aorta of the fully
explanted heart. The hydrostatic pressure of the solution closes
the aortic valve, and solution enters the coronary arteries, leaves
via sinus coronarius, and drips off.

A model of isolated heart perfused according to Langendorff
(also known as Langendorff’s heart) is the first experimental
setting which enables recording of electrical activity of the heart
in the style which resembles the ECG (Olejnickova, Novakova,
and Provaznik, 2015). Of course, there were some attempts to
record electrical activity of the heart before introduction of this
model; however, the quality of recording and consequently the
scientific impact of such data were low.

2 ECG RECORDING

2.1 Clinical Perspective
From Einthoven’s first ECG recording system till now, ECG
recording has undergone huge transformation from a full-
analog system to fully computerized ECG recorders
(Rautaharju, 2016). Regardless of technological progress, the
basic clinical approach—12-lead ECG recording—is still based
on Einthoven, Wilson, and Goldberg’s inventions. A standard 12-
lead configuration contains three bipolar limb leads originally
introduced by Einthoven (I, II, and III), three Goldberg’s
augmented unipolar limb leads (aVL, aVR, aVF), and six
unipolar chest leads (V1–V6), where a Wilson central terminal
serves as the reference electrode. Ten skin electrodes are placed on
the left wrist or arm (LA), on the right wrist or arm (RA), on the
left leg (LL), on the right leg (RL), and on the chest (V1–V6).
Chest leads (V1–V6) cover small part of the chest circumference.
Therefore, for specific purposes, modified chest leads, shifted to
different intercostal spaces or to completely different positions,
are used. For example, the leads V3R–V6R are placed on the right

side of the chest mirroring leads V3–V6. Such modification is
useful for diagnostics of ECG abnormalities originated in the
right ventricle.

The 12-lead ECG configuration gives spatial information
about the cardiac electric activity (Kalra, Lowe, and Al-
Jumaily, 2019). Since ECG leads have both positive and
negative poles, they may be viewed from two spatial
directions. The standard 12-lead ECG system presents the
“positive” ECG leads in a single well-ordered sequence in the
transverse plane (chest leads V1–V6), but in two separate non-
anatomical sequences in the frontal plane (I–III and aVR–aVF).
Moreover, the aVR lead shows the cardiac electric activity from
the right-side view, but the other eleven leads show the heart
activity from the left-side view. The direction of the deflections in
the aVR lead tends to be opposite to that in all other leads. In such
presentation, it is usually hard to integrate consideration of lead
aVR into overall ECG interpretation. To cope with such
problems, an orderly presented ECG system was introduced.
The so-called Cabrera system is based on two modifications of
the standard 12-lead ECG: 1) changing aVR polarity (–aVR) and
2) changing re-organization of limb leads in the anatomical order
(aVL, I, –aVR, II, aVF, III) (Lam, Wagner, and Pahlm, 2015).
Even suchmodificationmay help to easily interpret ECG changes,
and only Sweden has adopted the Cabrera system as a national
standard.

Reconstruction of the cardiac vector movement from the 12-
lead ECG is—despite all modifications—arduous and
imagination-demanding. For such analysis, orthogonal leads
are much more useful. Orthogonal leads record the electric
activity from three perpendicular axes of the body (horizontal,
vertical, and sagittal). Frank leads are one of the most clinically
relevant orthogonal systems.

The standard 12-lead system is mostly used for ambulatory
ECG recording. Also, such recording is used during the exercise
stress test. Ambulatory 24 h ECG monitoring—Holter
monitor—is employed in diagnostics of paroxysmal cardiac
events (such as paroxysmal arrhythmias). The Holter monitor
may use a 12-lead system; however, modern devices record two or
three modified leads only (Kalra, Lowe, and Al-Jumaily, 2019). In
case of rare symptoms, an implantable loop recorder is valuable
(Giada et al., 2007). Such long-term monitor is placed under the
skin on the chest and can automatically record long continuous
signals (up to 3 years) (Kalra, Lowe, and Al-Jumaily, 2019).
Recently, several innovative methods for ECG monitoring
were introduced, including patch sensors, EPIC (electric
potential integrated circuit) sensors, chest harnesses, and vest
shirts (Kalra, Lowe, and Al-Jumaily, 2019; Soroudi et al., 2019). A
general trend is to minimize electrodes and make devices
wearable, remote-controlled, and programmable.

A typical ECG curve shows five deflections labeled P, Q, R, S,
and T. The P wave reflects depolarization of the atria. Deflections
Q, R, and S create a thin complex—QRS complex, which
represents ventricular depolarization. The R peak is always
positive (pointing upward). Deflection Q is always the negative
deflection preceding R peak. Deflection S is always the negative
deflection following R peak. Depending on the orientation of
ECG lead, some of the deflections of the QRS complex may not be
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expressed. The fifth deflection—the T wave—reflects
repolarization of the ventricles. Between the end of P wave
and the onset of QRS complex, a period of isoelectric line
called the PQ segment is found. The PQ segment represents
atrioventricular (AV) conduction or AV delay. The PQ segment
together with the P wave forms a PQ interval. The PQ interval
duration reflects propagation of depolarization from the atria to
the ventricles. Between the end of QRS complex and the onset of
T wave, there is a period of isoelectric line called the ST segment.
During the ST segment, all the ventricular cardiomyocytes are
fully depolarized, resting in the plateau phase of the action
potential. Complete electric revolution of the ventricle is
represented by a QT interval—the period from the onset of
the QRS complex to the end of the T wave. The distance of
two consecutive R peaks—RR interval—represents the duration
of one electric cycle of the heart; therefore, it defines the heart
rate. The amplitude of deflections as well as polarity of P and T
waves depends on the orientation of ECG lead. This topic is out of
the scope of this article, and therefore, it is not discussed here.

ECG recording plays an irreplaceable role in diagnostics of
various cardiovascular diseases. Diagnostics of arrhythmias is
completely based on an ECG record. Moreover, the QT interval
prolongation—an independent risk factor for ventricular
arrhythmias—can be detected exclusively from an ECG.
Typical ECG changes, such as the ST segment elevation and T
wave alteration, are related to coronary artery disease and
myocardial infarction. According to the specific changes in the
12-lead ECG record, an occlusion of coronary artery can be
localized. Also, left ventricular hypertrophy can be diagnosed
with high sensitivity and specificity from the ECG record (Yu
et al., 2021). Also, other cardiovascular diseases can manifest
themselves as ECG curve alterations—for instance, myocarditis,
pericarditis, myocardial fibrosis, amyloidosis, and inherited and
acquired defects (such as dextrocardia, mitral stenosis, or
regurgitation). ECG-based diagnostics of pulmonary embolism
represents a specific issue. Although advanced techniques such as
echocardiography, computed tomography, or magnetic
resonance are widely used, the diagnostic role of
ECG—especially in acute pulmonary embolism—is still highly
valued by clinicians (Van Mieghem et al., 2004). However, it is
necessary to emphasize that ECG signs of pulmonary embolism
may be imitated by severe pneumonia or pneumothorax.

ECG may also help in diagnostics of numerous non-
cardiovascular diseases (Van Mieghem et al., 2004). Typical
ECG curve alterations are detectable in electrolyte imbalances,
such as hyperkalemia and hypocalcemia. Both hyperthyroidism
and hypothyroidism are presented by heart rate alterations and
non-specific ST-T changes. Specific ECG changes are associated
with various disorders of the central nervous system, e.g.,
subarachnoid hemorrhage, head trauma, and acute meningitis.
Hypothermia and hyperthermia cause characteristic ECG
alterations. Last but not least, there are many drugs with
cardiovascular side effects. Drug-induced ECG alterations have
to be considered during treatment by antiarrhythmics, beta-
blockers, antibiotics, antihistamines, antipsychotics, and others.

Innovative approaches of ECG recording bring new challenges
in ECG interpretation. Reduction of the employed electrodes

leads to the reduction of ECG lead number. Recently, diagnostic
potential of reduced-lead ECG was discussed during the
PhysioNet/Computing in Cardiology Challenge (Reyna et al.,
2021). The results suggest that two leads can be enough for
some of the used diagnostics. However, the accuracy of the
diagnostics depends also on the particular combination of
leads (Reyna et al., 2021). On the contrary, a device which
enables to record a high number of ECG leads has been
introduced and successfully tested for detection of life-
threatening events in a human phantom equipped with an
ECG simulator (Wojcik et al., 2021).

2.2 Animal Perspective
The quality (sampling rate and resolution) of the ECG record is
important particularly in animals of high heart rate (mice, rats).

If the electric activity is recorded directly from the surface of
the heart, the term “electrogram” (EG) should be preferred. In
isolated heart models, originally the electric activity was recorded
by needle or hook electrodes attached directly into the cardiac
muscle. However, mechanical irritation caused by electrode
attachment may induce ventricular arrhythmias. To minimize
it, only one pair of electrodes is usually attached, and thus, one EG
lead is recorded. A less-invasive approach is possible if the
isolated heart is immersed into the bath containing saline (e.g.,
Krebs–Henseleit or Tyrode solution). Then, an EG is recorded
contact-less by electrodes placed on the inner surface of the bath
(Figure 1A). Various numbers and positions of electrodes may be
used including a two-dimensional lead system (Ronzhina et al.,
2017) or three-dimensional orthogonal lead system (Janousek
et al., 2010). Such approach minimizes mechanical irritation of
the heart and allows to record more than one EG lead. However,
moving artifacts may compromise EG analysis.

To study more complex responses of the cardiovascular
system including neuro-humoral regulatory mechanisms, a
whole-body animal model has to be engaged. Various animal
species are used to study heart electric activity—including
zebrafish, small rodents (mouse, rat, guinea pig), rabbit, dog,
pig, and others. A broad range of methods are used to record the
ECG in animals. Generally, the methods can be divided into two
groups: 1) methods used in anesthetized animals and 2) methods
enabling ECG recording in conscious animals.

In small animals, including rodents and rabbit, the ECG is
frequently recorded in general anesthesia (Ha, Oh, and Kang,
2020). In anesthetized animals, needle electrodes are usually
placed under the skin of thorax or limbs. Alternatively, clip or
strip electrodes can be fixed to the paws. Other non-invasive
approaches, such as standard skin electrodes, are less effective due
to thick fur of the animals. If non-invasive attachment of the
electrodes is preferred, the fur has to be shaved. Also, contact
conductive ECG gel may improve the signal transduction. The
position of the electrodes usually copies standard bipolar limb
leads well known in human ECG. ECG recording in general
anesthesia is quite common if acute events are studied, such as
potential arrhythmogenicity of drugs or drug candidate
substances (Marks et al., 2012; Sakaguchi et al., 2009). ECG
recording using needle electrodes can also be useful to
monitor cardiac activity during any surgical procedure. The
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recording of ECG in anesthetized small animals is quite easy to
perform. General anesthesia minimizes the stress and ensures
minimal movement of the animal (except of the breathing).
However, the effect of anesthetics on the cardiac electric
activity must be considered (Figure 1B) (Redfors, Shao, and
Omerovic, 2014; Sano et al., 2016; Wren-Dail et al., 2017; Liu
et al., 2019).

ECG recording in zebrafish represents a specific chapter. In the
last two decades, zebrafish became a valuable model in
experimental cardiology due to its fast reproduction, low
maintenance cost, easy breeding, possibility of genetic
manipulation, extensive developmental characterization, and
optical transparency (Gut et al., 2017; Duong et al., 2021).
Moreover, zebrafish cardiac electric activity is comparable to
that of man (Duong et al., 2021). Therefore, several devices for
ECG recording in zebrafish were introduced. Most of the
approaches require anesthesia or paralysis of the fish. Recently,
devices for long-termmonitoring of zebrafish were developed and
validated (Duong et al., 2021; Le et al., 2022).

If the unwanted effect of general anesthesia may interfere with
the experimental purpose, ECG recording in conscious animals is
preferred. Even in small animals, the ECG can be recorded using
telemetric monitoring (Kramer et al., 2001; Ruppert et al., 2016).
Telemetric systems enable to record minimally one lead of ECG
in conscious, freely moving animals (Figure 1C). A telemetric
unit—microprocessor, battery, and sensors or electrodes for
recording of various biosignals—is usually implanted into the
abdominal cavity or under the skin. ECG electrodes are fixed

subcutaneously. After the implantation, the animal must recover.
Then, the ECG can be repeatedly recorded. Such approach is
highly valued in long-term studies of drug cardiotoxicity or new
drug candidates’ efficiency as well as in chronobiological studies.
It usually allows to record the ECG simultaneously with body
temperature, arterial blood pressure, or acceleration (movement)
of the animal. Such polygraph may uncover subtle dysregulation
of the cardiovascular system as well as disruptions of circadian
cycles. However, there are some pitfalls which must be considered
from the very beginning. Implantation of telemetric unit requires
certain surgical skills. Also, the main advantage—recording of the
ECG in freely moving animals—is a big challenge. During the
movement, skeletal muscles produce a lot of electric potential
changes, which cause artifacts in the ECG record. Moreover,
telemetric electrodes placed under the skin may slightly change
the positions due to body movement. The electrode position
change results in the ECG curve change, which may affect ECG
analysis. Proper fixation of the electrodes is therefore crucial.
Although some approaches promise high-quality ECG recording
(Tontodonati, Fasdelli, and Dorigatti, 2011), a standardized, well-
reproducible, and broadly accepted procedure of telemetric
electrode placement in small animals is missing. In large
animals, telemetric monitoring is well established and widely
used. Besides implantable telemetric systems, external sensors
were introduced. ECG electrodes are placed on the inner surface
of a jacket, which is securely fastened to the animal’s trunk. Such
fully non-invasive external telemetric system is routinely used in
dogs and monkeys (Fish et al., 2017; Skinner et al., 2017). On the

FIGURE 1 | Original ECG records. (A) Isolated heart electrograms of various species. (B) ECG in an anesthetized Sprague Dawley male rat recorded by needle
electrodes. (C) ECG in a freely movingWistar male rat recorded by telemetry. Note the differences in the heart rate among species (A) and between anesthetized (B) and
conscious (C) rats.
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same principle, devices for small rodents were introduced.
Telemetric ECG recording was used in various wild-life animal
species—for instance, in humpback whale (Meijler et al., 1992).
Battery lifespan, internal memory capacity, and wireless data
transmission speed represent main technical limitations of all
telemetric devices. Acquisition price and operating costs may also
significantly limit the use of telemetric systems.

If a short-term ECG record is required, non-invasive methods
are a good choice. In large well-trainable animals, it is possible to
record the ECG by standard stick-on electrodes. Such procedure
requires specific training, during which the animal learns to
remain motionless for several minutes. In small animals, non-
invasive devices usually consist of a platform equipped with
electrodes, on which an animal puts its paws (Mongue-Din
et al., 2007). In such approach, some restraint of the
movement is indispensable. Plastic tunnel restrainers are
usually used. But any restraint of movement is stressful for
animal, especially for small rodents. To prevent excessive
stress, proper handling of the animals must precede the
recording. In well-handled rodents, restraint by hand
represents a better alternative. Also, mild sedation may
decrease animals’ motor activity and therefore increase the
quality of the ECG record. Nevertheless, restrained ECG
recording technique is a valuable method for rapid screening
of several animals in a short time and at low expense. Such
method is particularly useful in cardiovascular phenotyping of
knockout rats and mice allowing for easy detection of gross
abnormalities in cardiac rhythm in a large number of animals
(Mongue-Din et al., 2007).

In experimental animals, interpretation of the ECG is usually
more challenging than the recording. Lack of standardization in
animal ECG recording and less evidence of normal
(physiological) values of ECG parameters make the
interpretation difficult. The differences in cardiac electric
activity among various species also must be
considered—especially differences in body size, heart anatomy,
and cardiac ionic channel types and their distribution and
regulation. The most striking difference in ECG among the
species is the RR interval duration (Figure 1A). In mammals,
the duration of resting RR interval is directly proportional to the
animal’s body mass. The lower the body mass, the higher the
resting heart rate. The key cardiac electrophysiological
characteristics of various species are summarized in Table 1.

The ECG of the most frequently used laboratory animals—rat
and mouse—is quite distinct from that of humans. There is no
distinct ST segment in rat and mouse ECG curves due to short

ventricular action potential with minimal plateau phase. The T
wave begins immediately after QRS complex. Also, the resting
heart rate is significantly higher than that of humans (approx.
500 bpm in mouse, 300 bpm in rat, and 75 bpm in man,
respectively). Moreover, significant differences between various
strains of the same species were repeatedly reported (Wehrens,
Kirchhoff, and Doevendans, 2000; Azar, Sharp, and Lawson,
2011; Konopelski and Ufnal, 2016).

3 ECG ANALYSIS

After the ECG is recorded, its pre-processing and analysis may
start. The ECG analysis is meant to be a process which gives
valuable information about the examined subject (isolated
heart model, whole-body animal model, or patient) in terms
of cardiac electrophysiology. The early analyses of ECG in the
beginning of the 20th century were performed only for
measuring time relations in the signal. The introduction of
computer technology in the middle of the 20th century
opened new possibilities for the analysis of ECG. Despite
all the advantages of computer technology, manual
evaluation of the ECG by a cardiologist remains an
indispensable part of diagnosis. The following paragraphs
briefly summarize the development of ECG analysis, the basic
principles of the main techniques in clinical and
experimental perspectives, and, finally, the main current
issues and future directions in this field. Figure 2
illustrates the progress of ECG processing and analysis
techniques in time perspective.

3.1 Pre-Computer Era
Many physiologists at the end of the 19th century were convinced
that the mechanical contraction of the heart is preceded by an
electrical action that could be measured. In the first attempts to
record electrical potentials of the heart muscle, only heart
depolarization and repolarization were recognizable (Waller,
1887). This led to the opinion that such recording would
never be useful in clinical practice (Barold, 2003). As signal
acquisition techniques have evolved, the quality of the signal
has improved, and by the beginning of the 20th century, it was
possible to distinguish in ECG five basic deflections: P, Q, R, S,
and T waves (Ruiz et al., 2008). The first step in the development
of ECG analysis itself was the establishment of a normal
recording. At that moment, the first databases of ECG records
have been introduced and used to manually measure the

TABLE 1 | Key electrophysiological characteristics in human and selected experimental animal species. AP, action potential; bpm, beats per minute; ms, milliseconds. *As in
ectotherms, the heart rate and duration of ventricular AP in zebrafish vary with body temperature, and numbers indicate heart rate/ventricular AP duration at 28°C and at
19°C (in parentheses), respectively.

Human Dog Rabbit Guinea pig Rat Mouse Zebrafish

Mean resting heart rate (bpm) 75 70 200 230 300 500 55 (145)*a

Ventricular AP (ms) 250 250 120–140 140 50 25–40 143 (311)*a

ST segment in ECG Yes Yes Yes Yes No No Yesa

a(Vornanen and Hassinen, 2016) Unless otherwise indicated, adopted from (Farraj, Hazari, and Cascio, 2011).

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8670335

Stracina et al. ECG Recording and Analysis

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


durations and magnitudes of the waves (Larsen and Skúlason,
1941; Simonson et al., 1949; Packard et al., 1954).

Along with the improvement of electrical activity recording,
the first attempt to quantitatively describe how the heart function
is transcribed into the ECG has been done. Numerous equations
have been developed to identify the relationships between the
heart function and ECG patterns. These equations helped to
discover phenomena, which were not visible at the first glance.
One of such measures, outlasting in the clinical and experimental
use to present, is the QT interval corrected by Bazett’s formula
(Bazett, 1920). It reflects the association between the QT interval
duration and the heart rate or, in other words, between electrical
and mechanical systole of the heart. However, the formula has
never been generally applicable; therefore, many other revisions
have been developed over the years (e.g., Phang and White, 1943;
Krasnoff, 1950).

From today’s perspective, these pioneers have come a long
way. The foundations laid by themmade it possible to develop the
robust and reliable computational methods in the second half of
the 20th century.

3.2 Computer-Aided Analysis
3.2.1 What Are the Benefits?
Rapid development of computer technologies in the second half
of the 20th century led to the extensive automation of various
processes traditionally performed by human experts. In medicine,
along with analysis of complex imaging data (ultrasound, CT,
MRI, etc.), the diagnostics of cardiac disorders intensely uses
advanced, highly intelligent computer-aided systems. Probably,
the most evident benefit of the computer algorithms is in their
ability to process a huge amount of data in a very short time (e.g.,
Brailer et al., 1997), a process desirable in both clinical and
experimental applications. Another advantage is an accurate
detection of specific ECG patterns, even in case of mild
manifestation or several different manifestations presented in

the ECG simultaneously. In such case, the low-resolution, visual
diagnostics may be inaccurate or totally false, especially when
provided by an inexperienced physician (e.g., Holmvang et al.,
1998; Salerno et al., 2003). This limitation, however, may be
partially eliminated by using the so-called collective intelligence
decision-making system integrated in a special mobile
application. Such system enables fast sharing of ECG data and
performing the visual interpretation simultaneously by several
experts (Hwang et al., 2021). The computational algorithms can
analyze multi-lead data simultaneously, for the full length of the
record, in a reasonable time, which is not possible by visual
inspection. The decision-making process of the computer systems
is reproducible, and it is not affected by human factors, such as
tiredness and stress (e.g., Taddei et al., 1992). Finally,
computerized ECG analysis utilizing widely available
telecommunication infrastructure enables using all above
benefits in areas with a lack of human experts or in
telemedicine applications. In the latter, computer-aided
systems play a crucial role by supporting the fast assessment
of a huge amount of ECG records (Saeed and Ameen, 2021).

From medical point of view, use of the most advanced
methods for ECG analysis offers a simple, widely available,
cheap diagnostics tool. By accurate, sensitive, fast, and robust
detection of pathological patterns in the ECG, these methods
contribute to early diagnosis, selecting the correct treatment
strategy, better outcomes, and improved life quality of the
patients on the one side and to minimized mental and time
demands of clinical staff and decreased national healthcare
financial resources on the other side. Automatic prediction
systems are also useful in preventive medicine.

Of course, computer algorithms make errors, especially when
a low-quality signal or signal with unknown (at least by the
algorithm itself) abnormality is analyzed. The computer more
likely fails when similar manifestations correspond to different
pathologies. In contrast to the computer algorithms, human

FIGURE 2 | Milestones of ECG processing and analysis in time perspective.
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experts use clinical information about the patient and intuition.
Therefore, all statements of the computer systems must be over-
read by skilled physicians (Smulyan, 2019). Nevertheless, the
decision support system based on the highly accurate algorithm
may significantly improve the accuracy of physicians in ECG
interpretation, as has been shown previously on myocardial
ischemia detection (Tsai et al., 2003).

3.2.2 Basic Pipeline: From Digital Filters to Deep
Learning Models
Traditional computer-aided ECG interpretation consists of the
following steps: pre-processing, computation of so-called
features, selection of the most relevant ones, and, finally,
decision-making (Figure 3, top). ECG pre-processing usually
includes suppression of noise, detection of QRS complexes and/or
other fiducial points important for ECG delineation, and
segmentation (e.g., Berkaya et al., 2018; Kumar and
Komaragirikumar, 2018; Vidhya and Jerritta, 2022). Noise of
physiological, environmental, or technical origin complicates the
interpretation of the records and, thus, must be removed by
appropriate methods. Most computer-aided systems use digital
filters to solve this problem (see below). Noise-free ECG is
suitable for accurate detection of the waves, which usually
starts by detection of the most prominent deflection in ECG-
QRS complex and continues by searching the peaks and onsets/
offsets of the other waves in areas surrounding QRS. In some
applications, the outputs of the delineation process are then used
for signal segmentation into the separate beats, intervals, or waves
of interest. In the next step, the most important in the whole
pipeline, the quantitative descriptors—features—are calculated
from the initial filtered ECG or the segments. For effective and
accurate ECG interpretation, only the most relevant and
informative features should be considered. Therefore, the
techniques, providing careful selection of the most
discriminative features or removing the irrelevant and
redundant ones, are applied prior to decision-making. The
final step—decision-making—is a process, which must solve
specific problems. The most frequent issues related to ECG
analysis are the prediction or identification of the cardiac

abnormality or localization of cardiac pathological events.
Nowadays, these problems are addressed by four different
ways: 1) by visual or simple statistical-based expert inspection
of the features using established criteria (i.e., by comparing the
feature value with the physiological range); 2) by using rather
simple, but transparent, human-like expert systems providing
automatic analysis of the features via decision rules pre-
determined in cooperation with clinician experts; 3) by using
machine learning (ML) tools—so-called supervised learning
algorithms, which are able to learn the interpretations from
training data equipped with ground truth labels with no need
for expert rules; and 4) by using state-of-the-art tools—so-called
deep learning (DL) models.

Feature-based decision-making is usually provided by ML
models, from simple linear discriminant analysis (LDA) or
logistic regression to more advanced k-nearest neighbor
(k-NN), decision tree, random forest, support vector machine
(SVM), multiple-layer perceptron (MLP), etc. From
mathematical background, most are based on using one or
combination of several linear or non-linear equations, which
map current input data (ECG samples or features) into the
predicted output (label/diagnosis) (for further information,
refer to Duda et al., 2000; Chazal et al., 2004; Osowski et al.,
2004; Ince et al., 2009; Mishra and Raghav, 2010; Theodoris and
Koutroumbas, 2009, etc.). In fact, they solve the classification
problem by assigning each input sample (i.e., patient’s ECG) to
some of the pre-defined categories (e.g., normal and
pathological). ML methods try to find the decision boundaries
for identification of different groups of data by learning on
samples with known expert interpretations. During the
training process, the equation coefficients (model parameters)
are adjusted by some special optimization algorithm in order to
ensure mapping as accurate as possible (in other words, to ensure
correct predicted output of the model). A model with optimal
parameters is then able to accurately interpret new, previously
unseen, data.

Both ML and DLmethods are parts of artificial intelligence—a
wide branch of computer science focused on developing smart
systems capable of mimicking human reasoning and solving the

FIGURE 3 | Schematic representation of computer-aided ECG interpretation using feature-based technique (top) and deep learning approaches, which do not
require the calculation of ECG features (bottom). Note: pre-processing steps are optional when using deep learning methods and depend on the application.
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tasks traditionally requiring human intelligence. Deep learning is
the most recent, advanced technique, extracting highly relevant
complex patterns from raw ECG by itself, with no need for feature
extraction (see Figure 3, bottom). Briefly, DL neural network
models include specific layers for automatic extraction of feature
maps from the input signal and layers providing the output
prediction (see Figure 4B). Thus, DL models can be
considered “all-in-one” solutions, analyzing data in a broad
context and outperforming most of existing approaches in
terms of time and computational requirements, as well as
achieved results (e.g., Goodfellow et al., 2016; Kashou et al.,
2021; Ravì et al., 2017). Reduced computational demand of the
DL decision-making is caused by both the absence of pre-
processing steps and fast interpretation of new data once the
model is trained. Compared to the shallow MLP, the DL neural
network consists of many neuron layers with different
specialization (compare Figures 4A,B). Both shallow and deep
neural networks are based on the neurons—nodes—connected to
each other in such a way that the input information goes through
the deep structure to the last layer, where the predicted output is
generated. Each neuron is represented by a linear or non-linear
equation, which maps current input data into the output. The
neuron parameters—so-called weights—are actually the
coefficients of the neuron equation, which are set during the
optimization procedure (i.e., during model training). The
mathematical operations involved in this process are rather
simple: convolution between ECG samples and filter
coefficients when extracting the features, linear or non-linear
transformation of convolution output, linear combination
between current input and neuron weights when generating
predicted output, etc. (see Figure 4B). Nevertheless, the use of
many highly coordinated neuron layers allows achieving state-of-
the-art results.

Two model architectures—convolutional neural net (CNN)
with feedforward information flow and recurrent neural net
(RNN) with some feedback connections—are mostly used.
CNNs process the input with a set of special filters to extract

hidden, high-resolution patterns (Murat et al., 2020; Xue and Yu,
2021). RNNs capture the temporal relationships within the entire
time-series data (Murat et al., 2020; Xue and Yu, 2021). Since both
techniques have some pros and cons, many modifications have
been recently introduced. For example, the long short-term
memory (LSTM) network was developed to deal with the
vanishing gradient problem, which leads to insufficient
updation of the network weights as the training process goes
through deep layers, as it is characteristic for traditional RNNs
(Murat et al., 2020; Xue and Yu, 2021). More recently, both
models are used together as a hybrid CNN–LSTM solution (see
below) learning from the long-term, complex representations of
heart activity patterns created by convolutional layers. DL models
in clinical and experimental applications significantly improve
the diagnostic yield of routinely used ECG. To create a well-
functioning robust DLmodel, however, large, relevant, and highly
variable ECG datasets are needed, as will be addressed below.

3.2.3 ECG Pre-Processing
3.2.3.1 Clinical Perspective
The clinical ECGs are usually corrupted with various types of
noise, which may lead to errors in visual inspection and to
inaccurate function of automatic delineation and interpretation
algorithms. The low-frequency baseline wander, power-line
interference (50/60 Hz), and high-frequency noise are those
seen in raw ECG. The first one is primarily caused by
respiratory movements or poor skin–electrode contact and
may cause inaccurate measurement of ST segment, wave
amplitudes, R-peak detection, etc. The power-line interference
of high magnitude makes the analysis of low-voltage P waves
impossible. The high-frequency noise, representing the
myopotentials generated during skeletal muscle contraction,
complicates the ECG delineation. Digital filters, implemented
in a high-pass, band-pass, or low-pass mode with appropriate
cut-off frequencies, are usually used to suppress above
disturbances in the ECG (Satija et al., 2018; Vidhya and
Jerritta, 2022). The desired characteristic of the filter is a

FIGURE 4 | Illustration of two binary classification models: (A) straightforward artificial neural network—machine learning model providing ECG classification based
on the previously derived features; (B) 1D convolutional neural network (1D CNN)—deep learning model providing automatic extraction of the features from raw ECG by
convolutional layer(s) and further assignment of the input into the class by fully connected perceptron-like layers. In a 1D CNN model, the convolutional layer consists of
filters, which derive important features from the input ECG. The convolution output—feature map—is usually transformed using a linear or non-linear function (in
order to simplify the training process and avoid the problem of vanishing gradient) and downsampled by calculating the average (average pooling) or by selectingmaximal
(max-pooling) values from the feature map. The pooling procedure leads to the reduced number of model parameters and, thus, decreased computation demand.
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zero-phase shift to avoid the distortion of the signal. Special
attention should be paid to elimination of the noise with
frequency overlapping with the ECG spectrum. For example,
inappropriate filtration of power-line interference may lead to
undesired alteration (decreased amplitude or even altered
morphology) of P waves and QRS complexes. Another way to
eliminate noise is the ECG decomposition by so-called wavelet
filters (Park et al., 1998). Besides, ML- and DL-based filtering
techniques, enabling extra improvement of filtered signal
characteristics, have been recently introduced (Xue and Yu,
2021).

After proper noise elimination, the R peaks and/or other
fiducial points can be detected. Probably, the most famous and
frequently used is the rather robust and simple Pan–Tompkins
algorithm (Pan and Tompkins, 1985). Many other R-peak
detectors, using searching in the initial ECG or ECG
previously transformed to highlight the QRS complexes, have
been developed (e.g., Liu et al., 2015; Biran and Jeremic, 2020;
Walia and Kaul, 2020). However, none of them is error-free; false
detections lead to false alarms and thus increase the demand on
intensive care units’ staff (Plesinger et al., 2016). Recently, it was
shown that the false R-peak detections can be eliminated by
additional validation using the advanced CNN algorithm (Silva
et al., 2020).

Complete delineation of ECG can be performed by the
CNN–LSTM model with a sensitivity of 97.95% (Peimankar
and Puthusserypady, 2021). Another study reports use of
sample-wise, so-called semantic segmentation of the raw ECG
via the CNN–biLSTM network, with an overall accuracy of
95.54% (Londhe and Atulkar, 2021). Bidirectional LSTM
(biLSTM) layers are the layers, where the input sequence is
analyzed in the forward and backward directions resulting in
better learning of important patterns. Sample-wise technique
seems to have great potential in real-time applications due to
its robustness and effective dealing with the continuous signal.

Another interesting study was focused on creating the
mathematical models able to “extract” the waves from the
ECG to make further detection of the fiducial points easier
(Rueda et al., 2021). This method outperforms other recent
approaches in delineating P and T waves, which are well-
known as hardly recognizable and analyzable. The advantage
of this algorithm against ML/DL solutions is in its robustness (in
terms of required amount of training data and abnormalities
present in data) and transparency (in terms of physical meaning
of the process used to generate the model and delineation output
itself).

Fatimah et al. (2021) compared two segmentation methods: 1)
based on R-peak detection and selection of a predefined number
of samples before and after the peak and 2) based on the splitting
of raw signal into the frames of predefined length. Both
approaches are reliable, but the second one is more suitable
for real-time applications due to low computational demand.

3.2.3.2 Animal Perspective
Almost all existing methods for ECG pre-processing and analysis
have been initially established for human signals. The
morphology characteristics of animal ECG are like human

ones. However, some differences in heart rate and ECG wave
amplitudes and duration exist due to differences in ion channel
expression (Bartos et al., 2015) as well as anatomical
configuration and innervation of the heart. These differences
should be considered when adapting the processing methods to
animal applications. Little information is available regarding the
processing methods, primarily due to the use of commercial,
user-friendly, pre-set software. Only a few research groups
develop their own algorithms for ECG pre-processing. Below,
the most widespread techniques are presented.

The median filter can be successfully applied on clinical and
experimental ECG data to remove low-frequency baseline
wander, which complicates the signal delineation and
decreases the reliability of morphology features (Steenkiste
et al., 2020). For elimination of broad-band noise (such as
muscle activity) in the ECG, the above-mentioned
decomposition of the entire signal by discrete wavelet
transform and reconstruction of “clean” ECG after removing
some components containing noise is more suitable than
standard linear filtration (Zhang et al., 2019). This method,
however, can be sufficient in case of any type of noise, such as
a high-frequency one, as shown by Steenkiste et al. (2020) in
equine data application.

The narrow-band signals created by ECG wavelet
decomposition are often used for accurate detection of waves
and QRS complexes. First, signals with well prominent waves of
interest are selected, and then the complexes are detected by
threshold, which can be constant or adaptively changing
according to current signal maximum amplitude or variability.
This QRS detection technique was shown as more effective and
accurate (sensitivity of 98% and positive predictive value of
99.1%) than the Pan–Tompkins algorithm (sensitivity of 91.5%
and positive predictive value of 81.5%) in equine ECGs
(Steenkiste et al., 2020). This technique can be used for
complete delineation of the entire ECG (with an overall
sensitivity of 99.87% and positive predictive value of 99.89%),
as presented by Hejč et al. (2015) on data from isolated rabbit
heart. Similar detection techniques were recently applied on the
ECG recorded in larval zebrafish (Barret et al., 2021). They had to
be adapted periodically since significant motion artifacts were
present in data and heart rate was changed during the
experimental protocol.

Kozumplík et al. (2014) introduced the QRS detector based on
the estimation of signal envelope by the Teager–Kaiser energy
operator and tested it on isolated rabbit heart data with a
sensitivity of 99.84% and positive predictive value of 99.98%.

The first derivative of ECG and further searching for rapid
deviations can be used for complete delineation of the signal as
shown in detail by Huang et al. (2021) in equine ECG. Simple
delineation algorithms are accurate in noise-free data. Otherwise,
more robust adaptive techniques must be used, or the signal is
segmented, and noisy parts are removed prior to further analysis.
This can be solved by algorithms estimating ECG quality.
Promising real-time algorithms offer studies by Smital et al.
(2020) and Nardelli et al. (2020). These approaches can
distinguish several levels of signal quality as evaluated on both
human and horse ECGs.
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3.2.4 Feature-Based Techniques
Features should represent well ECG patterns characteristic for
investigated phenomenon (normal heart function, arrhythmias,
drug-induced or stress-induced changes, structural alterations of
the myocardium, etc.). The quantitative representation of heart
electrical activity by a limited number of highly specific features
allows to construct the efficient, robust, fast, and reliable methods
for automatic identification and differentiation of various cardiac
conditions, as will be shown below. Generally, three main groups
of “hand-crafted” ECG features are used in computer-aided
systems (e.g., Berkaya et al., 2018; Saini and Gupta, 2021;
Gupta et al., 2021a):

- Time-domain features primarily representing 1) the rhythm
character of the signal in terms of heart rate and duration of
some important intervals (i.e., PQ, QT), 2) the morphology
of ECG curve in terms of amplitude, duration, area under
the curve, direction, and other shape-related characteristics
of the particular waves, and 3) the statistical characteristics
of ECG distribution (mean value, standard deviation,
kurtosis, skewness, etc.).

- Frequency-domain or time–frequency domain features
creating the new representation of ECG by using special
transformation (such as Fourier transform (FT), short-term
Fourier transform (STFT), and continuous or discrete
wavelet transform (CWT/DWT)) and exploring the ECG
spectral content and its changes in time.

- Non-linear features revealing non-linear, complex, dynamic
character of ECG (hidden to the above methods) based on
the chaos theory and information theory (i.e., Lyapunov
exponents, Shannon entropy, correlation dimension).

Significant temporal features, intensely used in various areas,
are those describing the heart rate variability (HRV). Initially,
HRV analysis was introduced to investigate the vago-sympathetic
balance and corresponding phenomena (Task Force of the
European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996, later Task
Force Society, 1996). However, the HRV features have been
also shown as useful for detection of cardiac arrhythmias,
as—technically speaking—they measure the irregularity of RR
intervals (or heart rate) (e.g., Task Force Society, 1996; Bernston
et al., 1997; Parsi et al., 2021a). These features are calculated from
the RR interval sequence (tachogram) and can be divided into
three categories, i.e., time-domain (various statistical measures,
such as mean or median value, standard deviation of normal
interval (SDNN), root mean square of successive RR differences
(RMSSD), and triangular interpolation index calculated from the
histogram (TINN)), feature-domain (power and peak of very-
low-, low-, and high-frequency bands, their ratios, etc.), and non-
linear (parameters calculated from the Poincaré map,
approximate or sample entropy, detrended fluctuation
parameters, complex correlation measure, etc.) ones (Bernston
et al., 1997; Tarvainen et al., 2014).

The features should reflect the studied issue. The most
relevant, informative, and reliable features can be selected

based on the empirical knowledge and experience of the
experts, as is common in clinical routine. In computer-aided
systems, special computational tools help to identify and
eliminate the redundant features or those with poor ability to
represent the patterns of interest. The latter often explore the
inter-feature relationships (correlation analysis, principal
component analysis (PCA), etc.), discriminating abilities of
separate features (two-sample tests of statistical difference, as a
t-test and others), or their combinations (linear discriminant
analysis (LDA), decision tree, etc.) or searches among the feature
set until the combination leading to the best performance of the
model is found (forward or backward selection, sequential
floating forward selection, etc.) (Guyon and Elisseeff, 2003;
May et al., 2011). The reduction of feature number is
desirable: it decreases computational cost and time cost of the
method, enables using a simpler model, avoids the problem of
model overfitting, improves model generalization, and often
increases transparency and interpretability of the whole
decision-making process (Duda et al., 2000; Guyon and
Elisseeff, 2003, May et al., 2011; Theodoridis and
Koutroumbas, 2009).

Feature-based diagnostics tools have been used for several
decades and still play a crucial role in clinical and experimental
research, primarily due to their transparency. Below, recent ECG
applications intensely using these methods are reported.

3.2.4.1 Clinical Perspective
Fatimah et al. (2021) introduced detector of myocardial infarction
using entropy, kurtosis, and energy, calculated from one-channel
ECG decomposed by FT andML classifiers, where k-NN achieved
the highest accuracy (of 99.96%) outperforming other existing
one-channel approaches.

Multi-lead ECG can be used to accurately detect left
ventricular hypertrophy, which is a less expensive, less time-
consuming, and widely available alternative to the golden
standard imaging techniques. Morphological features (R and S
waves or ST segment changes, QRS complex inversion, etc.)
extracted from CWT-transformed ECGs perform well with
ML classifiers, with the most promising accuracy (up to
97.8%) using multi-layer perceptrons (Jothiramalingam et al.,
2021).

One example of using the morphology features derived from
P–QRS–T segments is the recognition of different beat types, such
as normal, supraventricular, and ventricular ectopic beats and
fusion of ventricular and normal beats. The SVM model trained
on these features performs with overall accuracy 97.8% (Zhu
et al., 2019). The arrhythmia-related features can be calculated as
mean, maximal, median values, etc., of ECG components derived
by WT (Sangaiah et al., 2020).

A novel tool based on the multi-lead ultra-high-frequency
ECG and QRS complex features has been recently introduced. It
provides the quantitative description of ventricular dyssynchrony
with a great potential for selecting the patients for cardiac
resynchronization therapy and improving the therapy
application (Jurak et al., 2020). One of the proposed features
seems to be more suitable for monitoring of depolarization

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 86703310

Stracina et al. ECG Recording and Analysis

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


patterns during the biventricular and His-bundle pacing, than
common QRS duration.

A recent prospective study presents temporal, spectral, and
non-linear HRV parameters as the valuable prognostic tool for
evaluation of mortality risks in patients with coronary artery
disease (Vuoti et al., 2021).

The most challenging recent application using HRV features is
atrial fibrillation (AFIB) detection (e.g., Smisek et al., 2018; Murat
et al., 2021a). Timely prediction of paroxysmal AFIB episodes
using seven novel Poincaré map features achieves the accuracy
over 86% for different ML models and even higher accuracy
(98%) when combining with standard HRV features (Parsi et al.,
2021b). McCann et al. (2021) studied ECG records from patients
undergoing catheter ablation. They reported the lowest AFIB
organization level in patients with failed AFIB termination during
ablation using instantaneous frequency and adaptive
organization index.

Novel multi-scale entropy has been shown as an accurate
HRV-based tool for prediction of the malignant ventricular
arrhythmia, even using a simple random forest classifier (Chen
et al., 2021). Standard non-linear HRV features combined with
those from 2D image representation of ECG beats can separate
healthy subjects from patients with ventricular arrhythmia with
an accuracy of 99.99% by using an ensemble of different ML
models (Mandal et al., 2021).

A method based on only six time- and frequency-domain
HRV features and a simple k-NN classifier can predict the sudden
cardiac death from five-minute RR interval signals recorded by an
implantable cardioverter defibrillator with an accuracy of 91.5%
(Parsi et al., 2021a).

The random survival forest (RSF) ML model was used to
predict spontaneous ventricular tachycardia and ventricular
fibrillation events in young and adult patients with long QT
syndrome (LQTS) (Lee et al., 2021). The model was trained
using the combined feature set including ECG features, family
history of LQTS, and occurrence of other arrhythmias. As
compared to the statistical multivariate Cox regression model,
the RSF model achieved more accurate results with the best
precision of 0.95 and sensitivity of 0.93. In an extended multi-
ethnic study, the RSF model has been also shown as a
promising complex solution for predicting six different
cardiovascular outcomes, including all-cause death, stroke,
cardiovascular disease, coronary heart disease, atrial
fibrillation, and heart failure (Ambale-Venkatesh et al.,
2017). In this case, ECG features were combined with
imaging features, serum biomarkers, demographic
characteristics, and others in order to achieve accurate
results, which outperform the output of standard
cardiovascular risk scores.

3.2.4.2 Animal Perspective
The basic temporal ECG features such as heart rate and PR and
QT interval duration as well as QRS complex duration are
routinely used to monitor the character of impulse conduction
through different parts of the heart. The assessment of the
combination of these features is especially useful when
evaluating the possible effects of drugs.

Detailed analysis of QT duration in rabbit protocols with
drug-induced long-QT or short-QT syndrome indicated the
possible effect of acute mechano-electrical function on long-
QT syndrome–related arrhythmogenesis (Nimani et al., 2021).
Generally, this feature is a basic marker used in a wide range of
proarrhythmic research studies, including those conducted in
transgenic rabbit models (Baczkó et al., 2020), larval zebrafish
models (Barrett et al., 2021), and guinea pig isolated heart
models (Vesely et al., 2019). So-called QT/RR coupling
and—though rarely used—HRV analysis can be successfully
evaluated in such studies, as previously shown in the context of
haloperidol administration in isolated Sprague Dawley rat and
guinea pig models (Janousek et al., 2017; Vesely et al., 2019).
The prolonged QT duration was found in the
methylazoxymethanol acetate rat model of schizophrenia,
which has indicated the models’ applicability for
investigating the risk factors of ventricular arrhythmias and
sudden cardiac death in patients treated with antipsychotics
drugs (Stracina et al., 2016).

HRV in the isolated heart model can serve to investigate the
intrinsic mechanisms of the cardiac rhythm regulation with no
effect of sympathetic/parasympathetic factor (Janousek et al.,
2014). Spectral HRV parameters are intensely used in
toxicological studies with rodent models (Rowan et al., 2007).
Time- and frequency-domain HRV features were recently used to
evaluate response of cardiac autonomic modulation in mice to
spontaneous and pharmacologically induced vulnerability to
cardiac arrhythmias in the context of age-related changes
(Piantoni et al., 2021). Due to this simple analysis, the mouse
model has been shown as valuable in translational research of
age-related risk of arrhythmias. In a recent study (Omoto et al.,
2021), the heart rate fragmentation, representing ultra-rapid
patterns of HRV, was newly shown as a reliable marker for
evaluation of myocardial infarction impact on the cardiac
hemodynamic parameters in a Wistar rat.

According to comprehensive overview byMitchell and Raghav
(2021), HRV analysis is commonly used to diagnose cardiac
arrhythmia in a horse (in rest, during exercise, or during the
treatment). Alexeenko et al. (2020) used two string measures
representing the heart rate complexity to predict the paroxysmal
atrial fibrillation in equine athletes.

The TINN feature has been found as associated with severity
of myxomatous mitral valve disease in dogs (Rasmussen et al.,
2012) and was analyzed to evaluate a risk of ventricular
tachyarrhythmia and sudden cardiac death (Spier and Meurs,
2004). The Poincaré plot helped to investigate the non-linear
geometrical patterns characteristic of dogs as compared to
humans and to describe the specifics of impulse conduction
through the sinoatrial node (Moise et al., 2020).

Morphological features were found to accurately detect
ischemia in the Langendorff-perfused isolated rabbit heart
with normal anatomy as well as spontaneously increased left
ventricular mass (Ronzhina et al., 2017). The rhythm- and
morphology-wise features were used to assess the effects of
widely used voltage-sensitive dye di-4-ANEPPS on heart
electrical activity in the same experimental model (Ronzhina
et al., 2021). Particularly, analysis of the rhythm features revealed
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the modulation effect of the dye on impulse conduction through
the atria, AV node, and ventricles.

Novotna et al. (2017) investigated the usefulness of simply
derived and robust features based on high-frequency components
of QRS complexes (the maximal peak of QRS envelope, distance
from QRS envelope maxima to R peak, and root mean square of
the QRS area) to evaluate the conduction velocity in the working
isolated rabbit heart under induced hemodynamic changes.

The use of ML-based methods in experimental or veterinary
context is usually limited by a small amount of collected data. In
case of long-term experiments, however, these techniques could
be very helpful to carry out fast, robust, and reliable analysis. For
example, Marsanova et al. (2017) differentiated normal sinus,
ischemic, and ventricular premature beats recorded in the rabbit
isolated heart during experiments with induced global ischemia
by morphological and spectral ECG features and various ML
models with the best accuracy of 98.6% for k-NN.

Huang et al. (2021) introduced the detector of paroxysmal
atrial fibrillation in horses, which uses three consecutive intervals,
QT, TQ, and RR (derived from rest, one-channel ECG), and
k-NN classification algorithm.

3.2.5 All-In-One Diagnostics Solutions Based on Deep
Learning
Many “all-in-one” solutions are working with a raw ECG or the
pre-processed, noise-free ECG or 2D “image” representations of
ECG created by converting the 1D signal into the so-called
spectrogram (via STFT, CWT, etc.) or, more straightforwardly,
by saving the ECG segments in some image format for further
analysis. These solutions often use the hybrid model, when the
first part (e.g., CNN, autoencoder) extracts the most reliable
features from the input and the second part (e.g., LSTM net,
fully connected layers) provides the final decision-making
(classification, prediction, etc.).

Here, the overview of the most recent DL approaches is
introduced. To our best knowledge, there is no all-in-one DL
solution in experimental physiology applications due to limited
data sources. We believe that this gap will be removed soon due to
transfer of learning techniques we address in the last section and
illustrate the example from the veterinary field.

3.2.5.1 Clinical Perspective – Focused Applications
Many approaches are focused on specific problems, which allows
to reach promising results with a relatively simple model
architecture and low time and computational requirements
even in case of limited data amount. Great improvements
based on DL method use were achieved in the detection of
acute myocardial infarction and stable ischemic heart disease,
with the detection accuracy in the range of 83–99.9% for different
model configurations (CNN, ResNet, CNN–biLSTM) (Hinai
et al., 2021). Myocardial infarction localization can be
recognized with an accuracy of 90.20%, 99.67%, and 99.87%
for biLSTM, 1D-CNN, and DenseNet, respectively (Tripathy
et al., 2019; Xiong et al., 2021). The ResNet model is a CNN
with residual blocks, which allows the signals to pass through
several layers in the network resulting in improved training
capability of the model with no information loss.

DenseNet—network with so-called dense
connections—“reuses” the information from each layer by
sending it directly as the inputs of all subsequent layers and,
thus, maximizes the flow of important inter- and intra-lead
patterns between the layers. Adding dense connections
increases the total number of trainable parameters in the
network and thus increases the computational demand of
the method. On the contrary, the overall performance of
the network improves. All the above DL approaches
outperform existing ML techniques based on morphological
features combined with k-NN or SVM in terms of accuracy as
well as time required for analysis of new patients’ data
(Tripathy et al., 2019; Xiong et al., 2021).

The accuracy of left ventricular hypertrophy detection reaches
up to 85.8% when using CNN-extracted ECG features in
combination with six-layer-perceptron–extracted demographic
features, which outperform routine Sokolow-Lyon criteria and
visual inspection (accuracy of 81.8 and 85.5%, respectively)
(Kwon et al., 2020). Khurshid et al. (2021) trained ResNet on
a 12-lead ECG to predict the LV mass and reached the output
significantly correlating with the MRI-based reference
values.

Left ventricular systolic dysfunction (LVSD) in critically ill
patients can be accurately (71–76%) detected from ECG, which is
less time-consuming and less expensive than usually used
transthoracic echocardiography. Additional benefit of the DL
method is its robustness and efficiency in both patients with and
without atrial fibrillation, which is commonly associated with
LVSD (Kashou et al., 2021). The latter increases the potential
usability of this novel non-invasive, inexpensive, and fast method
in acute care screening.

According to recent meta-analysis (Grün et al., 2021), CNN or
CNN–LSTM models can predict heart failure from a standard
raw 12-lead ECG with sensitivity 83–100% for different
architectures and databases.

AFIB detection and differentiation between terminating and
non-terminating AFIB episodes were recently performed via
time–frequency ECG representation (by chirplet transform)
and 2D CNN–biLSTM classifier with an accuracy of 99 and
75.9%, respectively (Radhakrishnan et al., 2021). The authors
stated that this method outperforms those based on other
representations (by STFT, CWT, and Stockwell transform) and
other model architectures (CNN, attention-based, etc.). In
another report (Rahul and Sharma, 2022), the AFIB detector
using STFT representation and biLSTM model slightly
outperformed the method using raw ECG (accuracy of 99.84
and 98.85%, respectively).

According to interesting retrospective research (Attia et al.,
2019), an eight-lead ten-second ECG recorded during the sinus
rhythm can be successfully used to predict the outcome in AFIB
patients via the ResNet model with the accuracy of 79.4%. This
approach offers fast, inexpensive identification of the patients
with a high likelihood of AFIB by timely revealing of the
structural changes in atria before the presence of any symptoms.

Detection of abnormal cardiac rhythms (in terms of the width
of QRS complex, heart rate, and ECG amplitude), which can
respond to electrical shock therapy with further expected
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restoration of normal sinus rhythm and, consequently, normal
cardiac pump function, achieved the best accuracy (91.14%) for
the CNN model (Hammad et al., 2021).

3.2.5.2 Clinical Perspective—Multiple-Issue Applications
Recently, there is an effort to design approaches for
differentiation of dozens of arrhythmias in ECG by only one
complex model. The 1D-CNN proposed by Yildrim et al. (2018)
recognizes 17 different cardiac arrhythmias from the one-channel
ten-second ECG with an overall accuracy of 91.33%, in the real-
time mode suitable for further implementation in mobile/cloud
telemedicine applications. Haleem et al. (2021) combined the
CNN–biLSTM model segmenting the raw ECGs with the 2D-
CNN model, which provides final classification of the beats
(previously transformed by STFT) into four categories: normal
ECG, arrhythmia (97.9% accuracy), congestive heart failure
(100% accuracy), and sudden cardiac death (100% accuracy).
1D ResNet can discriminate among six types of ECGs, as recently
shown on a huge, unique database containing over 2 million
ECGs recorded from more than 1.6 million patients (Ribeiro
et al., 2020); this algorithm outperformed the accuracy of the
fourth-year cardiology resident, the third-year emergency
resident, and the fifth-year medical student. A similar
architecture was previously used to detect abnormalities in
one-channel ECG in the frame of PhysioNet Challenge 2017
with the top performance among several solutions (Clifford et al.,
2017; Hannun et al., 2019).

Cinar and Tuncer (2021) combined the DL model extracting
the features with SVM providing the recognition of sinus rhythm,
abnormal arrhythmia, and congestive heart failure with an overall
accuracy of 96.77%. The LSTM model trained on raw ECGs
achieved 90.67%, and conventional feature-based ML models
achieved only about 65–68% on the same dataset. By
combination of complex DL and simple ML models, the
authors obtained the high-performance tool on the one side
and decreased computational time and improved transparency
of the process on the other side.

According to Mousavi et al. (2021), the ECG can be
successfully represented in the way commonly used in natural
language processing, where the distinct waves and QRS
complexes are considered the words and the whole ECG a
sentence. This representation can be next analyzed by the DL
model. The main drawback of this approach (as compared to
other DL-based methods above) is the need for R-peak detection,
ECG segmentation, and creating valid arrhythmia-related
vocabulary required for further integer-encoded representation
of ECG. This technique, however, performs better (accuracy of
74–97% depending on the database) than many other existing
algorithms.

Compared to the CNN, ResNet, and CNN–biLSTM, the
hybrid CNN–transformer model combined with temporal
ECG features achieved higher performance in recognizing nine
different beat types (Che et al., 2021). The transformer net—one
of the most recent DL architectures—has been initially created as
a compromise between the CNN (image pattern recognition) and
the recurrent neural network (time-series sequence pattern
recognition). In this model, the relevant features are driven

from input data using the so-called attention mechanism.
Approaches, using various transformer modifications, achieve
promising results in arrhythmia classification experiments on
many different ECG databases (e.g., Che et al., 2021; Hu et al.,
2021; Natarajan et al., 2021; Nonaka and Seita, 2021; Meng et al.,
2022).

However, adaptation of existing complex architectures,
initially proposed for image (CNN, ResNet, etc.) or natural
language (LSTM, biLSTM, etc.) analysis, has strong limitations
as reported by the systematic study of Nonaka and Seita (2021).
Novel ECG-target architectures should be developed to achieve
high performance in the future.

3.3 Current Issues and Future Directions
3.3.1 Transfer Learning: Sharing the Knowledge
Among Areas
Transfer learning is a research method in machine learning,
where knowledge from one area is applied to solve the
different, but still relevant issue. Transfer learning, when
applying by proper way, may solve many different problems.
One of them is a problem with heterogeneity of patients’ data. It
would be practically useful, if once the model is trained on some
data (e.g., from healthy subjects), so that it could be directly
applied on data with different diagnostics background (e.g., data
from patients with rare arrhythmia). Most probably, however,
this will not work well due to highly inconsistent character of
patterns from two datasets. Nevertheless, successful results can be
obtained when training model on one (freely available and
extended) dataset and re-training it later on the other dataset
consisting of samples of interest (can be small). In this case, the
knowledge learned during the first training and saved in the
network weights is used for analysis of the second dataset. During
the re-training procedure, the weights from the first layers of the
pre-trained model (extracting the relevant features from input
data) remain with no changes, and only last layers (providing the
classification or prediction itself) are re-trained using new data,
which is computationally effective. This transferring of
knowledge between the domains seems to be a way for
effective usage of the models, well-established in other areas,
directly in medical applications, with no extra time and source
investments. It could be of special importance in problems, where
there are not enough data for efficient training of the model.

DL architectures, initially proposed for image analysis, speech
recognition, and other data, can be successfully used for ECG
interpretation after appropriate modifications, as has been shown
in clinical applications. Salem et al. (2018) recognized cardiac
arrhythmias in 2D image representations of ECG using the
DenseNet model, which was previously pre-trained on a huge
image dataset consisting of the images of animals, objects, etc.,
with an overall accuracy of 97.23%. Similarly, the VGG image
processing network was re-trained to detect LVH in multi-lead
ECG data (Soto et al., 2021).

Bizzego et al. (2021) showed that the CNNmodel for heartbeat
identification, initially trained on data from healthy subjects,
performs poorly in data from cardiac patients. However, re-
training of some layers of this network with a small amount
of patients’ data results in significantly improved detection
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performance. Jang et al. (2021) pre-trained the convolutional
autoencoder model on unlabeled one-channel ECG signals from
one database and used this model later to classify 12 different
rhythms in 12-lead ECG. The authors reported better
performance when using the pre-trained model (overall F1-
score of about 83.5%) than in case where the model weights
were initiated randomly (overall F1-score of about 54.3%).
Weimann and Conrad (2021) fine-tuned the weights of CNN,
which was initially trained on a large publicly available ECG
database, by a small set of data recorded in patients with AFIB
and obtained improved performance (by 6.57%) as compared to
the non-pre-trained model.

The most exciting and beneficial application of transfer
learning was shown in animal data analysis, when the
standard use of DL methods is strongly limited by a small
amount of available data. A few published reports using DL
for animal data analysis are focused mainly on image processing,
e.g., detection of canine mammary tumor (Kumar et al., 2020),
detection of diffuse degenerative hepatic disease in dogs (Banzato
et al., 2018), and classification of the thoracic canine radiographs
(Banzato et al., 2021). In animal ECG analysis, the study by
Steenkuste et al. (2020) demonstrated application of DL methods
by involving transfer learning technique. The CNN model pre-
trained on human ECGs was used to recognize four beat types
(normal, atrial premature contraction, ventricular premature
contraction, and artifact) in equine ECG with an accuracy of
97.1% for the re-trained model, which outperforms the non-pre-
trained model.

Aston et al. (2019) fine-tuned several pre-trained image-wise
DL models (such as AlexNet, GoogLeNet, ResNet-18,
SqueezeNet) via a newly proposed symmetric projection
attractor calculated from two-lead ECG. They were used to
distinguish between wild-type mice and Scn5+/− mutant
mice suffering from impaired function of cardiac sodium
channel.

From all the above, it seems that DL models can learn not only
general but also more specific patterns during transfer learning.
Although the DL methods have been recently applied exclusively
in veterinary medicine where relatively large amounts of data are
available, it seems to be reasonable—due to transfer learning
technique—to expect expansion of DL models in experimental
cardiology.

3.3.2 Imbalanced Data Problem: Minority Is Out of
Game
The lack of data often concerns only certain groups of
arrhythmias, such as those with rare incidence in the
population or paroxysmal ones, where the ECG manifestation
cannot be easily recorded during standard clinical examination.
During the training process, the model extracts important
information from input samples and uses it for final decision-
making. In case of a severely imbalanced train dataset (where the
categories are distributed unequally), the model will “focus” on
the abnormalities from the majority group(s) and will ignore
those from the minority group(s). Most of available ECG
databases include much more normal sinus rhythm data than
abnormal ones and, thus, are imbalanced. There are some

techniques which reduce or eliminate this problem and, thus,
ensure effective training of the model.

The simplest way to make the size of particular categories
equal is resampling of the training dataset, where the majority
class is reduced by random selection of the desired number of
samples (undersampling) or the minority class is extended by
random repeating of selected samples (oversampling). However,
removing of samples from the training set may lead to loss of
important information. Simple repeating of minority samples will
not make the dataset variable and representative and may not
ensure effective model training. Therefore, more
sophisticated—so-called augmentation—methods are usually
applied.

Augmentation techniques generate new training samples by
adding some perturbation in data resulting in improved
robustness of the model. First, some manipulations can be
applied on initial data, such as random scaling, flipping,
shifting, and noising ECG, to achieve accurate detection of
multiple arrhythmias (Vicar et al., 2020; Nonaka and Seita,
2021; Do et al., 2022). The same application can profit from
using the synthetic samples generated from the training ones
using intuitive adaptive synthetic data sampling (ADASYN,
Virgeniya and Ramaraj, 2021) or synthetic minority
oversampling technique (SMOTE, Ketu and Mishra, 2021).
Data samples can be generated artificially by specially trained
ML or DL models (such as Gaussian mixture model (GMM),
generative adversarial network (GAN), LSTM/biLSTM, CNN), as
has been shown for time-series ECG (including dependent
multichannel signals) and 2D spectrogram applications (e.g.,
Lima et al., 2019; Brophy, 2020; Hatamian et al., 2020; Hazra
and Byun, 2020). Recently, a unique database of more than
120,000 artificial ECGs, generated by the GAN, has been
introduced (Thambawita et al., 2021). This model was trained
on more than 7,000 real patients’ ECG records.

From above reports, synthetic ECGs are realistic enough to be
used in practice and, consequently, contribute to the expansion of
high-performance ML or DL techniques in a wide range of
clinical and experimental applications. In the latter area,
besides all the above, augmentation approaches, based on data
generated by mathematical computational models, seem to have
special potential. Models of different complexity—from
molecular to organ levels—are available (e.g., Guasch et al.,
2013; Henderson et al., 2009; Pagé et al., 1986) for generating
the relevant, realistic, clearly interpretable
electrophysiological data.

3.3.3 Understandable Means Credible: Open the
Black Box
Effective interaction of a human expert (e.g., cardiologist) with
the computer-aided system requires trust in the computer’s
decision-making. Therefore, an adoption of DL-based
diagnostic systems in the routine clinical practice is limited,
despite their high performance. As a result, there is a big
effort in creating the tools helping to uncover the processes
behind the model’s prediction. Such “explaining” methods
may help the experts to understand the computer-aided tools
and to “safely” use their output to make the final decision. Of
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course, rather transparent feature-based methods with simple ML
models (such as linear discriminant function, decision tree) can
be used. These are, however, less successful as DL-based systems
(see above). It seems to be more suitable to use the high-
performance, though non-transparent, DL algorithms and
apply additional techniques to “open” the black box. Many
different methods and algorithms have been proposed in the
last decade to solve this issue.

Probably, the easiest solution is to visualize the outputs
from those layers of deep networks, which generate the
features from input data (such as convolutional layers in
the CNN model, attention layers in the transformer). The
generated feature maps can indicate the parts of the ECG
playing the most important role in resulting diagnosis (Meng
et al., 2022; Nataraja et al., 2021, etc.). The features maps can be
additionally simplified by principal component analysis and
used for detailed interpretation of the diagnostics model
(Murat et al., 2021b).

Most comprehensive explanation can be obtained by special
algorithms, such as Shapley Additive Explanations (SHAP),
which assigns the importance weight to each sample by
exploring the gradient, calculated when the sample enters the
model (Soto et al., 2021). These weights can be then illustrated. A
similar method—gradient-weighted class activation mapping
(GRAD-CAM)—creates the visualization of the gradient
through the entire model (Ho and Ding, 2021). Elul et al.
(2021) included the spectro-temporal attention (STA)
mechanism, which highlights the most important parts of
ECG based on the analysis of temporal and spectral
information from selected layers of the network. Other, local
interpretable model-agnostic explanation technique (LIME) uses
another, very simple, linear model (such as linear regression) to
explain the local behavior of the black-box complex model
around the sample of interest (Hughes et al., 2021).

3.3.4 Huge Amount of Data: Make It Easier With
Multiple-Instance Learning
A huge amount of long-term ECG data requires a lot of time for
detailed data labeling, which is crucial for accurate diagnosis and
for potential use when creating the ML- or DL-based computer-
aided systems. The labeling process is extremely time-consuming
and expensive. Especially when each beat should be labeled
separately, the risk of misinterpretations due to intensive
cognitive load or poor experience of the physician is high.
Therefore, multiple-instance learning (MIL) enabling model
training using only global labels with no beat-wise
annotations can be very useful. MIL is a type of supervised
learning, which works with labeled bags of data (instead of the
labeled instances) (Carbonneau et al., 2018). When properly
combining with ML or DL, it can be successfully used
for localization of the pathological events in ECG and
generation of the detailed annotation reports, if needed, as
shown in myocardial infarction detection (Sun et al., 2012),
abnormal heartbeat localization (Tong et al., 2021), or
premature ventricular contraction localization (Novotna
et al., 2020). The accuracy of such methods is usually
comparable to that of standard DL approaches, but

MIL-based detectors are beneficial due to less strict
requirements on the training dataset.

3.3.5 Deep Learning Expansion: Need for Control
The number of DL studies focused on cardiac arrhythmia
detection and classification has intensively grown during the
last five years, most probably due to the PhysioNet/Computing
in Cardiology Challenge conducted in 2017, where an extended,
highly variable database was introduced to the wide audience
(Clifford et al., 2017). Many challenge participants applied the
CNN or LSTM model to address the topic and achieved the best
performance in binary (AFIB vs. non-AFIB) and multi-class
(sinus rhythm, AFIB, atrial flutter, etc.) issues (Murat et al.,
2021a). The growing trend in using DL is still present due to
international challenges (PhysioNet/Computing in Cardiology
2020 and 2021, China Physiological Signal Challenge
2018–2021) focused on the algorithms for reliable QRS
detection, supraventricular and ventricular premature
contraction detection, AFIB detection or paroxysmal AFIB
localization in ECG, multi-label classification of 24 different
arrhythmias, or identification of the ECG leads with the
highest discrimination ability. During the challenges, high-
quality, freely available, and accurately labeled databases are
introduced to the wide audience, which enables further
development of high-performance robust algorithms (Perez
Alday et al., 2021). The availability of large ECG databases,
however, makes the opportunity for people with no basic
knowledge in the cardiac arrhythmia domain to be involved in
creating the algorithms. In this situation, one cannot expect
correct and careful usage of ML or DL methods. The only way
to create trustworthy diagnostic systems, which meet the true
clinical needs, is close cooperation among a wide range of experts,
such as clinicians, engineers, data scientists, and programmers.

Another issue, which needs to be solved soon, is a lack of the
guidelines for creating and evaluating the diagnostic ML and DL
algorithms. Bond et al. (2021) formulated this aspect in the
context of systems for ECG interpretation as a need for best
practices for “stress-testing” algorithms. They recommend to test
the novel algorithms under different conditions: using both clean
and noisy data, data recorded by misplaced or/and interchanged
electrodes, data recorded in different hospitals by different
devices and from different ethnic groups, etc. This may ensure
creating the reliable, accurate, and robust algorithms useful in
clinical routine support. Thus, formation of international
working groups focused on the relevant guideline formulation
can be expected in the near future. Best practices—after some
modifications—will be further integrated in experimental
applications.

4 FINAL REMARKS

The present article reviews current perspectives of ECG recording
and analysis. It presents a unique combination of clinical and
experimental points of view. This approach may attract a broad
range of readers—not only researchers in the area of cardiology
but also biomedical engineers, mathematicians, and last but not
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least clinicians. Looking at the same topic from various angles and
summarizing information obtained from various models may
help interested readers of numerous specializations understand
each other better. As a result, it might help to plan future research
activities of multidisciplinary teams, consisting of both
researchers and clinicians.

In the 21st century, recording of electrical activity of the heart
muscle in the form of electrocardiogram may appear rather
obsolete. The truth is that numerous sophisticated methods
enable the researchers and clinicians to obtain information
about electrical and mechanical activities of the heart and
visualize these processes. On the contrary, new ways of ECG
recording together with advanced methods of its analysis open
new possibilities for its use.
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