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Abstract

Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, 
particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy 
transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm 
which allows for simultaneous solution of the governing principles, making the code ideally 
suited for problems involving closely coupled bulk mechanics and interfacial phenomena. 
Example applications include, but are not limited to, coating and polymer processing flows, 
super-alloy processing, welding/soldering, electrochemical processes, and solid-network or 
solution film drying. This document serves as a user’s guide and reference. 
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Preface

Over the course of development of this new generation of Goma documentation, the volume of 
information collected between the covers has grown immensely while the style of presentation of 
that information has also been improved to be more helpful to the analyst and easier to use. 
However, having set the goal of producing both a printed and electronic manual, the process has 
made it no longer practical to try to contain all the attending knowledge in a single printed 
volume. Thus, we have divided the printed version along the boundaries most natural to Goma, 
that being a separation according to the division of problem data between the two primary ASCII 
input files.

The user of Goma software now has a two-volume manual with information both common and 
unique to each volume. The introductory information (Chapters 1 through 3) is common to both 
volumes, as is the closing information (References, Appendix and Distribution). The unique 
contents of Volume 1 consist of the Problem Definition (Chapter 4), while Volume 2 contains the 
Material File description (Chapter 5). In the respective locations of the Chapter 4 and 5 
information, a brief explanatory note has been inserted as a placeholder. The user will find a 
complete set of introductory and closing information in each volume, but the Table of Contents 
and Index entries in each volume will also be unique, containing only the information appropriate 
for the particular volume.

Also for practical reasons, this electronic version of the manual will retain the single volume 
configuration. Thus the structure will differ from the printed version but the contents of the two 
versions of the manual will contain the same information.
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Nomenclature1

a, b, c, d constants in PLANE boundary condition

A, B exponents for Cure model of viscosity

B binormal vector for rotation (cross product of normal with tangent vector);
magnetic induction vector field

local capillary number

Ci concentration of species i;
constant i in general equation

molar gas and liquid concentrations of species k

 heat capacity [E/MT]

 inertial coefficient

molar concentrations of vacancies (V) and holes (h)

cx, cy, cz coordinates of circle center

 strain-rate tensor

D diffusion coefficient

diffusion coefficients

Dij binary diffusion coefficient [L2/t]

 distance between current position and dynamic contact line

(mesh) displacement vector

real solid displacement vector

real solid displacement vector from base reference state

relative change in analytical residual (analytical Jacobian)

diffi difference between two Jacobian terms

 Young’s modulus [M/Lt2];
electric field

Eulerian strain tensor

E, E1, E2 activation energies

unit base vector

F fill function;
level set function

Fm deformation gradient tensor
f force vector

1.  Basic Units shown in square brackets: t - time, L - length, M - mass, E - energy, T - temperature; vector and 
tensor magnitudes not designated.

CaL

C
g
k C

l
k,

Cp

ĉ
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 shear modulus [M/Lt2];
velocity gradient

g momentum source term vector

H volumetric energy source

2H mean curvature [1/L]

h heat transfer or mass transfer coefficient [L/t];
distance parameter

I identity tensor

 second invariant of the strain-rate tensor

 unit vectors representing right-hand orthogonal basis

Ji volume flux vector, species i [L/t]

Ji Jacobian entry i

, mass flux of gas (g) and liquid (l) component i

 bulk modulus [M/Lt2]

concentration equilibrium constant

 permeability [L2]

krel relative permeability

rate constants

pseudo reaction rate

mass transfer coefficient

L-one norm

L-two or mean square norm (root-mean-square over the domain)

maximum or infinity norm (maximum absolute value over domain)

Mw molecular weight

m outward binormal vector

mass loss or gain rate

N normal vector for rotation (outward-pointing normal to primary side set)

 normal vector to surface

orthogonal base vectors attached to surface

outward-pointing normal to primary (f) and secondary (s) side set

x, y and z components of normal vector

normal to free surface at contact line

specified normal vector

 normal vector to solid wall surface

G
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i
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P applied pressure

vapor pressure for species i

capillary pressure

liquid phase pressure in porous medium

gas phase pressure in porous medium

q heat flux vector;
Darcy flux

R universal gas constant

Ri component i volumetric source

Ri i-th component of the Galerkin weighted residual vector

r radius of circle

r(0) initial residual vector

si stoichiometric coefficient of species or phase i

S saturation in porous media

source term for creation of species k in the liquid

SV surface area per solid volume for permeability of porous media

T temperature [T]

Ts sink temperature;
solidus temperature

Tl liquidus temperature

T fluid phase stress tensor

Ts solid phase stress tensor

T tangent vector for rotation, intersection of primary and secondary side set

 tangential vector to surface

tangent to free surface at contact line

u, v, w x, y, z-components of velocity, respectively

, gas (g) and liquid (l) velocity vectors at the free surface

V voltage, electric potential

 velocity vector

fluid velocity

 mesh velocity vector

normal and tangential velocity

velocity of surface or mesh;
solid velocity

P
V
i

pc

pl pliq,

pg pgas,

S
l
k

t
˜
tcl

u
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g
u
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l

v

vf

vm
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vsfs stress-free-state velocity

x, y, z-component of surface velocity vector

velocity of web in moving substrate problem

x, y, z-component of web/substrate velocity

molecular weight

wi weighting vector for Jacobian entry i

mass fraction of component i in vapor

 mesh velocity

normal component of the contact line velocity

xK mole fraction for species K

 coordinates for Cartesian coordinate system

volume fraction of solvent in liquid phase

mass fraction of species k on gas (g) and liquid (l) sides of interface

 concentration (volume fraction) of species i

, gas (g) and liquid (l) phase volume fraction of component i

zi charge number of species i

 scaling for position-dependent slip;
level set length scale;
linear thermal expansion coefficient

gel point for Cure model of viscosity

 slip coefficient

second invariant of the shear-rate tensor

activity coefficient of species i

smooth Dirac delta function

latent heat of fusion

heat of reaction

heat of vaporization

electrical permittivity;
emissivity;
strain tensor

adaptive, solvent and polymer viscosity in viscoelasticity
constants in equation, 

 coefficient of repulsion;
Lame coefficient [M/Lt2];

vs x, vs y, vs z,, ,

uw W,

Wx Wy Wz, ,

Wk

w
V
i

x
˜
·

x· cl
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Xls
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time constant in viscosity models

 generic contact angle

static contact angle

advancing and receding contact angle, respectively

 dynamic contact angle

irreducible air or water content of porous medium

 Lame coefficient in solid mechanics (shear modulus) [M/Lt2];
viscosity in fluid mechanics [M/Lt]

chemical potential of species k

 Poisson’s ratio

 density [M/L3]

liquid phase density

gas phase density

 electrical conductivity [ ];
Stefan-Boltzmann constant
surface tension [M/t2];
real-solid solid phase stress tensor

porosity of porous medium;
electrical potential

basis (shape) function associated with node i;
volume fraction;
level set function at node i

deviatoric portion of fluid stress tensor;
tortuosity factor in porous media

yield stress in constitutive models

Flory-Huggins interaction parameter between components j and k

coefficient of variation

rotation rate of cylindrical substrate surface;
vorticity vector function;
particle mobility in trajectory

θ

θs θstc,

θadv θrec,

θdcl

θair θw,

µ

µ∗
k

υ

ρ

ρl ρl,

ρ
g

ρg,

σ

φ

ϕi

τ
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1  Introduction 

1 Introduction

”Goma,” which means rubber, gum, or elastic in Spanish, is a two- or three-dimensional finite 
element program currently being advanced and specialized for the analysis of manufacturing 
flows and related processes that involve one or more transport fields, i.e., any combination of 
heat, mass, momentum (solid and fluid) and species transport fields. Specifically, the processes 
for which Goma is suited are those which contain free or moving boundaries between dissimilar 
materials or phases. Whether determining the position of an interface whose motion is governed 
by the underlying physics of the problem, or prescribing the dynamics of a boundary according to 
user specified kinematics or geometry, the multiphysics approach on which Goma is based allows 
for rapid convergence to the solution. Unique features which make this possible include: (1) a 
Lagrangian-Eulerian solid mechanics module for mesh motion, (2) energy and chemical species 
transport modules incorporating convection, diffusion and reaction, (3) fluid momentum transport 
modules that are fully and mutually coupled, particularly with the mesh motion module through 
an analytical Jacobian matrix, (3) a Newton-based solution algorithm (full and modified) which 
exploits that Jacobian matrix, and (4) a structure which allows for different physical descriptions 
of different materials in the same problem, i.e., conjugate problems. The scope of potentially 
accessible problems defined by the interaction and close coupling of the individual field equation 
sets is partially shown in Figure 1 (note that missing from this figure are the fully coupled, 
partially saturated porous deformable media module and overall variable density mass balance 
modules). The analytical Jacobian matrix which provides the coupling facilitates a range of 
computer-aided nonlinear analyses such as parametric sensitivity (stability), design, and 
optimization as it provides the building blocks (through chain-rule differentiation) for evaluating 
sensitivities of process variables to processing conditions.

Goma originated in 1994 from an early version of MP_SALSA (Shadid, et. al., 1995), a finite 
element program designed to simulate chemically reacting flows in massively-parallel computing 
environments. As a point-of-departure, Goma was originally extended and adapted to free and 
moving boundary problems in fluid mechanics, heat transfer, and mass transfer. By virtue of a 
novel mesh motion algorithm based on Lagrangian solid elasticity, many multiphysics problems 
involving nonlinear elasticity and viscoplasticity in combination with other transport phenomena 
are now accessible. The detailed algorithm and underlying physical principles of the moving 
mesh scheme together with several advanced examples from capillary hydrodynamics, melting 
and solidification, and polymer processing may be found elsewhere (Sackinger, et. al., 1995; 
Cairncross, et al., 1995; Chen, et. al., 1995; Cairncross, et. al., 2000; Baer, et. al., 2000; Schunk 
and Rao, 1994; Bertram, et. al., 1998; Schunk, et. al., 2002). 

Since the original publication of the GOMA 2.0 manual (see Schunk, et. al., 1998) work has 
further focused on concentrated chemical species transport (neutral and charged species) and 
Eulerian front tracking schemes for large material deformation problems. As in all other 
developments, these capabilities are being implemented in a fully-coupled way using Newton’s 
method. A concerted effort to bring these capabilities to bear on real-life problems has led to the 
addition of many esoteric features that address capillary wetting, phase change, charge neutrality, 
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multicomponent species transport, and a host of other physical features. The best way to survey 
the available features is to consult the large library of reports, technical memoranda, tutorials, and 
other advanced feature manuals (e.g. Gates, et. al., 2000; Schunk, et. al., 1998; Rao, et. al., 2001; 
see Goma Documentation List in the Appendix), most of which are linked together with this 
manual in the CD version of the Goma Document System currently under development.

MOMENTUM TRANSPORT 

Pseudo-Solid for ALE Scheme
ENERGY TRANSPORT

n-SPECIES TRANSPORT
MOMENTUM TRANSPORT

FLUID MECHANICS

Figure 1.  Main physics modules of Goma, their coupling and examples of 

potential applications.

(a) (b)

(c) (d)

-Continuous liquid film coating (a),(d)

-Wetting and spreading (a), (d)

-Melting and remelting (a), (b), (c), (d), (e)

-Polymer processing (a), (d)

-Drying/curing/solidification (a), (b), (c)

or

Computational Lagrangian Solid

JACOBIAN MATRIX PROVIDES
COUPLING 

EXAMPLES

SOLID MECHANICS

-Corrosion and electrochemical process (a), (c), (d), (e)

-Multiphase transport in deformable porous media (a), (f)

(continuous or porous)

(with coupled viscoelastic stress)
(with concentrated multicomponent)
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Most recent developments, from 2006 through 2012, that are noteworthy are an extensive library 
of thin-shell physics/equations and accompanying boundary conditions, triangle and tetrahedral 
elements, phase-field modeling, parallel processing improvements and more. On the thin shell 
equations, the capability is fully coupled with continuum element equations. We have 
implemented theory and equations for Reynold’s lubrication (laminar or turbulent), thin-shell 
energy, thin-porous media, and surface rheology. 

The purpose of this report is to provide a practical introduction and reference to Goma; to 
introduce the user to the range of options available in Goma; to show how easily the code may be 
adapted to investigate novel situations; and to provide a link to several simple illustrative 
examples as a tutorial and as a demonstration of the overall utility of the program. By design this 
is a reference manual which is best navigated together with a tutorial on the class of problems 
being addressed. It is recommended that perusal be undertaken section by section, consulting the 
individual input records as needed for a given problem.
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2 Background Information

2.1 Program Features

2.1.1 Free and moving boundary capabilities

Goma is a general purpose program designed for the solution of both steady and transient, two- 
and three-dimensional problems involving heat, mass, and momentum (solid and fluid) transport. 
A unique feature is the treatment of all boundaries and interfaces as free (position unknown) or 
moving (position unknown or prescribed, but variable). If the material domain of interest is a 
solid, a Lagrangian formulation (i.e., the computational mesh follows the motion of material) of 
the momentum equations naturally leads to mass conservation and a natural parameterization of 
the boundaries and interfaces as material surfaces. If the material domain of interest is a fluid, 
then an Arbitrary-Lagrangian-Eulerian (ALE) formulation allows the boundaries to respond to 
constraint equations, hereafter referred to as distinguishing conditions. These conditions are 
responsible for determining the location of all boundaries and interfaces, providing the necessary 
mathematical closure of the system of equations governing the free boundary problem. 
Distinguishing conditions available to the user fall into several classes, as described below.

Since publication of the Goma 2.0 manual in 1998 (and more recently the Goma 4.0 manual in 
2002), the ALE formulation has been extended to solid-material regions (viz. the TALE 
algorithm, Schunk, 2000) and purely Eulerian front tracking schemes based on the method of 
level-sets have been incorporated for free surfaces with large deformations; moreover, both 
algorithms have been implemented in a completely-coupled way. Of course Eulerian schemes are 
inherently transient and less accurate in capturing interfacial physics, even though they are more 
robust and even optimal for a certain class of problems. It is fair to say that of all the available 
mechanics codes, Goma provides the greatest breadth of free and moving boundary tracking 
formulations and options.

With regard to the ALE algorithms, the fully-implicit, pseudo-solid, unstructured mesh 
deformation algorithm sets Goma apart from other finite element programs. All surfaces, internal 
and external, together with other geometric features such as corners and junction points, are 
permitted to move as part of the algorithm. The movement of boundaries, interfaces, and 
geometric features is dictated by a weighted residual statement of the distinguishing conditions, 
whether based on specific physical constraints or arbitrary conditions described by the analyst. 
The internal mesh deforms as if it were embedded in a deforming elastic solid continuum; with 
the mechanics of the solid governed by either infinitesimal (linear) or finite (nonlinear) 
deformation theory. Through Newton’s method, the deformation of the mesh is determined 
simultaneously with all of the other physics of the problem.

The key connection between the mesh deformation and the physics of interest is accomplished 
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through a library of distinguishing conditions. Currently, those conditions include (a) kinematic 
(material surface of a fluid), (b) isotherm (phase transition temperature, such as melting), (c) iso-
concentration and (d) geometric (either smooth plane curves or fixed point specifications). As part 
of the required input for Goma, the analyst specifies the associations between the particular 
distinguishing conditions and corresponding sets of material points of the initial pseudo-solid 
used to embody the mesh. Chapter 4 describes this process in more detail. Essentially, the 
algorithm causes smooth boundaries of the pseudo-solid to slide tangentially in a “frictionless” 
fashion. Further details of this algorithm and the corresponding equations can be found in several 
references (e.g., Sackinger, Schunk, and Rao, 1995).

2.1.2 Coordinate Systems and Frames of Reference

Coordinate systems accessible through this version of Goma include two-dimensional and three-
dimensional Cartesian coordinates, cylindrical coordinates for axisymmetric problems, spherical 
coordinates, and a swirling option for two-dimensional axisymmetric problems with a (swirling) 
velocity component in the third dimension. A limited framework has been built within Goma to 
use arbitrary orthogonal curvilinear coordinate systems, but this has not yet been extensively 
tested. As for frame of reference, all conservation equations are cast in an inertial frame (viz. non-
accelerating) but with extensions to allow for arbitrary frame velocities that may or may not be 
related to the material motion. Hereafter, when we refer to the frame/mesh motion type to be of 
the Eulerian variety, we mean the mesh is fixed with respect to all material motion, which 
basically means it is fixed in the laboratory frame. For now, we allow this frame of reference for 
fluid systems and are researching ways to allow this frame for solid systems. The ALE frame of 
reference, as mentioned above, allows for independent mesh motion in the interior of the domain, 
but seeks to maintain a material frame of reference on the boundary. This means that the mesh 
will move to accommodate material boundary motion. Currently, the ALE frame is allowed for all 
classes of materials (cf. Schunk, 2000). Finally, a pure Lagrangian frame of reference implies that 
our mesh moves with the material. This formulation is quite common in solid mechanics and is 
one advocated here for truly solid regions.

2.1.3 Problem Physics and Thermophysical Properties

This brief section summarizes the physics capabilities in Goma and the thermophysical properties 
and constitutive equations available to the user. The rest of the manual is designed to greatly 
expand on all material parameter options, boundary condition options, and equation options; 
perusing Chapter 4 and Chapter 5 is recommended to extract more detail.

The class of problems treated by Goma are those described by any one or a combination of the 
incompressible form of the momentum conservation equation for generalized Newtonian fluids, 
the momentum conservation and differential stress constitutive equations for viscoelastic fluids, 
saturated and unsaturated flow equations cast for rigid or deformable porous media, the energy 
conservation equation, the equations of quasi-static equilibrium of an elastic solid, and any 
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number of additional or auxiliary species convection-diffusion-reaction equations. Goma has 
been tested with the following types of fluid mechanics, solid mechanics, and heat transfer 
problems: (a) mixed convection with mesh parameterization of an isotherm, (b) melting, with a 
parameterization of the liquidus and solidus isotherms, (c) coating and related flows (slide 
coating, curtain coating, etc.), (d) polymer processing (viscoelastic) flows (e.g. fountain flow, 
planar and axisymmetric extrusion, simple mold filling, contraction flow), (e) neutral or charged 
species transport in multicomponent concentrated systems, (f) partially saturated flow in 
poroelastic systems, (g) suspension flows, (h) drying and shrinking of gelled polymer films (with 
creep and elastic recovery), and (i) microfluidic systems with fluid-structure interaction (e.g. 
MEMS device performance).

Thermophysical properties in the bulk for all equations may be taken as constant or variable, with 
dependencies on any of the dependent and independent variables of the problem. General 
property variation models of this sort can be implemented with a user-defined subroutine 
capability. Moreover, a growing number of often-used standard models are supported within the 
core routines. These include a Carreau-Yasuda model for the generalized Newtonian viscosity and 
a Boussinesq source term for the fluid momentum equation that provides a means for simulating 
flows with thermal and solutal buoyancy. A plethora of other constitutive models and properties 
are available, including viscoelasticity, elastoviscoplasticity, nonFickian diffusivity, etc.

To enhance the capability for modeling problems in capillary hydrodynamics, e.g., coating flows, 
a boundary condition expressing the normal stress balance for two-dimensional Cartesian and 
axisymmetric problems has been implemented and tested. When capillary forces are activated, a 
pressure jump term (proportional to the mean curvature) is added to the normal component of the 
momentum flux balance at specified fluid material interfaces in a natural fashion. At three-phase 
boundaries (points in two dimensions) a contact angle condition and a surface tangent force 
condition may be applied. The former is used in place of a specified position on the mesh motion 
equations and is best used to set static and dynamic contact angles, and the latter is an additional 
endpoint force which is added to the momentum balance, necessitated because the curvature term 
is integrated by parts. The current version of Goma also includes the ability to model tangential 
shear forces along capillary surfaces, i.e., those originating from surface tension gradients caused, 
for example, by variations in temperature or species concentration. To access this capability 
requires a constitutive equation for the surface tension. A powerful low-level capability has been 
implemented which allows the user to select which degree of freedom, or variable, is associated 
with a particular boundary condition. Such a capability is useful at dynamic contact lines, where it 
is often desirable to replace the liquid-phase momentum equations with auxiliary constraint 
conditions.

Generalized interphase boundary conditions that allow for discontinuous field variables are 
supported through a multiple degree-of-freedom capability. The prime targets for this capability 
include flowing vapor-liquid equilibrium problems for which there are concentration and velocity 
jumps between phases due to change in density and solute partitioning through the phase diagram 
and multiphase/multicomponent corrosion problems. A series of boundary conditions which 
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allow for the application of ideal and non-ideal vapor/liquid equilibrium (e.g. Raoult’s law and 
Flory-Huggins theory), latent heat release/adsorption, and discontinuous velocity components due 
to evaporation/condensation have been implemented. In the future this capability can be extended 
to thermal contact resistance, which often involves a temperature jump at an interface.

Recently the solid mechanics module of Goma, which was originally installed as a part of the 
pseudo-solid ALE mesh motion algorithm, has been exploited to solve problems in transport in 
deformable porous media and other outstanding problems of elastohydrodynamics. For modeling 
flow in non-deformable porous media, the Brinkman terms in the fluid momentum equations (cf. 
Gartling, et. al., 1996) may be activated. Since Goma 2.0, generalized Darcy transport equations 
for multiphase components (solid, liquid, gas) have been added and can be used for simulations of 
deformable poroelastic media. For incompressible but deformable solids, a pressure term was 
added to the solid momentum balance (e.g. rubber). In continuous shrinking or swelling solids, 
the dilation is proportional to changes in solvent concentration. In deformable porous media, the 
solid deformation is coupled to the pressure in the fluid-filled interstices of the porous matrix. 
Several boundary conditions exist to apply normal tractions (i.e. compressive, tensile, or shear 
boundary forces) to solid surfaces. To effectively simulate coupled fluid/solid interaction 
problems, boundary conditions which balance the surface tractions exerted by the liquid and solid 
phases at the common interface have been incorporated as have been the appropriate interface 
impregnation/expulsion conditions at boundaries between porous and continuous media.

A complete rewrite of the species transport equations has been undertaken since the release of 
Goma 2.0 that allows for generalized phase/species formulations on multimaterial problems. 
Accommodating an arbitrary number of species, each of which can exist in an arbitrary number of 
phases, was the goal of this development in order to model corrosion and charged species 
transport.

Of course there are many more material property models and constitutive equations, specialized 
boundary conditions, and more esoteric differential equations that can be solved for just about any 
mechanics problem. Many of these capabilities are not cited in this manual because they were 
under development at the time of publication. Interested readers should inquire about the status of 
the following capabilities: generalized solid-model geometry features, wetting and spreading 
models for Eulerian front tracking schemes, Eulerian/Eulerian fluid-structural interaction 
capability, multiphase porous energy equation, Generalized surface and volume user-defined 
Lagrange multiplier constraints, and much more.

2.1.4 Advanced capabilities

Several developments in Goma that enable advanced engineering analysis of complex systems 
have been completed since the last major release. These developments include a complete, 
generalized capability of automated parameter continuation (zeroth-order, first-order, arclength, 
multiparameter, user-defined parameter continuation, etc.) using the LOCA library (Salinger, et. 
al., 2002), linear stability analysis of any dynamic system using normal modes, and augmenting 
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condition capability. It is recommended that the user consult a separate manual (Gates et. al., 
2000; contact authors for a more recent version) for a complete user description of these features. 
The input record sections required to activate these features are not covered in this document.

2.2 Numerical Methods

With over 150 different boundary conditions for 70 plus differential equation types, Goma’s 
algorithms are very extensive for any brief discussion. In this section we simply point out the 
foundation algorithms. A developer’s manual, advanced capabilities manual, and tutorial memos 
can be consulted for more details (see Goma Document List in the Appendix for the citations.).

Goma is based primarily on the Galerkin/finite element method. The element library currently 
includes (in two dimensions) 4- and 9-node isoparametric quadrilaterals (i.e., Q1 and Q2 
interpolations) with available interpolations for linear discontinuous (P1) or piecewise constant 
(P0) variables, and (in three dimensions) 8-node isoparametric hexahedral elements and 27-node 
bricks, also available with piecewise constant interpolations. The overall solution algorithm 
centers around a fully-coupled Newton-Raphson iterative scheme for solving the nonlinear 
algebraic equations which results from the finite element discretization. That is, all active 
equations and boundary conditions are solved simultaneously in a single matrix system at the 
same time plane and during the same Newton iteration. The sparse matrix system is stored in a 
central element-level matrix data structure that is injected into one of three sparse matrix formats 
as dictated by the matrix solver chosen. The three formats are modified sparse row, MSR or 
compressed row format (Hutchinson, et. al., 1995, Schunk and Shadid, 1992), the variable block 
row, or VBR, format (see Heroux, 1992), or the frontal-solver element-level format (cf. Hood, 
1976). If the matrix system is not too poorly conditioned, then iterative solvers of the generalized 
preconditioned conjugate gradient-type can be used to solve the system (see Tuminaro, et. al., 
1999, Schunk and Shadid, 1992). A new matrix-services/solver-services library known as 
TRILINOS (http://www.cs.sandia.gov/Trilinos), has been installed to handle all iterative solver 
and preconditioner options. This package has greatly extended the robustness of iterative solvers 
to the class of problems that Goma solves. Virtually all problems and all finite element 
formulations are now solvable with these iterative schemes (see Schunk, et al., 2002). If all else 
fails, Goma deploys a suite of direct solvers that, even though not always efficient for large three-
dimensional problems, will always get a solution at the current Newton iteration. These solvers 
are known as Sparse 1.3 (lu), a classical LU decomposition (Gaussian elimination) method, and 
two frontal solvers, Umfpack (umf) and front; these are discussed in the next section.

The Galerkin least squares (GLS) method for pressure stabilization of Hughes and Franca (1987) 
has also been added to Goma. The GLS method adds the momentum residual, weighted by the 
gradient of the Galerkin weight function, to the standard Galerkin continuity equation, thus 
providing a diagonal term for the pressure. This is a first-order convergent and consistent method 
that enables the use of iterative solvers for incompressible equations over the entire range of 
Reynold’s numbers.
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The overall differential-algebraic system of equations may be advanced in time with implicit 
time-integration techniques (simple backward Euler and Adams-Bashforth predictor, trapezoidal 
corrector algorithms for fluid systems, species transport and energy transport; and Newmark-Beta 
algorithms for solid dynamics). Time marching offers an alternative, albeit indirect, route to 
attaining solutions to steady equations, as well as providing the capability of simulating process 
transients directly. Automatic time step control based on current truncation error is also available.

Perhaps the most complicated part of the algorithm is the construction of the Jacobian sensitivity 
matrix. Because the mesh point positions are actually unknowns in a free or moving boundary 
problem, that matrix must include sensitivities of each weighted residual equation with respect to 
each of the mesh variable unknowns that can affect the value of the residual. Unfortunately, 
almost every term of the bulk equations and many boundary conditions contribute to this 
sensitivity. This occurs mainly through gradient operators and surface normal and tangent vectors 
(see Kistler and Scriven, 1983) and through dependencies on mesh position of the determinant of 
the elemental Jacobian transformation matrix that maps between a fixed unit element and any 
element in the computational domain. Great care has been taken to include analytical expressions 
for all of these mesh sensitivities. However, some of this task inevitably falls to the user when 
implementing user-defined boundary conditions, material property models, and constitutive 
equations, particularly when any of these quantities depends directly on spatial position or spatial 
gradients of other variables. In order to maintain the strong convergence properties of Newton’s 
method, these sensitivities must be specified in those user-defined routines. To aid in this task, a 
debugging option is available which computes a numerical finite-difference approximation of the 
global Jacobian matrix and compares it with its analytical counterpart. This tool enables users and 
developers to check the consistency of newly-created equations (whether bulk or boundary 
constraints) with their corresponding analytic Jacobian contributions.

2.3 Portability, Software Library Infrastructure, and Code 
Accessibility

Goma is written in the C programming language (specifically Kernighan and Ritchie, 1988, C 
with some ANSI extensions). It has been ported to a number of UNIX platforms including Solaris 
and Linux, with the Linux Enterprise-4 version being the most actively maintained. Most recent 
versions are aimed at Red-Hat RHEL5 and RHEL6 levels, almost exclusively. Many of the 
machine dependencies in the program have been isolated using C preprocessor directives. Some 
of the machine dependencies that occur in the I/O routines are insulated from the user by software 
libraries. Building Goma requires EXODUS II v2.02 (Schoof and Yarberry, 1994), SPARSE 1.3 
(cf. Kundert and Sangiovanni-Vincentelli, 1988), NetCDF v2.3.2 (Rew, et. al., 1993) libraries, 
Umfpack direct solver libraries (Davis and Duff, 1997), and the TRILINOS 10.0 library 
(Tuminaro, et. al., 1999; http://software.sandia.gov/trilinos). The first of these is part of the 
SEACAS system at Sandia National Laboratories (Sjaardema, 1993); the latter two libraries are 
available publicly. Parallel processing is enabled by OPEN-MPI. The user should consult the 
build instructions for the most recent library revisitions. The most updated library needs are also 
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made clear in the Goma makefile: Makefile. There are special versions of this makefile for 
building for the test suite (Makefile_guts) and debug mode (Makefile_debug). These are 
the most general makefiles that are deployed. Generally, pre- and post-processing is performed 
outside of Goma, although some post-processing of results is available within the program. This 
separation of the functionality permits the use of alternative solid-modeling and mesh-generation 
software and visualization packages of choice, insofar as they may be interfaced with the 
EXODUS II finite element data model.

Pre-processing options include mesh generation via CUBIT (http://cubit.sandia.gov), PATRAN 
(PDA, 1990), and SolidWorks (www.solidworks.com). The latter two require special plug-ins. 
These mesh generators currently support and will output a finite element database in the 
EXODUS II format.

Post-processing options include BLOT (see the SEACAS distribution, Gilkey and Glick, 1989), 
Paraview (www.paraview.org), and Ensight (www.mscsoftware.com.au/products/software/cei/
ensight).

Since Goma is built around the EXODUS II finite element data model, there are numerous 
options available for communication with other analysis codes that also exchange data via the 
same EXODUS II data model. Recent modifications to Goma permit not only the initialization of 
unknown values from an EXODUS II file, but also the ability to incorporate field variables into 
the analysis that are not unknowns. For example, the quasi-static and dynamic electromagnetic 
fields from codes such as ALEGRA can be used to compute electric fields and current fluxes on a 
specified finite element mesh that are input to Goma through the EXTERNAL FIELD data card. 
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3 Code Structure and I/O

3.1 Files for Data Input

The Goma file I/O structure is diagrammed in Figure 2. Input to the program is divided into six 
categories: (1) command-line options, (2) problem description file, (3) material files, (4) ASCII 
continuation/restart file, (5) EXODUS II database file, and (6) sundry material property or 
boundary condition table lookup files. Goma is basically set up to run in batch mode, i.e., no input 
is required on the command line or after the run command is issued. There are, however, several 
command-line switches which can be used to redirect I/O, control the level of I/O, and activate 
debugging options.

Figure 2.  I/O structure for Goma. Dashed lines indicate that the files or commands are 

not required.

The problem-description file is by default called “input” but can be renamed with the -i switch on 
the command line. A version of this file is also output as an “echo” file, viz. a prefix “echo” 
prepended to the input file name. The echo file is used to verify input into goma, as it clearly 
states all default settings for the input file and material files. . The input file itself contains the 
general description of the problem and directions to Goma on how to solve it (see Chapter 4). The 
file is split into thirteen sections: (1) File Specifications (Section 4.1) which directs I/O, (2) 
General Specifications (Section 4.2), (3) Time Integration Specifications (Section 4.3), (4) 
Continuation Specifications (Section 4.4), (5) Hunting Specifications (Section 4.5), (6) 
Augmenting Condition Specification (Section 4.6), (7) Solver Specifications (Section 4.7), (8) 

GOMA

command line options
Problem Description

Default “input”

Material Files
mn.mat

EXODUS II Database
*.exoII

ASCII Continuation/restart file ASCII Continuation/restart file

EXODUS II Database
*.exoII

EXODUS II Databases
with auxiliary nodal fields

echo files for “input” 
and *.mat files. 
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Eigensolver Specifications (Section 4.8), (9) Geometry Specification (Section 4.9), (10) 
Boundary Condition Specifications (Section 4.10), (11) Rotation Specifications (Section 4.11), 
(12) Problem Description (Section 4.12), and (13) Post Processing Specifications (Section 4.13); 
this latter section includes breakouts for fluxes and data (Section 4.14), particle traces (Section 
4.15) and for volume-based integrals. The file format is described in detail in Chapter 4. 
Incidentally, the structure of the data input routines is divided roughly along the same lines as the 
input data file itself.

The material description files (using the nomenclature “[material name].mat”) contain all 
material property data and material property model and constitutive model specifications. The 
names of these files are specified in the problem description file. The format of these files and the 
available options are described in Chapter 5. Note that these files are also reproduced as output as 
“echo” files, with all default settings specified. 

The ASCII continuation/restart files (may have any name) contain an ASCII list of the solution 
vector (values of field variables at nodes), which can be used as an initial guess for successive 
runs of Goma. The names of these files are specified in the problem description file, but may be 
changed with the -c (for input) or -s (for output) command-line options. These restart files are 
“recyclable”, in the sense that output from one Goma simulation may be used as input to another 
Goma simulation under certain restrictions.

The EXODUS II database files (may have any name but generally end in “.exoII”) contain a 
description of the finite-element structure for the current problem. All EXODUS II files contain a 
definition of the mesh, material blocks, and boundary sets. In the case of input EXODUS II files 
created from mesh generator output, this is the sole content of the file. Output EXODUS II 
database files contain a clone of the input EXODUS II mesh information and also contains the 
nodal values of all field variables in the solution. The names of these files are specified in the 
problem description file, but may be changed with the -ix (for input) or -ox (for output) 
command-line options. The only EXODUS II file required when running Goma is the one 
containing the current problem mesh. All others are either output for postprocessing or used to 
supply auxiliary external fields (e.g. magnetic fields).

3.2 Command-line Arguments

Goma can be run using only the input files (all four listed above) to describe the problem and to 
direct the input and output; in this case Goma is run using the command “goma” without any 
arguments. However, command-line arguments offer additional flexibility for redirecting input or 
output and for adjusting common run-time parameters. The general command line for running 
Goma is:

goma [-nd] [-se fn] [-so fn] [-i fn] [-c fn] [-s fn] [-ix fn] [-ox fn] [-d int]

[-n int] [-r dbl] [-a args] [-restart fn] [-h] [-ts dbl] [-te dbl] [-cb dbl] [-ce dbl] 

[-cd dbl] [-cn int] [-cmin dbl] [-cmax dbl] [-cm int] [-ct int] [-c_bc int] 
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[-c_df int] [-c_mn int] [-c_mp int] [-bc_list] [-v]

Here fn denotes “file name”, int denotes “integer”, dbl denotes “float or double” and args denotes 
multiple sub-options or file names. The input line is parsed into options, which are preceded by a 
single hyphen (-) and arguments, which normally are fn, int, or dbl not preceded by a hyphen. The 
default, if no options are specified, is the input option (e.g. “goma input.alt” is the same as 
“goma -i input.alt”). The following is a list of the command-line options and their 
descriptions (two ways are shown to specify each option, an abbreviated and a verbose form).

-a args -aprepro args

Preprocess input files through the APREPRO preprocessor [with args 
as arguments to APREPRO] before reading into Goma. With this 
option, Goma performs a UNIX system() call to run APREPRO 
which will preprocess the input file and the material data files. The 
APREPRO input file is preprocessed from “input” or the filename 
specified by the -input option and written to “tmp.input”. Likewise, 
the material data files are preprocessed from “[material name].mat” 
to “tmp.[material name].mat”. After the “-a” on the command line, 
options for APREPRO are preceded by two hyphens (--). For exam-
ple, the command line “goma -i input.pre -a CONSTANT1=0.2 --vd” 
will preprocess “input.pre” and the material data files specified in 
input.pre using APREPRO, and will pass the argument -vd (which 
prints version number and values of all variables to the screen) and 
CONSTANT1=0.2 (which sets the variable CONSTANT1 equal to 
0.2 for preprocessing) to APREPRO; the preprocessed files will be 
“tmp.input” and “tmp.[material name].mat”.)

-c fn -contin fn 

Change the name of the ASCII continuation/restart input file (speci-
fied in Problem-Description File) to fn, (e.g. “goma -c old.soln.dat” 
uses the file “old.soln.dat” as the ASCII input file). Note that this 
option has no effect if the initial guess is not read from the ASCII file, 
i.e. unless “Initial Guess = read” is specified in the input file.

-d int -debug int

Change the debug flag to int. This option is convenient when debug-
ging and the user wants to see more output from Goma. (e.g. “goma -
d -2” will run Goma with the Debug_Flag set to -2). Higher values 
generally produce more output.

-h -help

Prints a helpful message with brief descriptions of these command 
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line options.

-i fn -input fn 

Redirect Goma to read the problem description file from fn. The nor-
mal default option is to read from a file named “input”.

-ix fn -inexoII fn 

Redirect Goma to read the input EXODUS II database file (often 
called “in.exoII”) from fn.

-n int 

Change the maximum number of Newton iterations to int. This is 
especially convenient for setting the number of iterations to zero so 
that Goma just runs the post-processor on the set of input data.

-nd -nodisplay 

Do not display the run-time information on the screen. With this 
option, Goma sends the stdout and stderr output to temporary files 
that are removed at the end of the run. This command takes no argu-
ments.

-ox fn -outexoII fn 

Redirect Goma to write the output EXODUS II file (often called 
“out.exoII”) to fn.

-r dbl relax dbl 

Change the value of the Newton relaxation parameter to dbl. This is 
convenient if a few Newton steps with relaxation are desired before 
using full Newton. (e.g. “goma -r 0.1” will use Newton’s method with 
updates one-tenth of the normal value.

-s fn -soln fn 

Redirect Goma to write the output ASCII file (normally called 
“soln.dat”) to fn.

-se fn -stderr fn 

Redirect the standard error from Goma to fn. This output is com-
prised of more urgent diagnostic error and timing messages.

-so fn -stdout fn 
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Redirect the standard output from Goma to fn. This output is com-
prised of less urgent informational messages.

-ts dbl Start time of simulation. 

-te dbl End time of simulation

-cb dbl Continuation: Start value (see Gates et al., SAND2000-2465)

-ce dbl Continuation: Final value (see Gates et al., SAND2000-2465)

-cd dbl Continuation: Path step, ds (see Gates et al., SAND2000-2465)

-cn dbl Continuation: Max number of path steps (see Gates et al., 2000)

-cm int Continuation: Method (see Gates et al., 2000)

-ct int Continuation: Type (see Gates et al., 2000)

-c_bc int Continuation: Boundary condition ID (see Gates et al., 2000)

-c_df int Continuation: BC Data Float ID (see Gates et al., 2000)

-c_mn int Continuation: Material ID (see Gates et al., 2000)

-c_mp int Continuation: Method property ID (see Gates et al, 2000)

-bc_list     List BC tags for continuation (see Gates et al., 2000)

-v          --version  Print code version and exit

NOTE: To get the most up-to-date list, simple issue the “goma -h” command at the command 

line. Also note that the continuation input parameters are explained in the Advanced 

Capabilities Manual (Gates et al. 2000 or newer version). 

The primary purpose of the command-line options is to allow the user an easy way to redirect the 
input and output of Goma or to quickly change problem specifications. Most of the options are 
overrides of information in the problem description file, so in some cases it may be easier to edit 
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the problem description file than to use command-line arguments.
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4 Data Input-- Problem Description File

The input file for Goma contains the overall description of the problem to be solved together with 
instructions on solution strategy. The file (cf. sample in Figure 3) is split into sixteen sections: (1) 
File Specifications (Section 4.1) which directs I/O, (2) General Specifications (Section 4.2), (3) 
Time Integration Specifications (Section 4.3), (4) Continuation Specifications (Section 4.4), (5) 
Hunting Specifications (Section 4.5), (6) Augmenting conditions (Section 4.6), (7) Solver 
Specifications (Section 4.7), (8) Eigensolver Specifications (Section 4.8), (9) Geometry 
Specifications, (Section 4.9) (10) Boundary Condition Specifications (Section 4.10), (11) 
Rotation Specifications (Section 4.11), (12) Problem Description (Section 4.12), (13) Post 
Processing Specifications (Section 4.13), (14) Post Processing Fluxes and Data (Section 4.14), 
(15) Post Processing Particle Traces (Section 4.15) and (16) Volumetric Integration (Section 
4.16). Sections (1), (2), (3), (7), (10), (12), and (13) are required. The rest are optional, depending 
on the problem type being solved.

Each section in this chapter discusses a separate part of the input file specification and it indicates 
the data cards or input records that may be used, followed by the options available for each 
individual record (or line in the file) and the necessary input data/parameters. All input data are 
specified in a free field format with successive data items separated by blanks or tabs. In this 
version of the user’s manual, a new format has been instituted in which each record is presented in 
a template structure. This template has eight parts: 1) a title, which is also the card name, 2) a 
syntax, which is enclosed in a framed box and shows the proper contents of the card, 3) a 
Description/Usage section, which presents the user options and descriptions of proper input 
records, 4) an Example, 5) a Technical Discussion to provide relevant information to help the user 
understand how to select from among various options or how to properly determine the desired 
parameters, 6) a Theory to provide an understanding of the physics and mechanics that have been 
implemented or are being exercised, 7) a FAQs section to present important user experience, and 
8) a Reference section to identify citations and/or provide background information to the user. 
This is a more lengthy but a more complete form for documenting and instructing users of Goma. 

The syntax entry denotes a unique string for each input record which Goma parses in the input 
file. All words in these unique strings are separated by a single white space and because the code 
parses for these exact strings, the parser becomes case sensitive. The identifying string for a 
particular specification is followed by an ‘=’ character. Following this character will be all 
additional data for that record, if any. In the syntax box, this additional data is symbolically 
represented by one or more variables with some appropriate delimiters. Typically, the user will 
find a variable called model_name enclosed in curly braces ‘{}’; this would then be followed by 
a description of specific options for model_name in the Description/Usage section. The curly 
braces indicate a required input and that the user must select one of the offered options for 
model_name. Required parameters, if any, for the model option are enclosed in angle brackets ‘< 
>’, while optional parameters for model_name are enclosed in square brackets ‘[ ]’. Following 
the ‘=’ character, the user may use white space freely between and among the remaining 
parameters on the command line.
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The nature of the input parser allows the user to freely comment the input deck in any way, so 
long as the character strings in the comments do not contain the exact strings described in this 
section of the manual at the beginning of the comment line. Simply for the sake of uniformity, it is 
recommended that a comment card convention be adopted, i.e., placing some delimiting symbol 
(e.g., $, #, \, etc.) at the beginning of each comment line. Moreover, employing some of the basic 
text processing capabilities provided in the ACCESS system (Sjaardema, 1993) makes it possible 
to connect both the model generation input file, e.g., FASTQ or CUBIT, with the input deck for 
Goma. For example, the “include” statement in APREPRO (Sjaardema, 1992) makes it 
convenient to include geometrical information contained in a FASTQ input file into the Goma 
input file for use with commands like PLANE and SPLINE that make use of global problem 
geometry. APREPRO also enables a user to generate customized model parameterizations with 
the algebraic preprocessing capability (demonstrated in Goma Tutorials). Finally, employing a 
text preprocessor like APREPRO enables the analyst to attach more meaningful labels to entities 
such as side sets, node sets and element blocks than the internal names (which are simple integer 
identifiers).

The order of the input cards is significant; omitting a required card will often result in an error 
message from Goma. To avoid such errors, a good strategy is to copy a current version of a 
working input file and then make changes to it. However, as noted below, some cards are optional. 
Some file sections, such as boundary condition specification section and equation specification 
section, are not order dependent, but number dependent, as only the number of boundary 
conditions or equations which are specified by the “Number of BC” and “Number of EQ” cards 
will be read (regardless of the number of cards in the file). That is, after the specified number of 
individual equation or boundary condition cards is read, any remaining cards are ignored. Figure 
3 shows a sample problem description input deck, indicating some optional and required cards 
(lines). All possible cards and card sections are not identified in this figure as they are too 
numerous. The remainder of this chapter describes each card in detail.

A final note to the user (and reader) of this manual pertains to backward compatibility and 
obsolescence. There are several input records that have been superseded or have simply been 
dropped from usage as the software has evolved. Rather than eliminate all of these inputs cards 
immediately and cause some head-scratching about input cards which exist in users old input 
decks, the decision was made to leave these cards in the current manual and simply document the 
fact that they are no longer used (and in some cases why this is so). In the CD version of the 
Goma Document System, these cards will be removed at a future date and no reference made to 
them again.
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Figure 3.  Sample problem description input deck. Italic type denotes required data cards 

(lines) and plain type denotes optional cards or cards that in number correspond to the 

designation above them, e.g., “Number of BC” or “Number of EQ”. (a) These cards are 

optional if the “steady” option is chosen on the Time Integration card. (b) This group of 

cards is repeated for each different material block in the EXODUS II database file. (c) 

These cards are all optional and can appear in any order. Please check this manual for 

numerous new post processing options. 

Problem Description

------- -----------

Number of Materials = 1

MAT = sample    1

Coordinate System = CARTESIAN

Element Mapping = isoparametric

Mesh Motion = ARBITRARY

Number of bulk species = 1

Number of EQ                     = 5

EQ = momentum1 Q2 U1 Q2 1 1 1 1 1 0

EQ = momentum2 Q2 U2 Q2 1 1 1 1 1 0

EQ = continuityP1 P P1 1 0

EQ = mesh1 Q2 D1 Q2 0 0 0 1 0 0

EQ = mesh2 Q2 D2 Q2 0 0 0 1 0 0

EQ = energy Q2 T Q2 0 0 0 1 0 0

EQ = species Q2 Y1 Q2 0 0 0 1 0 0

END OF EQ

.

.

.

END OF MAT

Post Processing Specifications

---- ---------- --------------

Stream Function = yes

Streamwise normal stress = no

Pressure contours = yes

First Invariant of Strain = yes

Second Invariant of Strain = yes

Third Invariant of Strain = yes

Mesh Dilatation = no

Navier Stokes Residuals = yes

Moving Mesh Residuals = no

Mass Diffusion Vectors = no

Mass Fluxlines = no

Energy Conduction Vectors = no

Energy Fluxlines = no

Time Derivatives = no

Mesh Stress Tensor = no

Mesh Strain Tensor = yes

Porous Saturation = yes

Bulk density of species in porous media = yes

Gas concentration of species in porous media = yes

Liquid concentration of species in porous media = yes

Gas phase convection vectors in porous media = yes

Liquid phase convection vectors in porous media = yes

Porosity in deformable porous media = yes

Capillary pressure in porous media = yes

Lagrangian Convection = no

User-Defined Post Processing = no

FEM File Specifications

--- ---- --------------

FEM file = in.exoII

Output EXODUS II file = out.exoII

GUESS file = contin.dat

SOLN file = soln.dat

Write intermediate results = no

General Specifications

------- --------------

Number of processors = 1

Output Level = 0

Debug = 0 

Initial Guess = zero

Initialize = VELOCITY1 0 0.

External Field = J_FIELD Q2 f.exoII

Time Integration Specifications

---- ----------- --------------

Time integration  = steady

delta_t = 6.e-03

Maximum number of time steps  = 100

Maximum time = 105

Minimum time step = 1.e-9

Time step parameter = 0.

Time step error = 0.001

Printing Frequency = 1

Solver Specifications

------ --------------

Solution Algorithm = lu

Preconditioner = poly

Matrix Scaling = none

Matrix residual norm type= r0

Matrix output type = none

Matrix factorization reuse= recalc

Matrix factorization overlap= none

Matrix auxiliary vector=resid

Matrix drop tolerance=0

Matrix polynomial order=3

Size of Krylov subspace=30

Orthogonalization = classic

Maximum Linear Solve Iterations = 500

Number of Newton Iterations  = 5

Newton correction factor = 1  

Normalized Residual Tolerance = 1.0e-11 

Residual Ratio Tolerance = 1.0e-3

Pressure Stabilization = yes

Pressure Stabilization Scaling = 1.

Boundary Condition Specifications

-------- --------- --------------

Number of BC = 2

BC = V NS 4 0.

BC = Y NS 7 1  1.

END OF BC

Pressure Datum 0 0 

optional

(a)

optional

(b)

(c)

THESE TWO
CARDS IGNORED
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4.1 File Specifications

In general, this first section of the main input file is used to direct Goma I/O through a series of 
named external files that contain information about the finite element mesh, the initial guess of a 
solution vector, and output options for saving solutions for continuation, remesh, etc. The 
required and optional input records are as follows:

4.1.1 FEM file

Description/Usage

This required card specifies the name of the EXODUS II finite element mesh file. Any 
EXODUS II file name is permissible, as specified below.

<file_name> A file name of the form prefix.exoII. The prefix portion is 
any user-specified alpha-numeric string, which can be used 
as a problem-type descriptor. Preprocessors and 
postprocessors (like AVS) might require the “.exoII” suffix 
so it is a required part of the file designation. The maximum 
length of the file name is 85 characters. 

Examples

Following is a sample card: 

FEM file = in.exoII

Technical Discussion

This file contains the finite element discretization of the problem domain. Finite 
element mesh files from other preprocessors may be used with Goma as long as a 
translator from the preprocessor’s output format to the EXODUS II format is available 
to the analyst.

Theory

No Theory.

FAQs

No FAQs.

FEM file = <file_name>
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References

The EXODUS II format is documented in:

• EXODUS II: A Finite Element Data Model, Schoof, L. A. and V. R. Yarberry, 
SAND92-2137, Sandia National Laboratories, Albuquerque, NM.

 

4.1.2 Output EXODUS II file

Description/Usage

This required card specifies the name of the output EXODUS II file. Any EXODUS II 
file name is permissible, as specified below.

<file_name> A file name of the form prefix.exoII. The prefix portion is 
any user-specified alpha-numeric string, which can be used 
as an output file descriptor.

This EXODUS II file contains a replica of the input mesh and boundary condition 
information exactly as it was provided in the FEM file, but has appended to it the 
solution field information appropriate to the problem type. If the name of this output 
EXODUS II file <file_name> is identical to the name of the input EXODUS II file (as 
specified in the FEM file card), then no replication of the input mesh data is performed 
and any results are simply appended to it.

Examples

Following is a sample card: 

Output EXODUS II file = out.exoII

Technical Discussion

Although allowed, it is not advisable to make this file name the same as the file name 
input on the FEM file card.

Theory

No Theory.

Output EXODUS II file = <file_name>
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FAQs

No FAQs.

References

The EXODUS II format is documented in:

• EXODUS II: A Finite Element Data Model, Schoof, L. A. and V. R. Yarberry, 
SAND92-2137, Sandia National Laboratories, Albuquerque, NM.

 

4.1.3 GUESS file

Description/Usage

This required card identifies the input file that provides the initial guess for the solution 
vector for continuation or time integration, where

<file_name> Specifies the exact name of the file and can be any file 
name.

The file <file_name> is read by Goma only if the value of the Initial Guess (next 
section on General Specifications) card is set to read. The current format of this ASCII 
file is a list of unformatted floating point numbers (the solution variable followed by 
the residual value for that degree of freedom) in the order of the unknown map; this is 
the same format as the file described in the SOLN file card. A solution file from a 
previous simulation may be used.

Examples

Following is a sample card: 

GUESS file = contin.dat 

Technical Discussion

This file is typically a copy of the SOLN file thus being an exact replica of it. It 
represents the only way to continue a previous solution from an ASCII file. Typically a 
continuation proceeds from a converged solution but the result from an intermediate 
solution could also be used; the user is cautioned about the potential difficulties of 
restarting from non-converged solution. (See Initial Guess card about (re-)starting from 
a binary file.)

GUESS file = <file_name>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.1.4 SOLN file

Description/Usage

This required card identifies the ASCII output file that will provide the initial guess for 
continuation or time integration, where

<file_name> Specifies the name of the output file, or if no file is desired, 
a value of no or none should be entered.

The current format of this ASCII file is a list of unformatted floating point numbers that 
includes every degree of freedom in the problem in the order specified in the unknown 
map. Other information (residual for that degree of freedom) may appear beyond the 
first column of numbers in this file that is sometimes useful in determining the name 
and location of the corresponding degree-of-freedom. If no or none is used in place of 
the file name, no ASCII information is written.

Examples

Following is a sample card:

SOLN file = soln.dat

Technical Discussion

This file represents the primary ASCII output of the Goma solution vector and the 
primary way to continue or restart a solution from an ASCII file. (See Write 
Intermediate Solutions for related information.) When a continuation run is performed, 
this file is copied into the file specified in the GUESS file input card. 

SOLN file = <file_name>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.1.5 Write Intermediate Results

Description/Usage

This optional card controls the output of intermediate results. The permissible values 
for this card are

yes The code will output the latest Newton iteration to a file 
named ‘tmp.i.d’, where i is the Newton iteration number. 
The format of tmp.i.d will be similar to the ASCII results 
data described for the GUESS file and SOLN file cards. 
Also, the output EXODUS II database (see the Output 
EXODUS II file card) will accumulate the intermediate 
iterations as time planes of the solution.

no No intermediate results are written; only the last Newton 
iteration is written to the file named in the SOLN file card, 
and only the final converged iteration is output to the 
EXODUS II file.

Examples

Following is a sample card:

Write Intermediate Results = no

Write Intermediate Results = {yes | no}
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Technical Discussion

This file is useful to guard against machine crashes or accidental job kills, particularly 
for very large problems, as it can be used to restart a simulation (by using this file as the 
Guess file). The intermediate results in the output EXODUS II database can be a useful 
debugging tool, giving the analyst the ability to use highly relaxed Newton iterations to 
see how a free boundary problem diverges.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.1.6 Write initial solution

Description/Usage

This optional card controls the output of an initial solution prior to the start of a time 
dependent simulation. The permissible values for this card are:

yes This value sets the flag WRITE_INITIAL_SOLUTION variable 
to “TRUE”. The initial solution vector will be written to an 
EXODUS II file and to an ASCII file (if the number of 
processors is not greater than DP_PROC_PRINT_LIMIT, 
currently set to 4 in rf_io.h). 

no No initial solution is written.

Examples

Following is a sample card:

Write Initial Solution = yes

Write initial solution = {yes | no}
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Technical Discussion

This option is useful to activate when help is desired in debugging the startup portion of 
a transient simulation.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.2 General Specifications

This section of input records covers additional I/O requests and specifications, including parallel 
file I/O information, initial-guess directives (viz., whether a restart comes from a neutral file or 
another exoII file), individual field variable initialization, debugging options, developer 
diagnostic options, etc. This section and several of its input records are required, as indicated 
below.

4.2.1 Number of processors

Description/Usage

This card is no longer used in Goma; it is defunct. Input decks can safely remove this 
card without adverse effects as the input parser no longer looks for this as an input 
string.

Examples

No examples.

Number of processors = <integer>
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Technical Discussion

As the full implementation of parallel Goma has been achieved, this card is no longer 
required. The number of processors is designated on the command line, when brking 
the mesh during domain decomposition, on the mpirun command line when executing 
Goma and on the fix command line when reassembling solution files calculated on 
decomposed meshes.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.2.2 Output Level

Description/Usage

This optional card specifies the level of diagnostic information output to the file 

stderr. The permissible values for <integer> are 0 through 4, depending on the level 
of informational (debugging) output desired; higher values of the output level will 
produce more diagnostic information on the stdout and stderr output channels. 
The default output level is 0. Specific output is summarized below.

Level Results Output

0 No diagnostic output (default).

1 Identifies the degree of freedom, the solution variable, and 
node at which the maximum value of  norm is present.

2, 3, 4 Currently unused; available for developer output 
specification.

Output Level = <integer>

L∞
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Examples

Following is a sample card:

Output Level = 1

Technical Discussion

This specification allows the developer a means to output specific information that 
would be helpful in diagnosing problems in the software. Currently, the output options 
are limited.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.2.3 Debug

Description/Usage

This optional card specifies the level of information output to files stdout and 
stderr. The permissible values for <integer> are -3 through 4, depending on the level 
of informational (debugging) output desired; higher values of the output level will 
produce more diagnostic information output on the stdout and stderr output 
channels. The default level is 0. Specific results produced for each level are 
summarized below. The user should exercise caution in using values other than the 
default for problems with large numbers of unknowns as the volume of information 
increases very quickly.

Level Results Output

0 No output (default).

Debug = <integer>
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1 Logs activity as the code does problem setup, including setting 
parameters for the EXODUS II database, major array allocation 
addresses and sizes, boundary-condition (BC) conflict-
resolution information, and identification of the rotation 
conditions at every node with a boundary flag. Prints out surface 
boundary integral setup information. Lists matrix and solver 
information for each solution step.

2 Prints same information as level 1, plus provides a summary of 
BC type information for each BC and logs the beginning and 
end of matrix fill operations.

3 Prints same information as level 2, but also prints a list of 
variables/unknowns at each node.

4 Prints same information as for level 3.

-1 Logs activity as the code does problem setup and prints out 
surface boundary integral setup information as is done for mode 
1. Triggers a comparison of the analytical Jacobian and the 
numerical Jacobian in un-scaled form, which can be used to 
check the compatibility of the analytical residual equations and 
Jacobian. Prints results only if the analytical and numerical 
Jacobian are different. Does not solve any equations; terminates 
after Jacobian print out.

-2 Same initial information as for level -1. Triggers a comparison 
of the analytical Jacobian and the numerical Jacobian scaled by 
the sum of each row of the analytical Jacobian (this helps 
suppress small errors in large Jacobian entries). Prints results 
only if the analytical and numerical Jacobian are different.

-3 Similar to level -2 except each row is scaled by the diagonal 
value which is usually the largest. Prints results only if the 
analytical and numerical Jacobian are different.

Examples

Following is a sample card:

Debug = -2

Technical Discussion

For options -1, -2, -3, viz. numerical Jacobian checking, the user must take care when 
interpreting the cited differences in the numerical and analytical Jacobian. The 
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comparison is made by perturbing each variable and comparing the numerical Jacobian 
computed between the perturbed and unperturbed states to the analytical Jacobians at 
the two states. A difference is deemed significant if the numerical Jacobian falls outside 
the band between the two analytical values with an additional allowance for roundoff 
error. It is the roundoff error in the residual that is the most difficult for the Jacobian 
checker to estimate. This is particularly true for problems with zero initial conditions 
since it is impossible to determine the scale of a velocity, for example, if all the values 
of velocity are zero. For this reason, it is often better to use a nonzero initial condition 
or a scaled problem (with values order unity) when using the Jacobian checker.

Currently, there are two parameters output by the Jacobian checker that can help the 
user decide on the significance of the entry. The first is the relative change in the 
analytical residual. This quantity, labeled daj, is the percentage of the acceptance band 
that comes from changes in the analytical Jacobian from the unperturbed to perturbed 
states. For a non-linear dependency, the difference between the analytical Jacobians 
will be significant and it is reasonable to expect that the numerical Jacobian should fall 
within the band. If the analytical Jacobian is nearly constant over the perturbation, the 
accuracy of the check becomes increasingly dependent on knowing the roundoff error 
in the residual. So, as daj gets closer to unity, the user can have more confidence that 
the entry is significant.

The second parameter is a confidence measure that is the deviation between the 
numerical jacobian and analytical values divided by the expected value of the deviation 
based on roundoff error. Since the roundoff error is only known approximately, this 
value, called conf, is only a qualitative measure of the confidence. A conf value of 100 
means that the deviation between the numerical jacobian and the analytical values is 
100 times larger than the expected deviation based on roundoff error.

Here is a sample of output from a convective heat transfer problem, using the -2 option

Eqdof=92     T_0 n=31    Vardof=95     T_0 n=32    x=0          
dx=0.0001     aj=-0.008188  nj=-0.008126  aj_1=-0.008188  d_aj=0          
conf=1.889e+06

  >>> QCONV on SSID=1

This entry can be read as follows: The sensitivity of global equation number 92, which 
happens to be the T_0 energy equation at node 31, with respect to the temperature 
variable at node 32 (variable global degree of freedom number 95) has an analytical 
Jacobian of -0.008188 at the unperturbed state and a computed numerical Jacobian of 
0.008126. The analytical jacobian at the perturbed state is -0.008188. For this problem 
the change in the analytical Jacobian is zero between the unperturbed and perturbed 
states, so daj is zero. But even though the difference is small between the analytical and 
numerical values, it is huge relative to the expected roundoff error, with the deviation 
being 1.889e+6 times the deviation attributable to roundoff error.
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For each node where a deviation is found, the side boundary conditions applied at the 
node are printed, as shown above. If one of these boundary conditions are applied to the 
equation that shows an error and have the same dependency that is showing the error, 
this boundary condition is flagged as shown for the QCONV boundary condition 
above.

Before the user/developer concludes that there is a discrepancy in the analytical 
Jacobian, a few things should be tried:

• Giving the problem a nonzero initial guess, either by reading in a STEADY state 
solution, if one exists, or on transient problems using the “one” option on the 
Initial Guess card. Sometimes this will make many differences disappear.

• Checking whether the nodes cited in the difference outputs are boundary nodes. 
Specifically, if they are boundary nodes on which Dirichlet boundary conditions 
are specified, artificial errors can occur.

• Also, if you are in doubt that there are not reported errors, put one in by a 10 
percent perturbation to the residual. The Jacobian checker should hit on those 
errors and report them to you.

• Check the settings in mm_numjac.h.

Theory

No Theory.

FAQs

See troubleshooting tips for Numerical Jacobian checking in Technical Discussion.

References

No References.
 

4.2.4 Number of Jacobian File Dumps

Description/Usage

This routine will dump a serial machine independent binary file out to disk containing 
the Jacobian. The file is meant to be used by the auxiliary program, checkGomaJac, to 

Number of Jacobian File Dumps = <integer>



46 Revised: 6/12/13

4.2.4  Number of Jacobian File Dumps  

compare two versions of the Jacobian. Ancillary data meant to enhance the printouts in 
checkGomaJac are also output to the file. The card takes one mandatory integer 
variable.

<integer> If the integer is a positive number, n, then Goma will dump 
the first n Jacobians created (for any reason) to the current 
directory. If the integer is a negative value, -n, then Goma 
will dump a single Jacobian, the n’th Jacobian created, to 
the current directory.

 The dumped files are named matrix.000, matrix.001, etc. Overwrites of files are 
allowed to occur. The files themselves are written out using the XDR protocol layer 
(easy, quick, and machine portable). The VBR format is used to write files out, even if 
the internal format used by Goma is MSR. Thus, VBR and MSR formatted Jacobians 
may be compared. Frontal Solver Jacobians are not compatible. The algorithm used is 
also compatible with parallel jobs using Goma. In other words, the Jacobian file 
dumped out for an 8 processor Goma run should be identical to the file dumped out by 
a single processor run.

In order to use this feature, it is necessary to compile Goma with the MATRIX_DUMP 
flag defined.

To compare two Jacobian files previously dumped out for compatibility, run 
checkGomaJac offline:

checkGomaJac  matrix1   matrix2

checkGomaJac will compare each entry in the row and column scaled matrices and 
print out in an annotated format the entries containing the largest differences.

Examples

Number of Jacobian File Dumps = 2

Technical Discussion

This capability has proven itself to be very useful in tracking changes to the Jacobian 
due to differences in the machine architecture, number of processes, and due to changes 
in the source code over time. The comparison is done using the standard RTOL, ATOL 
logic found in ODE solvers. In other words, a weighting vector of the form,

, (4-1)

is created for each Jacobian entry, . Then, a determination of the difference between 
 and  by the following formula:

wi ATOL RTOL Ji
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2
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(4-2)

 is also used in the Jacobian column scalings, before the standard row sum scaling is 
applied.

Internal Sandia users can find the auxiliary program, checkGomaJac, in the directory /
home/goma/arch/linux/bin on the Linux compute server, and in other ‘arch’ 
subdirectories for other platforms. External users should contact Goma support staff to 
obtain the tool.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.2.5  Initial Guess

Description/Usage

This optional card directs the initialization of the entire unknown vector. Three options 
are provided to set the entire solution field to numerical values determined by 
{char_string}. Three additional options are available for reading initial values of the 
solution vector from data files. The permissible values of {char_string} are:

zero For an initial guess of zero (0.) for each degree of freedom 
in the unknown vector.

one For an initial guess of one (1.) for each degree of freedom in 
the unknown vector.

random For a random initial guess (between 0. and 1.) for each 
degree of freedom in the unknown vector.

Initial Guess = {char_string} [filename]

diffi

Ji
1

Ji
2

–

wi

--------------------------=

wi
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read To obtain the initial guess by reading the ASCII data file 
identified as the GUESS file, which must have initially been 
a SOLN file or a tmp_i.d (Write Intermediate Results) file.

read_exoII To obtain the initial guess from the EXODUS II file 
specified by the FEM file card that is also used to supply 
mesh data. Any extraneous variables in the EXODUS II file 
that are not in the list of active variables for the current 
problem description are simply ignored.

read_exoII_file file_name

To read the initial guess for the field variables from an 
EXODUS II database file different from the initial mesh 
database file. The file_name is specified as a single string 
following the read_exoII_file keyword. As with the 
read_exoII option, any extraneous variables not specified 
as active variables for the simulation will be simply ignored.

If this card is omitted, then the default behavior is to assume that a value of zero has 
been specified for {char_string}.

Examples

Following are two sample cards:

Initial Guess = zero

Initial Guess = read_exoII_file   First_Iteration.exoII

Technical Discussion

This card provides the specification of the initial vector of unknowns in a problem. In 
most cases this vector is specified to be identically zero, though in some cases a non-
zero vector may be of value (see Technical Discussion section of Debug card). The first 
three options (zero, one, random) employ an internally-generated vector of initial 
values, while the read option utilizes the values read from an ASCII solution file (see 
SOLN input card) previously calculated by Goma, and the read_exoII options employ 
solutions read from binary (exoII) files, not necessarily always generated by Goma.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.

4.2.6

4.2.7 Initialize

Description/Usage

This optional card provides a mechanism to set one of the field variables to a constant 
value across the whole domain. Definitions of the input parameters are as follows: 

{char_string} Permissible values for this input string are any variable 
names identified in source file rf_fem_const.h 
beginning at the section labeled Variable Names of 
unknowns. Examples include, but are not limited to, the 
following (note the shorthand notation for components):

VELOCITY1, VELOCITY2, VELOCITY3 (V123), 
MESH_DISPLACEMENT (MD123), 
SOLID_DISPLACEMENT (SD123), 
MASS_FRACTION, TEMPERATURE, PRESSURE, 
VOLTAGE, FILL, LS, POLYMER_STRESS (6 
components, 8 modes), VELOCITY_GRADIENT (9 
components), SHEAR_RATE, VOLF_PHASE (6 
phases),  POR_LIQ_PRES,  POR_GAS_PRES, 
POR_POROSITY, POR_SATURATION, POR_LAST, 
LAGR_MULT (LM123), SURF_CHARGE, 
EXT_VELOCITY, EFIELD(123), SHELL (4 variables), 
SPECIES (7 variables).  

For a more comprehensive list, see Technical discussion 

below. 

<integer> Species number to be initialized if the value of 
{char_string} is one of the SPECIES variables (see 
Technical Discussion); otherwise, set <integer> to zero.

<float> Value to which the variable should be initialized.

Initialize = {char_string} <integer> <float> [units vary]
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Multiple applications of this card are valid; Goma automatically counts the number of 
Initialize cards.

Examples

Following is a sample card:

Initialize = VELOCITY1 0 0.

Technical Discussion

This card provides the means to globally set (i.e., the entire problem domain) initial 
values for any of the field variables. Since the setting of variables initialized on this 
card takes place after reading the initial guess (see function init_vec in file rf_util.c), it 
can be used to override the value in the Initial Guess file.

In order to set a field to a specific value in a particular material only, a similar Initialize 
capability is provided within each material block. Please check in the Material Files 
section of this manual.

Note, the SPECIES_UNK variables are NOT used to initialize any of the species 
variables. Rather, the special definitions called SPECIES_MASS_FRACTION, 

SPECIES_MOLE_FRACTION, SPECIES_VOL_FRACTION, SPECIES_DENSITY, 

SPECIES_CONCENTRATION, SPECIES_CAP_PRESSURE and 
SPECIES_UNDEFINED_FORM, having integer representations of 2170 to 2176, and 
representing the various Species Types, are the variables used in Goma input or mat 
files for this input record. Multiple species are initialized by combining one of these 
variable types with the second parameter (<integer>) on this card.

The comprehensive list of keyword variable names can be found in mm_input_util.c, if 
you have access to GOMA source code. Search for the function variable_string_to_int.  
A snapshot of the initialize-able variables in that routine is shown here:

var = VELOCITY1;

var = VELOCITY2;

var = VELOCITY3;

var = TEMPERATURE;

var = MASS_FRACTION;

var = MESH_DISPLACEMENT1;

var = MESH_DISPLACEMENT2;

var = MESH_DISPLACEMENT3;

var = PRESSURE;

var = POLYMER_STRESS11;

var = POLYMER_STRESS12;
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var = POLYMER_STRESS13;

var = POLYMER_STRESS22;

var = POLYMER_STRESS23;

var = POLYMER_STRESS33;  

var = SOLID_DISPLACEMENT1;

var = SOLID_DISPLACEMENT2;

var = SOLID_DISPLACEMENT3;

var = VELOCITY_GRADIENT11;

var = VELOCITY_GRADIENT12;

var = VELOCITY_GRADIENT13;

var = VELOCITY_GRADIENT21;

var = VELOCITY_GRADIENT22;

var = VELOCITY_GRADIENT23;

var = VELOCITY_GRADIENT31;

var = VELOCITY_GRADIENT32;

var = VELOCITY_GRADIENT33;

var = VOLTAGE;

var = FILL;

var = SHEAR_RATE;

var = PVELOCITY1;

var = PVELOCITY2;

var = PVELOCITY3;

var = POLYMER_STRESS11_1;

var = POLYMER_STRESS12_1;

var = POLYMER_STRESS22_1;

var = POLYMER_STRESS13_1;

var = POLYMER_STRESS23_1;

var = POLYMER_STRESS33_1;

var = POLYMER_STRESS11_2;

var = POLYMER_STRESS12_2;

var = POLYMER_STRESS22_2;

var = POLYMER_STRESS13_2;

var = POLYMER_STRESS23_2;

var = POLYMER_STRESS33_2;

var = POLYMER_STRESS11_3;
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var = POLYMER_STRESS12_3;

var = POLYMER_STRESS22_3;

var = POLYMER_STRESS13_3;

var = POLYMER_STRESS23_3;

var = POLYMER_STRESS33_3;

var = POLYMER_STRESS11_4;

var = POLYMER_STRESS12_4;

var = POLYMER_STRESS22_4;

var = POLYMER_STRESS13_4;

var = POLYMER_STRESS23_4;

var = POLYMER_STRESS33_4;

var = POLYMER_STRESS11_5;

var = POLYMER_STRESS12_5;

var = POLYMER_STRESS22_5;

var = POLYMER_STRESS13_5;

var = POLYMER_STRESS23_5;

var = POLYMER_STRESS33_5;

var = POLYMER_STRESS11_6;

var = POLYMER_STRESS12_6;

var = POLYMER_STRESS22_6;

var = POLYMER_STRESS13_6;

var = POLYMER_STRESS23_6;

var = POLYMER_STRESS33_6;

var = POLYMER_STRESS11_7;

var = POLYMER_STRESS12_7;

var = POLYMER_STRESS22_7;

var = POLYMER_STRESS13_7;

var = POLYMER_STRESS23_7;

var = POLYMER_STRESS33_7;

var = SPECIES_MASS_FRACTION;

var = SPECIES_MOLE_FRACTION;

var = SPECIES_VOL_FRACTION;

var = SPECIES_DENSITY;

var = SPECIES_CONCENTRATION;

var = SPECIES_CAP_PRESSURE;
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var = SPECIES_UNDEFINED_FORM;

var = POR_LIQ_PRES;

var = POR_GAS_PRES;

var = POR_POROSITY;

var = POR_TEMP;

var = POR_SATURATION;

var = VORT_DIR1;

var = VORT_DIR2;

var = VORT_DIR3;

var = CURVATURE;

var = BOND_EVOLUTION;

var = SURF_CHARGE;

var = EXT_VELOCITY;

var = EFIELD1;

var = EFIELD2;

var = EFIELD3;

var = ENORM;

var = NORMAL1;

var = NORMAL2;

var = NORMAL3;

var = SHELL_CURVATURE;

var = SHELL_TENSION;

var = SHELL_X;

var = SHELL_Y;

var = SHELL_USER;

var = PHASE1;

var = PHASE2;

var = PHASE3;

var = PHASE4;

var = PHASE5;

var = SHELL_ANGLE1;

var = SHELL_ANGLE2;

var = SHELL_SURF_DIV_V;

var = SHELL_SURF_CURV; 

var = N_DOT_CURL_V;



54 Revised: 6/12/13

4.2.7  Initialize  

var = GRAD_V_DOT_N1;

var = GRAD_V_DOT_N2;

var = GRAD_V_DOT_N3;

var = ACOUS_PREAL;

var = ACOUS_PIMAG;

var = ACOUS_ENERGY;

var = POR_SINK_MASS;

var = VORT_DIR1

var = VORT_DIR2           

var = VORT_DIR3           

var = VORT_LAMBDA

var = CURVATURE           

var = LAGR_MULT1

var = LAGR_MULT2            

var = LAGR_MULT3            

var = BOND_EVOLUTION     

var = SURF_CHARGE          

var = EXT_VELOCITY

var = EFIELD1

var = EFIELD2              

var = EFIELD3              

var = ENORM                 

var = NORMAL1

var = NORMAL2               

var = NORMAL3               

var = SHELL_CURVATURE       

var = SHELL_TENSION         

var = SHELL_X               

var = SHELL_Y               

var = SHELL_USER            

var = PHASE1

var = PHASE2                

var = PHASE3                

var = PHASE4                

var = PHASE5                
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var = SHELL_ANGLE1

var = SHELL_ANGLE2          

var = SHELL_SURF_DIV_V      

var = SHELL_SURF_CURV       

var = N_DOT_CURL_V          

var = GRAD_S_V_DOT_N1

var = GRAD_S_V_DOT_N2       

var = GRAD_S_V_DOT_N3       

var = ACOUS_PREAL           

var = ACOUS_PIMAG           

var = SHELL_DIFF_FLUX       

var = SHELL_DIFF_CURVATURE  

var = SHELL_NORMAL1

var = SHELL_NORMAL2         

var = ACOUS_REYN_STRESS     

var = SHELL_BDYVELO         

var = SHELL_LUBP            

var = LUBP                  

var = SHELL_FILMP           

var = SHELL_FILMH           

var = SHELL_PARTC           

var = SHELL_SAT_CLOSED      

var = SHELL_PRESS_OPEN     

var = SHELL_TEMPERATURE     

var = SHELL_DELTAH          

var = SHELL_LUB_CURV      

var = SHELL_SAT_GASN      

var = SHELL_SHEAR_TOP     

var = SHELL_SHEAR_BOT     

var = SHELL_CROSS_SHEAR    

var = MAX_STRAIN           

var = CUR_STRAIN           

var = LUBP_2              

var = SHELL_PRESS_OPEN_2  

var = SHELL_LUB_CURV_2   
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Theory

No theory.

FAQs

No FAQs.

References

No References.
4.2.8

4.2.9 External Field

Description/Usage

This optional card format provides a mechanism for reading-in nodal field variables 
stored in an EXODUS II file. Each field variable is specified on a separate input card, 
with the following input parameters:

<char_string1> Name of the nodal field to be read; it should correspond 
to a nodal variable name in the EXODUS II file.

{char_string2} Two- to eight-character value that identifies the type of 
interpolation to be applied to the external variable field. 
Possible values are as follows:

Q1 - Linear
Q2 - Quadratic
Q2_LSA - Special quadratic for 3D analysis of 

2D LSA
Q1_D - Linear with special surface dofs
Q2_D - Quadratic with special surface dofs
Q2_D_LSA - Special quadratic discontinuous for 3D 

analysis of 2D LSA
PQ1 - Bilinear discontinuous
PQ2 - Biquadratic discontinuous
P0 - Piecewise constant
P1 - Piecewise linear

External Field = <char_string1> {char_string2} <file_name> [char_string_3]
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SP - Subparametric; linear on interior, 
quadratic on surface

<file_name> Name of the EXODUS II file from which the nodal field 
is to be read. When Goma is compiled with 
LIBRARY_MODE defined (see Appendix 2) and the 
external field will be passed into Goma from a driver 
code, this entry will be either IMPORT (for nodal 
variables) or IMPORT_EV (for element variables), 
instead of a file name.

[char_string3] Optional character string.  Only optional available is 
“timedependent” which enables nodal variables to be 
interpolated to the current time step.  This option is 
useful for transient coupling, viz. a case in which a 
transient field variable is used to drive a time-dependent 
simulation.  A good example of this is a transient current 
density field from a electromagnetics calculation being 
used to drive a transient thermal calculation with Joule 
heating.

Examples

Three examples are provided. The first contains two variables to be read, the second 
has three variables to be read, and the third applies to fields imported from a driver 
code in library mode. Each example is discussed in the Technical Discussion section.

The first example:
External Field = VX Q2 velocity.exoII
External Field = VY Q2 velocity.exoII

the second example:
External Field = JX_FIELD Q2 fields.exoII
External Field = JY_FIELD Q2 fields.exoII
External Field = BTHETA_FIELD Q2 fields.exoII

the third example:
External Field = DMX Q1 IMPORT
External Field = DMY Q1 IMPORT
External Field = P_POR Q1 IMPORT_EV

and the fourth example:
External Field = JE_N_1 Q1 emfields.exoII time_dependent
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Technical Discussion

The field variables read into Goma from the Example cards can be accessed in any 
user-defined subroutine.

In the case of variables named VX, VY, or VZ, these fields are automatically loaded to 
the appropriate velocity component so they can be used in an advection-diffusion 
analysis, i.e., VX, VY, VZ are reserved names for <char_string1> and a user-defined 
routine is not required. Thus the variables for the two fields, “VX” and “VY”, read 
from the file named “velocity.exoII” in the first example above, would be automatically 
accessed when the advection term is left on in the energy or species_bulk equation 
cards. In other words, without solving the momentum equations, one can access an 
external velocity field for advection-diffusion problems. These variables would have 
quadratic interpolation (Q2) applied to the velocity values read.

The three cards in the second example can be used to read two components of a current 
density field (JX_FIELD, JY_FIELD), and the azimuthal component of a magnetic 
field (BTHETA_FIELD) from the file “fields.exoII” (generated by some other analysis 
code). These fields are then accessed in the user-defined subroutines as

fv->external_field[0], fv->external_field[1], and fv->external_field[2], 

respectively, as an interpolated value at an integration point. NOTE that these fields are 
brought in as a part of the BOUSS_JXB_FORCE on the Navier Stokes source 
card.   These are to be distinguished from the electromagnetic fields in the fourth 
example which correspond to Solid Momentum Source models.  

Note that the number of field variables read from the EXODUS II file must not exceed 
the value MAX_EXTERNAL_FIELD set in the include file rf_fem_const.h. 
Should that occur, a new version of Goma must be compiled with an increased value of 
MAX_EXTERNAL_FIELD. The user should consult notes on building Goma if (s)he 
has questions regarding how to do this.

The third example assumes that Goma has been compiled with LIBRARY_MODE and 
is linked in to an external driver code along with another program which will compute 
some variables and pass their values into Goma; here the imported fields are the X and 
Y components of mesh displacement (nodal variables) and porosity (an element 
variable). There is a naive first order interpolation function in Goma to obtain nodal 
values of fields which are imported as element variables. Although Goma does not 
solve for these variables, their values are included in the output Exodus file.

In the fourth example a field JE_N_1, the x-directed current density field, time-
dependent, is brought in from emfields.exoII.  Typically, depending on the 
dimension of the problem,  additional fields JE_N_2, JE_N_3 are also brought in as 
current density is a e.  These fields are part of the JXB Solid Momentum Source 
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model, together with the magnetic nodal field quantities, BE_N_1, BE_N_2, and 
BE_N_3. 

Several other standard external fields variables are supported in GOMA.  Namely:

FVP11, FVP22, etc.  These fields are useful for the elastoviscoplasticity model.  Please 
consult GOMA tutorial GT-019.2 for more details. 

SAT, HEIGHT, PERM, CROSS_PERM, SH_SAT_CL_POROSITY, etc.   These are 
specially designated external fields which are mapped to variations in these properties 
corresponding to thin porous media.  Please see GT-038.  

Theory

No Theory. 

FAQs

No FAQs.

References

GT-019.2.  Elastoviscoplastic (EVP) Consitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam, and K. S. Chen.  Memo to Distribution. 
March 13, 2003.

GT-038.0: Pixel-to-Mesh Tool Tutorial for GOMA.  P R. Schunk, Memo to 
distribution, 10 November 2009. 

4.2.10 Export Field

Description/Usage

Special capability for use in library mode, a mode in which GOMA is called as a 
library from a driver program.  This card is used to indicate which fields will be 
exported for use in other codes.  

Export Field = <integer1>
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<integer1> Name of the nodal field to be read; it should correspond 
to a nodal variable name in the EXODUS II file.

Examples

None

Technical Discussion

See Appendix 2 . 

Theory

No Theory. 

FAQs

No FAQs.

References

4.2.11 External Pixel Field

Description/Usage

This optional card format provides a mechanism for reading-in pixel fields which are 
converted (mapped, with a least squares algorithm) to finite element fields with the 
chosen interpolation.  After GOMA execution these fields are output in exodusII 
format in a file map.exoII. Please see discussion below and Tutorial GT-038 for more 
details and important tips. 

<char_string1> Name of the nodal field to be read; it should correspond 
to a nodal variable name you wish to have in the output 
EXODUS II file. If you subsequently wish to read the 
field in again and use as an EXTERNAL_FIELD model 
on other material property card, the chosen name 
matters.

External Pixel Field = <char_string1> {Q1|Q2} <file_name> <integer1>
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{Q1 | Q2} The type of interpolation to be applied to the external 
pixel field variable field. Possible values are as follows:

Q1 - Linear
Q2 - Quadratic

<file_name> Name of the text file name with the pixel points.  The 
pixel field format in this file should be as follows:

# pixel points

x_1, y_1, z_1 value

x_2, y_2, z_2 value

...

x_N, y_n, z_n value

<integer1> Material block ID to which the pixel field is mapped. 

Examples
External Pixel Field = HEIGHT Q1 tread.txt 1

Technical Discussion

Please consult the tutorial GT-038 before using this capability.  Many user tips are 
given together with a more thorough explanation on the proper use This capability is 
extremely memory intensive, and excessive grid sizes and pixel densities can blow out 
the memory on your machine.    As of 12/22/2012 (the end of the Mayan calendar) 
these fields are used typically to bring in pattern maps for scaling porous media and 
lubrication height properties.     

SAT, HEIGHT, PERM, CROSS_PERM, SH_SAT_CL_POROSITY, etc.   These are 
specially designated external fields which are mapped to variations in these properties 
corresponding to thin porous media.  Please see GT-038.  

Theory

No Theory. 

FAQs

No FAQs.
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References

GT-038.0: Pixel-to-Mesh Tool Tutorial for GOMA.  P R. Schunk, Memo to 
distribution, 10 November 2009. 

4.2.12 Pressure Datum

Description/Usage

This card is used to set a thermodynamic pressure datum on fluid or solid mechanics 
problems that calculate equations of state requiring a true value for the total pressure. 
The total pressure is then defined as the sum of a constant base thermodynamic 
pressure, specified by this card, and a variable hydrodynamic pressure calculated via 
the pressure unknown. Definitions of the input parameters are as follows:

<float> Value of the thermodynamic pressure datum.

{ atm | torr | cgs } Units of the float specified above.

Examples

Following is a sample card:

Pressure Datum = 1.0 atm

Technical Discussion

The value of this variable is stored in the unified problem description structure in cgs 
units. It is then used in consistency checks and as input into some equation of state 
routines, such as the ideal gas equation of state routine.

Theory

No Theory.

FAQs

No FAQs.

Pressure Datum =  <float>   { atm | torr | cgs }
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References

No References.

4.2.13 Anneal Mesh on Output

Description/Usage

This optional card enables the user to specify that the mesh displacements should be set 
to zero for the next continuation step. Valid options for this input card are

yes Set the mesh displacements to zero for the next continuation 
step.

no Do not set the mesh displacements to zero for the next 
continuation step. This is the default.

There are two important restrictions: 1) annealing the mesh will not work for the 
TOTAL_ALE mesh motion types, and 2) only the last time step will be annealed for 
transient problems.

Examples

Following is a sample card:

Anneal Mesh on Output = yes

Technical Discussion

Annealing a mesh is accomplished by adding the displacements (from the solution) to 
the base positions (from the FEM file) and writing the resulting nodal positions to a 
new EXODUS II file, currently anneal.exoII. During the annealing process, the 
displacement field is also set to zero. This file would be used to restart a subsequent 
analysis where the anneal.exoII is copied to, or becomes, the file used in a 
read_exoII option for an Initial Guess.

Theory

No Theory.

Anneal Mesh on Output = {yes | no}
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FAQs

No FAQs.

References

No References.

4.3 Time Integration Specifications

The first card in this section dictates whether the problem is a steady state or transient simulation. 
This card is required. If the steady state option is chosen, then the remaining input records are not 
required, as the rest of the records are used to set parameters for transient simulations, e.g., time 
step size, time step error control, etc. Some records are optional even for a transient simulation, as 
indicated below. It should be noted that the mass-matrix term multiplier in the Problem 
Description section (see, for example, the EQ= cards), must be set to one (1) for the transient run 
to evolve the fields in time. The only equations that are taken as purely quasi static are the 
EQ=mesh equations for the situation in which the Mesh Motion type is Arbitrary.

In addition to the transient parameter information, some Level-Set function information is also 
supplied to Goma in this section. The method of Level-Sets is used to track fluid-fluid or fluid-
solid interfaces in an Eulerian fashion, making the problem inherently transient.

4.3.1 Time Integration

Description/Usage

This required card is used to specify transient or steady-state calculation. Valid options 
are:

steady For a solution to the steady (time-derivative free) equations.

transient For transient simulations.

If option steady is chosen, then none of the other Time Integration Specification cards 
in this section are needed.

Example

This is a sample card for a steady state simulation: 

Time integration = {steady | transient}
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Time integration = steady

This is a sample card for a transient simulation: 

Time integration = transient

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.3.2 delta_t

Description/Usage

This card is required for transient simulations to set the value of the initial time step. 
The input parameter is defined as:

<float> Any floating point number that indicates the time step in the 
appropriate units for your problem.

To specify a fixed time step size for an analysis, set <float> to be a negative number, 
e.g. -1.0e-6; the code will use a constant (positive) time step. Should convergence 
problems occur when a fixed step size is specified, the size of the time increment 
entered for the delta_t card will be reduced by half until convergence is achieved. Once 
a constant time step is reduced, it will not be increased.

Examples

Following is a sample card for an initial time step:

delta_t = 6.e-03

delta_t = <float>
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If a constant time step is desired, use a negative value:

delta_t = -6.e-03

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.3.3 Maximum number of time steps 

Description/Usage

This card sets the maximum number of time steps that may be performed for a 
transient simulation. Goma will stop if this limit is reached. The input parameter is 
defined as

<integer> Any integer greater than zero, which will limit the number 
of time steps taken in a simulation.

Examples

The following sample card sets the maximum number of time steps to 100:

Maximum number of time steps = 100

Technical Discussion

No discussion.

Maximum number of time steps = <integer>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.3.4 Maximum time

Description/Usage

This card sets the maximum value of time that may be achieved in a transient 
simulation. Goma will stop if this limit is reached. The input parameter is defined as:

<float> Any floating point number in the same units as specified in 
the delta_t card.

The last result written to the EXODUS II and soln.dat file in a successfully 
completed simulation will always be at the maximum time. This provides a cutoff time 
beyond which the simulation will terminate.

Examples

The following sample card sets the maximum time to 105 (in units consistent with your 
simulation):

Maximum time = 105.

Technical Discussion

No discussion.

Theory

No Theory.

Maximum time = <float>
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FAQs

No FAQs.

References

No References.
 

4.3.5 Minimum time step

Description/Usage

This card sets the value of the minimum allowable time step size in a transient 
analysis, a useful control if the time step is being decreased due to poor convergence of 
the transient or iterative algorithm. The input parameter is defined as

<float> Any floating point number in the same units as specified in 
the delta_t card.

Examples

A sample card that sets the minimum time step to 1.e-9 follows: 

Minimum time step = 1.e-9

Technical Discussion

This specification provides a graceful way for the program to terminate based on the 
computed time step dropping below the minimum value rather than terminating by a 
segmentation fault or a divide-by-zero error that could result if the time step becomes 
too small without the benefit of this control.

Theory

No Theory.

FAQs

No FAQs.

Minimum time step = <float>
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References

No References.
 

4.3.6 Maximum time step

Description/Usage

This card sets the value of the maximum allowable time step size in a transient 
analysis, where the input parameter is defined as

<float> Any floating point number in the same units as specified in 
the delta_t card. 

Examples

A sample card that sets the maximum time step to 10.0 follows: 

Maximum time step = 10.0

Technical Discussion

This setting is useful for advection dominated simulations, such as FILL, where a 
Courant-like limit must be set on the value of the time step for optimal performance.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Maximum time step = <float>
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4.3.7  Minimum Resolved Time Step

Description/Usage

Its role is to set a lower bound for the time step with respect to the Time step error 
tolerance. When a converged time step is obtained by GOMA, the difference between 
the predicted solution and final solution for that time step is compared to the Time step 
error tolerance. If the difference exceeds this tolerance the step fails and the time step 
is cut (usually by a factor of 2), UNLESS the time step falls below the Minimum 
Resolved Time Step size. In this case the step is accepted, even if this error tolerance is 
not achieved. This provides a mechanism for the modeler to control what phenomena is 
resolved and what phenomena is ignored. 

<float> Any floating point number in the same units as specified in 
the delta_t card. 

Examples

A sample card that sets the maximum time step to 10.0 follows: 

Maximum Resolved Time Step = 10.0

Technical Discussion

See GT-034 for a thorough discussion. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-034: Tutorial on time step parameter selection for level-set problems in GOMA.  
April 1, 2006. D. R. Noble

Minimum Resolved Time Step = <float>
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4.3.8 Courant Number Limit

Description/Usage

This parameter’s roll is to control time step growth based on the well-known Courant 
number criterion.  This card applies only to level-set problems. This card imposes an 
upper limit on the time step size, irrespective of the variable time integrator already in 
place.  

<float> Any floating point number to indicate the Courant number 
limit. 

Examples

A sample card that sets the Courant number to 0.2 is: 

Courant Number Limit = 0.2

Technical Discussion

See GT-034 for a thorough discussion. 

Theory

The time step limit imposed by this limit is computed as

Here e is the element, he is the average size of the element, C is the specified Courant 
number, and 

FAQs

No FAQs.

Courant Number Limit = <float>
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References

GT-034: Tutorial on time step parameter selection for level-set problems in GOMA.  
April 1, 2006. D. R. Noble

4.3.9 Time step parameter

Description/Usage

This card allows the user to vary the time integration scheme. The usual settings are:

0.0 Backward Euler method (1st order in time)

0.5 Trapezoid rule (2nd order in time)

Examples

This is a sample card that sets the time integration scheme to Trapezoidal rule:

Time step parameter = 0.5

Technical Discussion

One should usually use the Trapezoid rule. When a large time step, , is used the 
Trapezoid rule can exhibit oscillations. If such a large  is required then the Backward 
Euler method can be used (it will damp oscillations), albeit at a cost of accuracy.

If we designate the time step parameter as , the solution at time step  as , and the 
PDE to be solved as

,

then the time integration method takes the form

where

.

Note that there is no choice of finite  that will yield a Forward Euler method. See 
Gartling (1987) for more information.

Time step parameter = <float>
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Theory

No Theory.

FAQs

For porous flow problems with mass lumping, you should always choose backward 
Euler method.

References

SAND86-1816: NACHOS 2: A Finite Element Computer Program for Incompressible 
Flow Problems - Part 2 - User’s Manual, Gartling, David K. (September, 1987).

 

4.3.10 Time step error

Description/Usage

The time step error controls the adjustable time step size based on the difference 
between the solution and the predicted solution (L2 norm). The first of the eight 
arguments is a floating point number that indicates the error in the time step selection.

<float> the error value, any floating point number.

The smaller this number is, the smaller the time step will tend to be in the automatic 
time step control. The original implementation of this capability in Goma did not use a 
normalized value for the norm; to enable this most useful feature, use a negative value 
of the time step error and a positive, normalized norm will be computed. This way a 
percentage value of the solution error will be set.

<integer_list> seven integers, with a value either zero (0) or one (1).

A further degree of control is offered by the seven integers (i1 through i7) that identify 
which solution variables will contribute to the error norm calculations. Permissible 
values for each of these seven integers are 0 and 1. The correspondence between the 
integers and variables is as follows:

i1 (pseudo) solid displacement

i2 fluid velocity

i3 temperature

Time step error = <float> <integer_list>
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i4 concentration, porous liquid pressure, gas pressure, porosity, 
saturation

i5 pressure

i6 fluid (polymer) extra stress

i7 voltage

A value of 0 for an integer directs Goma to exclude contributions from that variable in 
the error norm calculation; correspondingly, a value of 1 means that variable should be 
included.

Examples

A sample time step error card follows:

Time step error = 0.01 0 1 1 1 0 0 0

In this example, the L2 norms for the fluid velocity, temperature, and concentration are 
summed (and scaled) prior to comparison with the target error value of 0.01. If the 
norms of the velocity, temperature, and concentration variables is greater than 0.01, the 
time step is halved and the step repeated. Otherwise, the current step size is compared 
to other step criteria before continuing to the next step.

If the integer values are omitted, the scaled error norm becomes infinite and the 
analysis will terminate in the error norm calculation with an arithmetic overflow.

To use the normalized value of the norm, the following would be specified:

Time step error = -0.01 0 1 1 1 0 0 0

This would set the maximum time step error to be 1%.

Technical Discussion

Note that on porous flow problems the error in step-size is computed as a composite 
measure of all porous-flow variables, viz. these cannot currently be controlled 
separately.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

4.3.11 Printing Frequency

Description/Usage

This card sets the printing frequency, the step or time interval, at which Goma will print 
the solution variables to the Output EXODUS II file and the SOLN file. Definitions of 
the <integer> options, and the dependent [float] option when <integer> is set to 0, are:

<integer> Specifies how often the solution will be printed.

> 0 Interval in time steps between successive printings of the 
solution, any positive integer value

0 Controls printing of the solution at regularly spaced 
(uniform) intervals of time (every [float]), regardless of the 
number of time steps over that time interval

[float] Elapsed time (in the same units as specified in 
the delta_t card) between successive printings of 
the solution (any positive number).

Examples

Goma will print the solution every five time steps given the following sample card:

Printing Frequency = 5

Goma will print the solution every ten time units given the following sample card:

Printing Frequency = 0 10.

Technical Discussion

No discussion.

Theory

No Theory.

Printing Frequency = <integer> [float] 
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FAQs

No FAQs.

References

No References.
 

4.3.12 Second frequency time

Description/Usage

This card allows the time between successive writings of the solution to change after a 
specified time and is only used if the <integer> in the Printing Frequency card is set to 
0. Definitions of input parameters are as follows:

<float1> Any number indicating the time at which the printing 
frequency should shift from that specified in the Printing 
Frequency card to <float2>.

<float2> Printing frequency in time units (same units as specified in 
the delta_t card) for printing the solution at times greater 
than <float1>.

Examples

The following is a sample card that will change the printing frequency to print every 3 
time units after 15 time units:

Second frequency time = 15. 3.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Second frequency time = <float1> <float2>
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References

No References.

4.3.13  Initial Time

Description/Usage

This card sets the time at which the calculation starts. The input parameter is defined as 

<float> Any number indicating the initial solution time (in the same 
units as specified in the delta_t card). An additional feature 
can be triggered if this float is specified to be negative, 
which triggers GOMA to look for the nearest restart time in 
the restart ExodusII database to use as the start time.  Note 
that this option can only be used with Initial Guess 
options of read_exoII_file or read_exoII.  

Normally, the value of <float> will be set to zero unless the problem is a continuation 
of a previous transient problem.

Examples

The following is a sample card that shows a restart at 45 time units: 

Initial Time = 45.0

The following is a sample card that triggers Goma to look for a restart time of 10 time 
units, or the closest time value to 10 time units, to start from :

Initial Time = -10.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Initial Time = <float> 
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References

No References.

4.3.14 Fill Subcycle

Description/Usage

This is an optional card that sets the number of subcycle-fill time steps between fluid-
flow time steps in uncoupled level set calculations. The default is 10 subcycle time 
steps for every flow time step. The input parameter is defined as

<integer> Any nonzero number indicating the subcycling frequency of 
the fill equation versus the flow equations.

For example, if the value of <integer> is 1, the flow and fill equations are solved every 
time step. If it is 10, between every transient step in the flow calculation, the fill 
(advection) equation is solved 10 times with one-tenth of the time step.

Examples

The following is a sample card that sets the fill subcycling rate to 4:

Fill Subcycle = 4

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, Februray 27, 2001, T.A. 
Baer

 

Fill Subcycle = <integer>
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4.3.15 Fill Weight Function

Description/Usage

Sets the weight function used for the FILL equation for either the VOF or Level Set 
methods. The options for this card are as follows:

Galerkin Name of the weight function formulation. This option 
requests a standard Galerkin finite element weighted 
residual treatment. A floating point parameter is not 
used for this option.

Taylor-Galerkin Name of the weight function formulation.

SUPG Name of the weight function formulation. This option 
requests a Streamwise Upwinding Petrov Galerkin 
formulation. No floating point parameter is required.

The default value for the Fill Weight Function is Taylor-Galerkin.

Examples

This is a sample card:

Fill Weight Function = Galerkin

Technical Discussion

This card selects the integration/weight function used in solving for the VOF color 
function or the level set distance function (i.e., the FILL unknown). The user should 
refer to the tutorial on Level Set Computations for a detailed description of level set 
interface tracking. (See References.)

Theory

No Theory.

FAQs

No FAQs.

Fill Weight Function = {Galerkin | Taylor-Galerkin | SUPG}



80 Revised: 6/12/13

4.3.16  Level Set Interface Tracking  

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

A. N. Brooks and T. J. R. Hughes, “Streamline Upwind/Petrov-Galerkin Formulations 
for Convection Dominated Flows with Particular Emphasis on the Incompressible 
Navier-Stokes Equations,” Comp. Math. In Appl. Mechanics and Eng., 32, 199 - 259 
(1992). 

A. J. A. Unger, P. A. Forsyth and E. A. Sudicky, “Variable spatial and temporal 
weighting schemes for use in multi-phase compositional problems,” Advances in Water 
Resources, 19, 1 - 27 (1996).

R. Helmig and R. Huber, “Comparison of Galerkin-type discretization techniques for 
two-phase flow in heterogeneous porous media,” Advances in Water Resources, 21, 
697-711 (1998).

E. Gundersen and H. P. Langtangen, “Finite Element Methods for Two-Phase Flow in 
Heterogeneous Porous Media,” in Numerical Methods and Software Tools in Industrial 
Mathematics, Morten Daehlen, Aslak Tveito, Eds., Birkhauser, Boston, 1997. 

S. F. Bradford and N. D. Katopodes, “The anti-dissipative, non-monotone behavior of 
Petrov-Galerkin Upwinding,” International J. for Numerical Methods in Fluids, v. 33, 
583-608 (2000).

 

4.3.16 Level Set Interface Tracking

Description/Usage

Activates (or deactivates) embedded interface tracking by the level set method. When 
activated, the set of cards specifying level set run parameters are read; these should 
appear in the input deck following this card. Also when activated a “level_set” 
equation type should be included in the list of equations identified in the equations 
section.

Examples

A sample input card is:

Level Set Interface Tracking = yes

Level Set Interface Tracking = {yes | no}
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

4.3.17  Level Set Semi_Lagrange

Description/Usage

This card is currently inactive because it was developed for decoupled LS fill 
problems.  

<char1> YES | ON | TRUE.  

Examples

Level Set Semi_Lagrange = yes 

Technical Discussion

• None

Theory

No Theory.

FAQs

No FAQs.

Level Set Semi_Lagrange = <char1>
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References

None

4.3.18 Level Set Subgrid Integration Depth

Description/Usage

Subgrid integration is used to improve integration accuracy for all functions which 
invoke a diffuse level-set interface representation of properties and surfaces.  With 
integration depths greater than zero the elements through which the zero level set 
crosses are subdivided in a geometric way to achieve more accurate integration.  Level-
1 depths implies the smallest grid size is 1/4 of the original, and a level-2 is 1/8th, and 
so on.  Please see usage nodes below. 

<integer1> Level of integration depth.  Default is zero.  See usage 
notes.  

Examples

This example sets the subgrid integration depth to two:
Level Set Subgrid Integration Depth = 2 

Technical Discussion

• Each level of subgrid integration leads to precipitous growth in computational 
load, especially in 3D.   Level-2 seems to optimize accuracy and efficiency.   
Levels higher than 2 is not recommended.  

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

Level Set Subgrid Integration Depth = <integer1>
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4.3.20 Level Set Subelement Integration

Description/Usage

Subelement integration is used to improve integration accuracy for all functions which 
invoke a sharp level-set interface.   Note here that the Level Set Length Scale 
option must be zero.  This is possible because the subelement integration scheme 
actually produces a geometric representation of the zero level set surface on which 
exact line integrals of the surface tension source term term can be peformed.   Please 
see usage nodes below. 

{ON | YES} Use subelement integration on surface level set capillary 
term. 

{OFF | NO} Don’t use subelement integration. 

Examples

This example invokes the subelement integraton
Level Set Subelement Integration = ON

Technical Discussion

• NOTE: Level Set Length Scale must be set to zero.

• Because of the construction of an in-element interface meshing to find this 
representation, subelement integration cannot be used currently for three 
dimensional problems.  Subgrid integration can be, however, but h tis inefficient. 

• Best to use this integration approach with the property specification method of 
“Second Level-Set “property_name”, e.g. Second Level Set 
Density, etc.

• Typically this capability greatly improves mass conservation and avoids parasitics 
for surface tension dominated problems.

• NOTE that the Level Set Renormalization method must be set to Huygens.  

Level Set Subelement Integration = {ON | YES | OFF | NO}
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Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

4.3.21 Level Set Adaptive Integration

Description/Usage

To be used with Subelement integration  to improve integration accuracy. Does not 
work with subgrid integration or basic level-set.   Requires a sharp interface, viz. level-
set length scale of zero.   Please see usage nodes below. 

{ON | YES} Use adaptive integration on surface level set capillary term. 

{OFF | NO} Don’t use adaptive integration. 

Examples

This example invokes the subelement integraton
Level Set Adaptive Integration = ON

Technical Discussion

•

Theory

No Theory.

FAQs

No FAQs.

Level Set Adaptive Integration = {ON | YES | OFF | NO}
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References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

4.3.22

4.3.23 Level Set Adaptive Order

Description/Usage

To be used with Subelement adaptive integration to improve integration accuracy. Does 
not work with subgrid integration or basic level-set.   Requires a sharp interface, viz. 
level-set length scale of zero.   Please see usage nodes below. 

<integer1> Adaptive integration order.  Single positive integer greater 
than zero. Default value is 3. 

Examples

This example invokes the subelement adaptive integration order:
Level Set Adaptive Integration = YES
Level Set Adaptive Order = 2

Technical Discussion

•

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

Level Set Adaptive Integration = <integer1>
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4.3.24

4.3.25 Overlap Quadrature Points

Description/Usage

To be used with the overset grid capability.  This function sets the number of overlap 
quadrature points with this capability.  See GT-026 for more details.  

<integer1> Overlap quadrature points.  Single positive integer greater 
than zero. Default value is 3. 

Examples

This example invokes the number of overlapping quadrature points:
Overlap Quadrature Points = 2

Technical Discussion

• Please consult the overset grid capability tutorial for futher discussion.  (Ref. 
below).   This is to be use with AC_OVERLAP, or the augmenting condition of 
type AC = OV. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.4: “GOMA’s Overset Mesh Method”, P R. Schunk and E. D. Wilkes, 11 Jan. 
2006

Overlap Quadrature Points = <integer1>
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4.3.26 Level Set PSPP filtering

Description/Usage

On this card, the user specifies a single char_string.

<YES | ON> This string turns on level set PSPP filtering if it is “yes” or 
“on”. 

Examples

A typical PSPP filtering input card looks like:

Level Set PSPP filtering = yes

Technical Discussion

Not entirely clear what this card does, but in the vicinity of the level-set interface, the 
Bochev PSPP stabilization scheme is altered.   This is recommended when this pressure 
stabilization scheme is deployed. See the Pressure Stabilization card. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Level Set PSPP filtering = <YES | NO>
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4.3.27 Level Set Length Scale

Description/Usage

On this card, the user specifies a single float value.

<float> This value represents the size of the region around the zero 
level set function contour in which interfacial physical 
quantities, for example, surface tension, will be present.

Stability and conservation of phase volume are dependent upon this value to a 
significant degree. Experimentation has revealed that this float value should be 
between two and three times the average linear dimension of the elements in the mesh.

Examples

A typical length scale input card looks like:

Level Set Length Scale = 0.3

Technical Discussion

The level set method is an embedded interface method. That is, the location of the 
interface is not known explicitly as a geometric parameter of the problem, but rather it 
is abstracted as a level contour of a higher dimensional function. This is convenient in 
many ways, but it does mean that phenomena associated with the interface, for 
example, surface tension, must enter the problem spread over a region near the zero 
level set contour. The Level Set Length Scale sets the size of this region.

A good example of the application of the Level Set Length Scale parameter is in how 
surface tension is included in problems using level set interface tracking. The following 
tensor is added to the fluid momentum equation:

(4-3)

where F is the level set function itself, , n is the unit normal to the level 
set contour, I is the unit tensor, σ the surface tension, and δa(F) is a “smooth” Dirac 
function given by:

(4-4)

Level Set Length Scale = <float>

T σδα F( ) I nn–( )=

n F F∇⁄∇=

δα F( ) F∇ 1 πF α⁄( )cos+[ ] 2α⁄( ),        F α≤=
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In this example, the parameter α would be equal to one-half the Level Set Length Scale 
value specified on this card.

Theory

No Theory.

FAQs

How should the Length Scale value be chosen?  Trial and error is often the best method 
to determine an appropriate value for this parameter. However, experience has shown 
that values for Level Set Length Scale that are between two and three times the average 
element linear dimension seem to work best.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

4.3.28  Level Set Initialize

Description/Usage

This card is used to initialize fields around the zero level set.  

<Char_string> A character string which identifies dependent variable to be 
initialized.   It is taken from the list of names on the 
Initialize card.   

<float1> value of the variable on the negative side of the zero level 
set. 

<float2> Value of the field on the positive side of the zero level set. 

Examples

Two examples of initialization methods are provide below:
Level Set Initialize = TEMPERATURE 0. 100.  

Level Set Initialize = <char_string> <float1> <float2>
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Technical Discussion

Not clear whether this capability has been used and tested much.  (12/3/2012)

Theory

No Theory.

FAQs

No FAQs.

References

4.3.29

4.3.30 Level Set Initialization Method

Description/Usage

This card specifies the means by which the level set function is initialized. That is, it 
constructs from a representation of the starting interface shape, a value for the distance 
function at every node in the mesh. The syntax of the card is as follows:

{method_name} A character string which identifies the initialization option 
desired. Choices for this string are: Projection, Exodus, 
Nodeset, Surfaces, SM_object. 

{parameter list} This is a variable parameter list specific to each option. The 
nature of it for each method is detailed in the syntax 
descriptions below.

Below are the exact syntax used for each initialization method, a brief description of 
the method and a specification of any additional required parameters.

Projection This method computes the initial level set field by 
calling a user-specified routine which returns the signed 
distance function for a given point. It has no parameter 
list after its name.

Level Set Initialization Method = {method_name} {parameter list}
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Exodus Using this card indicates that the initial level set field is 
to be read from the exodus file specified earlier (see 
FEM file and Initial Guess cards for read_exoII 
option). This card has no parameter list after its name.

Nodeset <integer1> EB <integer2>

This method establishes the initial location of the 
interface as the boundary between two element blocks. 
The value <integer1> is the nodeset identification 
number for an internal nodeset defined to exist at the 
interface between the two element blocks. The character 
string EB is required. The integer <integer2> is the 
element block id number to which positive values of 
level set function is going to be assigned.

Surfaces <integer> This card establishes the initial level set function by 
referring to a set of primitive geometric objects. It is the 
easiest to use and the most general. The integer value 
<integer> is the number of surface objects that are used 
to construct the initial interface. This number of SURF 
object cards must follow this card. This is the syntax of 
the SURF object card:

SURF = {object_name} {float list}

{object_name}: a character string identifying the 
type of geometric object. Options are: PLANE, 
CIRCLE, SPHERE, SS, USER.
{float list}: geometric parameters associated with 
each object as float values

The following is the syntax and description for each geometric 
object option, i.e., the “{object_name} {float list}” part of SURF

PLANE <nx. <ny> <nz> <d>

This card constructs a planar interface surface. The float 
values <nx>, <ny>, <nz> define a vector normal to this 
plane with the restriction that the sign of the vector must 
be such that it points from the negative side of the 
interface to the positive side of the interface. The float 
value <d> effectively represents the distance of the 
plane from the origin. Its value must be set, however, so 
that the dot product of any position vector to a point on 
the desired plane and the vector (nx,ny,nz) must be 
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equal to <d> (it is a property of planes that this number 
is independent of the point on the plane that is chosen).

CIRCLE <cx> <cy> <radius>

This card constructs a circular interface surface in a 
two-dimensional domain. The float values <cx> <cy> 
identify the coordinates of the center of the circle. The 
float value <radius> establishes the radius of the curve. 
By definition, points interior to the circle are assigned 
negative level set function values.

SPHERE <cx> <cy> <cz> <radius>

This card constructs a spherical interface surface in a 
three-dimensional domain. The float values <cx> <cy> 
<cz> identify the coordinates of the center of the circle. 
The float value <radius> establishes the radius of the 
sphere. By definition, points interior to the sphere are 
assigned negative level set function values.

SS {ss_id}

This card uses an existing sideset in the problem as a 
defined geometric object for construction of an 
interface. The parameter <ss_id> identifies this sideset.

USER {user-defined float list}

This card indicates the user has defined an object 
function using the supplied parameter float list that 
returns a signed distance value when supplied with the 
coordinates of a point in space. This object function 
should appear in the function call user_init_object in the 
file user_pre.c.

SM_object {object_type} {object_name}

This card allows the user to initialize the level set 
location by using a piece of solid model geometry. The 
solid model object_type can be either FACE or BODY. 
A 2D initialization uses the boundary of the specified 
FACE (or surface) as the 0 level set. A 3D initialization 
uses the boundary of the specified BODY (or volume) 
as the 0 level set.
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Examples

Two examples of initialization methods are provide below:
Level Set Initialization Method = Nodeset 20 EB 1

Level Set Initialization Method = Surfaces 3
SURF = PLANE   -1. 0. 0. -3.
SURF = CIRCLE  -2 0 1
SURF = CIRCLE  -3 0 0.5

Level Set Initialization Method = SM_object BODY my_blob

Technical Discussion

• The Projection initialization method was developed early in the level set 
development process. It has since been superseded by other more easily used 
methods.  It is still supported primarily for the use of developers. Users wanting a 
complicated interface shape for which they can supply an appropriate distance 
function should user the USER surface object option under the Surfaces 
initialization method

• The Exodus method deserves little comment.  It should be used when restarting 
level set computations from a preexisting solution.

• The Nodeset method allows the user to make use of the sophisticated solid body 
manipulation software in meshing packages like CUBIT. The procedure for using 
this method is to create a domain which contains two element blocks. The desired 
starting point for the interface should lie on the curve or surface which these two 
blocks have in common. A single nodeset should be defined over this entire curve 
or surface. The nodeset identification number should be the first integer parameter 
specified on the card. Also note that one of the blocks must be designated as the 
“positive” block. This means then when initialized the values of the level set 
function in this block will be positive. The values in the other block will be 
negative. Note that this initialization method can only by used for problems that 
have exactly two blocks, no more. 

• The Surfaces initialization method is the most useful method for initialization. It 
draws from the fact that it is relatively easy to determine the distance to simple 
geometric objects (planes, circles, spheres, etc.). Further, it permits initialization 
using more than one of these objects so that relatively complicated initial interface 
locations can be constructed. However, the user should recognize that this method 
is still somewhat unsophisticated in its approach so there are some caveats 
associated with its use. The primary point is that surface objects should never 
intersect anywhere within the domain of interest, otherwise it is more than likely 
that the starting interface shape will not be what the user expects.
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• The SM_object initialization method allows the user to use solid model geometry 
to initialize 2D and 3D level sets. Certain 2D geometries can be created using only 
Goma input commands (see FACE). Other 2D geometries, and all 3D geometries, 
can be accessed via an ACIS .sat file. The usual way to do this is for the user to 
create their desired geometry within Cubit (or, import solid model geometry from 
elsewhere into Cubit). Faces (or surfaces) should be created for 2D initialization, 
and bodies (or volumes) should be created for 3D initialization. The boundary of 
the object is used to initialize the level set. The geometry should be named within 
Cubit and exported to an ACIS .sat file via Cubit’s export acis 
“filename” ascii command. This same file should be read in via the ACIS 
file command in the Geometry Specifications section. The solid model geometry is 
then available for the Level Set Initialization Method command. (Note that the 
Geometry Specifications section usually comes after the Level Set Initialization 
Method command; this is OK).

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

 

4.3.31 Level Set Periodic Planes

Description/Usage

This card directs the level-set renormalization to accommodate peroidic boundary 
conditions (see Advanced Capabilities Manual AC_Periodic capability).  The periodic 
boundary conditions on the level set field are not compatible with renormalization 
unless this capability is specified.  

<float1> x-coordinate value of first periodic boundary.  

Level Set Periodic Planes = <float1> <float2> <float3> <float4> <float5> <float6>
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<float2> x-coordinate value of second periodic boundary. If 
equivalent to float1 than this direction is not periodic.  

<float3> y-coordinate value of first periodic boundary.  

<float4> y-coordinate value of second periodic boundary. If 
equivalent to float3 than this direction is not periodic. 

<float5> y-coordinate value of first periodic boundary.  

<float6> y-coordinate value of second periodic boundary. If 
equivalent to float5 than this direction is not periodic. 

Examples

Two examples of initialization methods are provide below:
Level Set Periodic Boundary = -0.5 0.5 0 0 0 0

This card instructs renormalization to accommodate the x-directed-boundaries to be 
considered as periodic relative to the level-set field. 

Technical Discussion

• None

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer
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4.3.32 Level Set Control Width

Description/Usage

This card is a multiplier on the Level Set Length Scale to determine the size of the 
region around the zero level set contour over which the level set gradient is averaged. 
The value of this parameter defaults to 1.0 if this card is not included.

Examples

This sample card sets the control width to be equivalent to the length scale:

Level Set Control Width = 0.5

Technical Discussion

As noted in the description of the Level Set Renormalization Tolerance card, 
renormalization is triggered when the average of the level set gradient magnitude has 
departed sufficiently from unity. The region over which this average is obtained is 
approximately a narrow fixed-width strip on either side of the zero level set contour. 
The width of this strip is twice the Level Set Length Scale multiplied by the float value 
supplied on this card.

Theory

No Theory.

FAQs

Usually it is best practice to leave this parameter at its default setting and control the 
frequency of renormalization with the renormalization tolerance.

References

No References.

Level Set Control Width = <float>
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4.3.33  Level Set Timestep Control

Description/Usage

On this card, the user specifies a single char_string.

<YES | ON> This string turns on level set timestep control if it is “yes” or 
“on”. 

Examples

A typical length scale input card looks like:

Level Set Timestep Control = yes

Technical Discussion

In normal operations, the error norm of the level set function is not included in 
controlling the size of the time step decided upon by the variable timestep size 
integrator. Inclusion of this card will add the level set unknown to the list of update 
error norms used to decide the time step size. In other words, use this card when you 
want the changes of the level set function to affect the timestep size. If this card is not 
used, the default behavior is to ignore the level set degrees of freedom in controlling 
the timestep size. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Level Set Timestep Control = <YES | NO>
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4.3.34 Level Set Renormalization Tolerance

Description/Usage

This parameter provides a means for controlling how often renormalization 
(redistancing) operations are performed on the level set function as it evolves by fixing 
the size of the deviation allowed between the average absolute magnitude of the level 
set function gradient near the level set interface and unity, the theoretical value 
observed for a pure distance function.

<float> Value of the tolerance, the allowable deviation.

The range of this parameter is any positive real number, however, it is rare to use values 
smaller than 0.1 or larger than 5.0. The value of the tolerance defaults to 0.5 if this card 
is not specified.

Examples

This is a sample renormalization card:

Level Set Renormalization Tolerance = 0.05

Technical Discussion

One of the key properties of the level set function is that it is a smooth function near to 
the interface. In particular, if the level set function is a distance function then the 
magnitude of its gradient on the zero level contour should always be unity. This fact is 
used to provide a criterion for invoking a renormalization procedure. The gradient of 
the level set function is found within a fixed region around the zero level set contour 
(see Level Set Control Width). The integrated average of the magnitude of this vector is 
determined and compare to unity. Should this difference differ by greater than the value 
for Renormalization Tolerance identified on this card, a renormalization procedure will 
presently be initiated.

Theory

No Theory.

FAQs

What is a proper value for this parameter?  Values on the order of unity should work 
well. Renormalization based on gradient can be disabled completely by choosing a 

Level Set Renormalization Tolerance = <float>
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very large value for this parameter. Conversely, a very small value will always result in 
a renormalization step.

Is it possible to renormalize too often?  Yes. Renormalization is an extraphysical 
procedure designed solely to improve the numerical performance of the interface 
tracker. As such, it can add or subtract volume to or from the phases represented by the 
interface contour. Renormalizing too often, therefore, can result in errors being 
introduced. The renormalization procedure, Huygens_Constrained, attempts to 
mitigate this effect.

References

No References.
 

4.3.35 Level Set Renormalization Method

Description/Usage

This card indicates the method to be used to renormalize the level set function during 
the course of the computation. The syntax of this card is as follows:

{char_string} A character string which specifies the type of method for 
renormalization. Choices for this string are: Huygens, 
Huygens_Constrained, Correction.

Each method is described below; see also the Technical Discussion.

Huygens In this method a set of m points P is constructed: 

which in a sense represent a discretization of the 
interface location. The finite element interpolation 
functions are used to find exact locations for these 
points. For each mesh node, j, a minimum distance, 
Dj, can be found to this set of points. 
Renormalization is accomplished by replacing the 
level set value at this node, φj, with Dj, multiplied by 
the sign of the previous value for the level set 
function. This method is fast and robust and 
reasonably accurate given sufficiently refined 
meshes using high order level set interpolation. 

Level Set Renormalization Method = {char_string}

P xi yi zi, ,( ) i=1,2...m   |    φ xi yi zi, ,( )   =  0,{ }=
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However, this method is prone to losing material if 
low order level set interpolation is employed.

Huygens_Constrained This method renormalizes the function in much the 
same way as the Huygens method, except it 
employs a Lagrange multiplier to enforce a global 
integrated constraint that requires the volume 
occupied by the “negative” phase to remain 
unchanged before and after renormalization. This 
requirement makes this method better at conserving 
mass. However, since it enforces a global constraint, 
it is possible that material might be moved non-
physically around the computational domain.

Correction Don’t use this method.

Examples

This is a sample renormalization method input card:

Level Set Renormalization Method = Huygens_Constrained

Technical Discussion

Renormalization is an operation particular to level set embedded interface tracking. 
The level set function, φ, is usually specified in terms of a signed distance to the 
interface. This type of function has very nice properties in terms of smoothness and a 
unitary gradient magnitude in the vicinity of the interface. All of which are beneficial 
in accurately integrating the function and applying interfacial physics such as surface 
tension. The difficulty appears because of the velocity field, u, used to evolve the level 
set function via the relation:

. (4-5)

There is nothing that requires that this velocity preserve the level set function as a 
distance function during its evolution. As a result, large gradients in the level set 
function might appear that would degrade the accuracy of both its time evolution and 
the accuracy of the interfacial terms related to the level set function. To remedy this 
problem, periodically the level set function must be reconstructed as a distance 
function; this process is referred to as renormalization. The criteria for determining 
when renormalization should occur is discussed under Level Set Renormalization 
Tolerance.

φ∂
t∂

------ u φ∇⋅+ 0=
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.3.36 Level Set Renormalization Frequency

Description/Usage

This card sets an upper limit to the number of time steps which are allowed to pass 
between renormalization procedures. Possible values for <integer> are listed below:

<integer> -1, never renormalize (default)

 0, renormalize every step

 n, a positive integer >1, renormalize every nth time step

Examples

This is a sample input:

Level Set Renormalization Frequency = 50

Technical Discussion

Renormalization procedures are normally triggered by the average gradient exceeding 
one by a specified amount (see Level Set Renormalization Tolerance). However, at 
times it might be advantageous to trigger a renormalization independent of the size of 
the average level set gradient. For example, it might occur that in a very small region 
near the interface, the level set gradient is becoming large but elsewhere the gradient is 
still relatively small. Since the average gradient is used, this condition might not trigger 
renormalization. By setting an upper limit for the number of time steps that can pass 
before renormalization, situations such as this can be remedied.

Level Set Renormalization Frequency = <integer>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.3.37 Restart Time Integration After Renormalization

Description/Usage

This card is used to specify whether or not to restart time integration each time Goma 
renormalizes the level set function during the course of the computation. When time 
integration is restarted, the time step is reset to its initial size and held at this step size 
for the following 3 time steps. If this card is not present, the default is yes (time 
integration will be restarted after each renormalization). The syntax of this card is as 
follows:

{yes | no} Indicates the specified choice. {yes | on | true}can all be 
used to specify restarting of time integration. {no | off | 
false} can all be used to specify no restart.

Examples

This is a sample renormalization method input card:

Restart Time Integration After Renormalization = no

Technical Discussion

None.

Theory

No Theory.

Restart Time Integration After Renormalization = {yes | no}
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FAQs

No FAQs.

References

No References.

4.3.38 Level Set Reconstruction Method

Description/Usage

This card indicates the method used to perform the Huygens renormalization of the 
level set function. This card applies only if Level Set Renormalization Method is set to 
Huygens or Huygens_Constrained. Permissible values of {char_string} are:

POINTS A list of points on the interface is formed and the 
renormalized distance is computed as the distance to the 
nearest point in this list; this is the default method.

FACETS A list of connected facets on the interface is formed and the 
renormalized distance is computed as the distance to the 
nearest point on the nearest facet in this list. Currently this 
option is not supported for 3-dimensional calculations.

Examples

This is a sample input card:

Level Set Reconstruction Method = FACETS

Technical Discussion

As described for the Level Set Renormalization Method card, Huygens based 
renormalization is performed by reconstructing the level set surface and computing the 
distance to the nearest point on this surface. Here, the method of reconstructing the 
level set surface is addressed. Either a set of points on the interface is formed or a 
connected set of facets is formed. The advantage to using connected facets is that the 
interface is better described between the points on the interface. However, the 
calculation of the faceted geometry is slightly more expensive computationally. Also, 
the current implementation is limited to 2-dimensional simulations.

Level Set Reconstruction Method = {char_string}
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.39 Level Set Contact Extension

Description/Usage

This card specifies whether the level set surface is considered to extend into boundaries 
when performing renormalization of the level set distance function. This card applies 
only if Level Set Renormalization Method = Huygens_Constrained. Permissible 
values for this option are:

yes|on The level set interface is considered to extend smoothly into 
the boundaries.

no|off The level set interface ends at the boundaries; this is the 
default.

Examples

This is a sample input card:

Level Set Contact Extension = no

Technical Discussion

When renormalizing the level set distance function, the behavior of the interface near 
boundaries is important. When the interface is considered to end at the boundary, a 
large number of grid points may be closest to this boundary point. This appears as a 
cusp in the interface and can make it difficult to achieve sharp contact angles because 
of the very large capillary force that results. One method to alleviate this is to extend 
the interface smoothly into the boundaries to eliminate the cusp in the interface. The 
current algorithm, however, can cause errors when employed near corners of the 

Level Set Contact Extension = {yes|no}
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domain. Until this is resolved, this option can only be recommended for domains 
without interior corners.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.3.40 Level Set Slave Surface

Description/Usage

This card specifies whether the level set distance function is constrained during the 
calculation or evolves with the typical advection equation. Permissible values for this 
option are:

yes|on The surface is constrained to remain on the initial surfaces 
throughout the calculation (moving with these surfaces if 
they are moving).

no|off The surface evolves normally according to the local 
velocity field; this is the default.

Examples

This is a sample card:

Level Set Slave Surface = on

Technical Discussion

In a typical level set simulation, the surface is first initialized with the Level Set 
Initialization Method card, and then the surface evolves in time according to the local 
velocity field. Using this card, however, the surface is constrained to remain on the 
initial surfaces. If the initial surfaces are static, then the level set surface remains 

Level Set Slave Surface = {yes|no}
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stationary. For moving interfaces such as those defined by an isosurface or a side set, 
the level set function is reinitialized at each Newton iteration to match the moving 
surface.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

4.3.41

4.3.42 Ignore Level Set Dependencies

Description/Usage

Including this card in your input deck with the string parameter set to “yes” instructs 
Goma to discard the sensitivities of all equations to the level set variable when 
constructing the Jacobian matrix.  This may have benefits when it comes to stability 
and convergence; although, the effectiveness of this card is very much case by case. 
Note also that use of this card is consistent only with Fill Weight Function = Explicit. 
Any other choice will result in an error.

Examples

A sample input card is:

Ignore Level Set Dependencies = yes

Technical Discussion

No discussion.

Ignore Level Set Dependencies = {yes | no}
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.43 Force Initial Level Set Renormalization

Description/Usage

This card is used to invoke a renormalization step prior to the first time step of any 
transient computation.  

<char_string> YES|ON (not case sensitive) will cause the renormalization 
procedure to occur on the first step.  If this card is not 
included or some other string is used here  a renormalization 
will automatically occur on the first time step.

Examples

A typical length scale input card looks like:

Force Initial Level Set Renormalization = yes

Technical Discussion

Restarts occur fairly frequently during level set computations.  It has been discovered 
that the robustness of the subsequent computation can be improved by quite a bit if the 
level set field is renormalized at the start of the restart, regardless of the current average 
gradient norm error.  This card is employed to invoke a renormalization at the start of 
any computation, that is, a renormalization procedure is conducted prior to the initial 
time step if this card is present in the input deck.  It has become standard operating 
procedure that when a level set computation runs into computational difficulty the first 
step in recovery should be to restart with a forced initial renormalization using this 
card.

Force Initial Level Set Renormalization = <char_string>



108 Revised: 6/12/13

4.3.44  Number of phase functions  

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.44 Number of phase functions

Description/Usage

Activates generalized phase function capability.   Currently, the number of phase 
functions cannot exceed five.   Phase function fields are essentially identical to level set 
fields, but more than one can be activated for various purposes.   Please see technical 
discussion below.  

Examples

A sample input card is:

Number of phase functions = 1

Technical Discussion

Various uses of the phase function approach have been explored.   To track multiple 
interface types from multiple fluids requires more than one level-set field.  This 
capability can also be deployed for tracking imprinted solid surfaces (moving) together 
with capillary free surfaces.  Consult the tutorials. 

Theory

No Theory.

Number of phas functions = {integer}
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FAQs

No FAQs.

References

GT-026.3 GOMA’s Overset Mesh Method: User Tutorial, November 19 2003.  P. R. 
Schunk and E. D. Wilkes

4.3.45 Phase Function Slave Surface

Description/Usage

This card is used to designate that the phase function degree of freedom is being slaved 
to a boundary.  This card is used primarily in the overset grid algorithm in which a  
phase function field is slaved to the surface of the embedded body.

<char_string> YES|ON (not case sensitive)  will allow the phase function 
field to be slaved to a surface.  Currently, no support is 
given to more than one slaved function fields or to problems 
in which there are slaved and unslaved (free?)  phase 
function fields.

Examples

A typical length scale input card looks like:

Phase Function Slave Surface = yes

Technical Discussion

One of the nice properties of  level set/phase function fields is that they can  be used to 
find distances from surfaces.  This function can be used quite apart from their abilities 
to track interfaces.  Including this card informs Goma that the phase function 1 field is 
going to be used in this capacity and that no PDE is going to be solved to evolve it.  
Instead, the values of this field will be “slaved” to a specific surface in the problem and 
their values will be determined in reference to this surface in a process very reminicent 
of renormalization. 

Phase Function Slave Surface = <char_string>
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The overset grid method makes use of  a slaved phase function field.  In that case, the 
phase function field is slaved to the surface of the embedded object.  As the embedded 
object moves through the flow field, the slaved phase function values will be updated 
by determining the distance of a given node to the object’s surface.  This slaved phase 
function field is then used in a variety of ways to compute the influence of the 
embedded object on the flow and stresses of the surrounding  fluid.  

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.46 Phase Function Initialization Method

Description/Usage

This card specifies the means by which the phase functions are initialized. After the 
initial instance, subsequent instances of {model_name} {parameter_list} are used to 
describe initializations of phase fields 2 through 5. This card constructs from a 
representation of the starting interface shape, a value for the distance function at every 
node in the mesh. The syntax of the card is as follows:

{method_name} A character string which identifies the initialization option 
desired. Choices for this string are: Projection, Exodus, 
Nodeset, Surfaces, SM_object. 

{parameter list} This is a variable parameter list specific to each option. The 
nature of it for each method is detailed in the syntax 
descriptions below.

Below are the exact syntax used for each initialization method, a brief description of 
the method and a specification of any additional required parameters.

Phase Function Initialization Method = {method_name} {parameter list}
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Projection This method computes the initial phase function field by 
calling a user-specified routine which returns the signed 
distance function for a given point. It has no parameter 
list after its name.

Exodus Using this card indicates that the initial phase function 
field is to be read from the exodus file specified earlier 
(see FEM file and Initial Guess cards for read_exoII 
option). This card has no parameter list after its name.

Nodeset <integer1> EB <integer2>

This method establishes the initial location of the 
interface as the boundary between two element blocks. 
The value <integer1> is the nodeset identification 
number for an internal nodeset defined to exist at the 
interface between the two element blocks. The character 
string EB is required. The integer <integer2> is the 
element block id number to which positive values of 
phase function function is going to be assigned.

Surfaces <integer> This card establishes the initial phase function function 
by referring to a set of primitive geometric objects. It is 
the easiest to use and the most general. The integer 
value <integer> is the number of surface objects that are 
used to construct the initial interface. This number of 
SURF object cards must follow this card. This is the 
syntax of the SURF object card:

SURF = {object_name} {float list}

{object_name}: a character string identifying the 
type of geometric object. Options are: PLANE, 
CIRCLE, SPHERE, SS, USER.
{float list}: geometric parameters associated with 
each object as float values

The following is the syntax and description for each geometric 
object option, i.e., the “{object_name} {float list}” part of SURF

PLANE <nx. <ny> <nz> <d>

This card constructs a planar interface surface. The float 
values <nx>, <ny>, <nz> define a vector normal to this 
plane with the restriction that the sign of the vector must 
be such that it points from the negative side of the 
interface to the positive side of the interface. The float 
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value <d> effectively represents the distance of the 
plane from the origin. Its value must be set, however, so 
that the dot product of any position vector to a point on 
the desired plane and the vector (nx,ny,nz) must be 
equal to <d> (it is a property of planes that this number 
is independent of the point on the plane that is chosen).

CIRCLE <cx> <cy> <radius>

This card constructs a circular interface surface in a 
two-dimensional domain. The float values <cx> <cy> 
identify the coordinates of the center of the circle. The 
float value <radius> establishes the radius of the curve. 
By definition, points interior to the circle are assigned 
negative phase function function values.

SPHERE <cx> <cy> <cz> <radius>

This card constructs a spherical interface surface in a 
three-dimensional domain. The float values <cx> <cy> 
<cz> identify the coordinates of the center of the circle. 
The float value <radius> establishes the radius of the 
sphere. By definition, points interior to the sphere are 
assigned negative phase function function values.

SS {ss_id}

This card uses an existing sideset in the problem as a 
defined geometric object for construction of an 
interface. The parameter <ss_id> identifies this sideset.

USER {user-defined float list}

This card indicates the user has defined an object 
function using the supplied parameter float list that 
returns a signed distance value when supplied with the 
coordinates of a point in space. This object function 
should appear in the function call user_init_object in the 
file user_pre.c.

SM_object {object_type} {object_name}

This card allows the user to initialize the phase function 
location by using a piece of solid model geometry. The 
solid model object_type can be either FACE or BODY. 
A 2D initialization uses the boundary of the specified 
FACE (or surface) as the 0 phase function. A 3D 



Revised: 6/12/13 113

4.3.47  Phase Function Renormalization Tolerance 

initialization uses the boundary of the specified BODY 
(or volume) as the 0 phase function.

Examples

Three examples of initialization methods for a single phase function are provide below:
Phase Function Initialization Method = Nodeset 20 EB 1

Phase Function Initialization Method = Surfaces 3
SURF = PLANE   -1. 0. 0. -3.
SURF = CIRCLE  -2 0 1
SURF = CIRCLE  -3 0 0.5

Phase Function Initialization Method = SM_object BODY my_blob

Technical Discussion

Please consult Level Set Initialization Method card for discussion. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

4.3.47 Phase Function Renormalization Tolerance

Description/Usage

This parameter provides a means for controlling how often renormalization 
(redistancing) operations are performed on the phase function fields as they evolve by 
fixing the size of the deviation allowed between the average absolute magnitude of the 

Phase Funtion Renormalization Tolerance = <float>
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phase function gradient near each respecitve  interface and unity, the theoretical value 
observed for a pure distance function.

<float> Value of the tolerance, the allowable deviation.

The range of this parameter is any positive real number, however, it is rare to use values 
smaller than 0.1 or larger than 5.0. The value of the tolerance defaults to 0.5 if this card 
is not specified.  Note that a global parameter value is applied to all phase function 
fields in the problem.  Currently, there is no provision for each phase function field to 
have a unique value for this parameter.

This parameter is exactly analogous to the similarly named parameter used in standard 
level set interface tracking.

Examples

This is a sample renormalization card:

Phase Function Renormalization Tolerance = 0.25

Technical Discussion

The reader is referred to the Technical Discussion associated with Level Set 
Renormalization Tolerance card as it is virtually identical to the operation of it in the 
current context.  The only thing to note is that each phase function is evaluted 
separately against this tolerance and each function is renormalized independently if the 
tolerance is exceeded.  That is, exceeding the tolerance by one phase function field only 
triggers renormalization for that field.  The other phase function fields are left 
unaltered.

Theory

No Theory.

FAQs

What is a proper value for this parameter?  Values on the order of unity should work 
well. Renormalization based on gradient can be disabled completely by choosing a 
very large value for this parameter. Conversely, a very small value will always result in 
a renormalization step.

Is it possible to renormalize too often?  Yes. Renormalization is an extraphysical 
procedure designed solely to improve the numerical performance of the interface 
tracker. As such, it can add or subtract volume to or from the phases represented by the 
interface contour. Renormalizing too often, therefore, can result in errors being 
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introduced. The renormalization procedure, Huygens_Constrained, attempts to 
mitigate this effect.

References

No References.

4.3.48

4.3.49 Phase Function Renormalization Method

Description/Usage

This card indicates the method to be used to renormalize the phase function fields 
during  the course of the computation.

<char_string> A character string which specifies the type of method for 
renormalization. Choices for this string are: Huygens, 
Huygens_Constrained.

Huygens In this renormalization method a set  P of m discrete points 
is constructed that lie on the zero contour of the jth phase 
function field: 

      

The finite element interpolating functions make this an easy 
task for Goma.  For each mesh node, k, a minimum distance 
to this set of points is determined, Dk and the value of phase 
function at that node is replaced by Dk multiplied by the 
original phase function sign at that node.  This method is 
fast and robust and, given sufficiently refined meshes and 
high order (Q2) interpolation of the phase function fields, 
reasonably accurate.   Howeverr, for lower order 
interpolation this method is prone to lose mass over time.

Huygens_Constrained

This method of renormalization functions in much the same 
way as the previous method, except it employs Lagrange 

Phase Function Renormalization Method  = <char_string>

P xi yi zi, ,( ),i=1,2...m  |    φj xi yi zi, ,( ) 0={ }=
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multiplier to enforce a global constraint that requires that 
the volume of “negative” phase function remain unchanged 
before and after the renormalization.  This requirement 
makes the method significantly better at conserving mass.  
However, it also does introduce an extraphysical movement 
of material within the domain.  

Examples

This is a sample card

Phase Function Renormalization Method = Huygens_Constrained

Technical Discussion

Renormalization is an operation particular to phase function (and level set) embedded 
interface tracking.  The phase function fields are defined originally as distanes from a 
known curve or surface.  This type of function offers benefits in terms of smoothness of 
representation and the easy with which interfacial physics can be included.  However, 
typically we are evolving these functions using the commonplace advection operator:

which does not necessarily perpetuate the phase field as a distance function.  Sharp 
gradients or flat regions in the function may therefore appear near the interface which 
have various detrimental effects on the accuracy of the solution.  The solution that is 
most often used is to periodically construct the interfaces from the phase function field 
and renormalize the phase function fields, i.e. reevaluated them so that they return to 
being distance functions from the interface.  In general, this is a satisfactory solution if 
the frequency of renormalization is not too great.  To set the criteria for determining 
when to renormalize the phase functions see the Phase Function Renormalization 
Tolerance card. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Dφj

Dt
--------- 0=
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4.4 Continuation Specifications

This section of input records is used to direct all automatic continuation procedures. The entire 
section is completely optional. Basically, automatic continuation can be accomplished in steady 
state simulations (see Time Integration card) through any one or combination of parameters. 
These parameters can be any one or combination of the input floats required on the boundary 
condition cards (see Section 4.10) or material property cards (see Chapter 5). The cards in this 
section are used to specify the parameters that will be marched automatically, the method of 
marching (e.g. zero-order, first-order, multiparameter first-order, etc.), the limits of parameter 
values, and other sundry options. Much of this capability can now be managed from the LOCA 
library package (Library of Continuation Algorithms - Salinger et al. 2002).

Input specifications for this section of input records is discussed in a separate, comprehensive 
manual (Gates, et. al., 2000); an update to this manual has been completed during the summer of 
2006 (Labreche, et. al., 2006).

4.5 Hunting Specifications

The cards in this section are used to direct multiparameter continuation with the hunting 
technique, which is a linear, multiparameter capability. The user is referred to discussions for the 
Continuation Specifications for the important details of Continuation. As is true for the 
Continuation Specifications, this entire section is completely optional. Hunting Specification 
cards are used in conjunction with Continuation Specifications.

Input specifications for this section of input records is discussed in a separate, comprehensive 
manual (Gates, et. al., 2000); an update to this manual has been completed during the summer of 
2006 (Labreche, et. al., 2006).

4.6 Augmenting Conditions Specifications

Input records in this section are used to direct the solution of augmenting constraints on the base 
system of differential equations. Addition of these conditions may require some programming in 
the file user_ac.c. This entire section of the input deck is optional.

Input specifications for this section of input records is discussed in a separate, comprehensive 
manual (Gates, et. al., 2000); an update to this manual has been completed during the summer of 
2006 (Labreche, et. al., 2006).

4.7 Solver Specifications
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This required section directs the nonlinear iteration strategy with associated parameters (e.g., 
Newton’s method options), matrix solution strategy and parameters, and other sundry options and 
toggles for the pressure stabilization approach and linear stability analysis capability. With regard 
to the parameters associated with matrix solution methods, it is important to understand that there 
are two major classes of solvers - direct and iterative solvers. Direct solvers are the most robust, 
but can be computationally impractical for some larger systems. Iterative solvers and associated 
preconditioners are the only practical options for large-scale problems (viz., very large two-
dimensional problems and virtually all three-dimensional problems). Choosing the solver settings 
for good convergence of iterative matrix solvers can be an artful task for Navier-Stokes problems 
and other poorly conditioned systems. It is recommended that the user consult the comprehensive 
report by Schunk, et al. (2002) for an overview and further usage tips.

4.7.1 Solution Algorithm

Description/Usage

This required card selects an algorithm for the solution of the linear matrix system that 
arises at each Newton iteration (either for a steady-state solution or for the solution at 
each discrete time). Please note that at the time of this writing, new solver capabilities 
were being generated; although the following information was complete and accurate, 
it will likely be out of date by the time of publishing. Users should consult the CD 
version of this document in the Goma Documentation System for up to date options.

There are three major matrix solver packages accessible in Goma, two direct 
factorization collections and an iterative solver package. The first collection of direct 
factorization methods in Goma include the Sparse1.3 package (Kundert and 
Sangiovanni-Vincentelli, 1988) and Y12M direct factorization technique (Zlatev, 
Wasniewski and Schaumburg, 1981) accessible via the Aztec linear solver package. 
The second collection of direct factorization methods include two frontal solvers, 
SNL_MPFRONT, an adaptation of R. Benner’s implementation of Hood’s (1976) 
frontal method, and UMFPACK (Davis and Duff, 1997). SNL_MPFRONT is a 
traditional frontal method while UMFPACK is a multi-frontal solver.

The Aztec 2.x linear solver package (Tuminaro, et. al., 1999) is the iterative solver 
component of Goma. A successor to the krysolve 1.0 package (Schunk and Shadid, 
1992) and the Aztec 1.0 package (Hutchinson, Shadid and Tuminaro, 1995), Aztec 2.x 
includes support for distributed memory architectures and for matrices in either a 
modified sparse row (MSR) format or a variable block row (VBR) format, as well as 
their distributed memory extensions. Generally, convergence of these iterative methods 

Solution Algorithm = {char_string}
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can be accelerated by judicious use of a preconditioner (which many of the other Solver 
Specifications cards address).

The options for this input card are listed below, but additional usage comments are 
included as part of the Technical Discussion section of this card. These comments 
provide assistance in choosing the Solution Algorithm for your problem.

Valid options for {char_string} are as follows:

lu Direct factorization via Gaussian elimination using Sparse 
1.3. This solver is robust even for poorly conditioned matrix 
systems. It is unavailable when running Goma on multiple 
processors.

front Direct factorization based on Benner’s SNL_MPFRONT 
that eliminates equations and variables as the fully 
assembled rows of the matrix are acquired. This is the latest 
solver installed within Goma and users are encouraged to 
report their successes and failures with this option as part of 
testing. It is unavailable when running Goma on multiple 
processors.

umf/umff Direct factorization using UMFPACK. This multi-frontal 
solver has been hardwired to perform elimination only upon 
complete assembly. The umff option forces a full 
factorization every time, whereas umf does not. It is 
unavailable when running Goma on multiple processors.

y12m Direct factorization using the Y12M package. This package 
is accessible through the Aztec matrix solver interface and 
cannot be used for multiple processor computations. Other 
direct solvers are recommended against this one.

gmres Iterative solver from the Aztec package using the restarted 
generalized minimum residual method. Iterative solver 
options are important to convergence of this method, e.g. 
Preconditioner, Size of Krylov subspace, Matrix, etc.

cg Iterative solver from the Aztec package using the conjugate 
gradient method. Like other iterative solvers, the successful 
convergence of the conjugate gradient method for a linear 
system depends on preconditioners and other cards in the 
Solver Specifications section.
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cgs Iterative solver from the Aztec package using the conjugate 
gradient squared method. Convergence of this method is 
frequently contingent on the linear system and on the choice 
of other cards in the Solver Specifications section.

tfqmr Iterative solver from the Aztec package using the transpose-
free quasi-minimum residual method. Convergence of this 
method is frequently contingent on the linear system and on 
the choice of other cards in the Solver Specifications 
section.

bicgstab Iterative solver from the Aztec package using the 
biconjugate gradient with stabilization. Convergence of this 
method is frequently contingent on the linear system and on 
the choice of other cards in the Solver Specifications 
section.

amesos Allows access to direct solver options implemented in 
parallel.   Please see the user-notes below for Goma build 
options that must be exercised.   This package is part of the 
Trilinos 6.0 framework.  With this option, you must add an 
additional input card to specify the parallel direct solvers:

                  Amesos Solver Package = {superlu | klu | umfpack}

Of these three options, we currently recommend “superlu”.  
All options can be run in parallel.   

Examples

Following is a sample card:

Solution Algorithm = lu

Another example  (two cards) shows how to invoke a parallel direct solver:

Solution Algorithm = amesos

Amesos Solver Package = superlu

Technical Discussion

The direct factorization options are the most robust but consume the most 
computational resources (CPU time and memory, particularly for large and 3D 
problems). The iterative methods consume less resources but may take some 
experimentation to obtain convergence to the solution of the linear system. For 
example, a poorly conditioned linear system may require a lot of preconditioning. The 
conjugate gradient method may not be very useful on linear systems that are not 



Revised: 6/12/13 121

4.7.1  Solution Algorithm 

symmetric positive definite. Although the following guidelines are useful, selection of 
the “right” linear solver requires experience, understanding and sometimes, luck.

• lu - The Sparse1.3 direct solver, is the most robust solver in Goma in terms of 
obtaining successful convergence for even poorly conditioned matrix systems. A 
significant disadvantage, however, is that it can be computationally expensive for 
large problems. Not only do the memory and CPU requirements grow with 
problem size, but the initial symbolic factorization that seeks optimal reordering 
also consumes greater CPU resources with larger problem sizes. For example, a 
problem with 70,000 degrees of freedom that required 22 hours of CPU for the 
initial factorization required only 1/2 hour for subsequent factorizations. 
Furthermore, this solver is unavailable when Goma is run on multiple processors. 
Its robustness makes it an excellent choice for small- and medium-sized problems. 

• front - This solver is an adaptation for Goma of R. Benner’s frontal solver, which 
itself includes considerable improvements compared to the pioneering frontal 
solvers (Irons, 1970; Hood, 1976). The SNL_MPFRONT library is compiled and 
linked into Goma only by choice. Direct factorization is done as the fully 
assembled rows of the matrix are acquired. The frontal solver consumes CPU time 
roughly comparable to Sparse 1.3, with the noted advantage of eliminating intra-
element fully summed equations as they are encountered and only keeping the 
active working matrix in-core, thereby reducing memory requirements and 
possible storage of matrix components to disk.

• umf/umff - UMFPACK 2.0d is a powerful direct solver that is generally faster 
than Sparse 1.3a, though it might lack the robustness of the latter on infrequent 
occasions. The implementation of UMFPACK within Goma is only barebones, i.e. 
the multi-frontal solver has been hardwired to perform elimination only upon 
complete assembly. Finally, usage of UMFPACK is governed by a license that 
limits usage to educational, research and benchmarking purposes by nonprofit 
organizations and the U.S. government. Please refer to the license statement 
contained in the UMFPACK distribution for exact details. This solver was 
implemented prior to front so it was the only direct solver alternative to lu for a 
period of time. User’s should now evaluate performance of this solver against 
front on a case by case basis.

• gmres, cg, cgs, tfqmr, bicgstab - The convergence of each of these iterative 
solvers is highly influenced by the kind of preconditioning selected. Often, the 
method(s) will not converge at all without an appropriate level of preconditioning. 
GMRES is considered one of the best iterative methods available, although there 
are instances where each of the others is superior. It is a Krylov-based method and 
has an additional input card, Size of Krylov subspace. As mentioned earlier, CG 
should only be used on systems that are symmetric positive definite. See the 
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Matrix subdomain solver card, and other Solver Specifications cards for guidance 
on appropriate use of preconditioners; also consult Schunk, et. al. (2002).

• amesos: superlu, klu, umfpack -  These solvers are all direct (not iterative, but 
based on Gaussian elimination) and can be run in parallel with mpi.    We 
recommend these solvers when robustness is required over iterative solvers and 
when the matrix assembly time is excessive, which is often the case when 
overloaded equations like species diffusion, porous media equations, etc. are used.   
This option also performs well for three-dimensional problems of small to 
moderate size.  To exercise these options you must build Goma in the following 
way (viz. make the following changes to the default Goma.mk file):

1) you must include the compiler define ENABLE_AMESOS.

2) the TRILINOS_DIR must be set to /home/goma/production/rhel4/

trilinos-6.0.14.

3) the TRILINOS_ARCH must be set to RHEL4_PARALLEL.

4) Comment out the line setting AMESOS_LIB to null and uncomment the

line directly below this in Goma.mk

5) Comment out the line setting SUPERLU_LIB to null and uncomment the

line directly below this in Goma.mk Recompile Goma.

Note that these options might change with time as this version of Trilinos 
becomes the default case. 

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun, March 2002.
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G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press, 
Baltimore, MD 3rd ed. (1996)

For all other references, please see References at the end of this manual.
 

4.7.2 Matrix storage format

Description/Usage

This optional card can be used to choose between two formats accepted by the Aztec 
2.1 solver package. Valid options are:

msr modified sparse row format (see Schunk and Shadid, 1992). 
This option is the default option and is automatically used 
for all direct solver options.

vbr variable block row format (see Heroux, 1992). This option 
should only be selected when an Aztec iterative solver is 
chosen.

Examples

Following is a sample card:

Matrix storage format = msr

Technical Discussion

Goma supports two global matrix formats for its linear solvers. The advantage of 
choosing vbr over the default msr format is a matter of which preconditioner option is 
selected. (See Schunk, et al., 2002 on iterative methods.) When using the front solver 
package, another format known as estifm is employed internally but not specified by 
this card, which is not used in this case.

Theory

No Theory.

Matrix storage format = {msr | vbr}
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FAQs

No FAQs.

References

SAND92-1158: Iterative Solvers in Implicit Finite Element Codes, Sandia Technical 
Report, Schunk, P. R. and Shadid, J. N. (1992)

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun, March 2002.

TR/PA/92/90: M. A. Heroux, A proposal for a sparse BLAS toolkit, Technical Report, 
CERFACS, December 1992.

 

4.7.3 Preconditioner

Description/Usage

Iterative techniques for solving a linear matrix system (see above) often benefit from 
preconditioning to aid convergence. This optional card provides for the selection of a 
preconditioner from those available through Aztec. For direct factorization Solution 
Algorithm specifications, the Preconditioner specification is immaterial since none is 
performed; in such cases, this card should be omitted.

Valid options for {char_string} are listed below.

none No preconditioning is performed.

This is the default specification if no preconditioner has 
been specified.

Jacobi A k-step Jacobi preconditioner is used (block Jacobi for 
VBR matrices). The number of Jacobi steps, k, is set using 
the Matrix polynomial order card.

Neumann A Neumann series polynomial preconditioner is used, 
where the order of the polynomial, k, is set using the Matrix 
polynomial order card.

Preconditioner = {char_string}
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ls A least-squares polynomial preconditioner is used, where 
the order of the polynomial, k, is set using the Matrix 
polynomial order card.

sym_GS A k-step symmetric Gauss-Seidel preconditioner is used for 
non-overlapping domain decomposition (additive Schwarz). 
In parallel, each processor performs one step of symmetric 
Gauss-Seidel on its local matrix, followed by 
communication to update boundary values from adjacent 
processors before performing the next local symmetric 
Gauss-Seidel step. The number of steps, k, is set using the 
Matrix polynomial order card.

lu Approximately solve the processor’s local matrix via direct 
factorization using Sparse 1.3 in conjunction with a user-
specified Matrix drop tolerance.

dom_decomp A domain-decomposition-based preconditioner (additive 
Schwarz). Each processor augments its local matrix 
according to the Matrix factorization overlap card and then 
approximately solves the resulting linear system using the 
solver specified by the Matrix subdomain solver card. This 
is the most often used Preconditioner card.

Examples

The following is a sample card:

Preconditioner = dom_decomp

Technical Discussion

Note that prior to Aztec 2.x, certain subdomain solvers were specified simply as 
arguments to the Preconditioner card. While this historical usage is permitted via 
limited backward compatibility in order to ease the transition from Aztec 1 usage, the 
preferred usage is to specify ILU (and similar) preconditioners as a subdomain solver 
using the more powerful and flexible options that are available using Aztec 2.x together 
with this option for the preconditioner. Since subdomain solvers such as ILU and ILUT 
are powerful and frequently used, this preconditioner option will predominate when 
iterative solvers are being used, even in serial execution.

The most popular setting is dom_decomp, with a subdomain solver specified in the 
Matrix Subdomain Solver card. For further details, consult Mike Heroux’s recipe for 
applying preconditioners and what to dial the knobs to (in Schunk, et. al., 2002).
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Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun, March 2002.

 

4.7.4 Matrix subdomain solver

Description/Usage

This optional card selects a solver to use in constructing a preconditioner. It is used in 
conjunction with a Preconditioner setting.

Preconditioner = dom_decomp

All of these preconditioners are available through the Aztec library. Valid options for 
{char_string} are listed below.

lu Approximately solve the processor’s local matrix via direct 
factorization using Sparse 1.3 in conjunction with a user-
specified Matrix drop tolerance.

ilut Approximately solve the processor’s local matrix via ILUT 
(Saad, 1994.) The factorization is affected by user-specified 
options for Matrix drop tolerance as well as Matrix ILUT 
fill factor.

This subdomain solver is among the more robust to 
recommend as a first attempt; thus it has been chosen as the 
default if no subdomain solver is specified.

Matrix subdomain solver = {char_string}
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ilu Approximately factor the processor’s local matrix using 
ILU(k), where k is specified by the user in the argument to 
Matrix graph fillin.

rilu Approximately factor the processor’s local matrix using 
RILU(k,ω), where k is specified by the user in the argument 
to Matrix graph fillin and ω is specified by the user in the 
argument to Matrix RILU relax factor. (This option applies 
only to Trilinos.)

bilu Approximately factor the processor’s local matrix using 
block ILU(k) for a VBR format matrix, where k is specified 
by the user in the argument to Matrix graph fillin. While not 
the most efficient preconditioner, bilu is very robust. (This 
option applies only to Trilinos.)

icc Incomplete Cholesky factorization. See the Aztec manual 
for a reference.

If this Matrix subdomain solver card is omitted, then the default selection is ilut.

Examples

Following is a sample card:

Matrix subdomain solver = ilut

Technical Discussion

There is no real recipe to follow when choosing a preconditioner. In general, the 
cheapest preconditioner that works should be used. If ILUT(1) does the job, great. 
Sometimes the only preconditioner(s) that will work are very expensive. When the 
preconditioner seems to take too much time, remember that you may not be choosing 
the “wrong” preconditioner; the problem may just be that difficult.

Although Aztec 2.1 is being maintained and supported as a solver package for Goma, 
the interative solvers and preconditioners are now primarily accessed through the 
Trilinos library (as AztecOO), which is actively being developed and maintained at 
Sandia National Laboratories. Note that some features can only be accessed through 
Trilinos, as indicated above.

Theory

No Theory.



128 Revised: 6/12/13

4.7.5  Matrix scaling  

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun, March 2002.

Saad, Y., 1994. “ILUT: a dual threshold incomplete ILU factorization”, Numerical 
Linear Algebra with Applications, 1:387-402.

 

4.7.5 Matrix scaling

Description/Usage

This optional card selects a scaling for the linear matrix system solution step.Valid 
options for {char_string} are listed below.

none No scaling is performed. This is the default if no Matrix 
Scaling card is present.

Jacobi Point Jacobi scaling is performed.

BJacobi Block Jacobi scaling is performed if the underlying matrix 
format is VBR. If the MSR matrix format is used, the 
scaling reverts to point Jacobi.

row_sum Scale each row so the sum of the magnitudes of the nonzero 
elements is 1.

sym_diag Symmetric scaling so that diagonal elements are 1.

sym_row_sum Symmetric scaling using the matrix row sums.

If the Matrix Scaling card is omitted, the default selection is none.

Examples

Following is a sample card: 

Matrix scaling = {char_string}
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Matrix scaling = sym_diag

Technical Discussion

All of these scalings are supplied via the Aztec library and thus will not affect the linear 
systems that are solved by other means (using front, for example). In an odd twist of 
fate, the linear system always undergoes a row sum scaling (equivalent to the row_sum 
option) before these other scalings are applied. Note that when a nontrivial scaling is 
selected, the matrix is overwritten with a rescaled system.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.6 Matrix residual norm type

Description/Usage

This optional card selects the type of norm that is used to measure the size of the 
residuals occurring during the solution of the linear matrix system r(z) = b - Az, where 
z is an approximation to the solution  x of the linear matrix problem Ax = b. The types 
of norms used by the linear solver are controlled by values of {char_string}:

r0

rhs

Anorm

sol

noscaled

The (0) superscript for the r0 specification indicates the initial value of the residual. 

Matrix residual norm type = {char_string}

r 2 r
0

⁄ 2

r 2 b⁄
2

r 2 A ∞⁄

r ∞ A ∞ x 1 b ∞+( )⁄

r
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If the Matrix residual norm type card is omitted, the default is r0.

Examples

Following is a sample card:

Matrix residual norm type = r0

Technical Discussion

For direct factorization linear solution algorithms, the norm should become very small 
in the single iteration that is performed. This card is more pertinent when an iterative 
solution algorithm has been specified.

Note the distinction between the residual for the overall global Newton iteration and 
use of the term residual to describe an aspect of the linear solver iteration. For the linear 
matrix systems, a residual r may be computed for any guess of the solution to Ax = b as 
r(z) = b - Az. If z = x, the actual solution, then the residual is zero; otherwise, it is some 
vector with a nonzero norm.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.7 Matrix output type

Description/Usage

This optional card indicates a level of diagnostic output for Aztec. The valid input 
parameters for {char_string} are either a string or a positive integer:

all Print matrix and indexing vectors for each processor and all 
intermediate residual expressions.

Matrix output type = {char_string}
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none No intermediate results are printed. This is the default.

warnings Only Aztec warnings are printed.

last Only the final residual expression is printed.

k Residual expressions are printed every k iterations, .

If the Matrix output type card is omitted, the default is none.

Examples

Following is a sample card: 

Matrix output type = 10

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.8 Matrix factorization reuse

Description/Usage

This optional card directs the approximate factorization solvers used in preconditioner 
construction to reuse matrix information that may have been obtained during previous 
linear solution stages. This card only has an effect when using an Aztec solver. Valid 
options for {char_string} are:

calc Use no information from previous linear solutions.

Matrix factorization reuse = {char_string}

k 0>
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recalc Use information from previous linear solutions but 
recalculate the preconditioning factors, with the implication 
that the symbolic factorization will be similar.

reuse Use information from previous linear solution; do not 
recalculate preconditioner factorizations. However, use 
scaling factors from previous linear solutions to scale right-
hand sides, initial guesses, and final solutions.

If the Matrix factorization reuse card is omitted, the default is recalc.

Examples

Following is a sample card:

Matrix factorization reuse = recalc

Technical Discussion

No discussion. See related discussions for Matrix factorization save.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.9 Matrix graph fillin

Description/Usage

This optional card sets the graph level of fill-in for approximate factorizations used in 
preconditioner construction for ILU(k), ICC(k) and BILU(k). The input parameter is 
defined as

<integer> k, specifies the graph level of fill-in, .

Matrix graph fillin = <integer>

k 0>
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If the Matrix graph fillin card is omitted, the default value of k is 0.

Examples

Following is a sample card:

Matrix graph fillin = 2

Technical Discussion

As the level of graph fill-in increases, the accuracy (usefulness) of the preconditioner 
increases; however, so does memory usage as well as the time required to compute the 
preconditioner.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.10 Matrix factorization overlap

Description/Usage

This optional card determines how much matrix factorization overlap occurs with other 
processors. This specification is only relevant for parallel computations. The valid 
options for {char_string} are:

none No augmentation is performed, equivalent to a setting of 
k=0. This is the default.

diag Augment the processor’s local matrix to include the 
diagonal (MSR) or diagonal blocks (VBR) for external 
rows.

Matrix factorization overlap = {char_string}
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k Augment the processor’s local matrix to include external 
rows. The rows are selected by examining non-zero 
columns from the current local system that refer to off-
processor unknowns, and including the rows associated 
with those off-processor unknowns. This process is repeated 
k times, where . When complete, all non-zero columns 
whose associated rows have not been included are 
discarded. A value of 0 is equivalent to a setting of none.

If the Matrix factorization overlap card is omitted, the default is none.

Examples

Following is a sample card: 

Matrix factorization overlap = 1

Technical Discussion

This optional card determines how much a processor’s local matrix is to be augmented 
with information from adjacent processors during the approximate factorizations used 
to build preconditioners. This card should be omitted or given a value of none for serial 
executions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

k 0≥
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4.7.11 Matrix overlap type

Description/Usage

This card selects the kind of matrix overlap that occurs (for parallel computations). 
Valid options are:

standard The local processor considers only its own estimate for any 
unknown; results from adjacent processors are ignored. This 
is the default.

symmetric The local processor adds its own estimate together with 
estimates from adjacent processors, retaining symmetry of 
preconditioners if a symmetric technique is being 
employed.

If the Matrix ovelap type card is omitted, the default is standard.

Examples

Following is a sample card: 

Matrix overlap type= symmetric

Technical Discussion

This optional card determines how overlapping subdomain solver results are combined 
when different processors derive different estimates for the same solution unknown.

This overlap option is moot for serial problems whose data decomposition is trivial.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Matrix overlap type = {standard | symmetric}
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4.7.12 Matrix auxiliary vector

Description/Usage

This optional card indicates to Aztec how the auxiliary vector r is determined. 
Permissible options are:

resid The auxiliary vector is set to the initial residual vector, viz. r 
= r(0).

rand The auxiliary vector is filled with random numbers, each in 
the range [-1,1]. 

If the Matrix auxiliary vector card is omitted, the default is resid.

Examples

Following is a sample card: 

Matrix auxiliary vector = rand

Technical Discussion

The auxiliary vector is only used for certain iterative linear matrix solution algorithms.

 The rand option may cause difficulties with initial iterative solver steps because 
different processors may have different initial unknown values at shared unknowns.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Matrix auxiliary vector = {resid | rand}
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4.7.13 Matrix drop tolerance

Description/Usage

This optional card indicates to Aztec a drop tolerance to be used in conjunction with 
preconditioners based on LU or on ILUT. The <float> input parameter is:

<float> tol, a floating point number ( ) that specifies the drop 
tolerance.

If the Matrix drop tolerance card is omitted, the default is 0.0.

Examples

Following is a sample card:

Matrix drop tolerance = 0.01

Technical Discussion

When constructing the partial factorization(s), any value less than tol is dropped. If set 
to 0.0, then other parameters will govern preconditioner size and components (e.g., 
Matrix ILUT fill factor for the ILUT preconditioner).

The two main parameters when using the ILUT preconditioner are this card and the 
Matrix ILUT fill factor card. The restrictions in Matrix ILUT fill factor take precedence 
over the dropped entries caused by this card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Matrix drop tolerance = <float>

tol 0≥
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4.7.14 Matrix polynomial order

Description/Usage

This optional card allows selection of polynomial order when a polynomial 
preconditioning option is selected (see the Preconditioner card). The input parameter is 
defined as:

<integer> Number of steps, k ( ), to take when using matrix 
polynomial based preconditioners (Jacobi and symmetric 
Gauss-Seidel, for example).

If the Matrix polynomial order card is omitted, then the default selection is k=3.

Examples

Following is a sample card:

Matrix polynomial order = 4

Technical Discussion

When used, the value of this parameter should be greater than 0, and probably no more 
than 10. In some, if not all, cases, a value of 0 is meaningless.

This card is not used if the preconditioner does not use matrix polynomials.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Matrix polynomial order = <integer>

0≥
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4.7.15 Matrix reorder

Description/Usage

This optional card determines whether RCM (Reverse Cuthill-McKee) reordering of 
the linear system is to be performed. Valid options are:

none the equations are not reordered.

rcm the equations are reordered using an RCM scheme.

If the Matrix reorder card is omitted, then the default selection is none.

Examples

Following is a sample card: 

Matrix reorder = rcm

Technical Discussion

Note that reordering frequently is helpful in achieving convergence for iterative 
solution of linear systems. In a few instances, however, Goma users have noted that 
RCM reordering hinders convergence for selected problems. The default for Goma is to 
not use the RCM reordering so that quantitatively comparable results are obtained 
using either Aztec 1 (which did not have RCM reordering as an option) or Aztec 2.x. In 
summary, users are encouraged to try RCM reordering when using iterative solvers, 
foregoing the option only as a further resort in the face of repeated convergence 
failures.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Matrix reorder = {none | rcm}
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4.7.16 Matrix factorization save

Description/Usage

This optional card is a boolean specification that determines whether the preconditioner 
factorization information should be kept after a solve. Valid options are

0 Factorization information is discarded.

1 Factorization information is kept for that step.

If the Matrix factorization save card is omitted, then the default selection is 0.

Examples

Following is a sample card:

Matrix factorization save = 1

Technical Discussion

This option is most useful for iterative solution techniques where the computed 
preconditioning matrix found from an incomplete factorization requires significant 
computational resources. Such a preconditioner may be useful in later matrix solves 
and obviate the need to compute another expensive preconditioner at the later stage. 
Although a lot of time may be saved by re-using a previous factorization, the loss in 
accuracy may cause convergence problems.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Matrix factorization save = {0 | 1}
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4.7.17 Matrix ILUT fill factor

Description/Usage

This optional card provides a second criterion to Aztec to be used in conjunction with 
preconditioners based on ILUT approximate factorization, where

<float> fac, a floating point value ( ) that specifies, very 
crudely, how many nonzero entries the approximate 
factorization will contain relative to the number of nonzero 
entries in the original matrix.

If the Matrix ILUT fill factor card is omitted, the default is 1.

Examples

Following is a sample card:

Matrix ILUT fill factor = 2.0

Technical Discussion

By increasing this factor, the preconditioner becomes more accurate because more 
terms in the preconditioner (pseudo-inverse) are retained. A value of 1.0 indicates that 
the preconditioner would contain approximately the same number of nonzero entries as 
the original matrix.

The two main parameters when using the ILUT preconditioner are this card and the 
Matrix drop tolerance card. If the Matrix drop tolerance is 0.0, then this card 
determines the size of the preconditioner. If Matrix drop tolerance is greater than 0.0, 
then the approximate factorization is first created subject to this card’s restriction, and 
then the drop tolerance is applied. This can result in a preconditioner with significantly 
fewer nonzero entries.

Theory

No Theory.

FAQs

No FAQs.

Matrix ILUT fill factor = <float>

fac 0≥
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References

No References.
 

4.7.18 Matrix RILU relax factor

Description/Usage

This optional card provides a relaxation factor to Aztec to be used in conjunction with 
preconditioners based on RILU(k,ω) approximate factorization. The input parameter 
<float> is defined as

<float> fac, a floating point number ( )that specifies a 
relaxation factor.

If the Matrix RILU relax factor card is omitted, the default is 1.

Examples

Following is a sample card:

Matrix RILU relax factor = 0.5

Technical Discussion

Some limiting values for fac provide specific behavior:

• for a value of zero, the ILU(k) is obtained

• for a value of one, the MILU(k) is obtained.

The value of k is set by the Matrix graph fillin card.

Theory

No Theory.

FAQs

No FAQs.

Matrix RILU relax factor = <float>

fac 0≥
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References

No References.
 

4.7.19 Matrix BILU Threshold

Description/Usage

This capability is only present within the Trilinos library. This optional card provides a 
means to modify the way the block ILU preconditioner (Matrix subdomain solver = 
bilu) is constructed. The input parameter is defined as:

<float> t, a floating point number ( ) that sets the Matrix 
Relative Threshold and Matrix Absolute Threshold 
thresholds.

When the Matrix BILU threshold card is omitted, the default value is 0.0.

Examples

Following is a sample card:

Matrix BILU Threshold = 1.0e-14

Technical Discussion

Using this card is equivalent to supplying both the Matrix Relative Threshold and 
Matrix Absolute Threshold with the value specified with this card.

The value of t defaults to zero, and if given a small value, say 1.0e-14, the condition 
number of the preconditioner, as reported when using the bilu option, should decrease. 
Try increasing up to around 1.0e-3 to get added benefit. The bilu preconditioner is not 
actually the cheapest or most efficient preconditioner, but it is very robust.

Theory

No Theory.

FAQs

No FAQs.

Matrix BILU threshold = <float>

t 0.0≥
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References

No References.
 

4.7.20 Matrix Relative Threshold

Description/Usage

This card is only available with the Trilinos library. The effect of this card is to impose 
a relative lower bound to either a diagonal value or a singular value. The legal values 
for <float> are:

<float> r, a floating point number ( ) that specifies a relative 
threshold.

If this card is omitted, the default is 0.0.

Examples

A sample input card follows:

Matrix Relative Threshold = 1.e-4

Technical Discussion

This card, along with the Matrix Absolute Threshold card, allow the user to modify the 
linear system prior to calculation of the preconditioner. Note that the modification is 
only to change the “initial condition” of the preconditioner--it does not actually change 
the linear system.

Let t be the value specified with the Matrix Absolute Threshold card. For a scalar-based 
preconditioner (ilut, ilu, rilu, icc), each value on the diagonal undergoes the following 
substitution:

dnew = r*dold + sgn(dold)*t.

For the bilu preconditioner, each singular value of the diagonal block preconditioner is 
compared to:

σmin = r*σ1 + t

where σ1 is the largest singular value of the diagonal block under consideration. All σk 
are modified (if necessary) to be at least as large as σmin. 

Matrix Relative Threshold = <float>

r 0.0≥
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The appropriate values for the threshold can vary over many orders of magnitude 
depending on the situation. Refer to Schunk, et. al., 2002 for information and for 
further guidance.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun, March 2002.

 

4.7.21 Matrix Absolute Threshold

Description/Usage

This card is only available with the Trilinos library. It allows the user to specify a lower 
bound for either a diagonal entry or a singular value. The exact meaning depends on the 
kind of preconditioner used (scalar-based or block-based). The legal values are:

<float> t, a floating point number ( ) that specifies a minimum 
threshold value for diagonal or singular value.

Along with the Matrix Relative Threshold card, this card gives the user the ability to 
modify what matrix the preconditioner operates on. See the Matrix Relative Threshold 
card for a full description.

If this card is omitted, the default is 0.0.

Examples

A sample input card follows:

Matrix Absolute Threshold = 1.e-4

Matrix Absolute Threshold = <float>

t 0.0≥
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Technical Discussion

Refer to the discussion for card Matrix Relative Threshold. The appropriate values for 
the threshold can vary over many orders of magnitude depending on the situation. 
Refer to Schunk, et. al., 2002 for information and for further guidance.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun, March 2002.

 

4.7.22 Size of Krylov subspace

Description/Usage

This optional card allows the user to specify the dimension (size) of the Krylov 
subspace for the gmres option of the Solution Algorithm card, where

<integer> m, specifies the number of orthogonalization directions and 
can be any positive integer less than or equal to the order of 
the matrix.

If the Size of Krylov subspace card is omitted, then the default dimension is m = 30.

Examples

The following is a sample input card:

Size of Krylov subspace = 128

Size of Krylov subspace = <integer>
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Technical Discussion

If the size of the subspace is at least as large as the maximum number of iterations 
permitted by the solver then the gmres iteration will not include any restarts. 
Depending on the problem, restarts may be beneficial, and then again they may not. 
Particularly poorly conditioned linear systems may never converge below a certain 
tolerance if gmres is allowed to restart (i.e. they “level off”). However, some linear 
systems will admit a converged solution more rapidly with restarts than without. 
Consequently, the user may wish to experiment with different values of this parameter. 
See the Orthogonalization card for related information.

gmres’ internal iterations create a Krylov subspace up to dimension m (less in some 
circumstances, such as convergence). The time and space required by the internal 
iterations increases nonlinearly with m (but see the Orthogonalization card) - a 
doubling of m will result in more than a doubling of space and time requirements. So 
simply choosing a very large dimension is generally not recommended.

Theory

No Theory. 

FAQs

No FAQs.

References

No References.
 

4.7.23 Orthogonalization

Description/Usage

This optional card selects the orthogonalization scheme used internally for the gmres 
solution algorithm (see the Solution Algorithm card). Valid options are

classic | classical Two steps of classical Gram-Schmidt orthogonalization.

modified A modified Gram-Schmidt orthogonalization.

Orthogonalization = {classic | modified}
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If the Orthogonalization card is omitted, then the default selection is classic. Goma’s 
parser will accept classical as equivalent to classic.

Examples

Following is a sample card:

Orthogonalization = modified

Technical Discussion

By specifying modified, the user is greatly speeding up the gmres algorithm at the 
expense of possibly losing convergence. A good indication that you should not have 
used the modified setting is a premature “leveling off” of the sequence of residuals 
produced internally within gmres.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.24 Maximum Linear Solve Iterations

Description/Usage

This optional card limits the maximum number of iterations used by iterative linear 
solver algorithms. The input parameter is defined as

<integer> n, any positive integer ( ) that specifies the maximum 
number of iterations.

If the Maximum Linear Solve Iterations card is omitted, the default selection is 500.

Maximum Linear Solve Iterations = <integer>

n 0>
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Examples

Following is a sample card: 

Maximum Linear Solve Iterations = 5

Technical Discussion

If the linear system can be solved within a specified tolerance (see the Residual Ratio 
Tolerance card) in less than n iterations, then a normal return from Aztec occurs and 
the actual number of iterations required to obtain convergence will be printed on the 
status line. If the specified convergence tolerance is not met within n iterations, then an 
abnormal return status occurs and, in place of the number of iterations, the string “max” 
will be printed on the status line under the LIS (linear iteration status) heading. Other 
abnormal returns from Aztec are possible and are indicated on the LIS status line; see 
the Aztec User’s Guide (Hutchinson, Shadid and Tuminaro, 1995) for further 
interpretation of different abnormal return status indicators.

Theory

No Theory. 

FAQs

No FAQs.

References

SAND95-1559: Aztec User’s Guide Version 1.0, Sandia Internal Report, Hutchinson, 
S. A., Shadid, J. N. and Tuminaro, R. S., 1995.

 

4.7.25 Number of Newton Iterations

Description/Usage

This required card sets the maximum number of iterations allowed for convergence of 
the Newton nonlinear iteration loop. It also provides an optional parameter for setting 
the reformation stride for the Jacobian matrix. Definitions of the input parameters are 
as follows:

Number of Newton Iterations = <integer1> [integer2]
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<integer1> n1, any integer indicating the maximum number of 
iterations allowed for convergence of the Newton nonlinear 
iteration loop.

[integer2] n2, an optional parameter indicating the reformation stride 
for the Jacobian matrix.

The Number of Newton Iterations card is required, there is no default.

See the Jacobian Reform Time Stride card for some detailed examples of the interaction 
amongst various input parameters that influence when a Jacobian reformation occurs.

Examples

Following is a sample card:

Number of Newton Iterations = 5

Technical Discussion

For an unrelaxed Newton iteration with a good initial guess, five or six iterations (for 
n1) should be sufficient to achieve convergence for most problems. One iteration will 
suffice for problems that are linear; two can be specified, with the second iteration 
verifying that the residual norms are small. More iterations may be required for relaxed 
Newton iteration schemes using the correction factor described in the Newton 
correction factor card. This parameter can also be controlled from the command line 
(see the -n option in the section on Command-line Arguments, Chapter 3).

The optional second parameter can be used to invoke a modified Newton iteration. If 
this value is missing, the stride is set to unity. This capability enables the user to save 
on assembly time when near a solution, particularly when doing transient simulations.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.7.26 Modified Newton Tolerance

Description/Usage

This optional card allows the user to exert finer control over Jacobian formation than a 
stride specification (as with the Number of Newton Iterations card’s second parameter 
or the Jacobian Reform Time Stride card). Input parameters are defined as:

<float1> r, if the convergence rate is below this level ( ), a 
Jacobian reformation will be forced.

<float2> t, if the residual norm is above this level ( ), a Jacobian 
reformation will be forced.

If the Modified Newton Tolerance card is omitted, then reformations are always 
computed, subject to the Number of Newton Iterations’ second parameter and the 
Jacobian Reform Time Stride value.

See the Jacobian Reform Time Stride card for some detailed examples of the interaction 
amongst various cards that influence when a Jacobian reformation occurs.

Examples

Following is a sample card:

Modified Newton Tolerance = 1.5 1.0e-8

Technical Discussion

The convergence rate is defined as:

. (4-6)

This rate should be equal to 2 when Newton’s method is in its region of convergence 
(this is what it means to converge quadratically). A secant method would have a 
convergence rate of  (the golden ratio!), approximately 1.6.

The residual norm is simply the L1 norm of the residual after a Newton iteration.

The method used to determine if a Jacobian reformation should take place is 
conservative. If either test condition for reformation is satisfied, a reformation occurs. 
Often, this card will allow you to speed up your runs by foregoing a fresh Jacobian 

Modified Newton Tolerance = <float1> <float2>

r 0.0>

t 0.0≥

convergence rate
current L1 norm( )log

previous L1 norm( )log
--------------------------------------------------------=

1 5+( ) 2⁄
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reformation, but still maintain strong convergence. Moreover, without a Jacobian 
reformation, the lu solver (see the Solution Algorithm card) can use a previously 
factored matrix and simply do a resolve.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.27 Jacobian Reform Time Stride

Description/Usage

This optional card has a single input parameter:

<integer> k, the stride length for Jacobian reformations ( ).

The Jacobian Reform Time Stride card is optional; there is no default.

Examples

Three examples are provided to illustrate how to use this card.

Example 1:
Number of Newton Iterations = 12 1
Modified Newton Tolerance   = 1.9 0.1
Jacobian Reform Time Stride = 2
Newton correction factor    = 1

This will reform the Jacobian every 2 steps. Furthermore, if the convergence rate falls 
below 1.9 or the L1 residual is greater than 0.1 on an off-stride step a Jacobian reforma-
tion will occur. Specifically, the Modified Newton Tolerance takes precedence over a 
reformation stride setting (from either Number of Newton Iterations or Jacobian 
Reform Time Stride).

Jacobian Reform Time Stride = <integer>

k 1≥
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Example 2:
Number of Newton Iterations = 12 1
# Modified Newton Tolerance = 1.9 0.1
Jacobian Reform Time Stride = 2
Newton correction factor    = 1

Note this differs from the previous example only by omitting the Modified Newton 
Tolerance card. This causes the Jacobian to be reformed every other time step.

Example 3:
Number of Newton Iterations = 12 2
# Modified Newton Tolerance = 1.9 0.1
Jacobian Reform Time Stride = 1
Newton correction factor    = 1

We’ve changed the Jacobian Reform Time Stride from 2 to 1 and changed the second 
parameter of the Number of Newton Iterations card from 1 to 2. This will cause the 
Jacobian to be reformed every other step.

Technical Discussion

If the second parameter on the Number of Newton Iterations card is present and greater 
than 1, this Jacobian Reform Time Stride card is ignored. Otherwise, this card simply 
forces the Jacobian to be rebuilt every k Newton steps. Often, this card will allow you 
to speed up your runs by foregoing a fresh Jacobian formation, but still maintain strong 
convergence. Moreover, without a Jacobian formation, the lu solver (see the Solution 
Algorithm card) can use a previously factored matrix and simply do a resolve.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.7.28 Newton correction factor

Description/Usage

This required card indicates the damping (or relaxation) factor for the Newton updates 
and offers customization of the relaxation choice based on the size of the nonlinear 
residual from the Newton iteration. Definitions of the <float_list> input parameters,  
from one (f1) to six (f2, ... f6) floating point numbers (one required and five optional), 
are as follows:

<float1> f1, damping factor for the Newton updates, where 
( ). A value of 1.0 gives the usual Newton’s 
method, otherwise, only a portion of the Newton update 
is applied to the solution. Values near 0 (e.g., 0.1) may 
be used effectively to aid convergence for sensitive 
problems where the initial guess is not very close to the 
final solution for the first several Newton iterations. 
This parameter can also be controlled from the 
command line (see -r option, Command-line 
Arguments, Chapter 3).

[floatn] These five floats [f2, ... f6] are optional but give a way to 
more finely control the amount of relaxation applied to 
Newton updates. See the description below and the 
example for an explanation.

Examples

A simple example is the following:

Newton correction factor = 0.1

This tells Goma to take the specified number of Newton iterations (from the Number of 
Newton Iterations card) at a fixed relaxation parameter of 0.1. This is a moderately 
large amount of relaxation, but of course “moderately large” is always problem 
dependent.

A more interesting example:

Newton correction factor = 0.8 1.0e-6 0.4 1.0e-4 0.1 1.0e-3

causes the following relaxation scheme to be used according to the  norm of the 
nonlinear residual:

Newton correction factor = <float_list>

0.0 f1 1.0≤<

L∞
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• If , the relaxation factor is taken as 0.1.

• If , the relaxation factor is taken as 0.4.

• If , the relaxation factor is taken as 0.8.

• If , the relaxation factor is taken as the usual Newton’s method 
relaxation of 1.0.

The default relaxation level for small residuals is 1.0.

Technical Discussion

The relaxation factor is used to intentionally shorten the solution update vector 
computed by the Newton iteration. There are many factors that can cause the effective 
radius of convergence of Newton’s method to be quite small or malformed:

• the underlying nonlinear problem is stiff,
• the initial solution is poor,
• non-analytic constitutive models or boundary conditions,
• poor linear solver performance, etc.

Under these kinds of circumstances, the update computed by Newton’s method may be 
too large and end up not improving the overall solution. In such cases it is 
recommended that one uses some relaxation (e.g., 0.9), and possibly a lot (e.g., 0.05).

What one really wishes to do is to use shortened updates when far from convergence, 
and full updates as the solution converges. This is the capability that the optional five 
parameters makes available. While they don’t directly measure how far the solution is 
from convergence, it does use the residual as an indicator. The full set of six parameters 
allows the user to specify four different residual intervals with four different relaxation 
factors. The f1, f3 and f5 values are relaxation factors and must lie in , 
while the f2, f4, and f6 values are interval endpoints. The supplied interval endpoints 
must be in ascending order, . Although no such restriction is put on the 
relaxation factors, they should generally satisfy .

Theory

No Theory.

FAQs

No FAQs.

L∞ 1.0e 3–>

1.0e 4– L∞ 1.0e 3–≤<

1.0e 6– L∞ 1.0e 4–≤<

L∞ 1.0e 6–≤

0.0 f
i

1.0≤<

0 f2 f4 f6< < <

0 f5 f3 f1 1.0≤ ≤ ≤<
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References

No References.
 

4.7.29 Normalized Residual Tolerance

Description/Usage

This required card indicates the value of the L2 norm of the global nonlinear residual 
vector that indicates termination of Newton’s method (i.e., convergence). The input 
parameter is defined as

<float> tol, a non-negative floating point number ( ) 
specifying the L2 convergence tolerance for the global 
nonlinear residual vector.

The Normalized Residual Tolerance card is required; there is no default.

Examples

Following is a sample card:

Normalized Residual Tolerance = 1.0e-11

Technical Discussion

Newton’s method is terminated when the global nonlinear residual falls below tol, or 
the maximum number of iterations specified in the Number of Newton Iterations is 
reached.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Normalized Residual Tolerance = <float>

tol 0.0≥
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4.7.30 Normalized Correction Tolerance

Description/Usage

This optional card sets the tolerance for a mixed measure of the size of the update 
vector which must be satisfied for the solution to be considered converged. The input 
parameter is defined as

<float> rel, a floating point value ( ) used as the 
convergence tolerance for the mixed measure of the update 
vector (defined in the Technical Discussion).

When the Normalized Correction Tolerance card is omitted, the default value of rel is 
1.0e+10.

Examples

Following is a sample card:

Normalized Correction Tolerance = 1.0e-4

Technical Discussion

The mixed measure used here is:

. (4-7)

This measures the relative size of the update vector when the solution vector is large 
(i.e., size of unknowns is greater than 1), and measures the absolute size of the update 
vector when the solution vector is small (i.e., size of unknowns is much less than 1).

This mixed measure must be less than rel, in addition to the nonlinear residual 
satisfying the absolute residual tolerance specified in the Normalized Residual 
Tolerance card for a solution to be considered converged.

If  (larger values are not really imposing any restrictions), mixed measure 
values are output instead of the update vector norms.

Theory

No Theory.

Normalized Correction Tolerance = <float>

rel 0.0≥

Δxi( )
2

1 xi
2+( )⁄ 

  1 2/

rel 1.0<
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FAQs

No FAQs.

References

No References.
 

4.7.31 Residual Ratio Tolerance

Description/Usage

This optional card sets the convergence criterion for the iterative solution of the linear 
matrix system solved at each Newton iteration. The input parameter is defined as

<float> tol, a non-negative real number ( ) specifying the 
value of the convergence criterion.

The default value of tol is 1.0e-6.

Examples

Following is a sample card:

Residual Ratio Tolerance = 1.0e-3

Technical Discussion

The value of tol is ignored when a direct factorization algorithm (such as lu) for the 
linear solve is specified in the Solution Algorithm card. When an iterative matrix 
solution technique is specified (such as gmres), tol acts as the inner iteration 
termination relative tolerance. Letting r0 represent the initial residual norm, when the 
nth iteration’s linear residual norm rn satisfies , the iterative solution is 
deemed acceptable and the inner iterations terminate. The number of iterations required 
is reported under the LIS column of the Newton iteration output. If the maximum 
number of iterations (specified in the Maximum Linear Solve Iterations card) is 
reached, then max appears instead of a number. Although the standard residual is 
usually used as the residual norm, the type of matrix residual norm used can be 
changed through the Matrix residual norm type card.

Residual Ratio Tolerance = <float>

tol 0.0≥

r
n

r0⁄ tol≤
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.32 Pressure Stabilization

Description/Usage

This optional card indicates whether or not pressure stabilization should be used. Valid 
options are 

yes Use the Galerkin Least square pressure stabilization method 
developed by Hughes, et. al. (1986). 

local Use the Galerkin Least square pressure stabilization method 
with local scaling.

pspp Use polynomial stabilized pressure projection stabilization 
method developed by Dohrmann and Bochev (2004). Please 
see Level Set PSPP filtering card if using with 
the level-set front tracking technique. 

pspp_e Use polynomial stabilized pressure projection method with 
upgrade for nonuniform/graded meshes (recommended)

no Do not use any pressure stabilization.

The amount of pressure stabilization to use is specified with the Pressure Stabilization 
Scaling card.

The default is no, to not use pressure stabilization.

Pressure Stabilization = {yes | no | local | pspp | pspp_e}
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Examples

Following is a sample card:

Pressure Stabilization = yes

Technical Discussion

If input for this card is yes, the Hughes, et. al. (1986) method adds the residual of the 
momentum equation weighted by the gradient of the Galerkin weight function to the 
Galerkin continuity equation. The result is that the continuity equation now has a 
diagonal term to stabilize it and improve the condition of the matrix, allowing for the 
use of iterative solvers. When pressure stabilization is used, equal-order interpolation 
can (and should) be used for velocity and pressure, e.g., velocity and pressure both Q2 
or both Q1. If input for this card is no, then the standard Galerkin finite-element weight 
functions are used and velocity and pressure interpolations should be chosen to satisfy 
the Babuska-Brezzi condition, e.g., velocity Q2 and pressure Q1 or P1, or velocity Q1 
and pressure P0.

An improvement on the Hughes approach was developed by Bochev and Dohrmann 
(2004) called the polynomial stabilized pressure projection.  In its fundamental form, it 
is like PSPG just an additional term on the continuity equation residual that helps 
stabilize the pressure, and it is predicated on the fact that the pressure field is governed 
by an elliptical equation known as the pressure Poisson equation.    Please consult this 
paper for details.   An additional improvement to that technique was developed 
internally to Sandia which better accommodates graded meshes. This technique is 
invoked with the pspp_e option, which we recommend.  

Theory

No Theory.

FAQs

No FAQs.

References

Hughes, T. J. R., L. P. Franca and M. Balestra, “A New Finite Element Formulation for 
Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A 
Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-
Order Interpolations,” Comput. Methods Appl. Mech. Engrg., 59 (1986) 85-99.
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4.7.33 Pressure Stabilization Scaling

Description/Usage

This optional card is only used if the Pressure Stabilization card is set to yes, where

<float> tau, a positive real value ( ) that scales the 
momentum residual being added to the continuity equation 
for pressure stabilization.

The default value of tau is 0.1. If the Pressure Stabilization card is omitted, or set to 
no, then tau is ignored.

Examples

Following is a sample card:

Pressure Stabilization Scaling = 0.01

Technical Discussion

Generally, if tau is small, then more accurate solutions may be obtained at the cost of a 
more ill-conditioned matrix system that may not be easily amenable to iterative solvers 
(but stay tuned!). Conversely, larger values of this parameter result in equation systems 
that are easier to solve using the available iterative matrix solvers, but the solution thus 
obtained may be less accurate. A good choice for tau is 0.1.

The scaling value, tau, is further scaled inside of Goma. Knowledge of this scaling is 
sometimes useful. First, an average Reynolds number (Re) is computed according to:

(4-8)

where ρ and µ are local values for density and viscosity, is a norm of the velocity 
field, and  is a global average value for element size. If Re < 3.0, the pressure 
stabilization scaling is given by this expression:

(4-9)

On the other hand, if Re > 3.0, the following scales the pressure stabilization terms in 
the continuity equation:

Pressure Stabilization Scaling = <float>

tau 0.0>

Re
ρ U h 

2µ
---------------------=

U

h 

tau h 2

12µ
-------------------
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(4-10)

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.34 Linear Stability

Description/Usage

This optional card indicates whether or not linear stability analysis should be 
performed, as well as what kind.

The valid options for {char_list} are:

no Do not perform any kind of linear stability analysis.

yes Perform regular linear stability analysis. If your problem 
was 2D, then 2D analysis is performed. If your problem was 
3D, then 3D analysis is performed.

inline Same as yes, perform regular linear stability analysis.

3D Subject the 2D flow to 3D linear stability analysis by 
normal mode expansion for the modes specified with the 
Eigen Wave Numbers card.

file Set up the problem as in yes or inline, but output the 
matrices involved instead of determining stability.

3Dfile Set up the problem as in 3D, but output the matrices 
involved instead of determining stability.

Linear Stability = {char_list}

tau h 
2ρ U
----------------
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The default value is no.

Examples

Here is a sample card:

Linear Stability = yes

Technical Discussion

When linear stability analysis is performed, a steady-state solution is first acquired, and 
then the eigenvalue/eigenvector spectrum is computed subject to the choices made in 
the Eigensolver Specifications section. In the case of file or 3Dfile, the steady-state 
solution is acquired and then the matrices that would have been used to compute the 
spectrum are exported to file and no spectrum is actually computed. Refer to the 
Advanced Capabilities (Gates, et. al., 2001) document for a more thorough description.

The name of the output files when file is specified are:

• LSA_mass_coo.out for the mass matrix, B or M,
• LSA_jac_coo.out for the jacobian matrix, J,
• LSA_vars.out for variable names associated with unknowns.

When 3Dfile is specified, the names are:

• LSA_mass_coo-<f>.out, for the mass matrix, B or M,
• LSA_jac_coo-<f>.out, for the jacobian matrix, J,
• LSA_vars.out, for variable names associated with unknowns.

where <f> is the value of the requested normal mode (see the Eigen Wave Numbers 
card). The Eigen Matrix Output card must be set to yes in order to create and write 
these files.

When computing the 3D stability of a base 2D flow, other modifications need to be 
made (see the 3D stability of 2D flow memo).

See the Advanced Capabilities document (Gates, et. al., 2001), or it’s replacement 
(Labreche, et. al., 2002).

Theory

No Theory.

FAQs

No FAQs.
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References

SAND2000-2465: Advanced Capabilities in Goma 3.0 - Augmenting Conditions, 
Automatic Continuation, and Linear Stability Analysis, I. D. Gates, D. A. Labreche and 
M. M. Hopkins (January 2001)

SAND2002-xxxx: Advanced Capabilities in Goma 4.0 - Augmenting Conditions, 
Automatic Continuation, and Linear Stability Analysis, Labreche, D. A., Wilkes, E. D., 
Hopkins, M. M. and Sun, A. C., (in preparation)

 

4.7.35 Filter Concentration

Description/Usage

This optional card allows the user to enforce strict bounds on the concentration of a 
specific species. The input parameters are defined as:

<integer> i, this integer indicates which species ( ) receives this 
special restriction.

<float1> min, a real number indicating the minimum concentration.

<float2> max, a real number indicating the maximum concentration.

There are no default values; concentrations take on whatever values are naturally 
dictated by the Newton iterations.

Examples

The following is a sample card:

Filter Concentration = 0 0.0 1.0

Technical Discussion

Although a correct solution should not have concentrations less than 0 or greater than 
1.0, such values may arise in the solution vector due to various sources. Intermediate 
solutions during the Newton iteration may cause non-physical values to arise. 
Numerical error due to inexact linear solves, rounding, etc., may cause the values to be 
inexact. This card allows the user to force the concentration of species i to be corrected 
to fall within a strict concentration range [min,max] after the Newton iterations have 
terminated.

Filter Concentration = <integer> <float1> <float2>

i 0≥
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.7.36 Disable Viscosity Sensitivities

Description/Usage

This optional card permits the analyst to omit the sensitivities of a shear-thinning 
viscosity model with respect to shear rate from the Jacobian.Valid options for this card 
are

yes Omit the sensitivities of a shear-thinning viscosity model 
with respect to shear rate from the Jacobian

no Form the complete Jacobian.

Currently, this card will have an effect only when using the following viscosity models: 
POWER_LAW, CARREAU, BINGHAM (see the Liquid Constitutive Equation 
card).

The default value is no.

Examples

Following is a sample card:

Disable Viscosity Sensitivities = yes

Technical Discussion

 It has been observed that when these terms are included for very highly shear-thinning 
models the result can be non-convergence. In such situations, disabling these terms can 

Disable Viscosity Sensitivities = {yes | no}
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often result in a convergent answer but at a convergence rate far less than the usual 
quadratic.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.8 Eigensolver Specifications

The ability to solve for the stability of a base flow is a very powerful tool. Often, the important 
characteristics of a flow can be summarized in the answer to the question “is the flow stable?”. 
Although the following cards are in active use at the time of this writing, sweeping changes are 
coming to the eigensolver sections of Goma. In particular, the old code (called “eggroll”) is being 
replaced with newer methods (in the ARPACK library), as well as being coupled to the 
continuation and tracking algorithms (in the LOCA library).

Input specifications for this section of input records is discussed in a separate, comprehensive 
manual (Gates, et. al., 2000); an update to this manual will be completed during the summer of 
2006 (Labreche, et. al., 2006). Either of these manuals contains a thorough discussion of how to 
successfully compute the stability and interesting modes of an underlying base flow.

4.9 Geometry Specifications

Geometry commands allow the user to import geometry from a pre-existing file in the ACIS 
format (files with the “.sat” extension) and to generate geometry through primitive commands 
within the Goma input file. This geometry is usually of an analytic nature which helps 
convergence. It is used with the MESH_CONSTRAINT boundary condition (and soon to initialize 
a level set). The main advantage in using geometry is one of practicality - once the geometry is 
created to generate a mesh within CUBIT, that same geometry can be exported and used within 
Goma without a laborious reconstruction of the geometry through other BC commands. At the 
time of this writing, only 2D geometry had been verified.

The geometry capability is only available when the CGM library is linked in. A tutorial has been 
written to assist in defining input at the present time. The user is referred to that document at the 
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present time (GT-021.2, Common Geometry Model (CGM) Usage for GOMA, August 22, 2002, 
M. M. Hopkins).

4.9.1 ACIS file

Description/Usage

This optional card allows the user to read in an ACIS .sat file containing solid model 
geometry. The valid input form is:

<file_name> satfile, the name of the ACIS file (usually with a .sat 
extension) containing predefined geometry.

There is no default <file_name>.

Examples

Here is a sample card:

ACIS file = my_geometry.sat

Technical Discussion

This file contains ACIS geometry. It is usually created from within Cubit via an

export acis “satfile” ascii

command. Any geometry within the current Cubit scope is then exported to satfile. If 
geometry has been named then those user-defined names are also exported. The 
geometry defined within satfile is then available for boundary conditions and further 
geometry constructions within the Goma input file.

Theory

No Theory.

FAQs

No FAQs.

ACIS file = <file_name>
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References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M. 
M. Hopkins

 

4.9.2 VERTEX

Description/Usage

This optional card creates a vertex. The valid card input is:

<vertex_name> The user-supplied name of the vertex.

<float1> The x coordinate of the vertex.

<float2> The y coordinate of the vertex.

<float3> The z coordinate of the vertex.

If the Geometry Specifications section is present, then the END OF VERTEX card is 
required, even if there are no VERTEX cards.

There is no default value for any VERTEX arguments.

Examples

Here is a sample card, where vertex v1 is located at point (1.5, 2.3, 1.0):

VERTEX = v1 1.5 2.3 1.0

Technical Discussion

The created vertex is usable in later geometry commands (e.g., EDGE) by referencing 
its name, vertex_name. When performing a computation in 2D, set the third 
component to 0.0 (it is always required). The x, y coordinates may, of course, represent 
z, r cylindrical coordinates instead of cartesian coordinates. This geometry may be 
exported through the Exported geometry file card.

Theory

No Theory.

VERTEX = <vertex_name> <float1> <float2> <float3>
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FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M. 
M. Hopkins.

 

4.9.3 END OF VERTEX

Description/Usage

This card is required if the Geometry Specifications section is present. It indicates the 
end of the list of VERTEX commands. It is required even if there are no VERTEX cards.

Examples

Here is the card:

END OF VERTEX

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

END OF VERTEX
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4.9.4 EDGE

Description/Usage

This optional card allows the user to create edges (curves). There are multiple formats, 
each of which has variable input requirements, each of which is described below.

The first parameter supplies a name

edge_name user-supplied name for the new edge.

while the {char_list} parameter, which has four options, identifies the geometric nature 
of the edge. The four options have unique inputs (<input_list>) parameterizing its 
curve; these are listed below for each {char_list} option:

STRAIGHT

vertex1 - an endpoint (see VERTEX) of the new edge.
vertex2 - an endpoint (see VERTEX) of the new edge.

ELLIPSE

vertex1 - an endpoint (see VERTEX) of the new edge.
vertex2 - an endpoint (see VERTEX) of the new edge.
x - x-coordinate of control point (see Technical

Discussion).
y - y-coordinate of control point (see Technical

Discussion).
z - z-coordinate of control point (see Technical

Discussion).
orientation - a direction for sweeping the curve (see 

Technical Discussion)
FORWARD
REVERSED

PARABOLA

vertex1 - an endpoint (see VERTEX) of the new edge.
vertex2 - an endpoint (see VERTEX) of the new edge.
x - x-coordinate of control point (see Technical

Discussion).
y - y-coordinate of control point (see Technical

Discussion).
z - z-coordinate of control point (see Technical

EDGE = <edge_name> {char_list} <input_list>
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Discussion).
orientation - a direction for sweeping the curve (see 

Technical Discussion)
FORWARD
REVERSED

COMPOSITE

<integer> N, the number of curves to be composited 
together.

edge1, ..., edgeN names of the N edges to be 
composited together.

If the Geometry Specifications section is present, then the END OF EDGE card is 
required, even if there are no EDGE cards.

There is no default value for any argument.

Examples

Here is a sample card of each edge type:
EDGE = edge1 STRAIGHT v1 v2
EDGE = edge2 ELLIPSE v2 v3 1.0 1.1 0.0 FORWARD
EDGE = edge3 PARABOLA v3 v4 -2.1 0.3 0.0 REVERSED
EDGE = big_edge COMPOSITE 3 edge1 edge2 edge3

where the vertices v1 through v4 must already exist.

Technical Discussion

In its simplest form, the EDGE command creates a STRAIGHT segment between the 
two endpoints. The vertices required in the STRAIGHT, ELLIPSE, and PARABOLA 
forms, as well as the edges required in the COMPOPSITE form must already exist. 
They can be created via other Goma input VERTEX and EDGE commands, or they can 
be read from an ACIS .sat file via the ACIS file command.

In the ELLIPSE form, the EDGE command creates a curve from vertex1 to vertex2 
along an ellipse with one of the foci equal to the control point (x,y,z).  This is often 
used to create circular arcs, where (x,y,z) is in fact the center of the circle that vertex1 
and vertex2 lie upon. The orientation parameter determines if the short arc is selected 
(FORWARD) or the long one (REVERSED).

The PARABOLA form is similar to the ELLIPSE form except that the control vertex 
(x,y,z) is the focus of the parabola.

The COMPOSITE form will create a new curve that is simply the union of the N curves 
edge1, edge2, ..., edgeN.
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Note that extensive use of the EDGE command has only occured in 2D; 3D capability 
is not guaranteed.

Theory

No Theory.

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M. 
M. Hopkins

 

4.9.5 END OF EDGE

Description/Usage

This card is required if the Geometry Specifications section is present. It indicates the 
end of the list of EDGE commands. It is required even if there are no EDGE cards.

Examples

Here is the card:

END OF EDGE

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

END OF EDGE
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References

No References.
 

4.9.6 FACE

Description/Usage

This optional card allows the user to create faces (surfaces). There are multiple formats, 
each of which has variable input requirements, each of which is described below.

The first parameter supplies a name

face_name user-supplied name for the new face.

while the {char_list} parameter, which has four options, identifies the geometric nature 
of the face. The four options have unique inputs (<input_list>) parameterizing its face; 
these are listed below for each {char_list} option:

PLANE N - number of edges (see EDGE) bounding the face.

e1 ... eN - names of the edges bounding the face.

POLY N - number of vertices on the boundary.

x y z ...- coordinates of the vertices on the boundary.
There should be N triplets (see Technical
Discussion).

POLY_VERT N - number of vertices on the boundary.

v1 ... vN - names of vertices (see VERTEX) on the
boundary. There should be N triplets (see
Technical Discussion).

If the Geometry Specifications section is present, then the END OF FACE card is 
required, even if there are no FACE cards.

There is no default value for any argument.

Examples

Here is a sample card of each face type:
FACE = face1 PLANE 3 e1 e2 e3
FACE = face2 POLY 3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0

FACE = <face_name> {char_list} <input_list>
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FACE = POLY_VERT 3 v1 v2 v3

where the vertices v1 through v3 and the edges e1 through e3 already existed.

Technical Discussion

The FACE command will create planar faces. These are a type of surface, but are of 
course flat. The edges and vertices that the FACE and POLY_VERT version use can be 
created either in the Goma input deck (via EDGE and VERTEX commands), or read in 
from an ACIS file via the ACIS file command.

The PLANE version will construct a FACE with a boundary created by compositing 
the specified edges. They must be linked serially (i.e., e2 connects to e3, e3 connects 
to e4, etc.), and they must all be coplanar. A common error is to specify curves created 
in Cubit that are a mix of “free” curves and “bound” curves. A “free” curve is one that 
is created directly (e.g., “create curve ...”), whereas a “bound” curve is one 
that is created indirectly (e.g., you create a brick and get 12 boundary curves). They are 
not compatible within the PLANE command.

The POLY version will create a polygon whose boundary edges are straight line 
segments between the specified vertices (coordinates). The vertices must be coplanar. 
There is a known outstanding issue with non-convex polygons. If you need non-convex 
polygons the workaround is to create them in Cubit and pass them to Goma via the 
ACIS file command. The example POLY command will result in a 2D (z=0) triangle.

The POLY_VERT command is identical to the POLY command except the vertices are 
referenced by name instead of specified numerically.

Theory

No Theory.

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M. 
M. Hopkins
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4.9.7 END OF FACE

Description/Usage

This card is required if the Geometry Specifications section is present. Although there 
is currently no legal FACE command, it is expected to exist in the future and this card 
will be required at that time.

Examples

Here is the card:

END OF FACE

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.9.8 END OF BODY

Description/Usage

This card is required if the Geometry Specifications section is present. Although there 
is currently no legal BODY command, it is expected to exist in the future and this card 
will be required at that time.

END OF FACE

END OF BODY
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Examples

Here is the card:

END OF BODY

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.9.9 Exported geometry file

Description/Usage

This optional card specifies a filename into which the user-defined geometry is 
exported. Valid card syntax is given by:

<file_name> satfile, name of the export file for user-defined geometry.

There is no default value for satfile.

Examples

Here is a sample card:

Exported geometry file = new_geometry.sat

Technical Discussion

Any geometry created with one of the other primitive geometry commands (e.g., 
VERTEX) will be exported to this file in the ACIS format (a .sat extension is 

Exported geometry file = <file_name>
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customary). No geometry read-in through the ACIS file card will be exported -- only 
user-defined geometry. The file can then be imported into CUBIT and manipulated, 
checked for correctness, etc. The relevant CUBIT command is

import acis “satfile”

Theory

No Theory.

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M. 
M. Hopkins

 

4.10 Boundary Condition Specifications

The broad range of mechanics capabilities that has been built into Goma necessitates an equally 
broad range of boundary conditions (BCs) to provide all boundary condition information that the 
differential equations specified in the Problem Description section will require for a well-posed 
system. The BCs for Goma have been categorized according to the differential equation set to 
which they apply. First are listed those boundary conditions which can be applied to any equation 
followed by BCs for mesh, real solid, fluid momentum, energy, mass, continuity, porous, stress, 
gradient, shear rate, fill and potential equations. Each boundary condition (BC) card follows a 
general syntax as follows:

BC = <bc_name> <bc_type> <bc_id> {integer_list}/{float_list}

The <bc_name> identifies the desired control of the physics/mechanics at the boundary as 
identified by the <bc_type> and its associated <bc_id>. The <bc_type> is either nodeset, NS 
(NODEBC or POINBC in EXODUS II) or sideset, SS (ELEMBC in EXODUS II) depending on 
the <bc_name> and can be located in the problem domain by means of its flag or <bc_id> number 
(set in EXODUS II). The {integer_list} and/or {float_list} specify parameters of the boundary 
condition. Within each equation category are Dirichlet nodeset boundary conditions (i.e. T, U, V, 
W, DX, DY, DZ, Y, S11, S12, S13, S22, S23, S33, G11, G12, G13, G21, G22, G23, G31, G32, 
G33) that can be handled (i.e., processed) in two ways in Goma. The first way is application of the 
BC as a “hard-set” on the primitive variable, and the second as a residual equation; differences in 
these methods are discussed below. The cards belonging to this category have the following 
general syntax:
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BC = <bc_name> <bc_type> <bc_id> <float1> <float2>

where <float2> flags whether a hard-set or residual equation is to be used.

Prior to introducing individual boundary conditions and their parameters, some general comments 
regarding the first category of BCs, boundary condition types and the resolution of boundary 
condition conflicts will be made.

Any Equation Boundary Conditions There are several boundary condition types that are 
not necessarily best binned with a specific equation type. The FIX, GD_* and TABLE boundary 
condition types are general and can be applied to any equation type. A general description of these 
types (called Category 1 conditions) is given below.

Boundary condition types Beyond the generalized boundary conditions types and the Di-
richlet types, Goma has strong-collocated, weak form, and several others that are intrinsic to the 
Galerkin finite element method; these are applied in a variety of ways. Because of this, boundary 
conditions at a given node might interact in ways that produce unexpected results. For this reason, 
it is important to understand the differing methods of application that occur in Goma and how 
each affects the other. In addition, by cleverly mixing boundary conditions, the analyst is often 
able to achieve a desired result, but only if the nature of each boundary condition is understood. 
Toward this end, the user will find a special label assigned to each boundary condition, which, 
with the ensuing explanation below, will provide each user with an understanding of how that BC 
is applied within Goma.

On each boundary condition card, the boundary condition type appears in the Description/Usage 
section. These are the following boundary condition types that will be found here:

DIRICHLET (DC)

STRONGLY INTEGRATED (SIC)

STRONGLY INTEGRATED EDGE (SIC_EDGE) 

COLLOCATED (PCC)

COLLOCATED EDGE (PCC_EDGE)

WEAKLY INTEGRATED (WIC)

The following sections discuss the method of application of each boundary condition type along 
with the implications of using each.

DIRICHLET (DC):

In the hierarchy of boundary conditions, Dirichlet conditions are at the top. 
Nothing trumps a Dirichlet conditions. A Dirichlet condition is applied by 
discarding all mechanics information related to a particular field variable that has 
been accumulated at a given node and replacing it with a direct assignment of the 
nodal unknown of that field with a fixed a priori value. Algorithmically, applying 
a Dirichlet condition on a degree of freedom at a node involves zeroing the entire 
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equation row, inserting a unity value on the diagonal element of the Jacobian 
matrix, inserting a zero value at the appropriate place in the residual vector, and 
inserting the known boundary condition value at the appropriate place in the 
solution vector. This is referred to in many places as the “hard set” method. An 
alternate formulation imposes the boundary condition by replacing the mechanics 
equation at a node with the simple residual equation, , where φ and φ0 
are the nodal unknown field and its assigned value, respectively.The sensitivities 
of this residual equation are entered into the Jacobian appropriately and solution 
takes place normally.

Dirichlet conditions are strictly node-based. Neighbor nodes and shared elements 
have no influence on them. For this reason, all Dirichlet conditions are applied to 
nodesets. Furthermore, Dirichlet conditions are assigned the highest precedence in 
terms of boundary conditions. If a Dirichlet condition appears at a node, it will be 
applied. Any other boundary condition that could be applied will be discarded (at 
that node).

Dirichlet conditions are limited, however in that they can only affect the nodal 
value of a degree of freedom. Derived quantities cannot be set with a Dirichlet 
condition. You will never see a Dirichlet condition being applied to a heat flux for 
example.

STRONGLY INTEGRATED (SIC):

The next class of boundary condition is referred to within Goma as the strongly 
integrated boundary conditions. These boundary conditions replace the mechanics 
equation at the ith node with a surface integral of some derived quantity. The 
general form of these conditions is:

(4-11)

where φι is the finite element weight function attached to node i, x is the vector of 
degrees of freedom, g(x) is the boundary constraint written as a residual, and S is 
the surface over which the boundary condition is applied. Because these 
constraints are applied by integration of a weighted residual they are referred to as 
“integrated” constraints. Note also that since the constrained is applied in this 
manner, it will only be satisfied on the surface in an “average” sense, a concept 
clear to anyone who has experience with the finite element method.

Strongly integrated constraints are enforced by penalizing (multiplying by a very 
large number) the preceding equation and adding it to the mechanics equation 
already accumulated at the node. The equation at that node is therefore made 
sensitive only to the constraint residual and during the iterative process only that 
residual will be satisfied at that node; the residual of the mechanics equation will 
not be zero at that node. In the common parlance, the mechanics equation at that 
node is “clobbered” by the constraint.

STRONGLY INTEGRATED EDGE (SIC_EDGE):

φ φ0– 0=

φig x( ) Sd

S

 0=
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This class of boundary conditions is very similar to strongly integrated conditions, 
which are applied to surfaces typically. The difference is that the integration of the 
weighted constraint residual is done along the edge curve, which is defined as the 
curve where two specified sidesets intersect. Consequently, the boundary 
constraint will be satisfied only on this curve and only in an average sense.

COLLOCATED (PCC):

This class of boundary conditions is also often referred to as point collocated 
conditions. In contrast to the strongly integrated conditions, this class enforces 
boundary constraints precisely at nodal locations. That is to say that at node i, the 
constraint:

, (4-12)

where again g(x) is a generalized boundary constraint and xi are the nodal degree 
of freedom values at node i, is satisfied exactly. At other points on the boundary, it 
is not guaranteed that the constraint is satisfied, even in an average sense. 
Although, these boundary conditions resemble Dirichlet conditions in function 
there is an important difference. In this class of boundary conditions, the constraint 
g(x) might contain derived quantities, for example, normal vectors or gradients, 
which require information be obtained from surrounding elements. For this reason, 
collocated boundary conditions require the user to specify a sideset over which 
they apply instead of a nodeset.

Like the strongly integrated conditions, the collocated conditions are applied by 
penalizing the preceding equation and adding this directly onto the accumulated 
mechanics residual at each applicable node. This clobbers the mechanics residual 
and ensures only the boundary constraint will be satisfied in the final solution. 
Note, however, that each element that shares a boundary node will add its version 
of the preceding equation, based upon its own specific geometry and set of nodal 
unknowns. Since all elements use the same penalizing factor, the effect is that the 
constraint applied at a given node is the simple average of the contributions from 
surrounding elements.

COLLOCATED EDGE (PCC_EDGE):

This class of boundary conditions is very similar to point collocated conditions, 
which are applied at nodal locations. The difference is that the generalized 
boundary constraint is satisfied only along the edge curve, which is defined as the 
curve where two specified sidesets intersect. The boundary constraint will be 
satisfied exactly only at the nodes on this curve.

WEAKLY INTEGRATED (WIC):

Weakly integrated conditions are the last major class of boundary conditions that 
one is likely to encounter in normal operations. They are weak because they do not 
clobber the mechanics equation and replace it with a separate constraint. Instead, 
they add an additional quantity, associated only with the boundary surface, to the 
mechanics equation accumulated at a node. Like the strongly integrated constraint, 

g xi( ) 0=
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the term that is added is multiplied by the nodal weight function and integrated 
over the surface S:

(4-13)

where in this case g(x) is not a residual equation but some derived quantity. Unlike 
strong constraints, this term is not multiplied by a penalizing factor before it is 
added to the accumulated mechanics equation at node i. Consequently, it 
represents boundary contributions to the mechanics at that node. Note also that 
since these conditions only make additions to the boundary mechanics, if a 
strongly enforced condition (SIC or PCC) is also present at the node, the weakly 
integrated constraint will be clobbered along with the rest of the mechanics. As an 
example, a CAPILLARY boundary condition that is applied to the same sideset as 
a VELO_NORMAL condition will have no effect in the final answer.

Weakly integrated boundary conditions are also very much a consequence of the 
“natural” boundary conditions that emerge from the finite element formulation. As 
anyone familiar with the finite element method knows, these are the ghostly 
boundary terms that enforce zero boundary fluxes or forces as a convenient 
default. The weakly integrated boundary condition step into the space afforded by 
the natural boundary conditions and allow the user to specify values for these 
boundary fluxes or forces as functions of conditions on those boundaries. 

In addition, to the various classes of boundary conditions detailed above, there are special cases 
that arise when applying boundary conditions to the “vector” degrees of freedom. Currently, the 
only “vector” degrees of freedom are the mesh displacement and fluid velocity unknowns. When 
a boundary condition is applied to these degrees of freedom, it may be ROTATED, VECTOR or 
SCALAR. These labels appear in the boundary condition documentation along with the class of 
the condition.

ROTATED:

When a boundary condition is designated as “ROTATED,” the vector components 
of the appropriate equations for the surface nodes are projected into a new 
coordinate system that is locally based on the surface normal vector and tangent 
vectors. It is the presence of the “ROTATED” boundary condition that prompts 
this process. Usually, only one of these rotated components is then affected by the 
boundary condition constraint and in this sense ROTATED conditions are 
SCALAR conditions (see below). Also generally speaking, ROTATED boundary 
conditions are strongly enforced as described above.

VECTOR:

When a boundary condition is designated as a “VECTOR” condition, the 
implication is that a vector quantity will be added to the vector components of the 
original mechanics equations. “VECTOR” boundary conditions are generally 
always applied weakly.

φig

S

 x( ) Sd 0=
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SCALAR:

When a boundary condition is designated a “SCALAR” condition, only a single 
mechanics equation is going to be influenced by the boundary condition. In the 
case of the vector degrees of freedom, only a single component would be affected 
by the boundary condition. Boundary conditions that apply to degrees of freedom 
that are naturally scalars, for instance temperature and species, are by default 
SCALAR conditions.

An example of these special labels for the VELO_NORMAL_EDGE condition (found on the line 
with the Description/Usage section header) is PCC-EDGE/ROTATED MOMENTUM indicat-
ing a rotated collocated edge condition applied to the fluid momentum equation. Given this label-
ing convention, boundary conditions which are not specified to be rotated or vector conditions can 
be presumed to be unrotated scalar conditions. Boundary conditions that may be applied to any 
equation are labeled “varied.”

The user will not find “periodic boundary conditions” discussed in this manual. Those interested 
in such conditions should consult the Advanced Capabilities Manual (SAND2006-7304). 

Resolving Conflicts between Boundary Conditions In Goma, the bulk equations and 
boundary conditions are evaluated on an element-by-element basis. After the residual and Jacobi-
an entries for the bulk equations have been calculated, the boundary conditions are used to modify 
or replace the bulk entries where necessary. Often the selection of boundary conditions from the 
input deck may cause two boundary conditions to be applied to the same equation (equation asso-
ciated with a nodal point); this is especially true at junction points. Frequently the multiple bound-
ary conditions perform the same function (i.e. duplicates) but in some important instances they 
are different (i.e. conflicts). In Goma, a decision making process was developed for determining 
which boundary conditions have priority. The flow chart for this decision-making is shown in Fig-
ure 4. While this process resolves boundary-condition conflicts, it does not eliminate the possibil-
ity of setting boundary conditions that are incompatible and lead to errors in solving the problem. 
However, this method should clarify how BC’s are chosen from the input deck and should enable 
the user to determine why a given combination of boundary conditions does not work.

The flow chart in Figure 3 shows the procedure for resolving what boundary conditions get ap-
plied to a given equation at a given node. The starting point assumes that a list of all the potential 
boundary conditions for the equation are known. Boundary conditions in Goma fall into several 
classes: Dirichlet, Pointwise Collocation, Strong Integrated, Weak Integrated and Special condi-
tions, in order of priority. For boundary conditions applied to vector equations (mesh or momen-
tum), a boundary condition can cause the bulk equations to be rotated prior to applying the 
boundary condition; in conflicts between boundary conditions, conditions which do not rotate the 
bulk equations (unrotated conditions) have priority over conditions which rotate the bulk equa-
tions (rotated conditions). In certain cases (e.g. two PLANE conditions which intersect at a point), 
conflicting boundary conditions can be checked to determine if they are duplicates, in which case 
only the first of the duplicates in the input deck is applied. Most boundary conditions are designed 
to apply by themselves, but a special class of boundary conditions, the generalized dirichlet (GD) 
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conditions, are designed so that multiple GD conditions can apply along the same boundary and to 
the same equation.

While running, Goma prints the results of conflict resolution for every node at which it found at 
least two boundary conditions being applied to the same equation. The results indicate the node 
number, equation type, boundary conditions chosen by Goma, and the side-set or node-set num-
bers to which the boundary conditions apply. Thus to determine what boundary conditions are ac-
tually used by Goma, carefully check the output from conflict resolution. Setting the Debug_Flag
= 1 causes Goma to print out more information regarding which boundary conditions apply and 
which do not. Despite the complexity of the logic built into Goma to resolve conflicts between 
boundary conditions, there are several combinations of boundary conditions that do not have a 
clear resolution. It is up to the user to resolve the final conflicts.

And finally, the first (Number of BC) and last (END OF BC) boundary condition cards are a pair 
and stand alone; the remaining cards belong to the categories of conditions discussed above. The 
ordering of input cards within this collection of BC input records (i.e., section) is sequential and 
some sections of interspersed comments accompany each boundary condition category.

4.10.1 Number of BC

Description/Usage

This required card indicates how many boundary condition (BC) cards are contained in 
the Problem Description File. The single input parameter is defined as

<integer> The number of BC cards that follow.

 If <integer> is set to -1, Goma will automatically count the number of BC cards 
between the Number of BC card and the End of BC card. This latter usage is generally 
preferred if a large number of BCs are to be specified.

Examples

Following is a sample card, indicating that there are two BC cards that follow this card.

Number of BC = 2

Technical Discussion

If there are more BC cards listed in an input deck than specified on this card, Goma 
ignores the extras; in other words, only the first <integer> cards are read by Goma. If 

Number of BC = <integer>
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the number of BCs is fewer than the amount specified by <integer>, Goma will stop 
with an error.

Also note, that if more than one BC on the same variable is specified, only the last one 
is applied.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Category 1: Boundary Conditions for Any Equation

This category includes a set of cards that are used to provide all boundary condition information 
for a generalized dirichlet (GD) boundary condition. The condition is applied as a pointwise 
collocation along a given node set. The general syntax for the GD_cards is as follows:

BC = <bc_name> <bc_type> <bc_id> <equation_name> <integer1> <variable_name> <integer2> {float_list}

The current allowable definitions and/or values for < bc_name>, <bc_type>, <bc_id>, 
<integer1>, <integer2> and {float_list} are provided in the individual cards. As a general note, 
<integer1> and <integer2> are the species number of the mass transport equation and 
concentration variable, respectively; they should be zero for other equation and variable types. 
Currently these conditions assume that the variable is defined at all the nodes at which the 
equation is defined (no subparametric mapping).

However, the values for <equation_name> and <variable_name>, which apply generally to all 
cards in this category (except as subsequently noted), are given here:

<equation_name> A character string indicating the equation to which this 
boundary condition is applied, which can be 
R_MOMENTUM1, R_MOMENTUM2, 
R_MOMENTUM3, R_MESH1, R_MESH2, R_MESH3, 
R_MASS, R_ENERGY, R_MASS_SURF, 
R_PRESSURE, R_STRESS11, R_STRESS12, 
R_STRESS13, R_STRESS22, R_STRESS23, 
R_STRESS33, R_GRADIENT11, R_GRADIENT12, 
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R_GRADIENT13, R_GRADIENT21, 
R_GRADIENT22, R_GRADIENT23, 
R_GRADIENT31, R_GRADIENT32, 
R_GRADIENT33, R_POTENTIAL, R_FILL, 
R_SHEAR_RATE, R_MESH_NORMAL (rotate mesh 
equations and apply this condition to normal component), 
R_MESH_TANG1, R_MESH_TANG2, 
R_MOM_NORMAL (rotate momentum equations and 
apply this condition to normal component), 
R_MOM_TANG1, R_MOM_TANG2, 
R_POR_LIQ_PRESS, R_POR_GAS_PRESS, 
R_POR_POROSITY, R_POR_SATURATION, 
R_POR_ENERGY, R_POR_LAST, 
R_POR_SINK_MASS, R_VORT_DIR1, 
R_VORT_DIR2, R_VORT_DIR3, R_VORT_LAMBDA, 
R_CURVATURE,  R_LAGR_MULT1, 
R_LAGR_MULT2, R_LAGR_MULT3,  
R_BOND_EVOLUTION, R_SURF_CHARGE, 
R_EXT_VELOCITY, R_EFIELD1,  R_EFIELD2, 
R_EFIELD3,  R_ENORM, R_NORMAL1, 
R_NORMAL2, R_NORMAL3,  R_ _CURVATURE,  
R_SHELL_TENSION,  R_SHELL_X,  R_SHELL_Y, 
R_SHELL_USER,  R_PHASE1,  R_PHASE2,  
R_PHASE3,  R_PHASE4,  R_PHASE5, 
R_SHELL_ANGLE1,  R_SHELL_ANGLE2,  
R_SHELL_SURF_DIV_V,  R_SHELL_SURF_CURV,  
R_N_DOT_CURL_V,  R_GRAD_S_V_DOT_N1,  
R_GRAD_S_V_DOT_N2,  R_GRAD_S_V_DOT_N3,  
R_ACOUS_PREAL,  R_ACOUS_PIMAG,  
R_SHELL_DIFF_FLUX,  
R_SHELL_DIFF_CURVATURE, 
R_SHELL_NORMAL1,  R_SHELL_NORMAL2,  
R_ACOUS_REYN_STRESS, R_SHELL_BDYVELO,  
R_SHELL_LUBP,  R_LUBP,  R_SHELL_FILMP,  
R_SHELL_FILMH,  R_SHELL_PARTC,  
R_SHELL_SAT_CLOSED,  R_SHELL_SAT_OPEN,  
R_SHELL_ENERGY,  R_SHELL_DELTAH,  
R_SHELL_LUB_CURV,  R_SHELL_SAT_GASN, 
R_SHELL_SHEAR_TOP,  R_SHELL_SHEAR_BOT,  
R_SHELL_CROSS_SHEAR, R_MAX_STRAIN,  
R_CUR_STRAIN ,  R_LUBP_2,  
R_SHELL_SAT_OPEN_2,  or 
R_SHELL_LUB_CURV_2 
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<variable_name> A character string indicating the variable which should be 
fixed, which can be VELOCITY1, VELOCITY2, 
VELOCITY3, MESH_DISPLACEMENT1, 
MESH_DISPLACEMENT2, 
MESH_DISPLACEMENT3, MESH_POSITION1, 
MESH_POSITION2, MESH_POSITION3, 
MASS_FRACTION, SURFACE, TEMPERATURE, or 
PRESSURE (pressure will have no effect if not using Q1 or 
Q2 basis functions), POLYMER_STRESS11, 
POLYMER_STRESS12, POLYMER_STRESS13, 
POLYMER_STRESS22, POLYMER_STRESS23, 
POLYMER_STRESS33, VOLTAGE, FILL, 
SHEAR_RATE, VEL_NORM, D_VEL1_DT, 
D_VEL2_DT, D_VEL3_DT, D_T_DT, D_C_DT, 
D_X1_DT, D_X2_DT, D_X3_DT, D_S_DT, D_P_DT, 
VELOCITY_GRADIENT11, 
VELOCITY_GRADIENT12, 
VELOCITY_GRADIENT13, 
VELOCITY_GRADIENT21, 
VELOCITY_GRADIENT22, 
VELOCITY_GRADIENT23, 
VELOCITY_GRADIENT31, 
VELOCITY_GRADIENT32, 
VELOCITY_GRADIENT33, POR_LIQ_PRESS, 
POR_GAS_PRESS, POR_POROSITY, 
POR_POROSITY, POR_TEMP , POR_SATURATION, 
POR_LAST, MAX_POROUS_NUM, 
POR_SINK_MASS, VORT_DIR1, VORT_DIR2, 
VORT_DIR3, VORT_LAMBDA, CURVATURE, 
LAGR_MULT1, LAGR_MULT2, LAGR_MULT3, 
BOND_EVOLUTION,  SURF_CHARGE, 
EXT_VELOCITY, EFIELD1, EFIELD2, EFIELD3, 
ENORM, NORMAL1, NORMAL2, NORMAL3, 
SHELL_CURVATURE, SHELL_TENSION, 
SHELL_X, SHELL_Y, SHELL_USER, PHASE1, 
PHASE2, PHASE3, PHASE4, PHASE5, 
SHELL_ANGLE1, SHELL_ANGLE2, 
SHELL_SURF_DIV_V, SHELL_SURF_CURV, 
N_DOT_CURL_V, GRAD_S_V_DOT_N1, 
GRAD_S_V_DOT_N2, GRAD_S_V_DOT_N3, 
ACOUS_PREAL, ACOUS_PIMAG, 
SHELL_DIFF_FLUX, SHELL_DIFF_CURVATURE, 
SHELL_NORMAL1, SHELL_NORMAL2, 
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ACOUS_REYN_STRESS, SHELL_BDYVELO, 
SHELL_LUBP, LUBP, SHELL_FILMP, 
SHELL_FILMH, SHELL_PARTC, 
SHELL_SAT_CLOSED, SHELL_PRESS_OPEN, 
SHELL_TEMPERATURE, SHELL_DELTAH, 
SHELL_LUB_CURV, SHELL_SAT_GASN, 
SHELL_SHEAR_TOP, SHELL_SHEAR_BOT, 
SHELL_CROSS_SHEAR, MAX_STRAIN, 
CUR_STRAIN, LUBP_2, SHELL_PRESS_OPEN2, 
SHELL_LUB_CURV_2

EXCEPTIONS to the above parameter definitions: For the GD_TIME card, the <variable_names> 
of LINEAR, EXPONENTIAL, or SINUSOIDAL are acceptable (see examples below). There 
are also differences in the use of the GD_TABLE card, which are explained in the description of 
that card below.

A GD boundary condition can be applied multiple times to the same side set and equation to build 
up a general multiparameter condition. When this is done, the function is built by expanding the 
equations sequentially in the order specified in the BC list.

Descriptions of the GD cards are given next. An insert entitled “Usage Notes on the GD Cards” 
follows the descriptions, explaining how the cards are used together in various combinations.

4.10.2 FIX

Description/Usage (DC/VARIED)

This boundary condition card is used to fix the value of a nodal variable along a node 
set to the value it receives from an initial guess file (viz. either from the neutral file 
specified by the Initial Guess card or an input EXODUS II file as also specified by the 
read_exoII_file option on the Initial Guess card). The boundary condition is applied as 
a Dirichlet condition (see technical discussion below). 

Definitions of the input parameters are as follows:

FIX Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

BC = FIX NS <bc_id> {char_string} <integer1>
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

{char_string} Variable name that is to be fixed. This parameter can have 
the following permissible values: VELOCITY1, 
VELOCITY2, VELOCITY3, 
MESH_DISPLACEMENT1, 
MESH_DISPLACEMENT2, 
MESH_DISPLACEMENT3, 
SOLID_DISPLACEMENT1, 
SOLID_DISPLACEMENT2, 
SOLID_DISPLACEMENT3, MASS_FRACTION, 
TEMPERATURE, PRESSURE, VOLTAGE, FILL, 
POLYMER_STRESS11, POLYMER_STRESS12, 
POLYMER_STRESS13, POLYMER_STRESS22, 
POLYMER_STRESS23, POLYMER_STRESS33, 
VELOCITY_GRADIENT11, 
VELOCITY_GRADIENT12, 
VELOCITY_GRADIENT13, 
VELOCITY_GRADIENT21, 
VELOCITY_GRADIENT22, 
VELOCITY_GRADIENT23, 
VELOCITY_GRADIENT31, 
VELOCITY_GRADIENT32, 
VELOCITY_GRADIENT33, POR_LIQ_PRES, 
POR_GAS_PRES, POR_POROSITY, 
POR_POROSITY, POR_TEMP, POR_SATURATION, 
POR_LAST, MAX_POROUS_NUM, 
POR_SINK_MASS, VORT_DIR1, VORT_DIR2, 
VORT_DIR3, VORT_LAMBDA, CURVATURE, 
LAGR_MULT1, LAGR_MULT2, LAGR_MULT3, 
BOND_EVOLUTION,  SURF_CHARGE, 
EXT_VELOCITY, EFIELD1, EFIELD2, EFIELD3, 
ENORM, NORMAL1, NORMAL2, NORMAL3, 
SHELL_CURVATURE, SHELL_TENSION, 
SHELL_X, SHELL_Y, SHELL_USER, PHASE1, 
PHASE2, PHASE3, PHASE4, PHASE5, 
SHELL_ANGLE1, SHELL_ANGLE2, 
SHELL_SURF_DIV_V, SHELL_SURF_CURV, 
N_DOT_CURL_V, GRAD_S_V_DOT_N1, 
GRAD_S_V_DOT_N2, GRAD_S_V_DOT_N3, 
ACOUS_PREAL, ACOUS_PIMAG, 
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SHELL_DIFF_FLUX, SHELL_DIFF_CURVATURE, 
SHELL_NORMAL1, SHELL_NORMAL2, 
ACOUS_REYN_STRESS, SHELL_BDYVELO, 
SHELL_LUBP, LUBP, SHELL_FILMP, 
SHELL_FILMH, SHELL_PARTC, 
SHELL_SAT_CLOSED, SHELL_PRESS_OPEN, 
SHELL_TEMPERATURE, SHELL_DELTAH, 
SHELL_LUB_CURV, SHELL_SAT_GASN, 
SHELL_SHEAR_TOP, SHELL_SHEAR_BOT, 
SHELL_CROSS_SHEAR, MAX_STRAIN, 
CUR_STRAIN, LUBP_2, SHELL_PRESS_OPEN2, 
SHELL_LUB_CURV_2

<integer1> Species number of concentration, or zero if variable is not 
concentration.

Examples

The following is an example of using this card to set the mesh displacement 
components in a 2-D problem:

BC =    FIX     NS      4       MESH_DISPLACEMENT1   0
BC =    FIX     NS      4       MESH_DISPLACEMENT2   0

In this example, several continuation steps were taken to deform part of an elastic block 
of material. The displacements on boundary node set 4 were then held constant while 
moving another boundary (because the current displacements were not known, FIX 
was a convenient tool).

Technical Discussion

This boundary condition capability is indispensable for moving-mesh problems when 
the dependent variable is the mesh displacement from a stress free state.   If one were to 
try to use the DX/DY/DZ type Dirichlet condition to suddenly freeze a mesh along a 
node set after a parameter continuation or transient problem restart, then they would be 
faced with figuring out the displacement of each node and defining individual node sets 
for each node for boundary condition application. This capability is also beneficial 
when using previous simulation results to generate boundary conditions for more 
complex analysis. We have on occasion used this boundary condition for most of the 
variable types shown.
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.3 GD_CONST

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a 
constant value for any nodal variable, using the residual function form

(4-14)

C1 being the constant value (<float>) and x being the <variable_name>. This boundary 
condition card can be used in combination with any of the other GD_* conditions as a 
building block to construct more complicated conditions. Please see the examples on 
all of these cards for details and instructive uses. Definitions of the input parameters are 
as follows:

GD_CONST Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied (see the list of permissible 
values in the discussion above for Category 1).

BC = GD_CONST SS <bc_id> <equation_name> <integer1> <variable_name> 
<integer2> <float>

x C1– 0=
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<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<variable_name> A character string indicating the variable that should be 
fixed (see the list of permissible values in the discussion 
above for Category 1).

<integer2> Species number of the concentration variable.The value 
should be 0 unless the <variable_name> is of type 
MASS_FRACTION.

<float> Value of variable, C1.

Examples

Following is a sample card:

BC = GD_CONST SS 2 R_MESH_NORMAL 0 MASS_FRACTION 0 0.2

This boundary condition results in the equation C1 -  0.2 = 0 being applied as a 
boundary condition to the mesh-motion equation and being rotated into a normal-
tangential basis. C1 is the concentration of the zeroth species. The equation is actually 
applied as a replacement to the normal component of the mesh motion equation and in 
this case would cause the mesh surface, defined by side set 2, to move as the 
isoconcentration surface of C1 = 0.2.

Technical Discussion

Note that this collocated boundary condition may be applied as a rotated, vector or 
scalar condition depending on the equation to which this condition applies. The 
example above is a powerful demonstration of this boundary condition as a 
distinguishing condition. Please consult the example discussions on the other GD_* 
options for more detailed examples, as this boundary condition card can be used in an 
additive way with other GD_* cards.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

4.10.4 GD_LINEAR

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a linear 
function for any nodal variable, using the residual function form

(4-15)

where C1 and C2 being the constant values and x representing any variable 
(<variable_name>). This boundary condition card can be used in combination with any 
of the other GD_* conditions as a building block to construct more complicated 
conditions. Moreover, the resulting boundary condition can be applied as a strong 
residual replacement to any differential equation type. Please see the examples on all of 
these cards for details and instructive uses. Definitions of the input parameters are as 
follows:

GD_LINEAR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied (see the list of permissible 
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<variable_name> A character string indicating the variable that should be 
fixed (see the list of permissible values in the discussion 
above for Category 1).

BC = GD_LINEAR SS <bc_id> <equation_name> <integer1> <variable_name> 
<integer2> <float1> <float2>

C1 C2x+ 0=
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<integer2> Species number of the concentration variable.The value 
should be 0 unless the <variable_name> is of type 
MASS_FRACTION.

<float1> Intercept, C1

<float2> Slope, C2

Examples

Following is a sample card:

BC = GD_LINEAR SS 1 R_MESH1 0 MESH_POSITION1 0 -1. 2.

This boundary condition results in the equation  2.0*x -  1.0 = 0 to be applied as a 
boundary condition to the x-component of the mesh motion equation. x is the x-
component of the mesh position (N.B. not displacement, as MESH_POSITION1 would 
be replaced by MESH_DISPLACEMENT1 in the above). The equation is actually 
applied as a replacement to the x-component of the mesh motion equation and in this 
case would lead to the mesh surface, defined by side set 1, to move or position itself 
according to this linear relationship.

Technical Discussion

Note that this collocated boundary condition may be applied as a rotated, vector or 
scalar condition depending on the equation to which this condition applies. Please 
consult the example discussions on the other GD_* options for more detailed 
examples, as this boundary condition card can be used in an additive way with those. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.5 GD_PARAB

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a 
quadratic function for any nodal variable, using the residual function form

(4-16)

where C1, C2 and C3 are the constant values (<floati>) and x represents any variable 
(<variable_name>). This boundary condition card can be used in combination with any 
of the other GD_* conditions as a building block to construct more complicated 
conditions. Moreover, the resulting boundary condition can be applied as a strong 
residual replacement to any differential equation type. Please see the examples on all of 
these cards for details and instructive uses. Definitions of the input parameters are as 
follows:

GD_PARAB Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied (see the list of permissible 
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<variable_name> A character string indicating the variable that should be 
used in the function (see the list of permissible values in 
the discussion above for Category 1).

<integer2> Species number of the concentration variable.The value 
should be 0 unless the <variable_name> is of type 
MASS_FRACTION.

BC = GD_PARAB SS <bc_id> <equation_name> <integer1> <variable_name> 
<integer2> <float1> <float2> <float3>

C1 C2x C3x
2

+ + 0=
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<float1> Intercept, C1.

<float2> Slope, C2.

<float3> Acceleration, C3.

Examples

Following is a sample card:
BC = GD_PARAB SS 4 R_MESH1 0 MESH_POSITION2 0 1. -2. -3.
BC = GD_LINEAR SS 4 R_MESH1 0 MESH_DISPLACEMENT1 0  0. -1.

This boundary condition results in the equation -3*y2-2.0*y + 1.0 = 0 to be applied as a 
boundary condition to the x-component of the mesh motion equation. y is the y-
component of the mesh position (N.B. not displacement, as MESH_POSITION2 would 
be replaced by MESH_DISPLACEMENT2 in the above). The equation is actually 
applied as a replacement to the x-component of the mesh motion equation and in this 
case would lead to the mesh surface, defined by side set 4, to move or position itself 
according to this quadratic relationship.

Technical Discussion

This condition is convenient for applying Poiseuille velocity profiles, as a circular 
condition on geometry, together with many other uses.

Note that this collocated boundary condition may be applied as a rotated, vector or 
scalar condition depending on the equation to which this condition applies. Please 
consult the example discussions on the other GD_* options and the examples below for 
more detailed examples, as this boundary condition card can be used in an additive way 
with those.

Theory

No Theory.

FAQs

No FAQs.

References

Please consult the following reference (on Roll Coating) for examples of roll surface 
geometry.

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29, 
2000, P. R. Schunk and Matt Stay
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4.10.6 GD_POLYN

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a 
polynomial function for any nodal variable, using the residual function form of a 6th- 
order polynomial dependence on a variable

(4-17)

There are three required and four optional parameters in the <float_list>; definitions of 
the input parameters are as follows:

GD_POLYN Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied (see the list of permissible 
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<variable_name> A character string indicating the variable that should be 
fixed (see the list of permissible values in the discussion 
above for Category 1).

<integer2> Species number of the concentration variable. The value 
should be 0 unless the <variable_name> is of type 
MASS_FRACTION.

<float1> Intercept, C1.

BC = GD_POLYN SS <bc_id> <equation_name> <integer1> <variable_name> 
<integer2> <float_list>

C1 C2x C3x
2

C4x
3

C5x
4

C6x
5

C7x
6

+ + + + + + 0=
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<float2> Slope, C2.

<float3> Acceleration, C3.

<float4> Coefficient for 3rd-order term, C4.

<float5> Coefficient for 4th-order term, C5.

<float6> Coefficient for 5th-order term, C6.

<float7> Coefficient for 6th-order term, C7.

Examples

Following is a set of sample cards
BC = GD_POLYN SS 2 R_ENERGY 0 MESH_POSITION1 0 {c1} {c2} {c3} {c4} 
{c5} {c6} {c7}
BC = GD_LINEAR SS 2 R_ENERGY 0 TEMPERATURE 0 0. -1.

This boundary condition results in the equation

(4-18)

to be applied as a boundary condition on the energy equation, i.e., made a boundary 
condition on temperature with second card, which brings in a dependence on 
temperature. Here the coefficients are set by APREPRO,   x is the x-component of the 
mesh position (N.B. not displacement, as MESH_POSITION2 would be replaced by 
MESH_DISPLACEMENT2 in the above).

Technical Discussion

This condition is not used as often as GD_LINEAR and GD_PARAB, and in fact 
supersedes those conditions. Please consult the example discussions on the other GD_* 
options and the example section after GD_TABLE for more descriptive examples.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

C1 C2x C3x
2

C4x
3

C5x
4

C6x
5

C7x
6

+ + + + + + T=
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4.10.7 GD_TIME

Description/Usage (PCC/VARIED)

This boundary condition card is actually a multiplicative building block that can be 
used to impose a multiplicative time modulation of a specified functional form on any 
set of GD_ * conditions. NOTE: unlike the other GD_* cards which are additive, this 
card is multiplicative. This condition must be placed after any single or set of GD_ * 
cards for which the user wishes to modulate (viz. GD_LINEAR, GD_PARAB, etc.). The 
card can be used as many times as needed to construct the desired function. The 
examples below will clarify its use. Definitions of the input parameters are as follows: 

GD_TIME Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied (see the list of permissible 
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<time_func_name> Keyword to identify the functional form of the time 
modulation. Permissible values for this parameter are 
LINEAR, EXPONENTIAL, and SINUSOIDAL.

<integer2> Set this required but unused parameter to zero.

<float1> C0 model parameter

<float2> C1 model parameter

The functional form of each time-modulation model is as follows:

LINEAR:         (4-19)

BC = GD_TIME SS <bc_id> <equation_name> <integer1> <time_func_name> 
<integer2> <float1> <float2>

f t( ) C0 C1t+=
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EXPONENTIAL:     (4-20)

SINUSOIDAL:    (4-21)

Examples

Following is a sample card set:
BC = GD_LINEAR SS 1 R_MESH_NORMAL 0 MESH_DISPLACEMENT1 0 1. 0.
BC = GD_TIME   SS 1 R_MESH_NORMAL 0 SINUSOIDAL 0 10. 2. 
BC = GD_LINEAR SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 0. -1.

This set of cards leads to the application of  to the normal component 
of the mesh displacement at side set 1. If side set 1 were a surface of constant x (viz. 
normal in the x-direction) then this condition could be used to impose a piston motion 
to the surface. Recall that GD_LINEAR cards are additive with each other and 
GD_TIME is multiplicative with the previous cards. The first card is used to put a 
constant of 1.0 in the equation, the second card (GD_TIME card) multiplies that 
constant with the sinusoidal time function, and the third card is used to put the linear 
term on mesh position. Note carefully the signs used.

Technical Discussion

This boundary condition building block is very useful for imposing time-dependent 
boundary conditions with some fairly standard functional forms without the 
inconvenience of writing a user-defined boundary condition. Boundary conditions for 
pulsating flow, piston motion, roll-eccentricity effects in coating, time-evolving 
temperature transients, etc. can all be constructed using this card. The examples at the 
end of this section on GD_* options will help the user construct such functions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

f t( ) C0 C1t+( )exp=

f t( ) C0 C1t+( )sin=

x 10.0 2t+( )sin=
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4.10.8 GD_CIRC

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a 
quadratic function for any nodal variable using the residual function form

. (4-22)

where C1, C2 and C3 are the constant values (<floati>) and x represents any variable 
(<variable_name>). This boundary condition card can be used in combination with any 
of the other GD_* conditions as a building block to construct more complicated 
conditions. GD_CIRC happens to be a convenient building block for circles or 
elliptical functions (see examples below). Moreover, the resulting boundary condition 
can be applied as a strong residual replacement to any differential equation type. Please 
see the examples on all of these cards for details and instructive uses. Definitions of the 
input parameters are as follows: (convenient for circles):

GD_CIRC Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied. See the list of 
permissible values in the introduction to the Category 1 
BCs following the Number of BC card.

<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<variable_name> A character string indicating the variable that should be 
fixed. See the list of permissible values in the 
introduction to the Category 1 BCs following the 
Number of BC card.

BC = GD_CIRC SS <bc_id> <equation_name> <integer1> <variable_name> 
<integer2> <float1> <float2> <float3>

C
2

1– C3 x C2–( )
2

+ 0=
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<integer2> Species number of the concentration variable. The value 
should be 0 unless the <variable_name> is of type 
MASS_FRACTION.

<float1> Radius, C0. This should appear in only one GD_CIRC 
condition on each boundary.

<float2> Origin, C1.

<float3> Ellipticity, C2.

Examples

Following is a sample set of cards:
BC = GD_CIRC SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 1. 1. 1.
BC = GD_CIRC SS 1 R_MESH_NORMAL 0 MESH_POSITION2 0 0. 1. 1.

This set of cards can be used to prescribe a mesh distinguishing condition for a mesh 
surface with a quadratic dependence on x and y, a circle center at [1., 1.], and a radius 
of 1.0 (note the radius only appears on one card).

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.9 GD_TABLE

Description/Usage (PCC/VARIED)

This card is used to specify arbitrary, univariate (one abscissa and one ordinate: x1 - x2) 
data for boundary conditions on two-dimensional boundaries, e.g., the inlet velocity 
profile of a non-Newtonian fluid in a two-dimensional channel. The GD_TABLE 
specification differs slightly from the other cards in this category: the data are scalable 
and the data can be read from a file. Like the other GD_* cards, this card can be used as 
an additive building block for more complicated conditions. The examples below and 
at the end of the GD_* section will provide more detailed guidance.

Definitions of the input parameters are described next. Differences between this card 
and other GD_* cards are pointed out.

GD_TABLE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this 
boundary condition is applied. See the list of 
permissible values in the discussion above for Category 
1. In contrast to other GD_* cards, this parameter also 
serves to identify the equation that is being supplanted. 

<integer1> Species number of the mass transport equation. The 
value should be 0 unless the <equation_name> is of type 
R_MASS.

<variable_name> A character string indicating the variable that should be 
used in the function. See the list of permissible values in 
the discussion above for Category 1. For this card, in 
contrast to other GD_* cards, this parameter also 
identifies what value is to serve as abscissa when 
interpolating the table.

BC = GD_TABLE SS <bc_id> <equation_name> <integer1> <variable_name> 
<integer2> <scale> <interpolation> [FILE = <fname>]
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<integer2> Species number of the concentration variable.The value 
should be 0 unless the <variable_name> is of type 
MASS_FRACTION.

<scale> A floating point value by which to multiply the ordinate 
list after interpolation. It can be used to scale the table 
values or change their sign, e.g. C0, scale factor in  
f(x1) = C0*x2

<interpolation> Specifies the method to use in interpolating between 
supplied data points. Currently the only choice available 
is LINEAR, which invokes a simple linear interpolation 
method. Alternative methods will/can be added latter as 
required or requested.

The table data will be read from within the input deck itself (following the GD_TABLE 
BC card). The end of the table is signaled by the keywords "END TABLE." (See the 
second example below.) An alternative to this method is to read a file with table data.

[FILE = <fname>] The optional keyword ‘FILE =’ indicates that the table 
data is to be read from a separate file identified by 
<fname>.

Note that this boundary condition card functions as every other GD condition, be it 
LINEAR, QUADRATIC, POLYNOMIAL, or in this case TABULAR. It is used simple as 
a piece of a residual on the appropriate equation. Hence, it usually requires more than 
one GD card to completely specify the boundary condition.

Examples

Following is a sample card set in which the table data is to be read from an external file 
called upstream_land.dat:

BC = GD_LINEAR SS 1 R_MESH_NORMAL 0 MESH_POSITION2 0 0. -1.
BC = GD_TABLE  SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 1.0 LINEAR 
FILE=upstream_land.dat

This card set first creates a linear term in MESH_POSITION2, which is the y-coordinate 
of the mesh points along side set 1. The second, GD_TABLE card then creates a table of 
y-coordinate values based on x-mesh position. This boundary condition describes a 
land/filet composite geometry with x-y data points.

Following is a sample card, where the table data is to be read directly from the input 
deck:

BC = GD_TABLE SS 1 R_MOMENTUM1 0 MESH_POSITION2 0 1.0 LINEAR
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$ r/R             Uz
0.000000        1.666667
0.050000        1.666458
0.100000        1.665000
0.150000        1.661042
0.200000        1.653333
0.250000        1.640625
0.300000        1.621667
.
.
0.900000        0.451667
0.950000        0.237708
1.000000        0.000000 
END TABLE

This table is used to specify the radial dependence of an axial velocity profile along the 
specified side set.

Technical Discussion

This capability is widely used for geometry and velocity profile boundary conditions 
that do not have a convenient closed form. Note that for geometry specifications you 
cannot specify multi-valued functions, like for a cutback angle.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-021.0: Multiparameter continuation and linear stability analysis on highly 
deformable meshes in Goma, M. M. Hopkins, June 22, 2000

 

______________________________________________________________________________

Usage Notes on the GD Cards

Following are several examples of uses of the Generalized Dirichlet conditions:

• For a circular boundary ( with radius 1, center at (0,0), ):

BC = GD_PARAB  SS 1  R_MESH2 0  MESH_POSITION2  0  -1. 0. 1.

BC = GD_PARAB  SS 1  R_MESH2 0  MESH_POSITION1  0  -0. 0. 1.

• For a planar boundary ( )

x
2

y
2

+ 1=

2x y+ 1=



Revised: 6/12/13 205

4.10.9  GD_TABLE 

BC = GD_LINEAR  SS  1    R_MESH1  0  MESH_POSITION1  0 -1. 2.

BC = GD_LINEAR  SS  1    R_MESH1  0  MESH_POSITION2  0  0. 1.

• For a parabolic inflow velocity profile ( ):

BC = GD_LINEAR SS 4  R_MOMENTUM1 0 VELOCITY1 0 0. -1.

BC = GD_PARAB SS 4  R_MOMENTUM1 0 MESH_POSITION2 0 1. -2. -3.

• For a distinguishing condition where the mesh is an iso-concentration surface (C = 0.2 with mesh equa-
tions rotated):

BC = GD_CONST SS 2 R_MESH_NORMAL 0 MASS_FRACTION 0 0.2

• For a temperature boundary condition with APREPRO constants (ci) of the form 

:

BC = GD_LINEAR SS 2 R_ENERGY 0 TEMPERATURE 0 -1

BC = GD_POLYN SS 2 R_ENERGY 0 MESH_POSITION1 0 {c1 c2 c3 c4 c5 c6 c7}

Note, in the first three examples, two cards are combined to create a single boundary 
condition that is a function of two variables. Thus, with a little creativity, the General-
ized Dirichlet conditions can replace many of the other boundary condition types.

To help generalize the Dirichlet conditions even more, GD_TIME can be used to mod-
ulate any combination of spatial GD conditions (the CONST, LINEAR, PARAB, 
POLYN, CIRC and TABLE options above) which appears prior to the set. Some ex-
amples here are warranted:

• For a parabolic inflow velocity profile which is ramped from zero to a linearly growing multiplier 
times ( ):

BC = GD_PARAB SS 4  R_MOMENTUM1 0 MESH_POSITION2 0 1. -2. -3.

BC = GD_TIME SS 4  R_MOMENTUM1 0 LINEAR 0 0. 1.

BC = GD_LINEAR SS 4  R_MOMENTUM1 0 VELOCITY1 0 0. -1.

(This set of 3 conditions actually applies  in place of the 
x-momentum equation. )

• For a sinusoidally time-varying roller surface with equation  with a fre-
quency of 2. and a phase lag of 10:

BC = GD_PARAB SS 1 R_MESH_NORMAL 0 MESH_POSITION2 0 {x0*x0 + y0*y0 - 
R0*R0} {-2.*y0} 1

BC = GD_PARAB SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 {0.} {-2.*x0} 1

BC = GD_TIME SS 1 R_MESH_NORMAL 0 SINUSOIDAL 0 10. 2.

This set of cards applies  to the normal 
component of the mesh equations along side set 1.

u 1 2y– 3y
2

–=

T c1 c2x c3x
2

c4x
3

c5x
4

c6x
5

c7x
6

+ + + + + +=

u 1 2y 3y
2

––=

f x y z t u, , , ,( ) 1t 1 2y 3y
2

––( ) u– 0==

x x0–( )
2

y y0–( )
2

+ R
2
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f x y z t, , ,( ) x x0–( )
2

y y0–( )
2

2t 10+( )sin R
2
0–+ 0= =
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• For a sinusoidally varying gap on a slot coater, the substrate has been made to oscillate according to 
 :

BC = GD_LINEAR SS 9 R_MESH2 0 MESH_POSITION1 0 -3.0 0.

BC = GD_TIME SS 9 R_MESH2 0 SINUSOIDAL 0 5. 0.25

BC = GD_LINEAR SS 9 R_MESH2 0 MESH_POSITION2 0 0. 1.0

• Setting the u-velocity on an inlet boundary for a power law fluid:

BC = GD_LINEAR SS 1 R_MOMENTUM1 0 VELOCITY1 0  0. -1.

BC = GD_TABLE SS 1 R_MOMENTUM1 0 MESH_POSITION2 0 1.0 LINEAR

$ r/R             Uz
0.000000        1.666667
0.050000        1.666458
0.100000        1.665000
0.150000        1.661042
0.200000        1.653333
0.250000        1.640625
0.300000        1.621667
. .
. .
. .
0.900000        0.451667
0.950000        0.237708
1.000000        0.000000 

END TABLE

• Setting the inlet concentration profile for species 0 from data in y0.table

BC = GD_LINEAR SS 1 R_MASS 0 MASS_FRACTION 0 0.0 -1.0

BC = GD_TABLE SS 1 R_MASS 0 MESH_POSITION2 0 1.0 LINEAR FILE = y0.table

• Setting the inlet concentration profile for species 0 from an implicit relation.

Occasionally, we have analytic representations that are in the wrong form.  For example, in particu-
late suspension modelling, a relation exists that gives the radial coordinate as a function of the con-
centration, i.e. r = F(C), where F is a non-linear relation. We would prefer it the other way around.  
We can use GD_TABLE to solve this dilemma.  First, a file is prepared with the two columns, 
eqn.table for example:

C_0  F(C_0)

C_1  F(C_1)

.

.

C_N . F(C_N)

   

This just requires function evaluation. In the input deck, we then use the following cards

f x y t, ,( ) y 3 t 4⁄ 5+( )sin– 0= =
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BC = GD_LINEAR SS 1 R_MASS 0 MESH_POSITION2 0 0.0 -1.0

BC = GD_TABLE  SS 1 R_MASS 0 MASS_FRACTION  0 1.0 LINEAR FILE = eqn.table

and the right inlet concentration profile results. 

______________________________________________________________________________

4.10.10 TABLE_WICV

Description/Usage (WIC/VECTOR VARIED)

This boundary allows the user to supply boundary data for vector weak integrated 
boundary conditions. See the TABLE_WICS card for scalar weak integrated boundary 
conditions. A prime example of the use of the TABLE_WICV card is application of a 
force for a solid deformation problem.

Definitions of the input parameters are as follows:

TABLE_WICV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
TABLE_WICV that identifies the boundary location 
(side set in EXODUS II) in the problem domain.

{abscissa} For one-dimensional tables (i.e. for use in 2D 
problems), the choices are restricted to one of the three 
coordinate directions.  Use the strings X, Y or Z to 
identify the direction of choice. For two-dimensional 
tables (i.e. for use in 3D problems) use XY, XZ, YX, 
YZ, ZX, or ZY to denote the coordinate of the first and 
second columns in the table.

{ordinate} This string identifies the equation of the weak integrated 
boundary term that the boundary data is added to. For 
example, use of the VELOCITY1 string will cause the 
table data to be used for all components of the liquid 

BC = TABLE_WICV SS <bc_id> {abscissa} {ordinate} {scale} {interpolation} 
[FILE = <fname>]
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traction in the boundary integral for the liquid 
momentum equations.  See the following table. 

{scale} A floating point scale multiplier which can be used to 
scale the tabular data.  The boundary data used will be 
the product of {scale} and the tabular data.

{interpolation} This is the method chosen to interpolate between 
supplied data points.

For one-dimensional tables, the choices are LINEAR, 
which denotes linear interpolation, QUADRATIC, 
which denotes quadratic Lagrangian interpolation and 
requires an odd number of data points, and QUAD_GP, 
which denotes quadratic interpolation where the data 
points represent Gauss point values. 3N data points (see 
Technical Discussion) are required for QUAD_GP 
interpolation.

For two-dimensional tables, BIQUADRATIC is 
currently the only choice. The first two columns of the 
table should define a rectangular, mapped grid where the 
second coordinate changes more quickly than the first. 
More complicated methods could be added latter.

[FILE = <fname>] The keyword "FILE =" indicates that the table data be 
read from a separate file identified by <fname>. This 
parameter is optional and if it is left out the table data 
will be read from the input deck itself following the 
TABLE_WICV card. In this latter case, the end of the 
table is signaled by the keywords "END TABLE". Note 
that the file specified by FILE = is fully apreproable, 
i.e., it will be preprocessed by APREPRO before 
reading if APREPRO is enabled.

String replaces Equation

VELOCITY1 or U liquid 
tractions

R_MOMENTUM[1-3]

MESH_DISPLACEMENT1 or DX 
or MESH_POSITION1

mesh tractions R_MESH[1-3]

SOLID_DISPLACEMENT1 solid tractions R_SOLID[1-3]
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Examples

Following is a sample card:

BC = TABLE_WICV SS 12 ZX MESH_DISPLACEMENT1 BIQUADRATIC FILE = 
load.table 

load.table:
0  0  0  6  0
0  1  0  4  0
1  0  0  3  0
1  1  0  1  0

Technical Discussion

The table data itself appears as columns of numbers. One-dimensional TABLE_WICV 
tables have three columns (column1=abscissa, column2=ordinate component1, 
column3=ordinate component2), whereas two-dimensional TABLE_WICV tables have 
five columns (column1=abscissa1, column2=abscissa2, column3=ordinate 
component1, column4=ordinate component2, column5=ordinate component3). Goma 
will try to read float values from any line whose first parameter can be converted to a 
float.

The QUAD_GP interpolation option is meant for the case when the table data comes 
from another finite element model or another Goma run and the data is most readily 
available at the integration points of the finite element mesh.  Hence, with quadratic 
Gaussian quadrature, there are three data points per element.  N is the number of 
elements from the model that the data is coming from and therefore 3N data points are 
the total expected.

The user is also referred to the section on Boundary Condition Types at the beginning 
of the Boundary Condition Specifications. In particular, look at the discussion of 
Weakly Integrated Conditions (WIC).

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.11 TABLE_WICS

Description/Usage (WIC/VARIED)

 This boundary allows the user to supply boundary data for scalar weak integrated 
boundary conditions. See the TABLE_WICV card for vector weak integrated boundary 
conditions. A prime example of the use of the TABLE_WICS card is application of heat 
flux for a thermal problem.

Definitions of the input parameters are as follows:

TABLE_WICS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
TABLE_WICS that identifies the boundary location (side 
set in EXODUS II) in the problem domain.

{abscissa} For one-dimensional tables (i.e. for use in 2D 
problems), the choices are restricted to one of the three 
coordinate directions. Use the strings X, Y or Z to 
identify the direction of choice. For two-dimensional 
tables (i.e. for use in 3D problems) use XY, XZ, YX, 
YZ, ZX, or ZY to denote the coordinate of the first and 
second columns in the table.

{ordinate} This string identifies the equation of the weak integrated 
boundary term that the boundary data is added to. For 
example, use of the VELOCITY1 string will cause the 
table data to be used for the x-component of the liquid 
traction in the boundary integral for the x-momentum 
equation. See the following table.

BC = TABLE_WICS SS <bc_id> {abscissa} {ordinate} {scale} {interpolation} 
[FILE = <fname>]

String replaces Equation

VELOCITY1 or U liquid x-
traction

R_MOMENTUM1
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{scale} A floating point scale multiplier which can be used to 
scale the tabular data. The boundary data used will be 
the product of {scale} and the tabular data.

{interpolation} This is the method chosen to interpolate between 
supplied data points.

For one-dimensional tables, the choices are LINEAR, 
which denotes linear interpolation, QUADRATIC, 
which denotes quadratic Lagrangian interpolation and 
requires an odd number of data points, and QUAD_GP, 
which denotes quadratic interpolation where the data 
points represent Gauss point values. 3N data points  (see 
Technical Discussion) are required for QUAD_GP 
interpolation.

VELOCITY2 or V liquid y-
traction

R_MOMENTUM2

VELOCITY3 or W liquid z-
traction

R_MOMENTUM3

TEMPERATURE diffusive 
energy flux

R_ENERGY

MESH_DISPLACEMENT1 or DX 
or MESH_POSITION1

mesh x-
traction

 R_MESH1

MESH_DISPLACEMENT2 or DY 
or MESH_POSITION2

mesh y-
traction

 R_MESH2

MESH_DISPLACEMENT3 or DZ 
or MESH_POSITION3

mesh z-
traction

 R_MESH3

SOLID_DISPLACEMENT1 solid x-
traction

R_SOLID1

SOLID_DISPLACEMENT2 solid y-
traction

R_SOLID2

SOLID_DISPLACEMENT3 solid z-
traction

R_SOLID3

S[1-3][1-3]_[1-7] polymer mode 
traction

R_STRESS[1-3][1-
3]_[1-7]

String replaces Equation



212 Revised: 6/12/13

4.10.11  TABLE_WICS  

For two-dimensional tables, BIQUADRATIC is 
currently the only choice. The first two columns of the 
table should define a rectangular, mapped grid where the 
second coordinate changes more quickly than the first. 
More complicated methods could be added latter.

[FILE = <fname>] The keyword "FILE =" indicates that the table data be 
read from a separate file identified by <fname>. This 
parameter is optional and if it is left out the table data 
will be read from the input deck itself following the 
TABLE_WICS card. In this latter case, the end of the 
table is signaled by the keywords "END TABLE". Note 
that the file specified by FILE = is fully apreproable, 
i.e., it will be preprocessed by APREPRO before 
reading if APREPRO is enabled.

Examples

Following is a sample card:

BC = TABLE_WICS SS 12 X TEMPERATURE QUADRATIC FILE =heatflux.table

heatflux.table:
0.0 1.0
0.5 1.5
1.0 1.75
1.5 2.0
2.0 2.0 

Technical Discussion

The table data itself appears as columns of numbers. One-dimensional TABLE_WICS 
tables have two columns (column1=abscissa, column2=ordinate), whereas two-
dimensional TABLE_WICS tables have three columns (column1=abscissa1, 
column2=abscissa2, column3=ordinate). Goma will try to read float values from any 
line whose first parameter can be converted to a float.

The QUAD_GP interpolation option is meant for the case when the table data comes 
from another finite element model or another Goma run and the data is most readily 
available at the integration points of the finite element mesh.  Hence, with quadratic 
Gaussian quadrature, there are three data points per element.  N is the number of 
elements from the model that the data is coming from and therefore 3N data points are 
the total expected.
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The user is also referred to the section on Boundary Condition Types at the beginning 
of the Boundary Condition Specifications. In particular, look at the discussion of 
Weakly Integrated Conditions (WIC).

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.12 TABLE

Description/Usage (PCC/VARIED)

This boundary condition is a stand-alone version of the more complicated GD_TABLE 
card. It allows the user to supply arbitrary univariate (one abscissa and one ordinate) 
data about the spatial variation of unknowns fields on a boundary. The abscissa will be 
one of the three spatial coordinates or time and the ordinate is one of a choice of 
unknown field variables. All TABLE_BC conditions must have attached tabular data as 
a list of paired float values either directly following the card or in a separate file 
(identified on the card). The list of data pairs is terminated by the string “END TABLE” 
on its own line.

Definitions of the input parameters are as follows:

TABLE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

BC = TABLE SS <bc_id> {X|Y|Z|TIME} {ordinate} [species] {interpolation} 
[FILE = <fname>] [NAME = <identifier>]
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{X|Y|Z|TIME} A char_string that identifies the independent table 
variable (abscissa). The strings X,Y, and Z refer of 
course to the three spatial coordinates. Depending on the 
choice here, the x, y, or z coordinate value at a given 
point, respectively, is used to obtain an interpolated 
ordinate value using the attached table data. If the TIME 
string appears here, however, the current simulation 
time is used to interpolate an ordinate value. This single 
value is applied uniformly to the sideset.

{ordinate} This string associates a variable type with the values of 
the ordinate in the attached table. It also identifies the 
equation that is supplanted by the boundary condition 
on the sideset. The following table lists the available 
string choices and the corresponding equation 
component clobbered by the boundary condition.

String replaces Equation

VELOCITY1 or U R_MOMENTUM1

VELOCITY2 or V R_MOMENTUM2

VELOCITY3 or W R_MOMENTUM3

MASS_FRACTION or Y or SPECIES R_MASS

TEMPERATURE R_ENERGY

MESH_DISPLACEMENT1 or DX  R_MESH1

MESH_DISPLACEMENT2 or DY  R_MESH2

MESH_DISPLACEMENT3 or DZ  R_MESH3

PRESSURE or P  R_PRESSURE

SOLID_DISPLACEMENT1 or DX_RS R_SOLID1

SOLID_DISPLACEMENT2 or DY_RS R_SOLID2

SOLID_DISPLACEMENT3 or DZ_RS R_SOLID3

SHEAR_RATE or SH R_SHEAR_RATE
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S11
S12
S22
S13
S23
S33

R_STRESS11 
R_STRESS12 
R_STRESS22
R_STRESS13
R_STRESS23
R_STRESS33

S11_1
S12_1
S22_1
S13_1
S23_1
S33_1

R_STRESS11_1 
R_STRESS12_1 
R_STRESS22_1
R_STRESS13_1
R_STRESS23_1
R_STRESS33_1

S11_2
S12_2
S22_2
S13_2
S23_2
S33_2

R_STRESS11_2 
R_STRESS12_2 
R_STRESS22_2
R_STRESS13_2
R_STRESS23_2
R_STRESS33_2

S11_3
S12_3
S22_3
S13_3
S23_3
S33_3

R_STRESS11_3
R_STRESS12_3
R_STRESS22_3
R_STRESS13_3
R_STRESS23_3
R_STRESS33_3

S11_4
S12_4
S22_4
S13_4
S23_4
S33_4

R_STRESS11_4
R_STRESS12_4
R_STRESS22_4
R_STRESS13_4
R_STRESS23_4
R_STRESS33_4

S11_5
S12_5
S22_5
S13_5
S23_5
S33_5

R_STRESS11_5
R_STRESS12_5
R_STRESS22_5
R_STRESS13_5
R_STRESS23_5
R_STRESS33_5

String replaces Equation
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[species] An optional integer parameter that identifies the index 
of the appropriate species. Note, it should appear only 
when the <ordinate> string is MASS_FRACTION.

{interpolation} A char_string parameter that identifies the method 
chosen to interpolate between the attached table data 
points. For one-dimensional tables, the choices are 
LINEAR, which denotes simple linear interpolation, and 
QUADRATIC, which denotes quadratic Lagrangian 
interpolation. Note that the latter requires an odd 
number of data points be supplied in the table.

[FILE = <fname>] The optional char_string keyword "FILE =" indicates 
that the table data be read from a separate file identified 
by <fname>. This parameter is optional and if it is left 
out the table data will be read from the input deck itself 
following the TABLE BC card. Note that the file 
specified by <fname> will be first preprocessed by 
APREPRO if that option was enabled on the command 
line. This is a useful feature that allows for a quick way 
to introduce analytic expressions onto boundaries.

[NAME = <identifier>]

The optional char_string keyword NAME = allows for a 
set of table data to be attached to the char_string 
parameter <identifier>. This option can only be used if 
the table data is read from a separate file identified by 
FILE = <fname>. In this case, the file <fname> is 

S11_6
S12_6
S22_6
S13_6
S23_6
S33_6

R_STRESS11_6
R_STRESS12_6
R_STRESS22_6
R_STRESS13_6
R_STRESS23_6
R_STRESS33_6

S11_7
S12_7
S22_7
S13_7
S23_7
S33_7

R_STRESS11_7 
R_STRESS12_7 
R_STRESS22_7
R_STRESS13_7
R_STRESS23_7
R_STRESS33_7

String replaces Equation



Revised: 6/12/13 217

4.10.12  TABLE 

scanned for the char_string “identifier:” (note the 
colon). Once found the table data is read until 
encountering END TABLE. This option permits multiple 
sets of data in the same file.

The second half of the TABLE_BC implementation is the tabular data itself. In the 
TABLE boundary condition, it consists of a set of paired float values, each pair on its 
own line. This data should follow directly after the TABLE boundary condition card if 
the FILE = option is not used. If a value for <fname> is supplied, the table data should 
be written in the file so indicated. Note that in most implementations of UNIX, 
<fname> can include a complete path specification in case the datafile is in a different 
directory than the run directory. In either case, input deck or separate file, the set of 
data table pairs should always be terminated by the string END TABLE to terminate 
reading of the data. When reading the table data, Goma attempts to read a float value on 
each line. If it is unsuccessful, e.g., a string might start the line, it will proceed to the 
next line. If it is successful, it will attempt to read a second float value to complete the 
data pair. An unsuccessful read here is an error. Once the second value is read, 
however, the remainder of the line is discarded and the next line is read. This procedure 
permits inclusion of comments within. See the next section for some examples.

Thus,
3. 1.e-4
1. 3.  % this is a good example
$ 1. 40.0
$ I have no idea where the following data came from
  3.4   2.1
  1.e-2  6000.0

will  result in four data points being read, whereas, both of the following

6.443 3.43c
5.4099 % 099.0

will result in an error.

Examples

The following is an example of a tabular data set that will be read correctly
$ This data came from M. Hobbs. God only knows where he got it.
T    k
0.5 1.e-4
1. 15.  % I’m not particularly sure about this one.
3.4   8.1
5.6  23.0
$ 1.0 40.0 

In this case, four data pairs will be read to form the table.

Example usage of the TABLE card follows:
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• Setting the u-velocity on an inlet boundary for a power law fluid:

BC = TABLE SS 1 Y U LINEAR 
$ r/R  Ux
0.000000 1.666667
0.050000 1.666458
0.100000 1.665000
0.150000 1.661042
0.200000 1.653333
0.250000 1.640625
0.300000 1.621667
..
..
0.900000 0.451667
0.950000 0.237708
1.000000 0.000000
END TABLE

• Setting the inlet concentration profiles for species 0 and species 1 from data in 
y.table:
BC = TABLE SS 1 Y SPECIES 0 QUADRATIC FILE = y.table NAME = y0
BC = TABLE SS 1 Y SPECIES 1 QUADRATIC FILE = y.table NAME = y1

      The file y.table contains:
y0:

0.   1.0
0.25 0.75
0.5  0.60
0.75 0.30
1.0  0.20

END TABLE
y1:

0.   0.0
0.25 0.2
0.5  0.3
0.75 0.5
1.0  0.8

END TABLE

• Setting a temperature history on a sideset
BC = TABLE SS 1 TIME TEMPERATURE LINEAR 
0.0  0.0
10.0  373.0
40.0  373.0
50.0  500.0
100.0 500.0
150    0.0
100000.0 0.0
END TABLE
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Technical Discussion

The TABLE boundary condition provides similar functionality to the GD_TABLE 
boundary condition but with a simplified interface the notion behind both cards is that 
often information on boundaries is known only as a set of data points at specific 
positions on the boundary. The TABLE boundary condition can use that boundary 
information to provide interpolated values at nodal locations and then impose them as a 
strong point collocated condition.

Interpolation orders for this method are limited to LINEAR and QUADRATIC with the 
latter requiring an odd number of data points be supplied in the table.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Category 2: Boundary Conditions for the Mesh Equations

The boundary conditions in this section involve the mesh motion equations in LAGRANGIAN or 
ARBITRARY form (cf. Mesh Motion card). These conditions can be used to pin the mesh, specify 
its slope at some boundary intersection, apply a traction to a surface, etc. Several more boundary 
conditions that are applied to the mesh motion equations but include other problem physics are 
also available.

4.10.13 DISTNG

Description/Usage (PCC/ROTATED MESH)

This boundary condition card is used to specify a distinguishing condition for mesh 
motion based on an isotherm, viz. the distinguishing condition forces the mesh 
boundary to which it is applied to take on a position such that the temperature is 
constant and at the specified value, all along the boundary. This condition causes the 

BC = DISTNG SS <bc_id> <float>
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vector mesh motion equations (viz. mesh1, mesh2, and mesh3 on EQ cards) to be 
rotated into normal-tangential form. In two dimensions, this condition is applied to the 
normal component automatically; in three dimensions it is suggested to put it on the 
normal component, as specified by the ROT conditions. Definitions of the input 
parameters are as follows:

DISTNG Name of the boundary condition (<bcname>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> Value of temperature/isotherm. To apply a variable 
temperature, e.g., as a function of the concentration, it is 
suggested that the user-defined boundary conditions be 
used, like SPLINE or GEOM.

Examples

The following is a sample input card:

BC = DISTNG SS 123 273.0

This card forces the boundary defined by EXODUS II side set number 123 to conform 
to the isotherm temperature of 273.0.

Technical Discussion

The mathematical form of this distinguishing condition is as follows:

(4-23)

where  is the specified temperature parameter. This condition has been used 
extensively for macroscale and microscale melting problems, whereby one needs to 
distinguish a molten region from a solidified or mushy region with liquidus and solidus 
temperatures. In three dimensions, usage needs to be completed with a companion ROT 
input card which directs the equation application of the condition.

Theory

No Theory.

T Tmp– 0=

Tmp
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FAQs

Continuation Strategies for Free Surface Flows   In free surface problems, there exists 
one or more boundaries or internal surfaces whose position(s) are unknown a priori. As 
such, the geometry of the problem becomes part of the problem and must be 
determined together with the internal physics. Most problems of this sort cannot be 
solved with a trivial initial guess to the solution vector, mainly because the conditions 
which determine the surface position are closely coupled to the active physics in the 
bulk. Thus, these problems require continuation (zero or higher order) to achieve a 
converged solution to a desired state. The continuation strategy typically involves 
turning on and off the conditions which distinguish the position of the free surface(s); 
one such strategy is described in this FAQ.

Distinguishing conditions in Goma serve two purposes: (1) they can be used to locate a 
surface whose position depends on internal and interfacial transport phenomena, and 
(2) they can be used to prescribe solid boundary position or motion. The first type of 
condition contains field variables needed to locate the interface or free surface position, 
and hence ties the mesh motion to the problem physics, i.e., mass, momentum, and 
energy transport phenomena. Currently, the side-set boundary conditions of type 
DISTNG, KINEMATIC, and KIN_LEAK fall into this class. The second type of 
condition requires only geometrical information from the mesh, and, although 
geometrically couples the mesh motion to the problem physics, it tends not to be so 
tightly coupled. Currently, boundary conditions PLANE, PLANEX, PLANEY, PLANEZ, 
SPLINE, SPLINEX, SPLINEY, and SPLINEZ fall into this class.

In two dimensions, there is no need to use PLANEX, PLANEY, PLANEZ, SPLINEX, 
SPLINEY, and SPLINEZ. Because the code automatically rotates the mesh residual 
equations and the corresponding Jacobian entries into normal-tangential form on the 
boundary, SPLINE, PLANE, and DISTNG are the only cards required to specify the 
position of the boundary. Currently, in three dimensions, the logic for the same rotation 
concept is not totally functional, and one must use the PLANEX, etc. cards to designate 
which component of the mesh stress residual equation receives the distinguishing 
conditions.

If cards DISTNG, KINEMATIC and KIN_LEAK, i.e., distinguishing conditions of type 
1, are absent in any simulation, then any initial guess for the transport field equations, 
i.e., energy and momentum, has a chance of converging, as long as the initial mesh 
displacement guess is within the radius of convergence of the mesh equations and 
associated boundary conditions. For example, if the side sets of the EXODUS II 
database mesh correspond somewhat closely to what is prescribed with PLANE and 
SPLINE-type conditions, then an initial guess of the NULL vector has a good chance of 
converging, so long as the velocities and temperatures are within “converging 
distance.”
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When conditions from the first class are present, i.e., either DISTNG, KIN_LEAK or 
KINEMATIC, then the following procedure should be followed:

• Set the keyword for the Initial Guess character_string to zero, one, or random.

• Obtain a solution (run Goma) with the initial guess for the free surfaces 
distinguished as KINEMATIC (or other) coming from the EXODUS II database, 
but without the KINEMATIC (or other) card(s). That is, “fix” those surfaces with 
either a PLANE or SPLINE command, or simply place no distinguishing condition 
on them (this works only if the grid has not been previously “stressed”, i.e., all the 
displacements are zero). The rest of the “desired” physics should be maintained. If 
any surface is distinguished as KINEMATIC, then it is highly advantageous to 
place a VELO_NORMAL condition on that surface for startup, and set the 
corresponding floating point datum to zero. This effectively allows the fluid to 
“slip” along that boundary as if it were a shear free condition.

• Set the keyword in the Initial Guess character_string to read.

• Copy the file named in SOLN file into the file named in GUESS file.

• Release the free boundaries by taking off any current distinguishing condition 
cards and adding the appropriate KINEMATIC (or other) card. Adjust all other 
boundary conditions appropriately.

• Run Goma, using a relaxed Newton approach (factor less than unity but greater 
than zero - e.g., 0.1) for complex flows.

When dealing with material surface boundaries distinguished by the kinematic 
boundary condition, the nature of that condition requires a non-zero and substantial 
component of velocity tangent to the surface upon start-up. In this case, it can be 
advantageous to use the VELO_TANGENT card to set the velocity along the free 
surface to some appropriate value prior to releasing the free surface (in the third step 
above). Of course this card will be removed in subsequent steps. Also, although not 
necessary, a smooth, “kinkless”, initial guess to the free surface shape is helpful 
because it reduces the amount of relaxation required on the Newton iteration.

Obtaining start-up solutions of most coating flow configurations is still an art. The best 
way to start up a coating flow analysis may be to acquire a “template” developed from 
a previous analysis of some closely related flows.

References

Allen Roach’s or Randy’s ESR tutorials. Perhaps these need to be put into the 
repository.

 



Revised: 6/12/13 223

4.10.14  DXDYDZ 

4.10.14 DXDYDZ

Description/Usage (DC/MESH)

This boundary condition format is used to set a constant X, Y, or Z displacement. Each 
such specification is made on a separate input card. These boundary conditions must be 
applied to node sets. Definitions of the input parameters are as follows:

{DX | DY | DZ} Two-character boundary condition name (<bc_name>) that 
defines the displacement, where:

DX - X displacement
DY - Y displacement
DZ - Z displacement

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of the displacement (X, Y, or Z) defined above.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following is a sample card which applies an X-displacement boundary condition to the 
nodes in node set 100, specifically an X-Displacement of 1.0. These displacements are 
applied immediately to the unknowns and hence result in immediate mesh 
displacements from the initial state.

BC = DX NS 100 1.0

This sample card applies the same condition as above, except as a residual equation 
that is iterated upon with Newton’s method.

BC = {DX | DY | DZ} NS <bc_id> <float1> [float2]
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BC = DX NS 100 1.0  1.0

The second float 1.0 forces this application. This approach is advisable in most 
situations, as the nodes are gradually moved as a part of the mesh deformation process; 
sudden movements, as in the first example, can lead to folds in the mesh.

Technical Discussion

Application of boundary conditions of the Dirichlet type on mesh motion requires 
different considerations than those on non-mesh degrees of freedom. Sudden 
displacements at a point, without any motion in the mesh surrounding that point, can 
lead to poorly shaped elements. It is advisable to apply these sorts of boundary 
conditions as residual equations, as discussed above. Examples of how these conditions 
are used to move solid structures relative to a fluid, as in a roll-coating flow, are 
contained in the references below.

Theory

No Theory.

FAQs

No FAQs.

References

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29, 
2000, P. R. Schunk and M. S. Stay

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk.

 

4.10.15 DXUSER DYUSER DZUSER

Description/Usage (PCC/MESH)

This boundary condition format is used to set a constant X, Y, or Z displacement as a 
function of any independent variable available in Goma.  These boundary conditions 
require the user to edit the routines dx_user_surf, dy_user_surf, and/or dz_user_surf to 
add the desired models. These routines are located in the file user_bc.c.  In the input 

BC = {DXUSER | DYUSER | DZUSER} SS <bc_id> <float_list>
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deck each such specification is made on a separate input card. These boundary 
conditions must be applied to side sets. Definitions of the input parameters are as 
follows:

{DX_USER | DY_USER | DZ_USER}Seven-character boundary condition 
name (<bc_name>) that defines the displacement, where:

DX_USER-X displacement, user-defined
DY_USER-Y displacement, user-defined
DZ_USER-Z displacement, user-defined

SS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutine so the user can 
vary the parameters of the boundary condition. This list 
of float values is passed as a one-dimensional double 
array to the appropriate C function.

Examples

Following is a sample card which applies an X-displacement boundary condition to the 
nodes in node set 100, with a functional form set by the user and parameterized by the 
single floating point number . These displacements are applied immediately to the 
unknowns and hence result in immediate mesh displacement from the initial state.

BC = DX_USER SS 100 1.0

Please consult the user-definition subroutines for examples. .

Technical Discussion

None.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.

4.10.16

4.10.17 DXYZDISTNG

Description/Usage (PCC/MESH)

This boundary condition card is used to specify a distinguishing condition for mesh 
motion based on an isotherm, viz. the distinguishing condition forces the mesh 
boundary to which it is applied to take on a position such that the temperature is 
constant and at the specified value, all along the boundary. Although of the same 
mathematical form as the DISTNG boundary condition, this condition does not force a 
boundary rotation of the vector mesh residuals. Instead, it is recommended that the 
condition be chosen such that the predominant direction of the normal vector is close to 
one of the three Cartesian coordinates, X, Y, or Z. For example, if the boundary in 
question is basically oriented so that the normal vector is mostly in the positive or 
negative Y-direction, then DYDISTNG should be chosen. Definitions of the input 
parameters are as follows:

{DXDISTNG | DYDISTNG | DZDISTNG}

Eight-character boundary condition name (<bc_name>) 
that defines the distinguishing condition, where:

DXDISTNG - X condition
DYDISTNG - Y condition
DZDISTNG - Z condition

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float> Value of temperature isotherm. If one wanted to apply a 
variable temperature, e.g. as a function of the 
concentration, it is suggested that the user-defined 
boundary conditions be used.

BC = {DXDISTNG | DYDISTNG | DZDISTNG} SS <bc_id> <float>
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Examples

The following is a sample input card:

BC = DYDISTNG SS 123 273.0

This card forces the boundary defined by EXODUS II side set number 123 to conform 
to the isotherm temperature of 273.0. Most importantly, the y-component of the mesh 
equation residuals is replaced by this condition.

Technical Discussion

The mathematical form of this distinguishing condition is as follows:

(4-24)

where  is the specified temperature parameter. This condition has been used 
extensively for macroscale and microscale melting problems, whereby one needs to 
distinguish a molten region from a solidified or mushy region with liquidus and solidus 
temperatures. In three dimensions usage needs to be completed with a companion ROT 
input card which directs the equation application of the condition, even though 
rotations are not actually performed.

 As a bit of software trivia, this is the first distinguishing condition ever written in 
Goma, and one of the first boundary conditions, period.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

T Tmp– 0=

Tmp
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4.10.18 SPLINEXYZ/GEOMXYZ

Description/Usage (PCC/MESH)

This card is used to specify a general surface (solid) boundary description for ALE (or 
in special cases LAGRANGIAN) type mesh motion (see Mesh Motion card). These 
boundary conditions are tantamount to SPLINE or GEOM, except that they do not 
invoke a mesh-equation vector residual rotation into normal-tangential form. Instead, 
SPLINEX or, equivalently, GEOMX invokes the geometric boundary condition on the 
x-component of the mesh equation residual, and so on. The card requires user-defined 
subroutines. Templates for these routines are currently located in the routine 
“user_bc.c”. Both a function routine, fnc, for function evaluation and 
corresponding routines dfncd1, dfncd2, and dfncd3 for the derivative of the 
function with respect to global coordinates are required. GEOMX and SPLINEX are 
exactly the same condition. SPLINE* usage is being deprecated. Note that it takes an 
arbitrary number of floating-point parameters, depending on the user’s needs.

Definitions of the input parameters are as follows:

{bc_name} Boundary condition name that defines the general surface; 
the options are:

SPLINEX/GEOMX - X general surface
SPLINEY/GEOMY - Y general surface
SPLINEZ/GEOMZ - Z general surface

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in 
user-defined routine fnc.

Examples

The following is a sample input card:

BC = GEOMZ SS 10 1.0 100. 20.0 1001.0 32.0

BC = {bc_name} SS <bc_id> [floatlist]
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applies a user-defined distinguishing condition parameterized by the list of floating 
points to the boundary defined by side set 10. Most importantly, the condition replaces 
the Z-component of the momentum equation.

Technical Discussion

The mathematical form of this distinguishing condition is arbitrary and is specified by 
the user in the fnc routine in user_bc.c. Derivatives of the user-specified function 
must also be provided so as to maintain strong convergence in the Newton iteration 
process. These functions are located next to fnc and are named dfncd1, dfncd2, and 
dfncd3.Several examples for simple surfaces exist in the template routine. In three 
dimensions, usage needs to be completed with a companion ROT input card which 
directs the equation application of the condition, even though rotations are not actually 
performed.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.19 SPLINE/GEOM

Description/Usage (PCC/ROTATED MESH)

This card is used to specify a general surface (solid) boundary description for ALE (or 
in special cases LAGRANGIAN) type mesh motion (see Mesh Motion card). Like most 
other distinguishing conditions, this condition causes the mesh-motion equations, viz. 
mesh1, mesh2, and mesh3, to be rotated into boundary normal-tangential form. The 
card requires user-defined subroutines. Templates for these routines are currently 
located in the routine “user_bc.c”. Both a function routine, fnc, for function 
evaluation and corresponding routines dfncd1, dfncd2, and dfncd3 for the 
derivative of the function with respect to global coordinates are required. The SPLINE 
condition is exactly the same and uses the same routine as the GEOM card option, and 

BC = {SPLINE|GEOM} SS <bc_id> [floatlist]
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hence as of the time of this writing we are deprecating the use of SPLINE. Note that it 
takes an arbitrary number of floating-point parameters, depending on the user’s needs. 

Definitions of the input parameters are as follows:

SPLINE/GEOM Name of the boundary condition <bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in 
user-defined routine fnc.

Examples

The following sample input card:

BC = SPLINE SS 10 1.0 100. 20.0 1001.0 32.0

applies a user-defined distinguishing condition, parameterized by the list of five 
floating point values, to the boundary defined by side set 10.

Technical Discussion

This condition, like DISTNG, PLANE, and others that can be applied to geometry, is 
applied to the normal component of the mesh motion equations along a boundary in 
two dimensions; in three dimensions application needs to be further directed with the 
ROT conditions. Examples of typical distinguishing conditions can be found in 
user_bc.c in the fnc routine and companion derivative routines.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.21 PLANEXYZ

Description/Usage (PCC/ MESH)

This boundary condition card is used to specify a planar surface (solid) boundary 
description as a replacement on the X, Y, or Z-component (PLANEX, PLANEY, 
PLANEZ, respectively) of the mesh equations (see EQ cards mesh1, mesh2, or mesh3). 
The form of this equation is given by

(4-25)

This mathematical form and its usage is exactly like the BC = PLANE boundary 
condition card (see PLANE for description), but is applied to the mesh motion 
equations without rotation. Definitions of the input parameters are given below; note 
that <floatlist> has four parameters corresponding to the four constants in the equation: 

{PLANEX | PLANEY | PLANEZ}

Boundary condition name (<bc_name>) where:

PLANEX - normal predominantly in X direction
PLANEY - normal predominantly in Y direction
PLANEZ - normal predominantly in Z direction

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> a in function 

<float2> b in function 

<float3> c in function 

<float4> d in function 

BC = {PLANEX | PLANEY | PLANEZ} SS <bc_id> <floatlist>

f x y z, ,( ) ax by cz d+ + + 0= =

f x y z, ,( )

f x y z, ,( )

f x y z, ,( )

f x y z, ,( )
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Examples

Following is a sample input card for a predominantly X-directed surface (viz, as planar 
surface whose normal has a dominant component in the positive or negative X 
direction):

BC = PLANEX SS 101 1.0 1.0 -2.0  100.0

This boundary condition leads to the application of the equation 
 to the mesh1 equation on EXODUS II side set number 101. 

Technical Discussion

These conditions are sometimes used instead of the more general PLANE boundary 
condition in situations where ROTATION (see ROT command section) leads to poor 
convergence of the matrix solvers or is not desirable for some other reason. In general, 
the PLANE condition should be used instead of these, but in special cases these can be 
used to force the application of the planar geometry to a specific component of the 
mesh stress equation residuals. Full understanding of the boundary rotation concept is 
necessary to understand these reasons (see Rotation Specifications).

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-013.2: Computations for slot coater edge section, October 10, 2002, T.A. Baer

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer
 

1.0x 1.0y 2.0z–+ 100.0–=
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4.10.22 PLANE

Description/Usage (PCC/ROTATED MESH)

This card is used to specify a surface (solid) boundary position of a planar surface. It is 
applied as a rotated condition on the mesh equations (see EQ cards mesh1, mesh2 
mesh3). The form of this equation is given by

(4-26)

Definitions of the input parameters are given below; note that <floatlist> has four 
parameters corresponding to the four constants in the equation:

PLANE Name of the boundary condition name (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> a in function 

<float2> b in function 

<float3> c in function 

<float4> d in function 

Examples

Following is a sample input card:

BC = PLANE SS 3 0.0 1.0 0.0 -0.3

results in setting the side set elements along the side set 3 to a plane described by the 
equation .

Technical Discussion

This, like most boundary conditions on geometry with arbitrary grid motion, is applied 
to the weighted residuals of the mesh equation rotated into the normal-tangential basis 
on the boundary. Specifically, this boundary condition displaces the normal component 

BC = PLANE SS <bc_id> <floatlist>

f x y z, ,( ) ax by cz d+ + + 0= =

f x y z, ,( )

f x y z, ,( )

f x y z, ,( )

f x y z, ,( )

f x y z t, , ,( ) y 0.3– 0= =
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after rotation of the vector residual equation, leaving the tangential component to 
satisfy the natural mesh-stress free state. That is to say, this boundary condition allows 
for mesh to slide freely in the tangential direction of the plane surface.

This boundary condition can be applied regardless of the Mesh Motion type, and is 
convenient to use when one desires to move the plane with time normal to itself.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

GT-013.2: Computations for slot coater edge section, October 10, 2002, T.A. Baer
 

4.10.23 MOVING_PLANE

Description/Usage (PCC/ROTATED MESH)

The MOVING_PLANE card is used to specify a surface (solid) boundary position 
versus time for a planar surface (cf. PLANE boundary condition card). It is applied as a 
rotated condition on the mesh equations (see EQ cards mesh1, mesh2, mesh3). The 
form of the equation is given by

(4-27)

and the function  is defined as

(4-28)

Definitions of the input parameters are given below; note that <floatlist> has seven 
parameters corresponding to the seven constants in the above equations:

MOVING_ PLANE

BC = MOVING_PLANE <bc_id> <floatlist>

f x y z t, , ,( ) ax by cz d g t( )+ + + + 0= =

g t( )

g t( ) λ1t λ2t
2

λ3t
3

+ +=
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Name of the boundary condition name (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> a in function 

<float2> b in function 

<float3> c in function 

<float4> d in function 

<float5>  λ1 coefficient in 

<float6>  λ2 coefficient in 

<float7>  λ3 coefficient in 

Examples

The boundary condition card

BC = MOVING_PLANE SS 3 0. 1. 0. -0.3 0.1 0.0 0.0

results in a plane originally positioned at  to move at a velocity of -0.1, viz. 
the position of all nodes on the plane will follow:

. (4-29)

Technical Discussion

This, like most boundary conditions on geometry with arbitrary grid motion, is applied 
to the weighted residuals of the mesh equation rotated into the normal-tangential basis 
on the boundary. Specifically, this boundary condition displaces the normal component 
after rotation of the vector residual equation, leaving the tangential component to 
satisfy the natural mesh-stress free state. That is to say, this boundary condition allows 
for mesh to slide freely in the tangential direction of the plane surface.

This boundary condition can be applied regardless of the Mesh Motion type, and is 
convenient to use in place of PLANE when one desires to move the plane with time 
normal to itself.

f x y z t, , ,( )

f x y z t, , ,( )

f x y z t, , ,( )

f x y z t, , ,( )

g t( )

g t( )

g t( )

y 0.3=

f x y z t, , ,( ) y 0.3 0.1t+– 0= =
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.24 SLOPEXYZ

Description/Usage (SIC/MESH)

This boundary condition card applies a slope at the boundary of a LAGRANGIAN, 
TALE, or ARBITRARY solid (see Mesh Motion card) such that the normal vector to the 
surface is colinear with the vector specified as input, viz . Here  
is the vector specified component-wise via the three <floatlist> parameters on the input 
card. Definitions of the input parameters are as follows:

{SLOPEX | SLOPEY | SLOPEZ}

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> X-component of the slope vector .

<float2> Y-component of the slope vector .

<float3> Z-component of the slope vector .

Examples

The following is a sample input card:

BC = {SLOPEX | SLOPEY | SLOPEZ} SS <bc_id> <floatlist>

n
˜

n
˜ spec

⋅ 0= n
˜ spec

n
˜ spec

n
˜ spec

n
˜ spec
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BC = SLOPEX SS 10 1.0 1.0 0.0

This card invokes a boundary condition on the normal component of the mesh residual 
momentum equations such that the outward facing surface normal vector along side set 
10 is colinear with the vector [1.0, 1.0, 0.0]. This condition is applied to the x-
component of the mesh residual equations.

Technical Discussion

See discussion for BC card SLOPE. The only difference in these conditions and the 
SLOPE conditions, is that the latter invokes rotation of the vector mesh residual 
equations on the boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.25 SLOPE

Description/Usage (SIC/ROTATED MESH)

This boundary condition card applies a slope at the boundary of a LAGRANGIAN, 
TALE, or ARBITRARY solid (see Mesh Motion card) such that the normal vector to the 
surface is colinear with the vector specified as input, viz . Here  is 
the vector specified component-wise via the three <float> parameters on the input card. 
Definitions of the input parameters are as follows:

SLOPE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database

BC = SLOPE SS <bc_id> <float1> <float2> <float3>

n
˜

n
˜ spec

⋅ 0= n
˜ spec
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> X-component of the slope vector .

<float2> Y-component of the slope vector .

<float3> Z-component of the slope vector .

Examples

The following is a sample input card:

BC = SLOPE SS 10  1.0 1.0 0.0

This card invokes a boundary condition on the normal component of the mesh residual 
momentum equations such that the outward facing surface normal vector along side set 
10 is colinear with the vector [1.0, 1.0, 0.0].

Technical Discussion

This condition, although not often used, allows for a planar boundary condition (cf. 
PLANE, PLANEX, etc.) to be specified in terms of a slope, rather than a specific 
equation. Clearly, at some point along the surface (most likely at the ends), the 
geometry has to be pinned with some other boundary condition (cf. DX, DY, DZ) so as 
to make the equation unique. This condition has the following mathematical form:

(4-30)

and is applied in place of the normal component of the mesh motion equations, i.e., it is 
a rotated type boundary condition. If used in three dimensions, it will require a rotation 
description with the ROT cards.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.26 KINEMATIC

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion 
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary 
of the mesh defined by the side set to conform to a transient or steady material surface, 
with an optional, pre-specified mass loss/gain rate. In two dimensions, this condition is 
automatically applied to the normal component of the vector mesh equations, which is 
rotated into normal-tangential form. In three dimensions, the application of this 
boundary condition needs to be further directed with the ROT cards (see Rotation 
Specifications). The application of this condition should be compared with 
KINEMATIC_PETROV and KINEMATIC_COLLOC.

 Definitions of the input parameters are as follows:

KINEMATIC Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> Mass-loss (positive) or mass-gain (negative) velocity at the 
free boundary.

[integer] Optional integer value indicating the element block id from 
which to apply the boundary condition.

Examples

The following sample card

BC = KINEMATIC SS 7 0.0

leads to the application of the kinematic boundary condition to the boundary-normal 
component of the mesh-stress equation on the boundary defined by side set 7.

Technical Discussion

The functional form of the kinematic boundary condition is:

BC = KINEMATIC SS <bc_id> <float1> [integer]
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 (4-31)

Here  is the unit normal vector to the free surface,  is the velocity of the fluid,  is 
the velocity of the surface (or mesh), and  is the mass loss/gain rate. In two 
dimensions this equation is applied to the normal component of the vector mesh 
position equation, and hence is considered as a distinguishing condition on the location 
of the mesh relative to the fluid domain.

Theory

No Theory.

FAQs

See the FAQ pertaining to “Continuation Strategies for Free Surface Flows” on the 
DISTNG boundary condition card.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

 

4.10.27 KINEMATIC_PETROV

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion 
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary 
of the mesh defined by the side set to conform to a transient or steady material surface, 
with an optional, pre-specified mass loss/gain rate. In two dimensions, this condition is 
automatically applied to the normal component of the vector mesh equations, which is 
rotated into normal-tangential form. In three dimensions, the application of this 
boundary condition needs to be further directed with the ROT cards (see ROTATION 
specifications). Please consult the Technical Discussion for important inofrmation.

Definitions of the input parameters are as follows:

KINEMATIC_PETROV

Name of the boundary condition (<bc_name>).

BC = KINEMATIC_PETROV SS <bc_id> <float1> [integer]

n
˜

v
˜

v
˜s–( )• m·=

n
˜

v
˜

v
˜s

m·
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SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> Mass-loss (positive) or mass-gain (negative) velocity at the 
free boundary.

[integer] Optional integer value indicating the element block id from 
which to apply the boundary condition.

Examples

The following sample card

BC = KINEMATIC_PETROV SS 7 0.0

leads to the application of the kinematic boundary condition to the boundary-normal 
component of the mesh-stress equation to the boundary defined by side set 7.

Technical Discussion

Important note: This condition is actually the same as the KINEMATIC condition but 
is applied with different numerics for special cases. Specifically, rather than treated in a 
Galerkin fashion with a weighting function equal to the interpolation function for 
velocity, the residual of the equation is formed as weighted by the directional derivative 
of the basis functions along the free surface. Specifically,

(4-32)

where the nodal basis function  is replaced by  in the residual equation. Compare 
this to the KINEMATIC boundary condition description.

 This form is purportedly good for high capillary numbers and tends to reduce the 
wiggles in the free surface in some cases.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

4.10.28 KINEMATIC_COLLOC

Description/Usage (PCC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion 
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary 
of the mesh defined by the side set to conform to a transient or steady material surface, 
with an optional, pre-specified mass loss/gain rate. In two dimensions this condition is 
automatically applied to the normal component of the vector mesh equations, which is 
rotated into normal-tangential form. In three dimensions the application of this 
boundary condition needs to be further directed with the ROT cards (see Rotation 
Specifications). Definitions of the input parameters are as follows:

KINEMATIC_COLLOC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Mass-loss (positive) or mass-gain (negative) velocity at 
the free boundary.

Examples

Following is a sample card:

BC = KINEMATIC_COLLOC SS 7 0.0

leads to the application of the kinematic boundary condition to the boundary-normal 
component of the mesh-stress equation to the boundary defined by side set 7.

BC = KINEMATIC_COLLOC SS <bc_id> <float1>



Revised: 6/12/13 243

4.10.29  KINEMATIC_DISC 

Technical Discussion

Important note: This condition is actually the same as the KINEMATIC condition but 
is applied with different numerics for special cases. Specifically, rather than treated in a 
Galerkin fashion, with a weighting function equal to the interpolation function for 
velocity, the residual equation is formed at each node directly, in a collocated fashion, 
without Galerkin integration. This method is better suited for high-capillary number 
cases in which Galerkin’s method is often not the best approach.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.29 KINEMATIC_DISC

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion 
equations (viz. mesh1, mesh2, and mesh3 under the EQ card) in the special case of an 
interface between two fluids of different density (e.g. a gas and a liquid, both meshed 
up as Goma materials) through which a phase transition is occurring and there is a 
discontinuous velocity (see the mathematical form in the technical discussion below). 
Like the KINEMATIC boundary condition, it is used to distinguish a material surface 
between two phases exchanging mass. In two dimensions, this condition is 
automatically applied to the normal component of the vector mesh equations which is 
rotated into normal-tangential form. In three dimensions, the application of this 
boundary condition needs to be further directed with the ROT cards (see Rotation 
Specifications). The application of this condition should be compared with 
KINEMATIC_PETROV and KINEMATIC_COLLOC.

BC = KINEMATIC_DISC SS <bc_id> <float1>
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This condition must be applied to problem description regions using the Q1_D or 
Q2_D interpolation type, indicating a discontinuous variable treatment at the interface 
(see EQ card).

Definitions of the input parameters are as follows:

KINEMATIC_DISC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Set to zero for internal interfaces; otherwise used to 
specify the mass average velocity across the interface 
for external boundaries.

Examples

The following sample card

BC = KINEMATIC_DISC SS 10 0.0

is used at internal side set 10 (note, it is important that this side set include elements 
from both abutting materials) to enforce the overall conservation of mass exchange. 

Technical Discussion

This boundary condition is typically applied to multicomponent two-phase flows that 
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity 
at the interface. The best example of this is rapid evaporation of a liquid component 
into a gas.

This boundary condition card is used for a distinguishing condition and its functional 
form is:

(4-33)

where 1 denotes evaluation in phase 1 and 2 denotes evaluation in phase 2.

This condition is applied to the rotated form of the mesh equations. The condition only 
applies to interphase mass, heat, and momentum transfer problems with discontinuous 
(or multivalued) variables at an interface, and it must be invoked on fields that employ 

ρ1n v vs–( )
1

⋅ ρ2n v vs–( )
2

⋅=
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the Q1_D or Q2_D interpolation functions to “tie” together or constrain the extra 
degrees of freedom at the interface in question (see for example boundary condition 
VL_EQUIL_PSEUDORXN).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-015.1: Implementation Plan for Upgrading Boundary Conditions at 
Discontinuous-Variable Interfaces, January 8, 2001, H. K. Moffat

 

4.10.30 KINEMATIC_EDGE

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion 
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary 
of the mesh defined by the side set to conform to a transient or steady material surface, 
with an optional, pre-specified mass loss/gain rate. This condition is applied only in 
three-dimensional problems along contact lines that define the intersection of a free-
surface and a geometrical solid, the intersection of which is partially characterized by 
the binormal tangent as described below.

 Definitions of the input parameters are as follows:

KINEMATIC_EDGE

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This surface is 
the “primary solid surface”

BC = KINEMATIC_EDGE <bc_id1> <bc_id2> <float1>



246 Revised: 6/12/13

4.10.30  KINEMATIC_EDGE  

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This surface is 
the “free surface”

<float1> Mass-loss (positive) or mass-gain (negative) velocity at 
the free boundary.

Examples

BC = KINEMATIC_EDGE SS 10 20 0.0

In this example, the KINEMATIC_EDGE boundary condition is applied to the line 
defined by the intersection of side sets 10 and 20. The normal vector used in 
application of this condition is the one in the plane of side-set 10, viz. it is tangent to 
the surface delineated by side set 10.

Technical Discussion

The functional form of the kinematic boundary condition is:

 (4-34)

Here  is the unit normal tangent vector to a line in space defined by two surfaces, in 
the plane of the primary surface, viz. tangent to that surface.  is the velocity of the 
fluid,  is the velocity of the surface (or mesh). This condition only makes sense in 
three dimensions, and needs to be directed with ROT conditions for proper application.

Theory

No Theory.

FAQs

No FAQs.
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References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer
 

4.10.31 KINEMATIC_SPECIES

Description/Usage (WIC/MASS)

This boundary condition card is used to impose an interphase species flux continuity 
constraint on species components undergoing phase change between two materials. 
The species conservation equation (see EQ card and species_bulk) for a single gas or 
liquid phase component requires two boundary conditions because of the multivalued, 
discontinuous concentration at the interface. This condition should be used in 
conjunction with VL_EQUIL tie condition for each species. Definitions of the input 
parameters are as follows:

KINEMATIC_SPECIES

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number.

<float1> Unused floating point number

This boundary condition is typically applied to multicomponent two-phase flows that 
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity 
at the interface, and to thermal contact resistance type problems. The best example of 
this is rapid evaporation of a liquid component into a gas.

Examples

Following is a sample card:

BC = KINEMATIC_SPECIES SS 10 2 0.0

BC = KINEMATIC_SPECIES SS <bc_id> <integer> 
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This card invokes the species flux balance condition on species 2 at shared side set 10 
to be applied to the liquid phase convective diffusion equation. It should be used in 
conjunction with a VL_EQUIL type condition on the same species, but from the 
bounding phase. Note: side set 10 must be a double-sided side set between two 
materials (i.e., must be attached to both materials), each deploying basis function 
interpolation of type Q1_D or Q2_D.

Technical Discussion

The condition only applies to interphase mass transfer problems with discontinuous (or 
multivalued) variables at an interface, and it must be invoked on fields that employ the 
Q1_D or Q2_D interpolation functions to “tie” together or constrain the extra degrees 
of freedom at the interface in question. The mathematical form is

(4-35)

Here  and  are the gas and liquid velocity vectors at the free surface, respectively; 
 is the mesh velocity at the same location;  and  are the liquid and gas phase 

densities, respectively;  and  are the liquid and gas phase volume fractions of 
component i; and  and  the mass fluxes of component i. This condition constrains 
only one of two phase concentrations at the discontinuous interface. The other needs to 
come from a Dirichlet boundary condition like (BC =) Y, or an equilibrium boundary 
condition like VL_EQUIL.

Theory

No Theory.

FAQs

No FAQs.

References

Schunk, P. R. and Rao, R. R. 1994. “Finite element analysis of multicomponent two-
phase flows with interphase mass and momentum transport”, Int. J. Numer. Meth. 
Fluids, 18, 821-842.

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA, 
December 10, 1998, A. C. Sun
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4.10.32 KIN_DISPLACEMENT_PETROV

Description/Usage (SIC/ROTATED MESH)

The KIN_DISPLACEMENT_PETROV boundary condition is exactly the same as 
KIN_DISPLACEMENT except in the way in which it is applied numerically to a 
problem. See KIN_DISPLACEMENT for a full discussion.

Definitions of the input parameters are as follows:

KIN_DISPLACEMENT_PETROV

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Element block identification number for the region of TALE 
solid mesh motion.

Sometimes this condition is a better alternative to KIN_DISPLACEMENT to stabilize 
the surface and prevent wiggles. If the user wants to know more regarding numerical 
issues and implementation, consult the description for the fluid-counterpart 
KINEMATIC_PETROV card.

Examples

The following sample card:

BC = KIN_DISPLACEMENT_PETROV SS 7 12

leads to the application of the kinematic boundary condition (displacement form, see 
below) to the boundary-normal component of the mesh-stress equation to the boundary 
defined by side set 7. The element block ID number which shares this boundary with a 
neighboring TALE or fluid ARBITRARY region is 12.

Technical Discussion

See discussions on the KINEMATIC_PETROV and KIN_DISPLACEMENT cards.

BC = KIN_DISPLACEMENT_PETROV SS <bc_id> <integer>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.33 KIN_DISPLACEMENT_COLLOC

Description/Usage (SIC/ROTATED MESH)

The KIN_DISPLACEMENT_COLLOC boundary condition is exactly the same as 
KIN_DISPLACEMENT except in the way in which it is applied numerically to a 
problem. See KIN_DISPLACEMENT for a full discussion.

Definitions of the input parameters are as follows:

KIN_DISPLACEMENT_COLLOC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Element block identification number for the region of TALE 
solid mesh motion.

Sometimes this condition is a better alternative to KIN_DISPLACEMENT to stabilize 
the surface and prevent wiggles. If the user wants to know more regarding numerical 
issues and implementation, consult the description for the fluid-counterpart 
KINEMATIC_COLLOC card.

BC = KIN_DISPLACEMENT_COLLOC SS <bc_id> <integer>
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Examples

Following is a sample card:

BC = KIN_DISPLACEMENT_COLLOC SS 7 12

leads to the application of the kinematic boundary condition (displacement form, see 
below) to the boundary-normal component of the mesh-stress equation to the boundary 
defined by side set 7. The element block ID number which shares this boundary with a 
neighboring TALE or fluid ARBITRARY region is 12.

Technical Discussion

See discussions on the KINEMATIC_COLLOC and KIN_DISPLACEMENT cards.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.34 KIN_DISPLACEMENT

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion 
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It forces the boundary of 
the mesh defined by the side set to conform to a transient or steady material surface. 
Unlike the KINEMATIC condition, which is designed for material surfaces between 
two fluids, or the external material boundary of a fluid, this condition is applied to solid 
materials to which the TOTAL_ALE mesh motion scheme is applied (see technical 
discussion below and the Mesh Motion card). In two dimensions, this condition is 
automatically applied to the normal component of the vector mesh equations, which is 
rotated into normal-tangential form. In three dimensions, the application of this 
boundary condition needs to be further directed with the ROT cards (see ROTATION 

BC = KIN_DISPLACEMENT SS <bc_id> <integer>
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specifications). The application of this condition should be compared with 
KIN_DISPLACEMENT_PETROV and KIN_DISPLACEMENT_COLLOC.

Definitions of the input parameters are as follows:

KIN_DISPLACEMENT

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Element block identification number for the region of TALE 
solid mesh motion.

Examples

The following sample card:

BC = KIN_DISPLACEMENT SS 7 12

leads to the application of the kinematic boundary condition (displacement form, see 
below) to the boundary-normal component of the mesh-stress equation to the boundary 
defined by side set 7. The element block ID number which shares this boundary with a 
neighboring TALE or fluid ARBITRARY region is 12.

Technical Discussion

The functional form of the kinematic boundary condition is:

(4-36)

Here  is the unit normal vector to the solid-fluid free surface,  is the mesh 
displacement at the boundary,  is the mesh displacement from the base reference state 
(which is automatically updated from the stress-free state coordinates and for 
remeshes, etc. in Goma and need not be specified),  is the real solid displacement, 
and  is the real solid displacement from the base reference state (or mesh). In stark 
contrast with the KINEMATIC condition, which too is used to distinguish a material 
fluid surface) this condition is written in Lagrangian displacement variables for TALE 
mesh motion and is applied as a distinguishing condition on the mesh between a fluid 
and TALE solid region. In essence, it maintains a real solid displacement field such that 
no real-solid mass penetrates the boundary described by this condition.
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Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk, May 2000

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

 

4.10.35 KIN_LEAK

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition - kinematic with 
mass transfer on mesh equations. The flux quantity is specified on a per mass basis so 
heat and mass transfer coefficients are in units of L/t.

Definitions of the input parameters are as follows:

KIN_LEAK Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> Mass transfer coefficient for bulk fluid (species n+1).

<float2> Driving force concentration in external phase.

Please see Technical Discussion regarding the appropriate units for the mass transfer 
coefficient and concentration in the external phase. For a pure liquid case, these inputs 

BC = KIN_LEAK SS <bc_id> <float1> <float2>
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are read directly from this card, while for a multi-component case these values are read 
from YFLUX boundary conditions corresponding to each species that is needed. See 
following examples.

Examples

Following are two sample input cards:

Pure Liquid Case

BC = KIN_LEAK SS 3  0.1  0.

Two Component Case

BC = KIN_LEAK SS 3  0.  0.
BC = YFLUX SS 3 0  0.12   0.

Note, in the two component case, when Goma finds the KIN_LEAK card, it scans the 
input deck to locate the applicable YFLUX conditions associated with side set 3 and 
creates a linked list which is used by the applying function (kin_bc_leak). The 
existence of this list is denoted in Goma by the addition of an integer into an unused 
field of the BC structure for side set 3. The bulk fluid constitutes the second component 
and is non-volatile so it requires no YFLUX card; a second volatile species would 
require a second YFLUX input card.

Technical Discussion

Functionally, the KIN_LEAK boundary condition can be represented as the following:

(4-37)

where  is the vector velocity;  is the velocity of the boundary itself (not independent 
from the mesh velocity);  is the normal vector to the surface;  is the concentration 
of species i;  is the ambient concentration of species i at a distance from the surface 
of interest and  is the mass transfer coefficient for species i. This function returns a 
volume flux term to the equation assembly function.

KIN_LEAK is implemented through function kin_bc_leak; it sums the fluxes for all 
species plus the bulk phase evaporation. These fluxes are computed via several other 
function calls depending on the particular flux condition imposed on the boundary. 
(See various YFLUX* cards for Mass Equations.) However, at the end of the 
kin_bc_leak function, the accumulated flux value is assigned to variable vnormal, i.e., 
the velocity of fluid relative to the mesh. The apparent absence of a density factor here 
to convert a volume flux to a mass flux is the crucial element in the proper usage of the 
flux boundary conditions. The explanation is rooted in the formulation of the 
convective-diffusion equation.

n
˜

v
˜

v
˜s

–( )• hi yi y
0
i–( )

i

=

v
˜

v
˜ s

n
˜

yi

˜y
0
i

hi



Revised: 6/12/13 255

4.10.35  KIN_LEAK 

The convective-diffusion equation in Goma is given as

(4-38)

with mass being entirely left out of the expression.  is divided by density before 
adding into the balance equation; this presumes that volume fraction and mass fraction 
are equivalent. The users must be aware of this. This formulation is certainly 
inconvenient for problems where volume fraction and mass fraction are not equal and 
multicomponent molar fluxes are active elements of an analysis. However, kin_bc_leak 
is entirely consistent with the convective-diffusion equation as a velocity is a volume 
flux, and multiplied by a density gives a proper mass flux. If  is a mass concentration, 
and  were in its typical velocity units, the result is a mass flux; if  is a volume 
fraction, then we have a volume flux. So kin_bc_leak is consistent.

The burden here lies with the user to be consistent with a chosen set of units. A 
common approach is to build density into the mass transfer coefficient .

Theory

No Theory.

FAQs

1. See the FAQ pertaining to “Continuation Strategies for Free Surface Flows” on the 
DISTNG boundary condition card.

2. A question was raised regarding the use of volume flux in Goma; the following 
portion of the question and response elucidate this topic and the subject of units. Being 
from several emails exchanged during January 1998, the deficiencies or lack of clarity 
have since been remedied prior to Goma 4.0, but the discussions are relevant for each 
user of the code.

Question: ... I know what you are calling volume flux is mass flux divided by 
density. The point I am trying to make is that the conservation equations in the books I 
am familiar with talk about mass, energy, momentum, and heat fluxes. Why do you not 
write your conservation equations in their naturally occurring form? If density just so 
happens to be common in all of the terms, then it will be obvious to the user that the 
problem does not depend on density. You get the same answer no matter whether you 
input rho=1.0 or rho=6.9834, provided of course this does not impact iterative 
convergence. This way, you write fluxes in terms of gradients with the transport 
properties (viscosity, thermal conductivity, diffusion coefficient, etc.) being in familiar 
units.
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Answer: First let me state the only error in the manual that exists with regard to 
the convection-diffusion equation (CDE) is the following:

 in the nomenclature table should be described as a volume flux with units of 
, i.e., , where  is in  units.

Now, this is actually stated correctly elsewhere, as it states the  is a diffusion flux 
(without being specific); to be more specific here, we should say it is a "volume flux of 
species i." So, in this case  is in  units,  is dimensionless and it is immaterial 
that the CDE is multiplied by density or not, as long as density is constant.

Now, in Goma we actually code it with no densities anywhere for the FICKIAN 
diffusion model. For the HYDRO diffusion model, we actually compute a  in the 
code, and handle variable density changes through that . In that case  as computed 
in Goma is a mass flux vector, not a volume flux vector, but by dividing it by  and 
sending it back up to the CDE it changes back into a volume flux. i. e., everything is the 
same.

Concerning the units of the mass transfer coefficient on the YFLUX boundary 
condition, the above discussion now sets those. Goma clearly needs the flux in the 
following form:

         (4-39)

and dimensionally for the left hand side

(4-40)

where  is in units , the gradient operator has units of  so K has to be in units 
of  (period!) because  is a fraction.

So, if you want a formulation as follows:

(4-41)

then ’s units will have to accommodate for the relationship between  and  in the 
liquid, hopefully a linear one as in Raoult’s law, i.e. if  where  is the vapor 
pressure, then

(4-42)

and so K on the YFLUX command has to be  ....and so on.
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Finally, you will note, since we do not multiply through by density, you will have to 
take care of that, i. e., in the Price paper he gives K in units of . So, that must be 
converted as follows:

:   (4-43)

This checks out!

References

Price, P. E., Jr., S. Wang, I. H. Romdhane, “Extracting Effective Diffusion Parameters 
from Drying Experiments,” AIChE Journal, 43, 8, 1925-1934 (1997)

 

4.10.36 KIN_CHEM

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used to establish the sign of flux contributions to the 
overall mass balance on boundaries so that movements are appropriately advancing or 
receding depending on whether a species is a reactant or product in a surface reaction.

Definitions of the input parameters are as follows:

KIN_CHEM Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (set in 
EXODUS II) in the problem domain.

<float1> Stoichiometric coefficient for species 0.

<floatn> Stoichiometric coefficient for species n+1.

The input function will read as many stoichiometric coefficients as specified by the 
user for this card; the number of coefficients read is counted and saved. The 
stoichiometric coefficient is +1 for products or -1 for reactants. When a species is a 
product, the surface will advance corresponding to production/creation of mass of that 

BC = KIN_CHEM SS <bc_id> <float1> ... <floatn>
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species, versus recession of that interface when a reaction leads to consumption of that 
species.

Examples

Following is a sample card for two reactant and one product species:

BC = KIN_CHEM SS 25  -1.0  -1.0  1.0

Technical Discussion

This function is built from the same function as boundary condition KIN_LEAK, i.e., 
kin_bc_leak, so the user is referred to discussions for this boundary condition for 
appropriate details. The stoichiometric coefficients are read from the KIN_CHEM card 
or set equal to 1.0 in the absence of KIN_CHEM.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.37 FORCE

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) on a Lagrangian 
mesh region. The force per unit area is applied uniformly over the boundary delineated 
by the side set ID. The applied force is of course a vector. Definitions of the input 
parameters are as follows:

FORCE Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

BC = FORCE SS <bc_id> <float1> <float2> <float3>
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> X-component of traction in units of force/area.

<float2> Y-component of traction in units of force/area.

<float3> Z-component of traction in units of force/area.

Examples

Following is a sample card:

BC = FORCE SS 10 0. 1.0 1.0 

This card results in a vector traction defined by  being 
applied to the side set boundary delineated by the number 10. 

Technical Discussion

Important note: this boundary condition can only be applied to LAGRANGIAN, 
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card). 
For real-solid mesh motion types, refer to FORCE_RS. Furthermore, it is rare and 
unlikely that this boundary condition be applied to ARBITRARY mesh motion regions. 
An example application of this boundary condition card is to address the need to apply 
some load pressure to a solid Lagrangian region, like a rubber roller, so as to squeeze 
and drive flow in a liquid region.

Theory

No Theory.

FAQs

On internal two-sided side sets, this boundary condition results in double the force in 
the same direction.

References

A MEMS Ejector for Printing Applications, A. Gooray, G. Roller, P. Galambos, K. 
Zavadil, R. Givler, F. Peter and J. Crowley, Proceedings of the Society of Imaging 
Science & Technology, Ft. Lauderdale FL, September 2001.
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4.10.38 NORM_FORCE

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) on a Lagrangian 
mesh region. The force per unit area is applied uniformly over the boundary delineated 
by the side set ID. The applied traction is of course a vector. Unlike the FORCE 
boundary condition card, the vector traction here is defined in normal-tangent vector 
basis. Definitions of the input parameters are as follows:

NORM_FORCE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which 
is an integer that identifies the boundary location (side 
set in EXODUS II) in the problem domain.

<float1> Normal component of traction in units of force/area.

<float2> Tangential component of traction in units of force/area

<float3> Second tangential component of traction in units of 
force/area (in 3-D).

This card actually applies a traction that is then naturally integrated over the entire side 
set of elements. Hence, the units on the floating point input must be force/area.

Examples

Following is a sample card:

BC = NORM_FORCE SS 10 0. 1.0 1.0 

This card results in a vector traction defined by  being 
applied to the side set boundary delineated by the number 10. The normal vector is 
defined as the outward pointing normal to the surface. For internal surfaces defined by 
side sets which include both sides of the interface, this condition will result in exactly a 
zero traction, i.e., internal surface side sets must be attached to one element block only 
to get a net effect.

BC = NORM_FORCE SS <bc_id> <float1> <float2> <float3>

F 0.0 n( ) 1.0 t1( ) 1.0 t2( )+ +=
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Technical Discussion

Important note: this boundary condition can only be applied to LAGRANGIAN, 
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card). 
For real-solid mesh motion types, refer to NORM_FORCE_RS. Furthermore, it is rare 
and unlikely that this boundary condition be applied to ARBITRARY mesh motion 
regions. An example application of this boundary condition card is to apply some load 
pressure uniformly on the inside of a solid-membrane (like a pressurized balloon). In 
more advanced usage, one could tie this force to an augmenting condition on the 
pressure, as dictated by the ideal gas law.

This boundary condition is not used as often as the FORCE or FORCE_USER 
counterparts.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.39 REP_FORCE

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) that varies as the 
inverse of the fourth power of the distance from a planar surface to a Lagrangian or 
dynamic Lagrangian mesh region. This boundary condition can be used to impose a 
normal contact condition (repulsion) or attraction condition (negative force) between a 
planar surface and the surface of a Lagrangian region. The force per unit area is applied 
uniformly over the boundary delineated by the side set ID. The applied force is a vector 
in the normal direction to the Lagrangian interface.

Definitions of the input parameters are as follows, with <float_list> having five 
parameters:

BC = REP_FORCE SS <bc_id> <float_list>
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REP_FORCE Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> Coefficient of repulsion, λ.

<float2> Coefficient a of plane equation.

<float3> Coefficient b of plane equation.

<float4> Coefficient c of plane equation.

<float5> Coefficient d of plane equation.

Refer to the Technical Discussion for an explanation of the various coefficients.

Examples

The following sample card:

BC = FORCE_REP SS 10 1.e+03. 1.0 0.0 0.0 -3.0

results in a vector traction of magnitude  in the normal direction to surface 
side set 10 and the distance h is measured from side set 10 to the plane defined by 

.

Technical Discussion

The REP_FORCE boundary condition produces a vector traction in the normal 
direction to a surface side set, defined by:

(4-44)

where F is a force per unit area that varies with the distance h from a plane defined by

(4-45)

The normal vector is defined as the outward pointing normal to the surface. For internal 
surfaces defined by side sets which include both sides of the interface, this condition 
will result in exactly a zero traction, i.e., internal surface side sets must be attached to 
one element block only to get a net effect.
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Important note: this boundary condition can only be applied to LAGRANGIAN, 
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card). 
For real-solid mesh motion types, refer to REP_FORCE_RS. Furthermore, it is rare and 
unlikely that this boundary condition be applied to ARBITRARY mesh motion regions. 
An example application of this boundary condition card is to apply some load pressure 
uniformly on a surface that is large enough such that this surface never penetrates a 
predefined planar boundary. Hence, this condition can be use to impose an 
impenetrable contact condition.

Theory

No Theory.

FAQs

On internal two-sided side sets, this boundary condition results in double the force in 
the same direction.

References

No References.
 

4.10.40 FORCE_USER

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a user-defined force per unit area (traction) on a 
Lagrangian or dynamic Lagrangian (see Mesh Motion card) mesh region. The 
functional form of the force is programmed in the function force_user_surf in 
bc_user.c, and can be made a function of any of the independent or dependent 
variables of the problem, including position (see example below). The force per unit 
area is applied to boundary delineated by the side set ID. Definitions of the input 
parameters are as follows:

FORCE_USR Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

BC = FORCE_USER SS <bc_id> <float1> ...<floatn> 
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1>...<floatn> Parameters list (length arbitrary) for parameterizing the 
user defined force. These parameters are accessed 
through the p[]array in force_user_surf.

Examples

The input card

BC = FORCE_USER SS 3  {delta_t} 0.  1000.0 0.

used in conjuction with the following snippet of code in force_user_surf:

/* Comment this out FIRST!!!!! */
/*   EH(-1,"No FORCE_USER model implemented"); */
/**************************** EXECUTION BEGINS 
*******************************/
  if (time <= p[0])
     {
        func[0] = p[1]*time/p[0]; 
           func[1] = p[2]*time/p[0]; 
           func[2] = p[3]*time/p[0]; 
     }
else
     {
           func[0] = p[1]; 
           func[1] = p[2]; 
           func[2] = p[3]; 
     }

applies a time-dependent force ramped from zero to 1000.0 in the +y direction over the 
time period {delta_t}.

Technical Discussion

Used commonly to apply a force per unit area to an external surface of a solid region 
(LAGRANGIAN type, cf. FORCE_USER_RS), that is nonconstant, viz. time varying or 
spatially varying. The FORCE and NORM_FORCE boundary conditions can be used 
for constant forces. This condition is applied as a weak integrated condition in Goma, 
and hence will be additive with others of its kind.

Theory

No Theory.
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FAQs

On internal two-sided side sets, this boundary condition results in double the force in 
the same direction.

References

No References.
 

4.10.41 CA

Description/Usage (PCC/ROTATED MESH)

This boundary condition card applies a specified contact-angle on the mesh at a single 
node nodeset. It is used exclusively in two dimensional computations. Its primary 
application is imposing contact angles at static or dynamic contact lines. Consequently, 
the nodeset is usually found where a free-surface boundary intersects a fixed, 
“geometry” boundary.

 The <float_list> for this boundary condition has four values; definitions of the input 
parameters are as follows:

CA Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> θ, angle subtended by wall normal and free surface normal, 
in units of radians.

<float2> nx , x-component of normal vector to the geometry 
boundary (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float3> ny , y-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

BC = CA NS <bc_id> <float_list>
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<float4> nz , z-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

Examples

Following is a sample card:

BC = CA NS 100 1.4 0. 1. 0.

This condition applies a contact angle of 1.4 radians between the free surface normal at 
the 100 nodeset and the vector (0,1,0). Normally, this latter vector is the normal to the 
solid surface in contact with the free surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is:

 . (4-46)

where n is the normal to the geometry specified on the card itself, and nfs is the 
normal to the outward free surface computed internally by Goma. Also see the 
CA_OR_FIX card for an extension to this condition and CA_EDGE for its 
extension to three dimensions

• In addition for the case in which the geometry normal components are set to zero, 
the wall normal is allowed to vary with a geometrical boundary condition, i.e., 
GD_TABLE, SPLINE, PLANE, etc. The geometry normal is found on the same or 
on a neighboring element that contains the dynamic contact angle in question. If a 
GD_ type boundary condition is used to describe the wall (i.e., GD_TABLE), one 
must specify the R_MESH_NORMAL equation type on that equation for the 
variable wall normal to take effect.

• Important: Variable Wall Normals. Situations for which the wall shape is non-
planar, meaning that the normal vector is not invariant as the contact line moves, 
there is an option to leave all of the normal-vector components zero. In this case 
Goma then seeks to determine the local wall normal vector from the geometry it is 
currently on, using the element facets. It is recommended that this option not be 
used unless the geometry is truly nonplanar, as the logic is complex and not 100% 
reliable. An example of such a case is as follows:

BC = CA NS 100 1.4 0. 0. 0.

Notice how all three components of the normal vector are set to zero.

• Important: Wall Normal convention.  The wall normal vector on an external 
solid boundary is defined in goma as the inward facing normal to the mesh, and the 

n
˜

n
˜ fs⋅ θcos=
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free surface normal to the liquid (or wetting phase for two-liquid systems) is 
defined as the outward facing normal to the free surface.  Put another way and 
referring to the picture below, the wall normal is directed from the “solid phase” to 
the “liquid phase”, and the free surface normal is directed from the “liquid phase” 
or “wetting phase” to the “vapor phase” or “Non-wetting phase”.  Note that for 
zero contact angle the liquid is “perfectly wetting”.   The air-entrainment limit (viz. 
the hydrodynamic theory interpretation) would occure at a 180 degree contact 
angle.   Recall that the angle is specified in radians on this card.   

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.42 CA_OR_FIX

Description/Usage (PCC/ROTATED MESH)

 This boundary condition card allows the application of Gibb’s inequality condition in 
conjuction with a contact angle. This allows for a point to be specified at which a 
contact line will attach itself and no longer move. Up to that point, the contact line will 
advance or recede with a specified fixed contact angle. When the contact line attaches, 
its contact angle is allowed to vary permitting the user to include discontinuities in 

BC = CA_OR_FIX NS <bc_id> <float_list>

Liquid or
wetting phase

Gas (or nonwetting) phase

Solid phase

nfs

nwall

θ n
˜ wall

n
˜ fs

⋅( )acos=
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surface slope as features of the problem. The Gibb’s condition also permits the contact 
line to detach from its fixed point if the contact angle enters a certain range after 
attaching. This boundary condition is applicable only to two-dimensional problems; 
see CA_EDGE_OR_FIX for details on three dimensional implementations.

The <float_list> has seven values, with definition of the input parameters as follows:

CA_OR_FIX Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> θdcl, dynamic contact angle, in radians.

<float2> nx, x-component of outward-pointing wall surface normal.

<float3> ny, y-component of outward-pointing wall surface normal.

<float4> nz, z-component of outward-pointing wall surface normal.

<float5> x0, x-coordinate of the point or feature at which the 
meniscus will pin.

<float6> y0, y-coordinate of the point or feature at which the 
meniscus will pin.

<float7> z0, z-coordinate of the point or feature at which the 
meniscus will pin.

Examples

Following is a sample card:

BC = CA_OR_FIX NS 100  1.3 0. 1. 0.  -0.5  1. 0.

Technical Discussion

The Gibb’s inequality condition is illustrated in the accompanying figure. The fixed 
point is indicated by the plane, x = x0. Initially, the contact line is far from this point as 
the condition at the contact line fixes the contact angle to the value θdcl. However, 
when the contact line approaches to within ε (1.e-6) of the fixed point, it attaches there 
and stops moving. The contact angle condition is no longer enforced and the angle of 
the free surface with respect to the solid normal vector is allowed to vary freely. The 
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other part of the Gibb’s inequality is illustrated (above) by the last sketch. Here, by 
virture of the overall fluid mechanics, the contact angle withdraws until it is larger than 
θdcl. When this happens the contact line is no longer affixed at x = x0 and is allowed to 
move freely. Once again the contact angle condition is enforced.

Also, please see the important note under the BC = CA card regarding the convention 
used for specifying wall and free surface normal vectors.  

x

θ

nsnfs θ

Pinned at geometry discontinuity

θ < θdcl

θ > θdcl + εcl

x0

x0

 θ = θdcl  for x - x0 > ε
 x = x0 for x - x0 < ε

Mobile Contact line

at x = x0
Contact Line releases 
when contact angle
exceeds critical value.

Figure 5.  Contact angles and Gibb’s inequality condition in Goma, for the 

special case when the meniscus is moving along a surface of constant x.
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Theory

The principle behind this condition applies when a contact line encounters a sharp 
feature on a surface. The feature from a distance might appear as a sharp corner at 
which the meniscus/contact line prefers to locate rather than undergo continued 
migration. Actually on a smaller scale, the corner feature is not infinitely small, and the 
contact line undergoes no perceptable movement on the macroscale in order to satisfy a 
true contact angle. Rather than resolving this feature with a fine mesh, it is an expedient 
to pin the contact line there and allow it to take on any macroscale contact angle within 
a certain range. The line can release again if the meniscus pulls the contact line 
sufficiently to overcome specified bounds.

FAQs

No FAQs.

References

No References.

4.10.43 CA_EDGE

Description/Usage (PCC-EDGE/ROTATED MESH)

This boundary condition card specifies a constant contact angle on the edge defined by 
the intersection of the primary and secondary side sets. This card is used most often to 
enforce contact angle conditions on three-dimensional static contact lines. It should not 
be used in two-dimensional problems, where the CA boundary condition is the 
appropriate choice.

The contact angle supplied on the card will be enforced so that it is the angle between 
the outward-pointing normal of the primary side set and the unit vector supplied on the 
card. It is important to note that this outward-pointing normal should be variable, that is 
to say, the primary side set is most likely a free-surface.

Definitions of the input parameters are as follows:

CA_EDGE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

BC = CA_EDGE SS <bc_id1> <bc_id2> <float_list>
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<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
primary side set; in almost all cases it should also be a free 
surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
secondary side set, which plays no other role in this 
boundary condition than to provide a means of defining the 
appropriate edge geometry in conjunction with the primary 
side set. Thus, the secondary side set will often represent a 
solid boundary.

<float1> angle, value specifying the enforced angle, in degrees; it 
should lie in the range .

<float2> nx, the x-component of the fixed unit vector.

<float3> ny, the y-component of the fixed unit vector.

<float4> nz, the z-component of the fixed unit vector.

This boundary condition is a point collocated condition so it will be enforced exactly at 
every node that lies on the edge (subject to overriding ROT cards or Dirichlet 
conditions).

Examples

The following is a sample input card:

BC = CA_EDGE SS 40 50 33.0 0. 1. 0.

This card will result in an angle of 33 degrees between the outward-pointing normal to 
side set 40 and the vector (0,1,0) at all points on the edge defined by the intersection of 
side set 40 and side set 50.

Technical Discussion

• Although this constraint deals with vector quantities, it is a scalar constraint. The 
actual requirement that is imposed is:

(4-47)

0 angle 180≤ ≤

nf n⋅ θ( )cos=
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where nf is the outward-pointing normal to the primary side set, n is the vector 
supplied on the card, and θ is the angle supplied on the card. It should be 
recognized that there are usually two orientations for nf which would satisfy this 
constraint. Most often the surrounding physics will choose the correct one, but 
there is nothing to guarantee this in special situations, for example, values for θ 
near zero or near 180.

• This boundary condition is a point collocated condition so the preceding 
constraint, will be enforce exactly and strongly for each node on the edge.  The 
actual free surface normal is an average of vectors supplied by adjacent elements 
sharing a given node.

• As noted above, this boundary condition is most often used in three-dimensional 
free surface problems to enforce static contact angle conditions at the junction of a 
free, capillary surface and a solid boundary. The normal vector supplied on the 
card would be the normal to this solid boundary. Since this vector is a constant, 
there is the restriction that in this application this boundary condition can only be 
used to specify a contact angle with respect to a planar solid boundary. A different 
boundary condition, CA_EDGE_CURVE, should be used if the solid boundary is 
not planar.

• Related boundary conditions: CA_EDGE_INT, CA_EDGE_CURVE, 
CA_EDGE_CURVE_INT,  VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.44 CA_EDGE_INT

Description/Usage (SIC-EDGE/ROTATED MESH)

This boundary condition card specifies a constant contact angle on the edge defined by 
the intersection of the primary and secondary side sets. It is identical in format and 
function as the CA_EDGE boundary condition. The only difference is that this 
boundary condition is a strong integrated constraint.

Definitions of the input parameters are as follows: 

CA_EDGE_INT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
primary side set; in almost all cases it should also be a free 
surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
secondary side set, which plays no other role in this 
boundary condition than to provide a means of defining the 
appropriate edge geometry in conjunction with the primary 
side set. Thus, the secondary side set will often represent a 
solid boundary.

<float1> angle, value specifying the enforced angle, in degrees; it 
should lie in the range .

<float2> nx, the x-component of the fixed unit vector.

<float3> ny, the y-component of the fixed unit vector.

<float4> nz, the z-component of the fixed unit vector.

Examples

The following is a sample input card:

BC = CA_EDGE_INT SS <bc_id1> <bc_id2> <float_list>

0 angle 180≤ ≤
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BC = CA_EDGE_INT SS 40 50 33.0 0. 1. 0.

This card will result in an angle of  33 degrees between the outward-pointing normal to 
side set 40 and the vector (0,1,0) at all points on the edge defined by the intersection of 
side set 40 and side set 50.

Technical Discussion

• As noted above, this boundary condition is identical in function to the CA_EDGE 
condition. It differs only in the manner of its application. Whereas, the former was 
a point collocated constraint, this boundary condition strongly enforces the 
following integrated constraint at a node i:

(4-48)

where φi is the finite element trial function for node i, Γ is the edge space curve,  nf 
is the outward-pointing normal to the primary sideset, n is the vector supplied on 
the card, and θ is the angle supplied on the card. Because it is an integrated 
constraint, evaluation of the free-surface normal vector is done at integration 
points between nodes on the edge. Therefore, there is no averaging of normal 
vectors.  This is sometimes advantageous when there are discontinuities in the 
slope of the edge curve.

• Related boundary conditions: CA_EDGE, CA_EDGE_CURVE, 
CA_EDGE_CURVE_INT, VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.46 CA_EDGE_OR_FIX

Description/Usage (PCC/ROTATED MESH)

In analogy to the two-dimensional condition, CA_OR_FIX, boundary condition, this 
boundary condition imposes a contact angle on an edge feature in a three-dimensional 
mesh. However, this condition also permits the user to specify a closed curve on the 
substrate plane on which the contact line will attach and not move past. This permits 
modeling of geometric features in which the substrate slope is discontinuous. When 
contact  lines encounter such sharp features, usually they arrest. The boundary 
condition also permits the contact line to release from the curve if the overall fluid 
mechanics would promote a recession of the contact line.

Description of the card parameters is as follows:

CA_EDGE_OR_FIX Name of boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
primary side set defining the edge curve on which this 
condition applies.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
secondary side set defining the edge curve on which this 
condition applies. Taken together, the edge curve is the 
intersection of the primary and secondary sidesets.

<type_string> A string identifying the type of feature curve being defined; 
currently, there are only two choices: CIRCLE and USER. 
The CIRCLE options indicates that the surface feature on 
which a Gibb’s criterion is applied is a circle in the substrate 
plane. The USER option indicates that the user will have to 

BC = CA_EDGE_OR_FIX SS <bc_id1> <bc_id2> <type_string> {float_list}
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provide a geometric definition in the user subroutine 
user_gibbs_criterion in the file user_bc.c.

{float_list} A list of float parameters to be used in defining the contact 
angle, the normal to the substrate, and other geometric 
parameters used to define the feature curve. For each 
<type_string> choice there is a different set of float 
parameters:

CIRCLE <float_list>
<float1> θdcl, contact angle at dynamic contact line, 

in radians
<float2> nx, x-component of outward substrate 

normal
<float3> ny, y-component of outward substrate 

normal
<float4> nz, z-component of outward substrate 

normal
<float5> cx, x coordinate of circle center.
<float6> cy, y-coordinate of circle center.
<float7> cz, z-coordinate of circle center.
<float8> r, radius of circle.

The sign of this last parameter is important. If negative, the 
implication is that the starting location of the contact line is 
outside of the circle. If positive, the original location is 
assumed to be completely inside the circle.

USER <float_list>
<floati> a list of float values that are passed to the 

function user_gibbs_criterion in 
the one-dimensional array p in the order in 
which they appear on the card from left to 
right. The user must be certain that the 
parameters appearing here are sufficient 
for applying the Gibbs criterion as well as 
imposing the appropriate contact angle.

Examples

An example making use of the CIRCLE feature curve option is as follows:

BC = CA_EDGE_OR_FIX SS 10 20 CIRCLE 1.3  0. -1. 0.  0. 0. 0.  1.0

This card applies to the intersection between side sets 10 and 20. The constant contact 
angle applied is 1.3 radians. The substrate outward normal is (0, -1, 0). The feature is a 
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circle of radius 1.0 centered at (0.0, 0.0, 0.0). The original location for the contact line 
must be completely inside of the feature circle. Note also that the circle center should 
lie in the substrate plane.

Technical Discussion

• See the Technical Discussion under the boundary condition CA_OR_FIX for a 
detailed discussion of the nature of the Gibb’s criterion as it applies to contact 
lines. In a nutshell, however, the basic notion is that the contact line is free to 
advance over the substrate with an imposed contact angle, constant or dependent 
on the local conditions. When the contact angle encounters the geometric feature 
defined in the function user_gibbs_criterion, it is captured at that point 
and no longer advances. The contact angle is allowed to vary as long as it is held at 
the feature. The boundary condition also permits the contact line to release from 
the feature curve and recede the way it came if the contact angle ever becomes 
larger than its mobile value.

• So the phenomena that can be modeled with this boundary condition are those in 
which a contact line moves to, for example, the edge of cylinder. At the edge, the 
very small curvature of this feature effectively presents a barrier to further advance 
of the contact line provided the deformation of the free surface beyond the vertical 
boundaries of the cylinder is not too large. In the fullness of time, it might also be 
the case that the free surface is drawn backwards in the direction of the cylinder 
axis. The contact line should also recede and this boundary condition permits this 
once the contact angle it makes with the cylinder top exceeds the mobile contact 
angle by a small amount.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.47 CA_EDGE_CURVE

Description/Usage (PCC-EDGE/ROTATED MESH)

This boundary condition allows the user to specify a constant contact angle along an 
edge in three-dimensions. It is similar in function to the CA_EDGE boundary condition 
in which the contact angle is enforced with respect to a fixed vector. However, for this 
boundary condition, the contact angle is enforced with respect to the normal of the 
secondary side set thereby permitting a contact angle constraint to be applied on a 
curving surface. The boundary condition is applied to the edge curve defined by the 
intersection of the primary and secondary side sets.

Definitions of the input parameters are as follows:

CA_EDGE_CURVE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
primary side set; in almost all cases it should also be a free 
surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain. This identifies the 
secondary side set. The outwards-pointing normal vector to 
this side set is used as the substrate vector when enforcing 
the contact angle constraint.

<float1> the enforced contact angle, in degrees. Its value should lie in 
the range .

Examples

The following is a sample input card:

BC = CA_EDGE_CURVE SS 40 50 135.0

This boundary condition will enforce a 135 degree angle between the normal to the free 
surface on side set 40 and the outward-pointing normal to side set 50 at all points along 

BC = CA_EDGE_CURVE SS <bc_id1> <bc_id2> <float1>

0 angle 180≤ ≤
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the edge defined by side set 40 and 50. There is no restriction on whether side set 50’s 
normal vectors must be constant.

Technical Discussion

• Although this boundary condition deals with vector quantities it is a scalar 
constraint. The actual requirement that is imposed is:

(4-49)

where nf is the outward-pointing normal to the 
primary side set, ns is the outward-pointing normal 
to the secondary side set, and θ is the angle 
supplied on the card. There is always some 
confusion regarding the sense of the angle; use the 
figure to the right for guidance. Note that the sense 
depicted here is at odds with the usual contact 
angle convention. Keep this in mind when using 
this card.

• As in the case of the CA_EDGE condition, this condition is also a strongly 
enforced point collocated condition.

• Related boundary conditions: CA_EDGE, CA_EDGE_INT, 
CA_EDGE_CURVE_INT,  VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.48 CA_EDGE_CURVE_INT

Description/Usage (SIC/ROTATED MESH)

This boundary condition allows the user to specify a constant contact angle along an 
edge in three-dimensions. It is identical in function to CA_EDGE_CURVE boundary 
condition, but applies as a strongly integrated constraint. The boundary condition is 
applied to the edge curve defined by the intersection of the primary and secondary side 
sets.

Definitions of the input parameters are as follows:

CA_EDGE_CURVE_INT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This identifies 
the primary side set; in almost all cases it should also be 
a free-surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This identifies 
the secondary side set. The outwards-pointing normal 
vector to this side set is used as the substrate vector 
when enforcing the contact angle constraint.

<float1> the enforced contact angle, in degrees. Its value should 
lie in the range .

Examples

The following is a sample input card:

BC = CA_EDGE_CURVE_INT SS 40 50 135.0

This boundary condition will enforce a 135 degree angle between the normal to the free 
surface on side set 40 and the outward-pointing normal to side set 50 at all points along 
the edge defined by side set 40 and 50. The is no restriction on whether side set 50’s 
normal vectors must be constant.

BC = CA_EDGE_CURVE_INT SS <bc_id1> <bc_id2> <float1>

0 angle 180≤ ≤
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Technical Discussion

• Although this boundary condition deals with vector quantities it is a scalar 
constraint. As noted above the form of the constraint is identical to that in the 
CA_EDGE_CURVE boundary. In this case, it is applied as a strong integrated 
constraint:

(4-50)

where φi is the finite element trial function for node 
i, Γ is the edge space curve, nf is the outward-
pointing normal to the primary sideset, ns is the 
outward-pointing normal to the secondary sideset, 
and θ is the angle supplied on the card. There is 
always some confusion regarding the sense of the 
angle. Use the figure to the right for guidance. Note 
that the sense depicted here is at odds with the 
usual contact angle convention. Keep this in mind 
when using this card

• As in the case of the CA_EDGE_INT condition, this condition is also a strongly 
integrated constraint.

• Related boundary conditions: CA_EDGE, CA_EDGE_INT, CA_EDGE_CURVE, 
VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.49 VAR_CA_EDGE

Description/Usage (SIC-EDGE/ROTATED MESH)

This card is used to set a variable contact angle on a dynamic three-dimensional contact 
line. A local contact angle is determined based upon the local rate of advance/recession 
of the contact line with respect to a web, and is always associated with the secondary 
sideset. This card specifies the static contact angle, θs, and a linear proportionality 
constant cT between the local advance/recession rate and the cosine of the contact 
angle. The speed of the moving web is specified by components of the web velocity. 
The contact angle is imposed between the outward-pointing normal of the primary 
sideset and the outward-pointing normal of the secondary sideset.

Definitions of the input parameters are as follows:

VAR_CA_EDGE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This identifies 
the primary side set; it should be a free surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This identifies 
the secondary side set, which should be a “fixed” 
geometric entity, e.g. PLANE or SPLINE. Taken 
together, the primary and secondary sidesets define an 
edge over which this boundary is applicable.

<float1> θs, parameter that is the static contact angle, in degrees. 
This is the contact angle that the fluid approaches when 
the relative motion of the contact line and substrate is 
zero.

<float2> cT, parameter that is the linear proportionality constant 
between the local advance/recession rate and the cosine 
of the contact angle; see details below in the Technical 
Discussion.

BC = VAR_ CA_EDGE SS <bc_id1> <bc_id2> <float_list>
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<float3> Wx, x-component of the substrate velocity.

<float4> Wy, y-component of the substrate velocity.

<float5> Wz, z-component of the substrate velocity.

Examples

The following is a sample input card: 

BC = VAR_CA_EDGE SS 60 20  135. 0.02  0. -1. 0.

This card sets a variable contact angle condition on the edge between side sets 60 and 
20. The static contact angle is 135 degrees and the slope parameter is 0.02. The solid 
substrate is moving at the fixed velocity (0, -1., 0.).

Technical Discussion

• A contact line that moves relative to its underlying solid substrate is referred to as 
a dynamic contact line. For a dynamic contact line associated with three-
dimensional flows, it is recognized that the dynamic contact angle must change 
from point to point along the curve because the local advance/recession rate of the 
contact line with respect to the substrate changes. Taking this variability into 
account is the function of this card.

To understand the function of this card, we first define that the advance (or 
recession) rate of the contact line, uwet, as the normal component of the contact 
line velocity, , relative to the substrate velocity, W:

(4-51)

where ncl is a unit vector normal to the contact 
line in the plane of the substrate as illustrated 
in the sketch at right. For an advancing contact 
line uwet is negative and the converse. We can 
also define a local capillary number by non-
dimensionalizing the advance rate as follows,

(4-52)

where µ is the viscosity and σ the surface tension.

x· cl

uwet ncl W x· cl–( )⋅=

ncl

tcl

Contact line W

Free surface

CaL µuwet σ⁄=
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We choose to define the contact angle as the angle 
between the outward normal to the free-surface and 
the substrate normal pointing away from the fluid 
phase as illustrate here. From direct observation of 
contact lines, we know that increasing the advance 
rate will decrease the contact angle towards zero. 
Conversely, a decrease in the advance rate or increase 
of recession rate will increase the contact angle 
towards 180. We capture the essence of this behavior 

via a simple linear relationship between the local capillary number and the cosine 
of the contact angle:

 (4-53)

where θs and cT are two input parameters. The function of this card is to apply this 
model for contact angle on the contact line curve.

• This model has many restrictions. It is really only valid for very very small |CaL| 
and also does not predict that the contact angle asymptotically approaches 0 or 180 
for |CaL| very large. Instead, it is algorithmically restricted to returning 0 or 180 if 
the above linear relation would predict an angle outside of these bounds.

• Unlike the CA_EDGE boundary condition, the VAR_CA_EDGE condition is 
applied as a strong integrated constraint. The equation associated with each node 
on the edge is:

(4-54)

where φi is the shape function associated with node i.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

θ

nf

ns

side set1

side set2

θcos θscos cTCaL–=

φi nf ns θscos cTCaL–( )–⋅( ) Γd

Γ
 0=



Revised: 6/12/13 285

4.10.50  VAR_CA_USER 

4.10.50 VAR_CA_USER

Description/Usage (SIC-EDGE/ROTATED MESH)

This card is used to set a variable contact angle on a dynamic three-dimensional contact 
line. It is identical in function to the VAR_CA_USER except that it allows the user to 
provide a contact angle model to relate local contact angle to local capillary number.

Definitions of the input parameters are as follows:

VAR_CA_USER Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This identifies 
the primary side set; it should be a free surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This identifies 
the secondary side set, which should be a “fixed” 
geometric entity, e.g. PLANE or SPLINE. Taken 
together, the primary and secondary sidesets define an 
edge over which this boundary is applicable.

<float1> Wx, x-component of the substrate velocity.

<float2> Wy, y-component of the substrate velocity.

<float3> Wz, z-component of the substrate velocity.

[float4-floatn] An optional list of floats which will be passed to the 
user-supplied function for use with the user model.

Examples

The following is a sample input card:

BC = VAR_CA_USER SS 60 20  -1. 0. 0. 1.e-3 135.0

BC = VAR_CA_USER SS <bc_id1> <bc_id2> <float_list>
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This card sets a variable contact angle condition on the edge between side sets 60 and 
20. The solid substrate is moving at the fixed velocity (-1., 0., 0.). The var_CA_user 
function is passed the constants 1.e-3 and 135.0 in variable locations p[0] and p[1], 
respectively.

Technical Discussion

• VAR_CA_USER function is identical to VAR_CA_EDGE. It is applied to three-
dimensional dynamic contact lines in order to set a variable contact angle. The user 
must supply internal coding for the function var_CA_user in the file user_bc.c. 
This function receives as parameters the local capillary number as described under 
VAR_CA_EDGE and a double array containing the optional list of float 
parameters. It should return the cosine of the desired contact angle.

• What follows is an example that implements the linear contact angle model 
described in VAR_CA_EDGE.

double
var_CA_user(double Ca_local,
            int num,
            const double *a,
            double *d_cos_CA_Ca_local)
{
  double  cos_CA;
  double  static_CA;
  double  cT;
  static_CA = a[0]*M_PIE/180.0;
  cT = a[1];
  cos_CA = cos(static_CA) - cT * Ca_local;
  *d_cos_CA_Ca_local = cT;
  return ( cos_CA );
}

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.51 FRICTION

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) on a Lagrangian 
mesh region. The force per unit area is applied according to Coulomb’s friction law 
over the boundary delineated by the side set ID. The applied traction is of course a 
vector. The vector traction is defined in normal-tangent vector basis. Definitions of the 
input parameters are as follows:

FRICTION Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which 
is an integer that identifies the boundary location (side 
set in EXODUS II) in the problem domain.

<float1> µ, Coulombic coefficient of friction.

[integer1] optional specification of the element block id to which 
this condition will be applied.

This card actually applies a traction that is then naturally integrated over the entire side 
set of elements.

Examples

Following is a sample card:

BC = FRICTION SS 10 0.1 2 

Technical Discussion

Important note: this boundary condition can only be applied to LAGRANGIAN, 
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card). 
For real-solid mesh motion types, refer to FRICTION_RS.

This condition should be utilized in conjunction with a rotated condition such as 
SPLINE in order to apply a tangential force which is proportional to the normal force;

BC = FRICTION SS <bc_id> <float1> [integer1]> 
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(4-55)

where µ is the coefficient of friction and v is the velocity of the convected solid.  Note 
that the direction of the frictional force is determined by the velocity direction.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.52 SOLID_FLUID

Description/Usage (PCC/VECTOR REALSOLID)

The SOLID_FLUID condition performs the exact same task as the FLUID_SOLID 
condition. The usage and example are also the same, so consult the discussion on that 
card for further information.

At one time this condition applied the stress balance between solid and fluid phases in a 
different fashion that proved not to be useful. To preserve backward compatibility, we 
have kept this boundary condition around even though it invokes the exact same 
function that the FLUID_SOLID boundary condition does.

Definitions of the input parameters are as follows:

SOLID_FLUID Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

BC = SOLID_FLUID SS <bc_id> <integer1> <integer2> [float]

F µFn
v

v
-----=
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<integer1> Element block ID of solid phase from the EXODUS II 
database.

<integer2> Element block ID of liquid phase from the EXODUS II 
database.

[float] Scale factor for stress balance for non-dimensionalization. 
This parameter, which multiplies the liquid phase 
contribution of stress, is optional. The default is 1.0.

Examples

See FLUID_SOLID description.

Technical Discussion

See FLUID_SOLID description.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.53 PENETRATION

Description/Usage ()

No longer supported/used in Goma. See DARCY_CONTINUOUS boundary condition 
card.

Examples

No example.

BC = PENETRATION
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.54  

4.10.55 POROUS_KIN

Description/Usage ()

This boundary condition card was used as a distinguishing condition for the Darcy-
Flow in porous medium, in an arbitrary frame of reference.

This boundary condition was disabled in November of 2001 due to the new formulation 
in Goma for poroelasticity; this boundary condition was poorly formulated.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

BC = POROUS_KIN
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FAQs

No FAQs.

References

No References.
 

4.10.56 SDC_KIN_SF

Description/Usage (SIC/ROTATED MESH)

This boundary condition represents the specification of the normal component of the 
mesh velocity. This is a DVI_MULTI_PHASE_SINGLE boundary condition that has an 
additional property. The first time encountered in the formation of the residual, the 
results of a subcalculation are stored either at the node structure level or at the surface 
gauss point level. The surface reaction and surface species are specified as part of a 
surface domain within Chemkin.

The SURFDOMAINCHEMKIN_KIN_STEFAN_FLOW boundary condition (shortened to 
SDC_KIN_SF in the name2 member of the BC_descriptions struct in mm_names.h) 
solves the following equation representing Stefan flow at a boundary.

(4-56)

where  is the outward facing normal to the liquid material,  is the liquid density, 
 is the (mass average) velocity at the current surface quadrature point, and  the 

velocity of the mesh (i.e., the interface if the mesh is fixed at the interface). The 
summation over N species is for the product of molecular weight ( ) and the source 
term for creation of species k in the liquid ( ). SDC_KIN_SF is linked to the 
SDC_SPECIES_RXN boundary conditions just as the KINEMATIC_CHEM boundary 
conditions are by the expression for the interface reaction. The sum is over all of the 
interfacial source terms for species in the phase.

Definitions of the input parameters are as follows:

SDC_KIN_SF Name of the boundary condition (<bc_name>).

BC = SDC_KIN_SF SS <bc_id> <integer> {char_string}
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SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Element Block ID of the phase on whose side of the 
interface this boundary condition will be applied.

char_string , string indicating where the surface source term 
information for this boundary condition will be 
obtained. Three options exist:

IS_EQUIL_PSEUDORXN
VL_EQUIL_PSEUDORXN
SDC_SURFRXN

These are boundary conditions that apply to the Species 
Equations. The last boundary condition is not yet 
implemented, so SDC_SURFRXN currently does 
nothing.

Examples

Following is a sample card:

BC = SDC_KIN_SF SS 1  0 VL_EQUIL_PSEUDORXN

The above card will create a strongly integrated boundary condition specifying the 
normal component of the velocity on side set 1 on the element block 0 side of the 
interface. The source term to be used in the above equation will be taken from multiple 
previously specified multiple VL_EQUIL_PSEUDORXN cards.

Technical Discussion

• This boundary condition is exactly the same as SDC_STEFANFLOW, except for the 
fact that it is applied on the normal component of the mesh velocity instead of the 
normal component of the mass averaged velocity. It is similar to a single phase 
boundary condition, because all of its input comes from one side of the interface. 
Thus, it can equally be applied to external surfaces as well as internal ones with 
some development work.

• Currently, it has only been tested out on internal boundaries using the 
IS_EQUIL_PSEUDORXN source term.

Sk
l
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• The DVI_MULTI_PHASE_SINGLE variable is a nomenclature adopted by Moffat 
(2001) in his development of a revised discontinuous variable implementation for 
Goma. It pertains to Discontinuous Variable Interfaces (DVI) and boundary 
conditions that involve the addition of a surface integral to each side of an internal 
boundary for a variable that is continuous across the interface. The user is referred 
to Moffat (2001) for detailed presentation on discontinuous variables.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-015.1: Implementation Plan for Upgrading Boundary Conditions at 
Discontinuous-Variable Interfaces, January 8, 2001, H. K. Moffat

 

Category 3: Boundary Conditions for Real Solid Equations

The reader is referred to a report by Schunk (2000) for a complete description of this equation 
type. Briefly, these boundary conditions pertain to the TOTAL_ALE mesh motion type (see Mesh 
Motion card), and are applied to the real solid only, viz. the boundary conditions applied to the 
companion mesh motion equations are still needed to control the mesh, independent of the real-
solid material.

4.10.57 DXDYDZ_RS

Description/Usage (DC/REALSOLID)

This boundary condition format is used to set a constant X, Y, or Z real-solid 
displacement on the real-solid mesh motion equations (see TOTAL_ALE option on the 
Mesh Motion card). Each such specification is made on a separate input card. These 
boundary conditions are of the Dirichlet type and must be applied on EXODUS II node 
sets. Definitions of the input parameters are as follows: 

{DX_RS | DY_RS | DZ_RS}

BC = {DX_RS | DY_RS | DZ_RS} NS <bc_id> <float1> [float2]
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Boundary condition name (<bc_name>) that defines the 
displacement, where:

DX_RS - real solid X displacement
DY_RS - real solid Y displacement
DZ_RS - real solid Z displacement

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of the real_solid displacement (X, Y, or Z) defined 
above.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following is a sample card which applies in an X-displacement boundary condition to 
the real-solid to the nodes in node set 100, specifically an X- real-solid Displacement of 
0.1. These displacements are applied immediately to the unknowns, and hence result in 
immediate mesh displacement from the initial state.

BC = DX_RS NS 100 1.0

This sample card applies the same condition above, but as a residual equation that is 
iterated upon with Newton’s method.

BC = DX_RS NS 100 1.0  1.0

The second float 1.0 forces this application. This approach is advisable in most 
situations, as the nodes are gradually moved as a part of the mesh deformation process. 
Sudden movements, as in the first example, can lead to folds in the mesh.

Technical Discussion

This condition performs the same function as DX|DY|DZ boundary conditions, except 
that it is applied to the real-solid of a TOTAL_ALE solid mesh motion model (see Mesh 
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Motion card). More than likely, these conditions are applied together with geometry 
conditions on the mesh equations, e.g. PLANE, DX, DY, GEOM, etc., on the same 
boundary. TOTAL_ALE mesh motion involves two sets of elasticity equations: mesh 
motion equations (mesh1 and mesh2), and real-solid elasticity equations (mom_solid1 
and mom_solid2).

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

 

4.10.58 FORCE_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a force per unit area (traction) on a real-solid 
material region (as opposed to a Lagrangian solid region), as is the case with 
TOTAL_ALE mesh motion type (see Mesh Motion card). The force per unit area is 
applied uniformly over the boundary delineated by the side set ID. The applied force is 
of course a vector. Definitions of the input parameters are as follows:

FORCE_RS Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> X-component of traction in units of force/area.

BC = FORCE_RS SS <bc_id> <float1> <float2> <float3>
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<float2> Y-component of traction in units of force/area.

<float3> Z-component of traction in units of force/area.

Examples

Following is a sample card:

BC = FORCE_RS SS 10 0. 1.0 1.0

This card results in a vector traction defined by  applied 
to the side set boundary delineated by flag 10, where the element block bounded by this 
boundary is of a TOTAL_ALE mesh motion type.

Technical Discussion

It is important to note that this boundary condition can only be applied to TOTAL_ALE 
mesh motion types (cf. Mesh Motion card). (see FORCE for all other mesh motion 
types). Furthermore, it is rare and unlikely that this boundary condition be applied to 
ARBITRARY mesh motion regions. As an example of how this boundary condition card 
is used, consider the need to apply some load pressure to a real solid of a TOTAL_ALE 
region, like a rubber roller, so as to squeeze and drive flow in a liquid region. Some of 
the usage tutorials cited below will direct you to some specifics.

Theory

No Theory.

FAQs

On internal two-sided side sets, this boundary condition results in double the force in 
the same direction.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

 

F 0.0 ex( ) 1.0 ey( ) 1.0 ez( )+ +=
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4.10.59 NORM_FORCE_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a force per unit area (traction) on a real-solid in a 
TOTAL_ALE mesh region (see Mesh Motion card). The force per unit area is applied 
uniformly over the boundary delineated by the side set ID. The applied traction is of 
course a vector. Unlike the FORCE_RS boundary condition card, the vector traction 
here is defined in normal-tangent vector basis. Definitions of the input parameters are 
as follows:

NORM_FORCE_RS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Normal component of traction in units of force/area.

<float2> Tangential component of traction in units of force/area

<float3> Second tangential component of traction in units of 
force/area (in 3-D).

This card actually applies a traction that is then naturally integrated over the entire side 
set of elements. Hence, the units on the floating point input must be force/area.

Examples

The following is a sample input card:

BC = NORM_FORCE_RS SS 10 0. 1.0 1.0

This card results in a vector traction to the real-solid in a TOTAL_ALE mesh motion 
type (not the mesh) defined by  applied to the side set 
boundary delineated by flag 10. The normal vector is defined as the outward pointing 
normal to the surface. For internal surfaces defined by side sets which include both 
sides of the interface, this condition will result in exactly a zero traction, i.e., internal 
surface side sets must be attached to one element block only to get a net effect.

BC = NORM_FORCE_RS SS <bc_id> <float1> <float2> <float3>

F 0.0 n( ) 1.0 t1( ) 1.0 t2( )+ +=
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Technical Discussion

It is important to note that this boundary condition can only be applied to TOTAL_ALE 
mesh motion types (cf. Mesh Motion card). As an example of how this boundary 
condition card is used, consider the need to apply some load pressure uniformly on the 
inside of a solid-membrane (like a pressurized balloon). In more advanced usage, one 
could tie this force to an augmenting condition on the pressure, as dictated by the ideal 
gas law.

This boundary condition is not used as often as the FORCE_RS or FORCE_USER_RS 
counterparts.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.60 REP_FORCE_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a force per unit area (traction) that varies as the 
inverse of the fourth power of the distance from a planar surface (see Technical 
Discussion below) on a TALE or Dynamic Lagrangian mesh region. This boundary 
condition can be used to impose a normal contact condition (repulsion) or attraction 
condition (negative force) between a planar surface and the surface of a TALE region. It 
differs from REP_FORCE card only in the mesh-motion type to which it applies.   The 
force per unit area is applied uniformly over the boundary delineated by the side set ID. 
The applied force is a vector in the normal direction to the Lagrangian interface.

Definitions of the input parameters are as follows, where <floatlist> has five 
parameters:

REP_FORCE_RS Name of the boundary condition (<bc_name>)

BC = REP_FORCE_RS SS <bc_id> <floatlist>
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SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Coefficient of repulsion, λ.

<float2> Coefficient a of plane equation.

<float3> Coefficient b of plane equation.

<float4> Coefficient c of plane equation.

<float5> Coefficient d of plane equation.

Examples

The following is a sample input card:

BC = REP_FORCE_RS SS 10 1.e+03. 1.0 0.0 0.0 -3.0

This card results in a vector traction in the normal direction on surface side set 10

defined by  where F is a force per unit area that varies with the distance 
h from the plane specified by .

Technical Discussion

The repulsive force is defined by  where F is a force per unit area that varies 
with the distance h from a plane defined by the equation . The 
magnitude of the function  is defined as:

(4-57)

The normal vector is defined as the outward pointing normal to the surface. For internal 
surfaces defined by side sets which include both sides of the interface, this condition 
will result in exactly a zero traction, i.e., internal surface side sets must be attached to 
one material only to get a net effect.

It is important to note that this boundary condition can only be applied to TALE mesh 
motion types (cf. Mesh Motion card). As an example of how this boundary condition 
card is used, consider the need to apply some load pressure uniformly on a surface that 
is large enough such that this surface never penetrates a predefined planar boundary.    
This condition hence can be use to impose an impenetrable contact condition.
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Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

 

4.10.61 FORCE_USER_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a user-defined force per unit area (traction) on a 
TOTAL_ALE real solid region (see Mesh Motion card). It differs from its counterpart 
FORCE_USER only in the type of material to which the force is applied, as described 
on the Mesh Motion card. The functional form of the force is programmed in the 
function force_user_surf in bc_user.c, and can be made a function of any of 
the independent or dependent variables of the problem, including position (see example 
below). The force per unit area is applied to boundary delineated by the side set ID. 
Definitions of the input parameters are as follows:

FORCE_USER_RS Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1>...<floatn> Parameters list (length arbitrary) for parameterizing the 
user defined force. These parameters are accessed 
through the p[]array in force_user_surf.

BC = FORCE_USER_RS SS <bc_id> <float1>...<floatn>
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Examples

The input card

BC = FORCE_USER_RS SS 3  {delta_t} 0.  1000.0 0.

used in conjuction with the following snippet of code in force_user_surf:

/* Comment this out FIRST!!!!! */
/*   EH(-1,"No FORCE_USER model implemented"); */
/**************************** EXECUTION BEGINS 
*******************************/
  if (time <= p[0])
     {
        func[0] = p[1]*time/p[0]; 
           func[1] = p[2]*time/p[0]; 
           func[2] = p[3]*time/p[0]; 
     }
else
     {
           func[0] = p[1]; 
           func[1] = p[2]; 
           func[2] = p[3]; 
     }

applies a time-dependent force ramped from zero to 1000.0 in the +y direction over the 
time period {delta_t}. Note how p[0] is the time period, viz. {delta_t}, over which the 
force is ramped up.

Technical Discussion

Used commonly to apply a force per unit area to an external surface of a solid region 
(TOTAL_ALE type, cf. FORCE_USER), that is nonconstant, viz. time varying or 
spatially varying. The FORCE_RS and NORM_FORCE_RS boundary conditions can 
be used for constant forces. This condition is applied as a weak integrated condition in 
Goma, and hence will be additive with others of its kind.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.62 SOLID_FLUID_RS

Description/Usage (PCC/VECTOR REALSOLID)

Used for fluid-structure interaction problems, the SOLID_FLUID_RS condition 
equates the normal traction between adjacent fluid and solid materials. (By “normal 
traction” we mean the tangential and normal force components, per unit area.) This 
condition is only to be used on boundaries between regions of ARBITRARY mesh 
motion with fluid-momentum equations and of TOTAL_ALE mesh motion (cf. 
SOLID_FLUID boundary condition card for LAGRANGIAN mesh motion regions), 
with solid momentum equations (or mesh equations) - see Mesh Motion and EQ cards. 
All elements on both sides of the interface must have the same element type (the same 
order of interpolation and basis functions) e.g., Q1 or Q2. Also, such interfaces must 
include element sides from both sides of the interface in the defining side set.

Definitions of the input parameters are as follows:

SOLID_FLUID_RS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> Element block ID of the solid phase (of TOTAL_ALE 
motion type) from the EXODUS II database.

<integer2> Element block ID of the liquid phase from the 
EXODUS II database.

[float] Scale factor for stress balance for non-
dimensionalization. This parameter, a multiplier on the 
liquid phase contribution, is optional; the default is 1.0.

Examples

The following set of input cards is a sample specification for a fluid-structure 
interaction problem:

BC = SOLID_FLUID_RS SS 5   2  1
BC = NO_SLIP_RS SS 5  2  1
BC = KIN_DISPLACEMENT SS 5   2

BC = SOLID_FLUID_RS SS <bc_id> <integer1> <integer2> [float]
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In this example, side set 5 is a boundary between a solid rubber blade and a liquid; the 
material in element block 2 is the blade, and the material in element block 1 is the fluid. 
Along the blade, a companion boundary condition is applied to ensure no slip on the 
same side set. Also, because this condition involves a TOTAL_ALE mesh region, a 
KIN_DISPLACEMENT boundary condition is needed on the same side set to force the 
solid boundary to follow the side set.

Technical Discussion

The functional form of the SOLID_FLUID_RS boundary condition is:

(4-58)

where  is the fluid phase stress tensor given by any one of the specified fluid-phase 
constitutive equations, and  is the real-solid solid phase stress tensor, also given by 
any one of the solid-phase constitutive equation (see Mat file specifications).  is a 
scaling factor that defaults to unity (and is usually best taken as such unless some 
scaling is invoked). With this boundary condition, the local residual and Jacobian 
contributions from the fluid mechanics momentum equations (on the ARBITRARY side 
of the boundary) are added into the weak form of the residual and Jacobian entries for 
the real-solid solid mechanics equations (viz. the EQ = mom_solid* options on the 
real-solid TOTAL_ALE side of the boundary).

TOTAL_ALE mesh motion regions cannot be porous and deformable (as of 11/19/
2001).

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)
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4.10.63 SPLINEXYZ_RS

Description/Usage (PCC/MESH)

This card is used to specify a general surface (solid) boundary description for 
TOTAL_ALE real solid equations (see Mesh Motion card). These boundary conditions 
are tantamount to SPLINE_RS , except that they do not invoke a vector residual 
rotation into normal-tangential form. Instead, SPLINEX_RS invokes the geometric 
boundary condition on the x-component of the real solid equation residual, and so on. 
The card requires user-defined subroutines. Templates for these routines are currently 
located in the routine “user_bc.c”. Both a function routine, fnc, for function 
evaluation and corresponding routines dfncd1, dfncd2, and dfncd3 for the 
derivative of the function with respect to global coordinates are required. Note that it 
takes an arbitrary number of floating-point parameters, depending on the user’s needs.

Definitions of the input parameters are as follows:

{bc_name} Boundary condition name that defines the general surface; 
the options are:

SPLINEX_RS - X general surface
SPLINEY_RS - Y general surface
SPLINEZ_RS - Z general surface

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in 
user-defined routine fnc.

Examples

The following is a sample input card:

BC = SPLINEZ_RS SS 10 1.0 100. 20.0 1001.0 32.0

applies a user-defined distinguishing condition parameterized by the list of floating 
points to the boundary defined by side set 10. Most importantly, the condition replaces 
the Z-component of the real solid equation.
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Technical Discussion

The mathematical form of this distinguishing condition is arbitrary and is specified by 
the user in the fnc routine in user_bc.c. Derivatives of the user-specified function 
must also be provided so as to maintain strong convergence in the Newton iteration 
process. These functions are located next to fnc and are named dfncd1, dfncd2, and 
dfncd3.Several examples for simple surfaces exist in the template routine. In three 
dimensions, usage needs to be completed with a companion ROT input card which 
directs the equation application of the condition, even though rotations are not actually 
performed.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.64 SPLINE_RS

Description/Usage (PCC/ROTATED REAL SOLID)

This card is used to specify a general surface (solid) boundary description for 
TOTAL_ALE  type mesh motion (see Mesh Motion card). Like most other 
distinguishing conditions, this condition causes the real-solid equations, viz. solid1, 
solid2, and solid3, to be rotated into boundary normal-tangential form. The card 
requires user-defined subroutines. Templates for these routines are currently located in 
the routine “user_bc.c”. Both a function routine, fnc, for function evaluation and 
corresponding routines dfncd1, dfncd2, and dfncd3 for the derivative of the 
function with respect to global coordinates are required. . Note that it takes an arbitrary 
number of floating-point parameters, depending on the user’s needs. 

Definitions of the input parameters are as follows:

SPLINE_RS Name of the boundary condition <bc_name>).

BC = SPLINE_RS  SS <bc_id> [floatlist]
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SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in 
user-defined routine fnc.

Examples

The following sample input card:

BC = SPLINE_RS SS 10 1.0 100. 20.0 1001.0 32.0

applies a user-defined distinguishing condition, parameterized by the list of five 
floating point values, to the boundary defined by side set 10.

Technical Discussion

This condition is applied to the normal component of the real solid equations along a 
boundary in two dimensions; in three dimensions application needs to be further 
directed with the ROT conditions. Examples of typical distinguishing conditions can be 
found in user_bc.c in the fnc routine and companion derivative routines.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.65 FRICTION_RS

Description/Usage (WIC/VECTOR REAL SOLID)

This boundary condition card applies a force per unit area (traction) on the 
TOTAL_ALE solid mechanics equations. The force per unit area is applied according 
to Coulomb’s friction law over the boundary delineated by the side set ID. The applied 
traction is of course a vector. The vector traction  is defined in normal-tangent vector 
basis. Definitions of the input parameters are as follows:

FRICTION_RS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which 
is an integer that identifies the boundary location (side 
set in EXODUS II) in the problem domain.

<float1> µ, Coulombic coefficient of friction.

[integer1] optional specification of the element block id to which 
this condition will be applied.

This card actually applies a traction that is then naturally integrated over the entire side 
set of elements.

Examples

Following is a sample card:

BC = FRICTION_RS SS 10 0.1 2 

Technical Discussion

Important note: this boundary condition can only be applied to TOTAL_ALE mesh 
motion types (cf. Mesh Motion card). For other mesh motion types, refer to FRICTION.

This condition should be utilized in conjunction with a rotated condition such as 
SPLINE_RS in order to apply a tangential force which is proportional to the normal 
force;

BC = FRICTION_RS SS <bc_id> <float1> [integer1]> 
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(4-59)

where µ is the coefficient of friction and v is the velocity of the convected solid.  Note 
that the direction of the frictional force is determined by the velocity direction.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.66 Category 4: Boundary Conditions for the Fluid Momentum 
Equations

The fluid-momentum equations, e.g., the momentum equations in the Navier-Stokes system for 
incompressible flows, require many boundary conditions mainly because they are formulated in 
an arbitrary frame of reference. The plethora of boundary conditions here contain Dirichlet, finite-
element weak form, finite-element strong form, and many other boundary condition types.

4.10.67 UVW

Description/Usage (DC/MOMENTUM)

This Dirichlet boundary condition specification is used to set a constant velocity in the 
X-, Y-, or Z-direction. Each such specification is made on a separate input card. 
Definitions of the input parameters are as follows:

{U | V | W} One-character boundary condition name (<bc_name>) that 
defines the velocity direction, where:

U - Indicates X velocity component
V - Indicates Y velocity component
W - Indicates Z velocity component

BC = {U | V | W} NS <bc_id> <float1> [float2] 

F µFn
v

v
-----=
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NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of velocity component.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following are sample input cards for the X velocity component Dirichlet card:
BC = U NS 7  1.50
BC = U NS 7  1.50  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

This class of card is used to set Dirichlet conditions on the velocity components. When 
the second optional float parameter is not present, the matrix rows corresponding to the 
appropriate velocity component for nodes on this node set are filled with zeros, the 
diagonal element is set to one, the corresponding residual entry is also set to zero, and 
in the solution vector the appropriate degree of freedom is set to the value specified by 
<float1>. This is the so-called “hard set” method for specifying Dirichlet conditions.

An alternate method for specifying Dirichlet conditions is applied when the second 
float parameter is present (the actual value is not important except that it be different 
from -1.0). In this case, the Dirichlet constraint is applied as a residual equation. That 
is, the momentum equation for the appropriate component at each node in the nodeset 
is replaced by the residual equation,

(4-60)R v float1 –=
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This residual equation is included in the Newton’s method iteration scheme like any 
other residual equation. Note that in this case, nothing is set in the solution vector since 
that will occur automatically as part of the iteration method.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.68 PUVW

Description/Usage (DC/PMOMENTUM)

This card is currently not implemented.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

BC = {PU | PV | PW}
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4.10.69 UVWVARY

Description/Usage (PCC/MOMENTUM)

The UVARY, VVARY and WVARY boundary condition format is used to set variation in 
X, Y, or Z velocity component, respectively, with respect to coordinates and time on a 
specified sideset. Each such specification is made on a separate input card.

The UVARY, VVARY, and WVARY cards each require user-defined functions be supplied 
in the file user_bc.c. Four separate C functions must be defined for a boundary 
condition: velo_vary_fnc, dvelo_vary_fnc_d1, dvelo_vary_fnc_d2, 
and dvelo_vary_fnc_d3. The first function returns the velocity component at a 
specified coordinate and time value, the second, third, and fourth functions return the 
derivative of the velocity component with x, y and z respectively.

A description of the syntax of this card follows:

{UVARY | VVARY | WVARY}

Five-character boundary condition name (<bc_name>) 
identifies the velocity component:

UVARY - X velocity component
VVARY - Y  velocity component
WVARY - Z  velocity component

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

[float_list] An optional list of float values separated by spaces 
which will be passed to the user-defined subroutines to 
allow the user to vary the parameters of the boundary 
condition. This list of float values is passed as a one-
dimensional double array designated p in the parameter 
list of all four C functions.

Examples

Following is a sample card for an X component

BC = {UVARY | VVARY | WVARY} SS <bc_id> [float_list]
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BC = UVARY SS 10 2.0 4.0

Following are the C functions that would have to be implemented in “user_bc.c” to 
apply the preceding boundary condition card to set a parabolic velocity profile along a 
sideset.

double velo_vary_fnc( const int velo_condition, const double x, 
const double y, const double z, const double p[], const double 
time )

{
double f = 0;
double height = p[0];
double max_speed = p[1];

if ( velo_condition == UVARY ) {
f = max_speed*( 1.0 - pow(y/height, 2 ) );
}

return(f);
}
/*    */
double dvelo_vary_fnc_d1( const int velo_condition, const double 

x, const double y, const double z, const double p[], const 
double time )

{
double f = 0;
return(f);
}
/*    */
double dvelo_vary_fnc_d2( const int velo_condition, const double 

x, const double y, const double z, const double p[], const 
double time )

{
double f = 0;
double height = p[0];
double max_speed = p[1];

if ( velo_condition == UVARY ) {
f = -2.0*max_speed*(y/height)/height;
}

return(f);
}
/*    */
double dvelo_vary_fnc_d3( const int velo_condition, const double 

x, const double y, const double z, const double p[], const 
double time )

{
double f = 0;
return(f);
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}
/*    */

Technical Discussion

• Including the sensitivities is a pain, but required since Goma has no provision for 
computing Jacobian entries numerically.

• Note that the type of boundary condition (UVARY, VVARY, or WVARY) is sent to 
each function in the velo_condition parameter. Since there can be only one 
set of definition functions in user_bc.c, this allows the user to overload these 
functions to allow for more than one component defined in this manner. It would 
also be possible to use these functions to make multiple definitions of the same 
velocity component on different sidesets. However, this would have to be done by 
sending an identifier through the p array.

• This is a collocated-type boundary condition. It is applied exactly at nodal 
locations but has lower precedence of application than direct Dirichlet conditions. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.70 UVWUSER

Description/Usage (SIC/MOMENTUM)

This card permits the user to specify an arbitrary integrated condition to replace a 
component of the fluid momentum equations on a bounding surface. Specification of 
the integrand is done via the functions uuser_surf, vuser_surf and 
wuser_surf in file “user_bc.c.”, respectively.

A description of the syntax of this card follows:

BC = {UUSER | VUSER | WUSER} SS <bc_id> <float_list>
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{UUSER | VUSER | WUSER}

Five-character boundary condition name (<bc_name>) 
identifies the momentum equation component:

UUSER - X momentum component
VUSER - Y momentum component
WUSER - Z momentum component

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutines so the user can 
vary the parameters of the boundary condition. This list 
of float values is passed as a one-dimensional double 
array to the appropriate C function.

Examples

The following is an example of card syntax:

BC = VUSER SS 10 1.0

Implementing the user-defined functions requires knowledge of basic data structures in 
Goma and their appropriate use. The uninitiated will not be able to do this without 
guidance.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.71 NO_SLIP/NO_SLIP_RS

Description/Usage (SIC/ VECTOR MOMENTUM)

This card invokes a special boundary condition that applies a no-slip condition to the 
fluid velocity at an interface between a liquid phase and a solid phase so that the fluid 
velocity and solid velocity will be in concert. The solid phase must be treated as a 
Lagrangian solid and may be in a convected frame of reference. The fluid velocity is 
equal to the velocity of the stress-free state mapped into the deformed state (for steady-
state problems).

In general, a SOLID_FLUID boundary condition must also be applied to the same 
boundary so that the force balance between liquid and solid is enforced. Note that a 
FLUID_SOLID boundary condition will have no effect since the strongly enforced 
NO_SLIP/NO_SLIP_RS on the fluid momentum equation will clobber it.

All elements on both sides of the interface must have the same element type, i.e., the 
same order of interpolation and basis functions, e.g., Q1 or Q2.

Definitions of the input parameters are as follows:

{NO_SLIP | NO_SLIP_RS}

Boundary condition name applied in the following 
formulations:

NO_SLIP - this condition applies when the solid 
phase is a purely LAGRANGIAN solid

NO_SLIP_RS - this condition should be used instead 
when the displacements in the solid phase are 
determined via a TALE formulation.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This side set 
should be the intersection of liquid and solid element 
blocks and be defined so that it is present in both 
element blocks.

<integer1> the element block ID number of the solid phase 
material.

BC = {NO_SLIP | NO_SLIP_RS} SS <bc_id> <integer1> <integer2>



316 Revised: 6/12/13

4.10.71  NO_SLIP/NO_SLIP_RS  

<integer2> the element block ID number of the liquid phase 
material.

Examples

The following is a sample input card:

BC= NO_SLIP SS 10  2 1

This card will enforce continuity of velocity between the solid phase in element block 2 
with the fluid phase in element block 1. Side set 10 should be in common with both 
element blocks.

Technical Discussion

• This boundary condition is a vector condition meaning that all three components 
of the fluid momentum equation are affected by use of a single boundary 
condition. The actual constraints that are imposed at node j are:

(4-61)

where φj is the finite element trial function, vf  is the fluid velocity, and vs is the 
solid phase velocity. These three constraints are strongly enforced so they 
replace completely the x, y, and z fluid momentum components. The boundary 
condition is not rotated since all three components of the momentum equation 
are supplanted.

• As mentioned above this boundary condition is used most often in conjunction 
with the SOLID_FLUID boundary condition which equates stresses across fluid/
solid interfaces. As described in the section discussing this card, this latter card 
imposes these forces by using the residuals of the fluid momentum equation as 
surrogates for the fluid phase forces. These forces however are imposed on the 
solid equations prior to imposition of the NO_SLIP boundary condition.

• As noted above, for this boundary condition to function properly it is necessary 
that the side set between the fluid and solid element block be present in both 
element blocks. To explain this it is necessary to recognize that side sets are 
defined as a set of faces attached to specific elements. This is in contrast to node 
sets which are simply a list of node numbers. Therefore, in the case of a side set 
that lies at the interface of two element blocks, it is possible for a given face in that 
side set to appear twice, once attached to the element in the first element block and 
a second time attached to the adjoining element in the second element block. This 
is the condition that is required for the proper execution of this boundary 
condition. Fortunately, this is the default of most meshing tools that interface with 
Goma.

φj vf vs–( ) δx⋅ Γd 0    φj vf vs–( ) δy⋅ Γd 0    φj vf vs–( ) δz⋅ Γd 0= = =
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• It is also important to reiterate that another necessary condition for the proper 
function of this boundary condition is that the interpolation order of the pseudo-
solid mesh unknowns and the fluid velocity unknowns in the ALE fluid phase block 
be identical to the interpolation order of the solid displacement unknowns in the 
LAGRANGIAN or TALE adjoining solid phase block. This usually means that the 
element type must be the same in both phases. In two-dimensions this generally is 
not a problem, but in three dimensions it can impose a considerable hardship on 
the analyst.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.72 VELO_NORMAL

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition allows the user to set the outward velocity component normal 
to a surface.

Definitions of the input parameters are as follows:

VELO_NORMAL Boundary condition designation

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

BC = VELO_NORMAL SS <bc_id> <float> [integer]



318 Revised: 6/12/13

4.10.72  VELO_NORMAL  

<float> Vn, value of the normal velocity component. Note that 
this velocity component is relative to the motion of the 
underlying mesh.

[integer] blk_id, an optional parameter that is the element block 
number in conjugate problems that identifies the 
material region where the VELO_NORMAL condition 
will be applied (usually the liquid element block in 
solid/liquid conjugate problems). For external 
boundaries, this optional parameter can be set to unity to 
force the condition to be kept at a corner between two 
side sets (2D only). This is handy for corner conditions. 
Please see GTM-004.0 for details.

Examples

The following is a sample input card:

BC = VELO_NORMAL SS 10  0.0 

This boundary condition will enforce an impenetrability constraint over side set 10 as it 
excludes normal velocity of the fluid relative to the mesh. This is by far the most 
common context for this boundary condition.

Technical Discussion

• The actual weighted residual equation that is applied to a node, j, on the surface in 
question is as follows:

(4-62)

where φj is the finite element trial function, n the outward-pointing normal to the 
surface, v the fluid velocity, vs the velocity of the underlying mesh, and vn is the 
normal velocity set by Vn (the input value).

• This constraint is a rotated strongly integrated equation so that it will replace one 
of the rotated components of the fluid momentum equation. This component 
should generally always be the normal rotated component. In two dimensions, this 
replacement is automatic. In three dimensions, this replacement must be specified 
by a ROT condition.

• This card applies the identical constraint that is applied by the KINEMATIC 
boundary condition. The only difference is that this card replaces the normal 
component of the rotated fluid momentum equation, while the latter card replaces 
the normal component of the rotated (pseudo-solid) mesh momentum equation.

φjn v vs–( ) Γd⋅ φjvn
Γd=
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• In conjugate liquid/solid problems, the VELO_NORMAL condition is often used to 
enforce the impenetrability condition of the liquid/solid interface. The optional 
blk_id parameter can be used to insure that the VELO_NORMAL condition is 
correctly applied to the liquid side of the interface. blk_id should be set equal to the 
element block ID of the liquid in this case. This also applies to the KINEMATIC 
and KINEMATIC_PETROV boundary conditions.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

GTM-004.1: Corners and Outflow Boundary Conditions in Goma, April 24, 2001, P. R. 
Schunk

4.10.73  VELO_NORMAL_LS

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition relaxes the VELO_NORMAL condition in the light phase of a 
level-set simulation, thereby allowing gas to escape from a confined space.

Definitions of the input parameters are as follows:

VELO_NORMAL_LSBoundary condition designation

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

BC = VELO_NORMAL_LS SS <bc_id>  0.0 <blk_id> <float1>  <float2>
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<blk_id> blk_id, an optional parameter that is the element block 
number in conjugate problems that identifies the 
material region where the VELO_NORMAL_LS 
condition will be applied (usually the liquid element 
block in solid/liquid conjugate problems). For external 
boundaries, this optional parameter can be set to unity to 
force the condition to be kept at a corner between two 
side sets (2D only). This is handy for corner conditions. 
Please see GTM-004.0 for details.1

<float> L=interface half-width over which the 
VELO_NORMAL bc changes.

<float2> alpha=shift in the VELO_NORMAL change relative to 
the LS interface.  With alpha=0, VELO_NORMAL 
begins to be enforced when the LS interface reaches a 
distance L from a wall.  With alpha=1, 
VELO_NORMAL begins to be enforced when the LS 
inteface reaches the wall. 

Examples

The following is a sample input card:

BC = VELO_NORMAL_LS SS 10  0.0 {blk_id=1} 0.05 0.4.

Technical Discussion

The technical discussion under VELO_NORMAL largely applies here as well. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

GTM-004.1: Corners and Outflow Boundary Conditions in Goma, April 24, 2001, P. R. 
Schunk
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4.10.75 VELO_NORM_COLLOC

Description/Usage (PCC/ROTATED MOMENTUM)

This boundary condition allows the user to set the outward velocity component normal 
to a surface. It is identical in function to the VELO_NORMAL boundary condition, but 
differs in that it is applied as a point collocated condition.

Definitions of the input parameters are as follows:

VELO_NORM_COLLOC

Boundary condition designation

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> Vn, value of normal velocity component. Note that this 
velocity component is relative to the motion of the 
underlying mesh.

Examples

Following is a sample card:

BC = VELO_NORM_COLLOC SS 20 0.0

This boundary condition will enforce an impenetrability constraint over side set 20 as it 
excludes normal velocity of the fluid relative to the mesh. This is by far the most 
common context for this boundary condition.

Technical Discussion

• The actual equation that is applied to a node, j, on the surface in question is as 
follows:

(4-63)

BC = VELO_NORM_COLLOC SS <bc_id> <float>

n vj vs–( )⋅ vn=
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where vj is the fluid velocity at the node, n the outward-pointing normal to the 
surface, vs the velocity of the underlying mesh at the node, and vn is the normal 
velocity set by <float> above.

• This constraint is a rotated collocated equation so that it will replace one of the 
rotated components of the fluid momentum equation. This component should 
generally always be the normal rotated component. In two dimensions, this 
replacement is automatic. In three dimensions, this replacement must be specified 
by a ROT condition.

• As noted above this boundary condition applies exactly the same constraint as the 
VELO_NORMAL condition but via a point collocated method instead of as a 
strongly integrated condition. This might be advantageous at times when it is 
desirable to enforce a normal velocity component unambiguously at a point in the 
mesh.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.76

4.10.77 VELO_NORMAL_DISC

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition card balances mass loss from one phase to the gain from an 
adjacent phase. It is the same as the KINEMATIC_DISC card but is applied to the fluid 
momentum equation. The condition only applies to interphase mass, heat, and 
momentum transfer problems with discontinuous (or multivalued) variables at an 
interface, and it must be invoked on fields that employ the Q1_D or Q2_D 

BC = VELO_NORMAL_DISC SS <bc_id> <float>
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interpolation functions to “tie” together or constrain the extra degrees of freedom at the 
interface in question.

Definitions of the input parameters are as follows:

VELO_NORMAL_DISC

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. It is important 
to note that this side set should be shared by both 
element blocks for internal boundaries.

<float> Set to zero for internal interfaces; otherwise used to 
specify the mass average velocity across the interface 
for external boundaries.

Examples

Following is a sample card:

BC = VELO_NORMAL_DISC SS 66 0.0 

is used at internal side set 10 (note, it is important that this side set include elements 
from both abutting materials) to enforce the overall conservation of mass exchange. 

Technical Discussion

• This boundary condition card applies the following constraint to nodes on the side 
set:

(4-64)

where 1 denotes evaluation in phase 1 and 2 denotes evaluation in phase 2. This 
constraint replaces only one of the momentum equations present at an internal 
discontinuous boundary between materials. There usually must be another 
momentum boundary condition applied to this side set. In addition, there must also 
be a distinguishing condition applied to the mesh equations if mesh motion is part 
of the problem.

• This boundary condition is typically applied to multicomponent two-phase flows 
that have rapid mass exchange between phases, rapid enough to induce a diffusion 

ρ1n v vs–( )
1

⋅ ρ2n v vs–( )
2

⋅=
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velocity at the interface, and to thermal contact resistance type problems. The best 
example of this is rapid evaporation of a liquid component into a gas.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.78 VELO_NORMAL_EDGE

Description/Usage (PCC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to specify the normal velocity component on a 
dynamic contact line in three-dimensions. The velocity component is normal to the 
contact line in the plane of the web and is equal to Vn. The free-surface side set should 
always be <bc_id1>, the primary side set, and the web side set should be <bc_id2>, the 
secondary side set. Usually, this boundary condition is used to model dynamic contact 
lines in three dimensions and is usually found in conjunction with a 
VELO_TANGENT_EDGE card, a VAR_CA_EDGE or CA_EDGE card as explained 
below.

Definitions of the input parameters are as follows:

VELO_NORMAL_EDGE

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This is the 
primary side set defining the edge and should also be 

BC = VELO_NORMAL_EDGE SS <bc_id1> <bc_id2> <float>
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associated with the capillary free surface if used in the 
context of a dynamic contact line.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. Together with 
<bc_id1>, this secondary side set defines the edge/curve 
on which the boundary condition applies as the 
intersection of the two side sets. In problems involving 
dynamic contact lines, this side set should correspond to 
the moving substrate.

<float> Vn, a parameter supplying the imposed normal velocity 
component. This component is taken normal to the edge 
curve parallel to <bc_id2>. See below for a more 
detailed description.

Examples

The following is a sample input card:

BC = VELO_NORMAL_EDGE SS 5 4 0.0

This card sets the normal-to-contact line component of the velocity to zero along the 
curve defined by the intersections of side set 5 and 4.

Technical Discussion

• This boundary condition imposes a point 
collocated constraint of the form:

(4-65)

where v is the fluid velocity, vm is the mesh 
velocity and ncl is the normal to the contact 
line in the plane of <bc_id2>. The sketch at 
right depicts the orientation of this latter 
vector. Note that the collocation points for this boundary condition only are not the 
nodes on the edge curve but integration points in each of the edge elements. The 
reason for this is historical and uninteresting from a user point of view.

• This boundary condition is used almost exclusive in problems involving dynamic 
contact lines in three dimensions. Imposition of wetting line physics is a difficult 
problem in modeling situations involving dynamic contact lines. In two-
dimensions, the assumption is often made that the effect of any wetting line force 

ncl

tcl

Contact line W

Free surface

ncl v v
m

–( )⋅ Vn=
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is to locally produce a condition in which the fluid velocity at the contact line is 
zero in the laboratory reference frame. That is to say, that at the contact line no-
slip between fluid and moving substrate is not enforced and instead a zero velocity 
condition is imposed. In this way, the difficult-to-model wetting line forces are not 
included directly, but instead are included by their effect on the velocity. One 
might argue with this model, and many do, but as a practical approach, this has 
been shown to work well.

Generalizing this notion into three dimensions is the primary motivation for this 
boundary condition. In the case of a dynamic contact line that is a curve in three 
dimensions, it is not correct to simply set all velocity components to zero because 
that would imply that the wetting forces act equally in all three directions. It is 
more reasonable to say that the wetting forces can act only in a direction normal to 
the contact line in the plane of the substrate. Therefore, the correct generalization 
of the wetting line model described in the previous paragraph is to set the velocity 
component normal to the contact line in the plane of the substrate to zero. This is 
done by using the VELO_NORMAL_EDGE boundary condition with Vn set to 
zero. In the case of a transient problem, it is necessary to add the qualifier, 
“relative to the mesh motion.” This accounts for the mesh motion velocity in the 
constraint equation. See Baer, et.al. (2000) for a more complete discussion of this 
wetting line model.

• Generally, a VELO_NORMAL_EDGE card must be accompanied by other 
boundary conditions for a correct application. Firstly, since 
VELO_NORMAL_EDGE forces the velocity vector to be parallel to the contact 
line (at least in steady state), the KINEMATIC condition on any free surface 
attached to the contact line will overspecify the problem at the contact line. For 
this reason, it is generally the case that a CA_EDGE, VAR_CA_EDGE or 
VAR_CA_USER (or their variants) should also be present for the contact line. 
These boundary conditions replace the KINEMATIC card on the mesh at the 
contact line.

In addition, a VELO_TANGENT_EDGE card should be present to enforce no-slip 
between fluid and substrate in the tangential direction. Also it should be 
recognized that VELO_NORMAL_EDGE will not override other Dirichlet 
conditions on the substrate side set. Typically, the latter are used to apply no slip 
between fluid and substrate. If such conditions are used over the entirety of the 
substrate side set, both VELO_NORMAL_EDGE and VELO_TANGENT_EDGE 
conditions applied at the contact will be discarded.

There are two potential solutions to this. First, the substrate region could be 
divided into two side sets, a narrow band of elements adjacent to the contact line 
and the remainder of substrate region. In the narrow band of elements, the no slip 
condition is replaced by a VELO_SLIP card with the substrate velocity as 
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parameters. This allows the velocity field to relax over a finite region from the 
velocity imposed at the contact line to the substrate field. The second method uses 
only a single side set for the substrate region, but replaces the Dirichlet no slip 
boundary conditions with a penalized VELO_SLIP condition. That is, the slip 
parameter is set to a small value so that no slip is effectively enforced, but within 
the context of a weakly integrated condition. Since the VELO_NORMAL_EDGE 
and VELO_TANGENT_EDGE cards are strongly enforced on the contact lines, the 
VELO_SLIP card will be overridden in those locations and the velocity field will 
deviate appropriately from the substrate velocity.

Theory

No Theory.

FAQs

No FAQs.

References

Baer, T.A., R.A. Cairncross, P.R.Schunk, R.R. Rao, and P.A. Sackinger, “A finite 
element method for free surface flows of incompressible fluids in three dimensions. 
Part II. Dynamic wetting lines.” IJNMF, 33, 405-427, (2000).

 

4.10.79 VELO_NORMAL_EDGE_INT

Description/Usage (SIC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to specify the normal velocity component on a 
dynamic contact line in three-dimensions. The velocity component is normal to the 
contact line in the plane of the web and is equal to Vn. The free-surface side set should 
always be <bc_id1>, the primary side set, and the web side set should be <bc_id2>, the 
secondary side set. This boundary condition is identical in function to 
VELO_NORMAL_EDGE. It differs only in that is applied as a strongly integrated 
condition along the curve defined by <bc_id1> and <bc_id2>

Definitions of the input parameters are as follows:

VELO_NORMAL_EDGE_INT

Name of the boundary condition.

BC = VELO_NORMAL_EDGE_INT SS <bc_id1> <bc_id2> <float>



328 Revised: 6/12/13

4.10.79  VELO_NORMAL_EDGE_INT  

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) for the primary side set in the problem 
domain. This side set should also be the side set 
associated with the capillary free surface if used in the 
context of a dynamic contact line.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) for the secondary side set defining the 
edge in the problem domain. Together with <bc_id1>, 
this defines the curve on which the boundary condition 
applies as the intersection of the two side sets. In 
problems involving dynamic contact lines, this side set 
should correspond to the moving substrate.

<float> Vn, a parameter supplying the imposed normal velocity 
component value. This component is taken normal to 
the edge curve parallel to <bc_id2>. See below for a 
more detailed description.

Examples

The following is a sample card:

BC = VELO_NORMAL_EDGE_INT SS 5 4  0.0

This card sets the normal-to-contact line component of the velocity to zero along the 
curve defined by the intersections of side set 5 and 4.

Technical Discussion

• This boundary condition imposes a strongly 
integrated constraint of the form:

(4-66)

where φi is the velocity trial function, v is the 
fluid velocity, vm is the mesh velocity and ncl 
is the normal to the contact line in the plane of 
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the moving substrate <bc_id2>. The sketch at right depicts the orientation of this 
latter vector.

• As noted above, this boundary condition functions nearly identically to the 
VELO_NORMAL_EDGE condition (except for its manner of application within 
Goma) and all comments appearing for the latter apply equally well for this 
boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.80 VELO_TANGENT

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition is used to specify strongly the component of velocity 
tangential to the side set. An added feature is the ability to relax the condition near a 
point node set according to supplied length scale and slipping parameters. This has 
application to problems involving moving contact lines. Note that this boundary 
condition is applicable only to two-dimensional problems and will result in an error if it 
is used in a three-dimensional context.

The <float_list> has three parameters; definitions for all input parameters is as follows:

VELO_TANGENT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

BC = VELO_TANGENT SS <bc_id> <integer> <float_list>
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<integer> Ncl, parameter that identifies a single-node node set that 
coincides with the location in the model of the moving 
contact line. Distances in the slipping model are 
computed relative to the location of this node. When the 
slipping model is not used, this parameter can safely be 
set to zero. Another toggle setting can be triggered by 
setting this integer to -1; with this the VELO_TANGENT 
condition is kept at a rolling motion dynamic contact 
line. (See FAQ below on rolling motion conditions.)

<float1> vt, a parameter specifying the value of the tangent 
velocity component. The component direction is  
where k is the z-component unit vector.

<float2> β, a parameter specifying the coefficient for slip 
velocity (see model below); setting  to zero disables 
the slipping model.

<float3> α, a parameter specifying the length scale for the   
position dependent slip (see model below); setting  to 
zero disables the slipping model.

Examples

The following is a sample input card:

BC = VELO_TANGENT SS 10  100 0.0 1.0 0.1

Technical Discussion

• Most often this boundary condition is used only to set the tangential speed on a 
side set because simpler Dirichlet conditions are not appropriate. An example is a 
sloping fully-developed inlet plane which does coincide with a coordinate axis. In 
this case, this boundary condition would be used to set the tangential velocity to be 
zero. The constraint applied at node i is as follows:

(4-67)

• Alternatively, a dynamic contact line might be present in the problem and it is 
desirable that this condition be relaxed near the position of this contact line. This 
can be done by supplying non-zero values for α and β. In this case, the constraint 
that is applied at the ith node on the boundary is:

n k×

β

α

φi t v vt–⋅( ) Γd
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(4-68)

in which d is the straightline distance to the node attached to <Ncl> and  is the 
velocity vector of the mesh. It should be recognized that for steady state problems 
the mesh motion is by definition always zero so this constraint reverts to the 
previous expression.

Theory

No Theory.

FAQs

Rolling Motion Conditions for high Capillary number dynamic wetting. Often times it 
is desirable to model a case of dynamic wetting for which the conditions result in a high 
capillary number. At this limit, it is well known that a contact angle specification is in 
fact an overspecification. Goma has always been able to model this case, except 
recently some changes have been made to allow for the combination of conditions at a 
dynamic contact line to be controlled. It should be stressed that all finite capillary 
number cases still work as always. This FAQ addresses the special case in which you 
desire to specify no-slip right up to the contact line. In most cases a VELO_SLIP card 
or outright setting the velocity components to zero at the moving contact line in order 
to impart slip will circumvent the issue taken up here.

The figure below diagrams the situation:

Basically the web in this example corresponds to side set 5 and the free surface to side 
set 4. The conditions we desire in the vicinity of the contact line are as follows:

$web surface
BC = VELO_TANGENT SS 5  0  {web_sp}  0.0  0.0
BC = VELO_NORMAL  SS 5  0.0
BC = GD_PARAB  SS 5  R_MESH2  0  MESH_POSITION1  0  0. 0. 1.
BC = GD_PARAB  SS 5  R_MESH2  0  MESH_POSITION2  0  0. {2*roll_rad} 1.

φi t v βx· e
α– d

v– t–⋅( ) Γd

Γ
 0=

x·

~180 degree contact angle (unspecified)

SS 4
SS 5
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$   upstream heel
BC = KINEMATIC SS 4 0.
BC = CAPILLARY  SS  4  {inv_cap}  0.0   0.0

Notice how there is no contact angle specified and even with the CAPILLARY card, the 
effect of ,

   VELO_NORMAL, surface tension is very small. The desired set of conditions that 
should be applied at the dynamic contact line are as follows:

At node 1:
 R_MOMENTUM1     gets VELO_NORMAL     from SS 5, CAPILLARY       from SS 4,
 R_MOMENTUM2     gets VELO_TANGENT    from SS 5, CAPILLARY       from SS 4,
 R_MESH1         gets KINEMATIC       from SS 4,
 R_MESH2         gets GD_PARAB        from SS 5, GD_PARAB        from SS 5,

This clearly shows that at the contact line, which happens to be node number 1 as 
shown by this clip from the BCdup.txt file resulting from the run, both 
VELO_NORMAL and VELO_TANGENT cards are applied, which implies no-slip. This 
is the so-called rolling-motion case (or tank-tread on a moving surface) in which the 
“kinematic paradox” is no longer a paradox. That is, both the KINEMATIC condition 
on the free surface and the no-slip condition on the substrate can be satisfied without 
loss or gain of mass through the free surface (see Kistler and Scriven, 1983). In order to 
make sure that both the combination above is applied, a “-1” must be placed in the first 
integer input of the VELO_TANGENT card, vis.,

BC = VELO_TANGENT SS 5  -1 {web_sp}  0.0  0.0

This integer input slot is actually reserved for a variable slip coefficient model and is 
normally used to designate the nodal bc ID of the contact line. In this case of no-slip, it 
is not needed so we added this special control. If the following card is issued:

BC = VELO_TANGENT SS 5   0 {web_sp}  0.0  0.0

then the following combination results:
At node 1:
 R_MOMENTUM1     gets VELO_NORMAL     from SS 5, CAPILLARY       from SS 4,
 R_MOMENTUM2     gets CAPILLARY       from SS 4,
 R_MESH1         gets KINEMATIC       from SS 4,
 R_MESH2         gets GD_PARAB        from SS 5, GD_PARAB        from SS 5,

which is desired in the case for which a contact angle and liquid slip is applied.

References

Kistler, S. F. and Scriven, L. E. 1983. Coating Flows. In Computational Analysis of 
Polymer Processing. Eds. J. A. Pearson and S. M. Richardson, Applied Science 
Publishers, London.
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4.10.81 VELO_TANGENT_EDGE

Description/Usage (PCC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to make the velocity component tangent to the 
contact line in the plane of the web equal to the component of web velocity 
(Wx,Wy,Wz) along the contact line. This constraint replaces the tangential component 
of the MOMENTUM equation along the contact line. It is used with the 
VELO_NORMAL_EDGE condition to impose a wetting line model onto dynamic 
contact lines in three-dimensions.  The constraint is a rotated collocated condition.

Definitions of the input parameters are as follows:

VELO_TANGENT_EDGE

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) of the primary side set defining the edge 
geometry in the problem domain. When applied to 
dynamic contact lines, this side set should correspond to 
the free surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) of the secondary side set defining the 
edge geometry in the problem domain. The boundary 
condition is applied to the curve defined as the 
intersection of this side set with the primary side set 
When applied to dynamic contact lines, this side set 
should correspond to the substrate.

<float1> Wx, x-component of the substrate (or web) velocity.

<float2> Wy, y-component of the substrate (or web) velocity.

<float3> Wz, z-component of the substrate (or web) velocity.

BC = VELO_TANGENT_EDGE SS <bc_id1> <bc_id2> <float_list>
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Examples

The following is a sample input card:

BC = VELO_TANGENT_EDGE SS 5 4  -1.0 0.0 0.0

This card imposes a tangent velocity component along the curve formed by the 
intersection of sidesets 5 and 4. The value of the component is the projection of the 
substrate velocity (-1.0, 0. ,0.) into the tangent direction. The tangent direction is along 
the curve itself.

Technical Discussion

• This equation imposes the following constraint as a point collocated condition at 
the integration points of the elements along the curve:

(4-69)

where tcl is a vector tangent to the curve, v is the fluid velocity, and W is the 
(constant) velocity of the moving substrate. The reader is referred to the sketch 
appearing with the VELO_NORMAL_EDGE card for a depiction of these vectors. 
It is applied as a point collocated condition at the integration points of the line 
elements along the curve.

• As noted above this boundary condition is used in concert with the 
VELO_NORMAL_EDGE condition to impose a model of wetting line physics 
along a dynamic contact line in three dimensions. The reader is referred to the 
discussion section of this latter boundary condition for a thorough exposition of 
this model. Suffice it to say that this boundary condition enforces no-slip between 
substrate and fluid in the tangent direction to the contact line. This is an essential 
part of the wetting line model because it implies that the wetting line forces related 
to surface tension etc. do not act tangential to the wetting line. Therefore, there is 
no agent in this direction which could account for departures from a strictly no-slip 
boundary condition.

• The astute user might note that the mesh velocity doesn’t appear in this expression 
whereas it does in the expression for VELO_NORMAL_EDGE. In the latter 
expression, the normal motion of the mesh represents the wetting velocity of the 
contact line normal to itself. It has a physical significance and so it make senses to 
connect it to the fluid velocity at that point. In the case of the tangential mesh 
motion velocity, it cannot be attached to any obvious physical part of the wetting 
model. It makes no sense that the tangential motion of nodes along the contact line 
should induce velocity in the fluid and vice versa. As a result, mesh motion is left 
out of the preceding relation.

tcl v⋅ tcl W⋅=
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.82 VELO_TANGENT_EDGE_INT

Description/Usage (SIC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to make the velocity component tangent to the 
contact line in the plane of the web equal to the component of web velocity 
(Wx,Wy,Wz) along the contact line. It imposes the identical constraint as the 
VELO_TANGENT_EDGE card, but applies it as a strongly integrated condition rather 
than a point collocated condition.

Definitions of the input parameters are as follows:

VELO_TANGENT_EDGE_INT

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) of the primary side set defining the edge 
geometry in the problem domain. When applied to 
dynamic contact lines, this side set should correspond to 
the free surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) of the secondary side set defining the 
edge geometry in the problem domain. The boundary 

BC = VELO_TANGENT_EDGE_INT SS <bc_id1> <bc_id2> <float_list>
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condition is applied to the curve defined as the 
intersection of this side set with the primary side set 
When applied to dynamic contact lines, this side set 
should correspond to the substrate.

<float1> Wx, x-component of the substrate (or web) velocity.

<float2> Wy, y-component of the substrate (or web) velocity.

<float3> Wz, z-component of the substrate (or web) velocity.

Examples

The following is a sample input card:

BC = VELO_TANGENT_EDGE_INT SS 5 4  -1.0 0.0 0.0

This card imposes a tangent velocity component along the curve formed by the 
intersection of sidesets 5 and 4. The value of the component is the projection of the 
substrate velocity (-1.0, 0. ,0.) into the tangent direction. The tangent direction is along 
the curve itself.

Technical Discussion

• This equation imposes the following constraint as a point collocated condition at 
the integration points of the elements along the curve:

(4-70)

where tcl is a vector tangent to the curve, v is the fluid velocity, W is the (constant) 
velocity of the moving substrate, φi is the shape function each node along the curve 
C.  This integral condition is imposed strongly at each node. The reader is referred 
to the sketch appearing with the VELO_NORMAL_EDGE card for a depiction of 
these vectors.

• The reader is referred to the VELO_TANGENT_EDGE discussion for information 
about the context in which this condition is applied.  Because it is applied in a 
different fashion than the former condition, it sometimes is the case that it will 
allow more flexibility in situations involving many boundary conditions applied in 
close proximity. There may also be situations where an integrated constraint 
results in better matrix conditioning that a collocated constraint.  

Theory

No Theory.

φi tcl v⋅ tcl W⋅–( ) Cd

C

 0=
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FAQs

No FAQs.

References

No References.
 

4.10.83 VELO_TANGENT_3D

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition is the three dimensional analog of the VELO_TANGENT 
condition. It is used to strongly set the tangential velocity component along a side set in 
a three-dimensional problem. It is not a completely general condition since it can set 
only a single tangential velocity component. It can only be applied to flat surfaces or 
surfaces which have only one radius of curvature such as a cylinder.

The <float_list> requires four values be specified; a description of the input parameters 
follows:

VELO_TANGENT_3D The name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> vt, the value assigned to the tangential velocity 
component.

<float2> tx, the x-component of a unit normal vector tangent to 
the surface; this vector must be tangent at all points on 
the surface. The direction of the imposed tangential 
velocity component is  with n the outward-
pointing normal.

<float3> ty, the y-component of a unit normal vector tangent to 
the surface; this vector must be tangent at all points on 
the surface. The direction of the imposed tangential 

BC = VELO_TANGENT_3D SS <bc_id> <float_list>

n t×
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velocity component is  with n the outward-
pointing normal.

<float4> tz, the z-component of a unit normal vector tangent to 
the surface; this vector must be tangent at all points on 
the surface. The direction of the imposed tangential 
velocity component is  with n the outward-
pointing normal.

Examples

The following is an example of the card:

BC = VELO_TANGENT_3D SS 10  1.0  0.0 0.0 1.0

One could use this card to set the tangential velocity on a cylindrically shaped side set 
10 provided that the cylinders axis was parallel to the z-axis. In this fashion, the 
tangential velocity component perpendicular to the z-axis is set to 1.0.

Technical Discussion

• The constraint applied to the velocity vector by this condition on the side set is:

(4-71)

where  with the components of t supplied on the card. The advantages of 
introducing the normal vector is that it permits use of this card on curving surfaces 
provided the curvature occurs in only one direction and a single tangent vector 
exists that is perpendicular to both the surface normal and the direction of 
curvature. This of course implies that the tangential component can only be 
applied in the direction of the curvature.

• Such conditions are of course met by a planar surface, but also a cylindrical 
surface. In the latter case, the vector t should be parallel to the axis of the cylinder. 
One application for this condition is in three-dimensional eccentric roll coating in 
which the roll speed can be set using this condition. The axis vectors of both roll 
coaters are supplied on the card.

Theory

No Theory.

FAQs

No FAQs.

n t×

n t×

t̃ v⋅ vt=

t̃ n t×=
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4.10.84 VELO_SLIP

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows for slip between the fluid and a boundary using an 
implementation of the Navier slip relation. This relation fixes the amount of slip as a 
function of the applied shear stress. The scaling between stress and slip is a user 
parameter. This implementation also permits (in two dimensions only) variable scaling 
dependent upon distance from a mesh node. The latter can be used in modeling 
dynamic contact lines. This condition cannot currently be used on connecting surfaces.

There are four required values in <float_list> and two optional values; definitions of 
the input parameters are as follows:

VELO_SLIP Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> β, the slip coefficient.  The inverse of β defines the scaling 
between stress and slip. Hence, for small values of β, large 
shear stresses are needed for a given amount of slip, and 
conversely, for large values of β, the amount of stress 
needed for the same degree of slip decreases (see below for 
a more rigorous description).

<float2> vs,x, the x-component of surface velocity vector. This would 
be the x-component of the fluid velocity if a no slip 
condition were applied.

<float3> vs,y, the y-component of surface velocity vector. This would 
be the y-component of the fluid velocity if a no slip 
condition were applied.

BC = VELO_SLIP SS <bc_id> <float_list> [integer1] [float5]
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<float4> vs,z, the z-component of surface velocity vector. This would 
be the z-component of the fluid velocity if a no slip 
condition were applied.

[integer] Ncl, a single-node node set identification number. When the 
variable coefficient slip relation is used, distance is 
measured relative to this node (see discussion below). 
Normally, this node set represents the location of the 
dynamic contact line. Note that this option is generally only 
used in two-dimensional simulations.

[float5] α, the distance scale in the variable slip model (see the 
discussion below). Both Ncl and α should be present to 
activate the variable slip model.

Examples

Following is a sample card without the optional parameters:

BC = VELO_SLIP SS 10 0.1 0.0 0.0 0.0

Technical Discussion

• The general form of this boundary condition is

(4-72)

where  is the deviatoric portion of the fluid stress tensor,  is the Navier slip 
coefficient and  is the velocity of the solid surface. The velocity of the surface 
must be specified, as described in the Description/Usage subsection above. It is a 
weakly integrated vector condition, as noted above, so it will be added to each of 
the three momentum equation components.

This last point is important to keep in mind, especially when applying this 
condition to boundaries that are not parallel to any of the principle axes. It is 
possible under these circumstances that this condition will allow motion through a 
boundary curve in addition to slip tangential to it. This can be avoided by including 
a rotated boundary condition like VELO_NORMAL on the same sideset. This will 
cause the momentum equations to be rotated to normal and tangential components 
and also enforce no normal flow of the material. Whatever slipping that takes place 
will be in the tangential direction.

• The variable slip coefficient model is quite simple: , where d is 
the absolute distance from node Ncl identified on the card; the coefficients β and α 
are also supplied on input. This relation is protected against overflowing as d 

n τ⋅
1
β
--- v vs–( )=

τ β

vs

β d( ) β α– d( )exp=



Revised: 6/12/13 341

4.10.85  VELO_SLIP_ROT 

increases. This model can be used to allow slipping to occur in a region close to the 
node set, but at points further removed, a no slip boundary (β large) is reinstated on 
the sideset.

Theory

No Theory.

FAQs

No FAQs

References

No References.
 

4.10.85 VELO_SLIP_ROT

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is a variant of the VELO_SLIP boundary condition and serves 
much the same function: to allow the fluid to slip relative to a solid substrate boundary. 
The difference is that the assumed substrate is a rotating cylindrical surface with axis 
parallel to the z-direction. Also as in the VELO_SLIP case, an optional variable slip 
coefficient model is available that allows for slip to occur only in a region near to a 
mesh node. This boundary condition is applicable generally only to two-dimensional 
problems or very specialized three dimensional problems.

The <float_list> has four values and there are two optional values; definitions of the 
input parameters are as follows:

VELO_SLIP_ROT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

BC = VELO_SLIP_ROT SS <bc_id> <float_list> [integer] [float5]



342 Revised: 6/12/13

4.10.85  VELO_SLIP_ROT  

<float1> β, the slip coefficient.  The inverse of β defines the 
scaling between stress and slip. Hence, for small values 
of β, large shear stresses are needed for a given amount 
of slip, and conversely, for large values of β, the amount 
of stress needed for the same degree of slip decreases 
(see below for a more rigorous description).

<float2> ω, rotation rate of the cylindrical substrate surface in 
radians/T. Positive values for this parameter correspond 
to rotation in the clockwise direction.

<float3> xc, the x-position of rotation axis.

<float4> yc, the y-position of rotation axis.

[integer] Ncl, a single-node node set identification number. When 
variable coefficient slip relation is used, distance is 
measured relative to this node (see discussion below). 
For problems involving dynamic contact lines, this 
nodeset coincides with the location of the contact line. 

[float5] α, the distance scale in the variable slip model (see the 
discussion below). Both Ncl and α should be present to 
activate the variable slip model.

Examples

The following is a sample card without the optional parameters:

BC = VELO_SLIP_ROT SS 10 0.1 3.14 0.0 1.0

This condition specifies a moderate amount of slip (0.1) on a cylindrical surface 
rotating at 3.14 rad/sec around the point (0.0,1.0).

Technical Discussion

The comments that appear in the Technical Discussion section of the VELO_SLIP card 
apply equally well here. In particular, the discussion of the variable slip coefficient 
model applies here as well. The only significant difference is that the velocity of the 
substrate is not a fixed vector; instead, it is tangent to the cylindrical substrate with a 
magnitude consistent with the radius of the cylinder and the rotation rate.

Theory

No Theory.
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FAQs

No FAQs

References

No References.
 

4.10.86 VELO_SLIP_FILL

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is applied only in problems involving embedded interface 
tracking, that is, level set or volume of fluid. As in the case of the VELO_SLIP card, it 
allows for slip to occur between fluid and solid substrate, but in this case slipping is 
allowed only in a narrow region around the location of the interface where it intercepts 
the solid boundary. Elsewhere, this boundary condition enforces a no-slip condition 
between fluid and substrate.

When using the level set tracking, slip is allowed only near the intersection of the zero 
level set contour and the substrate boundary, and then only in a region twice the level 
set length scale wide centered on the zero level set. When using volume of fluid, the 
criterion for slipping is that the absolute value of the color function should be less than 
0.25.

This boundary condition is most often used in conjunction with the FILL_CA boundary 
condition. The latter applies forces to contact lines in order to simulate wetting line 
motion. These forces are applied in a weak sense to the same regions near the interface 
so it is necessary to use VELO_SLIP_FILL with a large slipping coefficient so that 
effectively no-slip is relaxed completely near the interface.

Definitions of the input parameters are as follows:

VELO_SLIP_FILL Name of the boundary condition. 

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

BC = VELO_SLIP_FILL SS <bc_id> <float_list>
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<float1> β, the slip coefficient.  The inverse of β defines the 
scaling between stress and slip. The parameter supplied 
on the input deck is used only in the region define 
above. Elsewhere, the slip coefficient is uniformly set to 
10-6.

<float2> vs,x, the x-component of surface velocity vector. This 
would be the x-component of the fluid velocity if a no-
slip condition were applied. 

<float3> vs,y, the y-component of surface velocity vector. This 
would be the y-component of the fluid velocity if a no-
slip condition were applied.

<float4> vs,z, the z-component of surface velocity vector. This 
would be the z-component of the fluid velocity if a no-
slip condition were applied.

Examples

Following is a sample card without the optional parameters:

BC = VELO_SLIP SS 10 100000.0 0.0 0.0 0.0

The large value of slip coefficient ensures nearly perfect slip in the region around the 
interface.

Technical Discussion

• See the documentation under VELO_SLIP boundary condition for a description of 
the nature of this boundary condition.

• An important caveat when using this boundary condition to relax no-slip in the 
vicinity of the interface is that it relaxes all constraints on the velocities in the 
region. This includes the constraint to keep fluid from passing through the 
substrate boundary. For this region, it is usually also necessary to use a 
impenetrability condition, VELO_NORMAL for example, in conjunction with this 
boundary condition for appropriate results.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

4.10.87 VELO_SLIP_ELECTROKINETIC

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition allows for slip between the fluid and a solid boundary due to 
electrokinetic effects on the charged solid wall. The user provides the following 
parameters:  zeta potential at the wall and permittivity of the fluid.

VELO_SLIP_ELECTROKINETIC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> ε, absolute permittivity of the fluid.

<float2> ζ, the surface potential of solid boundary. It is referred 
to as the zeta potential.

Examples

Following is a sample card:

BC = VELO_SLIP_ELECTROKINETIC SS 10 1.e-5 1.e-2

Technical Discussion

• The general form of this boundary condition is

(4-73)

where  is the absolute permittivity of the medium,  is the zeta potential, Et is the 
electric field tangent to the solid surface, and vs is the slip velocity.

BC = VELO_SLIP_ELECTROKINETIC SS <bc_id> <float1> <float2>

vs

εζEt

µ
-----------–=

ε ζ



346 Revised: 6/12/13

4.10.88  VELO_SLIP_ELECTROKINETIC3D  

Theory

No Theory.

FAQs

No FAQs

References

No References.

4.10.88 VELO_SLIP_ELECTROKINETIC3D

Description/Usage (SIC/ROTATED MOMENTUM)

This is a 3D generalization of the VELO_SLIP_ELECTROKINETIC boundary 
condition. It is similar to VELO_TANGENT_3D except the slip velocity is calculated 
based on Helmholtz-Smulkowski relation. This boundary condition allows for slip 
between the fluid and a solid boundary due to electrokinetic effects on the charged 
solid wall. The user provides the following parameters:  zeta potential at the wall, 
permittivity of the fluid and.

VELO_SLIP_ELECTROKINETIC3D 

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> ε, absolute permittivity of the fluid.

<float2> ζ, the surface potential of solid boundary. It is referred 
to as the zeta potential.

<float3> tx, the x-component of a unit normal vector tangent to 
the surface; this vector must be tangent at all points on 
the surface. The direction of the imposed tangential 

BC = VELO_SLIP_ELECTROKINETIC3D SS <bc_id> [floatlist]
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velocity component is  with n the outward-
pointing normal.

<float4> ty, the y-component of a unit normal vector tangent to 
the surface; this vector must be tangent at all points on 
the surface. The direction of the imposed tangential 
velocity component is  with n the outward-
pointing normal.

<float5> tz, the z-component of a unit normal vector tangent to 
the surface; this vector must be tangent at all points on 
the surface. The direction of the imposed tangential 
velocity component is  with n the outward-
pointing normal.

Examples

Following is a sample card:

BC = VELO_SLIP_ELECTROKINETIC3D SS 10 1.e-5 1.e-2 0. 0. 1.

Technical Discussion

• The general form of this boundary condition is

(4-74)

where  is the absolute permittivity of the medium,  is the zeta potential, Et is the 
electric field tangent to the solid surface, and vs is the slip velocity.

Theory

No Theory.

FAQs

No FAQs

References

No References.

n t×

n t×

n t×

vs

εζEt

µ
-----------–=

ε ζ
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4.10.89 VELO_TANGENT_SOLID

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition sets the tangential fluid velocity component at a fluid/solid 
interface to the tangential velocity component of the solid material. The latter includes 
any motion of the stress-free state. This boundary condition is applicable only to two-
dimensional problems and is normally used in conjunction with the Total Arbitrary 
Lagrangian/Eulerian algorithm in Goma (See GT-005.3). .

Definitions of the input parameters are as follows:

VELO_TANGENT_SOLID

The name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> The element block id defining the solid phase adjacent 
to <bc_id>.

<integer2> The element block id defining the liquid phase adjacent 
to <bc_id>.

Examples

The following is an example of this card

BC = VELO_TANGENT_SOLID SS 10  2 1

In this case, sideset 10 is an internal sideset between two separate materials, the solid 
material in element block 2 and the liquid material in element block 1.

Technical Discussion

The boundary condition being applied is the strong integrated condition:

BC = VELO_TANGENT_SOLID SS <bc_id> <integer1> <integer2>

t
˜

v
˜m

⋅
fluid

t
˜

vsfs F
˜ m⋅ ⋅ t

˜ td

dx
˜m⋅+=



Revised: 6/12/13 349

4.10.90   

where vm is the fluid velocity, vsfs is the velocity of the solid material stress-free-state 
(usually solid-body translation, or rotation..see Advected Langragian Velocity card) 
including the motion of the deformed coordinates, and t is the vector tangent to the side 
set.  Fm is the deformation gradient tensor and the time derivative term is the motion of 
the deformed state tangential to the surface in question.   

This condition is advocated for use with the TALE algorithm (see GT-005.3).  

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.90  

4.10.91 VELO_SLIP_SOLID

Description/Usage (WIC/ROTATED MOMENTUM)

This boundary condition is similar in function to the VELO_SLIP condition in that it 
permits a tangential velocity in a fluid phase to be proportional to the shear stress at the 
boundary. This boundary condition allows for this type of slip to occur at the interface 
between a fluid material and a LAGRANGIAN or TALE solid material. The velocity of 
the solid substrate is obtained automatically from the motion of the solid material, 
including advection of the stress-free state. As in the case of the VELO_SLIP condition, 
this condition also permits the user to vary the slip coefficient depending upon the 
distance from a specified point in the mesh. The variable slip model can only be used in 
two-dimensional problems.

The <integer_list> has two values; the definitions of the input parameters and their 
significance in the boundary condition parameterization is described below:

VELO_SLIP_SOLID

BC = VELO_SLIP_SOLID SS <bc_id> <integer_list> <float1> [integer3, float2]
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Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This should be 
an internal sideset defined at the interface between solid 
and liquid material blocks.

<integer1> The element block id defining the solid material phase.

<integer2> The element block id defining the liquid material phase.

<float1> β, the slip coefficient.  The inverse of β defines the 
scaling between stress and slip. Hence, for small values 
of β, large shear stresses are needed for a given amount 
of slip, and conversely, for large values of β, the amount 
of stress needed for the same degree of slip decreases 
(see below for a more rigorous description).

[integer3] Ncl, a single-node node set identification number. When 
the variable coefficient slip relation is used, distance is 
measured relative to this node (see discussion below). 
Normally, this node set represents the location of the 
dynamic contact line. Note that this option is generally 
only used in two-dimensional simulations.

[float2] α, the distance scale in the variable slip model (see the 
discussion below). Both Ncl and α should be present to 
activate the variable slip model.

Examples

The following is a sample card:

BC = VELO_SLIP_SOLID SS 20  2 1 0.001 0.0 4 0.01

This boundary condition sets the slip coefficient between solid material 2 and liquid 
material 1 to be 0.001 except in the vicinity of the nodeset 4 (a single node) where the 
variable model is used.

Technical Discussion

• The general form of this boundary condition is
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(4-75)

where  is the deviatoric portion of the fluid stress tensor,  is the Navier slip 
coefficient and  is the velocity of the solid surface stress-free state, with Fm the 
deformation gradient tensor; this motion includes any rigid solid body motion and 
any superimposed deformation velocity.

• It is worthwhile noting that, unlike the VELO_SLIP condition, this condition is 
actually a rotated condition. It is applied to the tangential component of the rotated 
momentum equations weakly. This means that the normal component of the 
momentum equation is not affected by this boundary condition. Normally, some 
sort of no-penetration condition must accompany this boundary condition for this 
reason.

• The reader is referred to the documentation of the variable slip coefficient model to 
apply slip near contact lines under the VELO_SLIP boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.92 DISCONTINUOUS_VELO

Description/Usage (SIC/MOMENTUM)

This boundary condition card, used to set the normal component of mass averaged 
velocity at an interface, specifies that the net flux of the last component in a nondilute 
mixture across an internal interface, is equal to zero. The condition only applies to 
interphase mass, heat, and momentum transfer problems applied to nondilute material 
phases with discontinuous (or multivalued) variables at an interface, and it must be 

BC = DISCONTINUOUS_VELO SS <bc_id> <char_string> <integer1> <integer2>

t
˜

v
˜

⋅
fluid

t
˜

vsfs F
˜ m⋅ ⋅ t

˜ td

dx
˜m

⋅––

 
 
 
 

βn
˜

t
˜

T
˜ fluid

⋅ ⋅=

τ β

vsfs



352 Revised: 6/12/13

4.10.92  DISCONTINUOUS_VELO  

invoked on fields that employ the Q1_D or Q2_D interpolation functions to “tie” 
together or constrain the extra degrees of freedom at the interface in question.

Definitions of the input parameters are as follows:

DISCONTINOUS_VELO

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<char_string> A character string identifiying the condition to be 
applied on the liquid phase relative to the gas phase.

EVAPORATION
DISSOLUTION - not currently valid.

Note, this parameter replaces the boundary condition 
EVAPORATION_VELO.

<integer1> Element block id of liquid or high density phase.

<integer2> Element block id of gas or low density phase.

Examples

Following is a sample input card that applies this BC on the block 1 side of side set 7, 
the liquid side; the block 2 side is the gas side.

BC = DISCONTINUOUS_VELO SS 7 EVAPORATION 1 2

Technical Discussion

The DISCONTINUOUS_VELO boundary condition applies the following equation:

(4-76)

It specifies the diffusive flux of the last species in the mechanism, i.e., the one for 
which no explicit continuity equation exists, to be equal to zero. This is done via a 
strong integral condition applied to one side of the interface, the “+” side of the 
interface. This boundary condition, combined with the KINEMATIC_SPECIES and 
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KINEMATIC_DISC boundary conditions, implies that the diffusive flux of the last 
species on both sides of the boundary is equal to zero.

The DISCONTINUOUS_VELO boundary condition requires an evaluation of the 
derivative of the species mass fraction at the interface. Thus, the mesh convergence 
properties of the algorithm are reduced to O(h). Also, discretization error must interfere 
with the total mass balance across a phase, since the expression for  is substituted for 
in some places, the YFLUX_SPECIES boundary condition, but used in the 
DISCONTINUOUS_VELO boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.93 HYDROSTATIC_SYMM

Description/Usage (WIC/VECTOR MOMENTUM)

No longer supported in GOMA.  Do not use.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

BC = HYDROSTATIC_SYMM

ji
+
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FAQs

No FAQs.

References

No References.
 

4.10.94 FLOW_PRESSURE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to set a constant value of pressure on a boundary. 
Most often this condition is used to set an upstream or downstream pressure over a 
fully-developed inflow/outflow boundary. 

Definitions of the input parameters are as follows:

FLOW_PRESSURE Boundary condition name

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float> Pex, the applied pressure. Positive values imply 
compressive forces on the fluid, negative values imply 
tensile forces.

Examples

The following sample input card will impose a constant compressive pressure force on 
the boundary defined by sideset 23: 

BC = FLOW_PRESSURE SS 23  5.0

Technical Discussion

• The actual boundary condition that is applied to the fluid is given as follows:

BC = FLOW_PRESSURE SS <bc_id> <float>
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(4-77)

where n is the outward normal vector to the boundary, T is the total fluid stress 
tensor, and P is the applied pressure equal to <float1> above. From this the user 
should be able to deduce the appropriate sign for his/her pressure value.

• This boundary condition is a weak integrated condition implying that it is added to 
all three components of the fluid momentum equation prior to rotation of equations 
or application of strongly enforced conditions or Dirichlet conditions.

• The astute user who is also well-versed in finite element formulations and 
terminology will recognize that this boundary condition is providing a value for 
the boundary condition term that appears after application of the divergence 
theorem to the weighted fluid momentum residual equations. Hence, imposing a 
value of zero for <float1> is exactly equivalent to saying nothing at all about the 
fluid velocity at a boundary.

• This boundary condition is found predominantly in two applications. First, setting 
the external pressure imposed on a free surface, and second, providing the driving 
force for flow by being imposed on an inflow or outflow fully-developed 
boundary. In this latter role, the usual procedure is to apply the 
FLOW_PRESSURE condition while strongly enforcing a zero condition on the 
velocity components transverse to the boundary. For boundaries parallel to one of 
the principle coordinate directions, Dirichlet conditions can be used to set these 
transverse components. For other inflow or outflow boundaries, it is suggested that 
the VELO_TANGENT and VELO_TANGENT_3D cards be employed instead.

• This boundary condition is very useful when working with non-Newtonian models 
where the inlet velocity field is apt to be complicated and hard to determine a 
priori. By imposing a pressure at the inflow with this card, the non-Newtonian 
inlet velocity profile will be determined implicitly. Augmenting conditions can 
then be used to couple the imposed pressure to the average flow rate over the 
boundary for an even more advanced capability.

Theory

No Theory.

FAQs

No FAQs.

n T
fluid

⋅ nP–=
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4.10.95 FLOW_STRESSNOBC

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card applies the free outflow boundary condition developed 
by Papanastasiou, et.al. (1992) on the fluid momentum with the option of setting the 
pressure level. It is appropriate only for outflow boundaries where it is inappropriate to 
use natural boundary conditions or FLOW_PRESSURE-class boundary conditions. It is 
only supported for generalized Newtonian fluid constitutive equations.

Definitions of the input parameters are as follows:

FLOW_STRESSNOBC

Name of the boundary condition 

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float> Papplied, the applied pressure.

[integer] An optional parameter.

blank/-1 the pressure in the normal stress is replaced 
by Papplied.
the pressure in the solution vector is 
retained in the normal stress.

Examples

Following is a sample card:

BC = FLOW_STRESSNOBC SS 10  1.0 -1

Here the boundary condition is applied to sideset 10 with a constant pressure of 1.0 
required.

BC = FLOW_STRESSNOBC SS <bc_id> <float> [integer]

1–≠
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Technical Discussion

• The finite element formulation of the fluid momentum equations generates 
boundary integrals of the form:

(4-78)

where P is the isotropic pressure and τ the viscous stress. Often this boundary term 
is left off entirely on a particular boundary with the result that a zero normal force 
is applied implicitly. These are referred to as imposing a “natural” boundary 
conditions. Alternatively, this integral might be included but with the integrand 
replaced by an known value of force. This is the concept behind the 
FLOW_PRESSURE and FLOW_HYDROSTATIC boundary conditions.

However, both types of boundary conditions imply that something is known about 
the stress and, by association, the velocity field on the boundary. It is often the case 
that outflow boundaries are present where it is difficult to provide this information. 
A prime example is the outflow of a fluid jet accelerating downward due to 
gravity. In this case, the downward velocity field is still developing at this 
boundary so it is problematic to specify a stress value. Other examples include 
imposing conditions at a “truncated” outflow where the exiting fluid is still 
developing.

The FLOW_STRESSNOBC seeks to remedy this problem. Formulationally, the 
boundary term as written above is included as just another term dependent upon 
solution degrees of freedom. This permits the pressure and velocity gradients on 
the boundary to float as needed so that one does not need to say anything about the 
stress or pressure on the boundary.

Now strictly speaking, the ellipticity of the viscous flow equations suggests that 
this operation should result in an ill-posed problems. Elliptic equations by their 
very nature require that something be said about every boundary in the problem. 
However, in the case of outflow boundaries it appears that this restriction can be 
relaxed in certain circumstances with good results. Papanastasiou, et.al., (1997), 
Renary (1997), Griffiths (1997) and Sani and Gresho (1994) discuss this.

• The boundary condition does permit that the pressure value be fixed while the 
viscous stress is allowed to float. This is done by setting the optional parameter to 
-1 and supplying the pressure value as Papplied. When this is done depends upon 
circumstance. Note that this is distinctly different from setting a normal stress 
component using FLOW_PRESSURE.

φin Pδ– τ+( )⋅ Ad

A
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• As noted above, this boundary condition is currently implemented only for 
generalized Newtonian fluid models. Polymeric fluid models will not work with it.

Theory

No Theory.

FAQs

No FAQs.

References
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4.10.96 FLOW_GRADV

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card stipulates a vanishing normal velocity gradient on a 
boundary with the option of setting the pressure level.

Definitions of the input parameters are as follows:

FLOW_GRADV Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

BC = FLOW_GRADV SS <bc_id> <float> [integer]
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<float> Papplied, the applied pressure.

[integer] An optional parameter.

blank/-1 the pressure in the normal stress is replaced by 
Papplied.
the pressure in the solution vector is retained in 
the normal stress.

Examples

The sample input card:

BC = FLOW_GRADV SS 15  0.0

sets the gradient of velocity normal to sideset 15 to zero. A pressure value of zero is 
used in the boundary condition.

 BC = FLOW_GRADV SS 15  0.0  1.0

In the preceding example, the pressure value used is obtained from the solution itself.

Technical Discussion

• This boundary condition is related in form and formulation to the 
FLOW_STRESSNOBC boundary condition in that it includes terms for the 
boundary integrals that appear in the momentum equation after application of 
integration by parts and the divergence theorem. In this boundary condition, the 
following integral is included with the momentum equation:

(4-79)

where µ is the viscosity of a Newtonian or generalized Newtonian fluid. As in the 
case of the FLOW_STRESSNOBC condition the preceding integral appears as a 
function of pressure and velocity unknowns as any other term.

• The pressure term in the preceding may be replaced by a fixed, imposed pressure 
value. This is done by setting the optional input integer to -1 and providing the 
imposed value in Papplied; otherwise, the value set in Papplied is ignored.

Theory

No Theory.

1–≠
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FAQs

No FAQs.

References

No References.
 

4.10.97 FLOW_PRESS_USER

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition has been deprecated in favor of the PRESSURE_USER 
boundary condition; use the latter instead.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

BC = FLOW_PRESS_USER
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4.10.98 FLOW_HYDROSTATIC

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows the user to impose a pressure force that varies linearly 
with position over the boundary. It functions in much the same manner as the 
FLOW_PRESSURE boundary condition except that more variability is allowed in the 
imposed pressure. As the name implies, this boundary condition is most often used to 
impose hydrostatic pressure profiles in problems in which gravitational forces play a 
role.

The <float_list> has four values to be specified; definitions of the input parameters are 
as follows:

FLOW_HYDROSTATIC

Boundary condition name

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> δPx, the pressure variation in x-direction.

<float2> δPy, the pressure variation in y-direction.

<float3> δPz, the pressure variation in z-direction.

<float4> P0, the pressure value at the coordinate point (0,0,0). 
This serves as a means of establishing a datum and it is 
not required that (0,0,0) lie on the sideset.

Examples

Following is a sample card:

BC = FLOW_HYDROSTATIC SS 15  0.0 0.0 -1.5 10.0

This card will impose a pressure profile on side set 15 so that the pressure decreases by 
1.5 as the z coordinate increases by one unit. At the point, (0,0,0) the pressure imposed 
is 10.0. Note that (0,0,0) does not necessarily have to be on side set 15.

BC = FLOW_HYDROSTATIC SS <bc_id> <float_list>
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Technical Discussion

• The mathematical form of the boundary condition imposed by this card is as 
follows:

(4-80)

where n is the outward normal vector to the boundary, T is the total fluid stress 
tensor, and x, y, z are the global coordinate positions.

• Like the FLOW_PRESSURE conditions, this is a weakly integrated condition and 
the comments appearing with that card apply equally well here.

• Most often this boundary condition is used in problems in which gravity is present. 
Under these circumstances, the pressure profile across a fully-developed flow inlet 
is not constant but varies according to hydrostatic head. Hence, the 
FLOW_PRESSURE condition cannot be used to provide the inlet pressure.   
Instead, this card is used with the variation in the pressure being imposed 
according to the direction of gravity. Thus, some if not all of δPx, δPy, or δPz will 
be functions of gravity and the fluid density.

• It is true that this variation could be determined automatically by Goma from its 
known values for density and gravitational direction. But for a variety of reasons, 
this may not always be the best option. Instead, the user is allowed to vary the 
pressure on a boundary independently of the density and gravitational forces set 
elsewhere in the material file. If consistency is important in the problem at hand, 
then the user is cautioned to be consistent.

• The input parameter P0 as noted above serves as a datum to the relationship. In 
theory, it is the pressure value that would be computed at the point (0,0,0), but in 
reality it is chosen to impose a known pressure at some point in the domain.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.100 FLOWRATE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows the user to specify a single value for the volumetric 
flowrate of material across an inflow (or outflow) boundary. The pressure and velocity 
fields on this boundary are then computed implicitly by Goma.

Definitions of the input parameters are as follows:

FLOWRATE name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float> flowrate, a parameter fixing the value of volumetric 
flowrate across this boundary. For two-dimensional 
CARTESIAN simulations, this value should be per unit 
distance in the out-of-plane coordinate. For 
CYLINDRICAL and SWIRLING coordinate systems, this 
flowrate value should include integration in the 
azimuthal direction.

<float|char_string> This parameter can either be a <float> or a 
<char_string>.

float Pguess, an initial guess for the pressure 
on the inlet

char_string read, indicating that the initial guess 
for the pressure file should be read 
from the ASCII file identified on the 
GUESS file card.

Examples

Specifying the average velocity on the inlet to a tube of radius 1.0:

BC = FLOWRATE SS <bc_id> <float> <float | char_string>
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BC = FLOWRATE SS 10 3.1415 10.0

Since the radius is 1.0, the area of the surface is 3.1415 so the volumetric flowrate must 
be specified as shown. An initial pressure guess of 10.0 is also supplied. Note this does 
not specify the pressure on the boundary as the final value will generally be different 
than specified here.

Continuing in the flowrate by reading the last pressure value from GUESS file:

BC = FLOWRATE SS 10 3.2 read

Technical Discussion

• The requirement that is imposed by this boundary condition is the following 
integral:

(4-81)

where U is the flowrate value supplied on the card. It is imposed by the addition of 
a Lagrange multiplier unknown on the boundary in question which will be 
determined as a part of the solution process. For Newtonian and generalized 
Newtonian models, the value of the multiplier is the inverse of the pressure value 
on the boundary. Thus, a boundary condition nearly identical to a 
FLOW_PRESSURE condition is applied to the sideset, but it takes as its pressure 
the value of the inverse of the Lagrange multiplier unknown as it is computed.

The augmenting condition capability in Goma is used to impose the above integral. 
When the boundary condition is invoked, an augmenting condition of the 
appropriate type is automatically created. Its associated degree of freedom is the 
Lagrange multiplier. During the iteration sequence, the user will see updates and 
residuals for this augmenting condition. 

• Originally, the initial guessed value for the pressure over the side set is read from 
the float value specified on this card, or from the GUESS file (if the parameter read 
is specified on this card). However, it can also be read from an EXODUS II 
database file. This is the same file the rest of the solution vector is read from if the 
problem is being restarted from a previous computation. If a value for the 
augmenting condition is present in this EXODUS II file, it will be read in. This 
value will override the float value specified on this card. The initial guess may still 
be read from the ASCII GUESS file by specifying read on the Initial Guess card 
and on the Augmenting Conditions Initial Guess card.

u n⋅( ) Γd

Γ
 U=
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Theory

No Theory.

FAQs

No FAQs.

References

No References
 

4.10.101 PRESSURE_USER

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows the user to specify an arbitrary functional form for the 
pressure field on a boundary via a user-defined subroutine. The boundary condition is 
identical in form to the FLOW_PRESSURE and FLOW_HYDROSTATIC conditions, 
but whereas the latter conditions have constant and linear spatial dependencies for the 
pressure, this boundary condition allows for any dependency, including dependencies 
on other degrees of freedom and time.

Definitions of the input parameters are as follows:

PRESSURE_USER Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutine so the user can 
vary the parameters of the boundary condition. This list 
of float values is passed as a one-dimensional double 
array to the appropriate C function.

BC = PRESSURE_USER SS <bc_id> <float_list>
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Examples

The following is a sample input card:

BC = PRESSURE_USER SS 10 0.0 3.0 0.5

Technical Discussion

• Frequently, it is desired to be able to set a pressure on a boundary that is more 
complicated than constant or linear; this boundary condition is used for this 
purpose. By modifying a function in user_bc.c (fn_dot_T_user), any 
functional dependence of pressure can be installed. This dependence may entail a 
more complicated spatial dependence, variability in time, and/or dependence on 
other degrees of freedom.

• An example is supplied in fn_dot_T_user that illustrates how this boundary 
condition can be used to set a sinusoidal-type of spatial dependence. A similar 
function could be used to set a temporal sinusoidal variation. The only caveat is 
that when inserting a function, it is very important that the sensitivities of the 
function with respect to position (and other degrees of freedom if they exist) be 
added to the array d_func. This does not apply to the time variable however.

• Like FLOW_PRESSURE and FLOW_HYDROSTATIC, this boundary condition is 
a weakly integrated condition. Therefore, it is additive with other weak conditions, 
but is superseded by strong conditions or Dirichlet conditions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.102 CONT_TANG_VEL

Description/Usage (SIC/MOMENTUM)

This boundary condition card enforces continuity of tangential velocity between two 
phases with discontinuous velocity treatment. The condition only applies to interphase 
mass, heat, and momentum transfer problems with discontinuous (or multivalued) 
variables at an interface, and it must be invoked on fields that employ the Q1_D or 
Q2_D interpolation functions to “tie” together or constrain the extra degrees of 
freedom at the interface in question.

Definitions of the input parameters are as follows:

CONT_TANG_VEL

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

This boundary condition is typically applied to multicomponent two-phase flows that 
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity 
at the interface, and to thermal contact resistance type problems. The best example of 
this is rapid evaporation of a liquid component into a gas.

Examples

The following is a sample card:

BC = CONT_TANG_VEL SS 10

Technical Discussion

No discussion.

Theory

No Theory.

BC = CONT_TANG_VEL SS <bc_id>
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FAQs

No FAQs.

References

No References.
 

4.10.103 CONT_NORM_VEL

Description/Usage (SIC/MOMENTUM)

This boundary condition card is similar to the VELO_NORM_DISC card except that it 
enforces a continuous normal velocity component in a discontinuous boundary field. 
The condition only applies to interphase mass, heat, and momentum transfer problems 
with discontinuous (or multivalued) variables at an interface, and it must be invoked on 
fields that employ the Q1_D or Q2_D interpolation functions to “tie” together or 
constrain the extra degrees of freedom at the interface in question.

Definitions of the input parameters are as follows:

CONT_NORM_VEL

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

This boundary condition is typically applied to multicomponent two-phase flows that 
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity 
at the interface, and to thermal contact resistance type problems. The best example of 
this is rapid evaporation of a liquid component into a gas.

Examples

The following is a sample card:

BC = CONT_NORM_VEL SS 10

BC = CONT_NORM_VEL SS <bc_id>
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.104 VNORM_LEAK

Description/Usage

This boundary condition card is used to specify a normal velocity boundary condition 
with mass transfer on momentum equations. The flux quantity is specified on a per 
mass basis so the heat and mass transfer coefficients are in units of L/t.

(4-82)

Definitions of the input parameters are as follows:

VNORM_LEAK Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> hi, mass transfer coefficient for bulk fluid (n+1th 
species).

BC = VNORM_LEAK SS <bc_id> <float1> <float2>

n v vs–( )• hi yi yi
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<float2> , driving force concentration in external phase.

Examples

The following is a sample input card:

BC = VNORM_LEAK SS 1  1. 0.

Technical Discussion

This card is the equivalent of KIN_LEAK except it is solved for the normal component 
of the momentum equation. Similar to KIN_LEAK, this flux provides an overall mass 
transfer balance at an interface. Please refer to the technical discussion of KIN_LEAK 
boundary card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.105 CAPILLARY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to apply capillary forces (surface tension) to the 
momentum equation on a free-surface.

Definitions of the input parameters are as follows:

CAPILLARY Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

BC = CAPILLARY SS <bc_id> <float_list> [integer]

y
0

i
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> σ, surface tension or capillary term multiplier. IMPORTANT 
NOTE: if no Surface Tension card appears in the material 
file, this parameter is the surface tension value used here. If 
Surface Tension is set in the material file, however, this float 
value will multiply the surface tension value from the 
material file prior to it’s application in this boundary 
condition. Best practice is to set this parameter to 1.0 and 
set the surface tension value in the material file.

<float2> Pex, the external applied isotropic pressure on the free 
surface.

<float3> Pr, deprecated capability. Always set to zero.

[integer] Optional integer value indicating the element block id from 
which to apply the boundary condition. This is used to force 
the capillary stresses to be applied from within a phase 
where the momentum equations are defined.

Examples

Following is a sample card:

BC = CAPILLARY SS 12  1.0 10.0 0.0

This card specifies that capillary forces be applied to the free surface on side set 12. If a 
surface tension material parameter value or model is supplied, this is the surface 
tension value used. If not, the surface tension value used is 1.0. An external isotropic 
pressure of 10.0 is applied from the surrounding environment.

Technical Discussion

• One of the primary characteristics of a free-surface is the presence of surface 
tension-related forces. This boundary condition permits application of such forces. 
The forces on the fluid at the free-surface are set via the following relation:

(4-83)

where n is the outward normal to the surface, T is the fluid stress tensor, Pex is the 
external applied pressure described above, H is the surface curvature defined as, 

n T
fluid

⋅ n– Pex 2Hσn s∇ σ⋅+ +=
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, σ is the surface tension, and is the surface divergence 
operator defined as .

• Typical usage of this boundary condition is in conjunction with a KINEMATIC 
boundary condition. The latter enforces no penetration of fluid through a free 
surface by deforming the mesh and this boundary condition acts on the fluid 
momentum equation to enforce the capillary jump condition given above.

• No end of confusion results from use of this card primarily because of overloading 
the surface tension parameter. To reiterate, the value for surface tension that 
appears on this card is the actual (constant) value of surface tension that is used if a 
surface tension model has NOT been specified explicitly in the material file. If 
such a model has been identified, the surface tension parameter in the CAPILLARY 
card is a multiplier to the surface tension. The best practice is to simply always use 
1.0 for this parameter and set the surface tension in the material file.

• The optional (integer) element block ID corresponds to the material numbers given 
in the Problem Description section of the input file.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.106 CAP_REPULSE

Description/Usage (WIC/VECTOR MOMENTUM)

This card functions much in the same way as the CAPILLARY card. It imposes surface 
tension forces on free-surfaces. The addition to this card, however, is that in the vicinity 
of a specified planar boundary, an additional repulsive force is added to the surface 
tension force. This force is directed away from the planar surface and increases in 
proportion to 1/r2 as the free-surface approaches the planar surface. This condition can 
be used to contend with the difficult problem of fluid/solid contact in an approximate 

BC = CAP_REPULSE SS <bc_id> <float_list> [mat_id]

H s∇– n 2⁄⋅= s∇

fs∇ I nn–( ) f∇⋅=
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way. This boundary condition is only applicable to two-dimensional problems; trying 
to apply it in a three-dimensional problem will cause an error.

There are seven values in the <float_list>; definitions of the input parameters are as 
follows: 

CAP_REPULSE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> σ, the surface tension value or a multiplier for the 
capillary effect. See the important caveat under the 
CAPILLARY card regarding the use of this parameter 
when a surface tension value is supplied in the material 
file.

<float2> Pex, the applied external pressure field on the free 
surface.

<float3> Prep, the coefficient on the surface repulsion term. This 
parameter should have units of (ML/T2). See below for 
an exact description of the surface repulsion term.

<float4> a, the sensitivity with respect to x-coordinate (the a 
coefficient) of the plane surface that is repelling the free 
surface sideset 

<float5> b, the sensitivity with respect to y-coordinate (the b 
coefficient) of the plane surface that is repelling the free 
surface sideset 

<float6> c, the sensitivity with respect to z-coordinate (the c 
coefficient) of the plane surface that is repelling the free 
surface sideset 

<float7> d, the constant d coefficient of the plane surface 
equation that is repelling the free surface sideset.

[mat_id] In the case of a surface node shared by more than one 
material, this optional integer parameter allows the user 
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to specify which material the condition will be applied 
in. This is rarely used.

Examples

The following sample card:

BC = CAP_REPULSE SS 24 1.0 0.0 0.1 1. 1. 0. 2.

applies a standard capillary surface tension pressure jump condition to side set 24, 
except as the free surface approaches the plane surface defined by a solution to the 
equation x + y = -2.0.

Technical Discussion

• This boundary condition applies the following force term to the fluid momentum 
equation:

(4-84)

which is almost identical to the force applied by the CAPILLARY card. The only 
difference is the last term on the right in which d is the normal distance from a 
given point on the free-surface side set and the planar surface defined by the 
equation:

(4-85)

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.107 CAP_RECOIL_PRESS

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition calculates the surface recoil from an evaporating metal alloy 
component or water.

There are seven values in the <float_list>; definitions of the input parameters are as 
follows:

CAP_RECOIL_PRESS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> This float is currently disabled.

<float2> This float is currently disabled.

<float3> Temperature at which the metal alloy begins to boil.

<float4> Liquidus temperature of metal alloy.

<float5> Reference temperature.

<float6> Conversion scale for pressure.

<float7> Conversion scale for temperature.

Examples

The following is a sample input card:

BC = CAP_RECOIL_PRESS SS 1  0.0 0.0 3000.0 1623.0 0.0 1.0 1.0

Technical Discussion

Currently this boundary condition has coefficients for only iron and water. Several 
required pieces of information to use this boundary condition are not in final form, and 

BC = CAP_RECOIL_PRESS SS <bc_id> <float_list>
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the user can expect future changes and improvements. This boundary condition is 
designed for use with Q_LASER_WELD.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.108 ELEC_TRACTION

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to add to the momentum equation the electric, or 
Maxwell, stress at a free-surface. Definitions of the input parameters are as follows:

ELEC_TRACTION Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Integer value indicating the element block ID from 
which to apply the boundary condition.

<float> A term-multiplier.

Since this boundary condition only adds the electric stress, it is commonly used with 
one of the CAPILLARY, CAP_RECOIL_PRES or CAP_REPULSE boundary 
conditions, viz. the capillary stress must be added separately.

BC = ELEC_TRACTION SS <bc_id> <integer> <float>
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Examples

For a system consisting of an insulating liquid (element block ID 1) and an insulating, 
passive gas (element block ID 2) with a free-surface designated by side set 12, the 
following is a sample usage:

BC = ELEC_TRACTION SS 12 1 1.0
BC = ELEC_TRACTION SS 12 2 1.0
BC = CAPILLARY SS 12 1.0 0.0 0.0 1

The first and second lines adds the electric stress due to the electric field in the liquid 
and gas phases, respectively. The third line adds the capillary stress due to surface 
tension. IMPORTANT NOTE: the optional element block ID argument to the 
CAPILLARY card is used to make sure that the capillary stress is added from within a 
phase where the momentum equations are defined. The same holds for the KINEMATIC 
boundary condition.

Technical Discussion

This boundary condition adds the electric, or Maxwell, stress contribution to the 
traction condition. To use this boundary condition there must be a VOLTAGE equation 
present in one or both of the materials neighboring the interface, i.e., one or both of the 
neighboring materials must be a dielectric. The electrical permittivity of each dielectric 
material must be supplied via the Electrical Conductivity card (yes, this is a kludge) in 
the material property file.

In its most general form, the traction condition is written

(4-86)

where T is the stress tensor, the superscripts (o) and (i) denote the outer and inner 
phases, n is a unit normal pointing into the outer phase, -H is the local mean curvature, 
and σ is the surface tension.

The stress tensor can be written as the sum of the mechanical stress Tm (e.g., the 
Newtonian stress tensor) and an electrical stress Te, viz. T = Tm + Te. The electric 
stress tensor provided through this boundary condition applies to incompressible, 
polarizable materials:

(4-87)

where ε is the electrical permittivity,  is the electric field and V is the voltage 
or electric potential.

n T o( ) T i( )–[ ]⋅ 2Hσn– σ∇–=

Te εEE
1
2
---εE EI⋅–=

E V∇–=



378 Revised: 6/12/13

4.10.109  CAP_ENDFORCE  

In expanded form, the traction condition becomes

(4-88)

The ELEC_TRACTION boundary condition is responsible for applying either the first 
or second terms on the right hand side (specified through the element block ID 
parameter) whereas the CAPILLARY (or related boundary condition) is responsible for 
the third and fourth terms.

The term multiplier supplied by the <float> input is used in the elec_surf_stress() 
function (mm_ns_bc.c) which applies the ELEC_TRACTION boundary condition. It is 
the etm function argument. The normal term multipliers couldn’t be used because this 
boundary condition can be applied from within a material that doesn’t have the 
momentum equations defined (or properly set).

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.109 CAP_ENDFORCE

Description/Usage (SPECIAL/VECTOR MOMENTUM)

This boundary condition card adds surface tangent forces to the momentum equations 
at the endpoint of a free-surface. There are four values to be input for the <float_list>; 
definitions of the input parameters are as follows:

CAP_ENDFORCE Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

BC = CAP_ENDFORCE NS <bc_id> <float_list>

n Tm
o( ) Tm

i( )–[ ]⋅ n– T o( )
e n T i( )

e⋅+⋅ 2Hσn– σ∇–=
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<float1> X-component of surface tangent vector at end point.

<float2> Y-component of surface tangent vector at end point.

<float3> Z-component of surface tangent vector at end point.

<float4> Equilibrium surface tension value. (See Technical 
Discussion.)

This condition need only be applied at the intersection of outflow or inflow surfaces 
and the free-surface. The sign on the tangent vector depends on whether the computed 
tangent vector is facing inward or outward. This can be figured by .

Examples

The following is a sample input card using several APREPRO variables:

BC = CAP_ENDFORCE NS 100  {sind(th2)} {-cosd(th2)} 0.0 {surf_tens}

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply 
capillary forces to surfaces. The surface divergence theorem is used to simplify the 
curvature term in the capillary stress jump condition. This produces integrals of the 
form:

(4-89)

where C is the bounding curve of the capillary free surface, σ is the surface 
tension, φι is a finite element shape function and m is a vector that is at once 
normal to the capillary surface and also normal to the curve C. It always points 
outward from the domain in question. While this is completely general for three-
dimensions, a surface can be reduced to a curve for two-dimensions and the 
divergence theorem still applies (for this boundary condition).

• This card or the CAP_ENDFORCE_SCALAR is used in conjunction with the 
CAPILLARY card to complete (as indicated above) the treatment of capillarity 
conditions. It is only required when an inflow or outflow boundary intersects a free 
surface.

t n k×=

φiσm Cd

C
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• The CAP_ENDFORCE boundary condition is applied through function 
fapply_ST (in file mm_ns_bc.c). The boundary term is computed as the product 
of the surface tension supplied on this card (<float4>) and the value supplied on 
the Surface Tension card in the material file. When the latter card is missing, Goma 
defaults its value to 1.0.

• This card was previously called SURFTANG for the surface tangent component of 
the capillary force. Old input decks can be updated simply by changing the name 
of the boundary condition without changing the parameters.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.110 SURFTANG_EDGE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to insert surface tension forces on an edge 
boundary defined by the primary and secondary sidesets. The direction of application 
of the surface tension (σ) is specified by the vector (defined by (<mx>, <my>, <mz>)). 
This card is the three-dimensional analog of the CAP_ENDFORCE card. It is often 
used at free-surface outflow boundaries if the outflow velocity is not set by a strong 
condition. This condition is an unrotated, weak integrated vector condition.

There are four values to be supplied in the <float_list>; definitions of the input 
parameters are as follows:

SURFTANG_EDGE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

BC = SURFTANG_EDGE SS <bc_id1> <bc_id2> <float_list>
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<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the primary boundary location 
(side set in EXODUS II) in the problem domain. This 
side set is usually attached to a free surface.

<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the secondary boundary 
location (side set in EXODUS II) in the problem 
domain. The boundary condition is applied on the edge 
defined by the intersection of this side set with the 
primary side set.

<float1> mx, the x-component of direction of application of 
surface tension force.

<float2> my, the y-component of direction of application of 
surface tension force.

<float3> mz, the z-component of direction of application of 
surface tension force.

<float4> a factor multiplying the surface tension value read from 
the material file when evaluating the surface integral 
imposed by this boundary condition.

Examples

The following is a sample input card:

BC = SURFTANG_EDGE SS 80 60  0. -1. 0. 1.

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply 
capillary forces to surfaces in three-dimensions. The surface divergence theorem is 
used to simplify the curvature term in the capillary stress jump condition. This 
produces integrals of the form:

(4-90)

where C is the bounding curve of the capillary free surface, σ is the surface 
tension, φι is a finite element shape function and m is a vector that is at once 
normal to the capillary surface and also normal to the curve C. It always points 
outward from the domain in question.

φiσm Cd

C
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Most often this boundary condition appears at outflow boundaries of free-surfaces. 
It is applied along the edge where the free-surface intercepts the outflow plane. In 
this case, the m vector is normal to the outflow plane. If the outflow velocity is not 
strongly set by a Dirichlet condition or other strongly enforced condition, this 
boundary condition needs to be present so that a proper inclusion of all relevant 
surface tension terms is performed.

• The <factor> parameter is provided to allow the user to independently vary the 
surface tension value associated with this term alone. The value for σ used in the 
preceding expression is the surface tension value obtained from the model 
specified in the material file multiplied by the value of <float>. Reasons for doing 
this are somewhat obscure but important to the practitioners of this art.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.111 CAP_ENDFORCE_SCALAR

Description/Usage (SPECIAL/VECTOR MOMENTUM)

This boundary condition card is very similar to the CAP_ENDFORCE card. It adds 
surface tangent forces to the momentum equations at the endpoint of a free-surface, but 
does not require specification of the surface tangent vector. The current free-surface 
tangent vector is used as the surface tangent vector. Definitions of the input parameters 
are as follows:

CAP_ENDFORCE_SCALAR

Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

BC = CAP_ENDFORCE_SCALAR NS <bc_id> <float>
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<float> Equilibrium surface tension value. (See Technical 
Discussion.)

This condition need only be applied at the intersection of outflow or inflow surfaces 
and the free-surface. 

Examples

The following is a sample input card:

BC = CAP_ENDFORCE_SCALAR NS 100  60.0

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply 
capillary forces to surfaces. The surface divergence theorem is used to simplify the 
curvature term in the capillary stress jump condition. This produces integrals of the 
form:

(4-91)

where C is the bounding curve of the capillary free surface, σ is the surface 
tension, φι is a finite element shape function and m is a vector that is at once 
normal to the capillary surface and also normal to the curve C. It always points 
outward from the domain in question. While this is completely general for three-
dimensions, a surface can be reduced to a curve for two-dimensions and the 
divergence theorem still applies (for this boundary condition).

• This card or the CAP_ENDFORCE  is used in conjunction with the CAPILLARY 
card to complete (as indicated above) the treatment of capillarity conditions. It is 
only required when an inflow or outflow boundary intersects a free surface.

• The CAP_ENDFORCE_SCALAR boundary condition is applied through function 
fapply_ST_scalar (in file mm_ns_bc.c). The boundary term is computed as the 
product of the surface tension supplied on this card (<float>) and the value 
supplied on the Surface Tension card in the material file. When the latter card is 
missing, Goma defaults its value to 1.0.

• This card was previously called SURFTANG_SCALAR for the surface tangent 
component of the capillary force. Old input decks can be updated simply by 
changing the name of the boundary condition without changing the parameters.

φiσm Cd

C
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.112 SURFTANG_SCALAR_EDGE

Description/Usage (WIC/VECTOR MOMENTUM)

Like the SURFTANG_EDGE card, this boundary condition card is used to insert 
surface tension forces on an outflow edge boundary defined by the primary and 
secondary sidesets. In contrast to the SURFTANG_EDGE card, the direction of 
application of the surface tension (σ) is predetermined automatically as the binormal 
along the edge with respect to the outward facing normal of the primary sideset. This 
condition is also an unrotated, weak integrated vector condition. It should be used only 
in three-dimensional applications.

Definitions of the input parameters are as follows:

SURFTANG_EDGE_SCALAR

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database. Since it is 
an EDGE condition, it applies to a curve defined as the 
intersection of the primary and secondary sideset.

<bc_id1> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the primary boundary location 
(side set in EXODUS II) in the problem domain. This 
side set is used in defining the edge and the local vector 
basis (normal, tangent, binormal) and is usually attached 
to a free surface.

BC = SURFTANG_SCALAR_EDGE SS <bc_id1> <bc_id2> <float>
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<bc_id2> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the secondary boundary 
location (side set in EXODUS II) in the problem 
domain. It is used in defining the edge and the local 
vector basis (normal, tangent, binormal).The boundary 
condition is applied on the edge defined by the 
intersection of this side set with the primary side set.

<float> A factor multiplying the surface tension value read from 
the material file when evaluating the surface integral 
imposed by this boundary condition.

Examples

The following sample input card:

BC = SURFTANG_EDGE_SCALAR SS 5 10 1.0

applies the boundary integral (see the Technical Discussion) along the curve described 
by the intersection of side sets 5 and 10. The value for surface tension in the material 
file is used unmodified since the multiplying factor is 1.0.

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply 
capillary forces to surfaces in three-dimensions. The surface divergence theorem is 
used to simplify the curvature term in the capillary stress jump condition. This 
produces integrals of the form:

(4-92)

where C is the bounding curve of the capillary free surface, σ is the surface 
tension, φι is a finite element shape function and m is the outward binormal vector 
to the curve C with respect to the normal of the primary side set.

Most often this boundary condition appears at outflow boundaries of free surfaces. 
It is applied along the edge where the free surface intercepts the outflow plane. If 
the outflow velocity is not strongly set by a Dirichlet condition or other strongly 
enforced condition, this boundary condition needs to be present so that a proper 
inclusion of all relevant surface tension terms is performed.

• The <factor> parameter is provided to allow the user to independently vary the 
surface tension value associated with this term alone. The value for σ used in the 
preceding expression is the surface tension value obtained from the model 

φiσm Cd
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specified in the material file multiplied by the value of <float>. Reasons for doing 
this are somewhat obscure but important to the practitioners of this art.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.113 FILL_CA

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to impose a contact angle on a boundary when using 
Level Set Interface Tracking.

A description of the input parameters follows:

FILL_CA the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> θ, the contact angle imposed, in degrees.

Examples

An example:

BC = FILL_CA SS 10 30.0

BC = FILL_CA SS <bc_id> <float>
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Technical Discussion

This boundary condition must be used in conjunction with the VELO_SLIP_FILL 
boundary condition. This latter condition permits the fluid to slip in the vicinity of the 
contact line. The FILL_CA acts by imposing a force on the momentum equation. The 
size of this force is more or less in proportion between the actual contact angle on the 
boundary and the value specified on the card. This force is applied as a weakly 
integrated condition and if the VELO_SLIP_FILL condition is not present, the 
FILL_CA will be overwritten and ipso facto absent.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.114 MOVING_CA

Description/Usage (PCC/ROTATED MOMENTUM)

The intent of this boundary condition is to apply a contact angle at wetting in a two-
dimensional flow that is a function of the rate of advance or recession of the contact 
line over the substrate. It is experimental, untested, and unsupported; use it at your own 
risk.

There are ten values that must be specified in the <float_list>; definitions of the input 
parameters are as follows:

MOVING_CA Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 

BC = MOVING_CA NS <bc_id> <float_list>
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EXODUS II) in the problem domain. A KINEMATIC free 
surface must terminate at this single-node node set.

<float1> θstc, the static contact angle, in degrees.

<float2> nx, the x-component of solid surface normal vector.

<float3> ny, the y-component of solid surface normal vector.

<float4> nz, the z-component of solid surface normal vector.

<float5> θadv, the advancing contact angle, in degrees.

<float6> θrec, the receding contact angle, in degrees.

<float7> α, the scale-factor, see below.

<float8> vwx, the x-component of wall velocity.

<float9> vwy, the y-component of wall velocity.

<float10> vwz, the z-component of wall velocity.

Examples

The following is a sample input card:

BC = MOVING_CA NS 100 90.0 0. 1. 0. 135.0 45.0 1.0 -1. 0. 0. 

Technical Discussion

• This boundary condition applies a point collocated constraint on the angle between 
the solid surface vector and the free-surface normal of the form:

(4-93)

where n is the solid surface vector specified on the card and nfs is the free-surface 
normal computed automatically by Goma. The contact angle is variable depending 
upon the relative velocity of the mesh speed, , and the substrate speed,  
specified on the card float_list:

(4-94)

• This constraint on the moving contact angle replaces a rotated component of the 
momentum equation. In effect a wetting force is applied at the contact line whose 
magnitude depends on the discrepancy between actual contact angle and that 
computed by the above expressions. Note that other contact angle constraints are 

n nfs⋅ θ( )cos=

x· vw

θ θstc θadv θstc–( ) α x· vw–( ) nfs⋅( )tanh+=
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applied to rotated components of the mesh equation. A real question exists whether 
such a formulation is consistent with a KINEMATIC boundary condition also 
applied to this node.

• Not also that since this boundary condition is applied to the momentum equation, 
care must be taken to relax any Dirichlet on the substrate velocity. Otherwise, this 
latter constraint will override this constraint.

• Users are again cautioned that this boundary condition is untested and potentially 
inconsistent. It may not work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.115

4.10.116 SDC_STEFANFLOW

Description/Usage (SIC/MOMENTUM)

This boundary condition represents the specification of the normal component of the 
interfacial velocity on one side of the interface. These are DVI_SIDTIE_VD boundary 
conditions (Moffat, 2001) that have an additional property. The first time encountered 
in the formation of the residual, the results of a sub calculation are stored either at the 
node structure level or at the surface Gauss point level. The surface reaction and 
surface species are specified as part of a surface domain within Chemkin.

The SURFDOMAINCHEMKIN_STEFAN_FLOW (shortened to SDC_STEFANFLOW 
in the name2 member of the BC_descriptions struct in mm_names.h) boundary 
condition solves the following equation representing Stefan flow at a boundary.

BC = SDC_STEFANFLOW SS <bc_id> <integer> {char_string}
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(4-95)

where  is the outward facing normal to the liquid material,  is the liquid density, 
 is the (mass average) velocity at the current surface quadrature point, and  the 

velocity of the mesh (i.e., the interface if the mesh is fixed at the interface). The 
summation over N species is for the product of molecular weight ( ) and the source 
term for creation of species k in the liquid ( ). Note, while it may seem that one side 
of the interface is getting special treatment, the combination of this boundary condition 
with the KINEMATIC_CHEM boundary condition actually creates a symmetric treatment 
of the boundary condition. SDC_STEFANFLOW is linked to the SDC_SPECIES_RXN 
boundary conditions just as the KINEMATIC_CHEM boundary conditions are by the 
expression for the interface reaction. The sum is over all of the interfacial source terms 
for species in the phase.

Definitions of the input parameters are as follows:

SDC_STEFANFLOW Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Element Block ID of the phase on whose side of the 
interface this boundary condition will be applied.

char_string , string indicating where the surface source term 
information for this boundary condition will be 
obtained. Three options exist:

IS_EQUIL_PSEUDORXN
VL_EQUIL_PSEUDORXN
SDC_SURFRXN

These are boundary conditions that apply to the Species 
Equations. The last boundary condition is not yet 
implemented, so SDC_SURFRXN currently does 
nothing.

Examples

The following is a sample input card:

nl ρ
l

u
l
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BC = SDC_STEFANFLOW SS 1  0 VL_EQUIL_PSEUDORXN

The above card will create a strongly integrated boundary condition specifying the 
normal component of the velocity on side set 1 on the element block 0 side of the 
interface. The source term to be used will be taken from multiple previously specified 
VL_EQUIL_PSEUDORXN cards.

Technical Discussion

• Currently, this card has only been tested on internal interfaces containing 
discontinuous interfaces using the VL_EQUIL_PSEUDORXN source term. The 
SDC_SURFRXN boundary condition has not been implemented yet.

• The DVI_SIDTIE_VD variable is a nomenclature adopted by Moffat (2001) in his 
development of a revised discontinuous variable implementation for Goma. It 
pertains to Discontinuous Variable Interfaces (DVI) and the strongly integrated 
Dirichlet (SID) boundary conditions prescribing the discontinuous value of 
variables on either side of an interface (TIE boundary conditions). The user is 
referred to Moffat (2001) for detailed presentation on discontinuous variables.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-015.1: Implementation Plan for Upgrading Boundary Conditions at 
Discontinuous-Variable Interfaces, January 8, 2001, H. K. Moffat
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4.10.117

4.10.118 FLUID_SOLID

Description/Usage (PCC/VECTOR MOMENTUM)

Used for fluid-structure interaction problems, the FLUID_SOLID condition equates the 
normal traction (the tangential and normal force components, per unit area) between 
adjacent fluid and solid materials. This condition is only to be used on boundaries 
between regions of ARBITRARY mesh motion with fluid momentum equations and of 
LAGRANGIAN or DYNAMIC_LAGRANGIAN mesh motion, with solid momentum 
equations (or mesh equations); see Mesh Motion and EQ cards. With this boundary 
condition, the local residual and Jacobian contributions from the fluid mechanics 
momentum equations (on the ARBITRARY side of the boundary) are added into weak 
form of the residual and Jacobian entries for the solid mechanics equations (on the solid 
LAGRANGIAN side of the boundary). All elements on both sides of the interface must 
have the same element type, i.e., the same order of interpolation and basis functions, 
e.g., Q1 or Q2. Also, such interfaces must include element sides from both sides of the 
interface in the defining side set.

Definitions of the input parameters are as follows:

FLUID_SOLID Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer1> Element block ID of solid phase (of LAGRANGIAN motion 
type) from the EXODUS II database.

<integer2> Element block ID of liquid phase from the EXODUS II 
database.

[float] Scale factor for stress balance for non-dimensionalization. 
This parameter, which multiplies the solid phase 
contribution, is optional; the default is 1.0.

BC = FLUID_SOLID SS <bc_id> <integer1> <integer2> [float]
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Examples

The following is a sample input card:

BC = FLUID_SOLID SS 5   2  1

In this example, side set 5 is a boundary between a solid blade and a liquid; material 2 
is the rubber blade, and material 1 is the fluid. Along that blade, a companion boundary 
condition of the form

BC = NO_SLIP SS 5  2 1

should also be applied.

Technical Discussion

The functional form of the boundary condition is:

(4-96)

where  is the fluid phase stress tensor given by any one of the specified fluid-phase 
constitutive equations, and  is the solid-phase stress tensor, also given by any one of 
the solid-phase constitutive equation (see material file specifications).  is a scaling 
factor that defaults to unity (and is usually best taken as such unless some scaling is 
invoked).

This balance is applied to the weak form of the solid-phase momentum residuals, from 
the fluid phase, viz. in the fluid-phase, the fluid-stress at the interface is added to the 
solid-phase momentum residuals. As mentioned above, this condition usually needs to 
be supplemented by a statement of mass conservation across the interface, which will 
depend on whether the solid phase is of CONTINUOUS or POROUS media (see Media 
Type card).

Theory

No Theory.

FAQs

Troubleshooting 1:  This boundary condition requires that the side set contain elements 
from both the fluid and the solid side of the interface. For the FASTQ tool, this is the 
default case; for CUBIT and possibly other related tools, this can be forced on the side 
set definition options. Interestingly, the boundary condition does work if the side set is 
attached to the fluid phase only, but just due to the way in which it is applied.

Troubleshooting 2:  This boundary condition does not enforce mass conservation. A 
combination of NO_SLIP or VELO_NORMAL/VELO_TANGENT must be invoked to 
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achieve a material surface. For the latter, care must be taken to maintain the application 
of the VELO_NORMAL condition after a remesh. This condition is applied only to one 
side of the interface and depends on the ss_to_blks connectivity structure; it may be 
necessary to force its application, especially after remeshes. To be sure that the proper 
set of conditions is being applied, look at the BC_dup.txt file for nodes along the 
interface.

References

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29, 
2000, P. R. Schunk and Matt Stay

GT-006.3: Slot and Roll coating with remeshing templates and tutorial for GOMA and 
CUBIT/MAPVAR, August 3, 1999, R. R. Lober and P. R. Schunk

4.10.119

4.10.120 FLUID_SOLID_RS

Description/Usage (WIC/VECTOR MOMENTUM)

Please see SOLID_FLUID_RS. This boundary condition has not yet been implemented. 

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

BC = FLUID_SOLID_RS SS <bc_id> <integer1> <integer2> [float]
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References

No References.
 

4.10.121 DARCY_CONTINUOUS

Description/Usage (SIC/ROTATED MOMENTUM)

This condition enforces continuity of mass flux at an interface between a continuous 
medium and a saturated or partially saturated porous medium. In other words, 
DARCY_CONTINUOUS is a boundary condition that equates the velocity component 
in the liquid phase normal to the interface with the Darcy velocity in the porous phase, 
normal to the same interface, with proper accounting for conservation of mass using 
the liquid phase densities in the material files.

DARCY_CONTINOUS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> Element block ID of porous phase from the EXODUS II 
database.

<integer2> Element block ID of continuous fluid phase from the 
EXODUS II database.

[float1] An optional floating point that is used for level-set free 
surface problems. This floating point represents a length 
scale over which “contact” of a liquid free surface 
represented by a level set field and a porous medium.   It 
should be set to some small integer multiple of the 
smallest element size along the boundary. Note that this 
length scale is only required in cases where “sharp” 
interfaces using subelement integration are used.   It is 
not required for diffuse interface representations. 

BC = DARCY_CONTINOUS SS <bc_id> <integer1> <integer2> [float1]
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Examples

The boundary condition

BC = DARCY_CONTINUOUS SS 5 2 1

applies to the interface defined by side set 5 which joins EXODUS II block 2 (porous 
phase) and block 1 (continuous phase).

Technical Discussion

The DARCY_CONTINUOUS boundary condition imposes the following requirement at 
the interface between a continuous medium and a saturated or partially saturated 
porous medium:

(4-97)

where  is the outward-pointing normal to the surface,  is the Darcy flux,  is the 
liquid density, presumed to be the same in the adjacent phases,  is the fluid velocity 
and  is the mesh velocity.

Typically this boundary condition is applied between two blocks, one being of a 
LAGRANGIAN mesh motion type (see Mesh Motion card) and the other being of an 
ARBITRARY mesh motion type. Within the LAGRANGIAN material the Media Type 
card is set to POROUS_SATURATED, POROUS_UNSATURATED, or 
POROUS_TWO_PHASE. The other block is of type CONTINOUS.

Refer to the citations below where this boundary condition is discussed in more detail.

Theory

No Theory.

FAQs

Important troubleshooting note: Density, as specified in the material files for the 
continuous and porous phase, MUST be the same for this boundary condition to make 
sense.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk
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GT-028.0: Liquid Drop Impact on a Porous Substrate: a level-set tutorial, August 15, 
2005. 

 

4.10.122 VN_POROUS

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition is used to calculate the normal component of gas phase 
velocity at the interface between a continuous gas phase and porous phase. The 
condition is basically the unsaturated equivalent to DARCY_CONTINUOUS, and hence 
is a condition on the normal component of fluid (gas) velocity on the continuous side of 
the interface (see below). The flux on the porous medium side includes Darcy flux and 
Fickian diffusive flux in the porous phase. The vapor flux into gas is used to determine 
gas velocity. The condition is similar to the solid-liquid interface conditions that apply 
to interfaces between a porous medium and an external gas (in which the energy 
equation is used to solve for solvent concentration in the gas phase). This boundary 
condition is still under development and has not been recently tested. Its last use was 
for evaporation from a porous unsaturated film in a sol-gel application (see references 
below).

There are three values to be supplied for the <integer_list>; definitions of the input 
parameters are as follows:

VN_POROUS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer1> Element block ID of solid, porous phase from the EXODUS 
II database.

<integer2> Element block ID of gas phase from the EXODUS II 
database.

<integer3> Set to zero for now, indicating that this condition pertains 
to the primary liquid solvent vapor. At some point this will 
be generalized to include all vapor components.

BC = VN_POROUS SS <bc_id> <integer_list> <float>
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<float> Density of pure solvent vapor.

Examples

The following is a sample input card:

BC = VN_POROUS SS 5  1 2 0 1.e-3

This condition applies to internal side set 5, which defines the interface between 
element block 1 (the solid porous phase which has Media Type of 
POROUS_PART_SAT or POROUS_TWO_PHASE) and element block 2 (the fluid 
phase which has Media Type CONTINUOUS). It is based on the flux of liquid solvent 
in the porous phase (denoted by the integer 0), the vapor form of which has a density of 
1.e-3. The condition results in a blowing or sucking velocity at the interface in the fluid 
(gas) continuous phase.

Technical Discussion

The functional form of this boundary condition is

(4-98)

Here, the left hand side is the total flux of liquid solvent, in both gas and liquid phases. 
The first two terms are the Darcy pressure driven contributions, and the second two 
terms are the Fickian flux contributions.

This condition would be useful for predicting the gas-flow pattern above a drying 
porous matrix, in which the vapor flux being driven out of the porous skeleton were a 
mass source to drive flow in the surrounding gas. The condition has not been tested 
since 1995.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-028.0: Modeling Drying of Dip-Coated Films with Strongly-Coupled Gas Phase 
Natural Convection, R. A. Cairncross, 1999.
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4.10.123 CAPILLARY_SHEAR_VISC

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to apply additional  capillary forces beyond 
surface tension and surface tension gradients (as applied with use of the CAPILLARY 
BC) to the momentum equation on a free-surface. These additional forces are caused 
by surface deformation (surface expansion/contraction/shear) in the presence of 
surface-active species.  Microstructural layers of surfactants in a capillary free surface 
can lead to significant dissipation of mechanical energy due to an effective surface 
viscosity.   These additional properties are specified as inputs to this boundary 
condition.  

Definitions of the input parameters are as follows:

CAPILLARY_SHEAR_VISC

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> µs, surface shear viscosity. 

<float2> κs,, surface extensional/dilatational viscosity. 

[integer] Optional integer value indicating the element block id from 
which to apply the boundary condition. This is used to force 
the capillary stresses to be applied from within a phase 
where the momentum equations are defined.

Examples

Following is a sample card:

BC = CAPILLARY SS 12  1.0 10.0 0.0

BC = CAPILLARY_SHEAR_VISC SS 12  0.001 0.01

BC = CAPILLARY_SHEAR_VISC  SS <bc_id> <float_list> [integer]
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These cards specifies that capillary forces be applied to the free surface on side set 12. 
If a surface tension material parameter value or model is supplied, this is the surface 
tension value used. If not, the surface tension value used is 1.0. An external isotropic 
pressure of 10.0 is applied from the surrounding environment. The second card adds a 
surface viscosity effect. Note that you must solve the shell equation EQ = n_dot_curl_v 
to pick up this term. 

Technical Discussion

• One of the primary characteristics of a free-surface is the presence of surface 
tension-related forces. This boundary condition permits application of such forces. 
The forces on the fluid at the free-surface are set via the following relation:

(4-99)

where n is the outward normal to the surface, T is the fluid stress tensor, Pex is the 
external applied pressure described above, H is the surface curvature defined as, 

, σ is the surface tension, and is the surface divergence 
operator defined as .

The Boussinesq-Scriven surface rheological constitutive equation is as follows:

 

Here, is the surface gradient operator, and is the surface 
unit tensor.  µs and ks are the surface shear viscosity and surface dilatational viscosity, 
respectively. The terms beyond the first three on the right are added by this boundary 
condition card.   Note that the first three terms on the right are balance of the stress in 
the standard goma CAPILLARY condition, with surface tension gradients being 
accommodated through variable surface tension. The boundary condition 
CAPILLARY_SHEAR_VISC is used to set the additional terms of this constitutive 
equation. As of January 2006 only the 7th term on the right hand side is implemented, 
as it is the only nonzero term in a flat surface shear viscometer.   The building blocks 
for the other terms are available through additional shell equations (specifically you 
must solve EQ = n_dot_curl_v equation on the same shell surface). .   These remaining 
terms actually represent additional dissipation caused by surface active species 
microstructures flowing in the surface.   The best source of discussion of this equation 
is a book by Edwards et al. (1991. Interfacial Transport Processes and Rheology. 
Butterworth-Heinemann, Boston). 
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.124 VELO_THETA_COX

Description/Usage (PCC/R_MOM_TANG1)

This boundary condition card applies a dynamic contact angle dependent velocity 
condition in a similiar fashion to VELO_THETA_TPL, but the functional form of the 
velocity is different.  The functional form stems from the hydrodynamic theory of 
wetting by Cox.

 The <float_list> for this boundary condition has eight values; definitions of the input 
parameters are as follows:

VELO_THETA_COX  

Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> θ, equilibrium (static) contact angle subtended by wall 
normal and free surface normal, in units of degrees.

<float2> nx , x-component of normal vector to the geometry 
boundary (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

BC = VELO_THETA_COX NS <bc_id> <float_list> [integer]
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<float3> ny , y-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float4> nz , z-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float5>  εs
 is the dimensionless slip length, i.e. the ratio of the slip 

length to the characteristic length scale of the macroscopic 
flow .

<float6>  σ is the surface tension.  This value is multiplied by the 
surface tension value stipulated by the surface tension 
material model.

<float7> trelax is a relaxation time which can be used to smooth the 
imposed contact point velocity for transient problems.  Set 
to zero for no smoothing.

<float8> Vold is an initial velocity used in velocity smoothing for 
transient problems.  Set to zero when smoothing is not used.

[integer] blk_id, an optional parameter that is the element block 
number in conjugate problems that identifies the material 
region to which the contact angle applies (usually the liquid 
element block in solid/liquid conjugate problems). 

Examples

Following is a sample card:

BC = VELO_THETA_COX NS  100     {45}     0.   1.  0.  0.1     72.0    
0  0   2

This condition applies a contact angle of 45 degrees between the free surface normal at 
the 100 nodeset and the vector (0,1,0). The surface tension is 72, the reciprocal of the 
slip coefficient is 0.1, and the dynamic contact angle is taken from element block 2.   
Normally, this latter vector is the normal to the solid surface in contact with the free 
surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is as follows:
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 . (4-100)

where vCox is computed from 

(4-101)

where the Cox functions, f and g, are given by;

(4-102)

(4-103)

• The parameters λ, qinner, and qouter are currently not accessible from the input card 
and are hard-set to zero.  λ is the ratio of gas viscosity to liquid viscosity whereas 
qinner and qouter represent influences from the inner and outer flow regions

(4-104)

When smoothing is not used, i.e. trelax = 0 , the imposed velocity is equal to that 
stipulated by the Hoffman correlation.  Also see WETTING_SPEED_COX and 
SHARP_COX_VELOCITY for level-set versions. 

• For steady problems, the substrate velocity will be extracted from adjoining 
VELO_TANGENT, VELO_SLIP, or VELO_SLIP_ROT boundary conditions. 

• The Cox wetting velocity requires evaluation of integrals for the function g(θ, λ) 
which is currently done numerically using 10-point Gaussian quadrature.  As such 
the evaluation of the integrals is expected to become inaccurate as either θeq tends 
toward zero or θ tends toward 180 degrees.  Note that the integrand becomes 
singular as θ tends toward 0 or 180 degrees.

• This condition was motivated by the Cox hydrodynamic theory of wetting (cf. 
Stephan F. Kistler, “Hydrodynamics of Wetting,” in Wettability edited by John 
Berg, 1993 ).

Theory

No Theory.
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FAQs

No FAQs.

References

No References.

4.10.125 VELO_THETA_HOFFMAN

Description/Usage (PCC/R_MOM_TANG1)

This boundary condition card applies a dynamic contact angle dependent velocity 
condition in a similiar fashion to VELO_THETA_TPL, but the functional form of the 
velocity is different.  The functional form stems not from a theory of wetting, but 
instead, from a correlation of many empirical measurements.

 The <float_list> for this boundary condition has eight values; definitions of the input 
parameters are as follows:

VELO_THETA_HOFFMAN  

Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> θ, equilibrium (static) contact angle subtended by wall 
normal and free surface normal, in units of degrees.

<float2> nx , x-component of normal vector to the geometry 
boundary (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float3> ny , y-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

BC = VELO_THETA_HOFFMAN NS <bc_id> <float_list> [integer]
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<float4> nz , z-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float5>  currently not used.

<float6>  σ is the surface tension.  This value is multiplied by the 
surface tension value stipulated by the surface tension 
material model.

<float7> trelax is a relaxation time which can be used to smooth the 
imposed contact point velocity for transient problems.  Set 
to zero for no smoothing.

<float8> Vold is an initial velocity used in velocity smoothing for 
transient problems.  Set to zero when smoothing is not used.

[integer] blk_id, an optional parameter that is the element block 
number in conjugate problems that identifies the material 
region to which the contact angle applies (usually the liquid 
element block in solid/liquid conjugate problems). 

Examples

Following is a sample card:

BC = VELO_THETA_HOFFMAN NS  100     {45}     0.   1.  0.  0.     
72.0    0  0   2

This condition applies a contact angle of 45 degrees between the free surface normal at 
the 100 nodeset and the vector (0,1,0). The surface tension is 72 and the dynamic 
contact angle is taken from element block 2.   Normally, this latter vector is the normal 
to the solid surface in contact with the free surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is as follows:

 . (4-105)

where vHoffman is computed from the implicit solution of the Hoffman correlation;

(4-106)

or
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(4-107)

where the Hoffman functions, fHoff and gHoff, which are inverses of each other are 
given by;

(4-108)

(4-109)

When smoothing is not used, i.e. trelax = 0 , the imposed velocity is equal to that 
stipulated by the Hoffman correlation.  Also see WETTING_SPEED_HOFFMAN 
and SHARP_HOFFMAN_VELOCITY for level-set versions. 

• For steady problems, the substrate velocity will be extracted from adjoining 
VELO_TANGENT, VELO_SLIP, or VELO_SLIP_ROT boundary conditions. 

• Because the Hoffman functions are implicit, iteration is required in the 
determination of the wetting velocity.  As a result, for very high capillary numbers, 
i.e. > 106, the iteration procedure in Goma may need to be modified.

• This condition was motivated by the Hoffman empirical correlation (cf. Stephan F. 
Kistler, “Hydrodynamics of Wetting,” in Wettability edited by John Berg, 1993).

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.126 VELO_THETA_TPL

Description/Usage (PCC/R_MOM_TANG1)

This boundary condition card applies a dynamic contact angle dependent velocity 
condition in place of one component of the fluid momentum equation (unlike CA_BC 
which applies a fixed contact angle condition ot the mesh equation).    The functional 
form of this condition is given below and stems from the Blake-DeConinck psuedo-
molecular kinetics theory of wetting.  It is recommended that this condition or other 
forms of it (cf. VELO_THETA_HOFFMAN or VELO_THETA_COX) be used for 
steady and transient ALE problems.   If you are deploying level-set technology to track 
moving capillary surfaces and three-phase wetting lines then the counterpart to this 
condition is WETTING_SPEED_LINEAR.    It is noteworthy that this condition is 
applied to the fluid momentum equation, so that the velocity of the wetting line and the 
cosine of the current measured contact angle difference with the specified static value 
are related in a linear way.   

 The <float_list> for this boundary condition has eight values; definitions of the input 
parameters are as follows:

VELO_THETA_TPL  

Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> θ, equilibrium (static) contact angle subtended by wall 
normal and free surface normal, in units of degrees.

<float2> nx , x-component of normal vector to the geometry 
boundary (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

BC = VELO_THETA_TPL NS <bc_id> <float_list> [integer]
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<float3> ny , y-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float4> nz , z-component of normal vector to the geometry 
boundary. (see important note below regarding variable wall 
normals, viz. non-planar solid walls).

<float5>  V_0  is a pre-exponential velocity factor (see functional 
form below)

<float6>  g is a thermally scaled surface tension, i.e. σ/2nkT.  This 
value is multiplied by the surface tension value stipulated 
by the surface tension material model.

<float7> trelax is a relaxation time which can be used to smooth the 
imposed contact point velocity for transient problems.  Set 
to zero for no smoothing.

<float8> Vold is an initial velocity used in velocity smoothing for 
transient problems.  Set to zero when smoothing is not used.

[integer] blk_id, an optional parameter that is the element block 
number in conjugate problems that identifies the material 
region to which the contact angle applies (usually the liquid 
element block in solid/liquid conjugate problems). NOTE/
WARNING: As of 1/13/2013 this option seems not to work 
with TALE problems. 

Examples

Following is a sample card:

BC = VELO_THETA_TPL NS  100     {45}     0.   1.  0.   1000.0     
5.e-4    0  0

This condition applies a contact angle of 45 degrees between the free surface normal at 
the 100 nodeset and the vector (0,1,0). The velocity scale is 1000 and the sensitivity 
scale is 5.e-4.   Normally, this latter vector is the normal to the solid surface in contact 
with the free surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is as follows:
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 . (4-110)

(4-111)

When smoothing is not used, i.e. trelax = 0 , the imposed velocity is equal to that 
stipulated by the Blake-DeConinck equation.  Also see 
WETTING_SPEED_LINEAR and WETTING_SPEED_BLAKE for level-set 
versions of this and VELO_THETA_HOFFMAN and VELO_THETA_COX for 
other functional forms. 

• We recommend use of this condition over CA_BC for all transient problems.  In 
this case this condition displaces a momentum equation component, with the other 
component being used to enforce no substrate penetration.  The kinematic 
condition is applied to the mesh motion a this node so as to conserve mass. 

• For steady problems, the substrate velocity will be extracted from adjoining 
VELO_TANGENT, VELO_SLIP, or VELO_SLIP_ROT boundary conditions. 

• Important: Variable Wall Normals. Situations for which the wall shape is non-
planar, meaning that the normal vector is not invariant as the contact line moves, 
there is an option to leave all of the normal-vector components zero. In this case 
Goma then seeks to determine the local wall normal vector from the geometry it is 
currently on, using the element facets. It is recommended that this option not be 
used unless the geometry is truly nonplanar, as the logic is complex and not 100% 
reliable. See documentation for CA_BC for an example.

• This condition was motivated by T. D. Blake and is the so-called Blake-
DeConinck condition (T. D. Blake, J. De Coninck 2002. “The influence of solid-
liquid interactions on dynamic wetting”, Advances in Colloid and Interface 
Science 96, 21-36.  ).  See this article for some options for the form of the pre-
exponential velocity, V_0.

• Important: Wall Normal convention.  The wall normal vector on an external 
solid boundary is defined in goma as the inward facing normal to the mesh, and the 
free surface normal to the liquid (or wetting phase for two-liquid systems) is 
defined as the outward facing normal to the free surface.  Put another way and 
referring to the picture below, the wall normal is directed from the “solid phase” to 
the “liquid phase”, and the free surface normal is directed from the “liquid phase” 
or “wetting phase” to the “vapor phase” or “Non-wetting phase”.  Note that for 
zero contact angle the liquid is “perfectly wetting”.   The air-entrainment limit (viz. 
the hydrodynamic theory interpretation) would occure at a 180 degree contact 
angle.   Recall that the angle is specified in radians on this card.   

v Vold vBlake Vold–( ) 1
t

trelax

-----------– 
 exp–+=

vBlake v0 g θeq θcos–cos( )[ ]sinh=
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.127

4.10.128 SHEET_ENDSLOPE

Description/Usage (SPECIAL/VECTOR MOMENTUM)

This boundary condition card is used to enforce a slope of a membrane surface (cf. to 
be used in conjuction with BC = TENSION_SHEET) at its enpoints. . There are two 
values to be input for the <float_list>; definitions of the input parameters are as 
follows:

SHEET_ENDFORCE

Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

BC = SHEET_ENDSLOPE  NS <bc_id> <float_list>

Liquid or
wetting phase

Gas (or nonwetting) phase

Solid phase

nfs

nwall

θ n
˜ wall

n
˜ fs

⋅( )acos=
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<float1> X-component of upstream idler point (see discussion 
below)

<float2> Y-component of upstream idler point.

Examples

The following is a sample input card using several APREPRO variables:

BC = SHEET_ENDSLOPE NS 100  {sind(th2)} {-cosd(th2)

This condition would enforce a slope equivalent to that defined between the 
coordinates of the node at NS 100 with the point [sind(th2), -cosd(th2)].   

Technical Discussion

Only two dimensional applications, viz. the nodeset is a single-node nodeset. 

This is a single point nodeset boundary condition.  Its function is to set the slope of the 
web at the single point nodeset N.  It does  this by enforcing continuity of the slope of 
the TENSION_SHEET sideset with  the straight line that connects the point (X,Y) with 
nodeset N.  Thus,  this boundary condition can be used to model the influence of an 
upstream idler roller located at the point (X,Y).  Indeed, this boundary condition has an 
alternate name:  IDLER_LOC.

This boundary condition exploits the natural boundary conditions  associated with the 
TENSION_SHEET formulation so it really can only beused in conjunction with the 
latter boundary condition.

 One caveat that must be mentioned is that the formulation of these two boundary 
conditions is not general and therefore they should only be applied to web geometries 
that are predominantly horizontal.  That is, the x component of the normal vector to the 
web sideset should at each point be less than or equal to the y component

Theory

No Theory.

FAQs

No FAQs.
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References

No References.

4.10.129 TENSION_SHEET

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition card is used to apply a membrane force to the fluid 
momentum equation in order to model a membrane-like structure, viz. one with no 
bending stiffness but with significant tension  much larger than the fluid viscous 
stresses.  This boundary condition is basically the same mathematically as the capillary 
condition, with the tension here specified instead of a capillary surface tension. The 
only difference is the way in which it is applied:   it is applied as a strong integrated 
condition instead of a weak form condition.  

Definitions of the input parameters are as follows:

TENSION_SHEET 

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> Τ, Tension of the membrane. 

Examples

Following is a sample card:

BC = TENSION_SHEET SS 12 

Technical Discussion

Usage notes:

-Can only be applied in two dimensions. 

BC = TENSION_SHEET SS <bc_id> <float>
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-One caveat that must be mentioned is that the formulation of these two boundary 
conditions is not general and therefore they should only be applied to web geometries 
that are predominantly horizontal.  That is, the x component of the normal vector to the 
web sideset should at each point be less than or equal to the y component.

-To set the slope of the membrane at an endpoint, see the BC = SHEET_ENDSLOPE 
card. 

-This boundary condition that can be used to  model the interaction of fluid with a thin 
sheet under a constant tension load. The sideset to which it is applied must be fully 
“wetted” by a fluid.    Note that this boundary condition arises as a simplification of the 
tensioned-web shell equations (cf. shell_tension and shell_curvature equations as 
described in GT-033.0 and GT-027.0) subject to two simplifying assumptions:

 1) The sheet supports no bending moments.  That is, it isn’t very  rigid.

 2) The tension in the sheet is significantly larger than the viscous  stresses in the fluid.

Given these assumptions this boundary condition can be used to model tensioned web 
applications without having to resort to the shell equations.  It is a strongly integrated, 
rotated boundary condition on  the mesh equations.  It can only be used in two-
dimensional  applications.

Theory

No Theory.

FAQs

No FAQs.

References

GT-033.0 and GT-027.0.

Category 5: Boundary Conditions for the Energy Equations

The following conditions are applied as boundary conditions to the energy equation. These 
conditions include strong Dirichlet conditions, such as hard sets on temperature on a boundary as 
a constant or function of position, weak-form conditions, such as a specified heat flux from a 
convective heat transfer model or a constant flux, and a host of interfacial conditions for phase 
change (viz. latent heat effects), etc. The energy equation is of course a scalar equation. Some 
highly specialized equations are also available, such as a heat flux model for a laser interaction 
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with a molten metal surface. These conditions will also apply in general to the porous energy 
equation (see Porous Energy).

4.10.130 T

Description/Usage (DC/ENERGY)

This Dirichlet boundary condition card is used to set constant temperature. Definitions 
of the input parameters are as follows:

T Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of temperature.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample input card:

BC = T NS 100 273.13

Technical Discussion

No discussion.

Theory

No Theory.

BC = T NS <bc_id> <float1> [float2]
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FAQs

No FAQs.

References

No References.
 

4.10.131 T_USER

Description/Usage (PCC/ENERGY)

This boundary condition card is used to call a routine for a user-defined temperature. 
Specification is made via the function tuser in file “user_bc.c.” Definitions of the 
input parameters are as follows:

T_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutine so the user can vary 
the parameters of the boundary condition. This list of float 
values is passed as a one-dimensional double array to the 
appropriate C function in file user_bc.c.

Examples

The following is a sample input card with two parameters passed to function tuser:

BC = T_USER SS 100  273.13 100.0

Technical Discussion

No discussion.

BC = T_USER SS <bc_id> <float_list>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.132

4.10.133 QCONV

Description/Usage (WIC/ENERGY)

This boundary condition card specifies convective heat flux. Definitions of the input 
parameters are as follows:

QCONV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> h, heat transfer coefficient.

<float2> Ts, sink temperature.

Examples

The following is a sample card:

BC = QCONV SS 100 10.0 293.0

Technical Discussion

The convective heat flux is defined as

BC = QCONV SS <bc_id> <float1> <float2>
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(4-112)

where h and Ts are the convective heat transfer coefficient and the sink temperature, 
respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.134 QRAD

Description/Usage (WIC/ENERGY)

This boundary condition card specifies heat flux using both convective and radiative 
terms. The <float_list> has four parameters; definitions of the input parameters are as 
follows:

QRAD Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> h, convective heat transfer coefficient.

<float2> Ts, sink temperature.

<float3> ε, total hemispherical emissivity.

<float4> σ, Stefan-Boltzmann constant.

BC = QRAD SS <bc_id> <float_list>

n
˜

q
˜

⋅ h T Ts–( )=
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Examples

Following is a sample card:

BC = QRAD SS 100 10.0 273.0 0.3 5.6697e-8

Technical Discussion

The heat flux definition for this card is a combined convective and radiative 
formulation:

(4-113)

where h and Ts are the convective heat transfer coefficient and the sink temperature, 
and ε and σ are the total hemispherical emissivity and Stefan-Boltzmann constant, 
respectively. The latter constant has been made an input parameter rather than a code 
constant so that the user can specify its value in units that are consistent for the problem 
being modeled.

The QRAD boundary condition can be used in place of QCONV by simply setting the 
emissivity value to zero.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.135 QSIDE

Description/Usage (WIC/ENERGY)

This boundary condition card is used to specify a constant heat flux. Definitions of the 
input parameters are as follows:

BC = QSIDE SS <bc_id> <float1>

n
˜

q
˜

⋅ h T Ts–( ) εσ T
4

T
4
s–( )+=
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QSIDE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> Value of heat flux. A positive value implies that energy is 
being added to system; a negative value implies energy is 
being taken from the system through the boundary.

Examples

The following is a sample card:

BC = QSIDE SS 22  1.50

Technical Discussion

The  mathematical form of the boundary condition.

(4-114)

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

n q qo=⋅
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4.10.136\ T_CONTACT_RESIS, T_CONTACT_RESIS_2

Description/Usage (WIC/ENERGY)

This boundary condition set is used to specify a thermal contact resistance at an 
interface between two mesh regions defined by a side set.  Please see special usage 
notes below regarding proper side-set specification and the reasons that both BC cards 
are required for an internal interface.  NOTE that the temperature field MUST be 
interpolated with the discontinous versions of Q1 or Q2, viz. Q1_D and Q2_D.  
Definitions of the input parameters are as follows:

T_CONTACT_RESIS 

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database. Note this side set 
MUST contain elements on both sides of the interface.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<int1> Material/region ID associated with first material

<int2> Material/region ID associated with second material.  Note 
that these material IDs are reversed on the second BC. 

<float1> Value contact resistance in units of thermal conductivity 
divided by length.

Examples

The following is a sample card:

BC = T_CONTACT_RESIS SS 3 1 2 10.0

BC = T_CONTACT_RESIS_2 SS 3 2 1 10.0

Note that both boundary condition cards are required at an internal interface.  In this 
case the interface divides mesh/material ID 1 and 2.   Note also how these material IDs 
are reversed on the second card.  These conditions apply a thermal contact resistance of 
10.  (units of thermal conductivity divided by length) at the interface defined by SS 3. 

BC = T_CONTACT_RESIS SS <bc_id>  <int1>  <int2> <float1>
BC = T_CONTACT_RESIS_2 SS <bc_id> <int2>  <int1> <float1>
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Technical Discussion

The  mathematical form of the boundary condition.

(4-115)

The flux into the interface from material “a” is equivalent to that into material “b”, both 
equal to the temperature jump across the interface times the contact resistance R-1.  

The side set to which this boundary condition is applied must contain elements on both 
sides of the interface.  Look up any special commands in your mesh generator to make 
sure this occurs.  In CUBIT, for example, you have to add “wrt volume 1 2” like 
qualifiers on the side set command.  The reason for the “double application” of this 
condition is to pick up the all the terms from both sides of the interface with the proper 
sign.   The nodes at the interface have two temperatures, one from each side, and so two 
weak form applications of this equation are required, one from each side.  

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.137 QUSER

Description/Usage (WIC/ENERGY)

This boundary condition card is used to call a routine for a user-defined heat flux 
model. Definitions of the input parameters are as follows:

QUSER Name of the boundary condition (<bc_name>).

BC = QUSER SS <bc_id> <float_list>

n q
a

R
1–

Ta Tb–( )=⋅ n qb⋅=
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SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutines so the user can vary 
the parameters of the boundary condition. This list of float 
values is passed as a one-dimensional double array to the 
quser_surf C function in file user_bc.c.

Examples

The following is a sample input card for a heat flux model requiring two parameters:

BC = QUSER SS 100  10.0 3.14159

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.139 Q_VELO_SLIP

Description/Usage (WIC/ENERGY)

This boundary condition card is used to calculate the surface integral for viscous 
heating due to slip in the tangential velocity component on a surface. Definitions of the 
input parameters are as follows:

Q_VELO_SLIP Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

Examples

The following is a sample input card: 

BC = Q_VELO_SLIP_BC SS 10

Technical Discussion

Use of this boundary condition requires specification of the slip velocity components 
by using either the VELO_SLIP or VELO_SLIP_ROT boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

BC = Q_VELO_SLIP SS <bc_id>
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4.10.140 Q_LASER_WELD

Description/Usage (WIC/ENERGY)

This boundary condition card specifies the thermal boundary conditions for laser 
welding. The <float_list> requires twenty-seven values be specified; definitions of the 
input parameters are as follows:

Q_LASER_WELD Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Nominal power of laser.

<float2> Power of laser at base state (simmer).

<float3> Base value of surface absorptivity.

<float4> Switch to allow tracking of normal component of liquid 
surface relative to laser beam axis for surface absorption 
(0 = OFF, 1 = ON)

<float5> Cutoff time for laser power.

<float6> Time at which laser power drops to 1/e.

<float7> For pulse weld, the laser power overshoot (%) of peak 
power at time to reach peak laser power.

<float8> Radius of laser beam.

<float9> For pulse weld, the time for laser pulse to reach peak 
power.

<float10> For pulse weld, the time for laser pulse to reach steady 
state in power.

<float11> Switch to either activate laser power distribution from 
beam center based on absolute distance (0) or based on 
radial distance in 2D plane (1).

BC = Q_LASER_WELD SS <bc_id> <float_list> 
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<float 12> Location of laser beam center (x-coordinate).

<float 13> Location of laser beam center (y-coordinate).

<float 14> Location of laser beam center (z-coordinate).

<float 15> Laser beam orientation, normal to x-coordinate of body.

<float 16> Laser beam orientation, normal to y-coordinate of body.

<float 17> Laser beam orientation, normal to z-coordinate of body.

<float 18> For pulse weld, spot frequency.

<float 19> For pulse weld, total number of spots to simulate.

<float 20> Switch to set type of weld simulation. (0=pulse weld, 
1=linear continuous weld, -1=pseudo pulse weld, 
2=sinusoidal continous weld)

<float 21> For pulse weld, spacing of spots.

<float 22> For radial traverse continuous weld, radius of beam 
travel.

<float 23> Switch to activate beam shadowing for lap weld 
(0=OFF, 1=ON). Currently only active for ALE 
simulations.

<float 24> Not active, should be set to zero.

<float 25> For continuous weld, laser beam travel speed in x-
direction (u velocity).

<float 26> For continuous weld, laser beam travel speed in y-
direction (v velocity).

<float 27> For continuous weld, laser beam travel speed in z-
direction (w velocity).

Examples

The following is a sample input card: 

BC = Q_LASER_WELD SS 10 4.774648293 0 0.4 1 1 1.01 4.774648293 0.2 
0.01 0.01 1 0.005 0 -0.198 -1 0 0 0.025 1 1 0.2032 -1000 0 0 0 0 0.0254
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Technical Discussion

Several required pieces of information to use this boundary condition are not in final 
form, and the user can expect future changes and improvements. Below is a listing of 
some of these parameters:

• This boundary condition requires that node sets 1001 is defined in the EXODUS II 
file. NS 1001 should include the point at the center of the keyhole on the surface 
closest to the beam.

• Currently the laser flux distribution is set as a fixed exponential distribution. Plans 
are to include more options including a user-defined exponential and a TABLE 
option.

• Correlations are used to specify the evaporation energy loss. Currently only iron 
and ice correlations exist; the appropriate correlation is selected based on the value 
set for the Solidus Temperature (in Thermal Properties portion of the material file).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.141 Q_VAPOR_BC

Description/Usage (WIC/ENERGY)

This boundary condition card is used to specify heat loss due to evaporation.  It is 
typically used in conjunction with Q_LASER_WELD. 

Q_VAPOR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

BC = Q_VAPOR SS <bc_id> <float_list> 
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Temperature scale

<float2> energy unit scale.  

Examples

The following is a sample input card: 

BC = Q_VAPOR SS 10 100. 10. 

Technical Discussion

This condition is turned on above the boiling point, which is story in the melting point 
solidus temperature.   

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.142

4.10.143 VP_EQUIL

Description/Usage (SIC/ENERGY)

This boundary condition card is used to equate solvent partial pressure in the gas 
between the porous medium and the external phase. The condition is similar to the 
solid-liquid interface conditions that apply to interfaces between a porous medium and 

BC = VP_EQUIL SS <bc_id> <integer_list> <float>
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an external gas phase (in which the energy equation is used to solve for solvent 
concentration in the gas phase). This boundary condition is still under development.

There are three values to be specified for the <integer_list>; definitions of the input 
parameters are as follows:

VP_EQUIL Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer1> Element block ID of solid, porous phase from the EXODUS 
II database.

<integer2> Element block ID of gas phase from the EXODUS II 
database.

<integer3> Species number of liquid phase in porous medium.

<float> Ambient pressure in external gas phase.

Examples

The following is a sample input card: 

BC = VP_EQUIL SS 100  1 2 0 0.0 

 where the solid/porous phase is present in element block 1 and the gas phase is present 
in element block 2. The external gas phase pressure has been set to 0.0.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

4.10.144 LATENT_HEAT

Description/Usage (WIC/ENERGY)

This boundary condition card is used for latent heat release/adsorption at an external 
interface. The flux quantity is specified on a per mass basis so the heat and mass 
transfer coefficients are in units of L/t.

The <float_list> has three values to be specified; definitions of the input parameters are 
as follows:

LATENT_HEAT Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number.

<float1> Latent Heat for the pure w+1 species component.

<float2> Mass transfer coefficient for the w+1 species 
component.

<float3> Sink concentration for the w+1 species component.

The float values on this card apply to the bulk species (i.e., the w+1 component) in a 
multi-species problem and in the case of a pure fluid. Important usage comments are 
contained in the Technical Discussion below.

Examples

The following is a sample input card:

BC = LATENT_HEAT SS 3 0   540. 0.1  0.

BC = LATENT_HEAT SS <bc_id> <integer> <float_list>
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Two more detailed examples are contained in the Technical Discussion section.

Technical Discussion

The LATENT_HEAT boundary condition has the form

(4-116)

where  is the outward normal to the surface,  is the heat flux vector,   is the 
heat of vaporization,  is density,  is the heat-transfer coefficient for species i, and 

 is the reference concentration of species i at locations remote from the boundary; 
the summation is over the number of species in the material block. The manner of 
usage of this boundary condition depends on the set of conditions characterizing the 
problem; example conditions are described below.

This card is used for external surfaces for which heat transfer and mass transfer beyond 
it’s surfaces are governed by heat and mass transfer coefficients. The LATENT_HEAT 
BC is applied to the energy equation so a heat flux can be specified for thermal 
problems alone. The mass transfer portion of the vaporization phenomenon is handled 
by the KIN_LEAK and YFLUX BC cards; these boundary conditions are applied to the 
mesh equations. The LATENT_HEAT_INTERNAL card should be used for internal 
surfaces, or interfaces, at which transfer is governed by actual physics being modeled 
as a part of the problem.

When vaporization of a pure liquid is being modeled, there is only a ’single species’, 
the bulk volatile liquid. In the single species case, the Species Properties of the 
corresponding material file (which includes the Heat of Vaporization card) is not even 
read so the actual value of the latent heat of vaporization must be entered on the 
LATENT_HEAT card (<float1>). If multiple species are present, the latent heat value 
for each species is entered in the material file and the LATENT_HEAT card does for the 
energy equation the same thing the KIN_LEAK card does for the mesh equation (i.e., 
collects the flux conditions that apply for each species).

For mass transfer in the single species/pure liquid case, the mass transfer coefficient is 
specified on the KIN_LEAK card. When multiple species are present, the mass transfer 
coefficient and driving concentration on the KIN_LEAK card are set to zero and the 
appropriate coefficient and driving concentration are set for each species on the YFLUX 
card, one for each species. The KIN_LEAK card (or the LATENT HEAT for energy flux) 
must be present to signal Goma to look for multiple YFLUX cards.

The latent heat quantity is specified on a per mass basis and the transfer coefficients are 
in units of L/t. Some examples of LATENT_HEAT application follow:

n
˜

q
˜

⋅ HυΔ ρhi

i 1=

Numspec

 yi yi
0

–( )=

n
˜

q
˜

HυΔ

ρ hi
yi

0
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Pure Liquid Case

BC = LATENT HEAT  SS 3 0   540.   0.1  0.
BC = KIN_LEAK  SS 3  0.1  0.

Two-Species Case

BC = LATENT HEAT  SS 3 0   0.   0.1  0.
BC = KIN_LEAK  SS 3  0.  0.
BC = YFLUX  SS 3 0  0.12   0.
BC = YFLUX  SS 3 1  0.05   0.

plus, in the corresponding material file:

---Species Properties

Diffusion Constitutive Equation= FICKIAN
Diffusivity = CONSTANT  0   1.e-8
Latent Heat Vaporization = CONSTANT  0   540.
Latent Heat Fusion = CONSTANT  0   0.
Vapor Pressure = CONSTANT  0   0.
Species Volume Expansion = CONSTANT  0   1.
Reference Concentration = CONSTANT  0   0.

Diffusivity = CONSTANT  1   1.e-6
Latent Heat Vaporization = CONSTANT  1   125.
Latent Heat Fusion = CONSTANT  1   0.
Vapor Pressure = CONSTANT  1   0.
Species Volume Expansion = CONSTANT  1   1.
Reference Concentration = CONSTANT  1   0.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.145 LATENT_HEAT_INTERNAL

Description/Usage (WIC/ENERGY)

This boundary condition card is used for latent heat release/adsorption at an internal 
interface. See usage comments in the Technical Discussion.

The <integer_list> requires two values be specified; definitions of the input parameters 
are as follows:

LATENT_HEAT_INTERNAL

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

{char_string} Variable name with the following permissible values:

LIQUID_VAPOR
SOLID_LIQUID

<integer1> NOT ACTIVE. Any integer will do.

<integer2> NOT ACTIVE. Any integer will do.

<float3> Value of latent heat of vaporization/fusion for a pure 
material case, in units of Energy/mass.

Examples

The following is a sample input card:

BC = LATENT_HEAT_INTERNAL SS 40 SOLID_LIQUID 1 2 2.6e5

Technical Discussion

The LATENT_HEAT_INTERNAL card should be used for internal surfaces, or 
interfaces, at which transfer is governed by actual physics being modeled as a part of 
the problem. See LATENT_HEAT card for further information.

BC = LATENT_HEAT_INTERNAL SS {char_string} <integer_list> <float>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Category 6: Boundary Conditions for the Mass Equations

The collection of boundary conditions in this category are applied to the mass balance equations, 
specifically the species component balance equations. Most boundary conditions are weakly 
integrated conditions defining fluxes at internal or external surfaces, although strongly integrated 
and Dirichlet conditions are also available to control known values of dependent variables or 
integrated quantities. Boundary conditions are available for chemical species as well as charged 
species, suspensions and liquid metals. An important capability in Goma is represented by the 
discontinuous variable boundary conditions, for which users are referred to Schunk and Rao 
(1994) and Moffat (2001). Care must be taken if the species concentration is high enough to be 
outside of the dilute species assumption, in which case transport of species through boundaries 
will affect the volume of the bounding fluids. In these cases, users are referred to the 
VNORM_LEAK condition for the fluid momentum equations and to KIN_LEAK for the solid 
momentum (mesh) equations. And finally, users are cautioned about different bases for 
concentration (volume, mass, molar) and several discussions on or references to units.

4.10.146 Y

Description/Usage (DC/MASS)

This card is used to set the Dirichlet boundary condition of constant concentration for a 
given species. Definitions of the input parameters are as follows:

Y Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

BC = Y NS <bc_id> <integer> <float1> [float2] [integer2]
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<integer1> Species number of concentration.

<float1> Value of concentration, in user’s choice of units, e.g. moles/
cm3.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

[integer2] Element block ID; only applicable to node sets, this optional 
parameter specifies the element block on which to impose 
the boundary condition, if there is a choice, as occurs at 
discontinuous variable interfaces where there may be more 
that one unknown corresponding to species 0 at a single 
node. This parameter allows the user to specify which 
unknown to set the boundary condition on, and allows for a 
jump discontinuity in species value across a discontinuous 
variables interface.

Examples

The following is a sample card with no Dirichlet flag:

BC = Y NS 3   0  0.00126

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.

4.10.147 YUSER

Description/Usage (SIC/MASS)

This is a user-defined mass concentration boundary. The user must supply the 
relationship in function yuser_surf within user_bc.c.

YUSER Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<integer> Species number

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutines so the user can vary 
the parameters of the boundary condition. This list of float 
values is passed as a one-dimensional double array to the 
appropriate C function.

Examples

The following sample input card applies a user flux condition to side set 100 for species 
0 that requires two input parameters:

BC = YUSER SS 100   0 .5 .5

Technical Discussion

No discussion.

Theory

No Theory.

BC = YUSER SS <bc_id> <integer> <float_list>
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FAQs

No FAQs.

References

No References.

4.10.148

4.10.149 Y_DISCONTINUOUS

Description/Usage (DC/MASS)

This card is used to set a constant valued Dirichlet boundary condition for the species 
unknown. The condition only applies to interphase mass, heat, and momentum transfer 
problems applied to discontinuous (or multivalued) species unknown variables at an 
interface, and it must be invoked on fields that employ the Q1_D or Q2_D 
interpolation functions to “tie” together or constrain the extra degrees of freedom at the 
interface in question.

Definitions of the input parameters are as follows:

Y_DISCONTINUOUS

Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<integer1> Species subvariable number.

<float1> Value of the species unknown on the boundary. Note, 
the units depend on the specification of the type of the 
species unknown.

[float2] An optional parameter (that serves as a flag to the code 
for a Dirichlet boundary condition). If a value is present, 

BC = Y_DISCONTINUOUS NS <bc_id> <integer1> <float1> [float2 integer2]
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and is not -1.0, the condition is applied as a residual 
equation. Otherwise, it is a “hard set” condition and is 
eliminated from the matrix. The residual method must 
be used when this Dirichlet boundary condition is used 
as a parameter in automatic continuation sequences.

[integer2] Element block ID; only applicable to node sets, this 
optional parameter specifies the element block on which 
to impose the boundary condition, if there is a choice, as 
occurs at discontinuous variable interfaces where there 
may be more that one unknown corresponding to 
species 0 at a single node. This parameter allows the 
user to specify which unknown to set the boundary 
condition on, and allows for a jump discontinuity in 
species value across a discontinuous variables interface.

Examples

The following is a sample input card with no Dirichlet flag:

BC = Y_DISCONTINUOUS SS 3    0  0.00126

Technical Discussion

Typically, this boundary condition may be used to set the species unknown variable on 
one side of a discontinuous variables interface, while the species unknown variable on 
the other side of the interface is solved for via a KINEMATIC_SPECIES boundary 
condition. Note, this boundary condition is not covered by the test suite, and thus, may 
or may not work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.150 YFLUX

Description/Usage (WIC/MASS)

This boundary condition card is used to specify the mass flux of a given species normal 
to the boundary (or interface) using a mass transfer coefficient. When used in 
conjunction with the KIN_LEAK card, the YFLUX card also enables the determination 
of velocity normal to the moving boundary at which the YFLUX boundary condition is 
applied.

Definitions of the input parameters are as follows:

YFLUX Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> i, species number of concentration.

<float1> ki, value of mass transfer coefficient of species i.

<float2> , value of reference concentration of species i.

Examples

Following are two sample cards:
BC = YFLUX SS  3 0  0.12  0.
BC = YFLUX SS  3 1  0.05  0.

Technical Discussion

Specifically, the species mass flux is given by

(4-117)

where n is the unit vector normal to the boundary, Ji is mass flux of species i, v is the 
fluid velocity, vm is the mesh displacement velocity, ki is mass transfer coefficient of 
species i, ci is concentration of species i at the boundary surface, and  is reference 
concentration of species i. The units of Ji, ki, ci and  depend on the user’s choice. For 

BC = YFLUX SS <bc_id> <integer1> <float1> <float2>

ci
∞

n Ji⋅ n v v
m

–( )ci k= i ci c
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ci
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∞
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example, if ci and  are chosen to have units of moles/cm3, then ki has the unit of cm/
s, and Ji has the units of moles/cm2/s.

For the KIN_LEAK and VNORM_LEAK cards, the information from YFLUX boundary 
conditions corresponding to each species is needed. Goma automatically searches for 
these boundary conditions and uses an extra variable in the BC data storage to record 
the boundary condition number of the next YFLUX condition in a linked list; when the 
extra storage value is -1, there are no more YFLUX conditions at this boundary.

Theory

No Theory.

FAQs

A question was raised regarding the use of volume flux in Goma; the following portion 
of the question and response elucidate this topic and the subject of units. Note the 
references in the response are to the Version 2.0 Goma User’s Manual.

Question: ... I know what you are calling volume flux is mass flux divided by 
density. The point I am trying to make is that the conservation equations in the books I 
am familiar with talk about mass, energy, momentum, and heat fluxes. Why do you not 
write your conservation equations in their naturally occurring form? If density just so 
happens to be common in all of the terms, then it will be obvious to the user that the 
problem does not depend on density. You get the same answer no matter whether you 
input rho=1.0 or rho=6.9834, provided of course this does not impact iterative 
convergence. This way, you write fluxes in terms of gradients with the transport 
properties (viscosity, thermal conductivity, diffusion coefficient, etc.) being in familiar 
units.

Answer: First let me state the only error in the manual that exists with regard to 
the convection-diffusion equation is the following:

 in the nomenclature table ... should be described as a volume flux with units 
of , i.e., , where  is in  units.

Now, ... this is actually stated correctly, as it states the  is a diffusion flux (without 
being specific); to be more specific here, we should say it is a "volume flux of species 
i." So, in this case  is in  units,  is dimensionless and it is immaterial that (the 
mass conservation equation) is multiplied by density or not, as long as density is 
constant.

Now, in Goma we actually code it up EXACTLY as in the ... (mass conservation 
equation), i.e., there are no densities anywhere for the FICKIAN diffusion model. For 
the HYDRO diffusion model, we actually compute a  in the code, and handle 

ci
∞

Ji

L t⁄ D yi∇⋅ D L
2

t⁄

Ji

D L L t⁄⋅ yi
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variable density changes through that . In that case  as computed in Goma is a mass 
flux vector, not a volume flux vector, but by dividing it by  and sending it back up to 
the mass conservation equation it changes back into a volume flux. i. e., everything is 
the same.

Concerning the units of the mass transfer coefficient on the YFLUX boundary 
condition, the above discussion now sets those. Goma clearly needs the flux in the 
following form:

         (4-118)

and dimensionally for the left hand side

(4-119)

where  is in units , the gradient operator has units of  so K HAS to be in units 
of  (period!) because  is a fraction.

So, if you want a formulation as follows:

(4-120)

then ’s units will have to accommodate for the relationship between  and  in the 
liquid, hopefully a linear one as in Raoult’s law, i.e. if  where  is the vapor 
pressure, then

(4-121)

and so K on the YFLUX command has to be  ....and so on.

Finally, you will note, since we do not multiply through by density, you will have to 
take care of that, i. e., in the Price paper he gives K in units of . So, that must be 
converted as follows:

:   (4-122)

This checks out!

References

Price, P. E., Jr., S. Wang, I. H. Romdhane, 1997. “Extracting Effective Diffusion 
Parameters from Drying Experiments”, AIChE Journal, 43, 8, 1925-1934.
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4.10.151 YFLUX_CONST

Description/Usage (WIC/MASS)

This boundary condition card is used to specify a constant diffusive mass flux of a 
given species. This flux quantity can be specified on a per mass basis (e.g. with units of 
g/cm2/s) or on a per mole basis (e.g. with units of moles/cm2/s), depending on the 
user’s choice of units in the species unknown.

Definitions of the input parameters are as follows:

YFLUX_CONST Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number.

<float> Value of diffusive mass flux; the units of this quantity 
depends on the user’s choice of units for species 
concentration.

Examples

Following is a sample card:

BC = YFLUX_CONST SS 1 0 10000.2

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

BC = YFLUX_CONST SS <bc_id> <integer> <float>
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References

No References.
 

4.10.152 YFLUX_EQUIL

Description/Usage (WIC/MASS)

This boundary card is used when equilibrium-based mass transfer is occurring at an 
vapor-liquid external boundary; i.e.,

. (4-123)

This is different from an internal boundary since only one phase is represented in the 
computational domain. This boundary condition then describes the rate of mass 
entering or leaving the boundary via vapor-liquid equilibria. The  is the mass 
fraction of component i in vapor that is in equilibrium with the liquid phase. The  
is the bulk concentration of component i in vapor.

The <float_list> requires three input values; definitions of the input parameters are as 
follows:

YFLUX_EQUIL Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

{char_string} This refers to the equilibrium model for mass transfer; the 
options are either FLORY or RAOULT.

<integer1> Species id.

<float1> Total system pressure.

<float2> Mass transfer coefficient.

<float3> Bulk concentration in vapor ( ).

BC = YFLUX_EQUIL SS <bc_id> {char_string} <integer> <float_list>
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Examples

The following is a sample input card:

BC = YFLUX_EQUIL SS 1  FLORY 0  1. 5.4e-3  0.

Technical Discussion

This boundary condition is very similar to VL_EQUIL and VL_POLY except that it is 
only applied at an external boundary where vapor phase is not modeled in the problem.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA, 
December 10, 1998, A. C. Sun

4.10.153

4.10.154 YFLUX_SULFIDATION

Description/Usage (WIC/MASS)

The YFLUX_SULFIDATION card enables computation of the molar flux of the 
diffusing species (e.g. copper vacancy) using copper-sulfidation kinetics at the 
specified boundary (gas/Cu2S or Cu/Cu2S interface). When used in conjunction with 
the KIN_LEAK card, it also enables the determination of velocity normal to the moving 
gas/Cu2S interface.

The <float_list> contains ten values to be defined; these and all input parameter 
definitions are as follows: 

YFLUX_SULFIDATION

Name of the boundary condition (<bc_name>).

BC = YFLUX_SULFIDATION SS <bc_id> {char_string} <integer> <float_list>
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SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

{char_string} Name of sulfidation kinetic models. Allowable names 
are:

SOLID_DIFFUSION_SIMPLIFIED

SOLID_DIFFUSION

SOLID_DIFFUSION_ELECTRONEUTRALITY

SOLID_DIFFUSION_ELECTRONEUTRALITY_LINEAR

GAS_DIFFUSION

FULL

ANNIHILATION

ANNIHILATION_ELECTRONEUTRALITY

Detailed description of kinetic models with these name 
key words are presented in the Technical Discussion 
section below.

<integer> Species number of concentration.

<float1> Stoichiometric coefficient 

<float2> Rate constant for forward copper sulfidation reaction

<float3> Activation energy for forward copper sulfidation 
reaction

<float4> Rate constant for backward copper sulfidation reaction

<float5> Activation energy for backward copper sulfidation 
reaction

<float6> Temperature

<float7> Bulk concentration of H2S

<float8> Bulk concentration of O2

<float9> Molecular weight of copper sulfide (Cu2S)

Example

Examples of this input card follow:
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BC = YFLUX_SULFIDATION SS 3  SOLID_DIFFUSION_ELECTRONEUTRALITY 0 -2.0  
1.46e+7 6300.0 1.2e+14 6300.0 303.0 1.61e-11 8.4e-6 159.14 5.6

BC = YFLUX_SULFIDATION SS 1  ANNIHILATION_ELECTRONEUTRALITY 0  1.0   10.0   
0.0    0.0     0.0    303.0 1.61e-11 8.4e-6 159.14 5.6

BC =  YFLUX_SULFIDATION  SS 3  SOLID_DIFFUSION 1 -2.0  1.46e7  6300.0 1.2e+14 
6300.0 303.0 1.61e-11 8.4e-6 159.14 5.6

BC =  YFLUX_SULFIDATION  SS 1  ANNIHILATION  1  1.0  10.0    0.0    0.0     0.0    
303.0 1.61e-11 8.4e-6 159.14 5.6

Technical Discussion

Key word SOLID_DIFFUSION_SIMPLIFIED refers to the following simplified 
kinetic model of copper sulfidation in which gas-phase diffusion is neglected and Cu is 
taken to be the diffusing species:

(4-124)

where r is molar rate of formation of sulfidation-corrosion product, Cu2S, per unit area, 
 is the molar concentration of H2S taken to be fixed at its bulk value,  is the 

molar concentration of Cu at the sulfidation surface (Cu2S/gas interface), k is the rate 
constant, E is the activation energy, R is the universal gas constant, and T is the 
temperature.

Key word SOLID_DIFFUSION refers to the following kinetic model of copper 
sulfidation in which gas-phase diffusion is neglected and Cu vacancies and electron 
holes are taken as the diffusing species:

(4-125)

where r is molar rate of formation of Cu2S per unit area,  and  are the molar 
concentrations of H2S and O2, respectively, taken to be fixed at their bulk values,  
and  are the molar concentrations of Cu vacancies and electron holes, respectively, 
at the sulfidation surface, k1 and k-1 are rate constants, respectively, for the forward and 
backward sulfidation reactions, E1 and E-1 are activation energies, respectively, for the 
forward and the backward sulfidation reactions.

Key word SOLID_DIFFUSION_ELECTRONEUTRALITY refers to the following 
kinetic model of copper sulfidation in which Cu vacancies and electron holes are taken 
as the diffusing species and the electroneutrality approximation is applied such that 
concentrations of Cu vacancies and electron holes are equal to each other:
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(4-126)

Key word SOLID_DIFFUSION_ELECTRONEUTRALITY_LINEAR refers to the 
following kinetic model of copper sulfidation:

(4-127)

Key word GAS_DIFFUSION refers to the following simplified kinetic model of 
copper sulfidation in which solid-phase diffusion is neglected, and H2S and O2 are 
taken to be the diffusing species:

(4-128)

Key word FULL refers to the following kinetic model in which diffusion in both the 
gas phase and the solid phase are important, and H2S, O2, Cu vacancies, and electron 
holes are taken as the diffusing species:

(4-129)

where  and  are the time-dependent molar concentrations of H2S and O2, 
respectively, at the sulfidation surface.

Key word ANNIHILATION refers to the following kinetic model in which diffusion 
in both the gas phase and the solid phase are important, and H2S, O2, Cu vacancies, and 
electron holes are taken as the diffusing species:

(4-130)

where k2 are E2 are the rate constant and activation energy, respectively, for the 
annihilation reaction.

Key word ANNIHILATION_ELECTRONEUTRALITY is similar to 
ANNIHILATION except that, here, the electroneutrality approximation is applied and 
concentrations of Cu vacancies and electron holes are taken to be equal to each other:
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. (4-131)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.155 YFLUX_SUS

Description/Usage (WIC/MASS)

This boundary defines a flux of suspension particles at an interface. Definitions of the 
input parameters are as follows: 

YFLUX_SUS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Species id; the species number for suspension particles.

Examples

The following is a sample input card:

BC = YFLUX_SUS SS 1  0

BC = YFLUX_SUS SS <bc_id> <integer>

r k2e

E2

RT
-------–

c
2
V=
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Technical Discussion

This condition is only used in conjunction with the SUSPENSION liquid constitutive 
models, HYDRODYNAMIC diffusivity model, and SUSPENSION or 
SUSPENSION_PM density models. A theoretical outflux condition associated with 
suspension particles leaving the domain is tied to the Phillips diffusive-flux model. 
Please refer to discussions on HYDRODYNAMIC diffusivity to gain more 
understanding of the suspension flux model.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.156 

4.10.157 YFLUX_BV

Description/Usage (WIC/MASS)

The YFLUX_BV card enables computation of the molar flux of the specified species 
using Butler-Volmer kinetics at the specified boundary (namely, the electrode surface). 
When used in conjunction with the KIN_LEAK card, it also enables the determination 
of velocity normal to the moving solid-electrode surface.

The <floatlist> consists of nine values; definitions of the input parameters are as 
follows:

YFLUX_BV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

BC = YFLUX_BV SS <bc_id> <integer1> <floatlist>
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer1> Species number of concentration.

<float1> Stoichiometric coefficient

<float2> Kinetic rate constant.

<float3> Reaction order.

<float4> Anodic direction transfer coefficient.

<float5> Cathodic direction transfer coefficient.

<float6> Electrode potential or applied voltage.

<float7> Theoretical open-circuit potential.

<float8> Molecular weight of solid deposit.

<float9> Density of solid deposit.

Example

The following is a sample input card:

BC = YFLUX_BV SS 1 0 -1. 0.00001 1. 0.21 0.21 -0.8 -0.22 58.71 8.9

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.158 YFLUX_HOR

Description/Usage (WIC/MASS)

The YFLUX_HOR card enables computation of the molar flux of the specified species 
at the specified boundary (i.e., at the electrode surface) using the linearized Butler-
Volmer kinetics such as that for the hydrogen-oxidation reaction in polymer-
electrolyte-membrane fuel cells.

The <floatlist> consists of 10 values; definitions of the input parameters are as follows:

YFLUX_HOR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Anodic direction transfer coefficient, αa.

<float5> Cathodic direction transfer coefficient, αc.

<float6> Temperature, T, in unit of K.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

<float9> Number of electrons involved in the reaction, n.

<float10> Electrode potential, V, in unit of V.

Example

The following is a sample input card:

BC = YFLUX_HOR SS 14 0 1000. 0.001 4.e-5 1. 1. 353. 0. 0.5 2. 0.

BC = YFLUX_HOR SS <bc_id> <integer> <floatlist>
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Technical Discussion

For electrochemical reactions such as the hydrogen-oxidation reaction (HOR), surface 
overpotential is relatively small such that the Butler-Volmer kinetic model can be 
linearized to yield:

where r is the surface reaction rate in units of moles/cm2-s;   denotes the product of 
interfacial area per unit volume by exchange current density, which has units of A/cm3; 
H is the catalyst layer or catalyzed electrode thickness in unit of cm; n is the number of 
electrons involved in the electrochemical reaction; R is the universal gas constant 
( 8.314 J/mole-K); T is temperature in unit of K; c and  are, respectively, species 
and reference molar concentrations in units of moles/cm3; β is reaction order; αa and αc 
are, respetively, the anodic and cathodic transfer coefficients; V and  are, 
respectively, the electrode and electrolyte potentials in unit of V; and  is the open-
circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”, 
in ASME Proceedings of FUELCELL2006-97032 (2006).
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4.10.160 YFLUX_ORR

Description/Usage (WIC/MASS)

The YFLUX_ORR card enables computation of the molar flux of the specified species 
at the specified boundary (i.e., at the electrode surface) using the Tafel kinetics such as 
that for the oxygen-reduction reaction in polymer-electrolyte-membrane fuel cells.

The <floatlist> consists of 9 values; definitions of the input parameters are as follows:

YFLUX_ORR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Cathodic direction transfer coefficient, αc.

<float5> Temperature, T, in unit of K.

<float6> Electrode potential, V, in unit of V.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

<float9> Number of electrons involved in the reaction, n.

Example

The following is a sample input card:

BC = YFLUX_ORR SS 15 1 0.01 0.001 4.e-5 1. 353. 0.7 1.18 1. 4.

BC = YFLUX_ORR SS <bc_id> <integer> <floatlist>
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Technical Discussion

For electrochemical reactions such as the oxygen-reduction reaction (ORR), surface 
overpotential is large and negative such that the first exponential term in the Butler-
Volmer kinetic model is much smaller than the second term and thus can be dropped to 
yield the Tafel kinetic model:

where r is the surface reaction rate in units of moles/cm2-s;  denotes the product of 
interfacial area per unit volume by exchange current density, which has units of A/cm3; 
H is the catalyst layer or catalyzed electrode thickness in unit of cm; n is the number of 
electrons involved in the electrochemical reaction; F is the Faraday’s constant 
( 96487 C/mole); c and  are, respectively, species and reference molar 
concentrations in units of moles/cm3; β is reaction order; αc is the anodic and cathodic 
transfer coefficient; R is the universal gas constant ( 8.314 J/mole-K); T is 
temperature in unit of K; V and  are, respectively, the electrode and electrolyte 
potentials in unit of V; and  is the open-circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”, 
in ASME Proceedings of FUELCELL2006-97032 (2006).
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4.10.162 YFLUX_USER

Description/Usage (WIC/MASS)

This boundary condition card is used to set mass flux to a user-prescribed function and 
integrate by parts again. The user should provide detailed flux conditions in the 
mass_flux_user_surf routine in user_bc.c. The flux quantity is specified on a per mass 
basis so the heat and mass transfer coefficients are in units of L/t.

Definitions of the input parameters are as follows:

YFLUX_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer> Species number of concentration.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutines so the user can vary 
the parameters of the boundary condition. This list of float 
values is passed as a one-dimensional double array to the 
appropriate C function.

Examples

The following is a sample input card:

BC = YFLUX_USER SS 2  0 .5 .5

Technical Discussion

No discussion.

Theory

No Theory.

BC = YFLUX_USER SS <bc_id> <integer> <float_list>



Revised: 6/12/13 455

4.10.163   

FAQs

No FAQs.

References

No References.

4.10.163

4.10.164 YFLUX_ALLOY

Description/Usage (WIC/MASS)

This boundary condition card calculates the surface integral for a mass flux transfer 
model for the evaporation rate of molten metal.

The <float_list> requires six values; definitions of the input parameters are as follows: 

YFLUX_ALLOY Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> Species number

<float1> Liquidus temperature of metal alloy, .

<float2> Base Concentration, .

<float3> Coefficient c0.

<float4> Coefficient c1

<float5> Coefficient c2

<float6> Coefficient c3

BC = YFLUX_ALLOY  SS  <bc_id>  <integer1> <float_list>

Tm

y
∞
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Examples

The following is a sample input card:

BC = YFLUX_ALLOY SS 10  0 1623.0 0.5 0.01 -1e-3 1e-4 -1e-5

Technical Discussion

Basically the difference between this model and the simple convective mass transfer 
coefficient (say ki for YFLUX) is that the transfer coefficient here (the exponential 
term) has a cubic dependence on temperature.

(4-132)

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.165 YTOTALFLUX_CONST

Description/Usage (WIC/MASS)

This boundary condition card is used to specify a constant total mass flux (including 
contribution from diffusion, migration, and convection) of a given species. This card 
enables the treatment of the situation in which diffusion, migration and convection 
fluxes cancel each other such that the total flux vanishes (e.g. is equal to zero). This 
flux quantity can be specified on a per mass basis (i.e., with units of g/cm2/s) or on a 
per mole basis (e.g. with units of moles/cm2/s), depending on the user’s choice of units 
in the species concentration unknown.

Definitions of the input parameters are as follows:

YTOTALFLUX_CONST

BC = YTOTALFLUX_CONST SS <bc_id> <integer> <float>

n ji⋅ c0 c1 T Tm–( ) c2 T Tm–( )
2

– c3 T Tm–( )
3

+ +[ ]exp yi y
∞
i–( )⋅=
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Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number of concentration.

<float> Value of total mass flux - the units of this quantity 
depends on the user’s choice of units for species 
concentration.

Examples

Following is a sample card:

BC = YTOTALFLUX_CONST SS 5  0  0.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.166 VL_EQUIL

Description/Usage (SIC/MASS)

This boundary condition card enforces vapor-liquid equilibrium between a gas phase 
and a liquid phase using Raoult’s law. The condition only applies to interphase mass, 
heat, and momentum transfer problems with discontinuous (or multivalued) variables 
at an interface, and it must be invoked on fields that employ the Q1_D or Q2_D 
interpolation functions to “tie” together or constrain the extra degrees of freedom at the 
interface in question.

The <integer_list> has three values and the <float_list> has five values; definitions of 
the input parameters are as follows:

VL_EQUIL Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<integer1> Species number.

<integer2> Element block ID of liquid phase.

<integer3> Element block ID of gas phase.

<float1> Base ambient pressure in gas phase.

<float2> Molecular weight of first volatile species.

<float3> Molecular weight of second volatile species.

<float4> Molecular weight of condensed phase.

<float5> Molecular weight of insoluble gas phase.

This boundary condition is applied to ternary, two-phase flows that have rapid mass 
exchange between phases, rapid enough to induce a diffusion velocity at the interface, 
and to thermal contact resistance type problems. The best example of this is rapid 
evaporation of a liquid component into a gas. In the current discontinuous mass transfer 
model, we must require the same number of components on either side of interface. In 

BC = VL_EQUIL SS <bc_id> <integer_list> <float_list>
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this particular boundary, two of three components are considered volatile, so they 
participate in both vapor and liquid phases. The third component is considered either 
non-volatile or non-condensable, so it remains in a single phase.

Examples

A sample input card follows for this boundary condition:

BC = VL_EQUIL SS 4 0 1 2 1.e+06 28. 18. 1800. 18.

The above card demonstrates these characteristics: species number is “0”; liquid phase 
block id is 1; gas phase block id is 2; ambient pressure is 1.e6 Pa; the molecular 
weights of the volatile species are 28 and 18; of the condensed phase and insoluble 
portion of the gas phase, 1800 and 18, respectively.

Technical Discussion

One of the simplest forms of the equilibrium relation is the Raoult’s law, where the 
mole fraction of a species is equal to its mole fraction in the liquid multiplied by the 
ratio of its pure component vapor pressure to the total pressure in the system.

(4-133)

where yi are the mole fraction of species i in the gas phase and xi is the mole fraction in 
the liquid phase. The molecular weights required in this boundary card are used for 
converting mass fractions to mole fractions. The temperature dependency in the 
equilibrium expression comes from a temperature-dependent vapor pressure model. 
Either Riedel or Antoine temperature-dependent vapor pressure model can be specified 
in the VAPOR PRESSURE material card in order to link temperature to Raoult’s law.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA, 
December 10, 1998, A. C. Sun

Schunk, P.R. and Rao, R.R. 1994. “Finite element analysis of multicomponent two-
phase flows with interphase mass and momentum transport,” IJNMF, 18, 821-842.

 

yiP
total

xiP
v

i  ∀=



460 Revised: 6/12/13

4.10.167  VL_POLY  

4.10.167 VL_POLY

Description/Usage (SIC/MASS)

This boundary condition card enforces vapor-liquid equilibrium between a gas phase 
and a liquid phase using Flory-Huggins activity expression to describe polymer-solvent 
mixtures. The condition only applies to interphase mass, heat, and momentum transfer 
problems with discontinuous (or multivalued) variables at an interface, and it must be 
invoked on fields that employ the Q1_D or Q2_D interpolation functions to “tie” 
together or constrain the extra degrees of freedom at the interface in question. 

There are three input values in the <integer_list>; definitions of the input parameters 
are as follows:

VL_POLY Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

{char_string} the concentration basis; two options exist:

MASS - the concentration variable in Goma is equivalent 
to mass fractions.

VOLUME - the concentration variable in Goma is based 
on volume fractions for all species.

<integer1> Species number of concentration.

<integer2> Element block id that identifies the liquid phase.

<integer3> Element block id that identifies the vapor phase.

<float> Total pressure of the system.

Examples

This is a sample input card for this boundary condition:

BC = VL_POLY SS 7 MASS 0 1 2 1.e+05

BC = VL_POLY SS <bc_id> {char_string} <integer_list> <float>
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Technical Discussion

For a mixture of dissimilar molecules, such as in a solvent-polymer system, Raoult’s 
law is no longer valid. The evaporation of the volatile solvent component is greatly 
influenced by the presence of large, chain-like polymers. The phase equilibrium 
relation can be rewritten for this type of mixture.

(4-134)

(4-135)

γi is defined as the activity coefficient of species i and is considered a departure 
function from the Raoult’s law. The fugacity in the liquid is reformulated in terms of 
volume fraction φi for polymer mixtures to avoid referencing the molecular weight of 
polymer (Patterson, et. al., 1971).

Based on an energetic analysis of excluded volume imposed by the polymer, the 
activity coefficient model of Flory-Huggins is widely used for polymer-solvent 
mixtures (Flory, 1953). The general form of the Flory-Huggins model for 
multicomponent mixtures is a summation of binary interactions terms; i.e.,

. (4-136)

 is the molar volume of component i (or the average-number molar volume if i is a 
polymer). δki is the Dirac delta. χjk is known as the Flory-Huggins interaction 
parameter between components j and k, and is obtainable by fitting the solubility data 
to the above model. For a simple binary pair (solvent (1)-polymer (2)) and assuming 

, the above model reduces to a simpler form.

(4-137)

Theory

No Theory.

FAQs

No FAQs.
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4.10.169 VL_EQUIL_PSEUDORXN

Description/Usage (WIC/MASS)

This boundary condition card enforces vapor-liquid equilibrium between a gas phase 
and a liquid phase species component using Raoult’s law expressed via a finite-rate 
kinetics formalism. The condition only applies to problems containing internal 
interfaces with discontinuous (or multilevel) species unknown variables. The species 
unknown variable must employ the Q1_D or Q2_D interpolation functions in both 
adjacent element blocks. This boundary condition constrains the species equations on 
both sides of the interface (i.e., supplies a boundary condition) by specifying the 
interfacial mass flux on both sides.

Definitions of the input parameters are as follows:

VL_EQUIL_PSEUDORXN

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> Species number.

<integer2> Element Block ID of the liquid phase.

BC = VL_EQUIL_PSEUDORXN SS <bc_id> <integer_list> <float>
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<integer3> Element Block ID of the gas phase.

<float> Rate constant for the forward reaction in units of length 
divided by time.

This boundary condition is typically applied to multicomponent two-phase flows that 
have rapid mass exchange between phases. The best example of this is rapid 
evaporation of a liquid component into a gas.

Examples

The following sample input card

BC = VL_EQUIL_PSEUDORXN SS 4 0 1 2 100.

demonstrates the following characteristics: species number is “0”; liquid phase element 
block id is “1”; gas phase element block id is “2”; a forward rate constant of 100.0 cm 
s-1.

Technical Discussion

The VL_EQUIL_PSEUDORXN boundary condition uses the following equations 
representing a kinetic approach to equilibrium expressed by Raoult’s law, relating 
species k on the liquid side to species k on the gas side.

(4-138)

(4-139)

where

  and  (4-140)

and where

 (4-141)

The usage of the same index, k, on either side of the interface is deliberate and 
represents a stoichiometric limitation to this type of boundary condition.  and  
are the mass fraction of species k on the liquid and gas sides of the interface, 
respectively.  is the molecular weight of species k.  is the source term for 
creation of species k in the liquid phase at the interface (mol cm-2 s-1).  is the pseudo 
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reaction rate (cm s-1) input from the boundary condition card.  is the concentration 
equilibrium constant, which for the restricted stoichiometry cases covered by this 
boundary condition, is unitless.  is the vapor pressure of gas species k above a liquid 
entirely consisting of liquid species k. It is a function of temperature.  is the average 
concentration in the liquid (mol cm-3).  and  are the liquid and gas concentrations 
of species k (mol cm-3).

The choice for the independent variable is arbitrary, although it does change the actual 
equation formulation for the residual and Jacobian terms arising from the boundary 
condition. The internal variable Species_Var_Type in the 
Uniform_Problem_Description structure may be queried to determine what the 
actual species independent variable is. Also note, if mole fractions or molar 
concentration are chosen as the independent variable in the problem, the convention 
has been to formulate terms of the residuals in units of moles, cm, and seconds. 
Therefore, division of the equilibrium equations by  would occur before their 
inclusion into the residual.  and  are the diffusive flux of species k (gm cm-2 s-1) 
relative to the mass averaged velocity.  is the velocity of the interface. A typical 
value of  that would lead to good numerical behavior would be 100 cm s-1, 
equivalent to a reaction with a reactive sticking coefficient of 0.01 at 1 atm and 300 K 
for a molecule whose molecular weight is near to N2 or H2S.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.170 IS_EQUIL_PSEUDORXN

Description/Usage (WIC/MASS)

This boundary condition card enforces equilibrium between a species component in 
two ideal solution phases via a finite-rate kinetics formalism. The condition only 
applies to problems containing internal interfaces with discontinuous (or multilevel) 

BC = IS_EQUIL_PSEUDORXN SS <bc_id> <integer_list> <float>
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species unknown variables. The species unknown variable must employ the Q1_D or 
Q2_D interpolation functions in both adjacent element blocks. This boundary 
condition constrains the species equations on both sides of the interface (i.e., supplies a 
boundary condition) by specifying the interfacial mass flux on both sides.

IS_EQUIL_PSEUDORXN is equivalent to the VL_EQUIL_PSEUDORXN except for 
the fact that we do not assume that one side of the interface is a gas and the other is a 
liquid. Instead, we assume that both materials on either side of the interface are ideal 
solutions, then proceed to formulate an equilibrium expression consistent with that.

The <integer_list> requires three values; definitions of the input parameters are as 
follows:

IS_EQUIL_PSEUDORXN

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> Species number.

<integer2> Element Block ID of the first phase, the “+” phase.

<integer3> Element Block ID of the second phase, the “-” phase.

<float> Rate constant for the forward reaction in units of length 
divided by time.

Examples

The sample card:

BC = IS_EQUIL_PSEUDORXN SS 4 0 1 2 100.

demonstrates the following characteristics: species number is “0”; the “+” phase 
element block id is “1”; the “-” phase element block id is “2”; a forward rate constant of 
100. cm s-1.

Technical Discussion

The IS_EQUIL_PSEUDORXN boundary condition uses the following equations 
representing a kinetic approach to equilibrium expressed by an ideal solution model for 
thermodynamics on either side of the interface. Initially, we relate species k on the + 
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side to species k on the - side of the interface via a kinetic formulation, whose rate 
constant is fast enough to ensure equilibrium in practice. However, later we may extend 
the capability to more complicated stoichiometric formulations for equilibrium, since 
the formulation for the equilibrium expression is readily extensible, unlike Goma’s 
previous treatment.

(4-142)

(4-143)

where

  and (4-144)

The “-” phase is defined as the reactants, while the “+” phase is defined to be the 
products. The expression for the concentration equilibrium constant, , is based on 
the ideal solution expression for the chemical potentials for species k in the two phases 
[Denbigh, p. 249],

(4-145)

where  is defined as the chemical potential of species k in its pure state (or a 
hypothetical pure state if a real pure state doesn’t exist) at temperature T and pressure 
P.  is related to the standard state of species k in phase +, , which is 
independent of pressure, through specification of the pressure dependence of the pure 
species k. Two pressure dependencies are initially supported:

PRESSURE_INDEPENDENT (4-146)

IDEAL_GAS . (4-147)

With these definitions,  can be seen to be equal to

(4-148)
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. (4-149)

The chemical potential for a species in a phase will be calculated either from 
CHEMKIN or from the Chemical Potential, Pure Species Chemical Potential, and 
Standard State Chemical Potential cards in the materials database file.

The choice for the independent variable for the species unknown is relatively arbitrary, 
although it does change the actual equation formulation for the residual and Jacobian 
terms arising from the boundary condition. The internal variable Species_Var_Type in 
the Uniform_Problem_Description structure is queried to determine what the actual 
species independent variable is. A choice of SPECIES_UNDEFINED_FORM is 
unacceptable. If either mole fractions or molar concentration is chosen as the 
independent variable in the problem, the convention has been to formulate terms of the 
residuals in units of moles, cm, and seconds. Therefore, division of the equilibrium 
equations by  occurs before their inclusion into the residual.  and  are the 
diffusive flux of species k (gm cm-2 s-1) relative to the mass-averaged velocity.  is 
the velocity of the interface. A typical value of  that would lead to good numerical 
behavior would be 100 cm s-1, equivalent to a reaction with a reactive sticking 
coefficient of 0.01 at 1 atm and 300 K for a molecule whose molecular weight is near to 
N2 or H2S.

Theory

No Theory.

FAQs

No FAQs.

References

Denbigh, K., The Principles of Chemical Equilibrium, Cambridge University Press, 
Cambridge, 1981

 

4.10.171 SURFACE_CHARGE

Description/Usage (SIC/MASS)

The SURFACE_CHARGE card specifies the electrostatic nature of a surface: 
electrically neutral, positively charged or negatively charged.

BC = SURFACE_CHARGE SS <bc_id> <integer> <float> 
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Definitions of the input parameters are as follows: 

SURFACE_CHARGEName of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Index of species to which surface charge condition 
applies.

<float> z, value of surface charge.

0 - electroneutrality
positive z - positively charged surface
negative z - negatively charged surface

Example

The following input card indicates that on side set 1 species 1 is electrically neutral:

BC = SURFACE_CHARGE SS 1   1  0.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Category 7: Boundary Conditions for the Continuity Equation

The continuity equation rarely requires a boundary condition as it represents an overall mass 
balance constraint on the velocity field for the fluid, viz. normally it is used to enforce 



Revised: 6/12/13 469

4.10.172  P 

incompressibility. Boundary conditions for pressure are most often put on the fluid-momentum 
equations as a part of the stress condition at an inflow or outflow plane (see for example boundary 
condition cards FLOW_PRESSURE, FLOW_HYDROSTATIC, etc. ). On occasion, however, we 
can use a pressure condition as a pressure datum, as the Dirichlet pressure condition below 
allows, though the user must keep in mind that it is a condition on continuity and not momentum. 
When using pressure stabilization, viz. PSPG techniques, then also there is an occasional need for 
a boundary condition on this equation.

4.10.172 P

Description/Usage (DC/CONTINUITY)

This Dirichlet boundary condition specification is used to set a constant pressure on a 
node set. It is generally used for specifying a pressure datum on a single-node node set. 
The pressure datum is useful for setting the absolute value of the pressure, which, for 
many problems, is indeterminate to a constant. Pressure datums are especially 
important for closed flow problems, such as the lid driven cavity, where there is no 
inflow or outflow. Mass conservation problems can arise if this card is used to specify 
the pressure along a group of nodes, since this equation replaces the continuity 
equation. To specify pressure for a group of nodes, it is preferable to use the flow 
pressure boundary condition, which is applied in a weak sense to the momentum 
equation and does not cause mass conservation problems. Definitions of the input 
parameters are as follows:

P One-character boundary condition name (<bc_name>) that 
defines the pressure.

NS Type of boundary condition (<bc_type>), where NS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of pressure.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 

BC = P   NS <bc_id> <float1> [float2] 
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this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Example

The following are sample cards for specifying a pressure Dirichlet card:
BC = P NS 7  0.
BC = P NS 7  0. 1.0 

where the second form is an example using the “residual” method for applying the 
same Dirichlet condition.

Technical Discussion

See the technical discussion for the UVW velocity for a discussion of the two ways of 
applying Dirichlet boundary conditions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.173

4.10.174 PSPG

Description/Usage (WIC/CONTINUITY)

This special type of boundary condition exists for pressure-stabilized incompressible 
flow simulations only. This card should be used only if the value of the Pressure 
Stabilization card has been set to yes. In conjunction with this feature, equal-order 
interpolation should be used for the velocity and pressure. If PSPG is used, a boundary 
integral will be added to the continuity equation to represent the gradients of velocity in 

BC = PSPG SS <bc_id> 
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the momentum residual, which has been added onto the continuity equation for 
stabilization. This term is only needed on inflow and outflow boundaries; in the rest of 
the domain, it cancels out. For more details about the derivation of this term, see the 
paper by Droux and Hughes (1994).

This boundary condition card requires no integer or floating point constants. 
Definitions of the input parameters are as follows:

PSPG Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

Examples

The following is an example of using this card on both the inflow and outflow planes of 
the domain.

BC = PSPG  SS  40
BC = PSPG  SS  20

Technical Discussion

Please see Rao (1996) memo for a more detailed discussion of pressure stabilization 
and its implementation in Goma.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-001.0: Pressure Stabilization in Goma using Galerkin Least Squares, July 17, 
1996, R. R. Rao

Droux, J. J. and  T. J. R. Hughes, “A Boundary Integral Modification of the Galerkin 
Least Squares Formulation for the Stokes Problem, ” Comput. Methods Appl. Mech. 
Engrg., 113 (1994) 173-182.
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4.10.176 PRESSURE DATUM

Description/Usage

This card is used to set a hydrodynamic pressure datum on fluid mechanics problems 
that contain no implicit or explicit boundary conditions on stress or pressure. 
Definitions of the input parameters are as follows:

<integer> Element number on which the datum is set. This number 
should correspond to that shown when viewing the mesh, 
less one, as the numbering convention in the C language 
starts at zero rather than at one.

<float> Value of the hydrodynamic pressure datum.

Noteworthy is that this card is optional, and if used, is placed outside the BC section 
and just below it. 

Examples

Following is a sample card:

PRESSURE DATUM = 10 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

PRESSURE DATUM =  <integer>  <float>
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4.10.177

Category 8: Boundary Conditions for the Porous Equations

The following conditions are applied as boundary conditions to the porous-flow equations. These 
conditions include strong Dirichlet conditions, such as hard sets on porous phase pressure on a 
boundary as a constant or function of position, weak-form conditions, such as a specified phase 
flux from a convective mass transfer model or a constant flux, and a host of interfacial conditions 
for impregnation, etc. The porous flow equations are actually scalar equations that represent 
component mass balances. Specifically, there is one component mass balance for the liquid phase, 
one for the gas phase, and one for the solid phase. The corresponding three dependent variables in 
these balances are the liquid phase pressure, the gas phase pressure, and the porosity, respectively. 
These variables are related to the flow through a boundary by their normal gradients (Darcy’s law 
formulation) and to the local inventory of liquid and gas through the saturation function. These 
implicit terms can often lead to some confusion in setting the boundary conditions so it is 
recommended that the user consult the supplementary documentation referenced in the following 
porous boundary condition cards.

4.10.178 POROUS_LIQ_PRESSURE

Description/Usage (DC/POR_LIQ_PRES)

This Dirichlet boundary condition is used to set the liquid phase pore pressure at a node 
set. It can be applied to a node set on a boundary of a POROUS_SATURATED, 
POROUS_UNSATURATED or POROUS_TWO_PHASE medium type (see Media Type 
card).

POROUS_LIQ_PRESSURE

Boundary condition name (bc_name).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<float1> Value of liquid phase pressure.

[float2] An optional parameter (that serves as a flag to the code 
for a Dirichlet boundary condition). If a value is present, 

BC = POROUS_LIQ_PRESSURE NS <bc_id> <float1> [float2]
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and is not -1.0, the condition is applied as a residual 
equation. Otherwise, it is a "hard set" condition and is 
eliminated from the matrix. The residual method must 
be used when this Dirichlet boundary condition is used 
as a parameter in automatic continuation sequences.

Examples

The boundary condition card

BC = POROUS_LIQ_PRESSURE NS 101 {pcmin}

sets the porous liquid pressure at the boundary denoted by node set 101 to the value 
represented by the APREPRO variable {pcmin}.

Technical Discussion

Setting the porous liquid pressure to a value cannot be done independently of the 
saturation as the two are related through the vapor pressure curve for simulations in 
partially saturated media  (see Saturation model card). Keep in mind that when using 
this card in these situations, you are setting also the saturation level based on the 
capillary pressure, defined as . The convention in Goma is that when 
the capillary pressure is greater than zero, the saturation level is less than unity, viz. 
the medium is partially saturated. When  is less than zero, i.e., when the liquid 
phase pressure is greater than the gas phase pressure, then the medium is saturated (in 
this case the capillary pressure is poorly defined, though). Also, for Media Type options 
of POROUS_UNSATURATED, the ambient gas pressure is constant within the pore 
space and is set by the Porous Gas Constants card in the material file. This boundary 
condition, when setting the liquid phase pressure, must be used with consideration of 
these definitions.

For saturated media (viz. Media Type of POROUS_SATURATED), this discussion is 
not relevant. In this case, one must only consider the pressure level as it may effect the 
isotropic stress in poroelastic problems.

Theory

No Theory.

FAQs

No FAQs.

pgas pliq– pc=

pc
pc
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References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.10.179 POROUS_LIQ_FLUX_CONST

Description/Usage (WIC/POR_LIQ_PRES)

This boundary condition sets the flux of liquid-phase solvent to a constant value in the 
Galerkin finite element weak sense. Specifically, this flux is applied to a side set as a 
weak-integrated constant and will set the net flux of liquid phase solvent component (in 
both gas and liquid phases) to a specified value. It can be applied to material regions of 
Media Type POROUS_SATURATED, POROUS_UNSATURATED, and 
POROUS_TWO_PHASE (see Technical Discussion below).

 Definitions of the input parameters are as follows:

POROUS_LIQ_FLUX_CONST

Name of boundary condition (<bc_name>). 

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Value of the liquid-solvent total flux, in M/L2-t.

[float2] This optional parameter is not applicable to this 
boundary condition type, even though it is parsed if 
present. This parameter is used for boundary conditions 
of the Dirichlet type.

Examples

The input card

BC = POROUS_LIQ_FLUX_CONST SS <bc_id> <float1> [float2]
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BC = POROUS_LIQ_FLUX_CONST SS 102 200.0

sets the total liquid-solvent mass flux, in both gas and liquid phases, to 200.0 along the 
side set 102.

Technical Discussion

This boundary condition is of the mathematical form:

(4-150)

where  is the user supplied convection velocity of the stress-free state as defined on 
the Convective Lagrangian Velocity card (this is usually zero except in advanced 
cases),  is the total bulk density of liquid phase solvent (in both gas and liquid 
phase, and hence depends on the local saturation),  is the pure liquid density,  is the 
porosity,  is the liquid phase pressure, and the other quantities on the second term 
help define the Darcy velocity. The const quantity is the input parameter identified 
above (<float1>). Note that this sets the flux relative to the boundary motion to the 
const value, but by virtue of the Galerkin weak form this condition is automatically 
applied with const=0 if no boundary condition is applied at the boundary. In a saturated 
case, viz. POROUS_SATURATED media type, this condition is applied as

. (4-151)

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

ρl
T
n vs( )φ

ρlkkl

µl

------------ pl∇– 
 –⋅ const=

vs

ρ
T

l
ρl φ

pl

ρln vs( )φ
ρlk

µl

------- pl∇– 
 –⋅ const=



Revised: 6/12/13 477

4.10.180  POROUS_GAS_PRESSURE 

4.10.180 POROUS_GAS_PRESSURE

Description/Usage (DC/POR_GAS_PRES)

This Dirichlet boundary condition is used to set the gas-phase pore pressure at the 
boundary of a POROUS_TWO_PHASE medium type (see Media Type card). This 
condition makes no sense on other POROUS Media Types; the gas pressure in those 
cases is constant and set using the Porous Gas Constants card (Microstructure 
Properties).

POROUS_GAS_PRESSURE

Boundary condition name (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<float> Value of gas phase pressure.

[float2] An optional parameter (that serves as a flag to the code 
for a Dirichlet boundary condition). If a value is present, 
and is not -1.0, the condition is applied as a residual 
equation. Otherwise, it is a “hard set” condition and is 
eliminated from the matrix. The residual method must 
be used when this Dirichlet boundary condition is used 
as a parameter in automatic continuation sequences.

Examples

The boundary condition card

BC = POROUS_GAS_PRESSURE NS 101 {pgas}

sets the porous gas pressure at the boundary denoted by node set 101 to the value 
represented by the APREPRO variable {pgas}.

Technical Discussion

Setting the porous liquid pressure to a value cannot be done independently of the 
saturation as the two are related through the vapor pressure curve for simulations in 

BC = POROUS_GAS_PRESSURE NS <bc_id> <float1> [float2]
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partially saturated media (see Saturation model card). Keep in mind that when using 
this card in these situations, you are setting also the saturation level based on the 
capillary pressure, defined as . The convention in Goma is that when 
the capillary pressure is greater than zero, the saturation level is less than unity, viz. 
the medium is partially saturated. When  is less than zero, i.e., when the liquid 
phase pressure is greater than the gas phase pressure, then the medium is saturated (in 
this case the capillary pressure is poorly defined, though). Also, this pressure sets the 
datum of pressure for deformable porous media and must be set in a manner compatible 
with the solid-stress values on the boundaries of the porous matrix.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

4.10.181

4.10.182 POROUS_GAS

Description/Usage (SIC/POR_LIQ_PRES)

This boundary condition card is used to equate flux of solvent in the porous medium 
and external gas. The condition is similar to the solid-liquid interface conditions that 
apply to interfaces between a porous medium and an external gas (in which the energy 
equation is used to solve for solvent concentration in the gas phase). This boundary 
condition is still in development.

There are three values in the <integer_list> and two values in the <float_list> for which 
to supply values; definitions of the input parameters are as follows:

BC = POROUS_GAS SS <bc_id> <integer_list> <float_list>

pgas pliq– pc=

pc
pc
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POROUS_GAS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer1> Element block ID of solid, porous phase from the 
EXODUS II database.

<integer2> Element block ID of gas phase from the EXODUS II 
database.

<integer3> Species number of liquid phase in porous medium.

<float1> Vapor density.

<float2> Factor to allow normal velocity in gas.

Examples

Users are referred to the Cairncross (1999) reference for the best example of card 
usage.

Technical Discussion

This highly specialized boundary condition is best explained in a paper by Cairncross 
(1999).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-028.0: Modeling Drying of Dip-Coated Films with Strongly-Coupled Gas Phase 
Natural Convection, R. A. Cairncross, 1999.
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4.10.184 POROUS_GAS_FLUX_CONST

Description/Usage (WIC/POR_GAS_PRES)

This boundary condition card is used to set the flux of gas-phase solvent to a constant 
value in the Galerkin finite element weak sense. Specifically, this flux is applied to a 
side set as a weak-integrated constant and will set the net flux of gas phase solvent 
component (in both gas and liquid phases, but because the gas solvent is assumed 
insoluble in the liquid phase, the liquid phase portion vanishes) to a specified value. 
This boundary condition can be applied to material regions of Media Type 
POROUS_TWO_PHASE only, as only this type contains a field of gas-phase solvent 
flux. (See technical discussion below).

 Definitions of the input parameters are as follows:

POROUS_GAS_FLUX_CONST

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> Value of the gas-solvent total flux, in M/L2-t.

[float2] This optional parameter is not applicable to this 
boundary condition type, even though it is parsed if 
present. This parameter is used for boundary conditions 
of the Dirichlet type.

Examples

The input card

BC = POROUS_LIQ_FLUX_CONST SS 102 200.0

sets the total gas-solvent mass flux, in the gas phase only, to 200.0 along the side set 
102.

BC = POROUS_GAS_FLUX_CONST SS <bc_id> <float1> [float2]
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Technical Discussion

This boundary condition is of the mathematical form:

(4-152)

where  is the user supplied convection velocity of the stress-free state as defined on 
the Convective Lagrangian Velocity card (this is usually zero except in advanced 
cases),  is the total bulk density of gas phase solvent (in both gas and liquid phase, 
and hence depends on the local saturation),  is the pure gas density,  is the porosity, 

 is the gas-phase pressure, and the other quantities on the second term help define the 
Darcy velocity. The const quantity is the input parameter described above (<float1>). 
Note that this sets the flux relative to the boundary motion to the const value, but by 
virtue of the Galerkin weak form this condition is automatically applied with const = 0 
if no boundary condition is applied at the boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.185 POROUS_CONV

Description/Usage (WIC/POR_LIQ_PRES)

This boundary condition is used to set the total flux of the liquid phase solvent (in both 
the gas and liquid phase) at the surface of a POROUS_UNSATURATED or 
POROUS_TWO_PHASE medium to the net convection of solvent due to a 
superimposed convective Lagrangian velocity (see Media Type card and Convective 
Lagrangian Velocity card). The only input is an integer indicating which component of 
the liquid phase solvent is to be set (as of 11/2/01 this component selectability option is 

BC = POROUS_CONV SS <bc_id> <integer>
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not available and as indicated below should be set to zero; this card has not been 
tested).

Definitions of the input parameters are as follows:

POROUS_CONV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number of transported species. (currently only 
used for multicomponent species in the phases, which as 
of 11/2/01 is not active, so set to zero).

Examples

Following is a sample card:

BC = POROUS_CONV SS 12 0 

that applies a convective flux to side set 12 for porous liquid phase species 0. This 
species number is currently not used and ignored.

Technical Discussion

This boundary condition has the following form

(4-153)

where the left hand side is the total flux of the solvent i in the medium, which includes, 
in order, the flux due to Darcy flow of gas vapor, the Darcy flow of liquid solvent, the 
diffusive flux of gas vapor in the pore space and the diffusive flux of liquid solvent in 
the liquid phase.  is the user supplied convection velocity of the stress-free state as 
defined on the Convective Lagrangian Velocity card. As of now (11/2/01), this 
condition is used for a single component liquid solvent and has not been furbished for a 
single component of that solvent. Also, as of 11/02/01 the condition has not been 
tested.

Theory

No Theory.
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FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.10.186 POROUS_FLUX

Description/Usage (WIC/POR_LIQ_PRES)

This boundary condition is used to set the total flux of the liquid phase solvent (in both 
the gas and liquid phase) at the surface of a POROUS_UNSATURATED or 
POROUS_TWO_PHASE medium to mass transfer coefficient times driving force (see 
Media Type card). The flux quantity is specified on a per mass basis so the mass 
transfer coefficient is in units of L/t, and the sink density is in units of M/L3.

The <float_list> for this boundary condition has four values; the definitions of the input 
parameters are as follows:

POROUS_FLUX Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number of transported species (currently only 
used for multicomponent species in the phases, which as 
of 11/2/01 is not active; so set to zero).

<float1> Value of mass transfer coefficient, h1 in units of L/t, 
consistent with gas phase concentration driving force.

BC = POROUS_FLUX SS <bc_id> <integer> <float_list>
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<float2> Driving force concentration in external phase, i.e., sink 
density,  in units of M/L3.

<float3> Value of pressure-driven mass transfer coefficient, h2 in 
units of 1/L, for a liquid exiting a partially saturated 
domain.

<float4> Driving force concentration in external phase, i.e., sink 
pressure for liquid extraction,  in units of M/L/t.

Examples

Following is a sample card:

BC = POROUS_FLUX SS 12 0 0.03 0. 0. 0. 0.

This card applies the lumped mass transfer model for the liquid phase solvent with a 
mass transfer coefficient of 0.03 and a sink density of 0.0 for the total flux. The 
boundary condition is applied to side set 12 and to the species number 0. This species 
number is currently not used and ignored.

Technical Discussion

The mathematical form for this boundary condition is as follows

(4-154)

where the left hand side is the total flux of the liquid solvent i in the medium, which 
includes, in order, the flux due to Darcy flow of gas vapor, the Darcy flow of liquid 
solvent, the diffusive flux of gas vapor in the pore space and the diffusive flux of liquid 
solvent in the liquid phase. The parameters are , , , and  as defined on the 
input card.  is the user supplied convection velocity of the stress-free state as defined 
on the Convective Lagrangian Velocity card.

At the present time (11/2/01), this condition is only used for single component liquid 
phases and has not been furbished for multicomponent capability yet. Note that usually 
the second term on the right is turned off, as in the example above, unless the liquid 
pressure at the surface of the sample is greater than the external pressure. This term was 
added for applications in which liquid is being squeezed out of a medium and then 
drips off or disappears, as liquid is not allowed to be sucked back in (Heaviside 
function, H), although the condition could be furbished for this.
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Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.10.187 POROUS_PRESSURE

Description/Usage (PCC/POR_LIQ_PRES)

This condition enforces a continuous fluid-phase pressure between material types, and 
is applied to a side set between two materials, one of type POROUS_SATURATED, 
POROUS_UNSATURATED, or POROUS_TWO_PHASE, and the other of type 
CONTINUOUS (see material card Media Type). Basically it sets the continuity of 
hydrodynamic pressure in the continuous fluid to the liquid Darcy pressure in the 
porous medium, at the interface. The input data is as follows:

POROUS_PRESSURE 

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where NS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<integer1> Element block ID of the porous phase medium.

<integer2> Element block ID of the continuous fluid phase medium. 

BC = POROUS_PRESSURE SS <bc_id> <integer1> <integer2>
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Examples

An example input card for this boundary condition follows:

BC = POROUS_PRESSURE NS 101  1  2

This card sets the Darcy liquid phase pressure (p_liq in the output EXODUS II file) in 
element block 1 equal to the continuous phase hydrodynamic pressure (P in the output 
EXODUS II file) in element block 2.

Technical Discussion

This condition is essential for porous impregnation problems involving conjugate 
materials, one porous and one continuous. The mathematical form of this boundary 
condition is trivial

(4-155)

but its implementation is not; a memo describing the details of this boundary condition 
and how it is applied is cited below. This continuity of pressure is critical for the 
sensitivity of pressurizing the continuos phase to the penetration rate of the porous 
phase. Interestingly, it forces one to set the pore-phase pressure datum to the same 
datum in the continuous phase, and that effects the level of the Saturation versus 
capillary pressure curve (see Saturation material card).

Theory 

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

ppore pcontinous=
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4.10.189 P_LIQ_USER

Description/Usage (PCC/R_POR_LIQ_PRES)

This boundary condition card is used to call a routine for a user-defined liquid-phase 
pressure for porous flow problems at an external boundary of a material of one of the 
following media types:  POROUS_SATURATED, POROUS_UNSATURATED, 
POROUS_TWO_PHASE.. Specification is made via the function 
p_liq_user_surf  in file “user_bc.c.” Definitions of the input parameters are as 
follows:

P_LIQ_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutine so the user can vary 
the parameters of the boundary condition. This list of float 
values is passed as a one-dimensional double array to the 
appropriate C function in file user_bc.c.

Examples

The following is a sample input card with two parameters passed to function tuser:

BC =P_LIQ_USER SS 100  273.13 100.0

Technical Discussion

No discussion.

Theory

No Theory.

BC = P_LIQ_USER SS <bc_id> <float_list>
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FAQs

No FAQs.

References

No References.

4.10.190

4.10.191 POROUS_TEMPERATURE

Description/Usage (DC/POR_TEMP)

This Dirichlet boundary condition is used to set the temperature for a nonisothermal 
porous media problem at a node set. It can be applied to a node set on a boundary of a 
POROUS_SATURATED, POROUS_UNSATURATED or POROUS_TWO_PHASE 
medium type (see Media Type card).

POROUS_TEMPERATURE

Boundary condition name (bc_name).

NS Type of boundary condition (<bc_type>), where NS 
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node 
set in EXODUS II) in the problem domain.

<float1> Value of temperature at the NS in the porous medium

[float2] An optional parameter (that serves as a flag to the code 
for a Dirichlet boundary condition). If a value is present, 
and is not -1.0, the condition is applied as a residual 
equation. Otherwise, it is a "hard set" condition and is 
eliminated from the matrix. The residual method must 
be used when this Dirichlet boundary condition is used 
as a parameter in automatic continuation sequences.

BC = POROUS_TEMPERATURE NS <bc_id> <float1> [float2]
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Examples

An example input card for this boundary condition follows:

BC = POROUS_TEMPERATURE NS 101  1.0  1.0 

This card sets the temperature(p_temp in the output EXODUS II file) in element block 
1 at the nodes defined by nodeset 101. Also, the second 1.0 float is to instruct goma to 
apply this condition in a residual form. 

Technical Discussion

This condition is used to set a temperature boundary condition for nonisothermal 
porous media problems, viz. problems that use the R_POR_ENERGY equation (called 
EQ = porous_energy).   This energy equation is written in multiphase enthalpy form 
and hence requires a different equatioin that for continuous media.   

Theory 

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

4.10.192

Category 9: Boundary Conditions for the Stress Equations

The following conditions provide a means to set boundary conditions for the hyperbolic 
viscoelastic stress equations; all are of the Dirichlet type.
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4.10.193 S11

Description/Usage (DC/STRESS11)

This Dirichlet boundary condition specification is used to set a constant xx-stress for 
any given mode of the stress tensor. Each such specification is made on a separate input 
card. Definitions of the input parameters are as follows:

{S11 | S11_1 | S11_2 | S11_3 | S11_4 | S11_5 | S11_6 | S11_7}

Boundary condition name (<bc_name>) that defines the xx-
stress for a given mode, where:

S11 - xx-component of stress tensor for mode 1
S11_1 - xx-component of stress tensor for mode 2
S11_2 - xx-component of stress tensor for mode 3
S11_3 - xx-component of stress tensor for mode 4
S11_4 - xx-component of stress tensor for mode 5
S11_5 - xx-component of stress tensor for mode 6
S11_6 - xx-component of stress tensor for mode 7
S11_7 - xx-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of xx-stress.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the xx-stress 
component for mode 2 on node set 7:

BC = {bc_name} NS <bc_id> <float1> [float2]
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BC = S11_1 NS 7  4.0 
BC = S11_1 NS 7  4.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please 
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.194 S12

Description/Usage (DC/STRESS12)

This Dirichlet boundary condition specification is used to set a constant xy-stress (also 
known as the shear stress) for any given mode of the stress tensor. Each such 
specification is made on a separate input card. Definitions of the input parameters are 
as follows:

{S12 | S12_1 | S12_2 | S12_3 | S12_4 | S12_5 | S12_6 | S12_7}

Boundary condition name (<bc_name>) that defines the xy-
stress for a given mode, where:

S12 - xy-component of stress tensor for mode 1
S12_1 - xy-component of stress tensor for mode 2

BC = {bc_name} NS <bc_id> <float1> [float2]
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S12_2 - xy-component of stress tensor for mode 3
S12_3 - xy-component of stress tensor for mode 4
S12_4 - xy-component of stress tensor for mode 5
S12_5 - xy-component of stress tensor for mode 6
S12_6 - xy-component of stress tensor for mode 7
S12_7 - xy-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of xy-stress.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the xy-stress 
component for mode 5 on node set 10:

BC = S12_4 NS 10  1.25
BC = S12_4 NS 10  1.25  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please 
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.
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FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.195 S13

Description/Usage (DC/STRESS13)

This Dirichlet boundary condition specification is used to set a constant xz-stress for 
any given mode of the stress tensor. Each such specification is made on a separate input 
card. Definitions of the input parameters are as follows: 

{S13 | S13_1 | S13_2 | S13_3 | S13_4 | S13_5 | S13_6 | S13_7}

Boundary condition name (<bc_name>) that defines the xz-
stress for a given mode, where:

S13 - xz-component of stress tensor for mode 1
S13_1 - xz-component of stress tensor for mode 2
S13_2 - xz-component of stress tensor for mode 3
S13_3 - xz-component of stress tensor for mode 4
S13_4 - xz-component of stress tensor for mode 5
S13_5 - xz-component of stress tensor for mode 6
S13_6 - xz-component of stress tensor for mode 7
S13_7 - xz-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of xz-stress.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 

BC = {bc_name} NS <bc_id> <float1> [float2]
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Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following is a sample card for applying a Dirichlet condition for the xz-stress 
component for mode 5 on node set 10:

BC = S13_4 NS 10  1.3
BC = S13_4 NS 10  1.3  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please 
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao
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4.10.196 S22

Description/Usage (DC/STRESS22)

This Dirichlet boundary condition specification is used to set a constant yy-stress for 
any given mode of the stress tensor. Each such specification is made on a separate input 
card. Definitions of the input parameters are as follows:

{S22 | S22_1 | S22_2 | S22_3 | S22_4 | S22_5 | S22_6 | S22_7}

Boundary condition name (<bc_name>) that defines the yy-
stress for a given mode, where:

S22 - yy-component of stress tensor for mode 1
S22_1 - yy-component of stress tensor for mode 2
S22_2 - yy-component of stress tensor for mode 3
S22_3 - yy-component of stress tensor for mode 4
S22_4 - yy-component of stress tensor for mode 5
S22_5 - yy-component of stress tensor for mode 6
S22_6 - yy-component of stress tensor for mode 7
S22_7 - yy-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of yy-stress.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the yy-stress 
component for mode 8 on node set 20:

BC = {bc_name} NS <bc_id> <float1> [float2]
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BC = S22_7 NS 20  5.0
BC = S22_7 NS 20  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please 
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.197 S23

Description/Usage (DC/STRESS23)

This Dirichlet boundary condition specification is used to set a constant yz-stress for 
any given mode of the stress tensor. Each such specification is made on a separate input 
card. Definitions of the input parameters are as follows: 

{S23 | S23_1 | S23_2 | S23_3 | S23_4 | S23_5 | S23_6 | S23_7}

Boundary condition name (<bc_name>) that defines the yz-
stress for a given mode, where:

S23 - yz-component of stress tensor for mode 1
S23_1 - yz-component of stress tensor for mode 2
S23_2 - yz-component of stress tensor for mode 3

BC = {bc_name} NS <bc_id> <float1> [float2]
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S23_3 - yz-component of stress tensor for mode 4
S23_4 - yz-component of stress tensor for mode 5
S23_5 - yz-component of stress tensor for mode 6
S23_6 - yz-component of stress tensor for mode 7
S23_7 - yz-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of yz-stress.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the yz-stress 
component for mode 8 on node set 20:

BC = S23_7 NS 20  5.0
BC = S23_7 NS 20  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please 
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.
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FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.198 S33

Description/Usage (DC/STRESS33)

This Dirichlet boundary condition specification is used to set a constant zz-stress for 
any given mode of the stress tensor. Each such specification is made on a separate input 
card. Definitions of the input parameters are as follows:

{S33 | S33_1 | S33_2 | S33_3 | S33_4 | S33_5 | S33_6 | S33_7}

Boundary condition name (<bc_name>) that defines the zz-
stress for a given mode, where:

S33 - zz-component of stress tensor for mode 1
S33_1 - zz-component of stress tensor for mode 2
S33_2 - zz-component of stress tensor for mode 3
S33_3 - zz-component of stress tensor for mode 4
S33_4 - zz-component of stress tensor for mode 5
S33_5 - zz-component of stress tensor for mode 6
S33_6 - zz-component of stress tensor for mode 7
S33_7 - zz-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of zz-stress.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 

BC = {bc_name} NS <bc_id> <float1> [float2]
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Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the zz-stress 
component for mode 1 on node set 100:

BC = S33 NS 100  5.0
BC = S33 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please 
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

Category 10: Boundary Conditions for the Gradient Equations

As companion equations to the viscoelastic stress equations, a continuous velocity gradient is 
determined through the so-called Velocity Gradient Equations. These boundary conditions are of 
the Dirichlet type and can be used to put conditions on this class of equations.
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4.10.199 G11

Description/Usage (DC/GRADIENT11)

This Dirichlet boundary condition specification is used to set a constant xx-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G11 Boundary condition name (<bc_name>) that defines the xx-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of xx-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the xx-velocity 
gradient component on node set 100:

BC = G11 NS 100  5.0
BC = G11 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 

BC = G11 NS <bc_id> <float1> [float2]
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estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-156)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.200 G12

Description/Usage (DC/GRADIENT12)

This Dirichlet boundary condition specification is used to set a constant xy-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G12 Boundary condition name (<bc_name>) that defines the xy-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

BC = G12 NS <bc_id> <float1> [float2]

G v∇=
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of xy-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following is a sample card for applying a Dirichlet condition on the xy-velocity 
gradient component on node set 100:

BC = G12 NS 100  5.0
BC = G12 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 
estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-157)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

G v∇=
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FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.201 G13

Description/Usage (DC/GRADIENT13)

This Dirichlet boundary condition specification is used to set a constant xz-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G13 Boundary condition name (<bc_name>) that defines the xz-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of xz-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the xz-velocity 
gradient component on node set 100:

BC = G13 NS <bc_id> <float1> [float2]
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BC = G13 NS 100  5.0
BC = G13 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 
estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-158)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

G v∇=
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4.10.202 G21

Description/Usage (DC/GRADIENT21)

This Dirichlet boundary condition specification is used to set a constant yx-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G21 Boundary condition name (<bc_name>) that defines the yx-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of yx-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the yx-velocity 
gradient component on node set 100:

BC = G21 NS 100  5.0
BC = G21 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 

BC = G21 NS <bc_id> <float1> [float2]
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estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-159)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.203 G22

Description/Usage (DC/GRADIENT22)

This Dirichlet boundary condition specification is used to set a constant yy-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G22 Boundary condition name (<bc_name>) that defines the yy-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

BC = G22 NS <bc_id> <float1> [float2]

G v∇=
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of yy-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the yy-velocity 
gradient component on node set 100:

BC = G22 NS 100  5.0
BC = G22 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 
estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-160)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

G v∇=
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FAQs

No FAQs.

References
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4.10.204 G23

Description/Usage (DC/GRADIENT23)

This Dirichlet boundary condition specification is used to set a constant yz-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G23 Boundary condition name (<bc_name>) that defines the yz-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of yz-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the yz-velocity 
gradient component on node set 100:

BC = G23 NS <bc_id> <float1> [float2] 
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BC = G23 NS 100  5.0
BC = G23 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 
estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-161)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

G v∇=
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4.10.205 G31

Description/Usage (DC/GRADIENT31)

This Dirichlet boundary condition specification is used to set a constant zx-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G31 Boundary condition name (<bc_name>) that defines the zx-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of zx-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the zx-velocity 
gradient component on node set 100:

BC = G31 NS 100  5.0
BC = G31 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 

BC = G31 NS <bc_id> <float1> [float2]
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estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-162)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.10.206 G32

Description/Usage (DC/GRADIENT32)

This Dirichlet boundary condition specification is used to set a constant zy-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G32 Boundary condition name (<bc_name>) that defines the zy-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

BC = G32 NS <bc_id> <float1> [float2]

G v∇=
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of zy-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the zy-velocity 
gradient component on node set 100:

BC = G32 NS 100  5.0
BC = G32 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 
estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-163)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

G v∇=
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FAQs

No FAQs.
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4.10.207 G33

Description/Usage (DC/GRADIENT33)

This Dirichlet boundary condition specification is used to set a constant zz-velocity 
gradient component of the velocity gradient tensor. Definitions of the input parameters 
are as follows:

G33 Boundary condition name (<bc_name>) that defines the zz-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of zz-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the zz-velocity 
gradient component on node set 100:

BC = G33 NS <bc_id> <float1> [float2]



514 Revised: 6/12/13

4.10.207  G33  

BC = G33 NS 100  5.0
BC = G33 NS 100  5.0  1.0

where the second example uses the “residual” method for applying the same Dirichlet 
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient 
G from the velocity field. This is done so that we may have a differentiable field to get 
estimates of the second derivative of the velocity field for applications in complex 
rheology. The velocity gradient equation is:

. (4-164)

Note, that boundary conditions are almost never set on the velocity gradient equation 
since it is just a least squares interpolation of the discontinuous velocity gradient 
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion 
of the two ways of applying Dirichlet boundary conditions. For details of the velocity 
gradient tensor and its use for solving viscoelastic flow problems, please see Rao 
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

Category 11: Boundary Conditions for the Shear Rate Equation

The single boundary condition in this category is used to set a Dirichlet condition for the scalar 
shear rate equation. This differential equation is employed by the Phillips model for a suspension 
constitutive equation.

G v∇=
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4.10.208 SH

Description/Usage (DC/SHEAR_RATE)

This boundary condition is used to set a Dirichlet condition for the scalar shear rate 
unknown field.

Description of the input parameters is as follows:

SH Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value at which the scalar shear rate unknown will be fixed 
on node set <bc_id>.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

An example of its used:

BC = SH NS 10 0.5

This boundary condition sets the scalar shear rate unknown to 0.5 on nodeset 10.

Technical Discussion

The scalar shear rate unknown field is otherwise known as the second invariant of the 
rate of deformation tensor.

BC = SH NS <bc_id> <float1> [float2]
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Category 12: Boundary Conditions for the Fill Equation

The so-called Fill equation is used by the volume-of-fluid and level-set Eulerian interface 
tracking in Goma. Basically it is a statement of Lagrangian invariance and is hence a hyperbolic 
statement of the so-called kinematic equation. Given a velocity field, this equation advances the 
fill function as a set of material points; hence material surfaces remain ostensibly intact. The 
boundary conditions in this section are used to specify the level-of-fill at a boundary at which a 
fluid of a specific phase is flowing into the problem domain.

4.10.209 F

Description/Usage (DC/FILL)

This Dirichlet boundary condition specifies a value of the fill or level set unknown field 
on a node set.

A description of the input parameters is as follows:

F Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value at which the fill or level set unknown will be fixed on 
this node set.

BC = F NS <bc_id> <float1> [float2]
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[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

An example:

BC = F NS 100 1.0

Technical Discussion

This boundary condition finds most of its use in the VOF/FILL interface tracking 
algorithm where it is used to fix the value of the color function at an inlet or outlet 
boundary. In the level set formulation, it is used less but is still useful in defining the 
absolute fixed location of an interface by setting the value assigned to 0 on a node set.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.210 FILL_INLET

Description/Usage (SPECIAL/FILL)

This boundary condition allows the user to specify a value on a inlet boundary from 
VOF problems employing discontinuous interpolation of the color function, F.

Description of the input parameters is as follows:

BC = FILL_INLET SS <bc_id> <float1>
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FILL_INLET boundary condition name

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> The value of the fill function, F, as it flows across <bc_id> 
into the domain.

Examples

An example:

BC = FILL_INLET SS 10 1.0

Technical Discussion

• This boundary condition is useful only in problems involving VOF interface 
tracking in which the fill function is interpolated discontinuously. In this 
formulation, communication of the fill function value can only be made by finding 
the value of the fill function in the element upstream of the current position. While 
this is a stable formulation for the advective VOF method, it does introduce the 
complexity of determining which element is actually upstream.

• When there is no element upstream, as in the case of an inlet boundary, this 
boundary condition must be present to establish the value of the fill function that is 
flowing across the inlet boundary into the domain. Consequently, this boundary 
condition should be present on all inlet boundaries of the problem. It sometimes is 
also useful to have it on outflow boundaries as well, just in case a backflow 
situation arises.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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Category 13: Boundary Conditions for the Potential Equation

The Potential equation is a Laplace equation for the voltage (potential) given a charge distribution 
in a dielectric medium or a voltage or current boundary condition in an electrically conductive 
medium. The following boundary conditions allow the current or voltage to be set on a boundary.

4.10.211 CURRENT

Description/Usage (WIC/POTENTIAL)

This card specifies the electrical current density at a given boundary.

Definitions of the input parameters are as follows:

CURRENT Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> Value of current density (in A/m2 or A/cm2, depending on 
units of length scale used in the problem).

Examples

An example input card:

BC = CURRENT SS 1   -0.05

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

BC = CURRENT SS <bc_id> <float>
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4.10.212 CURRENT_USER

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to define a routine for a user-defined electrical 
current density model. Definitions of the input parameters are as follows:

CURRENT_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutines so the user can 
vary the parameters of the boundary condition. This list 
of float values is passed as a one-dimensional double 
array to the appropriate C function.

Examples

The following is a sample input card:

BC = CURRENT_USER SS 100  10.0 3.14159

Technical Discussion

No discussion.

Theory

No Theory.

BC = CURRENT_USER SS <bc_id> <float_list>
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FAQs

No FAQs.

References

No References.
 

4.10.213 VOLT

Description/Usage (DC/POTENTIAL)

This Dirichlet boundary condition card is used to set a constant voltage. Definitions of 
the input parameters are as follows:

VOLT Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of voltage.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following is a sample card:

BC = VOLT NS 3  -0.22

BC = VOLT NS <bc_id> <float1> [float2]
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.10.214 CURRENT_BV

Description/Usage (WIC/POTENTIAL)

The CURRENT_BV card enables the specification of variable electrical current density 
as given by Butler-Volmer kinetics and the Faraday’s law at the specified boundary 
(namely, an electrode surface).

The <floatlist> has seven parameters for this boundary condition; definitions of the 
input parameters are as follows:

CURRENT_BV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number of concentration.

<float1> Stoichiometric coefficient 

<float2> Kinetic rate constant

<float3> Reaction order

BC = CURRENT_BV SS <bc_id> <integer> <floatlist>
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<float4> Anodic direction transfer coefficient

<float5> Cathodic direction transfer coefficient

<float6> Electrode potential or applied voltage

<float7> Theoretical open-circuit potential

Example

An example input card:

BC = CURRENT_BV SS 1  0  -1.0 0.000002 1.0 0.21 0.21 -0.65  -0.22

Technical Discussion

Users are referred to Chen (2000) for details of the Butler-Volmer model and also 
Newman (1991), particularly Equations 8.6 and 8.10 and Chapter 8, pp. 188-189 in the 
latter.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-025.0: Modeling diffusion and migration transport of charged species in dilute 
electrolyte solutions: GOMA implementation and sample computed predictions from a 
case study of electroplating, K. S. Chen, September 21, 2000

J. S. Newman, "Electrochemical Systems", Second Edition, Prentice-Hall, Inc. (1991).
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4.10.216 CURRENT_HOR

Description/Usage (WIC/POTENTIAL)

The CURRENT_HOR card enables the specification of the variable current density as 
given by linearized Butler-Volmer kinetics (such as that for the hydrogen-oxidation 
reaction in polymer-electrolyte-membrane fuel cells) at the specified boundary (i.e., at 
the electrode surface).

The <floatlist> consists of 9 values; definitions of the input parameters are as follows:

CURRENT_HOR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit      
of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Anodic direction transfer coefficient, αa.

<float5> Cathodic direction transfer coefficient, αc.

<float6> Temperature, T, in unit of K.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

<float9> Electrode potential, V, in unit of V.

Example

The following is a sample input card:

BC = CURRENT_HOR SS <bc_id> <integer> <floatlist>
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BC = CURRENT_HOR SS 14 0 1000. 0.001 4.e-5 1. 1. 353. 0. 0.5 0.

Technical Discussion

For electrochemical reactions such as the hydrogen-oxidation reaction (HOR), surface 
overpotential is relatively small such that the Butler-Volmer kinetic model can be 
linearized to yield a simplified equation for computing current density:

where j is current density in units of A/cm2;   denotes the product of interfacial area 
per unit volume by exchange current density, which has units of A/cm3; H is the 
catalyst layer or catalyzed electrode thickness in unit of cm; c and  are, respectively, 
species and reference molar concentrations in units of moles/cm3; β is reaction order; 
αa and αc are, respetively, the anodic and cathodic transfer coefficients; F is the 
Faraday’s constant ( 96487 C/mole); R is the universal gasl constant ( 8.314    
J/mole-K); T is temperature in unit of K; V and  are, respectively, the electrode and 
electrolyte potentials in unit of V; and  is the open-circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”, 
in ASME Proceedings of FUELCELL2006-97032 (2006).
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4.10.218 CURRENT_ORR

Description/Usage (WIC/POTENTIAL)

The CURRENT_ORR card enables the specification of the variable current density as 
given by the Tafel kinetics (such as that for the oxygen-reduction reaction in polymer-
electrolyte-membrane fuel cells) at the specified boundary (i.e., at the electrode 
surface). 

The <floatlist> consists of 8 values; definitions of the input parameters are as follows:

CURRENT_ORR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit      
of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Cathodic direction transfer coefficient, αc.

<float5> Temperature, T, in unit of K.

<float6> Electrode potential, V, in unit of V.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

Example

The following is a sample input card:

BC = CURRENT_ORR SS <bc_id> <integer> <floatlist>
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BC = CURRENT_ORR SS 15 1 0.01 0.001 4.e-5 1. 353. 0.7 1.18 1.

Technical Discussion

For electrochemical reactions such as the oxygen-reduction reaction (ORR), surface 
overpotential is large and negative such that the first exponential term in the Butler-
Volmer kinetic model is much smaller than the second term and thus can be dropped to 
yield the Tafel kinetic model for computing current density:

where j is current density in units of A/cm2;  denotes the product of interfacial area 
per unit volume by exchange current density, which has units of A/cm3; H is the 
catalyst layer or catalyzed electrode thickness in unit of cm; c and  are, respectively, 
species and reference molar concentrations in units of moles/cm3; β is reaction order; 
αc is the anodic and cathodic transfer coefficient; F is the Faraday’s constant 
( 96487 C/mole); R is the universal gasl constant ( 8.314 J/mole-K); T is 
temperature in unit of K; V and  are, respectively, the electrode and electrolyte 
potentials in unit of V; and  is the open-circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”, 
in ASME Proceedings of FUELCELL2006-97032 (2006).
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4.10.220 VOLT_USER

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to specify a voltage or potential computed via a 
user-defined function. Definitions of the input parameters are as follows:

VOLT_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be 
passed to the user-defined subroutines so the user can 
vary the parameters of the boundary condition. This list 
of float values is passed as a one-dimensional double 
array to the appropriate C function.

Examples

The following is a sample input card:

BC = VOLT_USER SS 14 0.33 1000. 0.001 4e-5 1. 1. 353. 0.

Technical Discussion

In the VOLT_USER model currently implemented in GOMA, the electrolyte potential 
is given by the linearized Butler-Volmer kinetic model as in the hydrogen-oxidation 
reaction of a hydrogen-fueled polymer-electrolyte-membrane fuel cell. See the 
user_bc.c routine for details. 

Theory

No Theory.

FAQs

No FAQs.

BC = VOLT_USER SS <bc_id> <float_list>
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References

No References.

4.10.221

Category 14: Fluid-Solid Interaction Boundary Conditions

This is a special group of boundary conditions for problems in which there are two distinct 
material phases (fluid and solid) with relative motion between them. These BC’s provide a means 
to apply conditions to a moving boundary with sensitivities to variables in both phases. These 
problems are formulated in Goma as overset-grid or phase function problems.

4.10.222 LAGRANGE_NO_SLIP

Description/Usage (CONTACT_SURF/R_LAGR_MULT1)

This boundary condition is used to apply a kinematic Lagrange multiplier constraint to 
a solid/fluid boundary while using Goma’s overset grid capability.   The condition is 
used when the complete fluid-structure interaction problem is being solved, viz. 
stresses between fluid and solid are both accommodated as is the dynamics of the 
structure and fluid.   In contrast, Goma allows for a structure to be moved through a 
fluid under prescribed kinematics, and in that case a different Lagrange multiplier 
constraint is advocated (see LS_NO_SLIP, for example).   Two integer inputs together 
with a sideset ID integer are required for this boundary condition:

LAGRANGE_NO_SLIP Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<integer1> Element block ID of solid phase from the EXODUS II 
database.

<integer2> Element block ID of liquid phase from the EXODUS II 
database.

BC = LAGRANGE_NO_SLIP SS <bc_id> <integer1> <integer2>
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Examples

Following is a sample card:

BC =  LAGRANGE_NO_SLIP SS 2 1 2

.

In this case the kinematic condition (viz. a velocity match of fluid and solid at the 
interface) is applied to the interface imprinted by sideset 2.   That side set is imprinted 
on the background fluid mesh.    The solid material block ID is 1 in this case and the 
background fluid material ID is 2.   .

Technical Discussion

In this work, the governing equations consist of a fluid momentum balance:

a mass balance:

and a solid momentum balance:

The kinematic constraint at the fluid-solid interface is:

and the level set function is evaluated at each fluid mesh node by:

The first four equations are written in a Galerkin/Finite form, with φi representing the 
weighting functions at node i. The first three equations are enforced at all nodes i that 
contain the appropriate degrees of freedom (viz. solid or fluid dofs). The fourth 
equation applies at the solid-liquid interface.   ρf and ρs are the fluid and solid material 
densities, respectively, v is the fluid velocity, F represents any body forces such as 
gravity, τ is the fluid stress tensor, γ is the Lagrange multiplier vector unknown, x is the 
solid displacement vector unknown, σ is the solid stress tensor, f is the level set 
unknown, Θ is a step function which is -1 for points within the region occupied by the 
solid and +1 outside this region, xi and xs are the position vectors of a fluid node and of 
the closest point to it on the solid boundary, respectively, V is the fluid volume domain, 
S is the solid volume domain, and Γ is the solid boundary (interface) surface domain.
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Noteworthy is that this boundary condition applies the second-to-last “kinematic” 
constraint.  

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3: Goma’s Overset Mesh Capability.   Randy Schunk. 

4.10.223

4.10.224  OVERSET_FLUID_SOLID/BAAIJENS_FLUID_SOLID

Description/Usage(EMBEDDED_SURF/R_MOMENTUM1)

 This boundary condition is used to apply a traction to the fluid that comes from a solid 
while using Goma’s overset grid capability.   The condition is used when the complete 
fluid-structure interaction problem is being solved, viz. stresses between fluid and solid 
are both accommodated as is the dynamics of the structure and fluid.  The condition is 
applied to the fluid phase along a zero-level-set contour, hence the PF BC ID type.  In 
another mode of usage, Goma allows for a structure to be moved through a fluid under 
prescribed kinematics, and in that case this condition is still applied as a solid traction 
to the fluid.  The value of that traction is dictated by the Lagrange multiplier kinematic 
constraint (cf. LANGRANGE_NO_SLIP BC and LS_NO_SLIP BC).  Note that the 
condition is applied to a boundary in the fluid defined by a phase-field function (see 
phase1 equation type). .   Two integer inputs together with a sideset ID integer are 
required for this boundary condition:

BAAIJENS_FLUID_SOLD Name of the boundary condition.

PF Type of boundary condition (<bc_type>), where PF denotes 
a surface defined by a phase function (level-set).

BC = BAAIJENS_FLUID_SOLID PF <pf_id> <integer1> <integer2>
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<pf_id> The boundary flag identifier basically sets the number of the 
phase field function to which this condition applies.  For 
now you must set this to 1, as this phase-field is hardwired 
to handle the imprinted fluid solid boundary. .

<integer1> Element block ID of solid phase from the EXODUS II 
database.

<integer2> Element block ID of liquid phase from the EXODUS II 
database.

The peculiar name was derived from a paper by Frank Baaijens, from which 
Goma’s formulation was generated.  We are in the process of changing that 
name to OVERSET_FLUID_SOLID. 

Examples

Following is a sample card:

BC =  BAAIJENS_FLUID_SOLID PF  1 1 2

BC =  LS_NO_SLIP PF 1 1 2

This condition set applies a fluid traction condition to a surface defined by phase field 
1, which is slaved to a side set that is set in the  phase function slave surface capability. 
(see Phase Function Initialization Method).  

Technical Discussion

See discussion on LANGRANGE_NO_SLIP. This condition applies the fluid traction 
boundary term on the fluid momentum equation.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3
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4.10.225 OVERSET_SOLID_FLUID/BAAIJENS_SOLID_FLUID

Description/Usage (CONTACT_SURF/ MESH)

 This boundary condition is used to apply a traction to a solid that comes from the fluid  
while using Goma’s overset grid capability.   The condition is used when the complete 
fluid-structure interaction problem is being solved, viz. stresses between fluid and solid 
are both accommodated as is the dynamics of the structure and fluid.  The condition is 
applied to the solid phase along a side set that defines the fluid/solid interface.   Two 
integer inputs together with a sideset ID integer are required for this boundary 
condition:

BAAIJENS_SOLID_FLUID Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<ss_id> The boundary flag identifier that sets the side set number. .

<integer1> Element block ID of solid phase from the EXODUS II 
database.

<integer2> Element block ID of liquid phase from the EXODUS II 
database.

The peculiar name was derived from a paper by Frank Baaijens, from which 
Goma’s formulation was generated.  We are in the process of changing that 
name to OVERSET_SOLID_FLUID 

Examples

Following is a sample card set:

BC =  BAAIJENS_SOLID_FLUID SS 1 2 1

BC =  BAAIJENS_FLUID_SOLID PF 1 2 1

BC =  LAGRANGE_NO_SLIP SS 1 2 1

Here, the BAAIJENS_SOLID_FLUID cared applies a boundary fluid traction to a 
solid phase defined by side set 1.   In this case the solid phase material ID is 2 and the 
fluid phase 1. 

BC = OVERSET_SOLID_FLUID SS <bc_id> <float_list>
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Technical Discussion

See discussion on LAGRANGE_NO_SLIP.  Basically, this condition results in a 
boundary traction set by the Lagrange multiplier constraint to be applied to the solid 
momentum equation (note the weak term that appears on that equation). 

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3

4.10.226

4.10.227 F1 F2 F3 F4 F5

Description/Usage (DC/R_PHASE)

This boundary condition format is used to set a constant phase function field values at 
node sets. Please see “phase#” equation types for a description of the variables.   Each 
such specification (for each field being used) is made on a separate input card. These 
boundary conditions must be applied to node sets. Definitions of the input parameters 
are as follows:

{F1 | F2 | F3 | F4 | F5 }Two-character boundary condition name (<bc_name>) 
that defines which phase field variable is being set.  There 
are a maximum of five addtional level-set/phase fields. 

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

BC = {F1 | F2 | F3 | F4 | F5} NS <bc_id> <float1> [float2]
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<float1> Value at which the phase field unknown will be fixed on this 
node set.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

Following is a sample card which applies an phase field boundary condition to the 
nodes in node set 100, specifically an phase field-3 value of 1.0. 

BC = F3 NS 100 1.0

Technical Discussion

This boundary condition finds most of its use in the Phase Function interface tracking 
algorithm where it is used to fix the value of the color function at an inlet or outlet 
boundary. The phase function fields were put in to supplement Goma’s base level set 
capability to provide the ability to model multiple (more than two) materials.  We don’t 
anticipate that these boundary conditions will be used much.  Nonetheless, this 
condition allows Dirichlet conditions to be applied to each of the five additional level 
set fields. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3

4.10.228
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4.10.229 PF_CAPILLARY

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition applies an “embedded” surface tension source term when 
solving capillary hydrodynamics problems with phase function level set interface 
tracking. Note that its counterpart for the base level set field is LS_CAPILLARY, and 
this boundary condition is applied the same way to other level-set fields defined by the 
Phase Function cards.   It can be used with only subgrid integration.  The surface 
tension value used in this boundary condition is obtained from the Surface Tension 
material parameter defined in the mat file.  Note that each phase-function field requires 
a separate PF_CAPILLARY boundary condition.    

A description of the input parameters follows:

PF_CAPILLARY

the name of the boundary condition

PF This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter that is used to specify to which phase 
function field that the boundary condition is to be applied.

<float1> Not currently used.

<float2> Not currently used.

<float3> Not currently used

Examples

An example:

BC = PF_CAPILLARY PF 1

Technical Discussion

Surface tension forces at a level set (phase function) representation of an interfacial 
boundary are applied solely via this boundary condition.  An additional divergence of 
stress tensor term  is added to the fluid momentum equation.  The form of this 
tensor is

BC = PF_CAPILLARY LS <integer> <float1> <float2> <float3>

∇ Tcap⋅
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(4-165)

where s is the (isotropic) surface tension, I is the identity tensor, n is the vector normal 
to the interface and  is the smoothed Dirac delta function.  The surface tension 
value used in this expression is obtained from the Surface Tension card found in the 
material file.  

The actual implementation in Goma integrates the divergence term by parts so the 
expression that is added to the weak form of the momentum equation is:

(4-166)

This fact introduces the issue of integration error into the problem.  As obvious above, 
this source term involves the non-linear Dirac delta function factor.  Conventional 
numerical integration methods often do not offer adequate accuracy in evaluating this 
integral, especially if if the interface width is a fraction of the average element size.  
This has led to introduction the level-set-specific integration methods: subelement 
integration and subgrid integration.  In the latter case, more integration points are 
clustered around the interface (in essence) to improve accuracy.  The integer parameter 
on the card should be set to zero to signify that the surface tension forces are distributed 
in equal measure on both sides of the interfacial curve.

In the subelement integration case, however, an actual subelement mesh is place on 
each of the interface-containing elements which is made to conform to the interface 
curve.  That is,  the interface curve itself is covered by these subelement boundaries.  
This allows the volume integral to be collapsed into a line integral and the line integral 
evaluated along the subelement boundaries.  This, however, introduces the problem of 
identifying which side of the element the surface tension forces should actually be 
applied to.  Applying them to both simultaneously while either result in a cancellation 
or a doubling of the surface tension effect.  For these cases, the integer parameter on 
this card is set to a -1 or a +1 to signify that the surface tension forces are applied to the 
negative or positive side of the interface curve, respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.230

Category 15: Boundary Conditions applied on Level Set Interfaces

These boundary conditions are designed to apply conditions in materials along surfaces whose 
position is monitored using Level Set Interface Tracking.

4.10.231 LS_ADC

Description/Usage (Special/LEVEL SET)

This boundary condition is used exclusively with level set interface tracking.   It is used 
to simulate contact and dewetting events.  It employs a probabilistic model applied to 
elements on a boundary that contain an interface to determine whether contact or 
dewetting occurs there.  It then uses a direct, brute force algortihm to manipulate the 
level set field to enforce contact or dewetting.

A description of the input parameters follows:

LS_ADC the name of the boundary condition

SS This string indicates that this boundary is applied to a 
sideset.  

<bc_id> This is a sideset id where contact or dewetting processes are 
anticipated.  Only elements that border this sideset will be 
considered as possibilities for ADC events

<float1> θc,  the capture angle in degrees.  

<float2> αc,  the capture distance (L)

<float3> Nc, the capture rate ( 1/L2-T)

Examples

An example:

BC = LS_ADC SS 10 15.0  0.2  100.0

BC = LS_ADC SS <bc_id> <float1> <float2> <float3>
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Technical Discussion

It has been found that level set interface tracking problems that involve contact or 
dewetting of the interfacial representation pose special problems for our numerical 
method.  To a certain extent, we can model this type of event by making special 
modifications to the slipping properties of the boundary in question, however, this does 
not always work, especially in the case of dewetting events.

What seems to be the trouble is that we are attempting to use continuum-based models 
to simulate phenomena that essentially are due to molecular forces being expressed 
over non-molecular length scales.  These length scales, while big with respect to 
molecules, are small with respect to our problem size.  Hence, they are difficult to 
include in the context of reasonable mesh spacing.  

The approach this boundary condition takes to inclusion of contact and dewetting 
phenomena is not attempt to model the finer details, but to simply note that they are due 
to “molecular weirdness” and thus take place outside of  ordinary continuum 
mechanics.  Therefore, there is some justification for, very briefly and in a localized 
area,  dispensing with continuum mechanics assumption and simply imposing a contact 
or dewetting event.  We refer to these as ADC events and will describe them in more 
detail later.

The parameters supplied with the card are used to determine where and when such an 
ADC event occurs.  We have chosen to introduce a probabalistic model for this 
purpose.  The reasoning for this comes from reflecting on the dewetting problem.  If 
one imagines a thin sheet of fluid on a wetting substrate, it is clear that dewetting will 
occur eventually at some point on that sheet.  Where that event occurs is somewhat 
random for a detached perspective.  Introduction of a probability model for ADC 
events attempts to capture this.  

Whether an ADC event occurs at an element on the sideset is determined by the 
following requirements:

• The interface surface passes through the element

•  There isn’t a contact line in the element.

• The angle between the interface normal and the sideset surface normal is less than 
or equal to the capture angle, θc.

• A random number in the range (0,1) determined by the standard C rand() 
function is less than a probability, P, given by
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where d is the average distance of the interface to the sideset in that element, Dt is the 
time step size, and h is the side length of the element (Note for 2D problems h2 is 
replaced by h where the other dimension is assumed unity in the z direction).  

Interpretation of this probability relation might take the following course.  Given that 
the fluid interface lies within αc of the surface, the length of time necessary before and 
ADC event is certain to occur is given by .  Hence, the bigger the capture rate 
parameter the faster this is likely  to occur.  The functional form for the case of d > αc is 
included merely to ensure that the probability drops smoothly to zero as quickly as 
possible.  One might point out that the probability at a specific element tends towards 
zero as the element size decreases.  Of course, in that context, the number of elements 
should increase in number so that the overall probability of an ADC event should not 
be a function of the degree of mesh refinement.  A second point is that this boundary 
condition can be made to function as means to initiate contact without delay by simply 
choosing a capture rate that is large enought with respect to the current time step.

Application of an ADC event in a element that meets the preceding criteria is illustrated 
in the cartoon below:

It is a simple manipulation of the level set values in that element so that the interface 
will follow the path indicated by the dashed curve in the lower figure.  No effort is 
made in preservation of volume when this is done.  The assumption is that these events 
will occur infrequently enough that this is not a significant problem.  However, the user 
should be aware of this assumption and be careful that these events do not occur on a 
regular basis as then the mass loss might be more significant.  

Theory

No Theory.

FAQs

No FAQs.

1 Nch
2

( )⁄
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References

No References.

4.10.232

4.10.233 LS_CA_H

Description/Usage (WIC/SCALAR CURVATURE)

This boundary condition is used only in conjunction with level set interface tracking 
and the LS_CAP_CURVE embedded surface tension source term.  Its function is 
impose a contact angle condition on that boundary.

A description of the input parameters follows:

LS_CA_H the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> A float value that is the imposed contact angle in degrees.

Examples

An example:

BC = LS_CA_H SS 10 45.0

Technical Discussion

The projection equation operator for solving for the curvature degree of freedom from a 
level set field is a Laplacian.  It is standard to integrate these operators by parts but in 
the process one always generates a boundary integral.  In this case the integral takes the 
form:

BC = LS_CA_H SS <bc_id> <float>

nw nfs⋅ Γd
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where nw is the wall surface normal and nfs is the normal to free surface (zero contour 
of the level set function ).  This is a convenient event because it allows us to impose a 
contact angle condition on a sideset using this boundary integral by making the 
assignment 

where θ is the contact angle specified on the card.  

The effect of  this boundary condition is impose a disturbance in the curvature field 
near the boundary that has the effect of accelerating or decelerating the fluid near the 
wall in response to whether the actual contact angle is greater or less than the imposed 
value.  Thus, over time, given no other outside influences, the contact angle should 
evolve from its initial value (that presumably is different than the imposed value) to the 
value imposed on this card.  The user should expect that the contact angle will 
instantaneously jumped to the imposed value.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.234

4.10.235 LS_CAPILLARY

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition applies an “embedded” surface tension source term when 
solving capillary hydrodynamics problems with level set interface tracking.  It can be 
used both when subgrid or subelement integration is being used.  The surface tension 
value used in this boundary condition is obtained from the Surface Tension material 
parameter defined in the mat file. 

BC = LS_CAPILLARY LS <integer>

nw nfs⋅ θ( )cos=
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A description of the input parameters follows:

LS_CAPILLARY

the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the surface tension forces are applied to the 
negative phase, both phase, or the positive phase, 
respectively.  Details are given below.

Examples

An example:

BC = LS_CAPILLARY LS 0

Technical Discussion

First, a warning: If subelement integration is off, make sure there is a nonzero level-

set length scale or no surface forces term will be applied. 

Surface tension forces at a level set representation of an interfacial boundary are 
applied solely via this boundary condition.  An additional divergence of stress tensor 
term  is added to the fluid momentum equation.  Following Jacqmin the form of 
this tensor is

(4-167)

where s is the (isotropic) surface tension, I is the identity tensor, n is the vector normal 
to the interface and  is the smoothed Dirac delta function.  The surface tension 
value used in this expression is obtained from the Surface Tension card found in the 
material file.  

The actual implementation in Goma integrates the divergence term by parts so the 
expression that is added to the weak form of the momentum equation is:

(4-168)

This fact introduces the issue of integration error into the problem.  As obvious above, 
this source term involves the non-linear Dirac delta function factor.  Conventional 

∇ Tcap⋅

Tcap σ I nn–( )δα φ( ) φ∇⁄=

δα φ( )

Nj∇ Tcap⋅( ) Ωd
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numerical integration methods often do not offer adequate accuracy in evaluating this 
integral, especially if if the interface width is a fraction of the average element size.  
This has led to introduction the level-set-specific integration methods: subelement 
integration and subgrid integration.  In the latter case, more integration points are 
clustered around the interface (in essence) to improve accuracy.  The integer parameter 
on the card should be set to zero to signify that the surface tension forces are distributed 
in equal measure on both sides of the interfacial curve.

In the subelement integration case, however, an actual subelement mesh is place on 
each of the interface-containing elements which is made to conform to the interface 
curve.  That is,  the interface curve itself is covered by these subelement boundaries.  
This allows the volume integral to be collapsed into a line integral and the line integral 
evaluated along the subelement boundaries.  This, however, introduces the problem of 
identifying which side of the element the surface tension forces should actually be 
applied to.  Applying them to both simultaneously while either result in a cancellation 
or a doubling of the surface tension effect.  For these cases, the integer parameter on 
this card is set to a -1 or a +1 to signify that the surface tension forces are applied to the 
negative or positive side of the interface curve, respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.236

4.10.237 LS_FLOW_PRESSURE

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition applies a scalar pressure value as an “embedded” source term 
on the fluid momentum equation at the zero level set contour.  It can be used both when 
subgrid or subelement integration is being used. 

BC = LS_FLOW_PRESSURE LS <integer> <float1>
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A description of the input parameters follows:

LS_FLOW_PRESSURE

the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the pressure value is applied to the negative 
phase, both phase, or the positive phase, respectively.  
Details are given below

<float1> P, The constant value of pressure to be applied at the zero 
level set contour.

Examples

An example:

BC = LS_FLOW_PRESSURE LS 0 1013250.0

Technical Discussion

This boundary condition is somewhat analogous to the FLOW_PRESSURE boundary 
condition used quite often in ALE problems.  It applies a scalar pressure at the 
interfacial curve as an embedded boundary condtion.  It can be used in by subgrid and 
subelement methods.  In the case of the former, a distributed volume integral of the 
form:

where  is the normal to the level set contour and  is the familiar smoothed 
Dirac delta function with width parameter α.  When subelement integration is used this 
width parameter goes to zero and the volume integral becomes a surface integral along 
the zero level set contour (Note:  as of Oct 2005 subelement integration is not 
supported for three dimensional problems).  

When using this boundary condition concurrent with subgrid integration, the integer 
parameter that appears on the card should be consistently set to zero.  This ensures the 
volume source will be applied symmetrically.  However, when using subelement 
integration this integer parameter must be entire a +1 or a -1 so that the pressure force 
will be applied to only on side of the interface and not both which would result in 

NinfsPδα φ( ) Vd

V


nfs δα φ( )
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cancellation.  This is much the same as was seen for the LS_CAPILLARY boundary 
condition and the reader is referred to that card for a more detailed discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.238

4.10.239 LS_FLUID_SOLID_CONTACT

Description/Usage (EMB/MOMENTUM)

This boundary condition applies a fluid-solid stress balance at a level set interface that 
is slaved to an overset mesh (see GT-026.3).   It is applied as an “embedded” source 
term on the fluid momentum equations at the zero level set contour.  NOTE: This 

boundary condition has been deprecated in favor of the BAAIJENS_SOLID_FLUID 

and BAAIJENS_FLUID_SOLID boundary conditions, as described in the memo.  

A description of the input parameters follows:

LS_FLUID_SOLID_CONTACT 

the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the mass flux value is applied to the negative 

BC = LS_FLUID_SOLID_CONTACT LS <integer>  <integer1>
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phase, both phase, or the positive phase, respectively.  
Details are given below

<integer1> Not used.  Set to zero. .

Technical Discussion

We discourage use of this experimental boundary condition.   

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.240

4.10.241 LS_INLET

Description/Usage (PCC/LEVEL SET)

This boundary condition is used to set the values of the level set function on a sideset.  
Most of this is done on an inlet or outlet boundary to elminate the potential for 
oscillations in the level set field at those points from introducing spurious interfacial 
(zero contours) .

A description of the input parameters follows:

LS_INLET

the name of the boundary condition

SS This string indicates that this boundary is applied to  

BC = LS_INLET SS <bc_id>
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<bc_id> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the surface tension forces are applied to the 
negative phase, both phase, or the positive phase, 
respectively.  Details are given below.

Examples

An example:

BC = LS_INLET SS 10

Technical Discussion

Surface tension forces at a level set representation of an interfacial boundary are 
applied solely via this boundary condition.  An additional divergence of stress tensor 
term  is added to the fluid momentum equation.  Following Jacqmin the form of 
this tensor is

(4-169)

where s is the (isotropic) surface tension, I is the identity tensor, n is the vector normal 
to the interface and  is the smoothed Dirac delta function.  The surface tension 
value used in this expression is obtained from the Surface Tension card found in the 
material file.  

The actual implementation in Goma integrates the divergence term by parts so the 
expression that is added to the weak form of the momentum equation is:

(4-170)

This fact introduces the issue of integration error into the problem.  As obvious above, 
this source term involves the non-linear Dirac delta function factor.  Conventional 
numerical integration methods often do not offer adequate accuracy in evaluating this 
integral, especially if if the interface width is a fraction of the average element size.  
This has led to introduction the level-set-specific integration methods: subelement 
integration and subgrid integration.  In the latter case, more integration points are 
clustered around the interface (in essence) to improve accuracy.  The integer parameter 
on the card should be set to zero to signify that the surface tension forces are distributed 
in equal measure on both sides of the interfacial curve.

In the subelement integration case, however, an actual subelement mesh is place on 
each of the interface-containing elements which is made to conform to the interface 
curve.  That is,  the interface curve itself is covered by these subelement boundaries.  
This allows the volume integral to be collapsed into a line integral and the line integral 

∇ Tcap⋅

Tcap σ I nn–( )δα φ( ) φ∇⁄=

δα φ( )

Nj∇ Tcap⋅( ) Ωd
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evaluated along the subelement boundaries.  This, however, introduces the problem of 
identifying which side of the element the surface tension forces should actually be 
applied to.  Applying them to both simultaneously while either result in a cancellation 
or a doubling of the surface tension effect.  For these cases, the integer parameter on 
this card is set to a -1 or a +1 to signify that the surface tension forces are applied to the 
negative or positive side of the interface curve, respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.242

4.10.243 LS_NO_SLIP

Description/Usage (EMB/VECTOR MOMENTUM)

 This boundary condition is used to enforce the fluid/solid kinematic constraint for 1) 
overset grid applications in which 2) the solid material is assumed rigid and therefore 
has no internal stresses.  It requires 3) a slaved phase function be defined along with 4) 
a vector field of Lagrange multipliers.

A description of the input parameters follows:

LS_NO_SLIP the name of the boundary condition

PF This string indicates that this boundary condition is going to 
be applied along the zero contour of an embedded phase 
function (PF) field.

<integer> This integer identifies the specific phase function field that 
is defining the contour.  At the present time this integer 
should always be one.

BC = LS_NO_SLIP PF <integer>
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Examples

An example:

BC = LS_NO_SLIP PF 1

Technical Discussion

This boundary condition is used in the context of Goma’s overset grid capability.  A 
thorough treatment of this method is provided in the Goma document (GT-026.3) and 
the user is directed there.  However, a brief discussion of the nature of this boundary 
condition is in order at this point. 

The overset grid capability is used in problems in which a solid material is passing 
through a fluid material.  The solid and fluid materials both have there own meshes.  In 
the general problem, stresses and velocities must be transferred between each phase 
and therefore there is two-coupling of the respective momentum and continuity 
equations.  This boundary condition, however, is used in the restricted case in which 
the solid material is assumed to be rigid and having a prescribed motion.  Therefore, the 
coupling only proceeds in one direction :  solid to fluid.  

This boundary condition concerns itself with enforcing the kinematic constraint:

between the solid material with prescribed motion,  , and the fluid whose velocity is, 
. This kinematic constraint represents a new set of equations in the model for which 

unknowns must be associated.  In this case, we introduce a Lagrange multiplier vector 
field, , at each node in the mesh.  For fluid elements that do not intersect the fluid/
solid interface, these Lagrange multipliers are identically zero.  They are non zero only 
for those fluid elements that are crossed by the fluid/solid boundary.  These Lagrange 
multiplier fields  couple the influence of the solid material on the fluid through body 
force terms in the fluid momentum equations of the form:

When applying this boundary condition it is necessary to include Lagrange multiplier 
equations equal to the number of dimensions in the problem.  These are specified in the 
equation section of the input deck.  The shape and weight functions for these fields are 
generally simple P0 functions.  If one were to vector plot the components of the 
Lagrange multiplier components, you get a general picture of the force interaction field 
between the liquid and solid.  This is sometimes informative.

A slaved phase function field is used to imprint the contour of the solid material on the 
liquid mesh.  The zero contour of this function is then used to evaluate the above line 
integral.  This phase function field is slaved to the solid material and is not evolved in 
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the conventional sense.  Nonetheless, a single phase function field equation must be 
included with the set of equations solved.  In the phase function parameters section of 
the input deck, the user must indicate that this phase function is slaved and also must 
identify the sideset number of the boundary on the solid material which is the fluid/
solid interface.  

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.244

4.10.245 LS_Q

Description/Usage (EMB/ENERGY)

This boundary condition applies a scalar heat flux value as an “embedded” source term 
on the heat conservation equation at the zero level set contour.  It can be used both 
when subgrid or subelement integration is being used. 

A description of the input parameters follows:

LS_Q

the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the heat flux value is applied to the negative 

BC = LS_Q LS <integer> <float1>
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phase, both phase, or the positive phase, respectively.  
Details are given below

<float1> q, The constant value of heat flux to be applied at the zero 
level set contour.

Examples

An example:

BC = LS_Q LS 0 -1.1e-3

Technical Discussion

This boundary condition is somewhat analogous to the QSIDE boundary condition 
used quite often in non-level set problems.  It applies a scalar heat flux at the interfacial 
curve as an embedded boundary condtion.  It can be used in by subgrid and subelement 
methods.  In the case of the former, a distributed volume integral of the form:

where   is the familiar smoothed Dirac delta function with width parameter α.  
When subelement integration is used this width parameter goes to zero and the volume 
integral becomes a surface integral along the zero level set contour (Note:  as of Oct 
2005 subelement integration is not supported for three dimensional problems).  

When using this boundary condition concurrent with subgrid integration, the integer 
parameter that appears on the card should be consistently set to zero.  This ensures the 
volume source will be applied symmetrically.  However, when using subelement 
integration this integer parameter must be entire a +1 or a -1 so that the heat flux will be 
applied only on side of the interface and not both which would result in cancellation.  
This is much the same as was seen for the LS_CAPILLARY boundary condition and 
the reader is referred to that card for a more detailed discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.247 LS_QRAD

Description/Usage (EMB/ENERGY)

This boundary condition card specifies heat flux using both convective and radiative 
terms.  This heat flux value is applied as an “embedded” source term on the heat 
conservation equation at the zero level set contour (cf. BC = QRAD for ALE surfaces).  
It can be used both when subgrid or subelement integration is being used. The 
<float_list> has four parameters; definitions of the input parameters are as follows:

A description of the input parameters follows:

LS_QRAD the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the heat flux value is applied to the negative 
phase, both phase, or the positive phase, respectively.  
Details are given below

.<float1> h, convective heat transfer coefficient.

<float2> Ts, sink temperature.

<float3> ε, total hemispherical emissivity.

<float4> σ, Stefan-Boltzmann constant.

Examples

An example:

BC = LS_QRAD LS 0 10.0 273.0 0.3 5.6697e-8

BC = LS_QRAD LS <integer> <float1> <float2> <float3> <float4>
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Technical Discussion

This is the level-set counterpart to BC = QRAD which is the same boundary condition 
applied to a parameterized mesh surface.  Please see the discussion of that input record 
for the functional form of this boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.248

4.10.249 LS_QLASER

Description/Usage (EMB/ENERGY)

This boundary condition card specifies heat flux model derived from a laser welding 
application.  This heat flux value is applied as an “embedded” source term on the heat 
conservation equation at the zero level set contour (cf. BC = Q_LASER_WELD for 
ALE surfaces).  It can be used both when subgrid or subelement integration is being 
used. The <float_list> has twenty-seven parameters; definitions of the input parameters 
are as follows:

A description of the input parameters follows:

LS_QLASER the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 

BC = LS_QLASER LS <integer> <float1> <float2> <float3> <float4>



Revised: 6/12/13 555

4.10.249  LS_QLASER 

parameter the heat flux value is applied to the negative 
phase, both phase, or the positive phase, respectively.  
Details are given below

<float1> Nominal power of laser.

<float2> Power of laser at base state (simmer).

<float3> Base value of surface absorptivity.

<float4> Switch to allow tracking of normal component of liquid 
surface relative to laser beam axis for surface absorption 
(0 = OFF, 1 = ON)

<float5> Cutoff time for laser power.

<float6> Time at which laser power drops to 1/e.

<float7> For pulse weld, the laser power overshoot (%) of peak 
power at time to reach peak laser power.

<float8> Radius of laser beam.

<float9> For pulse weld, the time for laser pulse to reach peak 
power.

<float10> For pulse weld, the time for laser pulse to reach steady 
state in power.

<float11> Switch to either activate laser power distribution from 
beam center based on absolute distance (0) or based on 
radial distance in 2D plane (1).

<float 12> Location of laser beam center (x-coordinate).

<float 13> Location of laser beam center (y-coordinate).

<float 14> Location of laser beam center (z-coordinate).

<float 15> Laser beam orientation, normal to x-coordinate of body.

<float 16> Laser beam orientation, normal to y-coordinate of body.

<float 17> Laser beam orientation, normal to z-coordinate of body.

<float 18> For pulse weld, spot frequency.

<float 19> For pulse weld, total number of spots to simulate.
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<float 20> Switch to set type of weld simulation. (0=pulse weld, 
1=linear continuous weld, -1=pseudo pulse weld, 
2=sinusoidal continous weld)

<float 21> For pulse weld, spacing of spots.

<float 22> For radial traverse continuous weld, radius of beam 
travel.

<float 23> Switch to activate beam shadowing for lap weld 
(0=OFF, 1=ON). Currently only active for ALE 
simulations.

<float 24> Not active, should be set to zero.

<float 25> For continuous weld, laser beam travel speed in x-
direction (u velocity).

<float 26> For continuous weld, laser beam travel speed in y-
direction (v velocity).

<float 27> For continuous weld, laser beam travel speed in z-
direction (w velocity).

Examples

An example:

BC = LS_QLASER LS -1 4.774648293 0 0.4 1 1 1.01 4.774648293 0.2 
0.01 0.01 1 0.005 0 -0.198 -1 0 0 0.025 1 1 0.2032 -1000 0 0 0 0 
0.0254

Technical Discussion

This is the level-set counterpart to BC = Q_LASER which is the same boundary 
condition applied to a parameterized mesh surface.  Please see the discussion of that 
input record for the functional form of this boundary condition.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.

4.10.250

4.10.251 LS_RECOIL_PRESSURE

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition card specifies heat flux model derived from a laser welding 
application..  This heat flux value is applied as an “embedded” source term on the heat 
conservation equation at the zero level set contour (cf. BC = CAP_RECOIL_PRESS for 
ALE surfaces).  It can be used both when subgrid or subelement integration is being 
used. The <float_list> has seven parameters; definitions of the input parameters are as 
follows:

A description of the input parameters follows:

LS_RECOIL_PRESSURE

the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the heat flux value is applied to the negative 
phase, both phase, or the positive phase, respectively.  
Details are given below

<float1> This float is currently disabled.

<float2> This float is currently disabled.

<float3> This float is currently disabled.

<float4> Disabled.   The boiling temperature is set to the melting 
point of the solidus. Use the material property “Solidus 
Temperature” card for this.  

BC = LS_RECOIL_PRESSURE LS <integer> <float1> <float2> <float3> <float4>
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<float5> This float is currently disabled. 

<float6> Conversion scale for pressure.

<float7> Conversion scale for temperature

Examples

Technical Discussion

Currently this boundary condition has coefficients for only iron and water. Several 
required pieces of information to use this boundary condition are not in final form, and 
the user can expect future changes and improvements. This boundary condition is 
designed for use with LS_QLASER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.252

4.10.253 LS_VAPOR/LS_QVAPOR

Description/Usage (EMB/ENERGY)

This boundary condition card specifies heat flux model derived from a laser welding 
application. This particular contribution accounts for the energy lost by vapor flux.   
This heat flux value is applied as an “embedded” source term on the heat conservation 
equation at the zero level set contour (cf. BC = Q_LASER_WELD for ALE surfaces).  
It can be used both when subgrid or subelement integration is being used. The 
<float_list> has four parameters; definitions of the input parameters are as follows:

A description of the input parameters follows:

BC = LS_VAPOR LS <integer> <float1> <float2> <float3> <float4>
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LS_VAPOR the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the heat flux value is applied to the negative 
phase, both phase, or the positive phase, respectively.  
Details are given below

<float1> T_scale.  Temperature scaling.

<float2> q_scale.  Heat flux scaling.

Examples

An example:

BC = LS_VAPOR LS 0 273. 1. 

Technical Discussion

Currently this BC is hardwired to parameters (viz. heat capacitance, etc.) for iron.   The 
melting point temperature is taken from the material property “Liquidus Temperature”.   
This boundary condition is still in the developmental stage.  In using it is advisable to 
be working with the Sandia Goma code team.     

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.10.255 LS_YFLUX

Description/Usage (EMB/ENERGY)

This boundary condition applies a scalar mass flux value as an “embedded” source 
term on a species conservation equation at the zero level set contour.  It can be used 
both when subgrid or subelement integration is being used. 

A description of the input parameters follows:

LS_YFLUX the name of the boundary condition

LS This string is used to indicated that this is a “boundary” 
condition is applied at an internal phase boundary defined 
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three 
values -1, 0, or 1.  Depending upon the choice of this 
parameter the mass flux value is applied to the negative 
phase, both phase, or the positive phase, respectively.  
Details are given below

<integer1> w, This the species equation index to which this boundary 
condition is applied.

<float1> hc, a constant value for the mass transfer coefficient at the 
interface.

<float2> Yc, the “bulk” concentration of species used in conjunction 
with the mass transfer coefficient to compute the mass flux.

Examples

An example:

BC = LS_YFLUX LS 0 0 1.e-2 0.75

Technical Discussion

This boundary condition is somewhat analogous to the YFLUX boundary condition 
used quite often in non-level set problems to apply a scalar species flux at a at boundary 

BC = LS_YFLUX LS <integer> <integer1> <float1> <float2>
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defined by a side set.  It applies a scalar mass transfer flux at the interfacial curve as an 
embedded boundary condtion.  It can be used in by subgrid and subelement methods.  
In the case of the former, a distributed volume integral of the form:

where   is the familiar smoothed Dirac delta function with width parameter α and 
the mass flux , J,  is given by the typical relation:

When subelement integration is used this width parameter goes to zero and the volume 
integral becomes a surface integral along the zero level set contour (Note:  as of Oct 
2005 subelement integration is not supported for three dimensional problems).  

When using this boundary condition concurrent with subgrid integration, the integer 
parameter that appears on the card should be consistently set to zero.  This ensures the 
volume source will be applied symmetrically.  However, when using subelement 
integration this integer parameter must be entire a +1 or a -1 so that the mass flux will 
be applied only on side of the interface and not both which would result in cancellation.  
This is much the same as was seen for the LS_CAPILLARY boundary condition and 
the reader is referred to that card for a more detailed discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

NiJδα φ( ) Vd
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J hc Yw Yc–( )=
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4.10.257 SHARP_BLAKE_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  Its formulation is identical to the 
WETTING_SPEED_BLAKE boundary condition, but it is applied as a single point 
source on the boundary instead of a distributed stress. 

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_BLAKE_VELOCITY 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> V_0  is a pre-exponential velocity factor (see functional 
form below).

<float3> g is a thermally scaled surface tension, i.e. σ/2nkT. 

<float4> β, slip coefficient.

<float5> trelax is a relaxation time which can be used to smooth the 
imposed contact point velocity for transient problems.  Set 
to zero for no smoothing.

<float6> Vold is an initial velocity used in velocity smoothing for 
transient problems.  Set to zero when smoothing is not used.

BC = SHARP_BLAKE_VELOCITY SS <bc_id> <floatlist
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Examples

An example:

BC = SHARP_BLAKE_VELOCITY SS 10 30.0 0.1 8. 0.001 0  0

Technical Discussion

The implementation for this wetting condition is identical to that of 
SHARP_WETLIN_VELOCITY, but the wetting velocity dependence is different.  
Because the wetting stress is not applied at a point, it is most appropriate for use when 
using subelement integration which similarly collapses the surface tension sources 
associated with the interface onto the interfacial curve. 

Note also that this boundary condition is strictly for use with two-dimensional 
problems.  Attempting to apply it to a three dimensional problem will result in an error 
message. 

Theory

Derivation of the force condition for this boundary condition starts with a simple 
relation for wetting line velocity

(4-171)

(4-172)

Note that the convention for contact angles in this relation is that values of θ near to 
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.  
This is mapped to a stress value by analogy with Navier’s slip relation and has the 
following form when the velocity smoothing is not used, 

(4-173)

FAQs

No FAQs.

References

No References.
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4.10.259 SHARP_CA_2D

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to impose a contact angle on a boundary when using 
Level Set Interface Tracking.  It can only be used for two-dimensional problems. 

A description of the input parameters follows:

FILL_CA the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> θ, the contact angle imposed, in degrees.

Examples

An example:

BC = SHARP_CA_2D SS 10 30.0

Technical Discussion

This boundary condition must be used in conjunction with the VELO_SLIP_FILL or 
VELO_SLIP_LS boundary condition. These latter conditions permits the fluid to slip in 
the vicinity of the contact line. The SHARP_CA_2D acts by imposing a force on the 
momentum equation. The size of this force is more or less in proportion between the 
actual contact angle on the boundary and the value specified on the card and scales 
directly with the applied surface tension material parameter. In this manner, it is very 
similar to the FILL_CA boundary condition. 

The manner in which is applied differs.  In this case, the applied force is not distributed 
around the contact line using a smooth delta function weighting in a weak integrated 
context, but instead the delta function is used to resolve the line integral and the force is 
applied directly at a point on the sideset set.  Hence, this boundary condition is most 

BC = SHARP_CA_2D SS <bc_id> <float>
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appropriate for use in conjunction with subelement integration which performs a 
similar transformation of the volumetric surface tension source terms.  Further, the 
logic use to identify the point of application on the boundary functions only in two-
dimensions.  Hence, this boundary condition is stricly limited to two-dimensional 
problems.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.260

4.10.261 SHARP_COX_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  Its formulation is identical to the 
WETTING_SPEED_COX boundary condition, but it is applied as a single point source 
on the boundary instead of a distributed stress. 

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_COX_VELOCITY 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

BC = SHARP_COX_VELOCITY SS <bc_id> <floatlist
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<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> σ is the surface tension.

<float3> εsis the dimensionless slip length, i.e. the ratio of the slip 
length to the characteristic length scale of the macroscopic 
flow.

<float4> β, slip coefficient.

<float5> trelax is a relaxation time which can be used to smooth the 
imposed contact point velocity for transient problems.  Set 
to zero for no smoothing.

<float6> Vold is an initial velocity used in velocity smoothing for 
transient problems.  Set to zero when smoothing is not used.

Examples

An example:

BC = SHARP_COX_VELOCITY SS 10 30.0 72.0 0.01 0.1  0  0

Technical Discussion

The implementation for this wetting condition is identical to that of 
SHARP_WETLIN_VELOCITY, but the wetting velocity dependence is different.  
Because the wetting stress is not applied at a point, it is most appropriate for use when 
using subelement integration which similarly collapses the surface tension sources 
associated with the interface onto the interfacial curve. 

Note also that this boundary condition is strictly for use with two-dimensional 
problems.  Attempting to apply it to a three dimensional problem will result in an error 
message. 

Theory

Derivation of the force condition for this boundary condition starts with a relation for 
wetting line velocity

(4-174)Vwet Vold VCox Vold–( ) 1
t

trelax

-----------– 
 exp–+=
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where VCox is computed from the Cox hydrodynamic wetting theory;

(4-175)

See VELO_THETA_COX for details of the Cox functions f and g.  Note that the 
parameters λ, qinner, and qouter are currently not accessible from the input card and are 
hard-set to zero.  λ is the ratio of gas viscosity to liquid viscosity whereas qinner and 
qouter represent influences from the inner and outer flow regions.  

Note that the convention for contact angles in this relation is that values of θ near to 
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.  
This is mapped to a stress value by analogy with Navier’s slip relation and has the 
following form when the velocity smoothing is not used, 

(4-176)

The Cox wetting velocity requires evaluation of integrals for the function g(θ, λ) which 
is currently done numerically using 10-point Gaussian quadrature.  As such the 
evaluation of the integrals is expected to become inaccurate as either θs tends toward 
zero or θ tends toward 180 degrees.  Note that the integrand becomes singular as θ 
tends toward 0 or 180 degrees.

FAQs

No FAQs.

References

No References.
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4.10.263 SHARP_HOFFMAN_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  Its formulation is identical to the 
WETTING_SPEED_HOFFMAN boundary condition, but it is applied as a single point 
source on the boundary instead of a distributed stress. 

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_HOFFMAN_VELOCITY 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> σ is the surface tension.

<float3> β, slip coefficient.

<float4> trelax is a relaxation time which can be used to smooth the 
imposed contact point velocity for transient problems.  Set 
to zero for no smoothing.

<float5> Vold is an initial velocity used in velocity smoothing for 
transient problems.  Set to zero when smoothing is not used.

Examples

An example:

BC = SHARP_HOFFMAN_VELOCITY SS 10 30.0 72.0 0.1  0  0

BC = SHARP_HOFFMAN_VELOCITY SS <bc_id> <floatlist
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Technical Discussion

The implementation for this wetting condition is identical to that of 
SHARP_WETLIN_VELOCITY, but the wetting velocity dependence is different.  
Because the wetting stress is not applied at a point, it is most appropriate for use when 
using subelement integration which similarly collapses the surface tension sources 
associated with the interface onto the interfacial curve. 

Note also that this boundary condition is strictly for use with two-dimensional 
problems.  Attempting to apply it to a three dimensional problem will result in an error 
message. 

Theory

Derivation of the force condition for this boundary condition starts with a relation for 
wetting line velocity

(4-177)

where VHoffman is computed from the Hoffman correlation;

(4-178)

See VELO_THETA_HOFFMAN for details of the Hoffman function g.  Note that the 
convention for contact angles in this relation is that values of θ near to zero indicate a 
high degree of wetting and values of θ near 180 ° indicate the opposite.  This is mapped 
to a stress value by analogy with Navier’s slip relation and has the following form 
when the velocity smoothing is not used, 

(4-179)

Because the Hoffman functions are implicit, iteration is required in the determination 
of the wetting velocity.  As a result, for very high Capillary numbers, i.e. > 106, the 
iteration procedure in Goma may need to be modified.

FAQs

No FAQs.

References

No References.
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4.10.265 SHARP_WETLIN_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  Its formulation is identical to the 
WETTING_SPEED_LINEAR boundary condition, but it is applied as a single point 
source on the boundary instead of a distributed stress. 

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_WETLIN_VELOCITY 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> cT, proportionality constant as defined below

<float3> currently not used. 

<float4> β, slip coefficient.

Examples

An example:

BC = SHARP_WETLIN_VELOCITY SS 10 30.0 0.1 0. 0.001 

BC = SHARP_WETLIN_VELOCITY SS <bc_id> <floatlist
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Technical Discussion

As noted above, this boundary condition imposes the same wetting stress dependence 
as the WETTING_SPEED_LINEAR boundary condition.  However, its application in 
the FEM context is different.  Instead of the wetting stress, τw, being applied according 
to the formula:

, (4-180)

as is the case for the WETTING_SPEED_LINEAR condition, the Dirac function is 
used to remove the integral and replace it with a point stress at the location where φ = 0 
on the boundary.  Designating this point as , the vector applied to the momentum 
equation is given by

(4-181)

Because the wetting stress is not applied at a point, it is most appropriate for use when 
using subelement integration which similarly collapses the surface tension sources 
associated with the interface onto the interfacial curve. Note that this method of 
application is identical to the SHARP_CA_2D boundary condition discussed 
elsewhere. 

Note also that this boundary condition is strictly for use with two-dimensional 
problems.  Attempting to apply it to a three dimensional problem will result in an error 
message. 

Theory

Derivation of the force condition for this boundary condition starts with a simple 
relation for wetting line velocity

(4-182)

Note that the convention for contact angles in this relation is that values of θ near to 
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.  
This is mapped to a stress value by analogy with Navier’s slip relation, 

(4-183)

It should be noted that there is no distinction for this model in the function of β or cT.  
The two parameters are interchangeable.  In non-linear models, (see 
WETTING_SPEED_BLAKE) this is no longer true.
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FAQs

No FAQs.

References

No References.

4.10.266

4.10.267 WETTING_SPEED_BLAKE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  It implements a version of the Blake-DeConinck 
molecular-kinetic theory wetting model.

A description of the input parameters follows:

WETTING_SPEED_BLAKE 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle, degrees .

<float2> V_0  is a pre-exponential velocity factor (see functional 
form below).

<float3> g is a thermally scaled surface tension, i.e. σ/2nkT.

<float4> w,width of interfacial region near contact line.  Defaults to 
level set length scale if zero or less. 

<float5> β, slip coefficient.

BC = WETTING_SPEED_BLAKE SS <bc_id> <floatlist>
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<float6> currently not used.

<float7> currently not used.

<float8> currently not used.

Examples

An example:

BC = WETTING_SPEED_BLAKE SS 10 30.0 20.1 7.0  0. 0.001 0. 0. 0.

Technical Discussion

The implementation for this wetting condition is identical to that of 
WETTING_SPEED_LINEAR, but the wetting velocity dependence is different.  

Note that it is a requirement that when using this boundary condition that slip to some 
extent be allowed on this boundary.  This is most often done by applying a 
VELO_SLIP_LS boundary condition in conjunction with this boundary condition.  In 
addition, a no penetration condition on the velocity is need in either the form of a 
Dirichlet condition or a VELO_NORMAL condition.  It is important to note that the 
slipping condition need not relax the no slip requirement completely.  In fact, its 
parameters should be set so that no slip is for the most part satisfied on the boundary in 
regions away from the contact line.  Near the contact line however the parameters in 
the slip condition and the WETTING_SPEED_BLAKE condition need to be fixed so 
that appreciable fluid velocity is induced.  This is a trial and error process at the current 
time.

Theory

Derivation of this boundary condition starts with a relation propose by Blake and 
DeConinck for wetting line motion

(4-184)

This is mapped to a stress value by analogy with Navier’s slip relation, 

(4-185)

This relation contrasts with the “linear” relation applied by the 
WETTING_SPEED_LINEAR relation in that the rate of change of the wetting velocity 

Vwet V0 g θ θscos–cos( )( )sinh=

τw

Vwet

β
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β
----- g θs θcos–cos( )[ ]sinh= =
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with the contact angle decreases as the wetting angle deviates more and more from its 
static value.  This is more consisten with physical behaviors that the linear model.  

In point of fact this condition is a vector condition so this scalar stress value multiplies 
the unit vector tangent to the surface and normal to the contact line, .  This stress is 
then weighted by smooth Dirac function to restrict its location to being near the 
interface, weighted by a FEM shape function, integrated over the boundary sideset and 
added to the fluid momentum equation for the corresponding node j, vis:

(4-186)

FAQs

No FAQs.

References

No References.

4.10.268

4.10.269 WETTING_SPEED_COX

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  It implements a version of the Cox hydrodynamic model 
of wetting.

A description of the input parameters follows:

WETTING_SPEED_COX 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

BC = WETTING_SPEED_COX SS <bc_id> <floatlist

t

Njτwtδw φ( ) Γd
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<float1> θs, the static contact angle, degrees.

<float2> εsis the dimensionless slip length, i.e. the ratio of the slip 
length to the characteristic length scale of the macroscopic 
flow.

<float3> σ is the surface tension.

<float4> w,width of interfacial region near contact line.  Defaults to 
level set length scale if zero or less. 

<float5> β, slip coefficient.

<float6> currently not used.

<float7> currently not used.

<float8> currently not used.

Examples

An example:

BC = WETTING_SPEED_COX SS 10 30.0 0.01 72.0  0. 0.001 0. 0. 0.

Technical Discussion

The implementation for this wetting condition is identical to that of 
WETTING_SPEED_LINEAR, but the wetting velocity dependence is different.  

Note that it is a requirement that when using this boundary condition that slip to some 
extent be allowed on this boundary.  This is most often done by applying a 
VELO_SLIP_LS boundary condition in conjunction with this boundary condition.  In 
addition, a no penetration condition on the velocity is need in either the form of a 
Dirichlet condition or a VELO_NORMAL condition.  It is important to note that the 
slipping condition need not relax the no slip requirement completely.  In fact, its 
parameters should be set so that no slip is for the most part satisfied on the boundary in 
regions away from the contact line.  Near the contact line however the parameters in 
the slip condition and the WETTING_SPEED_BLAKE condition need to be fixed so 
that appreciable fluid velocity is induced.  This is a trial and error process at the current 
time.

Theory

Derivation of this boundary condition starts with a relation that represents the Cox 
hydrodynamic wetting model
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(4-187)

See VELO_THETA_COX for details of the Cox functions f and g.  Note that the 
parameters λ, qinner, and qouter are currently not accessible from the input card and are 
hard-set to zero.  λ is the ratio of gas viscosity to liquid viscosity whereas qinner and 
qouter represent influences from the inner and outer flow regions.

 Note that the convention for contact angles in this relation is that values of θ near to 
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.  
This is mapped to a stress value by analogy with Navier’s slip relation, 

(4-188)

This relation contrasts with the “linear” relation applied by the 
WETTING_SPEED_LINEAR relation in that  more consistent physical behavior 
should result.  

In point of fact this condition is a vector condition so this scalar stress value multiplies 
the unit vector tangent to the surface and normal to the contact line, .  This stress is 
then weighted by smooth Dirac function to restrict its location to being near the 
interface, weighted by a FEM shape function, integrated over the boundary sideset and 
added to the fluid momentum equation for the corresponding node j, vis:

(4-189)

FAQs

No FAQs.
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Stephan F. Kistler 1993. “Hydrodynamics of Wetting” in Wettability, edited by John 
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4.10.270 WETTING_SPEED_HOFFMAN

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  It implements a version of the Hoffman wetting 
correlation.

A description of the input parameters follows:

WETTING_SPEED_HOFFMAN 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle, degrees .

<float2> currently not used.

<float3> σ is the surface tension.

<float4> w,width of interfacial region near contact line.  Defaults to 
level set length scale if zero or less. 

<float5> β, slip coefficient.

<float6> currently not used.

<float7> currently not used.

<float8> currently not used.

Examples

An example:

BC = WETTING_SPEED_HOFFMAN SS 10 30.0 0 72.0  0. 0.001 0. 0. 0.

BC = WETTING_SPEED_HOFFMAN SS <bc_id> <floatlist
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Technical Discussion

The implementation for this wetting condition is identical to that of 
WETTING_SPEED_LINEAR, but the wetting velocity dependence is different.  

Note that it is a requirement that when using this boundary condition that slip to some 
extent be allowed on this boundary.  This is most often done by applying a 
VELO_SLIP_LS boundary condition in conjunction with this boundary condition.  In 
addition, a no penetration condition on the velocity is need in either the form of a 
Dirichlet condition or a VELO_NORMAL condition.  It is important to note that the 
slipping condition need not relax the no slip requirement completely.  In fact, its 
parameters should be set so that no slip is for the most part satisfied on the boundary in 
regions away from the contact line.  Near the contact line however the parameters in 
the slip condition and the WETTING_SPEED_BLAKE condition need to be fixed so 
that appreciable fluid velocity is induced.  This is a trial and error process at the current 
time.

Theory

Derivation of this boundary condition starts with a relation that represents the Hoffman 
wetting correlation

(4-190)

See VELO_THETA_HOFFMAN for details of the Hoffman function g.  Note that the 
convention for contact angles in this relation is that values of θ near to zero indicate a 
high degree of wetting and values of θ near 180 ° indicate the opposite.  This is mapped 
to a stress value by analogy with Navier’s slip relation, 

(4-191)

This relation contrasts with the “linear” relation applied by the 
WETTING_SPEED_LINEAR relation in that  more consistent physical behavior 
should result.  

In point of fact this condition is a vector condition so this scalar stress value multiplies 
the unit vector tangent to the surface and normal to the contact line, .  This stress is 
then weighted by smooth Dirac function to restrict its location to being near the 
interface, weighted by a FEM shape function, integrated over the boundary sideset and 
added to the fluid momentum equation for the corresponding node j, vis:

Ca
µVHoffman

σ
------------------------≡ gHoff θ( ) gHoff θs( )–=

τw

VHoffman

β
------------------------=

t
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(4-192)

FAQs

No FAQs.
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4.10.271 WETTING_SPEED_LINEAR

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking.  

A description of the input parameters follows:

WETTING_SPEED_LINEAR 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degrees.

<float2> cT, proportionality constant as defined below

<float3> w,width of interfacial region near contact line.  Defaults to 
level set length scale if zero or less (L). 

<float4> β, slip coefficient.

<float5> currently not used.

<float6> currently not used.

BC = WETTING_SPEED_LINEAR SS <bc_id> <floatlist

Njτwtδw φ( ) Γd
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<float7> currently not used.

Examples

An example:

BC = WETTING_SPEED_LINEAR SS 10 30.0 0.1 0. 0.001 0. 0. 0.

Technical Discussion

The prescence of wetting or contact lines in problems using level set interface tracking 
introduces the problem of modeling the motion of the wetting line.  This boundary 
condition presents one potential means for doing this.  It adds a wall stress value at the 
boundary in a region near to the wetting line (this is set with the Level Set Length Scale 
discussed previously).  This wall stress value depends upon the deviation of the 
apparent contact angle determined from the level set function and a set static contact 
angle.  The bigger the deviation in principle the bigger the induced stress.  The stress is 
modeled by analogy with Navier’s slip relation (with slip coefficient β).  The stress will 
induce a fluid velocity at the boundary which it is hoped will move the contact line at a 
velocity that is consistent with the rest of the flow.  

An important note is that it is a requirement that when using this boundary condition 
that slip to some extent be allowed on this boundary.  This is most often done by 
applying a VELO_SLIP_LS boundary condition in conjunction with this boundary 
condition.  In addition, a no penetration condition on the velocity is need in either the 
form of a Dirichlet condition or a VELO_NORMAL condition.  It is important to note 
that the slipping condition need not relax the no slip requirement completely.  In fact, 
its parameters should be set so that no slip is for the most part satisfied on the boundary 
in regions away from the contact line.  Near the contact line however the parameters in 
the slip condition and the WETTING_SPEED_LINEAR condition need to be fixed so 
that appreciable fluid velocity is induced.  This is a trial and error process at the current 
time.

Theory

Derivation of this boundary condition starts with a simple relation for wetting line 
velocity

(4-193)Vwet
1
cT

----- θ( ) θs( )cos–( )cos( )=
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Note that the convention for contact angles in this relation is that values of θ near to 
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.  
This is mapped to a stress value by analogy with Navier’s slip relation 

(4-194)

It should be noted that there is no distinction for this model in the function of β or cT.  
The two parameters are interchangeable.  In non-linear models, (see 
WETTING_SPEED_BLAKE) this is no longer true.

In point of fact this condition is a vector condition so this scalar stress value multiplies 
the unit vector tangent to the surface and normal to the contact line, .  This stress is 
then weighted by smooth Dirac function to restrict its location to being near the 
interface, weighted by a FEM shape function, integrated over the boundary sideset and 
added to the fluid momentum equation for the corresponding node j, vis:

(4-195)

FAQs

No FAQs.

References

No References.

4.10.272

4.10.273 LINEAR_WETTING_SIC

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking. It is an alternative to the WETTING_SPEED_LINEAR 
BC  which does not require the VELO_SLIP_LS or VELO_SLIP_FILL BC's on the 
wetting boundary.  

A description of the input parameters follows:

BC = LINEAR_WETTING_SIC SS <bc_id> <floatlist>

τw

Vwet

β
------------

1
βcT

--------- θ( ) θs( )cos–( )cos( )= =

t

Njτwtδw φ( ) Γd
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LINEAR_WETTING_SIC 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> cT, proportionality constant as defined below

<float3> w,width of interfacial region near contact line.  Defaults to 
level set length scale if zero or less (L). 

<float4> β, slip coefficient.

<float5> vsx, x-component of substrate velocity.

<float6> vsy, y-component of substrate velocity.

<float7> vsz, z-component of substrate velocity.

<float8> τ, stability parameter.

Examples

Here is an example card:

BC = LINEAR_WETTING_SIC SS 10 30.0 0.1 0. 0.001 0. 0. 0. 0.

Technical Discussion

This boundary condition is an additional means to impose a wetting line velocity at the 
contact line for level set interface tracking problems.  The boundary condition uses a 
form of the  Navier-Stokes slip condition to impose a boundary shear stress term to the 
momentum equation:

(4-196)

where and are the normal and tangent boundary vectors, respectively, β is the 
“slipping” parameter which in this context is used actually as a penalty parameter,   is 

nt:T
1
β
--- τ

v∂
t∂

-----– vs v– f F( )Vwett+ + 
  t⋅–=

n t
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the substrate velocity, τ is a stabilization parameter, Vwet is the wetting velocity given 
by the following relation

(4-197)

The masking function f(F) is given by the following relation as well:

 (4-198)

where α is the width of the interfacial region near the contact line itself.  It has the 
effect of “turning off” the wetting velocity at points on the boundary away from the 
interface.

This constraint is then introduced into the fluid momentum equation via the weak 
natural boundary condition term:

(4-199)

When applying this boundary condition, the user should choose a value for β which is 
relatively small.  Its size is dictated by the requirement that away from the interface this 
boundary condition should be imposing a no-slip condition on the fluid velocity.  
Conversely, in the vicinity of the wetting line this boundary condition will impose the 
wetting velocity as computed from the preceding equation.

This boundary condition probably should be used in conjunction with a no penetration 
boundary condition, for example, a VELO_NORMAL condition on the same sideset or 
potentially a Dirichlet condition on velocity if the geometry permits this.  In theory, this 
boundary condition can be used to impose no penetration as well, but this will require a 
very small value for β.  The user should experiment with this.

The stability parameter, τ, as requires commentary.  It is helpful to imagine that this 
parameter introduces a certain amount of inertia to motion of the contact line.  With this 
term active (non-zero value for τ), large changes of the contact line velocity with time 
are restricted.  This can be quite helpful during startup when the intial contact angle is 
often very different from its equilibrium value and there can be very large velocities 
generated as a result.  These may in turn lead to low time step size and other numerical 
problems.

Although every situation is different, one should choose values for τ which are on the 
order of 1 to 10 times the starting time step size of the simulation.  One should also 
recognize that this term is not consistent from a physical standpoint and therefore one 
should endeavor to keep τ as small as possible if not in fact equal to zero.

Vwet
1
cT

----- θ( ) θs( )cos–cos( )=

f F( ) δα F( )
1
2
--- 1

πF
α

------- 
 cos+ 

 = =

Njnt:T Γd
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.274

4.10.275 BLAKE_DIRICHLET 

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking. It is an alternative to the WETTING_SPEED_BLAKE 
BC  which does not require the VELO_SLIP_LS or VELO_SLIP_FILL BC's on the 
wetting boundary.  It uses a Blake-DeConninck relationship between apparent contact 
angle and wetting velocity.  As the name implies, this boundary condition differs from 
WETTING_SPEED_BLAKE in that wetting velocity is in a strong fashion on the 
wetting boundary.

A description of the input parameters follows:

BLAKE_DIRICHLET 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degrees.

BC = BLAKE_DIRICHLET SS <bc_id> <floatlist>
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<float2> V0   is a pre-exponential velocity factor (see functional form 
below). (L/T)

<float3> g is a thermally scaled surface tension, i.e. σ/2nkT. Note 
that this parameter will be multiplied by the surface tension 
supplied in the material file when its used in the wetting 
velocity relation. 

<float4> w, is the width of the interface wetting region.  It defaults to 
the level set length scale if zero of less.

<float5> τ, stability parameter (T).

<float6> vsx, x-component of substrate velocity.

<float7> vsy, y-component of substrate velocity (L/T).

<float8> vsz, z-component of substrate velocity.

Examples

Here is an example card:

BC = BLAKE_DIRICHLET SS 10 30.0 20.1 7.0 0.0 0.001 0. 0. 0.

Technical Discussion

This boundary condition is an additional means to impose a wetting line velocity at the 
contact line for level set interface tracking problems.  It is related to the 
WETTING_SPEED_BLAKE condition in that it uses the same Blake-DeConninck 
relationship between contact angle and wetting speed, but it applies this relation to the 
computational setting in a different way.

In this case, the following vector constraint is added to fluid momentum equation on 
the sideset to which this boundary condition is applied:

(4-200)

The factor P is a large penalty parameter which swamps any contributions from the 
volumetric momentum equations.  Thus, the velocity, , on this boundary will be set 
solely by the preceding constraint.  In this sense, it is a Dirichlet condition (strictly 
speaking, Dirichlet conditions involve direct substitution of nodal degrees-of-freedom 
with corresponding elimination of its equation from the matrix which this boundary 
condition does NOT do).  

P τ–
v∂
t∂

----- Vwf φ w;( )t v
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In the preceding, the vector , is a tangent vector to the surface and always points in the 
same direction of the level set gradient on the boundary (that is, from negative to 
positive).  In three dimensions,  will also be normal to the contact line curve as it 
intersects the surface itself.  

The masking function, , is used to limit the application of the wetting line 
velocity to only that region of the boundary that is the in immediate vicinity of the 
contact line.  We use a simple “hat” function:

(4-201)

Needless to say,  is identically zero for level set values outside the interval (-w, 
w). 

 The stabilization term,  , is intended to introduce something like inertia to the 
wetting line.  That is to say, it’s primary effect is to limit the rate of change of the 
wetting line velocity to “reasonable” values.  The τ parameter should be chosen to be 
on the order of the smallest anticipated time step size in the problem.  Setting it at zero, 
of course, will remove this term entirely.

In general, this boundary condition can be used to exclusively to set both the wetting 
speed velocity and the no slip requirement on the indicated sideset set.  This would also 
include the no penetration requirement.  The user may, however, find it advantageous 
to apply this constraint directly with the VELO_NORMAL condition on the same side 
set.  

An additional note is that the “scaled viscosity” parameter g will be multiplied by the 
surface tension value supplied with Surface Tension card in the material file.

Theory

The wetting speed model for this boundary condition is the same used by the 
WETTING_SPEED_BLAKE card:

(4-202)

FAQs

No FAQs.
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4.10.276 COX_DIRICHLET 

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking. It is an alternative to the WETTING_SPEED_COX  
which does not require the VELO_SLIP_LS or VELO_SLIP_FILL BC's on the wetting 
boundary.  It implements a version of the Cox hydrodynamic model of wetting (see 
below).  As the name implies, this boundary condition differs from 
WETTING_SPEED_COX in that wetting velocity is applied in a strong fashion on the 
wetting boundary.

A description of the input parameters follows:

COX_DIRICHLET 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> εs is the dimensionless slip length, i.e. the ratio of the slip 
length to the characteristic length scale of the macroscopic 
flow. (L)

<float3> σ is the surface tension.  Note this value will be scaled by 
the surface tension value supplied in the material file.(F/L)

<float4> w, is the width of the interface wetting region.  It defaults to 
the level set length scale if zero of less (L).

<float5> τ, stability parameter (T).

BC = COX_DIRICHLET SS <bc_id> <floatlist>
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<float6> vsx, x-component of substrate velocity.

<float7> vsy, y-component of substrate velocity (L/T).

<float8> vsz, z-component of substrate velocity.

Examples

Here is an example card:

BC = COX_DIRICHLET SS 10 30.0 0.01 72.0  0. 0.001 0. 0. 0.

Technical Discussion

This boundary condition is applied in exactly the same manner as the 
BLAKE_DIRICHLET boundary condition.  The only substantial difference is the 
model used to derive the wetting speeds relation to the local apparent contact angle.  
The reader is referred to the BLAKE_DIRICHLET section of the manual for further 
reference. 

Theory

This boundary condition uses this relation that represents the Cox hydrodynamic 
wetting model

(4-203)

See VELO_THETA_COX for details of the Cox functions f and g.  Note that the 
parameters λ, qinner, and qouter are currently not accessible from the input card and are 
hard-set to zero.  λ is the ratio of gas viscosity to liquid viscosity whereas qinner and 
qouter represent influences from the inner and outer flow regions. 

FAQs

No FAQs.
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4.10.278 HOFFMAN_DIRICHLET 

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using 
Level Set Interface Tracking. It is an alternative to the 
WETTING_SPEED_HOFFMAN boundary condition which does not require the 
VELO_SLIP_LS or VELO_SLIP_FILL BC's on the wetting boundary.  As the name 
implies, this boundary condition differs from WETTING_SPEED_HOFFMAN in that 
wetting velocity is in a strong fashion on the wetting boundary.

A description of the input parameters follows:

HOFFMAN_DIRICHLET 

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> not used.

<float3> σ, the surface tension.  Note that this parameter will be 
scaled by the surface tension value supplied in the material 
file. (F/L)

<float4> w, is the width of the interface wetting region.  It defaults to 
the level set length scale if zero of less.

BC = HOFFMAN_DIRICHLET SS <bc_id> <floatlist>
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<float5> τ, stability parameter (T).

<float6> vsx, x-component of substrate velocity.

<float7> vsy, y-component of substrate velocity (L/T).

<float8> vsz, z-component of substrate velocity.

Examples

Here is an example card:

BC = HOFFMAN_DIRICHLET SS 10 30.0 0 72.0 0.0 0.001 0. 0. 0.

Technical Discussion

The technical details of the application of this boundary differ not at all from those 
described for the BLAKE_DIRICHLET boundary condition.  The user is referred to 
that section for further details.  This boundary condition differs only in the model used 
to determine the wetting velocity.  This is described below and in the 
VELO_THETA_HOFFMAN card.

Theory

Derivation of this boundary condition starts with a relation that represents the Hoffman 
wetting correlation

(4-204)

See VELO_THETA_HOFFMAN for details of the Hoffman function g.  Note that the 
convention for contact angles in this relation is that values of θ near to zero indicate a 
high degree of wetting and values of θ near 180 ° indicate the opposite.  This is mapped 
to a stress value by analogy with Navier’s slip relation, 

(4-205)

FAQs

No FAQs.
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4.10.280 VELO_SLIP_LS

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is applied only in problems involving embedded interface 
tracking, that is, level set or volume of fluid. The boundary condition serves two major 
purposes: first to allow for slip in the vicinity of a moving contact line and second to 
facilitate impact of a dense fluid on a substrate, displacing a less dense fluid (e.g. water 
drop and air displacement). . Elsewhere, this boundary condition enforces a no-slip 
condition between fluid and substrate.  A more detailed description is given below.  

This boundary condition is most often used in conjunction with the FILL_CA, 
WETTING_SPEED_LINEAR, or WETTING_SPEED_BLAKE boundary conditions. 
These apply forces to contact lines in order to simulate wetting line motion. These 
forces are applied in a weak sense to the same regions near the interface so it is 
necessary to use VELO_SLIP_LS with a large slipping coefficient so that effectively 
no-slip is relaxed completely near the interface.

Definitions of the input parameters are as follows:

VELO_SLIP_LS Name of the boundary condition. 

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain.

<float1> alpha, or slip_width, a characteristic length scale around 
the contact line that will be used to apply Navier Slip 
Condition with β0 coefficient.   This length scale is also 
used to detect the thickness of light-phase (gas) between 
the substrate denoted by the sideset, and the zero-level-

BC = VELO_SLIP_LS SS <bc_id> <float_list>
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set contour (or the boundary between liquid and gas).  If 
this distance is less than 8*slip_width, then perfect slip 
in the gas phase is allowed to help facilitate contact. See 
discussion below. 

<float2> β0, the slip coefficient near the contact line.  The inverse 
of β0 defines the scaling between stress and slip. The 
parameter supplied on the input deck is used only within 
a lengthscale slip_width setting around the contact line.. 
Elsewhere, the slip coefficient is uniformly set to β1. 
Hence, this parameter is usually set to a large value to 
allow for perfect slip. 

<float3> vs,x, the x-component of surface velocity vector. This 
would be the x-component of the fluid velocity if a no-
slip condition were applied. 

<float4> vs,y, the y-component of surface velocity vector. This 
would be the y-component of the fluid velocity if a no-
slip condition were applied.

<float5> vs,z, the z-component of surface velocity vector. This 
would be the z-component of the fluid velocity if a no-
slip condition were applied.

<float6> β1, the slip coefficient away from the contact line.  The 
inverse of β1 defines the scaling between stress and slip. 
Hence, this parameter is usually set to a small value 
(like 1e-6) to allow for no-slip. 

Examples

Following is a sample card without the optional parameters:

BC = VELO_SLIP_LS SS 10 0.05 100000.0 0.0 0.0 1.e-6 

The large value of slip coefficient ensures nearly perfect slip in the region around the 
interface, a region that has a half-width of 0.05 centered about the contact line. Away 
from the contact line (outside the hat function of width 0.05), the slip coefficient is 1.e-
6, which corresponds to significantly less slip.    Note also that if the substrate defined 
by SS 10 is in contact with gas (light phase), and a liquid front (zero-level set) is 
nearby, or within a distance 8 times 0.05, then the light phase is allowed to slip along 
the wall with a coefficient of 100000.0.    This is to help facilitate contact.   .
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Technical Discussion

This boundary condition was originally developed to allow for fluid slip near a 
dynamic contact line, a necessary condition for dynamic wetting line motion when the 
contact angle is not 180 degrees (viz. rolling motion condition). The slippage 
mechanism was deployed through the use of Navier’s slip condition, which basically 
goes as

Here β is the slip coefficient, which is taken to be variable depending on its proximity 
to the contact line (through the “slip_width” parameter). Note that the smaller the β, the 
more no-slip is enforced. The left hand side of this condition is the fluid traction on the 
substrate.   vs is the velocity of the substrate, specified component-wise with {vx} {vy} 
{vz}.   This base functionality of applying the Navier slip condition still exists in this 
condition, but in addition it was furbished to allow for complete slip on the boundary if 
a gas film is being displaced by liquid. In this latter case, complete slip is a mechanism 
(subgrid event) that allows for the otherwise infinite stress to be relieved so that the 
liquid can make contact with the solid.    The perfect slip condition at the substrate/gas 
surface is activated by just setting the slip coefficient to the large value, as this 
condition does anyway in the vicinity of a contact line. The “gas phase” is determined 
by determining which phase is the lighter one based on the density specification. The 
figure below details more on how this condition works for wetting/dewetting and for 
incipient liquid/solid impact.

Some more usage notes as follows:

• The slip coefficient function is computed as , where the delta 
function is a level-set hat function centered around the zero level set contour where 
it intersects the boundary. It has a length sacale associated with it which is called 
“alpha”, and that basically sets the length over which the β0 is applied as the slip 
parameter and it is large, leading to a shear-stress-free or slippery region in both 
the gas and liquid phases. βINF is taken as real small (typically 1.e-6 or less) and is 
applied away from the contact line, and hence forces a true “no-slip” condition. 

• The most recent addition to this condition is the functionality that adds perfect slip 
to a wall in the gas phase as it is displaced during near contact state by a liquid 
phase. This capability is of course applicable only to level-set capillary 
hydrodynamics problems.   Level-set methods have been plagued by the fact that it 
is hard to break down the displaced phase (e.g. gas phase) as a liquid phase surface 
flows towards a solid boundary.  Theoretically this event requires an infinite stress, 
in the continuum. To relieve this stress and promote a collapse and wetting, we add 
perfect slip in the gas phase at near contact conditions, which reduces the 
lubrication pressure in the gas film and promotes breakdown.  This of course 
introduces more length scales.  First, the length scale over which slip is applied 
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(this is the alpha parameter described above) and seond is the length scale over 
which “nearness” of the liquid phase to the substrate is considered to be “close 
enough” to allow for perfect slip. Right now this “nearness” length scale is 
arbitrarily set to 8*alpha.  A third length scale is that which we use to declare 
contact.    We currently have that set to 1.e-6*alpha.  After contact is declared, 
VELO_SLIP_LS reverts to the form under the first bullet. The figure below 
hopefully clarifies the condition a little better. 

Liquid Gas

θ

distance

log β

β0 (“large value”

β1 (“small value” 

plateau of perfect slip)

plateau no slip)

2*slip_width

substrate

d

if (d < 8*slip_width && Light_phase)
{
      β = β0
}
else
{
      β = delta function in other picture
}

VELO_SLIP_LS as applied to wetting and impact events

Delta_function slip
coefficient model

Impact Model
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.281

Category 16: Boundary Conditions on Shell Equations

These boundary conditions are applied to shell equations, a special category of equations applied 
on 1D boundaries of 2D surfaces in Goma.

4.10.282 SHELL_SURFACE_CHARGE

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to add to the potential equation the surface charge 
term at a shell surface. Definitions of the input parameters are as follows:

SHELL_SURFACE_CHARGEName of the boundary condition 
(<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This boundary 
must coincide with the shell element block on which the 
surface charge equation is applied.

BC = SHELL_SURFACE_CHARGE SS <bc_id> <integer>
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<integer> Integer value indicating the bulk element block ID from 
which to apply the boundary condition (not currently 
implemented).

This boundary condition is currently inoperative..

Examples

For a system consisting of a solid material (element block ID 1) with a conducting shell 
surface (element block ID 2) whose location coincides with side set 20, the following is 
a sample usage:

BC = SHELL_SURFACE_CHARGE SS 20 1

Technical Discussion

This boundary condition applies a surface charge balance along the shell surface.. In its 
most general form, this balance is written

(4-206)

where E is the electric field vector, the superscripts (o) and (i) denote the outer and 
inner phases, n is a unit normal pointing into the outer phase, ε is the electrical 
permittivity,  is the electric field and V is the voltage or electric potential.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

εn E o( ) E i( )–[ ]⋅( ) σ
2
---–=

E V∇–=
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4.10.283

4.10.284 SHELL_SURFACE_CHARGE_SIC

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to add to the potential equation the surface charge 
term at a shell surface. Physically it is the same as the SHELL_SURFACE_CHARGE 
boundary condition, but is applied as a strongly-integrated condition. Definitions of the 
input parameters are as follows:

SHELL_SURFACE_CHARGE_SIC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This boundary 
must coincide with the shell element block on which the 
surface charge equation is applied.

<integer> Integer value indicating the bulk element block ID from 
which to apply the boundary condition (not currently 
implemented).

This boundary condition is currently inoperative...

Examples

For a system consisting of a solid material (element block ID 1) with a conducting shell 
surface (element block ID 2) whose location coincides with side set 20, the following is 
a sample usage:

BC = SHELL_SURFACE_CHARGE_SIC SS 20 1

Technical Discussion

This boundary condition applies a surface charge balance along the shell surface.. In its 
most general form, this balance is written

BC = SHELL_SURFACE_CHARGE_SIC SS <bc_id> <integer>



598 Revised: 6/12/13

4.10.285   

(4-207)

where E is the electric field vector, the superscripts (o) and (i) denote the outer and 
inner phases, n is a unit normal pointing into the outer phase, ε is the electrical 
permittivity,  is the electric field and V is the voltage or electric potential.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.285

4.10.286 SURFACE_ELECTRIC_FIELD

Description/Usage (WSG/SURFACE CHARGE)

This boundary condition card is used to apply a part of the shell surface charge 
equation which includes the electric field, the negative gradient of the potential 
variable which is applied on a neighboring bulk block. It is actually an integral part of 
the surface charge equation. Definitions of the input parameters are as follows:

SURFACE_ELECTRIC_FIELD

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS 
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set 
in EXODUS II) in the problem domain. This boundary 

BC = SURFACE_ELECTRIC_FIELD SS <bc_id> <integer> <integer> <integer>

εn E o( ) E i( )–[ ]⋅( ) σ
2
---–=

E V∇–=
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must coincide with the shell element block on which the 
surface charge equation is applied.

<integer> Bulk element block ID (from ExodusII database) for 
neighboring bulk element block on which the potential 
equation is applied.

<integer> Shell element block ID (from ExodusII database) for 
shell block on which the surface charge equation is 
applied.

This boundary condition is currently inoperative...

Examples

For a system consisting of a solid material (element block ID 1) with a conducting shell 
surface (element block ID 2) whose location coincides with side set 20, the following is 
a sample usage:

BC = SURFACE_ELECTRIC_FIELD SS 20 1 2

Technical Discussion

This is a special type of boundary condition, WEAK_SHELL_GRAD, which is a 
portion of a shell equation which involves spatial gradients of bulk variables. Since the 
values of bulk variable gradients depend on all of the degrees of freedom of that 
variable in the bulk element, and sensitivities to the off-shell degrees of freedom must 
be applied, a portion of the equation must be evaluated from the bulk side. This is done 
in Goma by means of a WEAK_SHELL_GRAD boundary condition which evaluates 
these terms and all bulk sensitivities from the bulk side, the saves these values for later 
recall when the rest of the surface charge equation is assembled.

 In this case, the term  and its potential sensitivities are evaluated within the bulk 
element for inclusion in the surface charge balance along the shell surface.. I

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n V∇•
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4.10.287

4.10.288 SH_TENS

Description/Usage (DC/shell_tension)

This Dirichlet boundary condition specification is used to set a tension (in stress per 
unit length)  to the inextensible shell equations (see EQ = shell_tension and EQ = 
shell_curvature) at an endpoint.  This boundary condition can be applied in two 
dimensions only, and only to the endpoint of a bar-type element.  In put is as follows  :

SH_TENS Boundary condition name (<bc_name>) that defines the  
shell tension (compressive or expansion depending on the 
sign). .

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database. Note that this must be 
a single-node node set representing and endpoint to a bar 
element type. 

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of tension

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the tension for a 
shell equation:

BC = SH_TENS NS 100 10. 

This condition sets a tension of 10.0  at Nodeset 100.  

BC = SH_TENS  NS <bc_id> <float1> [float2]
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Technical Discussion

No Technical Discussion

Theory

No Theory. 

FAQs

No FAQs.

References

GT-027.1: GOMA’s Shell Structure Capability: User Tutorial (GT-027.1)

4.10.289

4.10.290 SH_K

Description/Usage (DC/shell_curvature)

This Dirichlet boundary condition specification is used to set a curvature to the 
inextensible shell equations (see EQ = shell_tension and EQ = shell_curvature) at an 
endpoint.  This boundary condition can be applied in two dimensions only, and only to 
the endpoint of a bar-type element.  :

SH_K Boundary condition name (<bc_name>) that defines the  
shell curvature.

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database. Note that this must be 
a single-node node set representing and endpoint to a bar 
element type. 

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of curvature

BC = SH_K  NS <bc_id> <float1> [float2]
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[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a "hard set" condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the curvature for a 
shell equation:

BC = SH_K NS 100 0. 

This condition sets a curvature of zero at Nodeset 100.  

Technical Discussion

No Technical Discussion

Theory

No Theory. 

FAQs

No FAQs.

References

GT-027.1: GOMA’s Shell Structure Capability: User Tutorial (GT-027.1)

4.10.291

4.10.292 SH_FLUID_STRESS

Description/Usage (PCC/VECTOR MOMENTUM)

Used for fluid-structure interaction problems with structural shell elements, the 
SH_FLUID_STRESS condition equates the normal traction (the tangential and normal 

BC = SH_FLUID_STRESS SS <bc_id> <float>
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force components, per unit area) between adjacent fluid and solid structure. This 
condition is only to be used on boundaries between regions of ARBITRARY mesh 
motion with fluid momentum equations: see Mesh Motion and EQ cards. With this 
boundary condition, the local residual and Jacobian contributions from the fluid 
mechanics momentum equations (on the ARBITRARY side of the boundary) are added 
into weak form of the residual and Jacobian entries for the solid structural equations 
(see EQ = shell_curvature and EQ = shell_tension). All elements on both sides of the 
interface must have the same element type, i.e., the same order of interpolation and 
basis functions, e.g., Q1 fluid and Q1 (bar element) for shell.    Q2 fluid momentum and 
Q2 (bar element) for the shell equations. Also, such interfaces must be defined as a 
mesh side set attached to the bulk fluid elements (most mesh generators will not allow 
for side sets in bar or sheet elements). 

Definitions of the input parameters are as follows:

SH_FLUID_STRESS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float> Scale factor for stress balance for non-dimensionalization. 
This parameter, which multiplies the liquid phase 
contribution and should be set to 1.0 if there is no 
nondimensional treatment. .

Examples

The following is a sample input card:

BC = SH_FLUID_STRESS SS 5 1.0

In this example, side set 5 is a boundary between a solid blade and a liquid; material 2 
is the rubber blade, and material 1 is the fluid. Along that blade, a companion boundary 
condition of the form

BC = NO_SLIP SS 5  2 1

should also be applied.
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Technical Discussion

The functional form of the boundary condition is:

(4-208)

where  is the fluid phase stress tensor given by any one of the specified fluid-phase 
constitutive equations, and  is the solid-phase stress tensor, also given by any one of 
the solid-phase constitutive equation (see material file specifications).  is a scaling 
factor that defaults to unity (and is usually best taken as such unless some scaling is 
invoked).

This balance is applied to the weak form of the solid-phase momentum residuals, from 
the fluid phase, viz. in the fluid-phase, the fluid-stress at the interface is added to the 
solid-phase momentum residuals. As mentioned above, this condition usually needs to 
be supplemented by a statement of mass conservation across the interface, which will 
depend on whether the solid phase is of CONTINUOUS or POROUS media (see Media 
Type card).

Theory

No Theory.

FAQs

Troubleshooting 1:  This boundary condition requires that the side set contain elements 
from both the fluid and the solid side of the interface. For the FASTQ tool, this is the 
default case; for CUBIT and possibly other related tools, this can be forced on the side 
set definition options. Interestingly, the boundary condition does work if the side set is 
attached to the fluid phase only, but just due to the way in which it is applied.

Troubleshooting 2:  This boundary condition does not enforce mass conservation. A 
combination of NO_SLIP or VELO_NORMAL/VELO_TANGENT must be invoked to 
achieve a material surface. For the latter, care must be taken to maintain the application 
of the VELO_NORMAL condition after a remesh. This condition is applied only to one 
side of the interface and depends on the ss_to_blks connectivity structure; it may be 
necessary to force its application, especially after remeshes. To be sure that the proper 
set of conditions is being applied, look at the BC_dup.txt file for nodes along the 
interface.

References

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29, 
2000, P. R. Schunk and Matt Stay
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GT-006.3: Slot and Roll coating with remeshing templates and tutorial for GOMA and 
CUBIT/MAPVAR, August 3, 1999, R. R. Lober and P. R. Schunk

4.10.293

4.10.294LUB_PRESS

Description/Usage
This boundary condition card applies a lubrication pressure to the boundary of a shell-

element sheet.  The corresponding equation is EQ=lubp.    The boundary condition is 

applied to a node set.  

 

LUB_PRESS Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> lub_p, the value of lubrication pressure at the boundary. 

[float2] Optional floating point number  set between 0.0 and 1.0 

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix.  The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences. 

Examples

Following is a sample card: 

BC = LUB_PRESS NS <bc_id> <float_list>
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BC = LUB_PRESS NS  100 100.

This condition applies a lubrication pressure of 100.0 at nodeset 100. 

Technical Discussion

• The equation applied at the specified nodeset in place of Reynold’s lubrication 
equation for confined flow.  Note that it is not to be used for the film-flow 
lubrication equations.  

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.295GRAD_LUB_PRESS

Description/Usage (WIC/R_LUBP)
This boundary condition card applies free boundary condition, akin to Papanastasiou et 

al. (1992) for the fluid momentum, at the boundary of a shell-element sheet.    The 

boundary condition is applied to a sideset. 

 

GRAD_LUB_PRESS Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

BC = GRAD_LUB_PRESS SS <bc_id> <float1>
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<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> Flowrate in L^2/t. Usually set for NOBC effect. 

Examples

Following is a sample card: 

BC = GRAD_LUB_PRESS SS  100 0.

This condition applied at sideset 100. 

Technical Discussion

• None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.296

4.10.297SHELL_FILMP

Description/Usage
This boundary condition card applies a film pressure to the boundary of a shell-element 

sheet.  The corresponding equation is EQ=shell_filmp.    The boundary condition is 

applied to a node set.  

 

BC = SHELL_FILMP NS <bc_id> <float_list>
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SHELL_FILMP Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> shell_filmp, the value of lubrication pressure at the

boundary. 

[float2] Optional floating point number  set between 0.0 and 1.0 

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix.  The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences. 

Examples

Following is a sample card: 

BC = SHELL_FILMP NS  100 100.

This condition applies a film pressure of 100.0 at nodeset 100. 

Technical Discussion

• The equation applied at the specified nodeset in place of the film-flow lubrication 
equation. 

Theory

NoTheory.
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FAQs

No FAQs.

References

No References.

4.10.298SHELL_FILMH

Description/Usage (DC/R_SHELL_FILMH)
This boundary condition card applies a film height to the boundary of a shell-element 

sheet.  The corresponding equation is EQ=shell_filmh.    The boundary condition is 

applied to a node set.  

 

SHELL_FILMH Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> shell_filmh, the value of film thickness at the

boundary. 

[float2] Optional floating point number  set between 0.0 and 1.0 

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix.  The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences. 

BC = SHELL_FILMH NS <bc_id> <float_list>
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Examples

Following is a sample card: 

BC = SHELL_FILMH NS  100 1.

This condition applies a film height of 1.0 at nodeset 100. 

Technical Discussion

• The equation applied at the specified nodeset in place of the film-flow height 
equation. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.299SHELL_PARTC

Description/Usage (DC/R_SHELL_PARTC)
This boundary condition card applies a particle volume fraction to the boundary of a 

shell-element sheet.  The corresponding equation is EQ=shell_filmh.    The boundary 

condition is applied to a node set.  

 

SHELL_PARTC Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

BC = SHELL_PARTC NS <bc_id> <float_list>
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<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> shell_partc, the value of film thickness at the

boundary. 

[float2] Optional floating point number  set between 0.0 and 1.0 

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix.  The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences. 

Examples

Following is a sample card: 

BC = SHELL_PARTC NS  100 0.

This condition applies a particles volume fractioin of 0.0 at nodeset 100. 

Technical Discussion

• The equation applied at the specified nodeset in place of the particles conservation 
equation. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.
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4.10.300SHELL_GRAD_FP

Description/Usage (SIC/R_SHELL_GRAD_FP)
This boundary condition card applies a volumetric flux of liquid film to the boundary of 

a shell-element sheet.  The corresponding equation is EQ=shell_filmp.    The boundary 

condition is applied to a node set.  

 

SHELL_GRAD_FP Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> volumetric flux

Examples

Following is a sample card: 

BC = SSHELL_GRAD_FP SS  100 0.0

This condition applies a particles volume flux of 0.0 at nodeset 100. 

Technical Discussion

• The actual weighted residual equation that is applied to node  on the surface is

BC = BC = SHELL_GRAD_FP SS <bc_id> <float_list>
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where  is the finite element trial function,  is the outward-pointing normal to 

the surface, and  is the volumetric flux specified in the <float1>. Careful attention 

should be given for the sign of . The sign convention is that is positive when the 

flow is exiting the boundary and negative when entering the boundary.

The condition replaces the residual equation shell_filmp at the boundary.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.301_SHELL_GRAD_FP_NOBC

Description/Usage (WIC/R_SHELL_GRAD_FP_NOBC)
This boundary condition card applies free boundary condition, akin to Papanastasiou et 

al. (1992) for the fluid momentum, at the boundary of a shell-element sheet.    The 

boundary condition is applied to a sideset. 

 

SHELL_GRAD_FP_NOBC Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

BC = BC = SHELL_GRAD_FP_NOBC SS <bc_id> 

iφ n

q

q q
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Examples

Following is a sample card: 

BC = SSHELL_GRAD_FP_NOBC SS  100

This condition applied at sideset 100. 

Technical Discussion

• The finite element formulation of the first equation of the film profile equation 
boundary integral in the form of

• This condition is similar to the SHELL_GRAD_FP boundary condition, except 
that the condition is now a weak integrated condition that is added to the residual 
equations, instead of replacing them and the flux is no longer specified.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

( )
3

d 0
3

i II B

h
p hφ

µ

 
−∇ + Γ = 

 
 n U



Revised: 6/12/13 615

4.10.302  SHELL_GRAD_FH 

4.10.302SHELL_GRAD_FH

Description/Usage (SIC/R_SHELL_GRAD_FH)
This boundary condition card sets a slope to the liquid film at the boundary of a shell-

element sheet.  The corresponding equation is EQ=shell_filmh.    The boundary 

condition is applied to a node set.  

 

SHELL_GRAD_FH Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> slope

Examples

Following is a sample card: 

BC = SSHELL_GRAD_FH SS  100 0.0

This condition applies a film slope of 0.0 at nodeset 100. 

Technical Discussion

• he actual weighted residual equation that is applied to node  on the surface is

where  is the finite element trial function, is the outward-pointing normal to 

the surface, and  is the slope specified in the <float1>.

BC = BC = SHELL_GRAD_FH SS <bc_id> <float_list>

[ ] d 0i II hφ ∇ − Σ Γ = n

iφ n

Σ
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• The condition replaces the residual equation shell_filmh at the boundary.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.303SHELL_GRAD_FH_NOBC

Description/Usage (WIC/R_SHELL_GRAD_FH_NOBC)
This boundary condition card applies free boundary condition, akin to Papanastasiou et 

al. (1992) for the fluid momentum, at the boundary of a shell-element sheet, in terms of 

the slope of a thin Reynolds film.    The boundary condition is applied to a sideset. 

 

SHELL_GRAD_FH_NOBC Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

Examples

Following is a sample card: 

BC = SSHELL_GRAD_FH_NOBC SS  100

BC = BC = SHELL_GRAD_FH_NOBC SS <bc_id> 
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This condition applied at sideset 100. 

Technical Discussion

• The finite element formulation of the second equation of film profile equation 
generates boundary integral in the form of

• This condition is similar to the SHELL_GRAD_FH boundary condition, except 
that the condition is now a weak integrated condition that is added to the residual 
equations, instead of replacing them and the flux is no longer specified.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.304SHELL_GRAD_PC

Description/Usage (WIC/R_SHELL_GRAD_PC)
This boundary condition card allows the user to set volumetric flux of particles inside 

liquid film at the boundary of a shell-element sheet.  The corresponding equation is 

EQ=shell_partc.    The boundary condition is applied to a side set. 

 

SHELL_GRAD_PC Name of boundary condition

BC = BC = SHELL_GRAD_PC SS <bc_id> <float_list>

 d 0i II hφ ∇ Γ = n
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SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> particle flux

Examples

Following is a sample card: 

BC = SHELL_GRAD_PC SS  100 1.

This condition applied at sideset 100. and sets a particle flux to 1.0 

Technical Discussion

• The actual weighted residual equation that is applied to node  on the surface is

where  is the finite element trial function,  is the outward-pointing normal to 

the surface, and  is the particles flux specified in the <float1>.

• The condition replaces the residual equation shell_partc at the boundary.

Theory

NoTheory.

FAQs

No FAQs.

{ } d 0i II pDh Jφ ϕ ∇ − Γ =  n

iφ n

pJ
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References

No References.

4.10.305SHELL_LUBP_SOLID

Description/Usage WIC/R_MESH1/R_MESH2/RMESH3)
This vector boundary condition card balances the stress in an abutting continuum 

elastic solid with the lubrication forces (pressure and shear) in a surface shell.    The 

boundary condition is applied to a sideset.  Please see notes below on the sideset 

features which must be specified.  

SH_LUBP_SOLID Name of boundary condition

SS Type of boundary condition (<bc_type>), where

SS denotes sideset in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (nodeset

in EXODUS II) in the problem domain.

<float1> Scaling factor.  Normally set this to 1.0, unless a stress-

balance scale is required due to nondimensionalization. 

Examples

Following is a sample card: 

BC = SH_LUBP_SOLID SS  100 1.0

This boundary condition is applied at sideset 100. 

Technical Discussion

• The mathematical form of the boundary condition is 

BC = SH_LUBP_SOLID SS <bc_id>  <float1>
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• This condition is similar to FLUID_SOLID and SOLID_FLUID boundary 
conditions for the case of fluid-structure interaction between two continuum 
regions, one fluid and one solid.

• Note that the sideset as generated in CUBIT or related software is actually attached 
to the continuum domain and not the shell face, as those faces (top and bottom of 
sheet and not the edges) are not true finite element sides. Most mesh generators 
will not allow sidesets to be include shell element faces. GOMA figures out the 
right thing to do. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.306SHELL_TEMP

Description/Usage (DC/R_SHELL_ENERGY)
This boundary condition card applies a shell temperature to the boundary of a shell-

element sheet.  The corresponding equation is EQ=shell_energy.    The boundary 

condition is applied to a node set.  

 

SHELL_TEMP Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

BC = SHELL_TEMP NS <bc_id> <float_list>

n⋅ σ = kPlub + i(
h

12

∂P

∂x
+

u µ

h
) + j(

h

12

∂P

∂x
+

v µ

h
)
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<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> SHELL_TEMP, the value of temperature at the

boundary. 

[float2] Optional floating point number  set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not 

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminated

from the matrix.  The residual method must beused

when this Dirichlet boundary condition is used as a 

parameter in automatic continuation sequences. 

Examples

Following is a sample card: 

BC = SHELL_TEMP 100 1.0

This boundary condition is applied at nodeset 100. 

Technical Discussion

• The equation applied at the specified nodeset in place of the shell-temperature 
equation. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.
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4.10.307

4.10.308SHELL_OPEN_PRESS, SHELL_OPEN_PRESS_2

Description/Usage (DC/R_SHELL_SAT_OPEN or 

SHELL_SAT_OPEN_2)
This Dirichlet boundary condition card applies a shell liquid phase pressure to the 

boundary of a shell-element sheet.  The corresponding equation is EQ=shell_sat_open. 

or correspondingly shell_sat_open_2, depending on which layer. The boundary 

condition is applied to a node set.  

 

SHELL_OPEN_PRESS Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> SHELL_OPEN_PRESSURE, the value of the liquid

phase pressure at the boundary. 

[float2] Optional floating point number  set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not 

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminated

from the matrix.  The residual method must beused

when this Dirichlet boundary condition is used as a 

parameter in automatic continuation sequences. 

BC = SHELL_OPEN_PRESS NS <bc_id> <float_list>
BC = SHELL_OPEN_PRESS_2 NS <bc_id> <float_list>
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Examples

Following is a sample card: 

BC = SHELL_OPEN_PRESS 100 1.0

This boundary condition is applied at nodeset 100. 

Technical Discussion

• The equation applied at the specified nodeset in place of the shell-sat-open 
equation. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.309LUBP_SH_FP_FLUX

Description/Usage (COLLOC/R_SHELL_FILMP)
This boundary condition card matches the mass flux in one region of confined flow 

(lubp) to the mass flux from a second region of film flow (shell_filmp). The flux 

matching is handled as a sideset between two shell regions.  In this way both equations 

can be coupled for exit or entrance flows.  The boundary condition is applied in 

collocated form, and replaces the R_SHELL_FILMP equation. 

 

LUBP_SH_FP_FLUX Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

C = LUBP_SH_FP_FLUX SS <bc_id> <int1> <int2>
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denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 

<bc_type> that identifies the boundary location (side set

in EXODUS II) in the problem domain.

<int1> Block id of mesh material which invokes the lubp
equation. 

<int2> Block id of mesh material which invokes the
shell_filmp equation

Examples

Following is a sample card: 

BC = LUBP_SH_FP_FLUX SS  100 2 1

This condition applies the matching tie condition at a side set boundary between block 

2 (which invokes the EQ = lubp equation) and block 1 (which invokes the 

EQ=shell_filmp equation). . 

Technical Discussion
The best example of the use of this equation is the exit of a metered coating flow. 

It must be used together with a pressure-matching condition LUBP_SH_FP_MATCH. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.
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4.10.310LUBP_SH_FP_MATCH

Description/Usage (STRONG_INT_SURF/R_LUBP)
This boundary condition card matches the pressure in one region of confined flow 

(lubp) to the pressure from a second region of film flow (shell_filmp). The 

pressure matching is handled as a sideset between two shell regions.  In this way both 

equations can be coupled for exit or entrance flows.  The boundary condition is applied 

in collocated form, and replaces the R_LUBP equation. 

 

LUBP_SH_FP_FLUX Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 

<bc_type> that identifies the boundary location (side set

in EXODUS II) in the problem domain.

<int1> Block id of mesh material which invokes the lubp
equation. 

<int2> Block id of mesh material which invokes the
shell_filmp equation

Examples

Following is a sample card: 

BC = LUBP_SH_FP_MATCH SS  100 2 1

This condition applies the matching tie condition at a side set boundary between block 

2 (which invokes the EQ = lubp equation) and block 1 (which invokes the EQ=lubp 

equation). . 

Technical Discussion
The best example of the use of this equation is the exit of a metered coating flow. 

It must be used together with a flux-matching condition LUBP_SH_FP_FLUX. 

C = LUBP_SH_FP_MATCH SS <bc_id> <int1> <int2>



626 Revised: 6/12/13

4.10.311  APR  

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Category 17: Boundary Conditions for the Acoustic Equations

These boundary conditions are applied to acoustic equations (Preal, Pimag, Reyn_stress).

4.10.311 APR

Description/Usage (DC/ACOUS_PREAL)

This Dirichlet boundary condition card is used to set constant amplitude of the real part 
of the acoustic pressure. Definitions of the input parameters are as follows:

APR Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of the real part of the acoustic pressure amplitude.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 

BC = APR NS <bc_id> <float1> [float2]
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Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample input card:

BC = APR NS 100 1000.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.312

4.10.313 APR_PLANE_TRAN

Description/Usage (WIC/SCALAR ACOUS_PREAL)

This boundary condition card applies the plane wave transmission conditions to the 
acoustic wave equations.  This card concerns the real part while API_PLANE_TRAN 
concerns the imaginary component. This condition is used to set reflection/
transmission conditions for a surrounded material that is not being meshed.  Definitions 
of the input parameters are as follows:

APR_PLANE_TRANName of the boundary condition (<bc_name>).

BC = APR_PLANE_TRAN SS <bc_id> <float1>  
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SS Type of boundary condition (<bc_type>), where SS 
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which 
is an integer that identifies the boundary location (side 
set in EXODUS II) in the problem domain.

<float1> R2, the acoustic impedance (i.e. product of density and 
wave speed) in the surrounded material.

Examples

Following is a sample card:

BC = APR_PLANE_TRAN SS 10 0.1 

Technical Discussion

This condition should be used to account for transmission/reflection conditions for the 
external boundaries when the acoustic wave equation is used.  It reflects characteristics 
for an acoustic wave encountering a planar interface between two materials;

(4-209)

where k is the acoustic wavenumber and R is the acoustic impedance.  The subscript 1 
refers to the material inside the external boundary and is the material which is meshed.  
Subscript 2 refers to the material outside of the external boundary.  If R2 is set equal to 
R1, then this condition mimics an infinite boundary condition, i.e. no reflection at the 
external boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n ∇P• i
k1R1

R2

------------P–=
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4.10.314

4.10.315 API

Description/Usage (DC/ACOUS_PIMAG)

This Dirichlet boundary condition card is used to set constant amplitude of the 
imaginary part of the acoustic pressure. Definitions of the input parameters are as 
follows:

API Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes 
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (node set in 
EXODUS II) in the problem domain.

<float1> Value of the imaginary part of the acoustic pressure 
amplitude.

[float2] An optional parameter (that serves as a flag to the code for a 
Dirichlet boundary condition). If a value is present, and is 
not -1.0, the condition is applied as a residual equation. 
Otherwise, it is a “hard set” condition and is eliminated 
from the matrix. The residual method must be used when 
this Dirichlet boundary condition is used as a parameter in 
automatic continuation sequences.

Examples

The following is a sample input card:

BC = API NS 100 1000.0

Technical Discussion

No discussion.

BC = API NS <bc_id> <float1> [float2]
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.316

4.10.317 API_PLANE_TRAN

Description/Usage (WIC/SCALAR ACOUS_PIMAG)

This boundary condition card applies the plane wave transmission conditions to the 
acoustic wave equations.  This card concerns the imaginary part while 
APR_PLANE_TRAN concerns the real component. This condition is used to set 
reflection/transmission conditions for a surrounded material that is not being meshed. 
Definitions of the input parameters are as follows:

API_PLANE_TRANName of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes 
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with 
<bc_type> that identifies the boundary location (side set in 
EXODUS II) in the problem domain.

<float1> R2, the acoustic impedance (i.e. product of density and 
wave speed) in the surrounded material.

Examples

Following is a sample card:
BC = API_PLANE_TRAN SS 10 0.1

BC = API_PLANE_TRAN SS <bc_id> <float1> 
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Technical Discussion

This condition should be used to account for transmission/reflection conditions for the 
external boundaries when the acoustic wave equation is used.  It reflects characteristics 
for an acoustic wave encountering a planar interface between two materials;

(4-210)

where k is the acoustic wavenumber and R is the acoustic impedance.  The subscript 1 
refers to the material inside the external boundary and is the material which is meshed.  
Subscript 2 refers to the material outside of the external boundary.  If R2 is set equal to 
R1, then this condition mimics an infinite boundary condition, i.e. no reflection at the 
external boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

___________________________End of BC Categories_________________________________

4.10.318 END OF BC

Description/Usage

This card specifies the end of the list of boundary conditions (BCs), and is only used 
when automatic BC counting is used, as described in the Number of BC card. If the 
value of <integer> in that card is set to -1, all BC cards below the END of BC card are 
ignored, and Goma counts the number of BC cards between the Number of BC card and 
the END of BC card.

END OF BC

n ∇P• i
k1R1

R2

------------P–=
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Examples

There are no input parameters for this card, which always appears as follows:

END OF BC

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.11 Rotation Specifications

This section descibes special input for controlling boundary condition implementation of vector 
equations in 3D problems. For 2D problems, the information in this section of the Goma input file 
is not read or used. It is also optional in 3D problems when none of the boundary conditions are 
rotated (see discussion below). However, these specifications are mandatory in all 3D problems 
which require equation rotation at the boundaries (e.g. PLANE, KINEMATIC, VELO_NORMAL), 
a condition especially prevalent in free-surface problems. The goal of this input section is to 
specify the exact implementation of the equations at any boundary with rotated conditions (called 
rotated boundaries throughout this discussion). But first, consider the necessary background.

Rotation of Vector Equations The fluid momentum and psuedo-solid or 
Lagrangian solid momentum equations are vector equations (i.e., they have x, y, and z 
components). The boundary conditions applied to these equations can either be vector 
conditions (applying in the x, y, and z directions) or scalar conditions (a single function of 
the solution and x, y, and z). Scalar conditions applied to vector equations represent a spe-
cial challenge, because it is often unclear which of the vector equations should be replaced 
by the scalar conditions. For many scalar conditions, e.g. Dirichlet conditions, the user 
specifies which component of the momentum equation gets replaced by the scalar condi-
tion; however, not replacing all the components of the vector equation at a boundary re-
sults in applying a shear-stress-free or normal-stress-free condition there (because the 
BOUNDARY term of the equations needs to be computed or else the normal traction is 
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implicitly zero).

In some cases, a better way to apply a scalar condition is to use it to replace the normal or 
tangential contribution of the vector equations, while retaining the other portions of the 
equation (e.g., a no penetration condition could constrain the normal component of veloc-
ity but still allow the stress along the boundary to be shear-free). In Goma, this is done by 
rotating the vector equation into a normal-tangential form:

(4-211)

(4-212)

n and t are the unit normal and tangent vectors at the boundary (evaluated at the centroid 
along the boundary of an element) and  is the vector form of the weighted residual 
equation. This rotation is performed after all weak boundary conditions have been applied, 
but prior to application of strong boundary conditions. Thus any weak contributions to the 
vector equation are retained throughout the rotation.  is the normal component of the 
vector equation and  is the tangent component of the vector equation. Note that the 
equations are rotated after they have been integrated rather than before; thus, the new 
residual equations are only strictly in normal-tangential form along straight boundaries 
(along curved boundaries there may be some error which becomes small as the element 
size decreases).

In Goma, rotated boundary conditions cause rotation of the vector equation on an element 
side if there are no Dirichlet conditions applied to that vector equation and if the total 
number of independent rotated conditions is less than the number of dimensions of the 
physical problem (i.e., in a 2D problem, the vector equation is rotated only when one 
independent rotated condition exists at that node).

Thus along any rotated boundary, the three vector equations (e.g. x, y, and z mesh equations) are 
replaced by three new equations as specified in this section. The user can decide to replace the 
component equations by rotated forms of the equations (or even unrotated forms of the 
equations), or to replace the component equations by boundary conditions. These specifications 
also dictate how to calculate the tangent vectors which are sometimes ill-defined in 3D. This 
section is designed to accommodate an arbitrary number of rotation specifications listed in the 
Goma input between Rotation Specifications = and END OF ROT.

All of this behavior is implemented through the overloaded ROT input card. There are three types 
of ROT cards depending on whether the condition applies on a surface, an edge or a vertex. Goma 
makes no assumptions about the topology of the mesh surfaces; all the topology is defined 
through the ROT card. In this implementation, a surface is defined as a side-set, an edge is defined 
as the intersection of two side-sets, and a vertex is defined as the intersection of three side-sets at 
a single node. Although all three types of input cards start with ROT =, we list them as three 
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independent cards to make the discussion more straightforward. As nodes that are contained on 
edges must also be contained on the adjacent surfaces, these rotation specifications have a 
hierarchy -- vertex, edge, surface -- such that vertex conditions override edge conditions which 
override surface conditions.

Note: it is possible to solve a 3D problem with rotated boundaries by only creating rotation 
specifications for those boundaries, and letting Goma determine the behavior at the remaining 
boundaries. However, this is a dangerous practice; it is much better to explicitly tell Goma how to 
treat all boundaries so that the behavior is well defined. An important example is the intersection 
of a rotated boundary and an unrotated boundary, it is still a rotated boundary and requires an edge 
ROT specification.

4.11.1 Rotation Specifications

Description/Usage

This card denotes the start of the rotation specification cards. All rotation specification 
cards between this card and the END OF ROT card will read and processed. If this card 
is not present, no rotation cards will be read.

Examples

There are no input parameters for this card. It should appear on its on line exactly as 
follows:

Rotation Specifications =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Rotation Specifications = 
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4.11.2 ROT SURFACE

Description/Usage

This rotation specification card identifies a specific surface that requires rotation of 
equations for proper application of boundary conditions in three dimensional problems. 
It identifies the boundary conditions that are to be applied on that surface. It also 
identifies which equation components are to be replaced by boundary conditions, 
which are to be replaced by rotated equation components, and which are to be left 
alone. Equation components refer, currently, to only rotation of mesh and momentum 
equations. This card also identifies the manner in which two independent tangent 
vectors are to be determined on the surface.

Definitions of the first three input parameters are as follows:

{MESH | MOM} Equation type (<eq_type>) to which this rotation 
condition applies: 

MESH - Applies to mesh equations
MOM - Applies to fluid momentum equations

SURFACE Type of rotation specification.

<bc_id> An integer identifying the side set designation of the 
surface to which this rotation condition applies.

The next six parameters dictate how the x, y, and z components of the vector equation 
are replaced by boundary conditions or rotated equations using pairs of specifiers, e.g., 
<string_x> and <int_x> for the x-component of the equation.

<string_x> A character string that specifies what will replace the x-
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 1 (Valid Equation Rotation 
Strings).

<int_x> This is an integer parameter specified as follows:

ROT = {MESH | MOM} SURFACE <bc_id> <string_x> <int_x> <string_y> 
<int_y> <string_z> <int_z> {seed_method} <float1> <float2> <float3>
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• If <string_x> is a boundary condition name, then 
<int_x> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_x> is a rotation string from Table 1, <int_x> 
should be specified as 0.

<string_y> A character string that specifies what will replace the y -
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 1.

<int_y> This is an integer parameter specified as follows:

• If <string_y> is a boundary condition name, then 
<int_y> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_y> is a rotation string from Table 1, <int_y> 
should be specified as 0.

<string_z> A character string that specifies what will replace the z -
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 1. 

<int_z> This is an integer parameter specified as follows:

• If <string_z> is a boundary condition name, then 
<int_z> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.
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• If <string_z> is a rotation string from Table 1, <int_z> 
should be specified as 0.

In most cases, only one of the three equations on a surface will be replaced by 
boundary conditions, and the remaining two equations will be rotated in the two 
tangent directions. Such a form constrains the normal motion of the solid or fluid while 
allowing tangential motions to occur stress-free.

The last four parameters in the card specify how to calculate the tangent vectors on the 
surface. In 3D, an infinite number of equally valid tangent pairs exist, so this card 
enables specifying how to choose those pairs. More specifically it identifies how to 
identify the first tangent vector (T1) since the second tangent vector is always be 
obtained via the cross product of the normal vector with the first tangent vector (T1).

Table 1.   Valid Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

NONE, NA,  or NO No rotation is performed for this equation component. 

N This equation component is replaced by normal 
component of the residual 

T This equation component is replaced by the tangential 
component of the residual:  (EDGE and 
VERTEX only)

T1 This equation component is replaced by the first 
tangential component of the residual: 

T2 This equation component is replaced by the second 
tangential component of the residual: 

X This equation is replaced by the x-component of the 
residual.

Y This equation is replaced by the y-component of the 
residual.

Z This equation is replaced by the z-component of the 
residual

S The equation component is replaced by the projection of 
the equations in the direction of the seed vector:  

B The equation component is replaced by the projection of 
the equations in the direction of the binormal vector

tn R•

t R•

T1 R•

T2 R•

S R•
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{seed_method} A character string that defines the method of tangent 
calculation. Valid options are listed in the Surface 
Tangent Calculation Method (Table 2).

<float1> x-component of the seed vector, s. This parameter is 
only needed if {seed_method} is SEED.

<float2> y-component of the seed vector, s. This parameter is 
only needed if {seed_method} is SEED.

<float3> z-component of the seed vector, s. This parameter is 
only needed if {seed_method} is SEED.

Note that the seed vector specified does not have to be a unit vector.

Examples

The following are several examples of useful rotation specifications for surfaces:
ROT = MESH SURFACE 99 KINEMATIC 99 T2 0 T1 0 BASIS_RESEED 
ROT = MESH SURFACE 16 T1 0 T2 0 PLANE 16 SEED 1. 0. 0.
ROT = MOM SURFACE 5 VELO_NORMAL 5 T1 0 T2 0 BASIS

 The first example applies to the mesh equations at side set 99, the second to mesh 
equations at side set 16, and the third to the fluid momentum equations at side set 5. As 
described previously, the <string_x>, <string_y> and <string_z> parameters can be any 
boundary condition name or rotation string. Thus for the first example above, the x-

Table 2.   Surface Tangent Calculation Method

{seed_method} Description of Tangent Calculation Methods

NONE Tangent vectors should not be calculated.  This is the 
usual choice for EDGE and VERTEX rotation types.

SEED The first tangent vector (T1) is calculated from a surface 
projection of a seed vector, s: 

BASIS The first tangent is the direction of the first basis vector in 
the surface using a weighted average for adjacent 
elements.

BASIS_FIRST The first tangent is the direction of the first finite element 
basis vector in the first element containing a given node.

BASIS_RESEED The tangent resulting from BASIS_FIRST is used to 
reseed tangent calculation in the adjacent elements. (This 
method is the most reliable.)

T1 I nn–( ) s•=
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component of the mesh equation is replaced by a KINEMATIC boundary condition on 
side set 99, the y-component of the mesh equation is replaced by the second tangential 
component (T2) of the mesh equation, and the z-component of the mesh equation is 
replaced by the first tangential component (T1) of the mesh equation. Since the rotation 
selections in the first example (T2 and T1) are rotated components instead of boundary 
conditions, a value of zero for the <int_y> and <int_z> parameters is appropriate. 
Finally, for the first example, BASIS_RESEED was chosen as the {seed_method}, and 
thus no subsequent parameters were required. The second example, however, uses 
SEED as the {seed_method} and thus is followed by the x, y, and z components of the 
tangent vector, respectively, as <float1> of 1., <float2> of 0., and <float3> of 0.

Technical Discussion

The necessary background discussing the nature and need for rotation procedures and 
rotation specifications is supplied in several of the references listed below. Briefly, 
however, in order to apply certain boundary conditions accurately it is necessary that 
the vector components of the solid mesh or fluid momentum equations be replaced by 
components that are tangent and normal to the surface in question. This procedure is 
referred to in this context as “rotation of equations.” It should be noted that explicitly 
specifying rotation conditions is really only necessary for three dimensional problems. 
Rotation also occurs in two-dimensional problems, but is sufficiently simpler that it can 
be automated and is therefore transparent to the user.

Not every boundary condition needs an accompanying rotation specification card and 
those that do are identified in the description of each boundary condition. Each rotated 
boundary condition will require at least one SURFACE rotation card be included for 
the boundary condition’s side set. Failure to do so is an error. The boundary conditions 
most often encountered that will require rotation cards are the VELO_NORMAL card 
applied to the fluid momentum equations and the KINEMATIC, PLANE, and SPLINE 
cards applied to the solid mesh equations.

In almost every case the boundary condition constraint will replace the normal rotated 
component so only the two tangential components of the rotated equation remain. All 
three examples shown above are just this situation. This has the effect of constraining 
the normal motion of the solid or fluid and imposing zero tangential forces due to the 
natural boundary conditions present in both fluid and solid momentum equations.

Specification of a seed vector method is needed so that a unique pair of tangent vectors 
may be determined at each point on the surface. The BASIS, BASIS_FIRST and 
BASIS_RESEED use the finite element grid in the surface as a means of defining the 
first tangent vector. They can employ averaging over elements that share a node. They 
should be employed on surfaces for which it is difficult to find a single consistent seed 
vector for every point on the surface. The SEED method finds the projection of the 
vector supplied in the surface at the point of interest. This projection vector is 
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normalized to obtain the first tangent vector. It should be clear that only vectors that are 
never normal to any point on the surface will be suitable. In practice, this condition can 
sometimes be hard to meet for some surfaces. In these cases, the other seeding methods 
should be used.

Theory

No Theory.

FAQs

No FAQs.

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-012.0: 3D Roll coating template and tutorial for GOMA, February 21, 2000, P.R. 
Schunk

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer
 

4.11.3 ROT EDGE

Description/Usage

This rotation specification card deals with rotation specification along edges. In this 
context, an edge is the intersection of two side sets. It identifies the boundary 
conditions that will be applied at nodes on that edge and which equation components 
are to be associated with them. It also identifies which components of the rotated 
equations will be used. Currently, only rotation of mesh and momentum equations is 
allowed on edges. This card can also be used for specifying a seed vector if needed.

Definitions of the input parameters are as follows:

{MESH | MOM} Equation type to which this rotation condition applies:

MESH - Applies to mesh equations
MOM - Applies to fluid momentum equations

EDGE Type of rotation specification.

ROT = {MESH | MOM} EDGE <bc_id1> <bc_id2> <string_x> <int_x> <string_y> 
<int_y> <string_z> <int_z> {seed_method} <float1> <float2> <float3>
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<bc_id1> Side set ID number of the primary side set.

<bc_id2> Side set ID number of the secondary side set.

The edge is defined as the intersection of the primary and secondary side sets.

The next six parameters dictate how the x, y, and z components of the vector equation 
are replaced by boundary conditions or rotated components using pairs of specifiers, 
e.g., <string_x> and <int_x> for the x-component of the equation.

<string_x> A character string that specifies what will replace the x-
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 3 (Valid EDGE Tangent Equation 
Rotation Strings).

<int_x> This is an integer parameter specified as follows:

• If <string_x> is a boundary condition name, then 
<int_x> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_x> is a rotation string from Table 3, <int_x> 
should be specified as 0.

<string_y> A character string that specifies what will replace the y -
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 3.

<int_y> This is an integer parameter specified as follows:

• If <string_y> is a boundary condition name, then 
<int_y> is the side set or node set designation to which 
the appropriate boundary condition applies.  This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_y> is a rotation string from Table 3, <int_y> 
should be specified as 0.
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<string_z> A character string that specifies what will replace the z -
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 3.

<int_z> This is an integer parameter specified as follows:

• If <string_z> is a boundary condition name, then 
<int_z> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_z> is a rotation string from Table 3, <int_z> 
should be specified as 0.

.

Table 3.   Valid EDGE Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

NONE, NA, or NO No rotation is performed for this equation component. 

N This equation component is replaced by the normal 
component of the residual:  where n is the outward-
pointing normal to <bc_id1>

T This equation component is replaced by the tangential 
component of the residual:  where the tangent is a 
line tangent along the edge defined by <bc_id1> and 
<bc_id2>.  

B This equation component is replaced by the outward-
pointing binormal component of the residual:  
where the binormal is perpendicular to both the line 
tangent T and the outward-pointing normal to <bc_id1>.

S The equation component is replaced by the projection of 
the equations in the direction of the seed vector:  

X This equation is replaced by the x-component of the 
residual.

n R•

T R•

B R•

S R•
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In most cases, seeding of the tangent vectors is not needed along edges, although it is 
possible to specify a seed method as defined in the ROT SURFACE card via the 
parameters {seed_method}, <float1>, <float2>, and <float3>. Note also that a seed 
vector must be specified to use the S rotation option.

Examples

The following is an example of an edge rotation specification:

ROT = MESH  EDGE 4 5  PLANE  4  PLANE 5  T   0  NONE

This card specifies rotation of the mesh equations along the edge of intersection of side 
sets 4 and 5. The x and y mesh equations are replaced by PLANE conditions on side 
sets 4 and 5, respectively. The z mesh equation is replaced by the mesh residuals 
rotated into the direction of the line tangent along the edge. This enables the mesh to 
slide freely (i.e., stress-free) along the edge.

Technical Discussion

• The direction of the line tangent is chosen such that the binormal ( ) with 
n, the outward-pointing normal to the primary surface <bc_id1>, is outward-
pointing from the edge.

• Along edges, two of the equations are normally replaced by boundary conditions 
and one equation is replaced by this tangential component. However several 
options are available for replacing the mesh equations by other forms of the rotated 
equations as listed in Table 3. (Valid EDGE Tangent Equation Rotation Strings) 
above.

• It is very rare to require a seed vector be specified on an edge.  The SEED vector 
choice is almost always NONE.

• A precedence rule has been established for the case when more than one Rotation 
Specification could be applied at a point. The rule is as follows:

The Rotation condition that will be applied is:

Y This equation is replaced by the y-component of the 
residual.

Z This equation is replaced by the z-component of the 
residual.

Table 3.   Valid EDGE Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

b n t×=
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A>The first VERTEX condition in the input deck that could 
apply.  If there is no contravening VERTEX condition then,

B>The first EDGE condition in the input deck that could 
apply.  If there is no contravening EDGE condition then,

C>The first SURFACE condition that could apply.

• A very important restriction exists for EDGE and VERTEX rotation conditions.  It 
is a necessary requirement that all elements that are present on an edge have only a 
single segment present on the edge curve.  An element may therefore never 
contribute more than two corner vertex nodes to the set of nodes on an edge curve.  
If there are more than two such nodes for a given element, Goma will terminate 
with a “Side not connected to edge” error.  If such a situation exists, the only 
solution is to remesh the geometry to eliminate such elements.

Theory

No Theory.

FAQs

No FAQs.

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-012.0: 3D Roll coating template and tutorial for GOMA, February 21, 2000, P.R. 
Schunk

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer
 

4.11.4 ROT VERTEX

Description/Usage

This rotation specification card deals with rotation specification at vertices. In this 
context, a vertex is the intersection point of three side sets. It identifies the boundary 

ROT = {MESH | MOM} VERTEX <bc_id1> <bc_id2> <bc_id3> <string_x> 
<int_x> <string_y> <int_y> <string_z> <int_z> {seed_method} <float1> <float2> 
<float3>
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conditions that will be applied at the vertex node and which equation components are to 
be associated with them. It also identifies which components of the rotated equations 
will be used. Currently, only rotation of mesh and momentum equations is allowed at a 
vertex. This card can also be used for specifying a seed vector if needed.

Definitions of the input parameters are as follows:

{MESH | MOM} Type of equation to which this specification applies, 
where

MESH - Applies to mesh displacement equations
MOM - Applies to fluid momentum equations

VERTEX Type of rotation specification.

<bc_id1> Side set id number of the primary side set.

<bc_id2> Side set id number of the secondary side set.

<bc_id3> Side set id number of the tertiary side set.

The vertex is defined as the point at the intersection of the primary, secondary, tertiary 
side set. Note that it is possible for these three side sets to intersect at more than one 
discrete point. The VERTEX condition is applied to all such points.

The next six parameters dictate how the x, y, and z components of the vector equation 
are replaced by boundary conditions or rotated components using pairs of specifiers, 
e.g., <string_x> and <int_x> for the x-component of the equation.

<string_x> A character string that specifies what will replace the x-
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 4 (Valid VERTEX Tangent 
Equation Rotation Strings).

<int_x> This is an integer parameter specified as follows:

• If <string_x> is a boundary condition name, then 
<int_x> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_x> is a rotation string from Table 4, <int_x> 
should be specified as 0.
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<string_y> A character string that specifies what will replace the y -
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 4.

<int_y> This is an integer parameter specified as follows:

• If <string_y> is a boundary condition name, then 
<int_y> is the side set or node set designation to which 
the appropriate boundary condition applies.  This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_y> is a rotation string from Table 4, <int_y> 
should be specified as 0.

<string_z> A character string that specifies what will replace the z -
component of the vector equation (MESH or 
MOMENTUM). This string may be the name of a 
boundary condition already specified in the boundary 
condition specification section or one of the rotation 
strings listed in Table 4.

<int_z> This is an integer parameter specified as follows:

• If <string_z> is a boundary condition name, then 
<int_z> is the side set or node set designation to which 
the appropriate boundary condition applies. This 
provides a means of distinguishing between boundary 
conditions possessing the same string name but applied 
to different side sets or node sets.

• If <string_z> is a rotation string from Table 4, <int_z> 
should be specified as 0.

.

Table 4.   Valid VERTEX Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

NONE, NA, or NO No rotation is performed for this equation component. 
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In most cases, seeding of the tangent vectors is not needed along vertices, although it is 
possible to specify a seed method as defined in the ROT SURFACE card via the 
parameters {seed_method}, <float1>, <float2>, and <float3>.  Note also that a seed 
vector must be specified to use the S rotation option.

Examples

The following is an example of a vertex rotation specification:
ROT = MESH  VERTEX  3 4 6  PLANE  4 PLANE 3  PLANE  6  NONE
ROT = MESH  VERTEX  5 4 6  PLANE  4 KINEMATIC 5  PLANE  6  NONE

In the first example, the vertex is at the intersection of side sets 3, 4 and 6, and the three 
mesh equations at this vertex are replaced by PLANE conditions from side sets 4, 3, and 
6, respectively. In the second example, the vertex is at the intersection of side sets 4, 5,  
and 6, respectively.  Since it is conceivable that side set 5 might represent a free surface 
that curves in three dimensions, the last VERTEX card might apply to more than one 
point.

N This equation component is replaced by the normal 
component of the residual:  where n is the 
outward-pointing normal to <bc_id1>

T This equation component is replaced by the tangential 
component of the residual:  where the tangent is 
a line tangent along the edge defined by <bc_id1> and 
<bc_id2>.  

B This equation component is replaced by the outward-
pointing binormal component of the residual:  
where the binormal is perpendicular to both the line 
tangent T and the outward-pointing normal to <bc_id1>.

S The equation component is replaced by the projection of 
the equations in the direction of the seed vector:  

X This equation is replaced by the x-component of the 
residual.

Y This equation is replaced by the y-component of the 
residual.

Z This equation is replaced by the z-component of the 
residual.

Table 4.   Valid VERTEX Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

n R•

T R•

B R•

S R•
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Technical Discussion

• Despite the fact that VERTEX cards apply only at single points, definitions of the 
normal, tangent and binormal vectors are still operative. The normal vector, N, is 
the outward-pointing normal to the primary side set, the tangent vector, T, is 
defined to lie along the curve defined by the intersection of the primary and 
secondary side set, and the binormal vector, B, is defined simply as the cross 
product of the normal vector with the tangent vector. Note that the sense of the 
tangent vector is chosen so that the binormal vector will always point outwards 
from the domain.

• At a vertex, it is normally the case that all three rotated components will be 
replaced by boundary conditions as suggested by the examples. However, it is not 
a rarity that a rotated component, usually N or T, will also appear.

• The same hierarchy of precedence is used to determine which rotation 
specification will be applied when more than one could apply to a node. The rule is 
as follows:

The Rotation condition that will be applied is:

A>The first VERTEX condition in the input deck that could 
apply.  If there is no contravening VERTEX condition then,

B>The first EDGE condition in the input deck that could 
apply.  If there is no contravening EDGE condition then,

C>The first SURFACE condition that could apply

• Very often VERTEX cards are used to resolve ambiguities that arise at points where 
multiple SURFACE or EDGE cards could apply.

Theory

No Theory.

FAQs

No FAQs.

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-012.0: 3D Roll coating template and tutorial for GOMA, February 21, 2000, P.R. 
Schunk
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GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer
 

4.11.5 END OF ROT 

Description/Usage

This card is used to end the section of rotation specifications in the input deck. Any 
ROT conditions listed after this card are ignored. It should always accompany the 
“Rotation Specifications =” card.

Examples

There are no input parameters for this card, which always appears as follows:

END OF ROT

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12 Problem Description

This section directs all input specifications required for differential equations, material type, mesh 
motion type, coordinate system, finite element basis function type, and several other input tasks. 
This section of input records, with the exception of the Number of Materials card (the first one 
below), must be repeated for each material region in the problem. Within that region of the 
problem domain (and the corresponding section of the input file) there are no restrictions as to 
which differential or constraint equations can be specified, which is a unique capability of Goma. 

END OF ROT
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However, some combinations or specifications do not make much sense, e.g., a cylindrical 
coordinate region combined with a cartesian one. It is recommended that the user consult the 
usage tutorials and example problems to get a feel for how this section is constructed.

4.12.1 Number of Materials

Description/Usage

This required card denotes how many material sections are contained in the Problem 
Description File. Each material section will have its own problem description, 
consisting of the following: MAT card, Coordinate System card, Mesh Motion card, 
Number of bulk species card, Number of EQ card, and zero or more equation cards. The 
input parameter is defined as

<integer> The number of MAT cards (i.e., material sections) that 
follow; this number must be greater than zero.

If there are more MAT cards than specified by <integer>, Goma ignores all extras (i.e., 
the first Number of Materials material sections are read). If <integer> is set to -1, Goma 
automatically counts the MAT cards between the Number of Materials card and the 
END OF MAT card.

Examples

Following is a sample card, indicating that there are two materials:

Number of Materials = 2

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Number of Materials = <integer>
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References

No References.
 

4.12.2 MAT

Description/Usage

This card represents the start of each material section in the Problem Description File. 
Thus, one MAT card is required for each material section. Definition of the input 
parameters are as follows:

<char_string> Filename of the material file from which all material 
properties for the current material will be read. The material 
file’s name plus extension is char_string.mat, and if 
the file is not present in the current working directory, the 
code will exit with the error message “Not all Material Files 
found in current directory.”

<integer_list> This is a list of space delimited integers that define the set of 
element blocks for which this material file is applicable; the 
integers are the element block ids defined when the domain 
was meshed.

Examples

The following specifies material file “sample.mat” applies to element blocks 1, 2, 3, 7, 
and 9:

MAT = sample 1 2 3 7 9

Note, the “.mat” extension is not specified explicitly, but appended to the character 
string by the code.

Technical Discussion

No discussion.

Theory

No Theory.

MAT = <char_string> <integer_list> 
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FAQs

No FAQs.

References

No References.
 

4.12.3 Coordinate System

Description/Usage

This card is required for each material section in the Problem Description File. It is 
used to specify formulation of the equations to be solved. Valid options for 
{char_string} are as follows:

CARTESIAN For a two (x-y) or three (x-y-z) dimensional Cartesian 
formulation.

CYLINDRICAL For an axisymmetric (z-r) or three-dimensional 
cylindrical (z-r-θ) formulation; the three-dimensional 
option has not been tested.

SPHERICAL For a spherical (r-θ-φ) formulation.

SWIRLING For a two-dimensional formulation (z-r-θ) with a 
swirling velocity component that is independent of 
azimuthal coordinate.

PROJECTED_CARTESIAN

For use in the analysis of the three-dimensional stability 
of a two-dimensional flow field. The formulation (x-y-
z) has a z-velocity component that is independent of the 
z-direction.

Examples

The following is a sample card that sets the coordinate system to Cartesian:

Coordinate System = CARTESIAN

Coordinate System = {char_string}
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Technical Discussion

Note the coordinate ordering for the CYLINDRICAL and SWIRLING options where 
the z-direction is first followed by the r-component (which in lay terms means the 
modeled region/part will appear to be ”lying down.”) If the SWIRLING option is 
activated, Goma expects a third momentum equation for the θ-direction, i.e. EQ = 
momentum3, as explained in the equation section. The third component is basically the 
azimuthal θ-velocity component, and the appropriate boundary conditions must be 
applied, e.g., on the w-component as described in the Category 4 boundary conditions 
for Fluid Momentum Equations.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.4 Element Mapping

Description/Usage

This card allows the user to set the order of the finite element shape mapping between 
the canonical element and each physical element. Valid options for {char_string} are:

isoparametric This choice sets the element order mapping to the highest 
order present in the problem. However, if a mesh 
displacement field is present, the element mapping order is 
the interpolation order of the mesh displacement field.

Q1 This choice sets the element mapping order to bilinear .

Q2 This choice sets the element mapping order to biquadratic. 

SP This choice sets the element mapping to order to 
subparametric.

Element Mapping = <char_string>
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Examples

Some text like this:

Element Mapping = isoparametric

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.5 Mesh Motion

Description/Usage

This card is required for each material section in the Problem Description File even if a 
moving mesh problem is not being solved. It is used to specify the method which 
prescribes the movement of nodes within the mesh. Valid options for {char_string} are:

ARBITRARY This option triggers the implicit pseudo-solid domain-
mapping technique using the constitutive equation 
designated in the corresponding file.mat (see Material 
File description); with this technique, the boundaries of the 
domain are controlled by distinguishing conditions coupled 
with the problem physics, and the interior nodes move 
independently of the problem physics.

LAGRANGIAN This option triggers coupling the motion of nodes on the 
interior of the domain to the deformation of an elastic solid. 
If the solid is incompressible, this technique uses a pressure 

Mesh Motion = {char_string}
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(Lagrange multiplier) to couple the solid deformation and 
the local solvent concentration.

DYNAMIC_LAGRANGIAN

This option triggers coupling the motion of nodes on the 
interior of the domain to the deformation of an elastic solid, 
including solid inertia. If the solid is incompressible, this 
technique uses a pressure (Lagrange multiplier) to couple 
the solid deformation and the local solvent concentration.   
Together with the equation term multiplier on the mass 
matrix (see EQ card) and a “transient” specification on the 
Time Integration Card, this option will invoke a Newmark-
Beta time integration scheme for the inertia term in the 
R_MESH* equations.

TOTAL_ALE This option allows motion of nodes on the interior of the 
domain of a solid region to be independent of the material 
motion. TALE is an acronym for “Total Arbitrary 
Lagrangian Eulerian” mesh motion. This is typically used in 
elastic solids in which large scale deformation makes 
motions under the LAGRANGIAN option unmanageable. If 
the solid is incompressible, this technique uses a pressure 
(Lagrange multiplier) to couple the solid deformation and 
the local solvent concentration. Invoking this option 
requires mesh equations and real solid equations, as 
described on the EQ card. Other relevant cards that are often 
used with this option are KINEMATIC_DISPLACEMENT 
boundary condition, DX_RS, DY_RS, DZ_RS  boundary 
conditions, FORCE_RS, FLUID_SOLID_RS, and others. 
See references for more detailed usage procedures.

Examples

The following is a sample card that sets the mesh motion scheme to be arbitrary:

Mesh Motion = ARBITRARY

Technical Discussion

For the TOTAL_ALE mesh motion option we must supply elastic properties and solid 
constitutive equations for both the mesh and the real solid. It is best to consult the 
example tutorials cited below for details.
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Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

GT-006.3: Slot and Roll coating with remeshing templates and tutorial for GOMA and 
CUBIT/MAPVAR, August 3, 1999, R. R. Lober and P. R. Schunk

 

4.12.6 Number of bulk species

Description/Usage

This card is required for each material section in the Problem Description File. It is 
used to specify the number of species in a phase. The word, bulk, here, refers to its 
being distributed throughout the domain, not just at a surface. All loops over property 
evaluations use this value to specify the length of the loop. The single input parameter 
is defined as:

<integer> The number of species. If the value of <integer> is 0, then 
no species equations are solved for.

In the absence of any further cards specifying the number of species equations, the 
number of species equations is set equal to the integer value supplied by this card, and 
there is an implied additional species, i.e., the solute, which is not part of species loops, 
but which fills out the specification of the phase.

Examples

Following is a sample card:

Number of bulk species = 1

Number of bulk species = <integer>
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Technical Discussion

Unfortunately, in the past, this card has specified the number of species equations 
instead of the number of species, as its name would imply! Now, the preferred 
treatment is to specify unequivocally both the number of bulk species and the number 
of bulk species equations using two separate input cards. If the two values are the same, 
then the system is semantically referred to as being “dilute” (even though it might not 
be!), and there is an inferred solute which is not part of the loop over species unknowns 
in property evaluations or even in the specification of properties in the .mat file. If the 
number of species is one greater than the number of species equations, then the system 
is deemed “nondilute” and the length of loops over property evaluations is one greater 
than the number of species equations. For nondilute systems, an equation of state must 
be implicitly used within Goma to solve for the value of the species unknown variable 
for the last species.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.7 Material is nondilute

Description/Usage

This card is a optional for each material section in the Problem Description File. It is 
used to specify the number of species equations in a phase. The single string parameter 
is a boolean, yes or no.

yes the number of species equations is set equal to one less than 
the number of species.

no the number of species equations is set equal to the number 
of species.

Material is nondilute = {yes | no}
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When the number of species is equal to the number of species equations, there is an 
implied additional species, i.e., the solute, which is not part of species loops, which fills 
out the specification of the phase.

Examples

Following is a sample card:

Material is nondilute = yes

Technical Discussion

See the discussion for the “Number of bulk species” card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.8 Number of bulk species equations

Description/Usage

This card is optional but strongly recommended for each material section in the 
Problem Description File. It is used to specify the number of species equations in a 
phase. The word, bulk, here, refers to its being distributed throughout the domain, not 
just at a surface. The single input parameter is defined as:

<integer> The number of species equations; if the value of <integer> 
is 0, then no conservation equations for species are solved 
for.

When the number of species is equal to the number of species equations, there is an 
implied additional species, i.e., the solute, which is not part of species loops, which fills 
out the specification of the phase.

Number of bulk species equations = <integer>
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Examples

Following is a sample card:

Number of bulk species equations = 1

Technical Discussion

See the discussion for the “Number of bulk species” card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.9 Default Material Species Type

Description/Usage

This optional parameter sets the form of the species variable type within Goma. Valid 
options for {species_type_string} are given below by the SPECIES_* names (along 
with a description and variable (prefix) name:

SPECIES_MASS_FRACTION Mass Fractions Yk_

SPECIES_MOLE_FRACTION Mole Fractions Xk_

SPECIES_VOL_FRACTION Volume Fractions Vk_

SPECIES_DENSITY Species Densities Dk_

SPECIES_CONCENTRATION Species Concentration Ck_

SPECIES_UNDEFINED_FORM Undefined form Y

The default is to assume SPECIES_UNDEFINED_FORM. Please refer to the 
Technical Discussion for important details.

Default Material Species Type = {species_type_string}
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Examples

Following is a sample card:

Default Material Species type = SPECIES_MASS_FRACTION

Technical Discussion

For nondilute systems the SPECIES_* quantities above are not just simply 
interchangeable via a multiplicative constant. Their values are distinct, and their 
interrelationship evaluated via a potentially nontrivial equation of state. Prior to the 
implementation of this card/capability, Goma hadn’t handled many nondilute cases, 
and where it had, this issue was finessed by special casing property evaluations.

This card both sets the type of the species variables and establishes a convention for the 
units of equations within Goma. For settings of SPECIES_MASS_FRACTION and 
SPECIES_DENSITY_FRACTION, equations generally have a mass unit attached to 
them. Equations have concentration units attached to them for settings of  
SPECIES_MOLE_FRACTION,  SPECIES_VOL_FRACTION, and 
SPECIES_CONCENTRATION. For example, given a setting of 
SPECIES_MASS_FRACTION, each volumetric term in the species conservation 
equation has units of mass per time, i.e., the time derivative term is written as

. (4-213)

For a setting of SPECIES_MOLE_FRACTION, each volumetric term would have 
units of moles per time, i.e., the time derivative term is written out as

 . (4-214)

All this is necessary in order to handle cases where the total density or total 
concentration of a phase is spatially variable. In that case, it can’t just be divided out as 
in earlier versions of Goma but must be included in the conservation equations, and 
therefore the units of the conservation equation must reflect this.

The species variable type affects the units and thus values of quantities returned from 
certain boundary conditions. For example, the IS_EQUIL_PSEUDORXN boundary 
condition returns units of moles per time per length2 if the species variable type is 
defined to be SPECIES_CONCENTRATION, but will multiply by molecular 
weights and thus return units of mass per time per length2 if the species variable type is 
defined to be SPECIES_MASS_FRACTION. This change conforms to the expected 
units of the overall species conservation equation for the two values of the species 
variable type variable used as examples above.

td
d ρYk( )φi Ωd

td
d

cXk( )φi Ωd
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The last column in the table above contains a three letter string. This string is used as a 
prefix for the name of the species variable in the EXODUS output file. If no names are 
specified in the material file and Chemkin is not used (which provides names for the 
species variables itself), then integers are used for names. For example, the first species 
unknown in Goma problem employing Mass Fractions as the independent species 
variables will be called Yk_1. If Chemkin is used in the same problem and the first 
chemkin species is named H2O, then the name in the EXODUS output file will be 
Yk_H2O. If a Goma problem is solved with no specification of the type of the species 
variable, then the first unknown in the EXODUS file will be named Y1.

Additionally, some boundary conditions and inputs from the material file section will 
set the species variable type on their own without the benefit of this card, if the species 
variable type is the default undefined form. Some internal checks are done; if an 
inconsistency is caught, Goma will abort with an informative error message.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.10 Number of viscoelastic modes

Description/Usage

This card is required only if you are performing a viscoelastic simulation and have 
included stress equations in the equation section and chosen a viscoelastic constitutive 
equation in the material file. The integer value denotes how many viscoelastic tensor 
stress equations are to be used. The number of modes can vary from a minimum of 1 to 
a maximum of 8. The input parameter is defined as

<integer> The number of viscoelastic modes, which must be greater 
than zero, but less than nine.

Number of viscoelastic modes = <integer> 
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Examples

The following is a sample card, indicating that a calculation with two viscoelastic stress 
modes is being undertaken:

Number of viscoelastic modes = 2

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

Please see the viscoelastic tutorial memo for a discussion of multimode viscoelastic 
equations:

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 
21, 2000, R. R. Rao

 

4.12.11 Number of EQ

Description/Usage

This card is required for each material section in the Problem Description File. It 
specifies how many equations (i.e., equation cards, [EQ =]) follow for this material 
section, including the mesh motion equations if appropriate. This number of equations 
is only for the current material, since each material has its own equation section.

The single input parameter is defined as

<integer> The number of EQ cards following this card. Only the first 
Number of EQ equations are read; if there are more EQ 
cards than specified by <integer>, Goma ignores the extras. 
If <integer> is set to -1, Goma will automatically count the 

Number of EQ = <integer>



Revised: 6/12/13 663

4.12.11  Number of EQ 

number of EQ cards between the Number of EQ card and 
the END OF EQ card.

Examples

The following is a sample card that sets the number of equations to 5:

Number of EQ = 5

Technical Discussion

For equation specification in Goma, it is important to remember that a scalar equation 
has a single equation entry (e.g. fill, species, voltage, shear rate, etc.), while a vector 
equation (e.g. momentum, mesh, mom_solid, etc.) has an entry for each component of 
the vector. Thus, if you were solving a two-dimension flow problem, you would need 
to specify both U1 and U2 components of the momentum equation explicitly. The same 
holds true for tensor equations (e.g. stress and velocity gradient); each term of the 
tensor is specified explicitly. The one exception to this rule is for multimode 
viscoelasticity where the first mode equations are specified through the equation card 
and then the auxiliary modes are set by the Number of viscoelastic modes card. Please 
see the viscoelastic tutorial memo (Rao, 2000) for a detailed discussion of multimode 
viscoelasticity.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

Equation Cards

Following the Number of EQ card, the equation cards, or records, are racked as intended up to the 
END OF EQ card or to the number specified, with one equation record per line. Each card begins 
with the “EQ =” string, followed by the equation name, e.g., energy, some basis function and trial 
function information, and finally a series of term multipliers. These multipliers are intended to 
provide a means of activating or deactivating terms of an equation, and hence should be set to 
zero or one. However, one can use these multipliers as a way of adjusting the scaling of individual 
terms. Exercise caution in using these factors as expedients for transport coefficients; for instance 
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the equation term multiplier for the momentum diffusion term affects both the isotropic stress 
term (pressure) and the deviatoric stress. It is recommended that you consult the example tutorial 
menus and problems to get a feel for the structure of this section. A sample input file structure 
including the EQ section is shown in the figure at the beginning of this chapter.

4.12.12 energy

Description/Usage

This card provides information for solving a conservation of energy differential 
equation. Definitions of the input parameters are defined below. Note that <floatlist> 
contains five constants for the Energy equation defining the constant multipliers for 
each term in the equation. The Galerkin weight and the interpolation function must be 
the same for the code to work properly. If upwinding is desired for advection 
dominated problems, we can set this through a Petrov-Galerkin weight function in the 
material file.

energy Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interface. 

Q1_XVLinear interpolation with enrichment in elements 
of material interfaces. This enrichment function 
allows discontinuity in value and gradient along 
interface but maintains continuity at element 
edges/faces.Only used for level-set problems. 

Q2_XVQuadratic interpolation with enrichment in 
elements of material interfaces. This enrichment 
function allows discontinuity in value and 
gradient along interface but maintains continuity 
at element edges/faces. Only used for level-set 
problems. 

EQ = energy {Galerkin_wt} T {Interpol_fnc} <floatlist> 



Revised: 6/12/13 665

4.12.12  energy 

Q1_GNLinear interpolation for capturing variables 
defined on the negative side of the level-set 
interface. Similar to Q1_XV

Q2_GNQuadratic interpolation for capturing variables 
defined on the negative side of the level-set 
interface. Similar to Q1_XV

T Name of the variable associated with this equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable T, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

Q1_XVLinear interpolation with enrichment in elements 
of material interfaces. This enrichment function 
allows discontinuity in value and gradient along 
interface but maintains continuity at element 
edges/faces.

Q2_XVQuadratic interpolation with enrichment in 
elements of material interfaces. This enrichment 
function allows discontinuity in value and 
gradient along interface but maintains continuity 
at element edges/faces.

Q1_GNLinear interpolation for capturing variables 
defined on the negative side of the level-set 
interface. Similar to Q1_XV

Q2_GNQuadratic interpolation for capturing variables 
defined on the negative side of the level-set 
interface. Similar to Q1_XV

Q1_GPLinear interpolation for capturing variables 
defined on the positive side of the level-set 
interface. Similar to Q1_XV

Q2_GNPQuadratic interpolation for capturing variables 
defined on the positive side of the level-set 
interface. Similar to Q1_XV

<float1> Multiplier on mass matrix term ( ).d dt⁄
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<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function and has all the term multipliers on except the mass matrix term for time 
derivatives:

EQ = energy  Q1 T Q1  0. 1. 1. 1. 1.

Technical Discussion

Some discussion on the XFEM-type enriched basis functions Q1_XV, Q1_GN, Q1_GP, 
Q2_GN, Q2_GP and Q2_XV is in order.  First of all, these basis functions are to be use 
with the level-set front tracking capability only.  First of all, these basis functions are 
typically only used for the continuity equation to capture pressure jumps due to surface 
tension. However, for phase change problems some experimentation has been pursued 
with the energy equation.   

XFEM Value Enrichment

Enrichment:

, 

Related “Ghost” Enrichment:

, 

, 

Advantages:

This enrichment function allows discontinuity in value and gradient along

interface but maintains continuity at element edges/faces.  Appears to be method

of choice for Pressure discontinuity.  Produces interface integral for terms

integrated by parts that allows for specifying a weak integrated conditions.  This is

needed in the laser welding heat transfer problem.

n
˜

flux•

( ) ( ) ( ) ( )i i i i i
i i

T x N x T N x g x a= +  ( ) ( ) ( )i ig x H x H xφ φ= −      

( ) ( ) ( ) ( )i i i i i
i i

T x N x T N x g x a= +  ( ) ( ) ( )i ig x H x xφ φ= −  

( ) ( ) ( )( ) ( ) ( ) ˆ1i i i i i i
i i

T x N x g x T N x g x T= − +  ( ) ( ) ( )i ig x H x xφ φ= −  
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.13 momentum

Description/Usage

This card provides information for solving a differential equation for one component of 
a vector momentum equation. Definitions of the input parameters are defined below. 
Note that <floatlist> contains six constants for the Momentum equation defining the 
constant multipliers for each type of term in the equation. The Galerkin weight and the 
interpolation function must be the same for the code to work properly.

momentum1 | momentum2 | momentum3

Name of the equation to be solved, where the 1, 2 and 3 
components correspond to one of the principal coordinate 
directions, e.g. X, Y and Z for Cartesian geometry.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

EQ = momentum{1|2|3} {Galerkin_wt} {U1|U2|U3} {Interpol_fnc} <floatlist>
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Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

U1 | U2 | U3 Name of the variable associated with the 1, 2 or 3 principal 
coordinate direction for this component equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable U1, U2 or U3 where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

<float6> Multiplier on porous term (linear source).

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous velocity interpolation 
and weight function and turns on all equation term multipliers except for the mass 
matrix and the porous term:

EQ = momentum1 Q2 U1 Q2 0. 1. 1. 1. 1. 0.

Technical Discussion

No discussion.

d td⁄

n
˜

flux•



Revised: 6/12/13 669

4.12.14  pmomentum 

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.14 pmomentum

Description/Usage

This card provides information for solving a differential equation for one component of 
a vector particle momentum equation. Definitions of the input parameters are defined 
below. Note that <floatlist> contains six constants for the Pmomentum equation 
defining the constant multipliers for each type of term in the equation. The Galerkin 
weight and the interpolation function must be the same for the code to work properly. 

pmomentum1 | pmomentum2 | pmomentum3

Name of the equation to be solved, where the 1, 2 and 3 
components correspond to one of the principal coordinate 
directions, e.g. X, Y and Z for Cartesian geometry

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

EQ = pmomentum{1|2|3} {Galerkin_wt} {PU1|PU2|PU3} {Interpol_fnc}<floatlist>



670 Revised: 6/12/13

4.12.14  pmomentum  

PU1 | PU2 | PU3 Name of the variable associated with the 1, 2 or 3 
principal coordinate direction for this component 
equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable PU1, PU2 or PU3 
where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

<float6> Multiplier on porous term (linear source).

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous velocity interpolation 
and weight function and turns on all equation term multipliers except for the mass 
matrix and the porous term:

EQ = momentum1 Q2 PU1 Q2 0. 1. 1. 1. 1. 0.

Technical Discussion

The particle momentum equations have been added to Goma as part of a research 
project and are not currently in use for production computing.

d td⁄

n
˜

flux•
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.15 stress

Description/Usage

This card provides information for solving a differential equation. Definitions of the 
input parameters are defined below. Note that <floatlist> contains five constants for the 
Stress equation defining the constant multipliers for each type of term in the equation. 
The Galerkin weight and the interpolation function must be the same for the code to 
work properly. If upwinding is desired for advection dominated problems, we can set 
this through a Petrov-Galerkin weight function in the material file.

{eqname} The name of the component of the stress equation to be 
solved, one of the following: stress11, stress12, stress13, 
stress22, stress23, stress33.

{Galerkin_wt} Two-character or three-character value that defines the type 
of weighting function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

{varname} The name of the variable associated with the respective 
components (11, 12, 13, 22, 23, and 33) of the symmetric 
Stress tensor, which are S11, S12, S13, S22, S23, S33.

EQ = {eqname} {Galerkin_wt} {varname} {Interpol_fnc} <floatlist>
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{Interpol_fnc} Two-character or three-character value that defines the 
interpolation function used to represent the variable S11, 
S12, S13, S22, S23 or S33, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation for stress and 
turns on all the term multipliers:

EQ = stress11 Q1 S11 Q1 1. 1. 1. 1. 1.

Technical Discussion

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”, 
invoke the discontinuous Galerkin method for solving the stress equations where the 
interpolation is discontinuous and flux continuity is maintained by performing surface 
integrals. For details of the implementation of the discontinuous Galerkin method in 
Goma please see the viscoelastic tutorial memo (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

d td⁄

n
˜

flux•
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References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

4.12.16 species_bulk

Description/Usage

This card provides information for solving a differential equation. Definitions of the 
input parameters are defined below. Note that <floatlist> contains five parameters to 
define the constant multipliers in front of each type of term in the equation. The 
Galerkin weight and the interpolation function must be the same for the code to work 
properly. If upwinding is desired for advection dominated problems, we can set this 
through a Petrov-Galerkin weight function in the material file.

species_bulk Name of the equation to be solved. This equation type 
should only be listed once regardless of the number of 
species (the Number of bulk species card specifies the 
number of species_bulk equations to be solved). 
Differences in diffusion coefficients between species should 
be accounted for in the materials properties section of 
Goma.

{Galerkin_wt} Two- to four-character value that defines the type of 
weighting function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

EQ = species_bulk {Galerkin_wt} Y {Interpol_fnc} <floatlist>
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Q1_XV, Q1_GN, Q1_GP
Linear interpolation with enrichment in elements
of material interfaces. This enrichment function
allows discontinuity in value and gradient along
interface but maintains continuity at element
edges/faces.

Q2_XV, Q2_GN, Q1_GP 
Quadratic interpolation with enrichment in
elements of material interfaces. This enrichment
function allows discontinuity in value and gradient
along interface but maintains continuity at element
edges/faces.

Y Name of the variable associated with this equation.

{Interpol_fnc} Two- to four-character value that defines the interpolation 
function used to represent the variable Y, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous
Q1_XV, Q1_GN, Q1_GP

Linear interpolation with enrichment in 
elements of material interfaces. This enrichment 
function allows discontinuity in value and 
gradient along interface but maintains continuity 
at element edges/faces. See energy equation for 
more discussion. 

Q2_XV, Q2_GN, Q1_GP
Quadratic interpolation with enrichment in 
elements of material interfaces. This enrichment 
function allows discontinuity in value and 
gradient along interface but maintains continuity 
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at element edges/faces. See energy equation for 
more discussion. 

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the 
species equation and turns on all the term multipliers:

EQ = species_bulk Q2 Y Q2 1. 1. 1. 1. 1.

Technical Discussion

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”, 
invoke the discontinuous Galerkin (DG) method for solving the species equations 
where the interpolation is discontinuous and flux continuity is maintained by 
performing surface integrals. For details of the implementation of the DG method in 
Goma please see the viscoelastic tutorial memo. Note, the DG implementation for the 
species equation is only for advection dominated problems; DG methods have not yet 
been completely developed for diffusion operators.

Also, please see EQ=energy input for more detailed description of the Q1_GN, 
Q2_GN, Q1_GP, Q2_GP, Q1_XV and Q2_XV enriched basis functions.  

Theory

No Theory.

FAQs

No FAQs.

d td⁄

n
˜

flux•
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References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.12.17 mesh

Description/Usage

This card provides information for solving a differential equation for one component of 
mesh motion. Definitions of the input parameters are defined below. Note that 
<floatlist> contains five constants for the Mesh equation defining the constant 
multipliers for each type of term in the equation. The Galerkin weight and the 
interpolation function must be the same for the code to work properly.

mesh1 | mesh2 | mesh3

Name of the equation to be solved, where the 1, 2 and 3 
components correspond to one of the principal coordinate 
directions, e.g. X, Y and Z for Cartesian geometry. 

{Galerkin_wt} Two-character value that defines the weighting function 
type for this equation, where:

Q1 - Linear
Q2 - Quadratic

D1 | D2 | D3 Name of the variable associated with the 1, 2 or 3 principal 
coordinate direction for this component equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable D1, D2 or D3 where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

EQ = mesh{1|2|3} {Galerkin_wt} {D1|D2|D3} {Interpol_fnc} <floatlist}

d dt⁄

n
˜

flux•
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Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card for the first mesh equation that uses linear continuous 
interpolation and turns on all term multipliers except for the mass matrix:

EQ = mesh1 Q1 D1 Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.18 mom_solid

Description/Usage

This card provides information for solving a differential equation for one component of 
a solid momentum equation. Definitions of the input parameters are defined below. 
Note that <floatlist> contains five constants for the Solid Momentum equation defining 
the constant multipliers for each type of term in the equation. The Galerkin weight and 
the interpolation function must be the same for the code to work properly.

mom_solid1 | mom_solid2 | mom_solid3

EQ = mom_solid{1|2|3} {Galerkin_wt} {D1|D2|D3}_RS {Interpol_fnc} <floatlist>
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Name of the equation to be solved, where the 1, 2 and 3 
components correspond to one of the principal coordinate 
directions, e.g. X, Y and Z for Cartesian geometry.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

D1_RS | D2_RS | D3_RS

Name of the variable associated with the 1, 2 or 3 principal 
coordinate direction for this component equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable D1_RS, D2_RS or D3_RS 
where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped. 

Examples

The following is a sample card for the first solid mesh equation that uses linear 
continuous interpolation and turns on all term multipliers except for the mass matrix:

EQ = mom_solid1 Q1 D1_RS Q1 0. 1. 1. 1. 1.

Technical Discussion

The solid momentum equations are used as a second set of displacement equations 
when the ALE (arbitrary-Lagrangian Eulerian) technique is used in the solid phase as 
well as the liquid phase. We have termed this capability TALE for “total arbitrary-

d dt⁄

n
˜

flux•
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Lagrangian Eulerian” and details of implementation and usage for Goma can be found 
in Schunk (2000).

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

4.12.19 continuity

Description/Usage

This card provides information for solving a differential equation. Definitions of the 
input parameters are defined below. Note that <float1> and <float2> define the 
constant multipliers for each type of term in the Continuity equation. The Galerkin 
weight and the interpolation function must be the same for the code to work properly.

continuity Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous
P0_XV - Constant, discontinuous, enriched (level-set 
only)
P1_XV-  Linear, discontinuous, enriched (level-set only)
Q1_XV-  Linear, continuous, enriched (level-set only)
Q2_XV-  Linear, continuous, enriched (level-set only)

EQ = continuity {Galerkin_wt} P {Interpol_fnc} <float1> <float2>
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P Name of the variable (pressure) associated with this 
equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable P, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous
P0_XV - Constant, discontinuous, enriched (level-set 
only)
P1_XV-  Linear, discontinuous, enriched (level-set only)
Q1_XV-  Linear, continuous, enriched (level-set only)
Q2_XV-  Linear, continuous, enriched (level-set only)

<float1> Multiplier on divergence term.

<float2> Multiplier on source term. This multiplier is equal to the 
initial volume fraction of solvents for Lagrangian mesh 
motion with swelling.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a constant discontinuous pressure interpolation 
and weight function and turns on both the divergence and source terms.

EQ = continuity P0 P P0  1. 1.

Technical Discussion

Please see the EQ=energy equation card for a more detailed description of P0_XV, 
P1_XV, Q1_XV, Q2_XV interpolations.  These are MOST COMMONLY used for the 
continuity equation for better accuracy of representing pressure across level-set 
interfaces with surface tension.    

Theory

No Theory.
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FAQs

No FAQs.

References

No References.
 

4.12.20 fill

Description/Usage

This card provides information for solving a differential equation for the fill equation. 
Definitions of the input parameters are defined below. Note that <float1> through 
<float3> define the constant multipliers for each term in the equation. The Galerkin 
weight and the interpolation function must be the same for the code to work properly.

fill Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

F Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable F, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous

EQ = fill {Galerkin_wt} F {Interpol_fnc} <float1> <float2> <float3> 
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Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses continuous linear interpolation for the fill 
equation:

EQ = fill Q1 F Q1 1. 1. 1.

Technical Discussion

The fill equation is used in the calculation of volume of fluid interface tracking. It 
solves an advection equation of a color function that takes on a different integer value 
depending on which fluid phase you are in. For most applications this capability has 
been superseded by the level set method of interface tracking.

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P” 
invoke the discontinuous Galerkin (DG) method for solving the fill equations where the 
interpolation is discontinuous and flux continuity is maintained by evaluating surface 
integrals. For details of the implementation of the DG method in Goma please see the 
viscoelastic tutorial memo (Rao, 2000).

Theory

No Theory.

d td⁄
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FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

4.12.21 lagr_mult_1, lagr_mult_2, lagr_mult_3

Description/Usage

This card provides information for solving a Langrange multiplier vector equation for 
imposition of the kinematic boundary condition at a fluid/solid interface.   It is used 
soley for the overset grid capability in Goma (cf. GT-026.2). Definitions of the input 
parameters are defined below.  The Galerkin weight and the interpolation function must 
be the same for the code to work properly.

lagr_mult_1 | lagr_mult_2 | lagr_mult_3

Name of the equation to be solved. The appended number 
indexes with the dimension of the problem, viz. 
lagr_mult_1 and lagr_mult_2 equations are required for a 
two dimensional problem. 

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous

LM1 | LM2 | LM3 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable P, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous

EQ = lagr_mult_{1|2|3} {Galerkin_wt} LM{1|2|3} {Interpol_fnc}
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Basically when the level-set field (actually phase field 1, cf. F1 equation) that 
corresponds to solid/fluid boundary defined by an overset grid (using the Slave Level 
Set Card) intersects an element, the equations associated with that element will get the 
kinematic boundary condition for the fluid-structure interaction, which basically 
equates the fluid velocity to the solid velocity.   In elements that don’t contain the solid/
fluid boundary, the equations are trivialized so that they are condensed out of the 
system to be solved.   

Examples

The following is a sample cards are required for the overset grid capability for two-
dimensional problems.  It is recommended that P0 (element constant) interpolation 
functions be used.  .

        EQ = lagr_mult_1 P0 LM1 P0  1

        EQ = lagr_mult_2 P0 LM2 P0  1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3 GOMA’s Overset Mesh Method: User Tutorial.   November 19, 2003. P. R. 
Schunk and E. D. Wilkes
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4.12.22 level set

Description/Usage

This card provides information for solving a differential equation for the level set 
equation. Definitions of the input parameters are defined below. Note that <float1> 
through <float3> define the constant multipliers for each term in the equation. The 
Galerkin weight and the interpolation function must be the same for the code to work 
properly. If upwinding is desired, we can set this through a Petrov-Galerkin weight 
function in the level set section of the input file (Time Integration Specifications).

level set Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

F Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable F, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special 

allowance for discontinuous degrees of freedom 
at interfaces

EQ = level set {Galerkin_wt} F {Interpol_fnc} <float1> <float2> <float3>
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Q2_D - Standard quadratic interpolation with special 
allowance for discontinuous degrees of freedom 
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

Examples

The following is a sample card that uses continuous linear interpolation for the level set 
equation and turns on all term multipliers:

EQ = level_set Q1 F Q1 1. 1. 1.

Technical Discussion

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”, 
invoke the discontinuous Galerkin (DG) method for solving the level set equations 
where the interpolation is discontinuous and flux continuity is maintained by 
evaluating surface integrals. For details of the implementation of the DG method in 
Goma please see the viscoelastic tutorial memo (Rao, 2000). Note that DG methods are 
not necessarily recommended for the level set equation since it is inherently smooth.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

4.12.23 voltage

Description/Usage

This card provides information for solving a differential equation for the voltage. 
Definitions of the input parameters are defined below. Note that <floatlist> has five 

EQ = voltage {Galerkin_wt} V {Interpol_fnc} <floatlist>
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parameters to define the constant multipliers in front of each type of term in the 
equation. The Galerkin weight and the interpolation function must be the same for the 
code to work properly.

voltage Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

V Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable V, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear interpolation function for voltage: 

EQ = voltage Q1 V Q1 0. 1. 1. 1. 1.

Technical Discussion

The voltage equation has no mass term, viz. it is quasistatic.  So it won’t matter 
whether that multiplier is 1 or 0.  

Theory

No Theory.

d td⁄

n
˜

flux•



688 Revised: 6/12/13

4.12.24   

FAQs

No FAQs.

References

No References.

4.12.24

4.12.25 efield

Description/Usage

This card provides information for solving a definition equation for the vector electric 
field, which is the gradient of the voltage or potential field (see voltage equation).  
Hence, these equations (two components in two dimensions, and three components in 
three dimensions) must be solved together with the voltage equation.

efield1 | efield2 | efield3 Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

E1 | E2 | E3 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable E1, E2, or E3, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on advective term.

<float2> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

EQ = efield{1 | 2 | 3}  {Galerkin_wt} {E1 | E2 | E3} {Interpol_fnc} <floatlist>
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Examples

The following is an example of efield-equation specification using linear elements in 
two dimensions. Notice the companion voltage equation.

EQ = efield1 Q1 E1 Q1 1. 1.

EQ = efield2 Q1 E1 Q1 1. 1.

EQ = voltage Q1 V Q1 1. 1. 1. 1. 1. 1.

This set of equations is required for applying an electrohydrodynamic force to the fluid 
momentum equations (see Navier-Stokes Source card. )

Technical Discussion

The electric field is defined by . In some cases it may be more convenient to 
solve equations for the potential field and the electric field.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.26 enorm

Description/Usage

This card provides information for solving a “dependency” equation for the norm of the 
electric field. Definitions of the input parameters are defined below. Note that <float1> 
and <float2> define the constant multipliers in front of each type of term in the 
equation. The Galerkin weight and the interpolation function must be the same for the 
code to work properly.

enorm Name of the equation to be solved. 

EQ = enorm {Galerkin_wt} ENORM {Interpol_fnc} <float1> <float2>

E φ∇–=
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{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

P0 - Piecewise constant
P1 - Piecewise linear
Q1 - Linear
Q2 - Quadratic

ENORM Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable ENORM, where:

P0 - Piecewise constant
P1 - Piecewise linear
Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on advection term.

<float2> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped. See below for 
important information regarding this.

Examples

The following is a sample card that uses quadratic continuous interpolation for the 
enorm equation and turns on all the term multipliers (the usual usage):

EQ = enorm Q2 ENORM Q2 1.0 1.0

Technical Discussion

This equation allows the user to use the variable ENORM, the norm of the electric 
field, which is equal to , or , with  being the voltage potential. As such, the 
VOLTAGE equation must be present. We refer to this as a “dependent” equation or 
“auxiliary” equation because, although it’s value can technically be derived from the  
variable directly, we would lose derivative information by doing so. This equation is 
introduced solely so one can access higher derivatives of  than its interpolation would 
normally allow. For example, if  were interpolated with a linear basis, then  would 
have a constant interpolant. If we wanted access to , it would be zero! (In reality, 
we would use bilinear or trilinear basis functions, so this isn’t precisely true but it 
expresses the essential problem.) By introducing this primitive variable, we can 
retrieve useful values for .

E ∇V V

V

V

V ∇V

∇ ∇V( )

∇enorm
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The two term multipliers refer to the multiple on the assembled value of enorm (stored 
in the “advection” term--it has nothing to do with advection), and the multiple on the 
assembled value derived from the voltage equation (stored in the “source” term--again 
the name of the term is somewhat artificial).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.27 shear_rate

Description/Usage

This card provides information for solving a differential equation for the scalar shear 
rate invariant. Definitions of the input parameters are defined below. Note that <float1> 
through <float3> define the constant multipliers in front of each type of term in the 
equation. The Galerkin weight and the interpolation function must be the same for the 
code to work properly.

shear_rate Name of the equation to be solved. 

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

EQ = shear_rate {Galerkin_wt} SH {Interpol_fnc} <float1> <float2> <float3> 
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<float1> Multiplier on advective term.

<float2> Multiplier on diffusion term.

<float3> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the 
species equation and turns on all the term multipliers:

EQ = shear_rate Q2 SH Q2 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.28 vort_dir

Description/Usage

This card provides information for solving a differential equation for one component of 
the vorticity equation. Definitions of the input parameters are defined below; there is 
no <float> input for this equation. The Galerkin weight and the interpolation function 
must be the same for the code to work properly.

EQ = vort_dir{1|2|3} {Galerkin_wt} {VD1|VD2|VD3} {Interpol_fnc}
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vort_dir1 | vort_dir2 | vort_dir3

Name of the equation to be solved, where the 1, 2 and 3 
components correspond to one of the principal 
coordinate directions, e.g. X, Y and Z for Cartesian 
geometry.

{Galerkin_wt} Two--character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 -  Quadratic

VD1 | VD2 | VD3 Name of the variable associated with the 1, 2 or 3 
principal coordinate direction for this component 
equation.

{Interpol_fnc} Two-character value that defines the interpolation 
function used to represent the variable VD1, VD2 or 
VD3, where:

Q1 -  Linear Continuous
Q2 -  Quadratic Continuous

Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function:

EQ = vort_dir1 Q1 VD1 Q1

Technical Discussion

This equation type is used for a research capability involving the flows of suspensions 
in curvilinear coordinates and is not currently being used for production computations.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.12.29 vort_lambda

Description/Usage

This card provides information for solving a differential equation for the vorticity 
direction. Definitions of the input parameters are defined below; there are no <float> 
input parameters for this equation. The Galerkin weight and the interpolation function 
must be the same for the code to work properly.

vort_lamda Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

VLAMBDA Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable VLAMBDA, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

Examples

No example.

Technical Discussion

This equation type is used for a research capability involving the flows of suspensions 
in curvilinear coordinates and is not currently being used for production computations.

Theory

No Theory.

FAQs

No FAQs.

EQ = vort_lambda {Galerkin_wt} VLAMBDA {Interpol_fnc}
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References

No References.
 

4.12.30 porous_sat

Description/Usage

This card provides information for solving a differential equation for saturated porous 
flow. Definitions of the input parameters are defined below. Note that <floatlist> has 
five parameters to define the constant multipliers in front of each type of term in the 
equation.The Galerkin weight and the interpolation function must be the same for the 
code to work properly. If upwinding is desired for advection dominated problems, we 
can set this through a Petrov-Galerkin weight function in the material file.

porous_sat Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_SAT Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable P_SAT, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

EQ = porous_sat {Galerkin_wt} P_liq {Interpol_fnc} <floatlist>

d td⁄

n
˜

flux•
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Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function for the saturated porous equation and has all the term multipliers on except for 
the mass matrix for time derivatives:

EQ = porous_sat Q1 P_liq Q1 0. 1. 1. 1. 1.

Technical Discussion

This card is not yet in use.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.31 porous_unsat

Description/Usage

This equation cannot be invoked in an element block in which the media type is set to 
POROUS_TWO_PHASE (cf. Microstructure Properties, Media Type card). 
Otherwise, it is used exactly as the porous_liq equation card; please consult that section 
for a detailed discussion.

See porous_liq card for description of input requirements.

Examples

See porous_liq card.

EQ = porous_unsat {Galerkin_wt} P_LIQ {Interpol_fnc} <floatlist>
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Technical Discussion

This card is used for single phase (viz. constant gas pressure) simulations of partially 
saturated flow, as described by the Media Type material property card. The equation it 
invokes is one of Darcy flow in a partially saturated medium in which the gas phase 
pressure is taken as constant. The dependent variable here is the liquid phase pressure. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.12.32 porous_liq

Description/Usage

This card provides information for solving a differential equation for porous liquid 
phase pressure. This equation is of the exact same form as porous_unsat, but is 
required if two-phase simulations are to be made (cf. Miscrostructure Properties, 
Media Type card). This equation can be used for media types 
POROUS_UNSATURATED, POROUS_SATURATED, and POROUS_TWO_PHASE. 
Definitions of the input parameters are defined below. Note that <floatlist> contains 
five parameters to define the constant multipliers in front of each type of term in the 
equation. The Galerkin weight and the interpolation function must be the same for the 
code to work properly. If upwinding is desired for advection dominated problems, we 
can set this through a Petrov-Galerkin weight function in the material file.

porous_liq Name of the equation to be solved. 

EQ = porous_liq {Galerkin_wt} P_LIQ {Interpol_fnc} <floatlist>
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{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_LIQ Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable P_LIQ, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function for the porous liquid phase pressure equation and has all the term multipliers 
on except for the mass matrix for time derivatives:

EQ = porous_liq Q1 P_LIQ Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

d td⁄

n
˜

flux•
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References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.12.33 porous_gas

Description/Usage

This card provides information for solving a differential equation for porous gas phase 
pressure. Definitions of the input parameters are defined below. Note that <floatlist> 
has five parameters to define the constant multipliers in front of each type of term in the 
equation.The Galerkin weight and the interpolation function must be the same for the 
code to work properly. If upwinding is desired for advection dominated problems, we 
can set this through a Petrov-Galerkin weight function in the material file.

porous_gas Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_GAS Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable P_GAS, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

EQ = porous_gas {Galerkin_wt} P_GAS {Interpol_fnc} <floatlist>

d td⁄

n
˜

flux•
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Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function for the porous gas phase pressure equation and has all the term multipliers on 
except for the mass matrix for time derivatives:

EQ = porous_gas Q1 P_GAS Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.12.34 porous_deform

Description/Usage

This card provides information for solving a differential equation for porous solid 
phase porosity. Definitions of the input parameters are defined below. Note that 
<floatlist> has five parameters to define the constant multipliers in front of each type of 
term in the equation. The Galerkin weight and the interpolation function must be the 
same for the code to work properly. If upwinding is desired for advection dominated 

EQ = porous_deform {Galerkin_wt} P_POR {Interpol_fnc} <floatlist>
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problems, we can set this through a Petrov-Galerkin weight function in the material 
file.

porous_deform Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_POR Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable P_POR, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function for the deforming porous porosity equation and has all the term multipliers on 
except for the mass matrix for time derivatives:

EQ = porous_deform Q1 P_POR Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

d td⁄

n
˜

flux•
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FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.12.35 porous_energy

Description/Usage

This card provides information for solving a conservation of energy differential 
equation for porous media, deploying a multiphase formulation.. Definitions of the 
input parameters are defined below. Note that <floatlist> contains six constants for the 
porous energy equation defining the constant multipliers for each term in the equation. 
The Galerkin weight and the interpolation function must be the same for the code to 
work properly..

porous_energy Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

T Name of the variable associated with this equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable T, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

EQ = porous_energy {Galerkin_wt} P_TEMP {Interpol_fnc} <floatlist> 

d dt⁄
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<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight 
function and has all the term multipliers on:

 porous_energy Q1 P_TEMP Q1            1.  1.    1.   1.     1.

Technical Discussion

Usage of this equation is discussed extensively in GT-009.3  Output variables in the 
ExodusII database are POR_TEMP

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3

4.12.36 surf_charge

Description/Usage

This card provides information for solving a conservation equation for the total surface 
charge in a 2-dimensional bar (or shell) element..  Note that this equation is not yet 

EQ =surf_charge {Galerkin_wt} QS {Interpol_fnc} <float1> <float2> <float3> 
<float4> <float5>

n
˜

flux•
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available in three dimensions and is in fact untested at this time. The card entries are as 
follows:

surf_charge Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

QS Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable QS where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier for mass terms.  Set to 1.0.

<float2> Multiple for advection terms. Set to 1.0.

<float3> Multiplier for boundary terms. Set to 1.0.

<float4> Multiplier for diffusion terms - required but not currently 
implemented.

<float5> Multiplier for source terms - required but not currently 
implemented.

Examples

The following is a sample card that uses bilinear surface charge interpolation and 
weight function:

EQ = surf_charge Q2 QS Q2 1.0 1.0 1.0 0.0 0.0

Technical Discussion

The surface charge conservation equation implemented is:

(4-215)
σ∂
t∂

------ Ds∇s
2

σ– εn E•+ 
  sd

s

 0=
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where σ is the surface charge unknown, Ds is the surface diffusion coefficient, e is the 
electrical permittivity, n is the unit normal vector to the surface, and is the 
electric field vector. Here, advection contributions are not considered.

This is a special type of shell equation which depends on the gradient of a bulk variable 
(here, electric potential V). Since values of these variables away from the surface are 
normally not accessible during assembly of shell equations, this term has to be applied 
as a special type of boundary condition (WEAK_SHELL_GRAD) which is set up to 
evaluate sensitivities to interior bulk variable degrees of freedom . This term, though 
physically an integral part of the surface charge equation, is applied through the 
SURFACE_ELECTRIC_FIELD_BC boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

Notz, Patrick K. Ph.D. thesis. Purdue University, 2000.

4.12.37 shell_tension

Description/Usage

This card provides information for solving an equation for tension using the structural 
shell capability in Goma.   The capability is based on inextensible cylindrical shells.  
One material property is associated with this equation and that is the bending stiffness. 
Note that <floatlist> contains one constant and it should always be set to one. The 
Galerkin weight and the interpolation function must be the same for the code to work 
properly.

shell_tens

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

EQ = shell_tension {Galerkin_wt} {TENS} {Interpol_fnc} <floatlist>

E V∇–=
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Q1 - Linear
Q2 - Quadratic

TENS Name of the variable associated with the shell tension 
equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable TENS where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation.  Set to 1.0.

Examples

The following is a sample card that uses linear continuous tension interpolation and 
weight function:

EQ = momentum1 Q1 TENS Q1 1.0

Technical Discussion

Complete tutorial on the use of this equation exists.  See GT-27.1.

Theory

The structural shell equation capability in Goma builds on the shell-element capability 
built by Pat Notz and Ed Wilkes in FY03. Basically we are solving the following 
equations for the shell tension (this card) and shell curvature (see shell_curvature 
equation):

FAQs

No FAQs.

References

GT-27.1
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4.12.38 shell_curvature

Description/Usage

This card provides information for solving a definition equation for total curvature of a 
two-dimensional shell element.  Note that this equation is not yet available in three 
dimensions. The curvature is required by the inextensible cylindrical shell capability in 
Goma.  See references cited below. Note that <floatlist> contains one constant and it 
should always be set to one. The Galerkin weight and the interpolation function must 
be the same for the code to work properly.

shell_curvature

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

K Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation.  Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = momentum1 Q1 K Q1 1.0

Technical Discussion

Complete tutorial on the use of this equation exists.  See GT-27.1.

EQ = shell_curvature {Galerkin_wt} {K} {Interpol_fnc} <floatlist>
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Theory

The structural shell equation capability in Goma builds on the shell-element capability 
built by Pat Notz and Ed Wilkes in FY03. Basically we are solving the following 
equations for the shell tension and shell curvature (this card):

FAQs

No FAQs.

References

GT-27.1

4.12.39 shell_angle

Description/Usage

This card provides information for solving a definition equation for the surface 
orientation angle in a 2-dimensional bar element. It applies only to shell element 
blocks.  Note that this equation is available in three-dimensional problems but is in fact 
untested at this time.. The shell angle equation(s) determine the components of the 
normal vector to the shell surface; since its magnitude is 1 by definition, one less 
degree of freedom is required tha the number of coordinates. The Galerkin weight and 
the interpolation function must be the same for the code to work properly.

shell_angle{1|2} Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_ANG{1|2} Name of the variable associated with the shell angle 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable SH_ANG where:

Q1 - Linear Continuous

EQ =shell_angle{1 | 2} {Galerkin_wt} {SH_ANG1 | SH_ANG2} {Interpol_fnc}
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Q2 - Quadratic Continuous

This equation requires no equation term multiplier entries.

Examples

The following are sample cards that use linear continuous curvature interpolation and 
weight function:

EQ = shell_angle1 Q1 SH_ANG1 Q1

EQ = shell_angle2 Q1 SH_ANG2 Q2

The second card applies only to 3D problems.

Technical Discussion

For 2D problems, the defining equation is:  where Q is shell_angle1 and 
nx and ny are the components of the normal vector to the shell surface. There is an 
analogous definition for shell_angle2.

Theory

No Theory.

FAQs

No FAQs.

References

None.

4.12.40 shell_diff_flux

Description/Usage

This card provides information for solving a conservation equation for the total surface 
diffusive flux in a 2-dimensional bar (or shell) element.  Note that this equation is not 
yet available in three dimensions and is in fact untested at this time. The card entries 
are as follows:

shell_diff_flux Name of the equation to be solved.

EQ =shell_diff_flux {Galerkin_wt} SH_J {Interpol_fnc}  <float1>

Θ nx ny[ , ]atan=
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{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_J Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable SH_J where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier for diffusion terms (in this case, the whole 
equation).

Examples

The following is a sample card that uses bilinear shell diffusive flux interpolation and 
weight function:

EQ = shell_diff_flux Q2 SH_J Q2 1.0

Technical Discussion

This is only a preliminary implementation of a shell quantity conservation equation. It 
is not currently operational.  When it is fully implemented, the number of required 
equation term multiplier entries will be adjusted acordingly.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.12.41 shell_diff_curv

Description/Usage

This card provides information for solving a definition equation for the total surface 
curvature in a 2-dimensional bar element, intended for use with shell diffusive flux 
problems.  Note that this equation is not yet available in three dimensions and is in fact 
untested at this time. Note that <floatlist> contains one constant and it should always be 
set to one. The Galerkin weight and the interpolation function must be the same for the 
code to work properly.

shell_diff_curv Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_KD Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable SH_KD where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on diffusion term (i.e. the whole equation).  Set 
to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = shell_diff_curv Q1 SH_KD Q1 1.0

Technical Discussion

The equation solved is the surface curvature definition . See 
discussion for EQ = shell_surf_div_v. 

EQ =shell_diff_curv {Galerkin_wt} SH_KD {Interpol_fnc} <float1>

κ ns∇ I nn–( ) n∇•= =
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Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and 
Rheology. Butterworth-Heinemann, Boston.

4.12.42 shell_normal

Description/Usage

This card specifies a vector of shell normal vector component unknowns in a 2-
dimensional bar element, intended for use with shell diffusive flux problems.  Note that 
this equation is not yet available in three dimensions and is in fact untested at this time. 
Note that <floatlist> contains one constant and it should always be set to one. The 
Galerkin weight and the interpolation function must be the same for the code to work 
properly.

shell_normal1 | shell_normal2Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_N1 | SH_N2 Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable SH_N1(2) where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on diffusion term (i.e. the whole equation).  Set 
to 1.0.

EQ =shell_normal{1|2} {Galerkin_wt} {SH_N1|SH_N2} {Interpol_fnc} <float1>
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Examples

The following is a pair of sample cards that use linear continuous normal interpolation 
and weight function:

EQ = shell_normal1 Q1 SH_N1 Q1 1.0

EQ = shell_normal2 Q1 SH_N2 Q1 1.0

Note that since this equation applies only to 2D problem domains at this time, two 
cards are needed as shown above (one for each component).

Technical Discussion

This equation merely sets the components of the shell normal vector equal to those in 
fv->snormal, which are calculated rigorously in surface_determinant_and_normal(). 
Consideration is being given to replacing these with a single unknown for shell normal 
angle, which contains the same information in a single scalar unknown. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.43 shell_surf_curv

Description/Usage

This card provides information for solving a definition equation for the total surface 
curvature in a 2-dimensional bar element.  Note that this equation is not yet available in 
three dimensions and is in fact untested at this time. These building blocks are required 
by the non-Newtonian surface rheology capability in Goma.  Note that <floatlist> 
contains one constant and it should always be set to one. The Galerkin weight and the 
interpolation function must be the same for the code to work properly.

EQ =shell_surf_curv {Galerkin_wt} gamma2 {Interpol_fnc} <float1>
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shell_surf_curv

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma2 Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation.  Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = shell_surf_curv Q1 gamma2 Q1 1.0

Technical Discussion

See discussion for EQ = shell_surf_div_v

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and 
Rheology. Butterworth-Heinemann, Boston.
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4.12.44 shell_surf_div_v

Description/Usage

This card provides information for solving a definition equation for surface divergence 
of the fluid velocity field on a 2-dimensional bar element.  Note that this equation is not 
yet available in three dimensions. This term is required by the non-Newtonian surface 
rheology capability in Goma.  Note that <floatlist> contains one constant and it should 
always be set to one. The Galerkin weight and the interpolation function must be the 
same for the code to work properly. Also note that this term is not currently active in 
Goma, and the developers should be consulted.    

shell_surf_div_v

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma1 Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation.  Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = shell_surf_div_v Q1 gamma1 Q1 1.0

EQ = shell_surf_div_v {Galerkin_wt} gamma1 {Interpol_fnc} <float1>
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Technical Discussion

This shell equation is required for proper computation of the Boussinesq-Scriven 
surface rheological constitutive equation (namely the surface divergence of the velocity 
field in the 4th and 6th terms on the right of the following equation). The functional 
form of this equation is as follows:

 

Here, is the surface gradient operator, and is the surface 
unit tensor.  µs and ks are the surface shear viscosity and surface extensional viscosity, 
respectively.  Note that the first three terms on the right are balance of the stress in the 
standard Goma CAPILLARY condition, with surface tension gradients being 
accommodated through variable surface tension. The boundary condition 
CAPILLARY_SHEAR_VISC is used to set the additional terms of this constitutive 
equation. As of January 2006 only the 7th term on the right hand side is implemented, 
as it is the only nonzero term in a flat surface shear viscometer.   The building blocks 
for the other terms are available through additional shell equations.   These remaining 
terms actually represent additional dissipation caused by surface active species 
microstructures flowing in the surface.   The best source of discussion of this equation 
is a book by Edwards et al. (1991. Interfacial Transport Processes and Rheology. 
Butterworth-Heinemann, Boston). 

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and 
Rheology. Butterworth-Heinemann, Boston.
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4.12.45 grad_v_dot_n1, grad_v_dot_n2, grad_v_dot_n3

Description/Usage

This card provides information for solving a definition equation for the normal 
components of the velocity gradient tensor in  a 2-dimensional bar element.  Note that 
this equation is not yet available in three dimensions and is in fact untested at this time.. 
These building blocks are required by the non-Newtonian surface rheology capability 
in Goma.  Note that <floatlist> contains one constant and it should always be set to one. 
The Galerkin weight and the interpolation function must be the same for the code to 
work properly.

grad_v_dot_n1, grad_v_dot_n2, grad_v_dot_n3

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma3_[1|2|3] Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation.  Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = grad_v_dot_n1 Q1 gamma3_1 Q1 1.0

EQ = grad_v_dot_n[1|2|3] {Galerkin_wt} gamma3_[1|2|3] {Interpol_fnc} <float1>
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Technical Discussion

See discussion for EQ=shell_surf_div_v

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and 
Rheology. Butterworth-Heinemann, Boston.

4.12.46 n_dot_curl_v

Description/Usage

This card provides information for solving a definition equation for the normal 
component of the surface curl of the velocity field on a 2-dimensional bar element. 
Note that this equation is not yet available in three dimensions. This term is required by 
the non-Newtonian surface rheology capability in Goma.  Note that <floatlist> contains 
one constant and it should always be set to one. The Galerkin weight and the 
interpolation function must be the same for the code to work properly.

n_dot_curl_v

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of 
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma4 Name of the variable associated with the shell curvature 
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation 
function used to represent the variable K where:

EQ = n_dot_curl_v {Galerkin_wt} gamma4 {Interpol_fnc} <float1>
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Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation.  Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = n_dot_curl_v Q1 gamma4 Q1 1.0

Technical Discussion

The following is a sample card that uses linear continuous curvature interpolation and 
weight function:

EQ = n_dot_curl_v Q1 gamma4 Q1 1.0

Technical Discussion

This shell equation is required for proper computation of the Boussinesq-Scriven 
surface rheological constitutive equation elements (namely the surface curl of the 
velocity field, normal component)  in the 7th term on the right of the following 
equation)::

 

Here, is the surface gradient operator, and is the surface 
unit tensor.  µs and ks are the surface shear viscosity and surface extensional viscosity, 
respectively.  Note that the first three terms on the right are balance of the stress in the 
standard Goma CAPILLARY condition, with surface tension gradients being 
accommodated through variable surface tension. The boundary condition 
CAPILLARY_SHEAR_VISC is used to set the additional terms of this constitutive 
equation. As of January 2006 only the 7th term on the right hand side is implemented, 
as it is the only nonzero term in a flat surface shear viscometer.   The building blocks 
for the other terms are available through additional shell equations.   These remaining 
terms actually represent additional dissipation caused by surface active species 
microstructures flowing in the surface.   The best source of discussion of this equation 
is a book by Edwards et al. (1991. Interfacial Transport Processes and Rheology. 
Butterworth-Heinemann, Boston). 
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Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and 
Rheology. Butterworth-Heinemann, Boston.

4.12.47 acous_preal

Description/Usage

This card provides information for solving a differential equation for the real part of the 
harmonic acoustic wave equation. Definitions of the input parameters are defined 
below. Note that <float1> through <float5> define the constant multipliers in front of 
each type of term in the equation. The Galerkin weight and the interpolation function 
must be the same for the code to work properly.

acous_preal Name of the equation to be solved. 

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

APR Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

<float1> currently not used.

<float2> Multiplier on acoustic absorption term.

<float3> Multiplier on boundary terms.

EQ = acous_preal {Galerkin_wt} APR {Interpol_fnc} <float list>  
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<float4> Multiplier on Laplacian term.

<float5> Multiplier on pressure term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the 
species equation and turns on all the term multipliers:

EQ = acous_preal Q2 APR Q2 0. 1. 1. 1. 1.

Technical Discussion

Harmonic form of the wave equation with absorption (attenuation) included.  P is the 
amplitude of the acoustic pressure (complex), k is the wavenumber, α is the absorption 
coefficient, and ω is the frequency (rad/sec).

(4-216)

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.12.48 acous_pimag

Description/Usage

This card provides information for solving a differential equation for the imaginary part 
of the harmonic acoustic wave equation. Definitions of the input parameters are 
defined below. Note that <float1> through <float5> define the constant multipliers in 
front of each type of term in the equation. The Galerkin weight and the interpolation 
function must be the same for the code to work properly.

acous_pimag Name of the equation to be solved. 

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

API Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

<float1> currently not used.

<float2> Multiplier on acoustic absorption term.

<float3> Multiplier on boundary terms.

<float4> Multiplier on Laplacian term.

<float5> Multiplier on pressure term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

EQ = acous_pimag {Galerkin_wt} API {Interpol_fnc} <float list>  
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Examples

The following is a sample card that uses quadratic continuous interpolation for the 
species equation and turns on all the term multipliers:

EQ = acous_pimag Q2 API Q2 0. 1. 1. 1.  1.

Technical Discussion

Harmonic form of the wave equation with absorption (attenuation) included.  P is the 
amplitude of the acoustic pressure (complex), k is the wavenumber, α is the absorption 
coefficient, and ω is the frequency (rad/sec).

(4-217)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.49 acous_reyn_stress

Description/Usage

This card provides information for solving a differential equation for the Reynolds 
stress that results from time averaging of the acoustic pressure and velocity fields.  
Interactions of the fluid momentum equations with the acoustic wave equations are 
then afforded through gradients of the scalar acoustic Reynolds stress with the use of 
the ACOUSTIC Navier-Stokes source.  Definitions of the input parameters are defined 
below. Note that <float1> through <float3> define the constant multipliers in front of 
each type of term in the equation. The Galerkin weight and the interpolation function 
must be the same for the code to work properly.

acous_reyn_stressName of the equation to be solved. 

EQ = acous_reyn_stress {Galerkin_wt} ARS {Interpol_fnc} <float list>  

∇2P k2 1
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{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

ARS Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier for the Reynolds stress variable.

<float2> Multiplier for the kinetic energy term.

<float3> Multiplier for the compressional energy term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the 
acoustic Reynolds stress equation and turns on all the term multipliers:

EQ = acous_reyn_stress Q2 ARS Q2 . 1. 1. 1. 

Technical Discussion

The Reynolds stress due to acoustic fields reduces to a combination of compressional 
and kinetic energy terms which can be expressed in terms of the magnitude of the 
acoustic pressure and its gradient.  P is the amplitude of the acoustic pressure 
(complex), k is the wavenumber, R is the acoustic impedance, and ω is the frequency 
(rad/sec).

(4-218)

Theory

No Theory.
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FAQs

No FAQs.

References

No References.

4.12.50 potential1

Description/Usage

This card provides information for solving a differential equation for the solid-phase 
electrode potential. This electrode-potential equation is solved together with the liquid-
phase electrolyte-potential equation (see the potential2 card) for simulating 
electrochemical processes (such as thermal batteries and proton-exchange-membrane 
fuel cells) involving simultaneous charge transport in both the liquid-electrolyte and 
solid-electrode phases (as in the porous anode and cathode). Definitions of the input 
parameters are defined below. Note that <floatlist> has five parameters to define the 
constant multipliers in front of each type of term in the equation. The Galerkin weight 
and the interpolation function must be the same for the code to work properly.

potential1 Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

PHI1 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable PHI1, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

EQ = potential1 {Galerkin_wt} PHI1 {Interpol_fnc} <floatlist>
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<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a quadratic interpolation and weight function 
and turns off the mass (or transient) and advection terms but turns on the boundary, 
diffusion, and source terms: 

EQ = potential1 Q2 PHI1 Q2 0. 0. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.51 potential2

Description/Usage

This card provides information for solving a differential equation for the liquid-phase 
electrolyte potential. This electrolyte-potential equation is solved together with the 
solid-phase electrode-potential equation (see the potential1 card) for simulating 
electrochemical processes (such as thermal batteries and proton-exchange-membrane 
fuel cells) involving simultaneous charge transport in both the liquid-electrolyte and 
solid-electrode phases (as in the porous anode and cathode). Definitions of the input 

EQ = potential2 {Galerkin_wt} PHI2 {Interpol_fnc} <floatlist>
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parameters are defined below. Note that <floatlist> has five parameters to define the 
constant multipliers in front of each type of term in the equation. The Galerkin weight 
and the interpolation function must be the same for the code to work properly.

potential2 Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting 
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

PHI2 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function 
used to represent the variable PHI2, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ( ).

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ( ).

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating 
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the 
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a quadratic interpolation and weight function 
and turns off the mass (or transient) and advection terms but turns on the boundary, 
diffusion, and source terms: 

EQ = potential2 Q2 PHI2 Q2 0. 0. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.
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FAQs

No FAQs.

References

No References.

4.12.52 lubp

Description/Usage

This card provides information for solving the Reynold’s lubrication equation for 
confined flow. Definitions of the input parameters are defined below.  The Galerkin 
weight and the interpolation function must be set the same for the code to work 
properly.   Counterparts to this equation for lubrication flow of capillary films (film-
equations) are shell_filmp and shell_filmh equations. 

lubp Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of weighting 

function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

LUBP Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the 

interpolation function for the variable LUBP, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term 

(not used yet as of 3/4/2010). 

<float2> Multiplier for the diffusion term. 

<float3> Multiplier for the source term.  

EQ = lubp {Galerkin_wt} LUBP {Interpol_fnc} <floatlist>
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Examples

Following is a sample card: 

EQ = lubp Q1 LUBP Q1 1. 1. 1. 

This applies the confined flow lubrication equation with all terms activated. 

Technical Discussion
The equation solved is as follows:

² The first term multiplier, activating the mass (time-derivative) term is not currently 

activated as the gap-height is user-prescribed.  

² The second term multiplier affects the third and fourth terms (grad_p and surface 

tension terms).  

The third term multiplier activates the Couette flow terms. 

Theory

NoTheory.

<.>

FAQs

No FAQs.

<>

References

No References.
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4.12.53 lubp_2

Description/Usage

This card provides information for solving a second-layer Reynold’s lubrication 
equation for confined flow. The second layer is solved on an adjacent shell as lubp 
equation but shares the same nodes. Please consult tutorials for proper usuage. This 
equation can be used to model transport between alternating stacks of porous materials. 
Definitions of the input parameters are defined below.  The Galerkin weight and the 
interpolation function must be set the same for the code to work properly.   
Counterparts to this equation for lubrication flow of capillary films (film-equations) are 
shell_filmp and shell_filmh equations. 

lubp_2 Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of weighting 

function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

LUBP_2 Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the 

interpolation function for the variable LUBP_2 where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term 

(not used yet as of 3/4/2010). 

<float2> Multiplier for the diffusion term. 

<float3> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = lubp_2 {Galerkin_wt} LUBP {Interpol_fnc} <floatlist>



Revised: 6/12/13 731

4.12.53  lubp_2 

EQ = lubp_2 Q1 LUBP_2 Q1 1. 1. 1. 

This applies the confined flow lubrication equation with all terms activated. 

Technical Discussion
The equation solved is as follows:

² The first term multiplier, activating the mass (time-derivative) term is not currently 

activated as the gap-height is user-prescribed.  

² The second term multiplier affects the third and fourth terms (grad_p and surface 

tension terms).  

The third term multiplier activates the Couette flow terms. 

Theory

NoTheory.

<.>

FAQs

No FAQs.

<>

References

No References.
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4.12.55 shell_energy

Description/Usage
This card provides information for solving a shell thermal energy equation.  Use of 

this equation can be made for any shell, including those which involve Reynold’s film 

or confined flow lubrication flow. Definitions of the input parameters are defined 

below.  The Galerkin weight and the interpolation function must be set the same for the 

code to work properly.

shell_energy Name of equation to be solved. 

{Galerkin_wt}Two-or four-character value that defines the type of weighting function 

for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_T Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the 

interpolation function for the variable SH_T, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

<float2> Multiplier for the advection term. 

<float3> Multiplier for the boundary term (not used)

<float4> Multiplier for the source term.  

EQ = shell_energy {Galerkin_wt} SH_T {Interpol_fnc} <floatlist>
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Examples

Following is a sample card: 

EQ = shell_energy Q1 SH_T Q1 1. 1. 1. 1. 1.

This applies the shell energy equation with all terms activated on a SHELL4 or BAR2 

mesh.  

Technical Discussion
The equation solved is as follows:

² Clearly this equation looks similar to the standard energy equation for continuum 

formulations, but the presence of the gap/film thickness h indications that the 

assumption of a constant shell temperature across the thickness is assumed, and 

hence all the terms are constant in that integrated direction.   The source terms are 

all invoked in the material files, and there are many types and many submodels.  

² Special NOTE:  This equation can be up-winded for high Peclet number flows.  If 

the Energy Weight Function card in the companion material file is set to SUPG, 

then the advection term is stabilized with standard streamwise-upwinding-Petrov-

Galerkin approach. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.


hρCp

∂T

∂t
+ hρCp

%
uII ⋅∇ IIT − hKeff ∇ II ⋅∇ IIT + Qsurf + QVD + QJoule = 0
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4.12.56 shell_filmp

Description/Usage
This card provides information for solving the film lubrication equation for free surface 

flow. Definitions of the input parameters are defined below.  The Galerkin weight and 

the interpolation function must be set the same for the code to work properly.   

Counterparts to this equation for lubrication flow of capillary films (film-equations) are 

lup_p equation.  

shell_filmp Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SHELL_FILMP Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SHELL_FILMP,

where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term 

<float2> Multiplier for the advection term. It is not activated 

<float3> Multiplier for the boundary term. It is not activated  

<float4> Multiplier for the diffusion term.  

<float5> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_filmp Q1 SHELL_FILMP Q1 1. 0. 0. 1. 1. 

EQ = shell_filmp {Galerkin_wt} SHELL_FILMP {Interpol_fnc} <floatlist>
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This applies the film flow equation with all terms activated.  

Technical Discussion
The equation solved is as follows:

• The mass matrix multiplier activates the time-derivative term

• The diffusion multiplier activates the terms inside the divergence operator and 
represents the flux or the flow rate of the liquid film

• The source (or sink, in this case,) activates the last term, rate of evaporation.

• This equation has to be used with the equation describing SHELL_FILMH.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.57 shell_filmh

Description/Usage
This card provides information for solving the film lubrication equation for free surface 

flow. Definitions of the input parameters are defined below.  The Galerkin weight and 

the interpolation function must be set the same for the code to work properly.   

EQ = shell_filmh {Galerkin_wt} SHELL_FILMH {Interpol_fnc} <floatlist>
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Counterparts to this equation for lubrication flow of capillary films (film-equations) are 

lup_p equation.  

shell_filmh Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of 

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SHELL_FILMH Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SHELL_FILMH,

where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. It is not activated 

<float2> Multiplier for the advection term. It is not activated 

<float3> Multiplier for the boundary term. It is not activated  

<float4> Multiplier for the diffusion term.  

<float5> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_filmh Q1 SHELL_FILMH Q1 0. 0. 0. 1. 1. 

This applies the film flow equation with all terms activated.  

Technical Discussion
The equation solved is as follows:

2 0IIp hσ+ ∇ =



Revised: 6/12/13 737

4.12.58  shell_partc 

• The diffusion multiplier activates the capillary pressure term

• The source activates the first term.

• This equation does not fit the general prototype of conservation equation where the 
diffusion and source terms really apply. In all cases, both diffusion and source 
terms need to be activated.

• This equation has to be used with the equation describing SHELL_FILMP.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.58 shell_partc

Description/Usage
This card provides information for solving the z-averaged concentration of particles 

inside film flow. Definitions of the input parameters are defined below.  The Galerkin 

weight and the interpolation function must be set the same for the code to work 

properly.   

shell_partc Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

EQ = shell_partc {Galerkin_wt} SHELL_PARTC {Interpol_fnc} <floatlist>
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SHELL_PARTC Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable

SHELL_PARTC, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

<float2> Multiplier for the advection term.         

<float3> Multiplier for the boundary term. It is not activated  

<float4> Multiplier for the diffusion term.  

<float5> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_partc Q1 SHELL_PARTC Q1 1. 0. 0. 1. 0. 

This applies the film flow equation with all terms activated.  

Technical Discussion
The equation solved is as follows:

• The mass matrix multiplier activates the time-derivative term.

• The advection multiplier activates the second term, where the flow rate is dotted 
onto the gradient of particles concentration and it represents advection of particles 
due to the liquid film flow.

• The diffusion multiplier activates the terms inside the divergence operator and 
represents the Fickian diffusion of particles.
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• The source activates the last term, rate of evaporation of liquid that contributes to 
the increase of the particles conentration.

• This equation has to be used with the film profile equation describing 
SHELL_FILMP and SHELL_FILMH.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.59 shell_sat_closed

Description/Usage
This card provides the capability to solve the porous shell equations for closed (non-

interconnected) structured pores.  The Galerkin weight and the interpolation function 

must be set the same for the code to work properly.   The counterpart to this equation is 

porous_sat_open, which solves for interconnected pores.

shell_sat_closed Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_CLOSED Name of the variable associated with this equation. 

EQ = shell_sat_closed {Galerkin_wt} SH_SAT_CLOSED {Interpol_fnc} 
<floatlist>
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{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable 

SH_SAT_CLOSED, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

<float2> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_sat_closed  Q1 SH_SAT_CLOSED Q1  1.0 1.0    

This applies the equation with all terms activated.  

Technical Discussion
The equations solved are as follows:

• The mass matrix multiplier activates the time-derivative term.

• The source matrix multiplier activates the remaining term.

• This equation is required to couple with LUBP to solve for the lubrication forces.
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• Currently, this equation assumes that the porous shell is located in the +z direction 
of the lubrication shell, and the coupling is set up to draw liquid from the 
lubrication layer by adding a sink term into the lubrication equations.

Beyond the standard porous media material cards for continuum element regions, one 
needs in the thin-shell material inputs in the following section:

Porous Shell Closed Porosity = CONSTANT 0.1

Porous Shell Height = CONSTANT 1.0

Porous Shell Radius = CONSTANT 0.01

Porous Shell Atmospheric Pressure = CONSTANT 1.e6

Porous Shell Reference Pressure = CONSTANT 0.

Porous Shell Cross Permeability = CONSTANT 0.2

Porous Shell Initial Pore Pressure = CONSTANT 0.

Please read the associated material property cards sections for details. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.60

4.12.61 shell_sat_gasn

Description/Usage
This card provides the capability to solve the porous shell equation for the inventory of 

trapped gas in a closed pore shell simulation, viz. the EQ=shell_sat_closed. The 

EQ = shell_sat_gasn {Galerkin_wt} SH_SAT_GASN {Interpol_fnc} <floatlist>
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equation tracks the inventory of trapped gas and accounts for the compression (ideal 

gas law) and dissolution into the invading liquid. Two terms are required in this 

equation:

shell_sat_gasn Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_GASN Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable 

SH_SAT_GASN, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

<float2> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_sat_gasn Q1 SH_SAT_GASN Q1  1.0 1.0    

This applies the equation with all terms activated.  

Technical Discussion

Theory

NoTheory.
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FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. In preparation. 

4.12.62

4.12.63 shell_sat_open

Description/Usage
This card provides the capability to solve the porous shell equations for open 

(interconnected) structured pores.  The Galerkin weight and the interpolation function 

must be set the same for the code to work properly.   The counterpart to this equation is 

shell_sat_closed, which solves for non-interconnected pores.

shell_sat_open Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_OPEN Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_P_OPEN,

where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

<float2> Multiplier for the source term.  

EQ = shell_sat_open {Galerkin_wt} SH_P_OPEN {Interpol_fnc} <floatlist>
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Examples

Following is a sample card: 

EQ = shell_sat_open Q1 SH_P_OPEN Q1  1.0 1.0    

This applies the equation with all terms activated.  

Technical Discussion
The equations solved are as follows:

• The mass matrix multiplier activates the time-derivative term.

• The source matrix multiplier activates the remaining term.

• This equation is required to couple with LUBP to solve for the lubrication forces.

• Currently, this equation assumes that the porous shell is located in the +z direction 
of the lubrication shell, and the coupling is set up to draw liquid from the 
lubrication layer by adding a sink term into the lubrication equations.

• NOT FULLY IMPLEMENTED.  

Note that this equation requires the Media Type to be set to 
POROUS_SHELL_UNSATURATED. With this media type the porous properties for 
the most part are extracted from the regular (non-shell) porous media property cards, 
e.g. Permeability, Porosity, Saturation, etc. There are a few exceptions, however. 
Beyond the standard porous media material cards for continuum element regions, one 
needs in the thin-shell material inputs the following section:

Porous Shell Closed Porosity = CONSTANT 0.1
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Porous Shell Height = CONSTANT 1.0

Porous Shell Radius = CONSTANT 0.01

Porous Shell Atmospheric Pressure = CONSTANT 1.e6

Porous Shell Reference Pressure = CONSTANT 0.

Porous Shell Cross Permeability = CONSTANT 0.2

Porous Shell Initial Pore Pressure = CONSTANT 0.

Please read the associated material property cards sections for details. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.64 shell_sat_open_2

Description/Usage
This card provides the capability to solve a second porous shell equation for open 

(interconnected) structured pores. The use of this equation requires that the shell 

material share the same nodes but be a distinct material from that which shell_sat_open 

resides. Please see the associated tutorials. The Galerkin weight and the interpolation 

function must be set the same for the code to work properly.   The counterpart to this 

equation is shell_sat_closed, which solves for non-interconnected pores.

shell_sat_open_2 Name of equation to be solved. 

{Galerkin_wt} Two-or four-character value that defines the type of

EQ = shell_sat_open_2 {Galerkin_wt} SH_P_OPEN_2 {Interpol_fnc} 

<floatlist>
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weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_OPEN_2 Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_P_OPEN_2,

where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

<float2> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_sat_open_2 Q1 SH_P_OPEN_2 Q1  1.0 1.0    

This applies the equation with all terms activated.  

Technical Discussion
The equations solved are as follows:

• The mass matrix multiplier activates the time-derivative term.
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• The source matrix multiplier activates the remaining term.

• This equation is required to couple with LUBP to solve for the lubrication forces.

• Currently, this equation assumes that the porous shell is located in the +z direction 
of the lubrication shell, and the coupling is set up to draw liquid from the 
lubrication layer by adding a sink term into the lubrication equations.

• NOT FULLY IMPLEMENTED.  

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.65

4.12.66 shell_deltah

Description/Usage
This card provides the capability to solve an evolution equation for a changing 

lubrication gap.  The most common example of this would be a melting slider, as in the 

substrate of a snow ski or during high-energy sliding contact.  Melting would change 

the lubrication gap.  The Galerkin weight and the interpolation function must be set the 

same for the code to work properly.   This equation could be furbished or advanced to 

handle other moving boundary problems which would lead to a changing gap.  It 

should be noted, that gap changes due to a bounding flexible solid structure are already 

accommodated and fully compatible with this condition. 

shell_deltah Name of equation to be solved. 

EQ = shell_deltah {Galerkin_wt} SH_DH {Interpol_fnc} <floatlist>
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{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_DH Name of the variable associated with this equation. 

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_DH, where: 

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. 

 <float2> Multiplier for the source term.  

Examples

Following is a sample card: 

EQ = shell_deltah Q1 SH_DH Q1  1.0 1.0    

This applies the equation with all terms activated.  

Technical Discussion
The equations solved are as follows:

where E0 is the enthalpy, including the effect of phase change through the latent heat 

material property specified in the material file.   Htrans is a heat transfer coefficient and 

is set in the material file as that due to melting/sliding contact (see material file section 

on MELTING_CONTACT).   dh is the unknown. 

• The mass matrix multiplier activates the time-derivative term.

ρE0

dδh

dt
= H trans (T − T0 )
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• The source matrix multiplier activates the remaining term.

• This equation is required to couple with SH_TEMP to solve for the local 
temperature. f

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.67

4.12.68 END OF EQ

Description/Usage

This card specifies the end of the list of equations in a material section of the Problem 
Description File. It is only used when automatic equation counting is used, as 
described and activated in the Number of EQ card. If the value of <integer> in that card 
is set to -1, all EQ cards below this card are ignored, and Goma counts the number of 
EQ cards between the Number of EQ card and the END OF EQ card.

Note that the END of EQ card should appear in every material section for which 
automatic equation counting is being used.

Examples

There are no input parameters for this card, which always appears as follows: 

END OF EQ
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END OF EQ

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.12.69 END OF MAT

Description/Usage

This card specifies the end of the list of materials. It is only used when automatic 
material counting is used, as described and activated in the Number of Materials card. 
If the value of <integer> in the Number of Materials card is set to -1, all MAT cards 
below the END OF MAT card are ignored, and Goma counts the number of MAT cards 
between these two cards.

Examples

There are no input parameters for this card, which always appears as follows: 

END OF MAT

Technical Discussion

No discussion.

Theory

No Theory.

END OF MAT
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FAQs

No FAQs.

References

No References.
 

4.13 Post Processing Specifications

This section lists the post-processing options that are accessible within Goma. Each card below 
triggers calculations of the nodal values of a given function, which are then written to the 
EXODUS II output file. Normally these values are smoothed before writing them to the output 
file. For most of these cards a keyword is the only input; if the keyword is yes, the post-processing 
variable is calculated and written to the file; if the keyword is no, no output is generated for that 
variable. All of these cards are optional and can appear in any order.

The sections below list the post-processing options and a brief description of each. Users are 
cautioned - for large, time-dependent runs, the output of many post-processing variables may lead 
to excessively large EXODUS II output files.

4.13.1 Stream Function

Description/Usage

The stream function provides a visual representation of the flow field in incompressible 
fluids and is derived from the fluid velocity components identified in the Output 
Exodus II file card.

This auxiliary field triggered by “yes” on this card results in a nodal variable that is 
called STREAM in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the stream function.

no Do not calculate the stream function.

Stream Function = {yes | no}
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Examples

Following is a sample card:

Stream Function = no

Technical Discussion

This function is computed with an element-by-element volumetric flow calculation 
routine. Poor element quality can result in “kinks” in the stream function field when 
contoured.

It is important to construct a mesh whose elements are contiguously ordered in such a 
way that there are no isolated clusters as the elements are swept, i.e., element n+1 must 
be in contact with one of the previous n elements. NOTE: as of 4/2001 an automatic 
element reordering scheme based on Reverse Cuthill-McKee algorithm has been 
implemented in Goma. Automatic ordering can be assured by issuing the OPtimize 
command to the FASTQ meshing module (cf. Blacker 1988). Most other mesh 
generators do not provide this service, viz. they do not put out an element order-map 
field in the EXODUS II file.

NOTE: THIS FUNCTION IS NOT AVAILABLE IN THREE DIMENSIONS, but 
pathlines, which are equivalent to streamlines for steady flows can be computed in 
many graphics packages, like Mustafa (Glass, 1995).

Theory

No Theory.

FAQs

No FAQs.

References

SAND88-1326: FASTQ Users Manual: Version 1.2, Sandia Technical Report, Blacker, 
T. D. 1988.

Mustafa, Glass, M. W., Personal Communication, 1995
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4.13.2 Streamwise normal stress

Description/Usage

The stream-wise normal stress, Ttt, is defined as tt:τ, where t is the unit tangent vector 
to the streamlines computed as  and τ is the deviatoric part of the dissipative stress 
tensor,

 (4-219)

associated with the Navier-Stokes equations. This variable is called SNS in the output 
EXODUS II file.

The permissible values for this postprocessing option are

yes Calculate the stream-wise normal stress.

no Do not calculate the stream-wise normal stress.

Examples

Following is a sample card:

Streamwise normal stress = yes

Technical Discussion

As of 2/9/02 this function is computed with the based viscosity, and not the strain-rate 
dependent viscosity as might be the case for viscosity models other than NEWTONIAN 
(see Viscosity card).

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Streamwise normal stress = {yes | no}

v v⁄

τ µ ∇v ∇v( )
T

+[ ]≡
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4.13.3 Cross-stream shear rate

Description/Usage

As of 2/9/02, it is recommended that this card not be used.

The quantity as computed in Goma is only applicable in two-dimensions and it is not 
clear what this quantity is, as it is computed.    (PRS)

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.4 Mean shear rate

Description/Usage

The mean shear rate is defined as

, (4-220)

where  is the second invariant of D, the strain-rate tensor,

Cross-stream shear rate = {yes | no}

Mean shear rate = {yes | no}

4 IID

IID
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(4-221)

associated with the Navier-Stokes equations. This variable is called SHEAR in the 
output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the mean shear rate.

no Do not calculate the mean shear rate.

Examples

The following is a sample card:

Mean shear rate = yes

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.5 Pressure contours

Description/Usage

The hydrodynamic pressure is normally a field variable within Goma; however, it is 
often interpolated in finite element space with discontinuous basis functions (in order 
to satisfy the well-known LBB stability criterion, cf. Schunk, et al. 2002). This option 
enables interpolating and smoothing the hydrodynamic pressure to nodal values that 

Pressure contours = {yes | no}

D ∇v ∇v( )
T

+[ ]≡
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most post-processors can deal with (e.g. BLOT, Mustafa). This variable is called 
PRESSURE in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the pressure contours.

no Do not calculate the pressure contours.

Examples

Following is a sample card:

Pressure contours = no

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite 
Element Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. 
Sun. (March 2002)

 

4.13.6 Fill contours

Description/Usage

This card triggers the inclusion of the level set or VOF fill function as a nodal variable 
in the output EXODUS II file.

Fill contours = {yes | no}
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The nodal variable appears as FILL in the output EXODUS II file. This function is 
computed with the FILL equation (see EQ card). 

The permissible values for this postprocessing option are:

yes Calculate the fill contours.

no Do not calculate the fill contours.

Examples

An example card requesting FILL contours be written to the EXODUS II file is:

Fill contours = yes

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A. 
Baer

 

4.13.7 Concentration contours

Description/Usage

As of 2/9/02 this card is not necessary. If EQ = species_bulk card is active in any 
material, than the concentration contours are including as post-processing nodal 
variables in the output EXODUS II file.

Concentration contours = {yes | no}
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Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.8 Stress contours

Description/Usage

This card allows the user to invoke the components of the stress tensor for all 
viscoelastic modes be included as nodal post-processing variables. Often times this is 
not desirable on long time-dependent runs because of the voluminous data that will 
appear in the output EXODUS II file. This variable is called csij_mode in the output 
EXODUS II file, where i and j indicate components of the stress tensor and mode 
indicates the desired viscoelastic mode; for example, cs23_4 represents the stress 
contour for the fifth mode of polymer stress component yz.

The permissible values for this postprocessing option are:

yes Calculate and include the stress-tensor components for all 
modes of viscoelasticity.

no Do not calculate and include the stress-tensor components.

These stresses become dependent variables if the Polymer Constitutive Equation card 
is given any model but the NOPOLYMER model.

Stress contours = {yes | no}
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Examples

An example card requesting viscoelastic stress components be written:

Stress contours = yes

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

4.13.9 First Invariant of Strain

Description/Usage

The strain tensor is associated with the deformation of the mesh. Its first invariant is its 
trace and represents the volume change in the small strain limit. This variable is called 
IE in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the first invariant.

no Do not calculate the first invariant

Examples

Following is a sample card:

First Invariant of strain = yes

First Invariant of Strain = {yes | no}
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Technical Discussion

Computation of the strain tensor   in Goma is discussed on the Solid Constitutive 
Equation card. The trace is related to the divergence of the tensor, and hence related to 
a measure of volume change in a material.

It should be noted that the mesh strain is equivalent to the material strain for 
LAGRANGIAN mesh motion types. For ARBITRARY or TOTAL_ALE mesh motion 
types (see Mesh Motion card), the strain is strictly related to mesh and not the material. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.10 Second Invariant of Strain

Description/Usage

The strain tensor is associated with the deformation of the mesh. Its second invariant 
indicates the level of shear strain of the mesh. This variable is called IIE in the output 
EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the second invariant.

no Do not calculate the second invariant

Examples

Following is a sample card:

Second Invariant of strain = yes

Second Invariant of Strain = {yes | no}

E
˜
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4.13.11  Third Invariant of Strain 

Technical Discussion

The second invariant is computed in Goma as

. (4-222)

Here Einstein’s summation convention applies, viz.

. (4-223)

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.11 Third Invariant of Strain

Description/Usage

The strain tensor is associated with the deformation of the mesh. Its third invariant 
indicates the volume change from the stress-free state (IIIE = 1.0 indicates no volume 
change). This variable is called IIIE in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the third invariant.

no Do not calculate the third invariant

Examples

Following is a sample card:

Third Invariant of strain = {yes | no}

IIE
1
2
--- EijEij EiiEjj–( )=

EijEij EijEij

j


i

=
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Third Invariant of strain = yes

Technical Discussion

The mathematical definition of the third invariant is related to the determinant of the 
strain tensor, which is defined for the various constitutive equations in the manual entry 
for the Solid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.12 Velocity Divergence

Description/Usage

The divergence of velocity is associated with local mass conservation or how well the 
solenoidal character of the velocity field in ARBITRARY mesh motion regions is being 
maintained. (Fluid momentum equations are only applied for this Mesh Motion option.)  
Here we calculate the L2 norm of the divergence of velocity so that it is always zero or 
positive. This variable is called DIVV in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the velocity divergence.

no Do not calculate the velocity divergence.

Examples

A sample input specification for this card is:

Velocity Divergence = no

Velocity Divergence = {yes | no}
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4.13.13  Particle Velocity Divergence 

Technical Discussion

The divergence of the fluid velocity field is defined as the scalar .

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.13 Particle Velocity Divergence

Description/Usage

This option is currently disabled.   As of 2/16/2002, the multiphase particle momentum 
equation is deactivated. It is not recommended that this option be selected.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Particle Velocity Divergence = {yes | no}

∇ v
˜

•
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References

No References.
 

4.13.14 Total Velocity Divergence

Description/Usage

Not currently activated.   (2/16/02)

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.15 Electric Field

Description/Usage

The electric field vector components are written to the output EXODUS II file. The 
electric field is calculated as the negative gradient of the VOLTAGE field variable.

Not activated (PRS 2/16/02)

Electric Field = {yes | no}
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4.13.16  Electric Field Magnitude 

The permissible values for this postprocessing option are

yes Calculate the electric field vectors.

no Do not calculate the electric field vectors.

The vector components are called EX, EY, and (for three dimensional problems) EZ in 
the output EXODUS II file.

Examples

The following is a sample input card to calculate the Electric Field vector components:

Electric Field = yes

Technical Discussion

See also the Electric Field Magnitude post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.16 Electric Field Magnitude

Description/Usage

The magnitude of the electric field is written to the output EXODUS II file. The 
electric field is calculated as the negative gradient of the VOLTAGE field variable.

The permissible values for this postprocessing option are:

yes Calculate the electric field magnitude.

no Do not calculate the electric field magnitude.

Electric Field Magnitude = {yes | no}
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The electric field magnitude is called EE in the output EXODUS II file.

Examples

The following is a sample input card to calculate the Electric Field Magnitude:

Electric Field Magnitude = yes

Technical Discussion

See also the Electric Field post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.17 Enormsq Field

Description/Usage

This norm is based on the ENORM field variable (which, in turn, is derived from the 
VOLTAGE field variable).

The permissible values for this postprocessing option are:

yes Calculate the norm.

no Do not calculate the norm.

The field is stored in GENS0, GENS1, and GENS2 (if 3D) in the output EXODUS II 
file.

Examples

The following is a sample input card to calculate the field:

Enormsq Field = {yes | no}
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4.13.18  Enormsq Field Norm 

Enormsq Field = yes

Technical Discussion

This post-processing variable is equal to . This, in turn, should approximate 
.

See also the Enormsq Field Norm post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.18 Enormsq Field Norm

Description/Usage

This norm is based on the ENORM field variable (which, in turn, is derived from the 
VOLTAGE field variable).

The permissible values for this postprocessing option are:

yes Calculate the norm.

no Do not calculate the norm.

The norm is called GENSNORM in the output EXODUS II file.

Examples

The following is a sample input card to calculate the norm:

Enormsq Field Norm = yes

Enormsq Field Norm = {yes | no}

∇enorm
2

∇ ∇V
2

( )
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Technical Discussion

This post-processing variable is equal to . This, in turn, should approximate 
.

See also the Enormsq Field post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.19 Viscosity

Description/Usage

This option allows you to plot the viscosity, which is written to the Output EXODUS II 
file as the variable MU. This is a useful feature for non-Newtonian fluids such as 
Phillip’s model for suspensions, Bingham plastic models, polymerizing solutions and 
other materials for which the viscosity may change orders of magnitude, greatly 
affecting the velocity and pressure fields. Contouring this variable MU over the domain 
can be useful in explaining some physical phenomena.

The permissible values for this postprocessing option are:

yes Calculate the viscosity and output as a nodal variable in the 
Output EXODUS II file.

no Do not calculate the viscosity.

Examples

The following sample card requests MU be written to the EXODUS II file:

Viscosity = yes

Viscosity = {yes | no}

∇enorm
2

∇ ∇V
2

( )
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Technical Discussion

See the material file Viscosity card for an explanation of the models for which the 
viscosity is variable and dependent on the flow field and other variables.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.20  

4.13.21 Density

Description/Usage

This card is used to trigger the thermophysical or mechanical property of density (see 
Density card) to be computed and output as an EXODUS II nodal variable in the Ouput 
EXODUS II file with the variable name RHO.

The permissible values for this postprocessing option are:

yes Calculate the density and store it as a nodal variable in the 
output EXODUS II file.

no Do not calculate density.

Examples

This is an example of the input to request density be written to the EXODUS II file.

Density = yes

Density = {yes | no}
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.22  Lame MU

Description/Usage

This option allows you to plot the Lame MU mechanical property, which is written to 
the Output EXODUS II file as the variable LAME_MU. This is a useful feature for 
temperature dependent mechanical properties and the like. Contouring this variable 
LAME_MU over the domain can be useful in explaining some physical phenomena.

The permissible values for this postprocessing option are:

yes Calculate the Lame MU and output as a nodal variable in 
the Output EXODUS II file.

no Do not calculate the the coefficient (default).

Examples

The following sample card requests LAME_MU be written to the EXODUS II file:

Lame MU = yes

Technical Discussion

None

Lame MU = {yes | no}
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Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.23 Lame LAMBDA

Description/Usage

This option allows you to plot the Lame LAMDA mechanical property, which is 
written to the Output EXODUS II file as the variable LAMBDA. This is a useful 
feature for temperature dependent mechanical properties and the like. Contouring this 
variable LAMBDA over the domain can be useful in explaining some physical 
phenomena.

The permissible values for this postprocessing option are:

yes Calculate the Lame LAMBDA and output as a nodal 
variable in the Output EXODUS II file.

no Do not calculate the the coefficient (default).

Examples

The following sample card requests LAMBDA be written to the EXODUS II file:

Lame LAMBDA = yes

Technical Discussion

None

Theory

No Theory.

Lame LAMBDA = {yes | no}
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FAQs

No FAQs.

References

No References.

4.13.24 Von Mises Strain

Description/Usage

This option allows you to plot the Von Mises strain invarients of the strain tensor, for 
use with the FAUX_PLASTICITY model  of the modulus. These quantities are written 
to the Output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the von Mises strain invariants and output as a 
nodal variable in the Output EXODUS II file.

no Do not calculate the invariants (default).

Examples

The following sample card requests LAMBDA be written to the EXODUS II file:

Von Mises Strain = yes

Technical Discussion

None

Theory

No Theory.

FAQs

No FAQs.

Von Mises Strain = {yes | no}
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4.13.25  Von Mises Stress 

References

No References.

4.13.25 Von Mises Stress

Description/Usage

This option allows you to plot the Von Mises stress tensor invarients, for use with the 
FAUX_PLASTICITY model  of the modulus. These quantities are written to the 
Output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the von Mises stress invariants and output as a 
nodal variable in the Output EXODUS II file.

no Do not calculate the invariants (default).

Examples

The following sample card requests LAMBDA be written to the EXODUS II file:

Von Mises Stress = yes

Technical Discussion

None

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Von Mises Stress = {yes | no}
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4.13.26

4.13.27 Navier Stokes Residuals

Description/Usage

These post-processing nodal variables are constructed from the corresponding 
weighted residual function of the fluid (e.g. Navier-Stokes) momentum equations, 
using a Galerkin finite-element formulation. When activated with this card, variables 
named RMX, RMY, and RMZ appear in the output EXODUS II file, corresponding to 
each of the independent components of the fluid momentum balance.

The permissible values for this postprocessing option are:

yes Calculate the Navier-Stokes residuals and store as nodal 
variables in the output EXODUS II file.

no Do not calculate Navier-Stokes residuals.

Examples

Following is a sample input card:

Navier Stokes Residuals = no

Technical Discussion

This option can be used to help understand convergence behavior of a particular 
problem, as it allows the user to visualize the pattern of residuals over the 
computational domain during a Newton iteration process. The intermediate solutions of 
a Newton iteration process can be activated with the Write Intermediate Results card. 

Theory

No Theory.

FAQs

No FAQs.

Navier Stokes Residuals = {yes | no}



Revised: 6/12/13 775

4.13.28  Moving Mesh Residuals 

References

No References.
 

4.13.28 Moving Mesh Residuals

Description/Usage

These nodal variables are constructed from the corresponding weighted residual 
functions of the solid momentum equations (activated with the EQ =  mesh* cards). 
The weighted residuals are formed using a Galerkin finite-element formulation. In the 
output EXODUS II file they appear as nodal variables RDX, RDY, and RDZ, 
corresponding to each of the independent components of the solid momentum balance 
(both pseudo and real).

The permissible values for this postprocessing option are:

yes Include the moving mesh residuals as nodal variables in the 
ouput EXODUS II file.

no Do not include moving mesh residuals.

Examples

Following is a sample card which does not activate writing of mesh residuals:

Moving Mesh Residuals = no

Technical Discussion

This option can be used to help understand convergence behavior of a particular 
problem, as it allows the user to visualize the pattern of residuals over the 
computational domain during a Newton iteration process.   The intermediate solutions 
of a Newton iteration process can be activated with the Write Intermediate Results card. 
Contouring these residuals can indicate where the convergence of a problem is being 
delayed, and give the user/developer some clues as to the boundary condition or local 
region of the mesh which is responsible.

Theory

No Theory.

Moving Mesh Residuals = {yes | no}
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FAQs

No FAQs.

References

No References.
 

4.13.29 Mass Diffusion Vectors

Description/Usage

Activating this post-processing option allows the user to visualize the diffusive mass 
flux directions of all species components in a problem. Species components result from 
the EQ = species_bulk equation card. With this option selected, the output EXODUS II 
file will contain nodal variables called Y0dif0 (diffusion of first species in x direction), 
Y0dif1 (diffusion of first species in y direction), Y0dif2 (diffusion of first species in z 
direction), Y1dif0 (diffusion of second species in x direction), Y2dif1 (diffusion of 
second species in y direction), . . . and so on, depending on the number of species 
components in the problem.

The permissible values for this postprocessing option are:

yes Calculate the mass diffusion vectors and include in the 
output EXODUS II file.

no Do not calculate the mass diffusion vectors.

Examples

Following is a sample card:

Mass Diffusion Vectors = yes

Technical Discussion

Currently this option is available only for FICKIAN and HYDRODYNAMIC mass flux 
types (see Diffusion Constitutive Equation card). In the FICKIAN case, the flux is 
computed with the base, constant diffusivity.

Mass Diffusion Vectors = {yes | no}
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4.13.30  Diffusive Mass Flux Vectors 

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.30 Diffusive Mass Flux Vectors

Description/Usage

Please see description for Mass Diffusion Vectors card; this card performs exactly the 
same function.

Examples

This card turns on writing of diffusive mass flux vectors to the EXODUS II file:

Diffusive Mass Flux Vectors = yes

Technical Discussion

Please see description for Mass Diffusion Vectors card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Diffusive Mass Flux Vectors = {yes | no}
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4.13.31 Mass Fluxlines

Description/Usage

With this post-processing option mass-diffusion pathlines are calculated and stored as 
post-processing nodal variables in the output EXODUS II file. This variables are called 
Y0FLUX, Y1FLUX, . . .(by species number) in the file and can be contoured in the 
visualization program. These flux lines are analogous to the stream function, viz. 
contours of the flux function represent pathlines for each species in solution.

The permissible values for this postprocessing option are:

yes Calculate the mass fluxlines and include in the output 
EXODUS II file.

no Do not calculate the mass fluxlines.

Examples

The following sample card requests that mass-diffusion pathlines be written to the 
EXODUS II file:

Mass Fluxlines = yes

Technical Discussion

Currently this option is available only for FICKIAN and HYDRODYNAMIC mass flux 
types (see Diffusion Constitutive Equation card). In the FICKIAN case, the flux is 
computed with the base, constant diffusivity. Also, the Mass Diffusion Vectors post 
processing option must also be activated for this option to work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Mass Fluxlines = {yes | no}
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4.13.32 Energy Conduction Vectors

Description/Usage

Activation of this option can be used to visualize the energy conduction paths in a 
solution. The resulting nodal variables are called TCOND0 (conduction in x direction), 
TCOND1 (conduction in y direction), and TCOND2 (conduction in z direction) in the 
output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the energy conduction vectors and store in the 
output EXODUS II file.

no Do not calculate the energy conduction vectors.

Examples

This example card requests that energy conduction vectors be written to the EXODUS 
II file:

Energy Conduction Vectors = yes

Technical Discussion

These quantities can be employed in a hedge-hog or vector plot to visualize the energy 
conduction pathways across a domain (cf. the vector option in BLOT, or the hedge-hog 
option in Mustafa, for example).

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Energy Conduction Vectors = {yes | no}
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4.13.33 Energy Fluxlines

Description/Usage

This post-processing option triggers the energy fluxlines to be calculated. The energy 
flux function is analogous to the stream function, its contours representing paths of 
energy flow through the domain. This variable is called TFLUX in the output 
EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate and write the energy fluxlines to the output 
EXODUS II file.

no Do not calculate the energy fluxlines.

Examples

The energy fluxlines are calculated in this sample input card:

Energy Fluxlines = yes

Technical Discussion

The Energy Conduction Vectors must also be activated for this post processing option 
to work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Energy Fluxlines= {yes | no}
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4.13.34 Time Derivatives

Description/Usage

This option enables writing the time derivative of all the field variables as nodal 
variables to the output EXODUS II file. These variables are labeled XDOT0 (mesh 
velocity in x direction), XDOT1 (mesh velocity in y direction), XDOT2 (mesh 
velocity in z direction), VDOT0 (fluid acceleration in x direction), VDOT1 (fluid 
acceleration in y direction), VDOT2 (fluid acceleration in z direction), TDOT (rate of 
temperature change), Y0DOT (rate of 1st species concentration change), Y1D0T (rate 
of second species concentration change), and so on. The quantities can then be 
contoured or displayed by some other means with a visualization or graphics package.

The permissible values for this postprocessing option are:

yes Calculate the time derivatives and write them as nodal 
variables in the output EXODUS II file.

no Do not calculate the time derivatives.

Examples

The following sample card requests that time derivatives be written to the EXODUS II 
file:

Time Derivatives = yes

Technical Discussion

Currently, this routine uses the values in the global vector xdot to report this data. 
During the first time step, all the xdot values are zero; by the second time step, these 
data should be realistic.

Theory

No Theory.

FAQs

No FAQs.

Time Derivatives = {yes | no}
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References

No References.
 

4.13.35 Mesh Stress Tensor

Description/Usage

The mesh stress tensor is associated with the equations of elasticity. The stress tensor 
has six entries (in three dimensions, because it is symmetric) called T11, T22, T33, 
T12, T13, and T23 in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the mesh stress tensor and write to output 
EXODUS II file.

no Do not calculate the mesh stress tensor.

Examples

The following sample card turns on the writing of the stress tensor to the EXODUS II 
file:

Mesh Stress Tensor = yes

Technical Discussion

The defining constitutive equations for these stresses can be found in the description 
for the Solid Constitutive Equation card. This option applies to all solid-material types 
(see Mesh Motion card), viz. TOTAL_ALE, LAGRANGIAN, ARBITRARY, 
DYNAMIC_LAGRANGIAN. In the TOTAL_ALE and ARBITRARY mesh motion types, 
the mesh stress is exactly that and not the true stress of the material. For TOTAL_ALE 
mesh motion types, use Real Solid Stress Tensor option to get the true solid material 
stresses.

Theory

No Theory.

Mesh Stress Tensor = {yes | no}



Revised: 6/12/13 783

4.13.36  Real Solid Stress Tensor 

FAQs

No FAQs.

References

No References.
 

4.13.36 Real Solid Stress Tensor

Description/Usage

The real solid stress tensor is associated with the equations of elasticity. If the mesh 
motion is of LAGRANGIAN type, then these quantities are not available; if is of 
TOTAL_ALE type, they are available. The stress tensor has six entries (in three 
dimensions because it is symmetric) called T11_RS, T22_RS, T33_RS, T12_RS, 
T13_RS, and T23_RS in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the real solid stress tensor and write to the output 
EXODUS II file.

no Do not calculate the real solid stress tensor.

Examples

No stress tensor is written for the following sample input card:

Real Solid Stress Tensor = no

Technical Discussion

This option is applicable only to TOTAL_ALE mesh motion types (see Mesh Motion 
card). Compare this with Mesh Stress Tensor post processing option for other types of 
mesh motion.

Theory

No Theory.

Real Solid Stress Tensor = {yes | no}
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FAQs

No FAQs.

References

No References.
 

4.13.37 Mesh Strain Tensor

Description/Usage

The mesh strain tensor is associated with the equations of elasticity. The strain tensor 
has six entries (in three dimensions, because it is symmetric) called E11, E22, E33, 
E12, E13, and E23 in the output EXODUS II file, corresponding to the six independent 
components (the numbers 1, 2, and 3 indicate the basis direction, e.g. 1 means x-
direction for a Cartesian system).

The permissible values for this postprocessing option are:

yes Calculate the mesh strain tensor and write the components 
as nodal variables to the output EXODUS II file.

no Do not calculate the mesh strain tensor.

Examples

The following example input card does not request output of the stain tensor:

Mesh Strain Tensor = no

Technical Discussion

Definitions of the strain tensor depend on the solid constitutive equation type (see 
description for Solid Constitutive Equation card).

Theory

No Theory.

Mesh Strain Tensor = {yes | no}
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4.13.38  Viscoplastic Def_Grad Tensor 

FAQs

No FAQs.

References

No References.
 

4.13.38 Viscoplastic Def_Grad Tensor

Description/Usage

The components of this tensor are associated with the elasto-viscoplasticity model, 
(described in detail in Schunk, et. al., 2001). If the mesh motion is of LAGRANGIAN 
type, then this card activates the components of this tensor to be available in the 
postprocessing EXODUS II file (see Mesh Motion card). The components are called 
FVP11, FVP12, FVP21, FVP22, and FVP33. This tensor is the identity tensor in 
regions that have not yielded, and so the diagonal components are unity; in regions that 
have yielded, these components deviate from the identity. Contouring them can reveal 
regions of plastic flow.

The permissible values for this postprocessing option are:

yes Calculate the viscoplastic Def_Grad tensor and write 
components in the output EXODUS II file.

no Do not calculate the viscoplastic Def_Grad tensor.

Examples

This sample input card does not activate Def_Grad output to the EXODUS II file:

Viscoplastic Def_Grad Tensor = no

Technical Discussion

Please see complete discussion in Schunk, et. el. (2001).

Theory

No Theory.

Viscoplastic Def_Grad Tensor = {yes | no}
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FAQs

No FAQs.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January 
11, 2001

 

4.13.39 Lagrangian Convection

Description/Usage

In deformable solids with a Lagrangian mesh, convection in the stress-free state can be 
mapped to the deformed configuration; this variable stores the velocity vectors of this 
solid motion (see Convective Lagrangian Velocity card). This variable is called VL1, 
VL2, VL3 in the output EXODUS II file; the integer values 1, 2 and 3 denote 
coordinate directions.

The permissible values for this postprocessing option are:

yes Calculate the Lagrangian convection and store as nodal 
variable velocity fields in the output EXODUS II file.

no Do not calculate the Lagrangian convection.

Examples

Following is a sample card:

Lagrangian Convection = no

Technical Discussion

This option only applies to Mesh Motion type of LAGRANGIAN.

Theory

No Theory.

Lagrangian Convection = {yes | no}
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FAQs

No FAQs.

References

No References.
 

4.13.40 Normal and Tangent Vectors

Description/Usage

This option allows one to write the values of the normal and tangent vectors used in 
rotating the mesh and momentum equations as nodal variables to the output EXODUS 
II file. In two-dimensional problems, the normal and tangent vectors are saved as N1, 
N2, N3 and T1, T2, T3 in the output EXODUS II file; in two dimensions these vectors 
are calculated at all the nodes. In three-dimensional problems, the normal and tangent 
vectors are saved as N1, N2, N3, TA1, TA2, TA3, and TB1, TB2, TB3; in three 
dimensions, these vectors only exist at nodes with rotation specifications, and the 
vectors correspond to the rotation vectors chosen by the ROT Specifications for the 
given node (see description for ROT cards). Thus in three-dimensional problems, 
vectors are not necessarily saved for every node, nor do the vectors necessarily 
correspond to the normal, first tangent, and second tangent, respectively.

The permissible values for this postprocessing option are:

yes Calculate the vectors and store as nodal variables in the 
output EXODUS II file.

no Do not calculate the vectors.

Examples

The following sample card produces no output to the EXODUS II file:

Normal and Tangent vectors = no

Technical Discussion

This option is mostly used to debug three-dimensional meshes for full three-
dimensional ALE mesh motion. The tangent fields in 3D should be smooth across the 
surfaces, and Goma takes many steps 

Normal and Tangent Vectors = {yes | no}
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to make them so. The surface normal crossed into any vector that is different will 
produce one tangent vector. Then the normal crossed (viz. cross product of two vectors) 
with the first tangent will produce a second tangent vector. Because the surface tangent 
basis fields are not unique, they must be uniform over a surface when the rotated 
Galerkin weighted residuals are formed (see description for ROT cards). Imperfections 
or defects in the mesh can lead to nonsmooth fields.

Theory

No Theory.

FAQs

No FAQs.

References

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer
 

4.13.41 Error ZZ velocity

Description/Usage

This option has been disabled for lack of use, but originally allowed the user to 
compute a posteriori error estimates in the velocity field from the Zienkiewicz-Zhu 
energy norm error measure.

Examples

Not applicable.

Technical Discussion

This option has been disabled.

Theory

No Theory.

Error ZZ velocity = {yes | no}
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FAQs

No FAQs.

References

No References.
 

4.13.42 Error ZZ heat flux

Description/Usage

This option has been disabled for lack of use, but originally allowed the user to 
compute a posteriori error estimates in the computed temperature/energy flux field 
from the Zienkiewicz-Zhu energy norm error measure.

Examples

Not applicable.

Technical Discussion

This option has been disabled.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Error ZZ heat flux = {yes | no}
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4.13.43 Error ZZ pressure

Description/Usage

This option has been disabled for lack of use, but originally allowed the user to 
compute a posteriori error estimates in the pressure field from the Zienkiewicz-Zhu 
energy norm error measure.

Examples

Not applicable.

Technical Discussion

This option has been disabled.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.13.44 User-Defined Post Processing

Description/Usage

This option enables user-defined postprocessing options in Goma. An arbitrary number 
of floating point constants can be loaded to use in the user-defined subroutine 
user_post (user_post.c). This variable is called USER in the output EXODUS 
II file and can be contoured or processed just like any other nodal variable in a post-
processing visualization package.

Error ZZ pressure = {yes | no}

User-Defined Post Processing = {yes | no} <float_list>
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yes Calculate and write the user-defined postprocessing variable 
to the output EXODUSII file.

no Do not calculate the user-defined postprocessing.

<float_list> An arbitrary number (including zero) of floating point 
numbers, which can be accessed in file user_post

Examples

Consider the following sample input card:

User-Defined Post Processing = yes  100.

Suppose you would like to contour the speed of a fluid in a two-dimensional problem 
using this card, with your intent being to multiply the calculated value by a factor of 
100.0 for some unit conversion or something. You must add

post_value = param[0]*sqrt(fv->v[0]*fv->v[0] + fv->v[1]*fv->*v[1]) ;

to user_post.c. Note also that you have to comment out the error handler line just 
above the location you enter the post_value code. The comments in the routine help 
guide you through the process.

Technical Discussion

See the function user_post in user_post.c.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.13.45 Porous Saturation

Description/Usage

In partially saturated porous media, the saturation represents the volume fraction of the 
pore space that is filled with liquid. If this option is selected, then the saturation level 
(an auxiliary variable) is included in the output EXODUS II file. This variable is called 
SAT in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the porous saturation and write to the output 
EXODUS II file.

no Do not calculate the porous saturation.

Examples

This sample input card turns off writing of saturation to the EXODUS II file:

Porous Saturation = no

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

Porous Saturation = {yes | no}
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SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

4.13.46 Total density of solvents in porous media

Description/Usage

This post processing option can be used to trigger the computation and output of the 
total density of solvents as a nodal field variable to the output EXODUS II file. Three 
nodal variables are written, Rho_Total_Liq, Rho_Total_air and Rho_Total_solid. 
The mathematical details are given below in the technical discussion. This option 
applies to media types of POROUS_SATURATED, POROUS_UNSATURATED, and 
POROUS_TWO_PHASE (see Media Type card). The options are:

yes Calculate and write the total solvent densities as a 
postprocessing variable to the output EXODUSII file.

no Do not calculate the total solvent densities.

Examples

Total density of solvents in porous media = yes

This card will result in the calculation and output of the mixture density of solvent 
(viz., phase mixture of liquid solvent in vapor form, liquid form, and the form adsorbed 
in the solid skeleton for partially saturated porous flows). The form of that mixture 
density is given in the technical discussion.

Technical Discussion

In saturated flow cases, viz. for Media Type selection POROUS_SATURATED, the total 
solvent density is

(4-224)

where  is the pure liquid density and  is the porosity. Here we have assumed that no 
liquid solvent is adsorbed into the solid struts (currently the assumption used 
throughout Goma).

Total density of solvents in porous media = {yes | no}

ρT ρlφ=

ρl φ
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For partially saturated flows, viz. for Media Type selection POROUS_UNSATURATED 
or POROUS_TWO_PHASE, the total density is given by

(4-225)

where  is the density of solvent vapor in the total gas-solvent vapor mixture (see 
Density of solvents in gas phase in porous media card), S is the saturation (see Porous 
Saturation card), and  is the volume fraction of solvent in liquid phase (including 
any condensed species component). When calculating the total density of the liquid 
(Rho_Total_liq), the liquid vapor density comes from a Kelvin vapor-liquid 
equilibrium relation. The total density of the gas phase (Rho_Total_gas) will use a 
vapor density fro air and a volume fraction of zero (0) since air is insoluble. The total 
density of the solid in the gas (Rho_Total_solid) is zero (0).

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.13.47 Density of solvents in gas phase in porous media

Description/Usage

This post processing option can be used to trigger the computation and output of the 
density of solvents in the gas phase only, including the volume occupied by the 
assumed insoluble gas (e.g. air), as a nodal field variable to the output EXODUS II file. 
The nodal variables are called RhoSolv_g_liq, RhoSolv_g_air and RhoSolv_g_solid. 
The mathematical details are given below in the technical discussion. This option 
applies to media types of  POROUS_UNSATURATED, and POROUS_TWO_PHASE 
(see Media Type card).  The options are:

Density of solvents in gas phase in porous media = {yes | no}

ρT ρlφSXls ρgv 1 S–( )φ+=

ρgv

Xls
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yes Calculate and write the gas phase solvent density as a 
postprocessing variable to the output EXODUSII file.

no Do not calculate the total solvent density.

Examples

The following input card turns off writing solvent densities to the EXODUS II file:

Density of solvents in gas phase in porous media = no

Technical Discussion

The air and solid components are insoluble in the gas phase so the RhoSolv_g_air and 
RhoSolv_g_solid variables will be zero. The gas-density of liquid solvents 
(RhoSolv_g_liq) is determined from the vapor-liquid equilibrium relationship at a 
liquid-vapor meniscus. Specifically,

(4-226)

where  is the average molecular weight of solvents in the mixture, R is the ideal gas 
constant, T is the temperature, and  is the equilibrium vapor pressure. Note that this 
vapor pressure can be affected by local meniscus curvature through the Kelvin equation 
(cf. Schunk, 2002 and Porous Vapor Pressure card).

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

ρgv

Mwpv

RT
--------------=

Mw
pv
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4.13.48 Density of liquid phase in porous media

Description/Usage

This post processing option can be used to trigger the computation and output of the 
density of solvents in the liquid phase only, averaged over the mixture, as a nodal field 
variable to the output EXODUS II file. The nodal variable is called Rho_Liq_Phase. 
The mathematical details are given below in the technical discussion. This option 
applies to media types of POROUS_SATURATED, POROUS_UNSATURATED, and 
POROUS_TWO_PHASE (see Media Type card). The options are:

yes Calculate and write the density of solvent in the liquid phase 
as a postprocessing variable to the output EXODUSII file.

no Do not calculate the liquid solvent density.

Examples

An example of an input card which activates writing of the density to the EXODUS II 
file is:

Density of liquid phase in porous media = yes

Technical Discussion

In liquid-saturated flow cases, viz. for Media Type selection POROUS_SATURATED, 
the total solvent density in the liquid phase is

(4-227)

where  is the pure liquid density and  is the porosity. Here we have assumed that no 
liquid solvent is adsorbed into the solid struts (currently the assumption used 
throughout Goma).

For partially saturated flows, viz. for Media Type selection POROUS_UNSATURATED 
or POROUS_TWO_PHASE, the density of solvent in the liquid phase only is given by

(4-228)

where S is the saturation (see Porous Saturation card). Compare this with the quantity 
computed with the Total density of solvents in porous media card.

Density of liquid phase in porous media = {yes | no}

ρT ρlφ=

ρl φ

ρT ρlφS=
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Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.13.49 Gas phase Darcy velocity in porous media

Description/Usage

This post-processing option will lead to the explicit calculation and storage of the 
Darcy velocity components in the gas phase, viz. the velocity of the gas phase due to 
gas-phase pressure gradients. This option is only available for 
POROUS_TWO_PHASE media types (cf. Media Type card). The velocity components 
appear in the output EXODUS II file as the nodal variables Darcy_Vel_g_0, 
Darcy_Vel_g_1 and Darcy_Vel_g_2.

The permissible values for this postprocessing option are:

yes Calculate the gas-phase Darcy velocity components and 
write to the output EXODUSII file.

no Do not calculate the gas phase velocity components.

Examples

This input example turns on calculation of the gas phase velocity components:

Gas phase Darcy velocity in porous media =yes

Technical Discussion

The gas-phase Darcy velocity is given by the extended Darcy law, which accounts for 
the relative reduced flow due to the presence of another phase, viz. 

Gas phase Darcy velocity in porous media = {yes | no}
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(4-229)

Here  represents the Darcy flux, or Darcy velocity, in the gas phase, k is the 
permeability of the porous medium, kg is the relative permeabilities for the gas and 
liquid phases respectively, µg are the gas viscosity, pg is the pressure in the gas phase, 
and g is the gravitational force vector.  is the density of the gas phase and is equal to 
the sum of the partial densities of air and solvent vapor,

. (4-230)

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

 

4.13.50 Liquid phase Darcy velocity in porous media

Description/Usage

This post-processing option will lead to the explicit calculation and storage of the 
Darcy velocity components in the liquid phase, viz. the velocity of the liquid phase due 
to liquid phase pressure gradients. This option is available for all porous media types 
(cf. Media Type card). The velocity components appear in the output EXODUS II file 
as the nodal variables Darcy_Vel_l_0, Darcy_Vel_l_1 and Darcy_Vel_l_2.

The permissible values for this postprocessing option are:

yes Calculate the liquid-phase Darcy velocity components and 
write to the output EXODUSII file.

no Do not calculate the liquid phase velocity components.

Liquid phase Darcy velocity in porous media = {yes | no}

Fg ρgvg

ρgkkg

µg

--------------- pg∇ ρgg–( )–= =

νg

ρg

ρg ρgv ρga+=
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Examples

This input example turns on calculation of the liquid phase velocity components:

Liquid phase Darcy velocity in porous media = yes

Technical Discussion

The liquid-phase Darcy velocity is given by the extended Darcy law, which accounts 
for the relative reduced flow due to the presence of another phase, viz. 

(4-231)

Here  represents the Darcy flux, or Darcy velocity, in the gas phase, k is the 
permeability of the porous medium, kl is the relative permeabilities for the liquid and 
liquid phases respectively, µl are the liquid viscosity, pl is the pressure in the liquid 
phase, and g is the gravitational force vector.  is the density of the liquid phase.

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

4.13.51

4.13.52 Liquid phase Darcy velocity in porous media

Description/Usage

This post-processing option will lead to the explicit calculation and storage of the 
Darcy velocity components in the liquid phase, viz. the velocity of the liquid phase due 
to liquid phase pressure gradients. This option is available for all porous media types 

Liquid phase Darcy velocity in porous media = {yes | no}

Fl ρlwvl

ρlkkl

µl

------------ pl∇ ρlg–( )–= =

νl

ρl
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(cf. Media Type card). The velocity components appear in the output EXODUS II file 
as the nodal variables Darcy_Vel_l_0, Darcy_Vel_l_1 and Darcy_Vel_l_2.

The permissible values for this postprocessing option are:

yes Calculate the liquid-phase Darcy velocity components and 
write to the output EXODUSII file.

no Do not calculate the liquid phase velocity components.

Examples

This input example turns on calculation of the liquid phase velocity components:

Liquid phase Darcy velocity in porous media = yes

Technical Discussion

The liquid-phase Darcy velocity is given by the extended Darcy law, which accounts 
for the relative reduced flow due to the presence of another phase, viz. 

(4-232)

Here  represents the Darcy flux, or Darcy velocity, in the gas phase, k is the 
permeability of the porous medium, kl is the relative permeabilities for the liquid and 
liquid phases respectively, µl are the liquid viscosity, pl is the pressure in the liquid 
phase, and g is the gravitational force vector.  is the density of the liquid phase.

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

Fl ρlwvl

ρlkkl

µl

------------ pl∇ ρlg–( )–= =

νl

ρl
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4.13.53

4.13.54 Capillary pressure in porous media

Description/Usage

In partially saturated porous media, the capillary pressure is the difference between the 
gas and liquid pressures. This option only takes affect for POROUS_TWO_PHASE and 
POROUS_UNSATURATED media types (see Media Type card). This variable is called 
PC in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the capillary pressure and write to output 
EXODUS II file.

no Do not calculate the capillary pressure.

Examples

This is a sample input card to activate calculation of capillary pressure:

Capillary pressure in porous media = yes

Technical Discussion

The capillary pressure is a critical variable for partially saturated porous media, and is 
in fact the dependent variable for unsaturated (not two-phase) flows for which the gas-
phase pressure is taken as constant. It is simply defined as

(4-233)

As such, positive capillary pressures imply liquid phase pressure being greater than gas 
phase pressure. Because liquid phase saturation strongly correlates to capillary 
pressure, this current quantity is a good indicator of the level of liquid inventory in 
smaller pores in the skeleton relative to large pores. Contouring this quantity can give 
some indication of the level of suction exerted on the porous-skeleton, which is 
relevant when the skeleton is taken as deformable.

Theory

No Theory.

Capillary pressure in porous media = {yes | no}

pc pg pl–=
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FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

4.13.55

4.13.56 Grid Peclet Number in porous media

Description/Usage

This option triggers the computation and output of the so-called grid-level Peclet 
number as a nodal variable in the output EXODUS II file. It appears as a nodal variable 
called Por_Grid_Peclet. This quantity gives the user a measure of advective transport 
relative to diffusive transport in a porous medium, and is strongly correlated to the 
steepness of a saturation front. This quantity is actually used to scale the formulation 
which employs the streamline upwind Petrov-Galerkin method for stabilizing the 
equations for partially saturated flow. This option only applies for unsaturated media 
and only for the SUPG option on the Porous Weight Function card.

The permissible values for this postprocessing option are:

yes Compute the grid-level Peclet Number and write to output 
EXODUS II file.

no Do not calculate the grid-level Peclet Number.

Examples

This is a sample input card to activate calculation of the Peclet Number:

Grid Peclet Number in porous media = yes

Technical Discussion

See discussion for the Porous Weight Function card.

Grid Peclet Number in porous media = {yes | no}
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Theory

No Theory. 

FAQs

No FAQs.

References

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K. 
Moffat, August 2001 (DRAFT).

 

4.13.57 SUPG Velocity in porous media

Description/Usage

Used to specify use of effective velocities in SUPG formulations for porous media. It is 
written to the output EXODUS II file as nodal variable U_supg_porous.

The permissible values for this postprocessing option are:

yes Calculate and write the effective velocity components as a 
postprocessing variable to the output EXODUSII file.

no Do not calculate the effective velocity components.

Examples

This is a sample input card to activate calculation of SUPG Velocity:

SUPG Velocity in porous media = yes

Technical Discussion

No discussion.

Theory

No Theory.

SUPG Velocity in porous media = {yes | no}
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FAQs

No FAQs.

References

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K. 
Moffat, August 2001 (DRAFT).

 

4.13.58 Vorticity Vector

Description/Usage

This option allows the user to output the vorticity vector to the output EXODUS II file. 
It applies to problems with the fluid momentum equations (see EQ = momentum* 
cards). The output nodal variables are named VORTX, VORTY, VORTZ.

The permissible values for this postprocessing option are:

yes Calculate the vorticity vectors and store in the output 
EXODUS II file.

no Do not calculate the vorticity vectors.

Examples

This example card requests that vorticity vectors be written to the EXODUS II file:

Vorticity Vector = yes

Technical Discussion

The vorticity vector function, , is defined in terms of the velocity  as:

(4-234)

Theory

No Theory.

Vorticity Vector = {yes | no}

ω
˜

υ
˜

ω
˜

∇ v
˜

×=
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FAQs

No FAQs.

References

No References.
 

4.14 Post Processing Fluxes and Data

By Post-processing Fluxes we mean area-integrated fluxes that can be calculated for any flux 
quantity across any surface demarcated by a side set. The area-integrated flux is in fact a total 
flow rate across the boundary. Examples include heat-flow, total force of a liquid on a surface, and 
species flow (both diffusive and convective). The integrated flux quantities are output to a 
specified file at each time step, together with the time stamp and the convective and diffusive 
components. This capability is useful for extracting engineering results from an analysis, and can 
further be used to as an objective function evaluator for engineering optimization problems (cf. 
Post Processing Flux Sensitivities card below).

Post Processing Data output can be used to produce spatial {value, x, y, z} sets on a specified side 
set of any primitive variable in the problem, viz. pressure, x-component of velocity, etc. The 
quantity value is the value of the variable at a node in the side set, and x, y, z are the coordinates of 
the node.

4.14.1 Post Processing Fluxes

Description/Usage

This card indicates that the cards between this and an END OF FLUX card are to be 
read and processed. If this card (Post Processing Fluxes) is not present, FLUX cards 
will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Fluxes =

Post Processing Fluxes = 
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.2 FLUX

Description/Usage

FLUX cards are used to calculate the integrated fluxes of momentum, mass, energy, 
etc. on a specified side set during post processing. As many of these FLUX cards as 
desired can be input to Goma to direct the calculations. For example, multiple cards 
may be used to compute a particular flux, e.g. FORCE_NORMAL, on different side 
sets or different fluxes on the same side set. Cards with identical fluxes and identical 
side sets could be used to output the flux calculations to different files. Definitions of 
the input parameters are:

{flux_type} A keyword that can have any one of the following values:

FORCE_NORMAL
FORCE_TANGENT1
FORCE_TANGENT2
FORCE_X
FORCE_Y
FORCE_Z
VOLUME_FLUX
SPECIES_FLUX
HEAT_FLUX
TORQUE
AVERAGE_CONC

FLUX = {flux_type} <bc_id> <blk_id> <species_id> <file_name> [profile]
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SURF_DISSIP
AREA
VOL_REVOLUTION
PORE_LIQ_FLUX
CHARGED_SPECIES_FLUX
CURRENT_FICKIAN
CURRENT
ELEC_FORCE_NORMAL
ELEC_FORCE_TANGENT1
ELEC_FORCE_TANGENT2
ELEC_FORCE_X
ELEC_FORCE_Y
ELEC_FORCE_Z
NET_SURF_CHARGE
ACOUSTIC_FLUX_NORMAL
ACOUSTIC_FLUX_TANGENT1
ACOUSTIC_FLUX_TANGENT2
ACOUSTIC_FLUX_X
ACOUSTIC_FLUX_Y
ACOUSTIC_FLUX_Z

For every request, the integral of the diffusive portion 
followed by that of the convective portion over the 
requested boundary will be appended to the specified file. If 
the convective flux is not applicable (i.e.for flux_types 
VOLUME_FLUX, TORQUE, AVERAGE_CONC and 
AREA), the second quantity will be zero. In all cases the 
area of the face (covered by the entire side set) and the time 
value are also output.

<bc_id> The boundary flag identifier, an integer associated with the 
boundary location (side set in EXODUS II) in the problem 
domain on which the integrated flux is desired.

<blk_id> An integer that designates the mesh block (material) from 
which the flux integral should be performed. This has 
implications on internal boundaries.

<species_id> An integer that identifies the species number if an integrated 
species flux is requested.

<file_name> A character string corresponding to a file name into which 
these fluxes should be printed.
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[profile] Inclusion of the optional string “profile’ to this card will 
cause the coordinates (x,y,z), the diffusive integrand, and 
the convective integrand at each integration point to be 
printed to the file designated above. You can, for example, 
print out a pressure distribution used to compute a force.

Examples

The following example shows a sample input deck section that requests five such 
integrated fluxes:

Post Processing Fluxes = 

FLUX = FORCE_X 5 1 0 side5.out
FLUX = FORCE_Y 5 1 0 side5prof.out  profile
FLUX = FORCE_NORMAL 8 1 0 side8.out
FLUX = FORCE_TANGENT1 8 1 0 side8.out
FLUX = VOLUME_FLUX 8 1 0 side8.out

END OF FLUX

Technical Discussion

The permissible flux types are those listed in file mm_post_def.h for struct 
Post_Processing_Flux_Names, pp_flux_names being one variable of this struct type.

The flux integrations are carried out as follows;

FLUX DIFFUSIVE FLUX CONVECTIVE FLUX

FORCE_NORMAL

FORCE_TANGENT1

FORCE_TANGENT2

FORCE_X

FORCE_Y

FORCE_Z

VOLUME_FLUX  for ARBITRARY mesh motion

 for LAGRANGIAN mesh motion

SPECIES_FLUX

HEAT_FLUX

n T
˜

n•• Ad ρn v vm–( )• v n• Ad
t1 T

˜
n•• Ad ρt1 v vm–( )• v n• Ad

t2 T
˜

n•• Ad ρt2 v vm–( )• v n• Ad
i T

˜
n•• Ad ρi v vm–( )• v n• Ad

j T
˜

n•• Ad ρj v vm–( )• v n• Ad
k T

˜
n•• Ad ρk v vm–( )• v n• Ad

n v vm–( )• Ad
n d⋅ Ad
Djn ∇cj•–( ) Ad ρn v vm–( )• cj Ad
kn ∇T•–( ) Ad ρCpTn v vm–( )• Ad
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TORQUE

AVERAGE_CONC

SURF_DISSIP

AREA

VOL_REVOLUTION

POR_LIQ_FLUX

CHARGED_SPECIES_FLUX

CURRENT_FICKIAN

PVELOCITY[1-3]

ELEC_FORCE_NORMAL

ELEC_FORCE_TANGENT1

ELEC_FORCE_TANGENT2

ELEC_FORCE_X

ELEC_FORCE_Y

ELEC_FORCE_Z

NET_SURF_CHARGE

ACOUSTIC_FLUX_NORMAL

ACOUSTIC_FLUX_TANGENT1

ACOUSTIC_FLUX_TANGENT2

ACOUSTIC_FLUX_X

ACOUSTIC_FLUX_Y

ACOUSTIC_FLUX_Z

The SURF_DISSIP card is used to compute the energy dissipated at a surface by 
surface tension (Batchelor, 1970). The VOL_REVOLUTION card is used in axi-

re
r

T
˜

n•( )× Ad
cj Ad
σ∇v δ nn–( )• Ad
Ad

1
2
---

r

1 rd zd⁄( )
2

+

------------------------------------ Ad

n ρlv ad rcy( )• Ad
Djn ∇cj•–( ) Ad ρn v vm–( )• cj Ad
Djn ∇cj•–( ) Ad ρn v vm–( )• cj Ad

n pvj• Ad
n T

˜ e
˜

n•• Ad
t1 T

˜ e n•• Ad
t2 T

˜ e n•• Ad
i T

˜ e n•• Ad
j T

˜ e n•• Ad
k T

˜ e n•• Ad
εn

˜
E
˜

•–( ) Ad
1

kR
------n ∇P imag•– 

  Ad 1
kR
------n ∇P real• 
  Ad

1
kR
------t1 ∇P imag•– 

  Ad 1
kR
------t1 ∇Preal• 
  Ad

1
kR
------t2 ∇P imag•– 

  Ad 1
kR
------t2 ∇Preal• 
  Ad

1
kR
------i ∇P imag•– 

  Ad 1
kR
------i ∇P real• 
  Ad

1
kR
------j ∇P imag•– 

  Ad 1
kR
------j ∇P real• 
  Ad

1
kR
------k ∇P imag•– 

  Ad 1
kR
------k ∇P real• 
  Ad
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symmetric problems to compute the volume swept by revolving a surface around the 
axis of symmetry (z-axis). Even though every flux card results in the area computation 
of the side set, the AREA card is used when the area of a surface is part of an 
augmenting condition. The POR_LIQ_FLUX term is valid only for saturated media 
and the Darcy velocity is defined by . For the more general case, 
refer to the POROUS_LIQ_FLUX_CONST boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

Batchelor, JFM, 1970.  ..... need to fill-in reference; get from RBS

For information on using flux calculations as part of augmenting conditions, see:

 SAND2000-2465: Advanced Capabilities in Goma 3.0 - Augmenting Conditions, 
Automatic Continuation, and Linear Stability Analysis, I. D. Gates, I. D., 
Labreche, D. A. and Hopkins, M. M. (January 2001).

 

4.14.3 END OF FLUX

Description/Usage

This card is used to denote the end of a set of FLUX cards and is only used when the 
Post Processing Fluxes card is present and one or more FLUX cards are specified.

Examples

A simple example of using this card in context is shown below.
Post Processing Fluxes =
FLUX = FORCE_X 5 1 0 side5.out
END OF FLUX

END OF FLUX

v arcyd κ µ⁄( ) pliq∇=
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.4 Post Processing Data

Description/Usage

This card indicates that the cards between this and an END OF DATA card are to be 
read and processed. If this card (Post Processing Data) is not present, DATA cards will 
be ignored.

Examples

There are no input parameters for this card, which always appears as follows: 

Post Processing Data =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Post Processing Data = 
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References

No References.
 

4.14.5 DATA

Description/Usage

A DATA card directs Goma to output the indicated primitive variable on a specified 
node set. As many of these DATA cards as desired can be input to Goma. For example, 
multiple cards may be used to output a particular variable, e.g. VELOCITY1, on 
different node sets or different variables on the same node set. Cards with identical 
variables and identical node sets could be used to output the variables to different files. 
Definitions of the input parameters are as follows:

{data_type} A keyword that can have any one of the following primitive 
values:

VELOCITY[1-3]
TEMPERATURE
MASS_FRACTION
MESH_DISPLACEMENT[1-3]
SURFACE
PRESSURE
POLYMER_STRESS[1-3][1-3]
SOLID_DISPLACEMENT[1-3]
VELOCITY_GRADIENT[1-3][1-3]
VOLTAGE
FILL
SHEAR_RATE
PVELOCITY[1-3]
POLYMER_STRESS[1-3][1-3]_[1-7}
SPECIES_UNK[0-29]
VolFracPh_[0-4]
POR_LIQ_PRES
POR_GAS_PRES
POR_PORSITY
POR_SATURATION
VORT_DIR[1-3]
VORT_LAMBDA

DATA = {data_type} <bc_id> <blk_id> <species_id> <file_name>
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Each request will result in the point coordinates and the 
quantity value being printed to the specified file.

<bc_id> The boundary flag identifier, an integer associated with the 
boundary location (node set in EXODUS II) in the problem 
domain on which the quantity is desired.

<blk_id> An integer that designates the mesh block (material) from 
which the variable value should be taken. This has 
implications for discontinuous variables on internal 
boundaries.

<species_id> An integer that identifies the species number if a species 
variable is requested.

<file_name> A character string corresponding to a file name into which 
the data should be printed.

Examples

The following example shows a sample input deck section with one data request:
Post Processing Data =
DATA = VELOCITY2 1 1 0 data.out
END OF DATA

Technical Discussion

If a fixed mesh or a subparametric mesh problem is being solved, the point coordinates 
printed to the file will be the undeformed coordinates.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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4.14.6 END OF DATA

Description/Usage

 This card is used to denote the end of a set of DATA cards and is only used when the 
Post Processing Data card is present and one or more DATA cards are specified.

Examples

A simple example of using this card in context is shown below.
Post Processing Data =
DATA = VELOCITY2 1 1 0 data.out
END OF DATA

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.7 Post Processing Flux Sensitivities

Description/Usage

This card indicates that the cards between this and an END OF FLUX_SENS card are to 
be read and processed. If this card (Post Processing Flux Sensitivities) is not present, 
FLUX_SENS cards will be ignored.

END OF DATA

Post Processing Flux Sensitivities = 
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Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Flux Sensitivities =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.8 FLUX_SENS

Description/Usage

FLUX_SENS cards request the calculation of the sensitivity of an integrated flux with 
respect to a boundary condition or material parameter. As many FLUX_SENS cards as 
desired can be input to Goma. Definitions of the input parameters are as follows:

{flux_type} A keyword that can have any one of the following values:

FORCE_NORMAL
FORCE_TANGENT1
FORCE_TANGENT2
FORCE_X
FORCE_Y
FORCE_Z
VOLUME_FLUX
SPECIES_FLUX
HEAT_FLUX

FLUX_SENS = {flux_type} <bc_id> <blk_id> <species_id> {sens_type} 
<sens_id> <sens_flt> <file_name>
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TORQUE
AVERAGE_CONC
SURF_DISSIP
AREA
VOL_REVOLUTION
PORE_LIQ_FLUX
CHARGED_SPECIES_FLUX
CURRENT_FICKIAN
CURRENT

For every request, the specified sensitivity of the integrated 
diffusive flux followed by that of the convective portion 
over the requested boundary will be appended to the 
specified file. If the convective flux is not applicable (cf. 
FLUX card), the second quantity will be zero. In all cases 
the area of the face (covered by the entire side set) and the 
time value are also output.

<bc_id> The boundary flag identifier, an integer associated with the 
boundary location (node set in EXODUS II) in the problem 
domain on which the integrated flux sensitivity is desired.

<blk_id> An integer that designates the mesh block (material) from 
which the flux sensitivity integral should be performed. 
This has implications on internal boundaries.

<species_id> An integer that identifies the species number if an integrated 
species flux sensitivity is requested.

{sens_type} A two-character entry that identifies the sensitivity type, 
where:

BC denotes a sensitivity w.r.t. to a boundary condition 
parameter.
MT denotes a sensitivity w.r.t. to a material property 
parameter.

<sens_id> An integer that identifies the sensitivity. If BC is specified 
for {sens_type}, then this value is the BC card number. If 
MT is specified for {sens_type}, this value is the material 
number.

<sens_flt> A floating point number whose meaning is also dependent 
on the selection of {sens_type}. If BC is specified, this 
value is the BC data float number. If MT is specified, this 
value is the material property tag.
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<file_name> A character string corresponding to a file name into which 
these fluxes should be printed.

Examples

Here is an example input deck:
Post Processing Flux Sensitivities =
FLUX_SENS = VOLUME_FLUX 1 1 0 BC 5 3 flux_sens.out
END OF FLUX_SENS

Technical Discussion

Currently, the flux sensitivities do not account for the implicit sensitivity of material 
properties. That is,  does not include a contribution from 

, but   should be done correctly. In addition, 
sensitivities of integrated fluxes in solid materials have not been implemented yet.

NOTE: In order to compute flux sensitivities with respect to Dirichlet boundary 
condition floats, the boundary conditions need to use the residual method in the input 
file as described in the Boundary Condition Specification introduction, i.e. the optional 
parameter should be set to 1.0.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.9 END OF FLUX_SENS

Description/Usage

This card is used to denote the end of a set of FLUX_SENS cards and is only used when 
the Post Processing Flux Sensitivities card is present and one or more FLUX_SENS 
cards are specified.

END OF FLUX_SENS

FORCEXd BCfloatd⁄

µd BCfloatd⁄ FORCEXd MTpropertyd⁄
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Examples

A simple example of using this card in context is shown below.
Post Processing Flux Sensitivities =
FLUX_SENS = VOLUME_FLUX 1 1 0 BC 5 3 flux_sens.out
END OF FLUX_SENS

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.10 Post Processing Data Sensitivities

Description/Usage

This card indicates that the cards between this and an END OF DATA_SENS card are to 
be read and processed. If this card (Post Processing Data Sensitivities) is not present, 
DATA_SENS cards will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Data Sensitivities =

Technical Discussion

No discussion.

Post Processing Data Sensitivities = 
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.11 DATA_SENS

Description/Usage

As many of these DATA_SENS cards as desired can be input to direct Goma to print the 
sensitivity of a specified variable with respect to a boundary condition or material 
parameter on a specified node set. Definitions of the input parameters are as follows: 

{data_type} A keyword that can have any one of the following values:

VELOCITY[1-3]
TEMPERATURE
MASS_FRACTION
MESH_DISPLACEMENT[1-3]
SURFACE
PRESSURE
POLYMER_STRESS[1-3][1-3]
SOLID_DISPLACEMENT[1-3]
VELOCITY_GRADIENT[1-3][1-3]
VOLTAGE
FILL
SHEAR_RATE
PVELOCITY[1-3]
VolFracPh_[0-4]
POR_LIQ_PRES
POR_GAS_PRES
POR_PORSITY
POR_SATURATION

DATA = {data_type} <bc_id> <blk_id> <species_id> {sens_type} <sens_id> 
<sens_flt> <file_name>
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VORT_DIR[1-3]
VORT_LAMBDA

Each request will result in the point coordinates and the 
specified sensitivity value being printed to the specified file. 

<bc_id> The boundary flag identifier, an integer associated with the 
boundary location (node set in EXODUS II) in the problem 
domain on which the variable sensitivity is desired.

<blk_id> An integer that designates the mesh block (material) from 
which the variable sensitivity should be taken. This has 
implications for discontinuous variables on internal 
boundaries.

<species_id> An integer that identifies the species number if a species 
sensitivity is requested.

{sens_type} A two-character entry that identifies the sensitivity type, 
where: 

BC denotes a sensitivity w.r.t. to a boundary condition 
parameter.
MT denotes a sensitivity w.r.t. to a material property 
parameter

<sens_id> An integer that identifies the sensitivity. If BC is specified 
for {sens_type}, then this value is the BC card number. If 
MT is specified for {sens_type}, this value is the material 
number. 

<sens_flt> A floating point number whose meaning is also dependent 
on the selection of {sens_type}. If BC is specified, this 
value is the BC data float number. If MT is specified, this 
value is the material property tag.

<file_name> A character string corresponding to a file name into which 
the data should be printed.

Examples

The following example shows a sample input deck section with three data requests:
Post Processing Data Sensitivities =
DATA_SENS = VELOCITY2 1 1 0 BC 5 3 data_sens.out
DATA_SENS = VELOCITY1 6 1 0 BC 5 3 data_sens.out
DATA_SENS = VELOCITY1 6 1 0 BC 4 0 data_sens.out
END OF DATA_SENS
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Technical Discussion

NOTE: In order to compute data sensitivities with respect to dirichlet boundary 
condition floats, the boundary conditions need to be "soft" set in the input file, i.e. the 
optional parameter should be set to 1.0.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.14.12 END OF DATA_SENS

Description/Usage

This card is used to denote the end of a set of DATA_SENS cards and is only used when 
the Post Processing Data Sensitivities card is present and one or more DATA_SENS 
cards are specified.

Examples

A simple example of using this card in context is shown below.
Post Processing Data Sensitivities =
DATA_SENS = VELOCITY2 1 1 0 BC 5 3 data_sens.out
END OF DATA_SENS

Technical Discussion

No discussion.

Theory

No Theory.

END OF DATA_SENS
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FAQs

No FAQs.

References

No References.
 

4.15 Post Processing Particle Traces

This option enables the calculation of particle trajectories and computed quantities along the 
trajectories. The coordinates of the trajectory starting point and time-stepping parameters are 
input using the cards in this section. The computation of quantities along the trajectories and their 
subsequent output is controlled through the usr_ptracking routine in user_post.c.

4.15.1 Post Processing Particle Traces

Description/Usage

This card indicates that the cards between this and an END OF PARTICLES card are to 
be read and processed. If this card (Post Processing Particle Traces) is not present, 
PARTICLE cards will be ignored. 

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Particle Traces =

Technical Discussion

No discussion.

Theory

No Theory. 

FAQs

No FAQs.

Post Processing Particle Traces = 
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References

No References.
 

4.15.2 PARTICLE

Description/Usage

Each PARTICLE card represents a separate particle trajectory. As many of these cards 
as desired can be input to direct Goma to compute a particle trajectory.

There are eleven values to specify in the <float_list>; definitions of the input 
parameters are as follows:

<float1> xpt, the X-coordinate of the origin of the trajectory.

<float2> ypt, the Y-coordinate of the origin of the trajectory.

<float3> zpt, the Z-coordinate of the origin of the trajectory.

<float4> initial_time, the start time for computing the trajectory (a   
value in units consistent with rest of the problem, i.e. length 
scale/velocity scale).

<float5> end_time, the end time for computing the trajectory. The 
trajectory will be computed until the end time is reached or 
until the particle trajectory leaves the computational 
domain.

<float6> point_spacing, the desired distance between successive 
points on the trajectory. The point spacing may be decreased 
below this value if required by the trajectory calculation but 
it will not exceed it.

<float7> mobility, the mobility of the particle when particles with 
inertia are desired. Enter zero for inertia-less trajectories.

<float8> mass, the mass of the particle. If the trajectory of an inertia-
less particle is desired, a value of 0.0 should be entered.

<float9> force_x, the X-component of an external force (such as 
gravity) which is to be applied to the particle (with mass).

PARTICLE = <float_list> <file_name>
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<float10> force_y, the Y-component of an external force (such as 
gravity) which is to be applied to the particle (with mass).

<float11> force_z, the Z-component of an external force (such as 
gravity) which is to be applied to the particle (with mass).

<file_name> A character string corresponding to a file name into which 
the output should be printed.

Thus, the particle trajectory starts at the coordinates defined by xpt, ypt, and zpt. The 
trajectory of the particle is computed starting at a time value of initial_time and 
continuing until end_time is reached or until the particle exits the computational 
domain. The time step is adjusted so that the distance between successive points on the 
trajectory is, at most, equal to the point_spacing (it may be less if the time-stepping 
algorithm requires it). At each point along the trajectory, the usr_ptracking routine is 
called which the user may modify to control the output to file_name.

Examples

Here is an example of an input deck with 6 trajectory cards.
Post Processing Particle Traces =
PARTICLE = -1.8 -0.1 3.0 0 10000 0.02 0 0 0 0 0  part1.out
PARTICLE = -1.8 -0.1 3.0 0 1000 0.02 {mob1} {mass1} 0 {-f1} 0 part1.out
PARTICLE = -1.8 -0.1 3.0  0 1000 0.02 {mob2}  {mass2} 0 {-f2} 0  part1.out
PARTICLE =  -1.8 -0.15 3.0  0 10000 0.02 0 0 0 0 0  part2.out
PARTICLE =  -1.8 -0.15 3.0  0 1000 0.02 {mob1}  {mass1} 0 {-f1} 0  part2.out
PARTICLE =  -1.8 -0.15 3.0  0 1000 0.02 {mob2}  {mass2} 0 {-f2} 0  part2.out

END OF PARTICLES

Technical Discussion

For inertia-less trajectories (i.e. when the product of the particle mass and mobility is 
less than or equal to zero), the trajectory simply follows the velocity field;

(4-235)

(4-236)

Trapezoidal rule time integration is utilized with Euler prediction.

For trajectories with particle inertia (i.e. when the product of mass and mobility is    
greater than zero), the following evolution equation is used:

td
dx

v x( )=

x t t0=( )
·

x0=
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(4-237)

where  is the particle mobility (e.g.  for a sphere of radius r in a liquid of 
viscosity ), m is the particle mass, and f is the external force vector acting on the 
particle.

The trajectory is computed using a coupled set of ordinary differential equations:

(4-238)

(4-239)

(4-240)

(4-241)

(4-242)

(4-243)

Theory

No Theory.

FAQs

No FAQs.

References

Russel, Saville, and Schowalter, Colloidal Dispersions, pp. 374-377.
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4.15.3 END OF PARTICLES

Description/Usage

 This card is used to denote the end of a set of PARTICLE cards and is only used when 
the Post Processing Particle Traces card is present and one or more PARTICLE cards 
are specified.

Examples

The PARTICLE card shows an example of using this card in context. Because the card 
has no input parameters, it always appears as

END OF PARTICLES

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.16 Volumetric Integration

This option enables computation of overall integrated quantities for a specific volume. Several 
standard options are available and the user is permitted to define his/her own integrand to be 
evaluated in this section. However, the current implementation of these volumetric integrals is 
limited to generalized Newtonian fluids. Output is to a specified file.

END OF PARTICLES
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4.16.1 Post Processing Volumetric Integration

Description/Usage

 This card indicates that the cards between this and an END OF VOLUME_INT card are 
to be read and processed. If this card (Post Processing Volumetric Integration) is not 
present, VOLUME_INT cards will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Volumetric Integration =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

4.16.2 VOLUME_INT

Description/Usage

The VOLUME_INT card activates computation of specified volumetric integrals 
during post processing. As many of these VOLUME_INT cards as desired can be input 
to Goma. Definitions of the input parameters are as follows:

Post Processing Volumetric Integration = 

VOLUME_INT = {volume_type} <blk_id> <species_no> <file_string> [float_list]
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<volume_type> Several choices of volumetric integral are allowed and are 
referenced through this parameter. The permissible values 
and corresponding volume integral follow:

VOLUME - Volume of the element block specified by 
<blk_id>.

DISSIPATION - Total viscous dissipation, , in the 
element block specified by <blk_id>

JOULE - Total Joule or Ohmic heating, , in the 
element block specified by <blk_id>. 

SPECIES_MASS - Integral of concentration of the 
component specified by <species_no>  in the element 
block specified by < blk_id>.

MOMENTUMX, MOMENTUMY, or 
MOMENTUMZ - Integral of appropriate component 
of the momentum flux  over the element block 
<blk_id>.

STRESS_TRACE - Integral of the trace of the complete 
stress tensor  over the element block blk_id.

HEAT_ENERGY - Integral of the sensible heat over 
<blk_id> ( not currently implemented).

POSITIVE_FILL, NEGATIVE_FILL - Volume 
integral of region occupied by positive (negative) 
values of the FILL variable in element block < blk_id>.  
Note, for either of these cards, [float_list] is required. 
NOTE for Level-Set users: There are numerous other 
quantities (too-lengthy and esoteric to list here) that can 
be integraded vis-a-vis level set fields.  Please see code. 

NEGATIVE_VX, NEGATIVE_VY, NEGATIVE_VZ - 
Velocity integral in one of the three directions over just 
the region occupied by negative values of the FILL 
variable in level set problems. Note, for any of these 
cards, the [float_list] is required.

POROUS_LIQ_INVENTORY - Volume integral of 
bulk liquid component density (gas and liquid phase) in 
a porous medium.  Result is a total inventory of liquid 
in the porous phase. 

SPEED_SQUARED - Volume integral of the square of 
the speed, viz. .  Used to measure norm of fluid 
kinetic energy level.   Should tend to zero for a fluid at 
rest.    

USER - Volume integral is supplied by the user (not 
currently implemented).

τ: v∇

1
σ
--- J

˜
J
˜

⋅( )

ρv

pδ
˜

– τ
˜

+( )

v
˜

v
˜

•
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SURFACE_SPECIES - Generate locus of points which 
correspond to a surface of constant species 
concentration according to Ac1+Bc2+Cc3+D=0.  
Currently only implemented for 3D linear elements.

LUB_LOAD - “Volume integral” of lubrication pressure 
over entire mesh shell block, which is useful for 
computing the overall lubrication load.   This is 
actually an area integral over the shell, thereby yielding 
a force.  

ELOADX; ELOADY; ELOADZ - Volume integral of 
electric field or the gradient of the electric potential for 
electrostatic problems.   

RATE_OF_DEF_II - Volume integral of the second 
invariant of the rate-of-deformation tensor.  

<blk_id> The element block id for which the volume integral is 
requested.

<species_no> The species number for SPECIES_MASS volume integral.

<file_string> A character string that corresponds to the name of the text 
file that will receive the results of the integration at each 
time step.

[float_list] A floating point value that specifies the length scale of the 
smooth Heaviside function. This parameter is only used for 
VOLUME_INT cards in which the {volume_type} is 
{POSITIVE|NEGATIVE} _FILL or 
NEGATIVE_V{X|Y|Z}.  The float list is also used for the 
constants A, B, C, etc in the SURFACE_SPECIES type

Examples

 Here is an example of an input deck with 3 VOLUME_INT cards.
Post Processing Volumetric Integration =

VOLUME_INT = VOLUME 1 0 volume.out

VOLUME_INT = SPECIES_MASS 2 3  species3.out

VOLUME_INT = NEGATIVE_FILL 1 0 fill.out 0.1

END OF VOLUME_INT

Technical Discussion

The volume integrations are carried out as follows;

volume_type volume integral
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VOLUME

DISSIPATION

JOULE

SPECIES_MASS

MOMENTUM_{X|Y|Z}

STRESS_TRACE

{POSITIVE|NEGATIVE}_FILL

NEGATIVE_V{X|Y|Z}

POROUS_LIQ_INVENTORY

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.16.3

4.16.4 END OF VOLUME_INT

Description/Usage

This card is used to denote the end of a set of VOLUME_INT cards and is only used 
when the Post Processing Volumetric Integration card is present and one or more 
VOLUME_INT cards are specified.

END OF VOLUME_INT

Vd
pδ

˜
– τ+( ) v∇• Vd

1
σ
---J J Vd⋅

cj Vd
ρ i j k |  v• Vd
tr pδ

˜
– τ

˜
+( ) Vd

H φ( ) Vd
H φ( ) i j k{ } v• Vd
ρgasφ 1 S–( ) ρliqφS+[ ] Vd
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Examples

The VOLUME_INT card shows an example of using this card in context. Because the 
card has no input parameters, it always appears as

END OF VOLUME_INT

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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5 Data Input-- Material Files

The material (“mat”) file for Goma contains a description or specification of all the properties 
required for the multi-physics capabilities of Goma. A separate *.mat file must be developed for 
each material present in each simulation. The mat file (see Figure 5) is split into seven sections: 
(1) Physical Properties (Section 5.1), (2) Mechanical Properties and Constitutive Equations 
(Section 5.2), (3) Thermal Properties (Section 5.3), (4) Electrical Properties (Section 5.4), (5) 
Microstructure Properties (Section 5.5), (6) Species Properties (Section 5.6), and (7) Source 
Terms (Section 5.7).

Each section in this chapter discusses a separate part of the material file specification and it 
indicates the data cards or input records that may be used, followed by the options available for 
each individual record (or line in the file) and the necessary input data/parameters. All input data 
are specified in a free field format with successive data items separated by blanks or tabs. In this 
version of the user’s manual, a new format has been instituted in which each record is presented in 
a template structure. This template has eight parts: 1) a title, which is also the card name, 2) a 
syntax, which is enclosed in a framed box and shows the proper contents of the card, 3) a 
Description/Usage section, which presents the user options and descriptions of proper input 
records, 4) an Example, 5) a Technical Discussion to provide relevant information to help the user 
understand how to select from among various options or how to properly determine the desired 
parameters, 6) a Theory to provide an understanding of the physics and mechanics that have been 
implemented or are being exercised, 7) a FAQs section to present important user experience, and 
8) a Reference section to identify citations and/or provide background information to the user. 
This is a more lengthly but a more complete form for documenting and instructing users of Goma. 

The syntax entry denotes a unique string for each input record which Goma parses in the input 
file. All words in these unique strings are separated by a single white space and because the code 
parses for these exact strings, the parser becomes case sensitive. The identifying string for a 
particular specification is followed by an ‘=’ character. Following this character will be all 
additional data for that record, if any. In the syntax box, this additional data is symbolically 
represented by one or more variables with some appropriate delimiters. Typically, the user will 
find a variable called model_name enclosed in curly braces ‘{}’; this would then be followed by 
a description of specific options for model_name in the Description/Usage section. The curly 
braces indicate a required input and that the user must select one of the offered options for 
model_name. Required parameters, if any, for the model option are enclosed in angle brackets ‘< 
>’, while optional parameters for model_name are enclosed in square brackets ‘[ ]’. Following 
the ‘=’ character, the user may use white space freely between and among the remaining 
parameters on the command line.

Figure 4 illustrates a typical material file. The section headers, e.g., “--- Physical Properties”, are 
user comments that are not processed by the input parser. In all sections of this chapter, 
model_name is a character string and floating_point_const_list is a list of floating point numbers 
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---Physical Properties
Density = CONSTANT 1000.

---Mechanical Properties and Constitutive Equations
Solid Constitutive Equation = LINEAR

Convective Lagrangian Velocity = NONE

Lame MU = CONSTANT 1.

Lame LAMBDA = CONSTANT 1.

Stress Free Solvent Vol Frac = CONSTANT 0.

Liquid Constitutive Equation = NEWTONIAN

Viscosity = USER 1. 1. 1. 1. 1.

Low Rate Viscosity = CONSTANT 0.
Power Law Exponent = CONSTANT 0.
High Rate Viscosity = CONSTANT 0.
Time Constant = CONSTANT 0.
Aexp = CONSTANT 0.
Thermal Exponent   = CONSTANT 0.
Yield Stress = CONSTANT 100.
Yield Exponent = CONSTANT 10.0
Suspension Maximum Packing = CONSTANT 0.68
Suspension Species Number       = 0
Cure Gel Point = CONSTANT.75
Cure A Exponent = CONSTANT1.0
Cure B Exponent = CONSTANT.01
Cure Species Number             = 1
Polymer Constitutive Equation= NOPOLYMER

---Thermal Properties
Conductivity = USER 1. 1.  1. 1. 1. 1.

Heat Capacity = CONSTANT 1.

Volume Expansion = CONSTANT 1.

Reference Temperature = CONSTANT 1.

Liquidus Temperature = CONSTANT 1.

Solidus Temperature = CONSTANT 1.

---Electrical Properties

Electrical Conductivity = CONSTANT 1.

---Microstructure Properties
Media Type = CONTINUOUS

Porosity = DEFORM 0.5
Permeability = CONSTANT1.
Permeability = CONSTANT 0.001
Rel Gas Permeability = SUM_TO_ONE 0.0001
Rel Liq Permeability = VAN_GENUCHTEN 0.01 0.01 0.667 0.01
Saturation = VAN_GENUCHTEN 0.01 0.01 3.0 1.

---Species Properties
Diffusion Constitutive Equation= FICKIAN

Diffusivity = CONSTANT 0 1.

Latent Heat Vaporization = CONSTANT 0 0.

Latent Heat Fusion = CONSTANT 0 0.

Vapor Pressure = CONSTANT 0 0.

Species Volume Expansion = CONSTANT 0 0.

Species Volume Expansion = CONSTANT 0 0.

Reference Concentration = CONSTANT 0 0.

*************Species Number****************|

----Source Terms
Navier-Stokes Source = USER 1.  1. 1. 1. 1.

Solid Body Source = CONSTANT 0.  0.  0.

Mass Source = CONSTANT 0.

Heat Source = CONSTANT 1. 

Species Source = CONSTANT 0 2.

*************Species Number***********|
Current Source = CONSTANT 0.

Figure 4.  Sample material-description file format. Lines 

highlighted in bold-face type are required. 

Line is repeated
for each species

Lines are repeated
for each species
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of arbitrary length separated by a comma or one or more white spaces. The remainder of this 
chapter covers each card (line) of the material-description file in detail. For each parameter that is 
not dimensionless, base units are indicated in square brackets ( [ ] ) at the end of the syntax line; 
the base units are those indicated in the Nomenclature section of this document. Empty brackets ( 
[ ] ) denote dimensionless parameters, while those without units or brackets are simply model 
names, other strings, or integers. Several model parameters, e.g., Diffusivity, where the model 
options include other than the CONSTANT type with a single input value, identify the units as 
[varied]. In these cases, the parameter units will be listed for the CONSTANT model option and 
the units for individual input parameters will be identified in the parameter description.

All property models will eventually have a USER and a USER_GEN option. When the former is 
selected, the user must add the user model to the appropriate routine in the file user_mp.c. This 
file contains a template to simplify the implementation of a model in a full-Newton context, but 
has the restriction that none of the models can contain a dependence on gradients of variables. For 
more complex models, which contain such dependencies, the user must resort to the more 
sophisticated mechanism that comprise the routines in user_mp_gen.c

A relatively new capability/model available on many of the properties is a table-lookup feature. 
That is, if the model is of type TABLE, then a linear or bilinear interpolation is used to extract the 
material property value from a table of numbers representing the dependence. The best way to 
explain this is with an example. Often times a property is dependent on temperature, or related 
dependent variable. If discrete data is available of the property value at various temperatures, as 
from a spreadsheet, then such a table can be read and with appropriate interpolation operations the 
property value is determined. Throughout the material property options, the reader might see aat 
TABLE option. The syntax for the input of that option is as follows:

<Property name> = TABLE  <integer1>  <character_string1> [character_string2] {LINEAR | 
BILINEAR}  [integer2] [FILE = filenm]

Here, the integers, character strings and floats are defined as follows:

<integer1> - the number N of columns in the table. The first N-1 columns are the values of the 
independent variables (e.g. temperature, concentration, etc.) and the final Nth column is the 
property value. This number is usually 2. 

<character_string1> - Required variable name for first column. Valid variable names are 
TEMPERATURE, MASS_FRACTION, SPECIES, CAP_PRES, FAUX_PLASTIC, and 
LOWER_DISTANCE. The last three are specific to the Saturation model of porous flow, 
the LAME Mu model, and the Lubrication Height function model, respectively. 
Temperature and mass fraction dependence are available in all properties with a TABLE option 
which make sense. 

[character_string2] - Optional second variable name for bi-linear lookup dependence. This is 
exploratory. 
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{LINEAR | BILINEAR} - type of interpolation

[integer2] - species number required only for MASS_FRACTION, SPECIES, and 
FAUX_PLASTICITY variables.

[FILE = <filenm>] - The optional keyword ‘FILE=’ indicates that the table data is to be read 
from a separate file identified by <filenm>. Each row of the table corresponds to one variable 
value, and is input in free form CSV or space separated values. Note that if this ‘FILE=’ option is 
not present then the data will be read from the input material file itself following the TABLE 
model card. The end of the table is signaled by the keyword “END TABLE” (see example below). 

Some examples are in order:

Lame MU = TABLE 2 FAUX_PLASTIC 0 LINEAR FILE=stress_strain_comp.txt

...

Lame MU = TABLE 2 TEMPERATURE LINEAR

1. 293

2. 300

3. 425. 

END TABLE

Finally, before we get started, the following is an option added to allow existing Chemkin 
material property databases to be read in, basically obviating the need to even read the material 
(mat) file. The detailed description of input records provided in this chapter thus applies to the 
case when the Default Database is set to GOMA_MAT.

5.0.1 Default Database

Description/Usage

This card sets the default material database type. The default for this card is 
GOMA_MAT. In that case, all material properties for the current material are obtained 
from the current material file being read. If the default database is Chemkin, then the 
Chemkin 3 linking files are read in, and initialization of most of the methods and data 
for thermodynamic function evaluation, the stoichiometry and names of species and 
elements, the homogeneous and heterogeneous source terms for chemical reactions and 

Default Database = {GOMA_MAT | CHEMKIN_MAT}
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their coupling into the energy equation, and transport property evaluations occurs. 
Many fields in the materials database file that were required now are optional. After 
Chemkin initialization, the rest of the materials database file is then read in. At that 
time, some fields containing methods and data that were initialized with Chemkin 
methods and data may be overwritten with methods and data specified by the material 
file. Other fields not initialized or even handled by Chemkin (such as surface tension) 
must be initialized for the first time by the materials file. Thus, the use of Chemkin 
materials database doesn’t mitigate the need for a Goma materials file.

Examples

Following is a sample card:

Default Database = CHEMKIN_MAT

Technical Discussion

Chemkin includes its own rigorous treatment of ideal gas thermodynamics and 
transport property evaluations, providing it with a solid foundation on which to build 
kinetics mechanisms and a rigorous treatment of gas phase transport property 
evaluation. In order to maintain internal consistency, the new treatment must be used in 
its entirety.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.1 Physical Properties

The intrinsic property of materials essential to Goma is the density. As Goma presumes that all 
materials are incompressible, density is a constant in the governing differential equations. 
However, several options for models of density are present in the code because numerous 
processes lead to density changes, though during any analysis cycle, the density is constant.
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5.1.1 Density

Description/Usage

This required card is used to specify the model, and all associated parameters, for 
density. Definitions of the input parameters are as follows:

{model_name} Name of the density model. This parameter can have 
one of the following values: CONSTANT, USER, 
FILL, SUSPENSION, IDEAL_GAS, 
THERMAL_BATTERY, LEVEL_SET, 
CONST_PHASE_FUNCTION,  FOAM, 
REACTIVE_FOAM, or SOLVENT_POLYMER. 
Boussinesq models can be selected through the Navier-
Stokes Source card.

{float_list} One or more floating point numbers (<float1> through 
<floatn> whose interpretation is determined by the 
selection for {model_name}.

Thus, choices for {model_name} and the accompanying parameter list are given 
below; additional guidance to the user can be found in the Technical Discussion section 
following the Examples.

CONSTANT <float1>

For the CONSTANT density model, {float_list} is a 
single value:

<float1> - Density [M/L3]

USER <float1> ... <floatn>

For a user-defined model, the set of parameters 
specified as <float1> through <floatn> are defined in the 
function usr_density. 

FILL <float1> <float2>

The model is used with the fill equation when the 
location of the free surface between two fluids is tracked 
with a volume-of-fluid method. The {float_list} 
contains two values for this model, where: 

<float1> - Density of the fluid in phase 1, denoted 
by F=1

Density = {model_name} {float_list} [M/L3]
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<float2> - Density of the fluid in phase 2, denoted 
by F=0

This card is required when using the FILL momentum 
source model (Navier-Stokes Source in Source Terms 
section of manual) since it makes use of this model to 
compute the value of the density

SUSPENSION <float1> <float2> <float3>

The option is used to model a suspension where the 
solid particle phase and the carrier fluid have different 
densities. The {float_list} contains three values for this 
model, where:

<float1> - Species number associated with the 
solid particulate phase (the parser 
reads this as a float but it is cast as 
an integer when assigned).

<float2> - Density of the fluid in the carrier 
fluid, 

<float3> - Density of the solid particulate 
phase, .

THERMAL_BATTERY <float1> <float2>

This model is used to relate electrolyte density to field 
variables such as mole fraction. A simple empirical 
form is used, with two constants in the {float_list}:

<float1> - Base Electrolyte Density, . 
<float2> - Constant, .

(See Technical Discussion.)

SOLVENT_POLYMER <float1>

This density model is used primarily in problems 
involving drying of polymeric solutions.  The single float 
parameter on this card is specific volume of the solvent 
material.  Note that the numerical value for this parameter 
must be chosen to be consistent with the specific volumes 
for each species in the solution set with the Specific 
Volumes card in the material file (discussed below).  

LEVEL_SET <float1> <float2> <float3>

This model is used to vary the density in the flow 
regime when following an interface between two fluids 
using level set interface tracking. This choice assures a 

ρf

ρs

ρ0
a



Revised: 6/12/13 839

5.1.1  Density 

smooth transition in density across the zero level set 
contour. The {float_list} contains three values for this 
model, where:

<float1> - Fluid density in the negative regions of 
the level set function, 

<float2> - Fluid density in the positive regions of the 
level set function, 

<float3> - Length scale over which the transition 
occurs, . If this parameter is set to zero, 
it will default to one-half the Level Set 
Length Scale value already specified.

This card is required when using the LEVEL_SET 
momentum source model (Navier-Stokes Source in 
Source Terms section of manual) since it makes use of 
this model to compute the value of the density.

CONST_PHASE_FUNCTION <floatlist> <float1> <float2>

This model is used to vary the density in the flow 
regime when using phase function tracking of muliple 
phases. This choice assures a smooth transition in 
density across the phase boundaries. The {float_list} 
contains a variable number of values that depend on the 
number phase functions being tracked, where:

<floatlist> list of float variables equal to the number 
of phase functions.  These are the 
constant densities of each phase in order 
from 1 to number of phase functions that 
are represented by each phase function.  

<float1> Length scale over which the transition  
between one phases density to the other 
occurs,  . If this parameter is set to zero, 
it will default to one-half the Level Set 
Length Scale value already specified.

<float3> The “null” value for density.  This is the 
value for density which will be assigned 
to those regions of the flow where all the 
phase functions are less than or equal to 
zero.

This card is required when using the 
PHASE_FUNCTION momentum source model 
(Navier-Stokes Source in Source Terms section of 

ρ–

ρ +
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manual) since it makes use of this model to compute the 
value of the density.

REACTIVE_FOAM <float1>

This model is used when a constant density assumption 
does not apply in the model of interest, as with reactive 
mixtures. While this model was implemented for foam 
applications, the form of the density equation is quite 
universal. One important assumption in this model is 
that the volume change upon mixing is zero. The single 
float input is the specific volume of the N+1 species (not 
modeled in the problem.

This model choice requires the use of the FOAM 
species source model - Goma will fail if it is not 
specified. Please see the Species Source section for 
instructions on specifying the FOAM model.

Examples

Following are some sample input cards:
Density = CONSTANT 1000.
Density = LEVEL_SET 0.05 0.0001 0.25
DENSITY = CONST_PHASE_FUNCTION 0.9 0.001 12.0 0.0 0.00001

Technical Discussion

• The CONSTANT density model prescribes an unchanging value for an 
incompressible fluid; only a single value need be specified by the user.

• The USER model provides a means for the user to create a custom density model 
for his/her problem. This user-defined model must be incorporated by modifying 
the usr_density function in the file user_mp.c. The parameters needed by this 
model are entered in the {float_list} and are passed to the usr_density routine 
as an array.

• The FILL model is used when the location of the interface between two fluids is 
tracked with an explicit volume-of-fluid method. The value of density is defined 
from the following:

(5-1)

where  and  are the phase densities obtained from the FILL density card, 
F is the value of the fill color function. As can be seen,  is the density value 

ρ F( ) ρ1F ρ0 1 F–( )+=

ρ1 ρ0
ρ1
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when F = 1 while  is the density value when F = 0. In the transition zone 
between these to extremes of F, the density will simply be a weighted average 
of the two values.

• The SUSPENSION model is used to model a suspension where the solid particle 
phase and the carrier fluid have different densities. The concentration of the 
continuum mixture is defined by the following relationship:

(5-2)

where  is the volume fraction of the solid particulate phase, , is the density 
of the fluid in the carrier fluid and , is the density of the solid particulate 
phase. The solid particulate phase has an associated species number as this is 
designates the species equation being solved for this component.

• The THERMAL_BATTERY model is used to relate electrolyte density to field 
variables such as mole fraction. A simple empirical form is used with the density 
of the system being specified by the following equation,:

(5-3)

where  is the mole fraction of ionic species i,  is the base electrolyte 
density and  is a constant.

• The LEVEL_SET density model is used to vary the density in the flow regime 
from one phase to the other when the interface between two fluids is being 
followed by level set interface tracking. The model assures a smooth transition in 
density across the zero level set contour. The density as a function of the level set 
function value, φ, is as follows:

(5-4)

(5-5)

(5-6)

where 

(5-7)

is a smooth Heaviside function, φ is the value of the level set function, ρ+ and 
ρ- are density values of the fluids assigned positive or negative values of the 
level set function, respectively, and α is the density transition length scale, that 
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is, half the width of the transition zone between density values. Note that this 
value may differ from the level set length scale parameter set elsewhere.

• The CONST_PHASE_FUNCTION model computes the density at a given point 
with the following relation:

(5-8)

where  are the individual phase function ( ) densities, , is the 
smoothed Heaviside function using the length scale  specified on the card.  
The parameter is the null density and will only come into play at points 
were all phase function values are less than zero.  In theory,  this shouldn’t 
happen for well posed problems, but in practice it is not uncommon.

• The SPECIES_SOURCE and REACTIVE_FOAM models both employ the 
following density formula:

 (5-9)

where wj is the mass fraction of component j and Vj is the specific volume of 
species j; these two parameters are set by the Specific Volume cards in the 
material file. The variable N is the total number of bulk species. The variable 
Vn+1 is the specific volume specified in the density card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2 Mechanical Properties and Constitutive Equations

This section of the material property input specifies the type of model, for both solids and fluids, 
that relates stress and strain (or strain-rate) as well as the various parameters for these models. 
Models for solids are relatively simple compared to solid mechanics codes but cover the primary 
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needs in fluid-solid problems. The models for fluids are quite extensive, covering Newtonian, 
generalized-Newtonian, rate-dependent models, thermally-dependent models, curing and particle-
laden models and combinations of these. These properties are used in the solid and fluid 
momentum conservation equations.

5.2.1 Solid Constitutive Equation

Description/Usage

This required card specifies the constitutive equation used to control mesh motion and/
or the constitutive model describing solid material stress response to deformation. The 
single input parameter is defined as

{model_name} The name of the constitutive equation. The permissible 
values for {model_name} are dependent on the selection for 
the Mesh Motion type, that being one of ARBITRARY, 
LAGRANGIAN/DYNAMIC_LAGRANGIAN, or 
TOTAL_ALE.

For an ARBITRARY Mesh Motion, {model_name} can be 
one of the following: 

LINEAR - a linear elastic model for which the 
deformations are assumed to be small, thus simplifying 
the analysis of strain and stress.

NONLINEAR - a nonlinear neo-Hookean elastic model 
for which the deformations can be large without loss of 
frame invariance. This is the recommended model (and 
all materials currently default to NONLINEAR if the 
mesh is arbitrary).

For a LAGRANGIAN, DYNAMIC_LAGRANGIAN, or 
TOTAL_ALE Mesh Motion, {model_name} can be one of 
the following:

LINEAR - a linear elastic model for which the 
deformations are assumed to be small, thus simplifying 
the analysis of strain and stress.

NONLINEAR - a nonlinear neo-Hookean model 
applicable for 2D, 3D, and CYLINDRICAL 
coordinates.

Solid Constitutive Equation = {model_name}
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HOOKEAN_PSTRAIN - a nonlinear neo-Hookean 
model with plane strain for which the deformations can 
be large without loss of frame invariance (2D only).

HOOKEAN_PSTRESS - a nonlinear neo-Hookean 
model with plane stress (not activated in Goma 4.0).

INCOMP_PSTRAIN - An incompressible nonlinear 
neo-Hookean model with plane strain and a Lagrangian 
pressure constraint on the volume.

INCOMP_PSTRESS - An incompressible nonlinear 
neo-Hookean model with plane stress and a Lagrangian 
pressure constraint on the volume (not activated in 
Goma 4.0).

INCOMP_3D - Incompressible version of the neo-
Hookean solid in a special Segalman formulation that 
removes the volume-change from the strain tensor (like 
the INCOMP_PSTRAIN model above), and is 
specifically designed for 3D applications (not widely 
used).

The functional form of each of these equations is provided in the Technical Discussion 
with some important details.

Examples

The following is a sample input card:

Solid Constitutive Equation = LINEAR

This equation type requires two elastic constants be specified, Lame Lambda and Lame 
Mu. This constitutive equation can be used for all Mesh Motion types. It is not 
recommended for large mesh deformations, even for ALE problems, because of 
spurious stresses generated by solid body translation or rotation.

Technical Discussion

The general compressible form of Hooke’s Law, which applies to the LINEAR, 
NONLINEAR and HOOKEAN_PSTRAIN options, can be written as

(5-10)

Here  is the Lame coefficient for volume expansion,  is the volume strain measure 
whose definition depends on the model chosen,  is another elastic Lame coefficient 
for shear deformation, and  is the chosen strain tensor, the form of which also 
depends on the constitutive model chosen.

σ
˜

λεI
˜

2µE
˜

+=

λ ε

µ

E
˜
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The general incompressible form of Hooke’s Law, which applies to all INCOMP* 
options, can be written as:

(5-11)

with p being the solid phase pressure. An additional continuity equation is required in 
this case to account for the pressure (see Continuity equation card). Note, for these 
model options one must set the Lame LAMBDA coefficient to zero, or the pressure term 
and the expansion term are added together.

The volume change and strain tensors depend on the chosen solid constitutive equation 
and are as follows:

For the LINEAR option:

(5-12)

and

 (5-13)

where  is the displacement field vector, tr is the tensor trace operator, and the 
gradient operator ( ) is with respect to the deformed coordinates.

For all NONLINEAR models, we use the deformation gradient tensor as a building 
block:

(5-14)

The “material coordinates” are  and describe the original locations of all parcels of 
material in the domain; and the “current configuration/spatial coordinates”  are the 
deformed mesh coordinates. Of course we have

(5-15)

for all LAGRANGIAN mesh motion cases. We define a Cauchy-Green tensor as:

(5-16)

and invoke the linearized small strain theory (viz. that ), and write
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(5-17)

With these quantities, we form the volume strain and strain tensor for the various 
models:

For NONLINEAR, INCOMP_PSTRAIN, INCOMP_3D, and HOOKEAN_PSTRAIN:

 (5-18)

For INCOMP_PSTRAIN and INCOMP_3D we use:

(5-19)

For all other models we use . It is noteworthy that we use the linearized small 
strain theory for parts of the strain tensor, but the real Lagrangian deformation gradient 
for the volumetric strain. For elastoviscoplastic models and TOTAL_ALE solid 
mechanics, we do not invoke the linearized small strain theory.

Also noteworthy is that the elastic constants  and  are related to the more well 
known bulk and Young’s moduli and the Poisson’s ratio by simple expressions (see 
Lame Mu and Lame Lambda cards). 

Theory

The incompressible options (i.e., INCOMP_PSTRAIN and INCOMP_PSTRESS 
and INCOMP_3D) use the theory of Segalman, et. al. (1992) to control mesh motion 
and couple the volume dilation to changes in solvent content. Plane strain implies that 
there is no deformation in the z-direction; plane stress implies there is no stress change 
in the z-direction.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk
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SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

Segalman, D., W. Witkowski, D. Adolf, M. Shahinpoor, “Theory and Application of 
Electrically Controlled Polymeric Gels”, Smart Mater. Struct. 1:95-100 (1992).

 

5.2.2 Plasticity Equation

Description/Usage

This optional card specifies the formulation for the potential yielding/plastic flow 
regime during solid deformation. This card is not to be used in place of the Solid 
Constitutive Equation card, but rather supplements that card to describe the constitutive 
behavior during plastic deformation. Elastic deformation still proceeds according to the 
model specified on the Solid Constitutive Equation card (i.e., for regimes that have not 
yielded). The single input parameter is defined as

{model_name}  Name of the plasticity model. This parameter can have one 
of the following values:

EVP_HYPER a constitutive equation that uses the elasticity portion 
specified on the Solid Constitutive Equation card for 
unyielding material and a complex hyperelastic plasticity 
equation for the yielding/flowing material as determined by 
the Von Mises yield criterion.

NO_MODEL this, or any value other than EVP_HYPER, will result in no 
plastic deformation.

Requirements for the use of this model are

• Transient problems only

• LAGRANGIAN mesh motion only; no TALE

• Continuous media only; no porous media (as specified on the Media Type card)

Plasticity Equation = {model_name}                                                              [ ]
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• Elastic Plane Strain models only (i.e., INCOMP_PSTRAIN in the Solid 
Constitutive Equation card)

• a Plastic Viscosity card and an EVP Yield Stress card must also be supplied.

Examples

Following is a sample card:

Plasticity Equation = EVP_HYPER

which specifies hyperelastic elastoviscoplastic model is to be used for a solid phase 
constitutive equation. In addition to the Lame coefficients that are still required as the 
mechanical properties of the unyielded material, this model also requires a plastic 
viscosity and a yield stress, viz.

Plastic Viscosity = LINEAR 1.0 2.0
EVP Yield Stress = CONSTANT 50.0

Technical Discussion

Detailed theoretical discussion, usage tutorials and troubleshooting tips for this model 
are covered in the EVP tutorial (GT-019.1). Usage examples for four different strain 
scenarios are given, including a solid yielding from an applied mechanical load and a 
solid yielding from high shrinkage stress during drying.

Theory 

No Theory.

FAQs

Problem – Trouble in continuing the first few time steps.

Solution – You may have a fast drying case with slow diffusion in the coating. Instead 
of decreasing the time step size according to the normal procedure and intuition, 
increase the time step size. With fast drying and slow diffusion, the initial 
concentration gradient is very steep at the drying surface. This is a very difficult 
numerical problem to solve. So when you increase the time step size, in effect, you are 
relaxing the concentration gradient the program is solving, that will get you past the 
initial numerical difficulty. However, even if the code can handle such a condition, the 
concentration and stress profile may appear very wavy. This waviness only reflects the 
degree of difficulty the code encountered and is not part of the real solution. In this 
case, refining the mesh towards the drying surface will only increase the waviness of 
the solution. Drawing from this observation, coarsening the mesh will also get you past 
this initial numerical difficulty. Although this condition may pose numerical stability 
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problems initially, it does not affect subsequent solution. And most of the time, one is 
not interested in the solution from the initial time steps.

Problem – Trouble in converging in the plastic region.

Solution – Reduce the time step size because viscoplasticity is in itself a time 
dependent problem and elasticity in itself is not. Before the material yields, time 
dependency is induced only through the drying process. The reduction in time step size 
depends on the value of the plastic viscosity. The lower the viscosity, the small time 
step should be used. Also, it takes more iterations to converge a time step in the 
viscoplastic region than the elastic region, so increasing the maximum allowable 
iterations per time step will help.

Other Cautions:

Always set the MASS_FRACTION in the input file to be the same as the Stress 
Free Solvent Vol Frac in the material file.

The code has been tested for a wide range of initial solvent volume fractions 
(up to 0.85). When using very high initial solvent volume fractions 
(approaching 0.85 or beyond), use with caution.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January 
11, 2001

S.Y. Tam’s thesis: “Stress Effects in Drying Coatings,” Ph.D Dissertation, University of 
Minnesota, 1997

 

5.2.3 Convective Lagrangian Velocity

Description/Usage

In solid mechanics, when the deformation of the mesh is Lagrangian, i.e., motion of the 
solid can be described by a mapping from the stress-free state (undeformed state) to the 
deformed state, it is often desirable to prescribe a convective velocity of the stress-free 
state that can lead to inertial forces through deformation (see Technical Discussion 
below). This required card allows for the specification of solid-body translation or 

Convective Lagrangian Velocity = {model_name} {float_list} [L/t]
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rotation of the stress-free state, and results in an inertial term on the otherwise quasi 
static solid momentum equation.

Definitions of the input parameters are as follows:

{model_name} Name of the prescribed velocity model. This parameter 
can have one of the following values: NONE, 
CONSTANT, or ROTATIONAL.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model below. Note that not all 
models employ a {float_list}.

Thus,

NONE the stress-free state is assumed to be unmoving. No 
floating point input values are required with this model.

CONSTANT <float1> <float2> <float3>

the stress-free state is one of solid-body translation, viz. 
it moves uniformly with a velocity specified by three 
orthogonal components:

<float1> - X-component of velocity
<float2> - Y-component of velocity
<float3> - Z-component of velocity (for 3-D)

ROTATIONAL <float1> <float2> <float3> <float4>

the stress-free state is one of solid-body rotation at a 
specified rotation rate.

<float1> - Rotation rate, in radians/sec.
<float2> - X-position of axis of rotation (must be 

constant in 3D).
<float3> - Y-position of axis of rotation (must be 

constant in 3D, viz. the axis must be 
perpendicular to both the X and Y axes, 
viz. the axis must be the Z axis.

<float4> -  Set to zero. Parameter is not used for now.

Note that this model is applicable in 2-D and certain 3-D 
problems in which the rotation axis is the Z-axis. To 
generalize this model to three-dimensions, the proper 
input will require a point and a direction of the rotation 
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axis. In two-dimensions, the axis of rotation is the Z-
direction.

Examples

The following is a sample input card:

Convective Lagrangian Velocity = ROTATIONAL 25.0  1. 1. 0.

This card is associated with a material file, and hence a material that is of 
LAGRANGIAN or TOTAL_ALE type (see Mesh Motion card). That material’s stress-
free state, as specified by this model, will rotate about an axis that is located at [1.0, 
1.0, 0] at 25 radians/sec (assuming seconds are the time scale of the problem).

Technical Discussion

This capability is often used when problems require a force or a boundary condition to 
be applied to a solid material that is moving relative to the source, or the desired frame 
of reference. Such constraints arise mainly in fluid-structure interaction problems 
where one solid material is moving relative to another, with a fluid material in between, 
e.g. deformable blade or knife metering/pushing liquid over a flat or round substrate. 
These models have also been used in porous-material translation relative to a drying 
source (see references below).

Specification of any model but NONE on this card produces the left-hand-side term in 
the equation for quasi static equilibrium:

(5-20)

 is the Cauchy stress tensor of the solid material, and  is the body force per unit 
volume. The first term is a result of the specified advection of the stress-free state. , 
which depends solely on the user-prescribed velocity and the current state of 
deformation, is by definition

. (5-21)

where  is the material deformation gradient tensor (computed somewhat differently 
depending on the formulation, as described in the references below), and  is the 
stress-free state velocity field specified by this card.

Theory

No Theory.
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FAQs

No FAQs.

References

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

 

5.2.4 Lame MU

Description/Usage

This required card is used to specify the model for the Lame coefficient µ for the solid 
constitutive equation (see Sackinger, et. al. 1995, and Solid Constitutive Equation 
card); this coefficient is equivalent to the shear modulus  in most cases, as described 
below. 

Definitions of the input parameters are as follows:

{model_name} Name of the Lame Mu coefficient model. This 
parameter can have one of the following values: 
CONSTANT, POWER_LAW, CONTACT_LINE, 
SHEAR_HARDEN, EXPONENTIAL, 
DENSE_POWER_LAW, or USER.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model.

The details of each model option are given below:

CONSTANT <float1>

Lame MU = {model_name} {float_list} [M/Lt2]

G
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For the CONSTANT model, {float_list} is a single 
value: 

<float1> - Standard value of the coefficient µ.

(See Technical Discussion.)

POWER_LAW <float1> <float2> <float3>

The POWER_LAW model is only to be used for 
deformable porous media where the shear modulus is 
allowed to vary as a power of the porosity,  (see 
Scherer, 1992):

(5-22)

The {float_list} contains three values for this model, 
where:

<float1> -  is the base shear modulus at the initial 
porosity (or µ0)

<float2> -  is the porosity in the stress free state
<float3> - m is the powerlaw exponent.

CONTACT_LINE <float1> <float2> <float3> <float4>

The CONTACT_LINE model is a convenient way to 
control mesh deformation near a fixed point and is 
normally used ONLY for ARBITRARY Mesh Motion 
types. This model enables the user to make the shear 
modulus much larger near the contact line (fixed point) 
than far away from the contact line, so that elements 
near the contact line are forced to retain their shape. The 
shear modulus in this model varies inversely with 
distance from the contact line:

(5-23)

r is the distance from the fixed point,  is a decay 
length,  is the modulus far from the contact line, and 

 is the modulus at the contact line.

The {float_list} contains four values for this model, 
where:
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<float1> - Node set number of the fixed point 
(converted to an integer by Goma)

<float2> -  (or µ0)
<float3> -
<float4> -

SHEAR_HARDEN <float1> <float2>

The SHEAR_HARDEN model is:

(5-24)

where  is the coefficient of variation, IIE is the second 
invariant of the strain tensor (see Solid Constitutive 
Equation card),  is the modulus at zero shear.

The {float_list} contains two values for this model, 
where: 

<float1> -  (or µ0)
<float2> -

EXPONENTIAL <float1> <float2> <float3>

The EXPONENTIAL model is used exclusively for 
poroelastic problems, and allows for an exponential 
dependence of the shear modulus µ (or G) on porosity:

(5-25)

where  is the rate of decay,  is the porosity in the 
stress-free state,  is the modulus at zero shear.

The {float_list} contains three values for this model, 
where:

<float1> -
<float2> -
<float3> -

DENSE_POWER_LAW <float1> <float2> 

The DENSE_POWER_LAW model is used mostly for 
drying/consolidation problems for which it is desired to 
have a plateau max-pack modulus behavior. This option 
requires input from the Stress Free Solvent Vol Frac 
card (y0 in equation below), and is used for solvent 
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drying from a condensed, gelled phase. The functional 
form for the shear modulus is

(5-26)

where  is the power law exponent,  is deformation 
gradient tensor (see Solid Constitutive Equation card), and 

 is the modulus at zero shear. This function is truncated 
or clipped at the low end value at G=10-12.

The {float_list} contains three values for this model, 
where: 

<float1> -
<float2> -
<float3> -

TABLE  <integer1>  <character_string1> {LINEAR | BILINEAR}  [integer2] 
[FILE = filenm]

Please see discussion at the beginning of the material 
properties chapter 5 for input description and options.  

USER <float1>,..., <floatn>

For the USER model, {float_list} is of arbitrary length, 
and the values are used through the param[] array in 
usr_lame_mu function to parameterize a user-defined 
model. See examples in user_mp.c.

All modulus values in these equations have the same units as Lame Mu, i.e., M/Lt2.

Examples

Following is a sample card:

Lame MU = CONSTANT 1.

Technical Discussion

Note that µ and λ, (see the Lame LAMBDA card) are related to the more often used 
Young’s Modulus and Poisson’s Ratio by the following standard expressions:
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(5-27)

where E is the Young’s modulus and υ is Poisson’s ratio. A significant limiting case is 
approached as υ approaches 0.5, in which case the solid becomes incompressible.

The POWER_LAW option could easily be adapted to a concentration measure, viz. 
made dependent on the concentration of some species (see EQ = species_bulk card). 
This can be done through the user option, and in fact in usr_lame_mu function of 
file user_mp.c in the Goma distribution has an example that is appropriate. Also 
note that all of these models are available for the elastoviscoplastic option on the 
Plasticity card, and for the real-solid in TOTAL_ALE mesh motion.

Theory

No Theory.

FAQs

Important note that when one desires an incompressible solid through the use of 
INCOMP_PSTRAIN type models, by using an incompressible continuity equation in a 
LAGRANGIAN mesh region (see EQ = continuity), then the bulk modulus, or Lame 
Lambda expansion term is also added on. So to get a truly incompressible response, 
one must set the Lame LAMBDA coefficient to zero.

References

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid 
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite 
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

Scherer, G.W., 1992, “Recent Progress in Drying of Gels”, J. of Non-Crystalline Solids, 
147&148, 363-374

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January 
11, 2001

GTM-027: Probing Plastic Deformation in Gelatin Films during Drying, M. Lu, S. Y. 
Tam, A. Sun, P. R. Schunk and C. J. Brinker, 2000
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SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.2.5 Lame LAMBDA

Description/Usage

This required card is used to specify the model for the Lame coefficient λ for the solid 
constitutive equation (see Sackinger, et. al., 1995). When using a nonlinear constitutive 
equation for ALE mesh motion, this coefficient is related to the bulk modulus:

(5-28)

Definitions of the input parameters are as follows:

{model_name} Name of the Lame LAMBDA model. This parameter can 
have one of the following values: CONSTANT, 
POWER_LAW, EXPONENTIAL or USER.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model below.

The models are described here.

CONSTANT <float1>

For the CONSTANT model, {float_list} is a single 
value (see Lame MU card for relationship to other more 
common elastic constants):

<float1> - Standard value of the elastic constant λ

POISSON_RATIO  <float1>

For any Lame MU model (see Lame MU card) this 
option uses the following formula to compute Lame 
Lame LAMBDA:

Lame LAMBDA = {model_name} {float_list} [M/Lt2]

K λ
2
3
---µ+=

λ 2µν
1 2ν–( )

--------------------=
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<float1> - Poisson’s ratio nu.  

POWER_LAW <float1> <float2> <float3>

The POWER_LAW model can be used in deformable 
porous media where the Lame coefficient varies as a 
power of the porosity,  (Scherer, 1992):

(5-29)

 The {float_list} contains three values for this model, 
where:

<float1> -  is the base Lame LAMBDA modulus at 
the initial porosity.

<float2> -  is the porosity in the stress-free state
<float3> - m is the powerlaw exponent, as shown

USER <float1>,..., <floatn>

For the USER model, {float_list} is of arbitrary length, 
and the values are used through the param[] array in 
usr_lame_lambda function to parameterize a user-
defined model. See examples in user_mp.c.

Examples

Following is a sample card:

Lame LAMBDA = CONSTANT  1.

Technical Discussion

Please see the Solid Constitutive Equation card for details on the use of this parameter.    
Special consideration is required for INCOMP* type constitutive equations.   The 
isotropic stress term, or pressure, in that case is added onto the constitutive equation, 
and so this parameter must be set to zero so as to prevent any compressibility.

Important note that when one desires an incompressible solid through the use of 
INCOMP_PSTRAIN type models, by using an incompressible continuity equation in a 
LAGRANGIAN mesh region (see EQ = continuity), then the bulk modulus, or Lame 
Lambda expansion term is also added on. So to get a truly incompressible response, 
one must set the Lame LAMBDA coefficient to zero.
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Theory

No Theory.

FAQs

No FAQs.

Reference

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid 
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite 
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

Scherer, G.W., 1992, “Recent Progress in Drying of Gels”, J. of Non-Crystalline Solids, 
147&148, 363-374

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.2.6 Stress Free Solvent Vol Frac

Description/Usage

This required card is used to specify the model for the stress-free solvent volume 
fraction, which is the volume fraction of solvents in the solid material in its stress-free 
state. This card is used exclusively in materials of LAGRANGIAN or TOTAL_ALE 
Mesh Motion types (see Mesh Motion card) which are being modeled as gelled solids 
laden with solvent. At the gel-point, the solid is considered to be stress free, after which 
a reduction of solvent leads to volume shrinkage and hence a rising stress state. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the stress-free solvent volume 
fraction.

<float> the value of the stress-free solvent volume fraction; this 
value is unitless.

Stress Free Solvent Vol Frac = CONSTANT <float> []
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Examples

The following is a sample card:

Stress Free Solvent Vol Frac = CONSTANT 0.5

This specification sets the volume fraction of solvent in the material to 50 per cent. 
That volume fraction is tantamount to the gel point of the material.

Technical Discussion

The stress free state volume fraction of solvent is basically the solvent fraction at which 
a material gels, viz., the state at which the material solidifies from a liquid state.   This 
quantity is used in the continuity equation for incompressible solid materials, through 
which is transported by a variety of diffusion models (see Diffusivity card). The 
continuity equation, viz., EQ = continuity, is applied as follows:

(5-30)

where the dependent variable is the solid phase pressure (see Solid Constitutive 
Equation card). Here detF is the determinant of the deformation gradient tensor, yi is 
the volume fraction of component i (specified by the EQ = species_bulk card), and y0 is 
the volume fraction of total solvents at the stress free state. Clearly, as the solvent 
concentration decreases the local volume of solid decreases, creating a rising stress. 

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January 
11, 2001

detF
˜

1 y0–

1 yi

i

–
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SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.2.7 Solid Thermal Expansion

Description/Usage

This card is used to specify the model for thermal expansion of solid materials. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the thermal expansion coefficient.

SHRINKAGE Model for adding solidification shrinkage stress effects for 
enthalpy models. Experimental only (1/25/2013). 

<float> the value of the thermal expansion coefficient. For the 
SRINKAGE model this float is not used. 

Examples

The following is a sample card:

Solid Thermal Expansion = CONSTANT 0.001

Technical Discussion

When solid materials expand due to temperature changes, the strain field is composed 
of two components, the strain due to the stress field and the strain due to thermal 
expansion:

(5-31)

The strain due to thermal expansion is given by

(5-32)

where  is the linear thermal expansion coefficient and  is the reference temperature 
(see Solid Reference Temperature card). As a result, the solid constitutive relation 
contains an extra term:

Solid Thermal Expansion = {CONSTANT | SHRINKAGE} <float> [1/T]

ε
˜

ε
˜

S( )
ε
˜

T( )
+=

ε
˜

T( )
α T T0–( )δ

˜
=

α T0
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. (5-33)

Note, the linear thermal expansion coefficient is presumed to be independent of strain 
and the Lame constants are presumed to be independent of temperature. (Model is 
hardwired right now in GOMA source, PRS 1/23/2013). 

In the case of the SHRINKAGE model, an additional term is added on to the deviatoric 
stress:

Theory

No Theory.

FAQs

No FAQs.

References

For a discussion of linear thermoelasticity, see (Section 6.2)

Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, 
Prentice-Hall

 

5.2.8 Solid Reference Temperature

Description/Usage

This card is used to specify the model for the solid reference temperature used in the 
thermal expansion of solid materials. Definitions of the input parameters are as 
follows:

CONSTANT  Name of the model for the reference temperature.

<float> A floating point number that is the value of the solid 
reference temperature, .

Solid Reference Temperature = CONSTANT <float> [T]

σ
˜

2µε
˜

λtr ε
˜

( )δ
˜

2µα T T0–( )δ
˜

–+=

Tref
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Examples

The following is a sample card:

Solid Reference Temperature = CONSTANT   90.0

Technical Discussion

See the Solid Thermal Expansion card for a discussion of the use of this property in the 
linear thermoelasticity of solids.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.9 Plastic Viscosity

Description/Usage

This card is used to specify the characteristic viscosity of plastic deformation and is 
required when the Plasticity Equation card is present. Definitions of the input model 
options are as follows:

CONSTANT Name of the model for a constant plastic viscosity.

<float1> - the value of the viscosity.

LINEAR Name of the model for a linear variation in plastic viscosity; 
this model requires two floating point values as parameters.

<float1> - y1, the lower limit of plastic viscosity
<float2> - y2, the upper limit of plastic viscosity

Examples

Following is a sample card:

Plastic Viscosity = {CONSTANT | LINEAR} <float1> [float2] [M/L-t]
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Plastic Viscosity = LINEAR 1.0 100. 

This specification results in a linear variation of plastic viscosity of the 
elastoviscoplasticity constitutive equation with concentration of solvent species 
according to the equation above.

Technical Discussion

Using the concentration of solvent species as the independent variable in the LINEAR 
model, the viscosity y at a certain concentration c is:

(5-34)

where Vsf is the stress-free solvent volume fraction and the solvent volume fraction at 
solidification, which is set by the Stress Free Solvent Vol Fraction card in the 
material file. The input parameters for the LINEAR model are the plastic viscosity 
limits y1 and y2. NOTE: this model activates a linear dependence on concentration and 
hence can only be used for cases in which there is solvent transport.

So for a typical drying/solidification problem, the material file input deck requirements 
are shown as follows:

Stress Free Solvent Vol Frac = CONSTANT 0.6
Plasticity Equation = EVP_HYPER
Plastic Viscosity = LINEAR 1.0 2.0
EVP Yield Stress  = CONSTANT 50.0

Together with these properties one must specify the elastic constants Lame Mu and 
Lame Lambda.

Theory

See Schunk, et. al., 2001 (GT-019.1).

FAQs

No FAQs.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January 
11, 2001

y y1

Vsf c–

Vsf

----------------
 
 
 

y2 y1–( )+=
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GTM-020.0: In-Situ Characterization of Stress Development in Gelatin Film During 
Controlled Drying, M. Lu, S-Y Tam, P. R. Schunk and C. J. Brinker, March 2000.

GTM-027.0: Probing Plastic Deformation in Gelatin Films during Drying, M. Lu, S. Y. 
Tam, A. Sun, P. R. Schunk and C. J. Brinker, 2000.

S.Y. Tam’s thesis: “Stress Effects in Drying Coatings,” Ph.D Dissertation, University of 
Minnesota, 1997

 

5.2.10 EVP Yield Stress

Description/Usage

This card is used to specify the characteristic yield stress for Von Mises yield criterion 
of plastic deformation and is required when the Plasticity Equation card is present. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for a constant yield stress.

<float1> - the value of the yield stress.

LINEAR Name of the model for a linear variation in yield stress; this 
model requires two floating point values as parameters.

<float1> - y1, the lower limit of yield stress
<float2> - y2, the upper limit of yield stress

Examples

Following is a sample card:

EVP Yield Stress = LINEAR  1.0 100.

This specification results in a linear variation of yield stress of the elastoviscoplasticity 
constitutive equation with concentration of solvent species according to the equation 
above.

Technical Discussion

Using the concentration of solvent species as the independent variable, the yield stress 
y at a certain concentration c is:

EVP Yield Stress = {CONSTANT | LINEAR} <float1> [<float2>] [M/L-t2]
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(5-35)

where Vsf is the stress-free solvent volume fraction and the solvent volume fraction at 
solidification, which is set by the Stress Free Solvent Vol Fraction card in the 
material file. The input parameters for the LINEAR model are the plastic viscosity 
limits y1 and y2. NOTE: this model activates a linear dependence on concentration and 
hence can only be used for cases in which there is solvent transport.

So for a typical drying/solidification problem, the material file input deck requirements 
are shown as follows:

Stress Free Solvent Vol Frac = CONSTANT 0.6
Plasticity Equation = EVP_HYPER
Plastic Viscosity = LINEAR 1.0 2.0
EVP Yield Stress  = CONSTANT 50.0

Together with these properties one must specify the elastic constants Lame Mu and 
Lame Lambda.

Theory

See Schunk, et. al., 2001 reference.

FAQs

No FAQs.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, 
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January 
11, 2001

GTM-020.0: In-Situ Characterization of Stress Development in Gelatin Film During 
Controlled Drying, M. Lu, S-Y Tam, P. R. Schunk and C. J. Brinker, March 2000.

GTM-027.0: Probing Plastic Deformation in Gelatin Films during Drying, M. Lu, S. Y. 
Tam, A. Sun, P. R. Schunk and C. J. Brinker, 2000.

S.Y. Tam’s thesis: “Stress Effects in Drying Coatings,” Ph.D Dissertation, University of 
Minnesota, 1997
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5.2.11 Pseudo-Solid Constitutive Equation

Description/Usage

This card specifies the constitutive equation used to control mesh motion for arbitrary 
Lagrangian Eulerian solid mechanics and is required for use with the TOTAL_ALE 
mesh motion type (see Mesh Motion card). Details are discussed in references provided 
below.

The single input parameter is the type of model for the constitutive equation:

{model_name} The name of the constitutive equation; {model_name} can 
be one of the following:

LINEAR - the mesh deformations are assumed to be 
small and thus simplifies the analysis of strain and 
stress.

NONLINEAR - a nonlinear neo-Hookean elastic model 
for which the deformations can be large without loss of 
frame invariance. This is the recommended model (and 
all materials currently default to NONLINEAR if the 
mesh is arbitrary).

The following models are allowed but not recommended.

HOOKEAN_PSTRAIN - a nonlinear neo-Hookean 
model with plane strain assumption (2D only). 

INCOMP_PSTRAIN - an incompressible nonlinear neo-
Hookean model with plane strain and a Lagrangian 
pressure constraint on the volume.

INCOMP_3D - Incompressible version of the neo-
Hookean solid in a special Segalman formulation that 
removes the volume-change from the strain tensor (like 
the INCOMP_PSTRAIN model above), and is 
specifically designed for 3D applications (not a widely 
used option).

Note again the requirement that the Mesh Motion type for the material in which this 
constitutive equation applies must be TOTAL_ALE.

Examples

Pseudo-Solid Constitutive Equation = NONLINEAR

Pseudo-Solid Constitutive Equation = {model_name}
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This card specifies the mesh motion in the ALE solid region is to conform to the 
nonlinear elastic model, as described on the Solid Constitutive Equation card. This card 
is required together with Pseudo-Solid Lame Mu and Pseudo-Solid Lame Lambda 
cards.

Technical Discussion

The Pseudo-Solid mesh motion, like the ARBITRARY mesh motion, is governed by the 
equations of elasticity. These cards, together with the other cards required by the real 
solid constitutive behavior, are required for ALE solid mechanics. The theory is 
explained in detail in the provided references. Throughout the boundary condition 
options, the user will notice an appended _RS. This signifies that the boundary 
conditions apply to the real-solid elasticity in TOTAL_ALE problems. All other 
boundary conditions on force and displacement, viz. those without the _RS, are applied 
to the mesh motion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid 
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite 
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.
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5.2.12 Pseudo-Solid Lame MU

Description/Usage

This card is required only for TOTAL_ALE mesh motion types (see Mesh Motion card) 
and is used to specify the model for the Lame coefficient µ for the mesh motion solid 
constitutive equation (see Sackinger et al. 1995, and Solid Constitutive Equation card); 
this coefficient is equivalent to the shear modulus . The model list here is 
abbreviated as compared to the Lame MU card as these properties are just used to aid in 
the elastic mesh motion, independent of the material.

Definitions of the input parameters are as follows:

{model_name} Name of the Lame’ Mu coefficient model. This 
parameter can have one of the following values: 
CONSTANT or CONTACT_LINE.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model below.

The details of each model option are:

CONSTANT <float1>

For the CONSTANT model, {float_list} is a single 
value: 

<float1> - Standard value of the µ (or the shear 
modulus G for the mesh). See Pseudo 
Solid Constitutive Equation card.

CONTACT_LINE <float1> <float2> <float3> <float4>

The CONTACT_LINE model is a convenient way to 
control mesh deformation near a fixed point and is 
normally used ONLY for TOTAL_ALE or ARBITRARY 
Mesh Motion types. This model enables the user to 
make the shear modulus much larger near the contact 
line (fixed point) than far away from the contact line, so 
that elements near the contact line are forced to retain 
their shape. The shear modulus in this model varies 
inversely with distance from the contact line:

Pseudo-Solid Lame MU = {model_name} {float_list} [M/Lt2]

G
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(5-36)

r is the distance from the fixed point,  is a decay 
length,  is the modulus far from the contact line, and 

 is the modulus at the contact line.

The {float_list} contains four values for this model, 
where:

<float1> - Node set number of the fixed point 
(converted to an integer by Goma)

<float2> -  (or µ0)
<float3> -
<float4> -

Examples

Pseudo-Solid Lame MU = CONSTANT 0.5

This card specifies that the current material have a constant shear modulus of 0.5 for 
the mesh elasticity. Note that the real-solid mesh Lame MU is set with the Lame MU 
card.

Technical Discussion

It is best to consult the TALE tutorial (Schunk, 1999) for details of this card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid 
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite 
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.
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5.2.13 Pseudo-Solid Lame LAMBDA

Description/Usage

This card is required only for  TOTAL_ALE mesh motion types (see Mesh Motion card)  
and is used to specify the model for the Lame coefficient λ for the mesh motion 
elasticity (see Sackinger et al., 1995).

This material parameter currently has only one possible model type (CONSTANT) 
with only a single required input value, as follows:

CONSTANT Name of the Lame LAMBDA coefficient model.

<float1> - Standard value of µ (or the shear modulus G 
for the mesh). See Pseudo-Solid Constitutive 
Equation card.

Examples

The following is a sample input card:

Pseudo-Solid Lame LAMBDA = CONSTANT 1.

Technical Discussion

See discussion on Lame LAMBDA card and Solid Constitutive Equation card for more 
details. The main difference here is that this modulus is applied only to the moving 
mesh, and not the real solid as in an ALE solid mechanics simulation.

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE) 
CAPABILITY and its applicability to coating with/on deformable media, August 6, 
1999, P. R. Schunk

Pseudo-Solid Lame LAMBDA = CONSTANT <float> [M/Lt2]



872 Revised: 6/12/13

5.2.14  Liquid Constitutive Equation  

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid 
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite 
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

 

5.2.14 Liquid Constitutive Equation

Description/Usage

This required card is used to specify the stress, strain-rate/strain constitutive equation 
associated with the momentum equations (e.g. Navier-Stokes equations) and contains 
Newtonian and generalized Newtonian models. The single input parameter is the 
{model_name} with the options listed below:

{model_name} Name of the constitutive equation, being one of the 
following values: NEWTONIAN, POWER_LAW, 
CARREAU, BINGHAM, CARREAU_WLF, CURE, 
THERMAL, EPOXY, SUSPENSION, 
FILLED_EPOXY, POWERLAW_SUSPENSION, 
CARREAU_SUSPENSION, or 
HERSCHEL_BULKLEY. Each of these constitutive 
models require additional parameters that are entered 
via additional cards, as described below.

Thus,

NEWTONIAN For a simple constant viscosity Newtonian fluid. This 
model requires one floating point value, µ, where µ is 
the viscosity in the chosen units for the problem and is 
entered with the Viscosity card.

POWER_LAW For a power law model. This model requires two 
parameters. The first, µ0, is the zero strain-rate limit of 
the viscosity and is entered with the Low Rate Viscosity 
card. The second, n, is the exponent on the strain rate 
which can take on any value between 1 (Newtonian) and 
0 (infinitely shear thinning). n is entered with the Power 
Law Exponent card. The form of the equation is

(5-37)

Liquid Constitutive Equation = {model_name}

µ µ0γ·
n 1–

=
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where  is the second invariant of the shear-rate tensor. 
To obtain solutions with the power law model, it is best 
to start with a Newtonian initial guess since the 
viscosity becomes infinite at zero shear-rate.

CARREAU For a Carreau-Yasuda strain-rate thinning or thickening 
relation. This option requires five floating point values. 
The first, µ0, is the zero strain-rate limit of the viscosity 
and is entered with the Low Rate Viscosity card. The 
second, n, is the exponent on the strain rate which can 
take on any value between 1 (Newtonian) and 0 
(infinitely shear thinning). n is entered with the Power 
Law Exponent card. The third, µinf, is the high-strain-
rate limit to the viscosity and is entered with the High 
Rate Viscosity card. The fourth, λ, is the time constant 
reflecting the strain-rate at which the transition between 
µ0 and µinf takes place. λ is entered with the Time 
Constant card. The fifth, a, is a dimensionless parameter 
that describes the transition between the low-rate and 
the power-law region and is entered with the Aexp card. 
The form of the equation is

(5-38)

where  is the second invariant of the shear-rate tensor.

BINGHAM For a Bingham-Carreau-Yasuda fluid. This option 
requires eight floating point values. It uses the same 
parameters as the CARREAU model with the addition 
of coefficients to describe the yield and temperature 
dependent behavior. The first, µ0, is the zero strain-rate 
limit of the viscosity and is entered with the Low Rate 
Viscosity card. The second, n, is the exponent on the 
strain rate which can take on any value between 1 
(Newtonian) and 0 (infinitely shear thinning). n is 
entered with the Power Law Exponent card. The third, 
µinf, is the high-strain-rate limit to the viscosity and is 
entered with the High Rate Viscosity card. The fourth, λ, 
is the time constant reflecting the strain-rate at which 
the transition between µ0 and µinf takes place. λ is 
entered with the Time Constant card. The fifth, a, is a 
dimensionless parameter that describes the transition 

γ·

µ µinf µ0 µinf–( )+ 1 λγ·( )
a

+( )

n 1–( )
a

----------------

=

γ·
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between the low-rate and the power-law region and is 
entered with the Aexp card. The form of the equation is

(5-39)

where  is a simplified temperature dependent shift 
factor that is expressed as an Arrhenius type 
temperature dependence of the following form:

(5-40)

The exponent for the temperature dependence, Eµ/R, is 
input using the Thermal Exponent card. Tref is input 
using the Reference Temperature card in the thermal 
properties section of the material file. The stress at 
which the material yields is input with the Yield Stress 
card. The sharpness of the transition from the solid to 
fluid state, F, is indicated with the Yield Exponent card.

CARREAU_WLF An extension of the Carreau-Yasuda model to 
incorporate a temperature-dependent shift in shear-rate 
according to the Williams-Landel-Ferry equation 
(Hudson and Jones, 1993). The form of the equation is

(5-41)

where  is another form of the temperature-dependent 
shift factor:

(5-42)

Here  is a thermal exponential factor (can be 
Arrhenius) and is input by the Thermal Exponent card; 

 is the WLF constant 2 and is input by the Thermal 
WLF Constant2 card. µ0, is the zero strain-rate limit of 
the viscosity and is entered with the Low Rate Viscosity 
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card. n, is the exponent on the strain rate which can take 
on any value between 1 (Newtonian) and 0 (infinitely 
shear thinning) and is entered with the Power Law 
Exponent card. µinf, is the high-strain-rate limit to the 
viscosity and is entered with the High Rate Viscosity 
card. λ, is the time constant reflecting the strain-rate at 
which the transition between µ0 and µinf takes place and 
is entered with the Time Constant card. a, is a 
dimensionless parameter that describes the transition 
between the low-rate and the power-law region and is 
entered with the Aexp card.

CURE For a model to increase the viscosity with the extent of 
reaction. The Cure model can be used to represent 
polymerizing systems whose viscosity depends on the 
extent of reaction. The form of the equation is

(5-43)

This option requires four floating point values. The first, 
µ0, is the reference state viscosity and is entered with 
the Low Rate Viscosity card. The constant, αg, is entered 
with the Cure Gel Point card and marks the extent of 
reaction at the transition from the liquid to the solid 
state. The exponents A and B are entered with the Cure 
A Exponent and Cure B Exponent cards.

THERMAL For a temperature-dependent viscosity. This option, 
which requires two floating point values, can be used to 
represent fluids that change viscosity with temperature. 
The form of the equation is

(5-44)

where the reference state viscosity, µ0, is entered with 
the Low Rate Viscosity card. The exponent, Eµ/R, is 
specified using the Thermal Exponent card.

EPOXY For a thermal and curing component. The Epoxy model 
combines the temperature dependence of the 
THERMAL option with the extent of reaction 
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dependence of the CURE option. The functional form 
of the equation is:

(5-45)

Five cards must be used to specify all the parameters for 
this model. The first, µ0, is the reference state viscosity 
and is entered with the Low Rate Viscosity card. The 
thermal exponent, Eµ/R, is specified using the Thermal 
Exponent card. The constant, αg, is entered with the 
Cure Gel Point card and marks the extent of reaction at 
the transition from the liquid to the solid state. The 
exponents A and B are entered with the Cure A Exponent 
and Cure B Exponent cards.

SUSPENSION For simulating a carrier fluid with high-volume fraction 
particles. This option invokes a concentration-
dependent viscosity model useful in modeling solid 
suspensions. The functional form associated with this 
option is,

(5-46)

where µ0 is effectively the viscosity of the suspending 
fluid specified with the Low Rate Viscosity card, n is an 
exponent specified by the Power Law Exponent card 
and is typically less than zero. Cmax is the “binding” 
solid concentration and is specified with the Suspension 
Maximum Packing card. Ci is the solid concentration 
and is tied to a convective-diffusion equation specified 
in the equation section of the Problem Description. The 
correct species number “i” is specified with the 
Suspension Species Number card. Note that for Ci > 
Cmax and n < 0, the model as written above is physically 
undefined. For concentrations in this range, a very large 
value for viscosity will be used, effectively solidifying 
the material.

FILLED_EPOXY This option combines the cure and thermal dependence 
of the EPOXY model with the solid volume fraction 
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dependence of the SUSPENSION model. The 
functional form of this equation is

(5-47)

with the temperature Tg being calculated from

(5-48)

Here the viscosity now depends on extent of reaction, 
temperature and solid volume fraction. Nine cards must 
be specified to define the parameters for this option and 
are entered in the following manner. The first, µ0, is the 
reference state viscosity and is entered with the Low 
Rate Viscosity card. n is the exponent for suspension 
behavior and is specified by the Power Law Exponent 
card; it is typically less than zero. Cmax is the “binding” 
solid concentration and is specified with the Suspension 
Maximum Packing card. Ci is the solid concentration 
and is tied to a convective-diffusion equation specified 
in the equation section of the previous chapter. The 
correct species number “i” is identified with the 
Suspension Species Number card. Here  is a thermal 
exponential factor and is input by the Thermal Exponent 
card;  is a second thermal exponent and is entered via 
the Cure B Exponent card. The constant for the curing 
model, αg, is entered with the Cure Gel Point card and 
marks the extent of reaction at the transition from the 
liquid to the solid state.  The cure exponent used in the 
EPOXY model is here assumed to be constant (-4/3) 
and is fixed in the model. The constant A in the gel 
temperature equation is entered with the Cure A 
Exponent card and the temperature  is entered with 
the Unreacted Gel Temperature card. Although it does 
not appear directly in the model equations, the Cure 
Species Number must also be specified.

POWERLAW_SUSPENSION
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This is a specialized research model that incorporates 
the power law model with the suspension model to try 
and simulate particles suspending in shear-thinning 
fluid. This option requires five input values. The first, 
µ0, is the zero strain-rate limit of the viscosity of the 
solvent and is entered with the Low Rate Viscosity card. 
The second, n, is the exponent on the strain rate which 
can take on any value between 1 (Newtonian) and 0 
(infinitely shear thinning). n is entered with the Power 
Law Exponent card. The third value is the exponent for 
the suspension Krieger model, which is input through 
the Thermal Exponent, m. The fourth term is the 
suspension maximum packing, Cmax, which is entered 
through the Suspension Maximum Packing card. Ci is 
the solid concentration and is tied to a convective-
diffusion equation specified in the equation section of 
the previous chapter. The correct species number “i” is 
identified with the Suspension Species Number card. 
The form of the equation is

(5-49)

where  is the second invariant of the shear-rate tensor. 
It is best to start with a Newtonian initial guess for the 
power law suspension model, since the viscosity for the 
power law model will become infinite at zero shear-rate.

CARREAU_SUSPENSION

This model is a hybrid for the flow of particle-laden 
suspensions in shear-thinning fluids. It uses a Carreau-
Yasuda strain-rate thinning or thickening relation for the 
suspending fluid and a Krieger model for the 
suspension. This option requires eight input values. The 
first, µ0, is the zero strain- rate limit of the viscosity and 
is entered with the Low Rate Viscosity card. The second, 
n, is the exponent on the strain rate which can take on 
any value between 1 (Newtonian) and 0 (infinitely shear 
thinning). n is entered with the Power Law Exponent 
card. The third, µinf, is the high-strain-rate limit to the 
viscosity and is entered with the High Rate Viscosity 
card. The fourth, λ, is the time constant reflecting the 
strain-rate at which the transition between µ0 and µinf 
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takes place. λ is entered with the Time Constant card. 
The fifth, a, is a dimensionless parameter that describes 
the transition between the low-rate and the power-law 
region and is entered with the Aexp card. The sixth value 
is the exponent for the suspension Krieger model, which 
is input through the Thermal Exponent, m. The seventh 
term is the suspension maximum packing, Cmax, which 
is entered through the Suspension Maximum Packing 
card. Ci is the solid concentration and is tied to a 
convective-diffusion equation specified in the equation 
section of the previous chapter. The correct species 
number “i” is identified with the Suspension Species 
Number card.The form of the equation is

(5-50)

where  is the second invariant of the shear-rate tensor. 

HERSCHEL_BULKLEY

This is a variant on the power law model that includes a 
yield stress. It requires three input values to operate: a 
reference viscosity value, µ0, a power-law exponent, n. 
and a yield shear stress value, τy. The model for this 
constitutive relations is as follows:

(5-51)

The nature of this relation is best seen by multiplying 
the entire relation by the shear rate to produce a relation 
between shear stress and shear rate. In this manner it can 
be seen that the shear stress does not go to zero for zero 
shear rate. Instead it approaches the yield shear stress 
value. Put another way, only for imposed shear stresses 
greater than the yield stress will the fluid exhibit a non-
zero shear rate. This is effective yielding behavior.

A caveat needs stating at this point. This model is 
essentially a superposition of two power-law models. 
One with the supplied exponent and the other with an 
implicit exponent of n = 0. It has long been observed 
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that power-law models with exponents approaching zero 
exhibit very poor convergence properties. The  
Herschel_Bulkley model is no exception. To alleviate 
these convergence problems somewhat, the sensitivities 
of the yield stress term with respect to shear rate has not 
been included in the Jacobian entries for this viscosity 
model. This helps in that it allows for convergence at 
most yield stress values, but also means that the iteration 
scheme no longer uses an exact Jacobian. The difference 
is seen in that this model will take relatively more 
iterations to converge to an answer. The user should 
expect this and not be too troubled (it’s alright to be 
troubled a little).

Examples

The following is a sample card setting the liquid constitutive equation type to 
NEWTONIAN and demonstrates the required cards:

Liquid Constitutive Equation = NEWTONIAN
Viscosity = CONSTANT 1.00

The following is a sample card setting the liquid constitutive equation type to 
POWER_LAW and demonstrates the required cards:

Liquid Constitutive Equation = POWER_LAW
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.

The following is a sample card setting the liquid constitutive equation type to 
CARREAU and demonstrates the required cards:

Liquid Constitutive Equation = CARREAU
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.
High Rate Viscosity= CONSTANT 0.001
Time Constant = CONSTANT 1.
Aexp = CONSTANT 1.

The following is a sample card setting the liquid constitutive equation type to 
BINGHAM and demonstrates the required cards:

Liquid Constitutive Equation = BINGHAM
Low Rate Viscosity= CONSTANT 10.00
Power Law Exponent= CONSTANT .70
High Rate Viscosity= CONSTANT 0.01
Time Constant = CONSTANT 100.
Aexp = CONSTANT 2.5
Thermal Exponent   = CONSTANT 1.
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Yield Stress = CONSTANT 5.
Yield Exponent = CONSTANT 1.0
Reference Temperature= CONSTANT 273.

The following is a sample card setting the liquid constitutive equation type to 
CARREAU_WLF and demonstrates the required cards:

Liquid Constitutive Equation = CARREAU_WLF
Low Rate Viscosity= CONSTANT 10.00
Power Law Exponent= CONSTANT .70
High Rate Viscosity= CONSTANT 0.01
Time Constant = CONSTANT 100.
Aexp = CONSTANT 2.5
Thermal Exponent   = CONSTANT 1.
Thermal WLF Constant2   = CONSTANT 0.5
Reference Temperature= CONSTANT 273.

The following is a sample card setting the liquid constitutive equation type to CURE 
and demonstrates the required cards:

Liquid Constitutive Equation = CURE
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.

The following is a sample card setting the liquid constitutive equation type to 
THERMAL and demonstrates the required cards:

Liquid Constitutive Equation = THERMAL
Low Rate Viscosity= CONSTANT 1.
Thermal Exponent= CONSTANT 9.

The following is a sample card setting the liquid constitutive equation type to EPOXY 
and demonstrates the required cards:

Liquid Constitutive Equation = EPOXY

Liquid Constitutive Equation = FILLED_EPOXY
Low Rate Viscosity= CONSTANT 1.e5
Thermal Exponent= CONSTANT 9.
Cure Gel Point = CONSTANT 0.8
Cure A Exponent= CONSTANT 0.3
Cure B Exponent= CONSTANT 43.8

The following is a sample card setting the liquid constitutive equation type to 
SUSPENSION and demonstrates the required cards:

Liquid Constitutive Equation = SUSPENSION
Low Rate Viscosity= CONSTANT 1.e5
Power Law Exponent = CONSTANT -3.0
Suspension Maximum Packing= CONSTANT 0.49
Suspension Species Number       = 0
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The following is a sample card setting the liquid constitutive equation type to 
FILLED_EPOXY and demonstrates the required cards:

Liquid Constitutive Equation = FILLED_EPOXY
Low Rate Viscosity = CONSTANT 1.e5
Power Law Exponent = CONSTANT -3.0
Thermal Exponent = CONSTANT 9.
Suspension Maximum Packing = CONSTANT 0.49
Suspension Species Number = 0
Cure Gel Point = CONSTANT 0.8
Cure A Exponent = CONSTANT 0.3
Cure B Exponent = CONSTANT 43.8
Cure Species Number = 2
Unreacted Gel Temperature = CONSTANT 243

The following is a sample card setting the liquid constitutive equation type to 
POWERLAW_SUSPENSION and demonstrates the required cards:

Liquid Constitutive Equation = POWERLAW_SUSPENSION
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.
Thermal Exponent = CONSTANT     -1.82
Suspension Maximum Packing= CONSTANT      0.68
Suspension Species Number= 0

The following is a sample card setting the liquid constitutive equation type to 
CARREAU_SUSPENSION and demonstrates the required cards:

Liquid Constitutive Equation = CARREAU_SUSPENSION
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.
High Rate Viscosity= CONSTANT 0.001
Time Constant = CONSTANT 1.
Aexp = CONSTANT 1.
Thermal Exponent = CONSTANT     -1.82
Suspension Maximum Packing= CONSTANT      0.68
Suspension Species Number= 0

The following card gives an example of the HERSCHEL_BULKLEY model
Liquid Constitutive Equation    = HERSCHEL_BULKLEY
Low Rate Viscosity              = CONSTANT      0.337
Power Law Exponent              = CONSTANT      0.817
Yield Stress                    = CONSTANT      1.39

Technical Discussion

See Description/Usage section for this card.
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Theory

The NEWTONIAN, POWER_LAW, and CARREAU models are described in detail 
in Bird, et al. (1987). Details of the continuous yield stress model used in the Bingham-
Carreau-Yasuda (BINGHAM) model, which is a Carreau model combined with a 
continuous yield stress model, can be found in Papanastasiou (1987).

FAQs

No FAQs.

Reference

Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids, 
2nd ed., Wiley, New York, Vol. 1.

Hudson, N. E. and Jones, T. E. R., 1993. “The A1 project - an overview”, Journal of 
Non-Newtonian Fluid Mechanics, 46, 69-88.

Papanastasiou, T. C., 1987. "Flows of Materials with Yield," Journal of Rheology, 31 
(5), 385-404.

Papananstasiou, T. C.,  and Boudouvis, A. G., 1997. "Flows of Viscoplastic Materials: 
Models and Computation," Computers & Structures, Vol 64, No 1-4, pp 677-694.

 

5.2.15 Viscosity

Description/Usage

This card is used to specify the viscosity model for the liquid constitutive equation (see 
Sackinger et al., 1995). Definitions of the input parameters are as follows:

{model_name} The name of the viscosity model, which can be one of 
the following: CONSTANT, USER, USER_GEN, or 
FILL, LEVEL_SET, CONST_PHASE_FUNCTION.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model below. Note that not all 
models employ a {float_list}.

Viscosity = {model_name} {float_list} [M/Lt]
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Thus,

CONSTANT <float1>

This option specifies a constant viscosity for a 
Newtonian fluid. The {float_list} has a single value:

<float1> - value of viscosity

USER <float1>... <floatn>

This option specifies that the viscosity will be given by 
a user-defined model; the model must be incorporated 
into Goma by modifying function “usr_viscosity” 
in file user_mp.c. The model parameters are entered in 
the {float_list} as <float1> through <floatn> and passed 
to the routine as an array.

USER_GEN <float1>... <floatn>

This option specifies that the viscosity will be given by 
a generalized user-defined model. This user-defined 
model must be incorporated by modifying the routine 
“usr_viscosity_gen” in the file user_mp_gen.c. 
Any number of parameters can be passed (via <float1> 
through <floatn>) in here.

FILL <float1> <float2>

The {float_list} for this option requires two values. It 
invokes a FILL dependent viscosity that is set to the 
value of float1 if the FILL variable is 1 and  float2 if the 
FILL variable is 0.

LEVEL_SET <float1> <float2> <float3>

This model is used to vary the viscosity in the flow 
region when a level set function is used to track the 
boundary between two fluids using level set interface 
tracking. This choice assures a smooth transition in 
density across the zero level set contour. The {float_list} 
contains three values for this model, where:

<float1> Fluid viscosity in the negative regions of 
the level set function, 

<float2> Fluid viscosity in the positive regions of 
the level set function, 

µ-

µ+
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<float3> Length scale over which the transition 
occurs, . If this parameter is set to zero, 
it will default to one-half the Level Set 
Length Scale value specified elsewhere in 
the input deck.

Note:  a better way to specify the identical viscosity 
model  is to make use of the 2nd Level Set Viscosity 
card documented also in this manual.

CONST_PHASE_FUNCTION <floatlist> <float1> <float2>

This model is used to vary the viscosity in the flow 
regime when phase functions are used to track the 
motion of muliple phases. This choice assures a smooth 
transition in viscosity across the phase boundaries. The 
{float_list} contains a variable number of values that 
depend on the number phase functions being tracked, 
where:

<floatlist> list of float variables equal to the number 
of phase functions.  These are the 
constant viscosities associated with each 
phase in order from 1 to number of phase 
functions.  

<float1> Length scale over which the transition  
between one phases viscosity value to the 
other occurs,  . If this parameter is set to 
zero, it will default to one-half the Level 
Set Length Scale value already specified.

<float3> The “null” value for viscosity.  This is the 
value for viscosity which will be assigned 
to those regions of the flow where all the 
phase functions are less than or equal to 
zero.

The user should examine the 
CONST_PHASE_FUNCTION density model for a 
detailed description of the relations used to compute 
viscosity with this model.  That model refers to densities 
but the same equations apply if viscosities are 
exchanged for densities.

TABLE  <integer1>  <character_string1> {LINEAR | BILINEAR}  [integer2] 
[FILE = filenm]

α

α
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Please see discussion at the beginning of the material 
properties chapter 5 for input description and options. 
Currently the only valid options for character_string1 is 
TEMPERATURE and MASS_FRACTION.   

Examples

The following is a sample card that sets the viscosity to USER:

Viscosity = USER 1. 1. 1. 1. 1.

Viscosity = LEVEL_SET 0.083 0.0001 0.1

Technical Discussion

The viscosity specified by this input card is used with the NEWTONIAN Liquid 
Constitutive Equation.

Theory

No Theory.

FAQs

No FAQs.

References

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid 
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite 
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

 

5.2.16 Low Rate Viscosity

Description/Usage

This card is used to specify the model for the low-rate viscosity parameter for the 
POWER_LAW, CARREAU, CARREAU_WLF, BINGHAM, SUSPENSION, 
THERMAL, CURE, EPOXY, FILLED_EPOXY, POWERLAW_SUSPENSION 

Low Rate Viscosity = CONSTANT <float> [M/Lt]
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and CARREAU_SUSPENSION model options of the Liquid Constitutive Equation 
card. This is also the reference viscosity value in the HERSCHEL_BULKLEY 
constitutive equation.

Definitions of the input parameters are as follows:

CONSTANT  Name of the model for the low-rate viscosity.

<float> - the value of the low-rate viscosity. This value is 
also called the zero strain-rate limit of the 
viscosity and in models is normally called µ0.

LEVEL_SET Name of the model for level-set dependent low-rate 
viscosity. Allows for this viscosity level to be a function 
of the level-set field. Specifically used for changing the 
low-rate viscosity from one constant value on the negative 
side of the interface to another constant value on the 
positive side.   The model requires three floats:

<float1> - the value of viscosity in the negative regions of 
the level set function.

<float2> - the value of viscosity in the positive regioons 
of the level-set function. 

<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets the low rate viscosity to 10:

Low Rate Viscosity = CONSTANT 10.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

5.2.17 Power Law Exponent

Description/Usage

This card is used to specify the model for the power-law exponent parameter of the 
POWER_LAW, CARREAU, BINGHAM, CARREAU_WLF, CURE, 
SUSPENSION, FILLED_EPOXY, POWERLAW_SUSPENSION, 
CARREAU_SUSPENSION, and HERSCHEL_BULKLEY fluid options of the 
Liquid Constitutive Equation card.

Definitions of the input parameters are as follows:

CONSTANT  Name of the model for the power-law exponent.

<float> - the value of the power-law exponent. This 
variable is normally n in the constitutive laws.

LEVEL_SET Name of the model for level-set dependent power law 
exponent. Specifically used for changing the exponent 
from one constant value on the negative side of the 
interface to another constant value on the positive side.   
The model requires three floats:

<float1> - the value of power-law exponent in the 
negative regions of the level set function.

<float2> - the value of power-law exponent in the 
positive regioons of the level-set function. 

<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets the power law exponent to 0.2:

Power Law Exponent = CONSTANT 0.2

Power Law Exponent = CONSTANT <float> []
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Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.18 High Rate Viscosity

Description/Usage

This card is used to specify the model for the high-rate viscosity parameter of the 
CARREAU, BINGHAM, CARREAU_WLF and CARREAU_SUSPENSION fluid 
options of the Liquid Constitutive Equation card. Definitions of the input parameters 
are as follows:

CONSTANT  Name of the model for the high-rate viscosity.

<float> - the value of the high-rate viscosity. This value is 
normally called µinf in models.

LEVEL_SET Name of the model for level-set dependent high-rate 
viscosity. Allows for this viscosity level to be a function 
of the level-set field. Specifically used for changing the 
high-rate viscosity from one constant value on the 
negative side of the interface to another constant value on 
the positive side.   The model requires three floats:

<float1> - the value of viscosity in the negative regions of 
the level set function.

<float2> - the value of viscosity in the positive regioons 
of the level-set function. 

High Rate Viscosity = CONSTANT <float> [M/Lt]
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<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets the high rate viscosity to 10.:

High Rate Viscosity = CONSTANT 10.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.19 Time Constant

Description/Usage

This card is used to specify the model for the time constant parameter of the 
CARREAU, BINGHAM, CARREAU_WLF and CARREAU_SUSPENSION fluid 
options of the Liquid Constitutive Equation card. Definitions of the input parameters 
are as follows:

CONSTANT  Name of the model for the time constant.

<float> - the value of the time constant, λ.

Time Constant = CONSTANT <float> [t]
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LEVEL_SET Name of the model for level-set dependent time constant. 
Allows for this time constant level to be a function of the 
level-set field. Specifically used for changing the time 
constant from one constant value on the negative side of 
the interface to another constant value on the positive 
side.   The model requires three floats:

<float1> - the value of time constant in the negative 
regions of the level set function.

<float2> - the value of time constant in the positive 
regioons of the level-set function. 

<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets the time constant to 0.2.

Time Constant = CONSTANT 0.2

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 



892 Revised: 6/12/13

5.2.20  Aexp  

5.2.20 Aexp

Description/Usage

This card is used to specify the model for the Aexp parameter of the CARREAU, 
BINGHAM, CARREAU_WLF and CARREAU_SUSPENSION model options of 
the Liquid Constitutive Equation card. Definitions of the input parameters are as 
follows:

CONSTANT Name of the model for Aexp.

<float> - the value of the a exponent in the liquid 
constitutive models; also, a dimensionless 
parameter that describes the transition between 
the low-rate and the power-law region for the 
Carreau model (see Bird, et. al., 1987).

LEVEL_SET Name of the model for level-set dependent Aexp 
parameter. Allows for this parameter level to be a function 
of the level-set field. Specifically used for changing the 
Aexp parameter from one constant value on the negative 
side of the interface to another constant value on the 
positive side.   The model requires three floats:

<float1> - the value of Aexp parameter in the negative 
regions of the level set function.

<float2> - the value of Aexp parramete in the positive 
regioons of the level-set function. 

<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets Aexp to 3.0:

Aexp = CONSTANT 3.0

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Aexp = CONSTANT <float> []
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Theory

No Theory.

FAQs

No FAQs.

References

Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids, 
2nd ed., Wiley, New York, Vol. 1.

 

5.2.21 Thermal Exponent

Description/Usage

This card is used to specify a thermal exponential factor for CARREAU_WLF, 
BINGHAM, THERMAL, EPOXY, FILLED_EPOXY, 
POWERLAW_SUSPENSION and CARREAU_SUSPENSION viscosity models, as 
selected in the Liquid Constitutive Equation card. The value represented by the thermal 
exponent varies between these liquid constitutive models; the appropriate values for 
each model is indicated below.

Definitions of the input parameters are as follows:

CONSTANT Name of the model for the thermal exponent.

<float> - the value of the thermal exponent for the 
viscosity model specified in the Liquid Constitutive 
Equation card.

• for the BINGHAM, THERMAL, EPOXY, or 
FILLED_EPOXY model,

<float> - the Eµ/R parameter. This has the dimensions 
of temperature in whatever units are 
consistent with the problem and describes 
the thinning of viscosity with temperature.

• for the CARREAU_WLF model,

<float> - the c1 constant of the equation for the 
temperature-dependent shift factor.

Thermal Exponent = CONSTANT <float> [T]
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• for the POWERLAW_SUSPENSION or 
CARREAU_SUSPENSION model,

<float> - the exponent for the Krieger viscosity 
model, m.

LEVEL_SET Name of the model for level-set dependent thermal 
exponent factor. Allows for this exponent level to be a 
function of the level-set field. Specifically used for 
changing the thermal exponent from one constant value 
on the negative side of the interface to another constant 
value on the positive side.   The model requires three 
floats:

<float1> - the value of thermal exponent in the negative 
regions of the level set function.

<float2> - the value of thermal exponent in the positive 
regioons of the level-set function. 

<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets the thermal exponent to 0.5.

Thermal Exponent = CONSTANT 0.5

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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5.2.22 Thermal WLF Constant2

Description/Usage

This card is used to specify the thermal constant 2 of the CARREAU_WLF viscosity 
model in the Liquid Constitutive Equation card. Definitions of the input parameters are 
as follows:

CONSTANT Name of the model for Thermal Constant2.

<float> - the value of c2, in the equation representing the 
temperature-dependent shift factor for the 
CARREAU_WLF constitutive model.

LEVEL_SET Name of the model for level-set dependent WLF thermal 
constant 2. Allows for this thermal constant 2 level to be a 
function of the level-set field. Specifically used for 
changing the thermal constant 2 from one constant value 
on the negative side of the interface to another constant 
value on the positive side.   The model requires three 
floats:

<float1> - the value of thermal constant 2 in the negative 
regions of the level set function.

<float2> - the value of thermal constant 2 in the positive 
regioons of the level-set function. 

<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to 
one-half the Level-Set Length Scale value 
specified. 

Examples

The following is a sample card that sets the Thermal WLF Constant2 to 0.1.

Thermal WLF Constant2 = CONSTANT 0.1

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Thermal WLF Constant2 = CONSTANT <float> [T]
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.23 Yield Stress

Description/Usage

This card is used to specify the model for the yield stress parameter, τy, of the 
BINGHAM and HERSCHEL_BULKLEY model options of the Liquid Constitutive 
Equation card. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the yield stress.

<float> - the value of the yield stress, τy, which has the 
dimensions of stress, in whatever units are 
consistent with the problem and marks the 
transition from solid-like to fluid-like behavior 
for the Bingham-Carreau-Yasuda model.

Examples

The following is a sample card that sets the yield stress to 100:

Yield Stress = CONSTANT 100.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

Yield Stress = CONSTANT <float> [M/Lt2]
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FAQs

No FAQs.

References

No References.
 

5.2.24 Yield Exponent

Description/Usage

This card is used to specify the model for the yield exponent parameter, F, for the 
BINGHAM model option of the Liquid Constitutive Equation card. Definitions of the 
input parameters are as follows:

CONSTANT Name of the model for the yield exponent parameter.

<float> - the value of the yield exponent, F, which has the 
dimensions of inverse shear-rate in whatever 
units are consistent with the problem of interest 
and which connotes the steepness of the 
transition from solid to fluid behavior for the 
Bingham-Carreau-Yasuda model. 

If F is large, the material has an abrupt transition from solid-like to fluid-like behavior, 
whereas for a small F, the transition is more gradual.

Examples

The following is a sample card that sets the yield exponent to 10.0

Yield Exponent = CONSTANT 10.0.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

Yield Exponent = CONSTANT <float> [t]
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FAQs

No FAQs.

References

No References.
 

5.2.25 Suspension Maximum Packing

Description/Usage

This card is used to specify the model for the Cmax parameter of the SUSPENSION 
and FILLED_EPOXY model options of the Liquid Constitutive Equation card. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for suspension maximum packing.

<float> - the value of Cmax, which is the mass fraction at 
which the suspension begins to act as a solid.

Examples

The following is a sample card that sets the suspension maximum packing:

Suspension Maximum Packing = CONSTANT 0.68.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Suspension Maximum Packing = CONSTANT <float> []
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5.2.26 Suspension Species Number

Description/Usage

This card is used to specify the value of the species number “i” of the SUSPENSION 
and FILLED_EPOXY model options of the Liquid Constitutive Equation card. 
Definitions of the input parameters are as follows:

<integer> - the species number “i”.

Examples

The following is a sample card that sets the suspension species number to 1:

Suspension Species Number = 1

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.27 Cure Gel Point

Description/Usage

This card is used to specify the model for the αg parameter for the CURE, EPOXY, 
and FILLED_EPOXY model options of the Liquid Constitutive Equation card. 
Definitions of the input parameters are as follows:

Suspension Species Number = <integer>

Cure Gel Point = CONSTANT <float> []
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CONSTANT Name of the model for the αg parameter.

<float> - the value of αg, which is the extent of reaction at 
the gel point of a polymerizing system.

Examples

The following is a sample card that sets the cure gel point to 0.75:

Cure Gel Point = CONSTANT  0.75

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.28 Cure A Exponent

Description/Usage

This card is used to specify the model for the A exponent of the CURE, EPOXY, and 
FILLED_EPOXY model options of the Liquid Constitutive Equation card. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the A exponent.

<float> - the value of A.

Examples

The following is a sample card that sets the cure A exponent to 1.0: 

Cure A Exponent = CONSTANT 1.0

Cure A Exponent = CONSTANT <float> []
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Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.29 Cure B Exponent

Description/Usage

This card is used to specify the model for the B exponent of the CURE, EPOXY, and 
FILLED_EPOXY model options of the Liquid Constitutive Equation card. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the B exponent.

<float> - the value of B.

Examples

The following is a sample card that set the cure B exponent to 0.1:

Cure B Exponent = CONSTANT 0.1

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

Cure B Exponent = CONSTANT <float> []
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FAQs

No FAQs.

References

No References.
 

5.2.30 Cure Species Number

Description/Usage

This card is used to specify the species number, e.g., the i in Ci, for the 
FILLED_EPOXY model options of the Liquid Constitutive Equation card. 
Definitions of the input parameters are as follows:

<integer> - the value of the species equation, i, associated 
with tracking the curing species.

Examples

The following is a sample card that sets the cure species number to 0.

Cure Species Number = 0

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Cure Species Number = <integer>
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5.2.31 Unreacted Gel Temperature

Description/Usage

This card is used to specify the model for the unreacted gel temperature parameter for 
the FILLED_EPOXY fluid option of the Liquid Constitutive Equation card.

Definitions of the input parameters are as follows:

CONSTANT  Name of the model for the unreacted gel temperature.

<float> - the value of the unreacted gel temperature, Tg0.

Examples

The following is a sample card that sets the unreacted gel temperature to 273.0:

Power Law Exponent = CONSTANT 273.0

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Unreacted Gel Temperature = CONSTANT <float>
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5.2.32 Polymer Constitutive Equation

Description/Usage

This required card is used to specify the polymer constitutive equation. A single input 
parameter must be defined, that being the {model_name}.

{model_name} Name of the constitutive equation model, being one of 
the following values: NOPOLYMER, OLDROYDB, 
GIESEKUS, PTT, WHITE-METZNER. Several of 
these polymer constitutive models require additional 
parameters for the polymer properties that are entered 
via additional cards, as described below. Please see the 
Example section and the tutorial referenced below.

Thus,

NOPOLYMER For Newtonian and generalized Newtonian models. No 
floating point values are required.

OLDROYDB For the Oldroyd-B constitutive model. This option 
requires four floating point values, which are described 
below.

GIESEKUS For the Giesekus model. This option requires five 
floating point values, which are described below.

PTT For the Phan-Thien Tanner  model. This option requires 
six floating point values, which are described below.

WHITE_METZNER

For the White-Metzner model. This option is not 
currently working.

Examples

The following is a sample card that sets the polymer constitutive equation to 
NOPOLYMER. This option does not require any additional cards since it indicates 
that there is no polymer constitutive equation present.

Polymer Constitutive Equation = NOPOLYMER

Polymer Constitutive Equation = {model_name}
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The following is a sample card that sets the polymer constitutive equation to 
OLDROYDB. This option requires four cards describing the polymer stress 
formulation, weight function, viscosity and time constant.

Polymer Constitutive Equation = OLDROYDB
Polymer Stress Formulation   = EVSS_F
Polymer Weight Function = GALERKIN
Polymer Viscosity = CONSTANT 1.
Polymer Time Constant = CONSTANT 0.02

The following is a sample card that sets the polymer constitutive equation to 
GIESEKUS. This option requires five cards describing the polymer stress formulation, 
weight function, viscosity, time constant and mobility parameter.

Polymer Constitutive Equation = GIESEKUS
Polymer Stress Formulation  = EVSS_F
Polymer Weight Function = GALERKIN
Polymer Viscosity  = CONSTANT 1.
Polymer Time Constant = CONSTANT   0.2
Mobility Parameter = CONSTANT      0.1

The following is a sample card that sets the polymer constitutive equation to PHAN-
THIEN TANNER (or PTT). This option requires six additional cards that set the 
polymer stress formulation, weight function for the stress equation, viscosity, time 
constant and nonlinear PTT parameters.:

Polymer Consitutive Equation = PTT
Polymer Stress Formulation = EVSS_F
Polymer Weight Function = GALERKIN
Polymer Viscosity = CONSTANT  8000.
Polymer Time Constant = CONSTANT  0.01
PTT Xi parameter      = CONSTANT  0.10
PTT Epsilon parameter = CONSTANT  0.05

The following is a sample card that sets the polymer constitutive equation to 
WHITE_METZNER. This option is not currently functional for multimode 
viscoelasticity. If needed it could be resurrected with only minimal changes to the input 
parser.

Polymer Consitutive Equation = WHITE_METZNER

Technical Discussion

The viscoelastic tutorial is helpful for usage issues such as extensions from single mode 
to multimodes.

Theory

No Theory.
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FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

 

5.2.33 Polymer Stress Formulation

Description/Usage

This card specifies which formulation of the polymer constitutive equation should be 
used. Valid options are

EVSS_G Uses the classic elastic-viscous stress splitting of 
Rajagopalan (1990) where the stress is the elastic stress 
only without a Newtonian component. This option is the 
default if this Polymer Stress Formulation card is not 
supplied. This formulation is almost never used.

EVSS_F Uses the EVSS formulation of Guenette and Fortin (1995) 
that solves the standard stress equation with the addition of 
a new term to the momentum equation. This formulation is 
used most often.

EVSS_L Uses a research formulation for viscoelasticity that includes 
a level set discretization that switches the equations from 
solid to fluid. This option is not currently in production 
usage.

Examples

The following is a sample card that sets the polymer stress formulation to EVSS_F:

Polymer Stress Formulation = EVSS_F

Technical Discussion

No Discussion.

Polymer Stress Formulation = {EVSS_G | EVSS_F | EVSS_L}
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Theory

No Theory.

FAQs

No FAQs.

References

Guenette, R. and M. Fortin, “A New Mixed Finite Element Method for Computing 
Viscoelastic Flow,” J. Non-Newtonian Fluid Mech., 60 (1995) 27-52.

Rajagopalan, D., R. C. Armstrong and R. A. Brown, “Finite Element Methods for 
Calculation of Viscoelastic Fluids with a Newtonian Viscosity”, J. Non-Newtonian 
Fluid Mech., 36 (1990) 159-192.

 

5.2.34 Polymer Weight Function

Description/Usage

This optional card is used to specify the weight function for the polymer stress 
equation. Valid options are

GALERKIN Uses a Galerkin weight-function for the stress equation. 
This option is the default if this card is not present.

SUPG Uses a streamline upwind Petrov-Galerkin weight-function 
for the stress equation. If this option is chosen, a weight 
must be specified via the Polymer Weighting card.

Examples

The following is a sample card that set the polymer weight function to SUPG and 
demonstrates the required cards.

Polymer Weight Function = SUPG
Polymer Weighting = CONSTANT  0.1

The following is a sample card that set the polymer weight function to GALERKIN.

Polymer Weight Function = GALERKIN

Polymer Weight Function = {GALERKIN | SUPG}
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.35 Polymer Shift Function

Description/Usage

This optional card is used to specify the temperature shift function for the polymer 
relaxation times and viscosities in the polymer stress equation(s); 

(5-52)

(5-53)

Valid options are

CONSTANT Applies a constant temperature shift factor to the 
polymer relaxation time(s) and the polymer viscosities.

<float1> - the temperature shift factor. If this card is 
not present, this option is the default and a 
shift factor of 1.0 is applied.

This option may be useful for continuation in elasticity level since continuation in this 
parameter will uniformly increase or decrease the relaxation time(s) and viscosities of 
all viscoelastic modes.

Polymer Shift Function = {CONSTANT | MODIFIED_WLF} <float1> [float2]

λk T( ) a T( )λk'=

ηk T( ) a T( )ηk'=
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MODIFIED_WLF Applies a temperature shift factor which is a modified 
version of the Williams-Landel-Ferry shift model (cf. 
Bird, Armstrong, and Hassager 1987, pp.139-143);

(5-54)

<float1> - constant C1
<float2> - constant C2

The reference temperature, Tref, is taken from the 
Reference Temperature card. Note that if C2 is chosen 
equal to Tref, this model reduces to an Arrhenius form 
where C1 = Eµ/RTref. Also note that this form is based 
on the exponential function whereas the WLF model is 
based on 10x.

Examples

The following is a sample card that sets a constant temperature shift.

Polymer Shift Function = CONSTANT   1.0

The following is a sample card that utilizes the modified WLF shift function.

Polymer Shift Function = MODIFIED_WLF  2.5 95.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

Bird, R. B., Armstrong, R. C., and Hassager, O.  Dynamics of Polymeric Liquids, 
Volume 1. John Wiley & Sons, Inc. 1987.

a T( )
C1 Tref T–( )
C2 T Tref–+
----------------------------------exp=
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5.2.36 Discontinuous Jacobian Formulation

Description/Usage

This optional card is used to specify the off element Jacobian contributions for the 
discontinuous Galerkin (DG) discretization of the polymer stress equation. These terms 
are important because the DG method uses stress information from upstream elements 
to determine the flux in the current element. If the off element Jacobians are not 
included, convergence is poor, but including these terms greatly increases the 
complexity of the code, the matrix bandwidth and the matrix solution time.

The default sets this option to false, implying that no off element Jacobians are 
included. Valid options for {model_name} are:

FULL adds in the full complement of off-element Jacobians; no 
floating point data required. This option does not always 
work in parallel computations.

EXPLICIT approximates the off-element Jacobians by adding terms to 
the residual equation based on the previous iteration.

<float> - scales the lagged term.

SEGREGATED approximates the off-element Jacobians by adding terms to 
the residual equation based on a mass lumping at the current 
iteration.

<float> - scales the lumped term.

Examples

The following is a sample card that set the discontinuous Jacobian formulation to full.

Discontinuous Jacobian Formulation = FULL

The following is a sample card that set the discontinuous Jacobian formulation to 
explicit. Note this is more of a research option than a production one and the choice of 
scaling requires tuning for each problem.

Discontinuous Jacobian Formulation = EXPLICIT 0.1

The following is a sample card that set the discontinuous Jacobian formulation to 
segregated. Note this is more of a research option than a production one and the choice 
of scaling requires tuning for each problem.

Discontinuous Jacobian Formulation = SEGREGATED 0.2

Discontinuous Jacobian Formulation = {model_name} <float>
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Technical Discussion

For a discussion of the discontinuous Galerkin method see Fortin and Fortin (1989), 
Baaijens (1994) or Baaijens (1998). Internal (Sandia) users may find T. A. Baer’s 
Gordon Conference presentation (1997) helpful.

Theory

No Theory.

FAQs

No FAQs.

References

Baaijens, F. P. T. , “Application of Low-Order Discontinuous Galerkin Method to the 
Analysis of Viscoelastic Flows,” J. Non-Newtonian Fluid Mech., 52, 37-57 (1994).

Baaijens, F. P. T., “An Iterative Solver for the DEVSS/DG Method with Application to 
Smooth and Non-smooth Flows of the Upper Convected Maxwell Fluid,” J. Non-
Newtonian Fluid Mech., 75, 119-138 (1998).

Fortin, M. and A. Fortin, “A New Approach for the FEM Simulations of Viscoelastic 
Flow, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989).

5.2.37  

5.2.38 Polymer Weighting

Description/Usage

This card is only used if the value of the Polymer Weight Function card is SUPG. The 
single input parameter is defined as 

<float> - scale factor for the upwind term in the Petrov-Galerkin 
formulation. If this is set to zero, a Galerkin weight 
function is used. The correct scaling for this term is 
the inverse of the average inflow velocity.

Polymer Weighting = <float>                                                                        [t/L]
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Examples

The following is a companion pair of sample input cards that includes setting the 
polymer weighting to 0.1: 

Polymer Weight Function = SUPG
Polymer Weighting = 0.1

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.39 Adaptive Viscosity Scaling

This optional card is used to specify the adaptive viscosity scaling and the ε parameter 
associated with its usage (see theory section below). It requires one floating point 
number that scales the term. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the adaptive viscosity scaling.

<float> - value of ε scaling parameter.

Examples

The following is a sample card that sets the adaptive viscosity scaling to 0.5:

Adaptive Viscosity Scaling = CONSTANT   0.5

Adaptive Viscosity Scaling = CONSTANT <float>
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Technical Discussion

The momentum equation is modified with the addition of a numerical adaptive 
viscosity to help maintain the elliptic character of the equation set as stress and velocity 
gradient increase

(5-55)

where ηs is the solvent viscosity and ηp is the polymer viscosity. If we set the adaptive 
viscosity to zero (ηa= 0), we obtain the Standard EVSS Formulation of Guenette and 
Fortin (1995). For adaptive viscosity, we use the following definition

 (5-56)

with 0<ε<1.

The equations are unchanged in the limit of h, the element size, going to zero.

Please see the viscoelastic tutorial for a discussion of usage for the adaptive viscosity 
scaling. The papers by Sun, et. al. (1996) and Sun, et. al (1999) provide a good 
discussion of the theory behind its usage. CRMPC presentations by R.R. Rao 
demonstrates its usefulness for Goma calculations.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21, 
2000, R. R. Rao

Guenette, R. and M. Fortin, “A New Mixed Finite Element Method for Computing 
Viscoelastic Flows,” J. Non-Newtonian Fluid Mech., 60, 27-52 (1995).

Sun, J., N. Phan-Thien, R. I. Tanner, “An Adaptive Viscoelastic Stress Splitting 
Scheme and Its Applications: AVSS/SI and AVSS/SUPG,” J. Non-Newtonian Fluid 
Mech., 65, 75-91 (1996).
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Sun, J., M. D. Smith, R. C. Armstrong, R. A. Brown, “Finite Element Method for 
Viscoelastic Flows Bases on the Discrete Adaptive Viscoelastic Stress Splitting and the 
Discontinuous Galerkin Method: DAVSS-G/DG,” J. Non-Newtonian Fluid Mech., 86, 
281-307 (1999).

 

5.2.40 Polymer Viscosity

Description/Usage

This card is used to specify the polymer viscosity associated with the model set in the 
Polymer Constitutive Equation card. This is a required card for the OLDROYDB, 
GIESEKUS and PTT models.

Definitions of the input parameters are as follows:

{model_name} Permissible names for the viscosity model are 
CONSTANT, POWER_LAW and CARREAU.

CONSTANT a simple constant viscosity, Newtonian fluid.

<float> - the value of the zero-rate viscosity.

POWER_LAW a power-law model

CARREAU a Carreau strain-rate thinning or thickening relation

Input parameters are not identified for the latter two models as they have not worked 
since the multimode port. They could be made to work again if the proper tweaking is 
done to the input parser, but are not currently functional.

Examples

The following is a sample card that sets the polymer viscosity to 8000.0:

Polymer Viscosity = CONSTANT 8000.0

Technical Discussion

No discussion.

Theory

No Theory.

Polymer Viscosity = {model_name} <float> [M/Lt]
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FAQs

No FAQs.

References

No References.
 

5.2.41 Polymer Time Constant

Description/Usage

This card is used to specify the polymer time constant associated with the Polymer 
Constitutive Equation card. It is a required card for the OLDROYDB, GIESEKUS 
and PTT options. Definitions of the input parameters are as follows:

{model_name} Permissible names for the time constant model are 
CONSTANT, POWER_LAW and CARREAU.

CONSTANT a simple constant time constant.

<float> - the value of the zero-rate time constant.

POWER_LAW a power-law model

CARREAU a Carreau strain-rate thinning or thickening relation

Input parameters are not identified for the latter two models as they have not worked 
since the multimode port. They could be made to work again if the proper tweaking is 
done to the input parser, but are not currently functional.

If the polymer time constant varies with properties, it must do so in the same way as the 
polymer viscosity; thus, the model on this card must be the same as the model selected 
on the Polymer Viscosity card.

All three models are described in detail in Bird, et. al. (1987).

Examples

The following is a sample card that sets the polymer time constant to 1.0: 

Polymer Time Constant = CONSTANT 1.0

Polymer Time Constant = {model_name} <float>                                               [t]
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids, 
2nd ed., Wiley, New York, Vol. 1.

 

5.2.42 Mobility Parameter

Description/Usage

This card is used in the Giesekus model in the nonlinear stress terms. The card should 
be included in the input when the option selected for the Polymer Constitutive Equation 
card is GIESEKUS. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the mobility parameter.

<float> - the value of the mobility parameter.

This card does not have to be present for constitutive equations other than 
GIESEKUS.

Examples

The following is a sample card that sets the mobility parameter to 0.2:

Mobility Parameter = CONSTANT 0.2

Technical Discussion

No discussion.

Mobility Parameter = CONSTANT <float> []
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.2.43 PTT Xi parameter

Description/Usage

This card is used in the Phan-Thien Tanner model in the nonlinear stress terms. The 
card should be included in the input when the option selected for the Polymer 
Constitutive Equation card is PTT. Definitions of the input parameters are as follows:

CONSTANT Name of the model for PTT Xi parameter.

<float> - the value of the PTT Xi parameter.

This card does not have to be present for constitutive equations other than PTT.

Examples

The following is a sample card that sets the PTT Xi parameter to 0.1:

PTT Xi parameter = CONSTANT   0.10

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

PTT Xi parameter = {model_name} <float>
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References

No References.
 

5.2.44 PTT Epsilon parameter

Description/Usage

This card is used in the Phan-Thien Tanner model in the nonlinear stress terms. The 
card should be included in the input when the option selected for the Polymer 
Constitutive Equation card is PTT. Definitions of the input parameters are as follows:

CONSTANT Name of the model for PTT Epsilon parameter.

<float> - the value of the PTT Epsilon parameter.

This card does not have to be present for constitutive equations other than PTT.

Examples

The following is a sample card that sets the PTT Epsilon parameter to 0.1:

PTT Xi parameter = CONSTANT  0.10

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

PTT Epsilon parameter = {model_name} <float>
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5.2.45 Surface Tension

Description/Usage

 This card is used to specify the interfacial surface tension of the fluid which enters into 
the CAPILLARY boundary condition and CAP_ENDFORCE boundary condition cards. 
The surface tension, albeit a property of an interface and not of a bulk material, is 
sometimes influenced by thermophysical phenomena associated with a material, hence 
the inclusion of this card in the material file. It should be mentioned that this card is 
optional, and if it does not appear the surface tension is taken off the aforementioned 
boundary condition cards. PLEASE see the important technical discussion below if you 
plan on using this card. Definitions of the input parameters are as follows:

CONSTANT Name of the model for a constant value of interfacial 
surface tension of the fluid:

<float1> -  constant value of surface tension

DILATION Name of a surface tension model that depends on mesh 
dilation (only useful if the free surface is constrained to be a 
material surface both normally and tangentially, see 
Schwartz ,et. al. 1996). The model mathematically is

(5-57)

where F is the deformation gradient tensor and σ0 and σ1 
are coefficients. The model has two float inputs:

<float1> - value of constant 
<float2> - value of constant 

USER A user-defined surface tension model that is defined in the 
user-supplied routine usr_surface_tension in the 
file user_mp.c. This model will have an arbitrary number 
of user-defined parameters (<float1> to floatn>).

WARNING: When specifying surface tension on this card, be sure the surface 

tension (multiplier) on the boundary condition CAPILLARY card is set to 1. In other 

words, the value of surface tension on the boundary condition cards is multiplied 

with the value on this card before the calculation is carried out.

Surface Tension = {CONSTANT | DILATION | USER} <float_list> [M/t2]

σ σ0 σ1 1
1

t
˜

F
˜

t
˜

⋅ ⋅
-----------------– 

 +=

σ0
σ1
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Examples

Following is a sample card:

Surface Tension = DILATION 70.0  1.

Technical Discussion

Please read and understand the warning issued above regarding the proper place to 
specify surface tension. Basically, for constant surface tension models, it is a good idea 
to leave this card out and simply enter the proper surface tension value for the current 
surface on the boundary condition cards CAPILLARY and CAP_ENDFORCE. For 
variable models, please set the surface tension values on these BC cards to 1.0, and 
then handle your model through this card. The surface tension is a thermodynamic 
property of the interface and actually depends on the chemical composition of the 
fluids (or fluid/solids) of the bounding phases. The property controls the importance of 
the capillary stress jump on a curved interface on the hydrodynamics of the flow and 
the meniscus position and motion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk 
and D. A. Labreche

5.2.46 Second Level Set Conductivity

Description/Usage

This card allows to the user to specify a second thermal conductivity model that will be 
applied to one side of a level set interfacial curve: 

{model_name} The name of the conductivity model  can only be 
CONSTANT at the current time.

Second Level Set Conductivity = {model_name} {float_list} {char_string} [M/Lt]
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{float1} This is a single float parameter which is the value of 
Fourier thermal conducticity applied to the second level 
set phase fluid.

{char_string} This string may take the values POSITIVE or 
NEGATIVE.  It identifies which side of the interface the 
preceding conductivity model is applied to.

This card allows the user to apply a CONSTANT or USER model to one side of the 
interface while the other side recieves the constant conductivity value listed on this 
card.  The side of the interface that corresponds to char_string appearing on this card 
receives the constant conductivity value.  The opposite side’s conductibity is 
determined from the other, (possibly) more complex model.  Transition between them 
is accomplished using smooth Heaviside functions whose width is given on the Level 
Set Length Scale card.  Note that it is the prescence of the this card in the material file 
that actually activates this selection process. 

Examples

The following is a usage example for this card:

Conductivity = USER 1.e4 0.1 3.0

Second Level Set Conductivity = CONSTANT. 1.0e-4 POSITIVE

This setup will cause the negattive side of the interface to receive conductivity values 
obtained from the  USER model with the parameters listed above .  The positive side of 
the interface will show a constant conductivity of 1.0e-4.  

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references
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5.2.47

5.2.48 Second Level Set Density

Description/Usage

This card allows to the user to specify a second density model that will be applied to 
one side of a level set interfacial curve: 

{model_name} The name of the density model  can only be 
CONSTANT at the current time.

{float1} This is a single float parameter which is the value of  
density applied to the second level set phase fluid.

{char_string} This string may take the values POSITIVE or 
NEGATIVE.  It identifies which side of the interface the 
preceding density model is applied to.

This card allows the user to apply one of the several complex density models currently 
available in Goma to one side of the interface while the other side recieves the constant 
density value listed on this card.  The side of the interface that corresponds to 
char_string appearing on this card recieves the constant density value.  The opposite 
sides density is determined from the other, more complex model.  Transition between 
them is accomplished using smooth Heaviside functions whose width is given on the 
Level Set Length Scale card.  Note that it is the prescence of the this card in the 
material file that actually activates this selection process. 

Examples

The following is a usage example for this card:

Density = SUSPENSION 1.0 1.0 1.0

Second Level Set Density = CONSTANT. 1.0 POSITIVE

This setup will cause the negattive side of the interface to receive density values 
obtained from the SUSPENSION model with the parameters listed above .  The 
positive side of the interface will show a constant density of 1.0.  

Second Level Set Density = {model_name} {float_list} {char_string} [M/Lt]
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Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

5.2.49

5.2.50 Second Level Set Heat Capacity

Description/Usage

This card allows to the user to specify a second thermal heat capacity model that will be 
applied to one side of a level set interfacial curve: 

{model_name} The name of the heat capacity model  can only be 
CONSTANT at the current time.

{float1} This is a single float parameter which is the value of 
heat capacity applied to the second level set phase fluid.

{char_string} This string may take the values POSITIVE or 
NEGATIVE.  It identifies which side of the interface the 
preceding heat capacity model is applied to.

This card allows the user to apply a CONSTANT or USER model to one side of the 
interface while the other side recieves the constant heat capacity value listed on this 
card.  The side of the interface that corresponds to char_string appearing on this card 
receives the constant heat capacity value.  The opposite side’s heat capacity is 
determined from the other, (possibly) more complex model.  Transition between them 
is accomplished using smooth Heaviside functions whose width is given on the Level 
Set Length Scale card.  Note that it is the prescence of the this card in the material file 
that actually activates this selection process. 

Second Level Set Heat Capacity = {model_name} {float_list} {char_string} [M/Lt]
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Examples

The following is a usage example for this card:

Heat Capacity = ENTHALPY 1.e4 0.1 

Second Level Set Heat Capacity = CONSTANT. 1.0 POSITIVE

This setup will cause the negattive side of the interface to receive heat capacity values 
obtained from the  USER model with the parameters listed above .  The positive side of 
the interface will show a constant heat capacity of 1.0e-4.  

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

5.2.51

5.2.52 Second Level Set Momentum Source

Description/Usage

This card allows to the user to specify a second thermal Navier-Stokes volumetric 
momentum source model that will be applied to one side of a level set interfacial curve: 

{model_name} The name of the momentum source model  can only be 
CONSTANT at the current time.

Second Level Set Momentum Source = {model_name} {float_list} {char_string}
[M/Lt]
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{float1} This is a single float parameter which is the value of 
volumetric momentum source term applied to the 
second level set phase fluid.[F/L3]

{char_string} This string may take the values POSITIVE or 
NEGATIVE.  It identifies which side of the interface the 
preceding momentum source model is applied to.

This card allows the user to apply one of the several momentum source models 
implement in Goma to one side of the interface while the other side recieves the 
constant momentum source value listed on this card.  The side of the interface that 
corresponds to char_string appearing on this card receives the constant momentum 
source value.  The opposite side’s momentum source is determined from the other, 
(possibly) more complex model.  Transition between them is accomplished using 
smooth Heaviside functions whose width is given on the Level Set Length Scale card. 
Note that it is the prescence of the this card in the material file that actually activates 
this selection process. 

Examples

The following is a usage example for this card:

Navier-Stokes Source = SUSPEND 0.  0.  -980.0 1.34e3

Second Level Set Momentum Source = CONSTANT. 1.0e-4 POSITIVE

This setup will cause the negattive side of the interface to receive momentum source 
values obtained from the USER model with the parameters listed above .  The positive 
side of the interface will show a constant momentum source of 1.0e-4.  

Technical Discussion

An important thing to note is that the units of the quantity specified on this card are 
units of force per volume in exact correspondence to the units used with the preceding 
momentum source model.  Note also that this card should not be used when using the 
LEVEL_SET momentum source model.  For one thing, it makes no sense and for 
another thing the values specified on the latter model are simply the gravitational 
acceleration and therefore are inconsistent with this card. 

Theory

No Theory.

FAQs

No FAQs.



926 Revised: 6/12/13

5.2.53   

References

No references

5.2.53

5.2.54 Second Level Set Viscosity

Description/Usage

This card allows to the user to specify a second viscosity model that will be applied to 
one side of a level set interfacial curve: 

{model_name} The name of the viscosity model  can only be 
CONSTANT at the current time.

{float1} This is a single float parameter which is the value of 
Newtonian viscosity applied to the second level set 
phase fluid.

{char_string} This string may take the values POSITIVE or 
NEGATIVE.  It identifies which side of the interface the 
preceding viscosity model is applied to.

This card allows the user to apply one of the several complex viscosity models 
currently available in Goma to one side of the interface while the other side recieves the 
constant viscosity value listed on this card.  The side of the interface that corresponds 
to char_string appearing on this card recieves the constant viscosity value.  The 
opposite sides viscosity is determined from the other, more complex model.  Transition 
between them is accomplished using smooth Heaviside functions whose width is given 
on the Level Set Length Scale card.  Note that it is the prescence of the this card in the 
material file that actually activates this selection process. 

Examples

The following is a usage example for this card:

Liquid Constitutive Equation = HERSCHEL_BULKLEY

Low Rate Viscosity = CONSTANT 10000

Second Level Set Viscosity = {model_name} {float_list} {char_string} [M/Lt]
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Power Law Exponent = CONSTANT 0.6

Yield Stress = CONSTANT 1.e6

Second Level Set Viscosity = CONSTANT. 1.0 POSITIVE

This setup will cause the negattive side of the interface to receive viscosity values 
obtained from the HERSCHEL_BULKLEY model with the parameters listed above . 
The positive side of the interface will show a constant viscosity of 1.0.  

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

5.2.55

5.2.56 Shell bending stiffness

Description/Usage

This required card is used to specify the model for the Shell bending stiffness property 
D which is defined as D=Et3/12(1-ν2), where E is the elastic modulus, ν Poisson’s 
ratio, and t the shell thickness.  The units are M-L2/t2 (or F-L).    The elastic modulus is 
set through the Lame MU and Lame Lambda cards.  This property is needed for the 
inextensible cylindrical shell equations (see EQ = Shell Tension).  

Definitions of the input parameters are as follows:

{model_name} Name of the Shell bending stiffness coefficient model. 
This parameter can have one of the following values: 
CONSTANT..

Shell bending stiffness = {model_name} {float_list} [M/Lt2]
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{float1} The value of the shell bending stiffness. 

The details of each model option are given below:

CONSTANT <float1>

For the CONSTANT model, {float_list} is a single 
value: 

<float1> - Standard value of the coefficient D. 

Theory

No Theory.

FAQs.

No FAQ’s.

References

GT-027.1: GOMA’s Shell Structure Capability: User Tutorial (GT-027.0).  P. R. 
Schunk and E. D. Wilkes. 

GT-033.0: Structural shell application example: tensioned-web slot coater (GT-033.0). 
P. R. Schunk and E. D. Wilkes. 

5.3 Thermal Properties

In this section of material properties, the user specifies the parameters of models for Fourier heat 
conduction and thermally-induced density changes (by volume expansion) and parameters 
controlling the onset of phase changes. Properties governing energy transport by convection, 
radiation and diffusion are specified elsewhere.

5.3.1 Heat Flux Model

Description/Usage

NOT TESTED. Use this optional card to specify a user-defined model for the 
conductive heat flux. The routine “usr_heat_flux” in file user_mp.c must 
appropriately define the heat flux/temperature gradient model. The single input 
parameter has only one possible value:

Heat Flux Model = USER
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USER the user-defined model for the conductive heat flux.

If this card is missing or has a different keyword, the Fourier conductive heat flux 
model will be used.

Examples

Following is the only permissible specification for the card:

Heat Flux Model = USER

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.3.2 Conductivity

Description/Usage

This card is used to specify the model for thermal conductivity. Definitions of the input 
parameters are as follows:

{model_name} Name of the model for thermal conductivity; this 
parameter can have the value CONSTANT or USER.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model below.

Conductivity = {model_name} {float_list} [E/LtT]
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Thus,

CONSTANT <float> a constant thermal conductivity model, {float_list} is a 
single value:

<float1> - Standard value of k

USER <float1>... <floatn>

a user-defined model. With the USER option the 
appropriate modifications to the routine 
“usr_thermal_conductivity” in the user_mp.c 
file must be undertaken. The {float_list} can be of 
arbitrary length and is used to parameterize the model. 
These parameters are made available in the subroutine 
via <float1> through <floatn>.

TABLE  <integer1>  <character_string1> {LINEAR | BILINEAR}  [integer2] 
[FILE = filenm]

Please see discussion at the beginning of the material 
properties chapter 5 for input description and options.  
Most often character_string1 will be 
TEMPERATURE or maybe MASS_FRACTION.

Examples

Following is a sample card:

Conductivity = USER 1. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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5.3.3 Heat Capacity

Description/Usage

This required card is used to specify the model for the heat capacity. Definitions of the 
input parameters are as follows:

{model_name} Name of the model for the heat capacity. This parameter 
can have one of the following values: CONSTANT, 
USER, or ENTHALPY.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}. These are identified in the 
discussion of each model below.

Thus,

CONSTANT <float1>

This option specifies a constant heat capacity. The 
{float_list} has a single value:

<float1> - Heat capacity

USER <float1>... <floatn>

the heat capacity will be a user-defined model. This 
user-defined model must be incorporated by modifying 
the routine “usr_heat_capacity” in the file 
user_mp.c. The model parameters are entered in the 
{float_list} as <float1> through <floatn> and passed to 
the routine as an array.

ENTHALPY <float1> <float2>

a model of heat capacity that uses the latent heat of 
fusion parameter. The model goes as follows:

(5-58)

Heat Capacity = {model_name} {float_list} [E/MT]

H T( ) cp T Tref–( )= T TS<
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(5-59)

(5-60)

Here the {float_list} requires two values, where:

<float1> - Base heat capacity in the solid state, 
<float2> - Latent heat of fusion . 

The liquidus temperature Tl and the solidus temperature 
Ts are taken from the material file. This model is 
currently available for single species only, and is used 
for rapid melting problems in alloys.

TABLE  <integer1>  <character_string1> {LINEAR | BILINEAR}  [integer2] 
[FILE = filenm]

Please see discussion at the beginning of the material 
properties chapter 5 for input description and options.  
Most likely character_string1 will be 
TEMPERATURE or maybe MASS_FRACTION.  

Examples

Following is a sample card:

Heat Capacity = CONSTANT 1.

Technical Discussion

When the ENTHALPY option is used, the liquidus (Tl) and solidus (Ts) temperatures 
must be added through the Liquidus Temperature and Solidus Temperature cards.

Theory

No Theory.

FAQs

No FAQs.

H T( ) cp TS Tref–( ) ΔHf

T TS–

Tl TS–
-----------------
 
 
 

+= TS T Tl< <

H T( ) cp Tl Tref–( ) ΔHf c+ +
p

T Tl–( )= T Tl>

cp
ΔHf
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References

No References.
 

5.3.4 Volume Expansion

Description/Usage

This card is used to specify the model for the coefficient of volume expansion in the 
energy equation. This property is required for the BOUSS option on the Navier-Stokes 
Source card. Definitions of the input parameters are as follows:

CONSTANT Name of the model for a constant volume-expansion 
coefficient.

<float> - the value of the volume expansion coefficient.

Examples

The following is a sample input card:

Volume Expansion = CONSTANT 1.

Technical Discussion

Warning:   Please be careful that the Species Volume Expansion card is set 
appropriately.  If the BOUSS or BOUSSINESQ model is turned on on the Navier-
Stokes Source card, then both thermal and species volume expansion effects are 
included if the coefficients are nonzero. .

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Volume Expansion = CONSTANT <float> [1/T]
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5.3.5 Reference Temperature

Description/Usage

This card is used to specify the model for the reference temperature, which is required 
by the BOUSS option on the Navier-Stokes Source card and by the BINGHAM option 
on the Liquid Constitutive Equation card. Definitions of the input parameters are as 
follows:

CONSTANT Name of the model for a constant reference temperature.

<float> - the value of the reference temperature.

Examples

The following is a sample input card:

Reference Temperature = CONSTANT 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Reference Temperature = CONSTANT <float> [T]
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5.3.6 Liquidus Temperature

Description/Usage

This card is used to specify the model for the liquidus temperature. Definitions of the 
input parameters are as follows:

CONSTANT Name of the model for the liquidus temperature.

<float> - the value of the liquidus, Tl .

Examples

Following is a sample card:

Liquidus Temperature = CONSTANT 1.

Technical Discussion

This card is required when using the ENTHALPY option on the Heat Capacity card. 

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.3.7 Solidus Temperature

Description/Usage

This card is used to specify the model for the solidus temperature. Definitions of the 
input parameters are as follows:

Liquidus Temperature = CONSTANT <float> [T]

Solidus Temperature = CONSTANT <float> [T]
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CONSTANT Name of the model for the solidus temperature.

<float> - the value of the solidus, Ts .

Examples

The following is a sample card:

Solidus Temperature = CONSTANT 1.

Technical Discussion

This card is required when using the ENTHALPY option on the Heat Capacity card. 

Theory

No Theory.

FAQs

No FAQs.

References

No Refrences.
 

5.3.8 Energy Weight Function

Description/Usage

This card specifies the weight function to be used on the weighted residual of the 
energy equations. For high Peclet number cases, you may want to use a Petrov-
Galerkin formulation rather than a Galerkin formulation. Definitions of the input 
parameters are as follows:

GALERKIN Name of the model for the weight functions for a full 
Galerkin formulation. This is the default when this card is 
absent.

<float> - the value of the weight function, a number 
between 0. and 1.; a value of 0. corresponds to 
GALERKIN.

Energy Weight Function = {GALERKIN | SUPG} <float>
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SUPG Name of the model for the weight functions for a 
streamwise upwinded Petrov-Galerkin formulation.

<float> - the value of the weight function, a number 
between 0. and 1.; a value of 1. corresponds to a full 
SUPG.

Examples

The following is a sample input card:

Energy Weight Function = GALERKIN 0.0

Technical Discussion

The SUPG weighting is applied only to the advective term in the Energy conservation 
equation and Jacobian assembly.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.4 Electrical Properties

Models for material electrical properties are simple or specialized, being very application-
oriented. The primary need for modeling electrical potential effects are to activate mass transport 
mechanisms that are charge-dependent.
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5.4.1 Electrical Conductivity

Description/Usage

This required card is used to specify the model for electrical conductivity. There are 
currently three options, so {model_name} can be either CONSTANT, 
ELECTRONEUTRALITY_FICKIAN or ELECTRONEUTRALITY_SM. 
Definitions of the input parameters are as follows:

CONSTANT Name of the model for constant electrical conductivity.

<float> - the value of electrical conductivity

LEVEL_SET Name of the model for constant electrical 
conductivity.Allows for the conductivity as a function of 
the level-set field. Specifically used for changing the 
conductivity from one constant value on the negative side 
of the interface to another constant value on the positive 
side.   The model requires three floats:

<float1> - the value of electrical conductivity in the
negative regions of the level set function.
<float2> - the value of electrical conductivity in the 
positive regioons of the level-set function. 
<float3> Length scale over which the transition occurs. If 
this parameter is set to zero, it will default to one-half the 
Level-Set Length Scale value specified. 

ELECTRONEUTRALITY_FICKIAN

Name of the model for the electrical conductivity. This 
model requires no parameter specification, i.e. no floats.

ELECTRONEUTRALITY_SM

Name of the model for the electrical conductivity. This 
model requires no parameter specification, i.e. no floats.

In earlier versions of Goma, this model was referred to by 
the name ELECTRODE_KINETICS and it remains to 
be active so that Goma can be backward compatible. In 
other words, ELECTRONEUTRALITY_SM and 
ELECTRODE_KINETICS are interchangeable.

Electrical Conductivity = {model_name} {float} []
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See Technical Discussion for information on the electrical conductivity for the two 
models of ELECTRONEUTRALITY.

Examples

Following are sample cards:
Electrical Conductivity = CONSTANT 1.
Electrical Conductivity = ELECTRONEUTRALITY_FICKIAN
Electrical Conductivity = ELECTRONEUTRALITY_SM
Electrical Conductivity = ELECTRODE_KINETICS

Technical Discussion

For concentrated electrolyte solutions in which Stefan-Maxwell flux equations are 
employed to relate species fluxes to concentrations and their gradients, the electrical 
conductivity is given by (Chen et al. 2000, Schunk et al. 2000):

(5-61)

where  and , m is dimension of the problem (m = 2 
for a 2-D problem), and  is species mole fraction. The tedious definition of  can 
be found in Chapter 2 of Chen et al. (Chen et al. 2000) and in Chapter 7 of the Goma 
Developer’s Guide (Schunk, et. al., 2000).

For dilute electrolyte solutions in which Fick’s first law is used to relate the flux of a 
species to its concentration gradient, the electrical conductivity is given by (Chen, 
2000; Schunk, et. al., 2000):

(5-62)

where ci is the molar concentration and zi is the charge number of species i, 
respectively; and n is the total number of species present in the electrolyte solution. 
Note that the nth species is taken to be the neutral solvent species, which has no 
contribution to the electrical conductivity since its charge number is zero.

Lastly, Goma calculates the conductivity in function assemble_potential as material 
properties are being loaded.

Theory

No theory.
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FAQs

No FAQs.

References
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Transport: Developer’s Guide, 2000.

5.4.2 Electrical Permittivity

Description/Usage

This required card is used to specify the model for electrical permittivity. There is 
currently one option, so {model_name} must be either CONSTANT. Definitions of the 
input parameters are as follows:

CONSTANT Name of the model for constant electrical permittivity.

<float> - the value of electrical permittivity

Examples

Following are sample cards:
Electrical Permittivity = CONSTANT 1.

Technical Discussion

This card is utilized to set the electrical permittivity for electrostatic problems.

Electrical Permittivity = {model_name} {float} []



Revised: 6/12/13 941

5.4.3  Microstructure Properties 

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.4.3 Microstructure Properties
Microstructure property models address material parameters and constitutive equations required 
for multiphase continuum approaches to flow in porous media, viz. fluid flow in partially or fully 
saturated porous media. Actually, only a few of these model/property cards pertain directly to 
media structure or microstructure, but all are affected by intrinsic material properties of all 
involved phases. Cards or records typically appearing in this section fall into one of three 
categories: microstructural or flow-property specification, numerical treatment specification, and 
species transport property specifications. These “sections” appear in this order in most of the 
sample input files.

5.4.4 Media Type

Description/Usage

This card is used to designate the characteristic medium type for solid materials so that 
the proper microstructural features/models may be imposed. Basically, the choices are 
dictated by whether the medium is to be modeled as porous (viz. a medium in which 
flow will be determined relative to the motion of a porous solid skeleton) or as 
continuous (viz., in which the mechanics equations apply to all parts of the medium and 
not weighted by a solid fraction). If porous flow through Darcy or Brinkman 
formulations are desired in the material, then the phase is designated as continuous. 

The input parameter is a {model_name} and has the following possible values:

{model_name} Name of the media model; the choices are

CONTINUOUS
POROUS_SATURATED
POROUS_UNSATURATED

Media Type = {model_name}
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POROUS_TWO_PHASE
POROUS_BRINKMAN
POROUS_SHELL_UNSATURATED

Specific characteristics of these types are identified below, including other cards that 
must be present.

• If the type chosen is CONTINUOUS, then the material is assumed to be 
amorphous and no further microstructure properties need to be specified (next 
required card is the Diffusion Constitutive Equation).

• In a porous medium with one phase in the pores (i.e. a saturated medium), use 
POROUS_SATURATED then only the Porosity and Permeability cards are 
required. A POROUS_SATURATED medium model enables the user to solve the 
simplest porous flow equation for the liquid phase pressure only for rigid porous 
media (see the porous_sat or porous_liq equation cards). For deformable porous 
saturated media, one can employ a stress balance and porosity equation for 
deformable porous media (see mesh* equation cards and porous_deform equation 
card).

• In a porous medium with two phases in the pores (such as air-water, i.e., an 
unsaturated medium), two options exist - POROUS_UNSATURATED, a 
formulation of the porous flow problem using the capillary pressure as the field 
variable (gas pressure assumed to be uniform), and POROUS_TWO_PHASE, a 
formulation of the porous flow problem using the liquid pressure and gas pressure 
as field variables. All the cards in this Microstructure porous flow section, except 
the Brinkman cards (FlowingLiquid Viscosity and Inertia Coefficient), are needed 
for the unsaturated or two-phase models. As in the saturated case above, these 
options can also be chosen for deformable porous media, for which the Lagrangian 
mesh stress equations and the porosity equation are used to complete the effective 
stress principle formulation.

• The POROUS_BRINKMAN model is an extension of the Navier-Stokes 
equation for porous media. In addition, it has an inertia term intended to account 
for boundary and interface deficiencies at Reynold’s numbers greater than one 
( ), a deficiency in all Darcy flow models (see, e.g., Gartling, et. al., 1996). It 
is a vector formulation (the momentum equations) of saturated flow in a porous 
medium which reduces to the Navier-Stokes equations as the porosity increases to 
one ( ). For Brinkman flow, the input parameters (i.e., cards) that must be 
specified from this section are Porosity, Permeability, FlowingLiquid Viscosity, 
and Inertia Coefficient. Please note the use of two viscosities; for the Brinkman 
media type, the viscosity entered via the (Mechanical Properties and Constitutive 
Equations) Viscosity card is interpreted to be the Brinkman viscosity ( ) and is 
used to calculate the viscous stresses (see Gartling, et. al., 1996) while the 

Re 1>

φ 1→

µB
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FlowingLiquid Viscosity ( ) is used in the correction term for nonlinear drag 
forces in porous media. Brinkman viscosity is an effective value and can be taken 
as the porosity weighted average of the matrix and fluid. It is generally not correct 
to set it equal to the liquid viscosity (Martys, et. al., 1994; Givler and Altobelli, 
1994). 

• The POROUS_SHELL_UNSATURATED model is used for thin shell, open 
pore, porous media, viz. the shell_sat_open equation.  This media type 
instructs GOMA to obtain most of the media properties from the bulk continuum 
specifications just like POROUS_UNSATURATED.  Exceptions are the 
Porous Shell Cross Permeability model and the Porous Shell 
Height material models. Please see the porous shell tutorial 

Examples

Following is a sample card:

Media Type = POROUS_TWO_PHASE

This card will require a plethora of material models for Darcy flow of liquid and gas in 
a porous medium. It also will require the use of two Darcy flow mass balances in the 
Problem Description EQ specification section, specifically porous_liq and porous_gas 
equations. See references below for details.

Technical Discussion

In solving porous medium problems, it is important to understand that each 
conservation equation represents a component, or species balance. The porous_liq 
equation is actually a species balance for the liquid phase primary component (e.g. 
water) for all phases in the medium, viz. liquid, gas, and solid. This is the case even 
though the dependent variable is the liquid phase pressure. This is the only required 
equation for rigid POROUS_SATURATED media. The same holds true for rigid 
POROUS_UNSATURATED media, as the liquid solvent is present in liquid and gas 
vapor form (it is actually taken as insoluble in the solid). For deformable media, one 
must add a stress balance through the mesh* equations (in LAGRANGIAN form, as 
described on the Mesh Motion card) and a solid phase “solvent” balance which is used 
to solve for the porosity, viz. the porous_deform equation. In these cases, the gas is 
taken to be at constant pressure. If pressure driven Darcy flow is important in the gas, 
an additional species balance for the primary gas component is required through the 
porous_gas equation. This last case is the so-called POROUS_TWO_PHASE media 
type.

Options for representing the solid medium as rigid or deformable are discussed under 
the Saturation, Permeability and Porosity cards. When rigid porous media are 
modeled, both porosity and permeability are constant. In Goma 4.0, these concepts 

µ
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were being researched and improved, with much of the usage documentation residing 
in technical memos.

Theory

No Theory.

FAQs

No FAQs.

References
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September 1, 2002, P. R. Schunk
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and Porous Flow Problems", Comp. Fluid Dynamics, 7, 23-48.

Givler, R. C. and S. A. Altobelli 1994. “A Determination of the Effective Viscosity for 
the Brinkman-Forchheimer Flow Model.” J. Fluid Mechanics, 258, 355-370.

Martys, N., D. P. Bantz and E. J. Barboczi 1994. “Computer Simulation Study of the 
Effective Viscosity in Brinkman’s Equation.” Phys. Fluids, 6, 1434-1439

5.4.5

5.4.6 Porosity

Description/Usage

This card is used to specify the model for the porosity, which is required for the 
Brinkman or Darcy formulations for flow through porous media, viz. for 
POROUS_BRINKMAN, POROUS_TWO_PHASE, POROUS_SATURATED, 
and POROUS_UNSATURATED media types (see Media Type card).

Definitions of the {model_name} and <float> parameters are as follows:

Porosity = {model_name} <float> []
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CONSTANT Name {model_name} of the constant porosity model.

<float> - Value of porosity.

DEFORM Name {model_name} of the model for a porosity that varies 
with deformation of the porous medium. A conservation 
balance is required for the solid material skeleton and is 
invoked in the equation specification section (see EQ 
section).

<float> - Value of porosity (in the stress-free-state, i.e., 
undeformed state).

Examples

The following is a sample input card: 

Porosity = DEFORM 0.5

This model will result in a porosity of 0.5 (volume fraction of the interstitial space of a 
porous skeleton) in the undeformed or stress-free state, but will allow the porosity to 
vary affinely with the volume change invariant of the deformation gradient tensor (see 
technical discussion). As mentioned above, the DEFORM model requires a field 
equation for the mass-conservation of the solid matrix through the porous_deform 
equation.

Technical Discussion

Porosity is a microstructural attribute of a porous medium which describes the fraction 
of volume not occupied by the solid skeleton. For rigid porous media, it is a parameter 
that weights the capacitance term (time-derivative term) of the Darcy flow equations 
for liquid solvent and gas “solvent” concentrations. It often affects the Saturation 
function (see Saturation card) and the permeability function (see Permeability card). 
The references cited below elucidate the role of the porosity parameter in these 
equations.

For deformable porous media, Goma uses the porosity as a measure of fraction solid 
concentration, as a part of a mass balance for the solid skeleton. The reason this 
equation is required is a result of the lack of an overall conservation law for the 
mixture. Instead, we close the system by individual conservation equations for all 
species components in the medium, including the solid; the liquid and gas phase 
components are accounted for with individual Darcy flow equations. The conservation 
law which governs the porosity assumes there is an affine deformation of the pores 
with the overall deformation of the solid, and hence can be written as:
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(5-63)

where  is the deformation gradient tensor,  is the initial porosity, and  is the 
porosity. This equation is invoked with the porous_deform option on the EQ 
specifications.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media, 
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.4.7 Permeability

Description/Usage

This card is used to specify the model for permeability, which is required for the 
Brinkman and Darcy formulations for flow through porous media. Definitions of the 
input parameters are as follows:

{model_name} Name of the permissible models for permeability: 
CONSTANT, TENSOR, KOZENY_CARMEN, 
SOLIDIFICATION and PSD_VOL, PSD_WEXP, or 
PSD_SEXP. (No USER model as of 6/13/2002; contact 
Developers for this addition).

Permeability = {model_name} {float_list} [L2]

det F
˜

( ) V
V0

------
1 φ0–

1 φ–
---------------= =

F
˜

φ0 φ



Revised: 6/12/13 947

5.4.7  Permeability 

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}.

Permeability model choices and their parameters are discussed below.

CONSTANT <float1>

Model for constant permeability with a single 
parameter. This model is allowed for all Media Types 
(cf. Media Type card).

<float1> - k, Permeability [L2]

TENSOR <float1> <float2> <float3> <float4>

Model for a two dimensional, constant anisotropic 
permeability; it has not been implemented in three 
dimensions. All media types (cf. Media Type card) 
except POROUS_BRINKMAN may use this model.

<float1> - kxx permeability [L2]
<float2> - kyy permeability [L2]
<float3> - kxy permeability [L2]
<float4> - kyx permeability [L2]

PSD_VOL <float1> <float2> <float3> <float4>

This is a model of a deformable medium with a 
probabilistic distribution of pore sizes; see Technical 
Discussion section. Four parameters are required for the 
PSD_VOL model:

<float1> - , porosity in undeformed state
<float2> - , maximum pore radius in 

undeformed state
<float3> -  , ratio of smallest pore size to largest 

pore size
<float4> -  , a geometric tortuosity factor

All media types (cf. Media Type card) except 
POROUS_BRINKMAN may use this model.

PSD_WEXP <float1> <float2> <float3> <float4>

Same <float> specifications as PSD_VOL model.

This model is allowed for all media types except 
POROUS_BRINKMAN (cf. Media Type card).

PSD_SEXP <float1> <float2> <float3> <float4>

φ0

rmax φ0( )

α

1 τ
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Same <float> specifications as PSD_VOL model.

This model is allowed for all media types except 
POROUS_BRINKMAN (cf. Media Type card).

SOLIDIFICATION <float1>

Used to phase in a porous flow term in the liquid 
momentum equations for low volume fraction packing 
of particles in the Brinkman porous flow formulation 
(see discussion below). Used for Phillip’s model of 
suspensions for the Liquid Constitutive Equation, viz. 
CARREAU_SUSPENSION, SUSPENSION, 
FILLED_EPOXY or 
POWER_LAW_SUSPENSION.

<float1> - the species number of the suspension flow 
model; it is used to indicate that maximum 
packing, or solidification has occurred. 
(The float is converted to an integer).

This model is ONLY allowed for media type 
POROUS_BRINKMAN (cf. Media Type card). The 
functional form is:

(5-64)

where  is the clear fluid viscosity,  is the 
volume fraction of particles, or concentration divided by 
the maximum packing (0.68 for monodisperse spheres), 
and  is the average element size.

KOZENY_CARMAN <float1> <float2>

 The Kozeny-Carman equation relates the permeability 
to the porosity for a porous medium and has been shown 
to fit well the experimental results in many cases. This 
equation is easily derivable from the PSD_* models for 
the case of uniform pore-size distribution, viz. a delta 
distribution (cf. Cairncross, et. al., 1996 for derivation). 
The model is currently implemented in the isotropic 
media case and is useful for deformable problems in 
which the porosity changes with deformation (cf. 
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Porosity card DEFORM model). The functional form 
for this model is as follows:

(5-65)

Here  is the porosity, c0 is a constant consisting of 
tortuosity and shape factor of the pores, and Sv is the 
surface area per solid volume. The float parameters are:

<float1> - , tortuosity and shape factor
<float2> - , surface area per solid volume

EXTERNAL_FIELD<float1>

This model reads in an array of values for the porosity from

an initial exodus file.  This allows for spatial variations in the

parameter value.  
<float1> - Scale factor for converting/scaling 

exodusII field. 

The ExodusII field variable name should be “PERM”, viz. 

External Field = PERM Q1 
name.exoII (see this card)

Examples

Following is a sample card: 

Permeability = CONSTANT 0.001

This specification leads to a constant permeability of 0.001. 

Technical Discussion

For all models, this card provides the permeability, in units of [L2]. For saturated 
porous materials (viz. POROUS_BRINKMAN or POROUS_SATURATED media 
types), the viscosity from the Viscosity card is used to compute the porous conductivity, 
viz., permeability divided by viscosity. For unsaturated media types, the viscosity 
factor comes through the relative permeability cards (see Rel Gas Permeability and Rel 
Liq Permeability cards). Please consult the references below for the proper form of the 
equations.

The PSD_VOL (Probability Size Distribution, PSD) model treats the medium as a 
bundle of capillary tubes with a distribution of pores such that over a range of pore-

k
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sizes the volume of pores is evenly distributed. For such a model, the maximum pore-
size varies with the porosity:

(5-66)

Then, the permeability is a function of the maximum pore-size and the pore-size 
distribution:

(5-67)

The input parameters for the PSD models are , , , and . More 
detail on the deformable porous medium models is given in Cairncross, et. al., 1996. 
The PSD_WEXP and PSD_SEXP are similar pore-size distribution models to 
PSD_VOL. The references below should be consulted for details on how to use these 
models.

Theory

No Theory.

FAQs

No FAQs.
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Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
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5.4.8 Liquid phase compressibility

Description/Usage

This card specifies the model and model parameters for liquid-phase compressibility, 
and was specifically designed for use in porous-media flow problems that are partially 
saturated (viz. Media Type card values of POROUS_UNSATURATED or 
POROUS_TWO_PHASE). This feature was added partially for numerical 
convenience in rigid porous media to accommodate regimes where the saturation level 
is at or near unity; at these saturation levels the capacitance term (see Technical 
Discussion below) all but vanishes, viz. there is no sensitivity of the saturation level to 
liquid phase pressure, and the mathematical behavior can change type. This occurs in 
situations of low permeability, narrow pore-size distribution, and sudden pressure 
spikes during simulation startup.

CONSTANT Name of the model for the compressibility coefficient, 
currently the only option. It requires a single parameter:

<float> - Compressibility coefficient, in units of inverse 
pressure.

This card requires a companion card Liquid phase reference pressure.

Examples

The cards (using APREPRO variables)
Liquid phase compressibility = CONSTANT {beta_liquid}
Liquid phase reference pressure = CONSTANT {p_not}

leads to the application of a linearized compressibility model for the density of liquid in 
the time-derivative capacitance term. This is useful for rigid porous media when the 
conditions are such that the saturation front is sharp.

Technical Discussion

For the most part, we have needed the Liquid Phase Compressibility capability to ease 
the startup of impregnation problems, in which an external pressure load is impulsively 
applied to a liquid layer being forced into a rigid porous matrix. The capacitance term 
as the saturation level approaches 1.0 (S->1) in the porous Darcy flow equation appears 
in Goma as

Liquid phase compressibility = {model_name} <float> [L-t/M] or [L2/N]
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(5-68)

Here  is the liquid solvent concentration (in both gas and liquid phases),  is the 
porosity, and  is the liquid phase density. Here we employ the linearized density 
model:

(5-69)

where  is the coefficient of compressibility entered on this card, viz.  
defined above,  is the reference liquid pressure (see Liquid phase reference 
pressure card)

Theory

No Theory.

FAQs

The following troubleshooting tips regarding startup of partially saturated porous 
media problems are part of the authors experience presented in Schunk, 2002 (GT-
009.3): 

-Linear elements, viz. Q1 elements, are better for saturation front startup at an external 
boundary if the difference between the boundary specified liquid-phase pressure and 
the medium-initialized liquid phase pressure are drastically different. Quadratic 
elements in this case can lead to zero or low Saturation values at all computational 
Gaussian integration points and the front may never penetrate. 

-Time stepping is all important. There are three relevant parameters: time-step scheme, 
initial time step size, and time-step error factor. The rules of thumb that can be 
established are as follows:

If you are using Porous Mass Lumping, you must set the Time Step Parameter to 0.0, or 
your performance will suffer. In fact, it is always a good idea in steep penetration front 
problems to use backward Euler techniques.

With mass lumping and first order time integration, you must control your step size 
with the tolerance setting. Too big of time step early on can propagate to large errors at 
later times when time stepping. You may need to experiment with the error tolerance on 
the Time step error card. Constantly scrutinize your results for correctness and suspect 
an error growth here. 
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You must have a significant capacitance term on the first time step. If your capacitance 
term is small, then the problem is elliptic and will try to satisfy all boundary conditions, 
and this can mess up your penetration front.You can use Liquid phase compressibility 
property to help this for steep front startup.

Are you getting stagnant calculations with time-step decreases but not change in 
iteration history? Problem is that you have lost your capacitance term. Compressibility 
of the liquid is sometimes a remedy, but also a more accurate predictor. Mass lumping 
can help too and accomplishes the same thing. Sometimes your initial time step can be 
too small for a good start. Try increasing it ...

-Another startup issue: Steep discontinuities at boundaries and internally for initial 
conditions are bad, obviously. If your time step is such that the front cannot penetrate 
beyond one element in one time step, then with linear elements the capacitance term is 
ineffective (small) upon reduced time steps. Somehow you have got to get the front 
beyond one or two elements before things work properly. I find that ramping up the 
initial boundary conditions helps. Sometimes a large first time step to kick it is good 
too.

-On startup of a pressurized column of liquid penetrating into a porous substrate,   I 
noticed that at zero-based p_liq, there was no problem elevating the applied pressure on 
the penetration, but at Atm-based p_liq we couldn’t start the problem without severe 
compressibility. However, compressibility affects the solution, and in fact allows you 
to push all of your column of liquid into a compressed layer in the substrate, with no 
Sat from propagation. So beware of poorly defined compressibility of liquid. Also, 
refinement in the porous layer helped the startup. But the most significant thing for the 
problem I was solving, don’t be surprised if just a little perturbation on externally 
applied pressure greatly affects the penetration rate. In fact, in one problem simply 
changing from p_ext of 1.01325e+6 to 1.11325+6 increases the penetration rate 2-fold 
initially. The steeper curves are harder to handle.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media, 
September 1, 2002, P. R. Schunk
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5.4.9 Liquid phase reference pressure

Description/Usage

This card is used to specify the model and model parameters for the liquid-phase 
compressibility reference pressure. See Liquid phase compressibility card for 
discussion and theory.

CONSTANT model for the reference pressure, currently the only 
available option. It requires a single floating point value:

<float> - The reference pressure, in units of pressure.

Examples

The cards
Liquid phase compressibility = CONSTANT {beta_liquid}
Liquid phase reference pressure = CONSTANT {p_not}

leads to the application of a linearized compressibility model for the density of liquid in 
the time-derivative capacitance term. This is useful for rigid porous media when the 
conditions are such that the saturation front is sharp.

Technical Discussion

See discussion on Liquid phase compressibility card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media, 
September 1, 2002, P. R. Schunk

 

Liquid phase reference pressure = CONSTANT <float> [M/L-t2] or [N/L2]
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5.4.10 FlowingLiquid Viscosity

Description/Usage

This card is used to specify the model for the viscosity of liquid flowing through pores 
with the Brinkman model of flow through porous media, viz. see Media Type card with 
POROUS_BRINKMAN option. In the Brinkman model, the viscosity input through 
the Viscosity card is used as the Brinkman viscosity, and the viscosity input through this 
card is used in determining the hydraulic resistance. Detailed discussion of these two 
viscosities can be found by consulting the references below.

Definitions of the input parameters are as follows:

CONSTANT Name for the constant viscosity model.

<float> - The value of the viscosity.

Examples

Following is a sample card:

FlowingLiquid Viscosity = CONSTANT 101.0

This card is only applicable to the POROUS_BRINKMAN media type and results in a 
hydraulic resistance viscosity of 101.0.

Technical Discussion

See references below for discussion on use of this card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

FlowingLiquid Viscosity = CONSTANT <float> [M/Lt]
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Gartling, D. K., C. E. Hickox and R. C. Givler 1996. "Simulations of Coupled Viscous 
and Porous Flow Problems", Comp. Fluid Dynamics, 7, 23-48.

 

5.4.11 Inertia Coefficient

Description/Usage

This card is used to specify the model for the inertia coefficient  in the Brinkman 
formulation for flow through porous media, viz. see POROUS_BRINKMAN option 
on Media Type card. Detailed discussion of this coefficient can be found by consulting 
the references below. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the inertia coefficient.

<float> - The value of the inertia coefficient.

Examples

Following is a sample input card that produces a weighting coefficient of 1.0 on the 
inertial term in the POROUS_BRINKMAN equations.

Inertia Coefficient= CONSTANT 1.0

Technical Discussion

See references below for discussion on use of this card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

Gartling, D. K., C. E. Hickox and R. C. Givler 1996. "Simulations of Coupled Viscous 
and Porous Flow Problems", Comp. Fluid Dynamics, 7, 23-48.

 

Inertia Coefficient = CONSTANT <float> []

ĉ



Revised: 6/12/13 957

5.4.12  Capillary Network Stress 

5.4.12 Capillary Network Stress

Description/Usage

This card specifies the mechanism by which capillary stress and capillary pressure in 
the liquid phase of a partially saturated porous medium is transferred to the solid 
network. This model is active only when the porous_deform equation (see EQ card) is 
active, and the drained network is deformable under liquid phase pressure. The 
principles of this card rest in the theory of the effective stress principle. In effect, the 
model specified here can be used to change the affinity of the pore liquid to the solid 
network (more discussion below). The input parameter is the model for capillary 
network stress.

The options for {model_name} are the names of transfer mechanisms:

WETTING specifies that the porous skeleton has the same 
hydrostatic pressure as the liquid. This model has not 
been tested recently. See discussion below.

PARTIALLY_WETTING

specifies that the porous skeleton has a hydrostatic 
pressure that is the average of the liquid and gas phase 
pressures, weighted by their saturations (see related 
report on drying of deformable porous media by 
Cairncross, et. al., 1996).

COMPRESSIBLE functions the same as the PARTIALLY_WETTING 
option but includes a factor that accounts for the 
compressibility of the solid material, viz. the actual 
struts of the solid material, not the network (see 
Cairncross, et. al., 1996).

Examples

The following is a sample input card:

Capillary Network Stress = PARTIALLY_WETTING

Technical Discussion

Basically, this card sets the functional form of the capillary stress contribution to the 
composite effective stress in a porous medium. The constitutive equation is as follows:

Capillary Network Stress = {model_name}
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(5-70)

where  is the drained network stress that would result in the absence of any 
pore fluid (gas or liquid). The function F depends on the model type specified on this 
card. For POROUS_SATURATED media types, this card is not used and . 
For POROUS_UNSATURATED and POROUS_TWO_PHASE media types, F is as 
follows for different transfer mechanisms:

•  WETTING: The assumption here is that a thin liquid layer covers all surfaces.

(5-71)

•  PARTIALLY_WETTING: The most commonly used model.

(5-72)

•  COMPRESSIBLE: If the solid struts are also significantly compressible, viz. the 
solid bulk modulus Ks is of the same order of magnitude as the network skeleton 
bulk modulus, Kn, this model should be used. Not recently tested; please consult 
with Developers before using this option. PRS (6/13/2002)

Theory

No Theory.

FAQs

No FAQs.

References

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)
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5.4.13 Rel Gas Permeability

Description/Usage

This card specifies the model for the relative gas phase permeability for flow in a 
partially saturated porous media, such that the gas flow is the pressure gradient in the 
gas times the permeability times the relative gas phase permeability divided by the gas 
viscosity. This card rests on a consistency in the specification of the relative liquid 
permeability (see models on the Rel Liq Permeability card) and this, the relative gas 
permeability. Definitions of the input parameters are as follows:

CONSTANT {model_name} for constant relative gas phase 
permeability with a single input value:

<float> - the gas phase viscosity. For this model, one 
must account for the gas viscosity in the 
specification of this value.

The CONSTANT model is rarely used, as it is dependent on the saturation 
level and the relative liquid permeability value. Please see the Rel Liq 
Permeability card.

SUM_TO_ONE {model_name} for the relative gas phase permeability. 
This model assumes that the relative liquid permeability 
and relative gas permeability add to one.

<float> - the value of the gas phase viscosity.

Examples

Following is a sample card:

Rel Gas Permeability = SUM_TO_ONE 0.0001

This card specifies that the relative gas permeability in Darcy’s law for the gas flux is to 
depend on the liquid phase relative permeability such that the two sum-to-one.   The 
gas viscosity here is specified to be 0.0001, in the appropriate viscosity units of M/L/t.

Technical Discussion

This card is only required for Media Type POROUS_TWO_PHASE. Darcy’s law for 
gas flow is, in its simplest form:

Rel Gas Permeability = {model_name} <float> []
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(5-73)

where, the Darcy velocity is proportional to the gradient in gas pressure, with k being 
the permeability, krel

g being the relative gas permeability and µgas the viscosity of the 
gas. For the SUM_TO_ONE option above, the floating point constant is the gas phase 
viscosity, and the gas-phase relative permeability is calculated using

(5-74)

For the CONSTANT option the floating point constant must include the effect of 
viscosity, viz. the constant represents krel

g/µgas

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media, 
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.4.14 Rel Liq Permeability

Description/Usage

This card is required for Media Type POROUS_TWO_PHASE. This card specifies 
the model for the relative liquid phase permeability for flow in a partially saturated 
porous media, such that the liquid flow is the pressure gradient in the liquid times the 
permeability times the relative liquid phase permeability divided by the liquid 
viscosity. Definitions of the input parameters are as follows:

Rel Liq Permeability = {model_name} {float_list} []

v
˜g

k
krel

g

µgas

-----------∇pgas=

µgask
rel

gas
µliqkliq

rel
+ 1=
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{model_name} Name of the model for the relative gas phase 
permeability; the permissible values are CONSTANT, 
VAN_GENUCHTEN, PSD_VOL, PSD_WEXP, and 
PSD_SEXP.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}.

Permeability model choices and their parameters are discussed below.

CONSTANT <float1>

a constant relative liquid permeability; this is a rarely-
used option.

<float1> - relative liquid permeability, obtained by 
dividing the relative permeability desired 
by the liquid-phase viscosity

VAN_GENUCHTEN <float1> <float2> <float3> <float4>

assumes that the relative liquid permeability is a 
function of the saturation (as specified in the Saturation 
card). The {float_list} contains four values for this 
model, where: 

<float1> - Irreducible water saturation
<float2> - Irreducible air saturation
<float3> - Exponent ( ) in  model
<float4> - Liquid viscosity

PSD_VOL <float1> This model can only be used in conjunction with the 
same model for permeability and saturation; a single 
input value is required:

<float1> - Liquid phase viscosity

All other parameters are loaded up from the Saturation 
and Permeability cards.

PSD_WEXP <float1>

This model can only be used in conjunction with the 
same model for permeability and saturation; a single 
input value is required:

<float1> - Liquid phase viscosity

PSD_SEXP <float1>

λ 1 1 β⁄–= krel
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This model can only be used in conjunction with the 
same model for permeability and saturation; a single 
input value is required:

<float1> -Liquid phase viscosity

Examples

Following is a sample card:

Rel Liq Permeability = VAN_GENUCHTEN 0.01 0.01 0.667 0.01

Technical Discussion

The most often used model is that of VAN_GENUCHTEN. The functional form of 
this model is as follows:

(5-75)

where

(5-76)

 , (5-77)

and  is the viscosity. This function is clipped to zero as  and clipped to one 
as .

PSD_* model theory details can be found in the references cited below. These models 
bring in more explicit dependence on pore size and size distribution, as well as other 
microstructural features. In the VAN_GENUCHTEN model, such parameter effects 
are embodied in the Saturation dependence, which is empirically fit through the 
saturation function.

Theory

No Theory.
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FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media, 
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

5.4.15 Saturation

Description/Usage

This card specifies the model for the liquid saturation in a partially saturated porous 
media, which is frequently observed experimentally to be a function of the capillary 
pressure (gas pressure minus liquid pressure). This card is required for Media Type
specifications of POROUS_PART_SAT, POROUS_UNSAT, and 
POROUS_TWO_PHASE. Definitions of the input parameters are as follows:

{model_name} Name of the model for the liquid in a partially saturated 
porous media. The permissible values are CONSTANT, 
VAN_GENUCHTEN, TANH, PSD_VOL, PSD_WEXP, 
and PSD_SEXP.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection for 
{model_name}.

Saturation model choices and their parameters are discussed below.

CONSTANT <float1>

For the constant value of saturation model. This model is 
rarely used, unless one wanted to study the flow of gas and 
liquid at some constant, pre-specified saturation as a 
function of gas and liquid phase pressure.

Saturation = {model_name} {float_list} []



964 Revised: 6/12/13

5.4.15  Saturation  

VAN_GENUCHTEN <float_list>

The VAN_GENUCHTEN model assumes that saturation is 
a function of the capillary pressure. The {float_list} 
contains four values, where: 

<float1> - Irreducible water saturation
<float2> - Irreducible air saturation
<float3> - An exponent β
<float4> - A scaling to convert from capillary pressure 

to suction( )

TANH <float_list>

The first version of the TANH model assumes that 
saturation is only a function of capillary pressure. The 
{float_list} contains four values, where:

<float1> - Irreducible water saturation, θw
<float2> - Irreducible air saturation, θair
<float3> - A constant c
<float4> - A constant d

PSD_VOL <float1> <float2>

This model can only be used in conjunction with the same 
model for permeability and relative liquid permeability; two 
input values are required:

<float1> - Surface tension of the liquid
<float2> - Contact angle the liquid-vapor menisci makes 

with the solid surfaces

PSD_WEXP <float1> <float2>

This model can only be used in conjunction with the same 
model for permeability and relative liquid permeability; two 
input values are required:

<float1> - Surface tension of the liquid
<float2> - Contact angle the liquid-vapor menisci makes 

with the solid surfaces

PSD_SEXP <float1> <float2>

This model can only be used in conjunction with the same 
model for permeability and relative liquid permeability; two 
input values are required:

<float1> - Surface tension of the liquid
<float2> - Contact angle the liquid-vapor menisci makes 

with the solid surfaces

α ρl g⁄⁄
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Examples

Following is a sample card:

Saturation = VAN_GENUCHTEN 0.01 0.01 3.9 1.

The parameters on this VAN_GENUCHTEN specification are basically curve fit 
parameters to experimental measured saturation values versus capillary pressure. They 
do have some physical meaning, as is described below, and in the references.

Technical Discussion

The saturation function specification is perhaps the most critical and most influential 
function for capturing accurate behavior of flow through partially saturated porous 
media. The basic cap of this function versus capillary pressure is depicted in the figure 
below: Notice the plateau of saturation at unity at low capillary pressures (high positive 
liquid pressures) and the dip to the irreducible water saturation at high capillary 
pressures. In most real operations, this dependence will be highly sensitive to many 
factors: viz. whether you are filling or vacating the pore space, whether network stress 
in poroelastic problems is leading to liquid tension, etc.

The Van Genuchten model has the following functional form:

(5-78)

Here the irreducible water saturation is , the irreducible air saturation , the 
suction factor is α, and the exponents β and m, the latter of which is .

The TANH model has the following functional form:

(5-79)

where a and b are automatically calculated from

   and (5-80)

and c and d are two fitted coefficients provided as input parameters. Here the 
irreducible water saturation is , the irreducible air saturation , and are also 
provided by the user as input parameters. Pc is the capillary pressure which has a lower 
limit of 1.E-5.
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Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk.

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K. 
Moffat, August 2001 (DRAFT).

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996).

5.4.16 Porous Weight Function

Description/Usage

This required card is used to specify the weight function form on the capacitance term 
of the Darcy flow equations for partially saturated flow (viz. for Media Type
specifications of POROUS_PART_SAT and POROUS_UNSAT, and 
POROUS_TWO_PHASE.) The standard approach is to use a Galerkin formulation, 
but often times the SUPG option allows for a more stable time integration algorithm 
using the classic Streamwise Upwinding Petrov Galerkin weight function (see 
references below). The model options for this card are as follows:

GALERKIN Name of the weight function formulation. This option 
requests a standard Galerkin finite element weighted 
residual treatment. A parameter is required, viz. <float>, but 
it is not used by Goma; it should be set to zero.

<float> - 0.0

SUPG Name of the weight function formulation. This option 
requests a streamwise upwinding Petrov-Galerkin 
formulation. A floating point parameter is required as a 

Porous Weight Function = {GALERKIN | SUPG} <float>
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SUPG weighting parameter and it should be set between 0.0 
(for no upwinding) and 1.0 (for full upwinding).

<float> - a SUPG weighting parameter

The default model if this card is missing is GALERKIN.

Examples

An example card

Porous Weight Function = SUPG 1.0

Technical Discussion

As mentioned above, this card is used to invoke a streamwise upwinding scheme for 
purposes of stabilizing the solution around steep saturation fronts. Galerkin finite 
element treatment is often an extremely inaccurate discretization for propagating a 
discontinuity, such as is the case around these fronts, and often has to be supplemented 
with streamwise diffusion and/or mass lumping so that the saturation variable remains 
monotonic and well behaved, viz. to keep it from going below zero. Another expedient 
to aid in keeping the front smooth and monotonic is to use mass lumping (cf. Mass 
Lumping card).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K. 
Moffat, August 2001 (DRAFT).

Bradford, S. F. and N. D. Katopodes, “The anti-dissipative, non-monotone behavior of 
Petrov-Galerkin Upwinding,” International J. for Numerical Methods in Fluids, v. 33, 
583-608 (2000).

Brooks, A. N. and T. J. R. Hughes, “Streamline Upwind/Petrov-Galerkin Formulations 
for Convection Dominated Flows with Particular Emphasis on the Incompressible 
Navier-Stokes Equations,” Comp. Math. In Appl. Mechanics and Eng., 32, 199 - 259 
(1992).
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Gundersen, E. and H. P. Langtangen, “Finite Element Methods for Two-Phase Flow in 
Heterogeneous Porous Media,” in Numerical Methods and Software Tools in Industrial 
Mathematics, Morten Daehlen, Aslak Tveito, Eds., Birkhauser, Boston, 1997.

Helmig, R. and R. Huber, “Comparison of Galerkin-type discretization techniques for 
two-phase flow in heterogeneous porous media,” Advances in Water Resources, 21, 
697-711 (1998).

Unger, A. J. A.,  P. A. Forsyth and E. A. Sudicky, “Variable spatial and temporal 
weighting schemes for use in multi-phase compositional problems,” Advances in Water 
Resources, 19, 1 - 27 (1996).

5.4.17 Porous Mass Lumping

Description/Usage

Mass lumping is a technique for handling stiff problems with propagation of 
discontinuities. By “Mass” we mean the so-called mass matrix, or the submatrix 
generated by the time-derivative term in the physical equations. Discretization of this 
term with the standard Galerkin finite element method produces a symmetric, but non-
diagonal matrix, also known as the consistent mass matrix as it adheres to the proper 
weak form. This required card specifies the mode in which the mass matrix is 
computed. If mass lumping is turned on, then the matrix is formed on a nodal, 
collocated basis and the mass matrix becomes diagonal. This technique expedites time-
integration during the propagation of steep fronts.

The mass lumping here applies ONLY to the time-derivative term in the 
EQ=porous_liq or EQ=porous_gas equations in Goma, and only when the Media Type 
is either POROUS_UNSATURATED or POROUS_TWO_PHASE. Mass lumping is 
not enabled for saturated porous flow. Please see technical discussion below for other 
usage tips. The card options are as follows:

yes | true Compute mass matrix with the lumped approach.

no | false Compute mass matrix with the standard Galerkin approach. 
This is the default.

Examples

Porous Mass Lumping = true

Porous Mass Lumping = {yes | true | no | false}
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Technical Discussion

Mass lumping is almost essential for unsaturated porous flow problems, especially at 
low permeabilities and in conditions for which the saturation front is sharp. It is 
recommended that mass lumping always be used for all unsaturated porous flow 
problems. However, with such use it is also recommended to use ONLY 1st order time 
integration (see Time step parameter card and choose Backward-Euler, 0.0). For 
second order time integration on the porous flow equations, mass lumping does not 
provide any benefit as the increased accuracy in time tends to lead to insufficient 
accuracy in space, and wiggles form.

Mass lumping is not currently available for saturated deformable porous flow.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K. 
Moffat, August 2001 (DRAFT).

Bradford, S. F. and N. D. Katopodes, “The anti-dissipative, non-monotone behavior of 
Petrov-Galerkin Upwinding,” International J. for Numerical Methods in Fluids, v. 33, 
583-608 (2000).

Gundersen, E. and H. P. Langtangen, “Finite Element Methods for Two-Phase Flow in 
Heterogeneous Porous Media,” in Numerical Methods and Software Tools in Industrial 
Mathematics, Morten Daehlen, Aslak Tveito, Eds., Birkhauser, Boston, 1997.

Helmig, R. and R. Huber, “Comparison of Galerkin-type discretization techniques for 
two-phase flow in heterogeneous porous media,” Advances in Water Resources, 21, 
697-711 (1998).
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Unger, A. J. A., P. A. Forsyth and E. A. Sudicky, “Variable spatial and temporal 
weighting schemes for use in multi-phase compositional problems,” Advances in Water 
Resources, 19, 1 - 27 (1996).

5.4.18  

5.4.19 Porous Diffusion Constitutive Equation

Description/Usage

This required card is used to specify the species diffusion model for the gas phase in a 
porous medium. Just now there is only one option, but plans are to expand the options 
to include multicomponent diffusion models (cf. Diffusion Constitutive Equation card).   
It is important to note that this model specification only applies to the gas phase of each 
component. Liquid phase species diffusive transport has not been implemented as of 
12/19/01.

Definitions of the input parameters are as follows, with only a single permissible value:

DARCY_FICKIAN Name of the model for the diffusion constitutive 
equation in the porous gas phase.

This model simply implies that gas species can be transported relative to the solid 
skeleton phase not only by a pressure gradient, as in Darcy’s law, but also by Fickian 
diffusion.

Examples

The following sample input card uses the APREPRO variable model_name (which is 
set to DARCY_FICKIAN.

Porous Diffusion Constitutive Equation = {model_name}

Technical Discussion

Currently, the DARCY_FICKIAN model is the only option for the porous diffusion 
equation and it only applies to one phase. When this card is parsed, it is contained in a 
solvent species loop. When we allow more than one volatile species, we will eventually 
allow for other diffusion constitutive equation models, e.g. of the Stefan-Maxwell type. 
Also, we will have to build a phase dependence into this card, as the diffusion law may 

Porous Diffusion Constitutive Equation = {model_name}
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be different in the liquid and in the gas. Right now, we do not allow for diffusion 
transport (viz. by a chemical potential or concentration gradient) in the liquid phase of 
a porous medium. Please consult references below for theoretical discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.4.20 Porous Gas Diffusivity

Description/Usage

This card sets the model for the porous gas diffusivity, or the diffusion coefficient for 
diffusive species flux in the gas phase of a porous medium. It is applicable to media 
types POROUS_UNSATURATED and POROUS_TWO_PHASE (see Media Type 
card).

Definitions of the input options for {model_name} and the <integer> and <float> 
parameters fro each model are as follows:

CONSTANT <integer> <float1>

the name for the constant diffusivity model.

<integer> - phase/component; always set to zero 
until a multicomponent capability exists

<float1> - D, Diffusivity [L2/t]

Porous Gas Diffusivity = {model_name} <integer> <float_list> [L2/t]
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POROUS <integer> <float1> <float2> <float3> <float4> <float5>

the name for a microstructure dependent porous 
medium model.

<integer> - phase/component; always set to zero 
until a multicomponent capability exists

<float1> - Dv
o, binary diffusion coefficient in free 

space [L2/t]
<float2> - τ, tortuosity of the matrix skeleton
<float3> - P*

gas, reference gas phase pressure
<float4> - T0, reference temperature.
<float5> - n, exponent on the temperature 

dependence (see below). 

For two-phase or unsaturated flow in a porous medium, the diffusivity calculated by 
this model is the diffusivity of solvent vapor through the gas phase in the pore-space 
(see Martinez, 1995).

Examples

Porous Gas Diffusivity = POROUS 0 1.e-5 0.5 1.e+6 25.0 3

See the equation below for the diffusivity model that this card represents.

Technical Discussion

The generalized flux of liquid phase solvent, in both gas and liquid phases, contains a 
term that accounts for diffusion of the liquid solvent species as gas vapor (see 
references below). That flux is as follows:

(5-81)

If the media type is POROUS_TWO_PHASE, this expression is divided by

(5-82)

and if in addition it is temperature dependent, this expression is multiplied by

(5-83)

Theory

No Theory.

Dgv Dv
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τ
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FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

SAND94-0379: “Formulation and Numerical Analysis of Nonisothermal Multiphase 
Flow in Porous Media”, Sandia Technical Report, Martinez, M. J., 1995

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.4.21 Porous Latent Heat Vaporization

Description/Usage

This required card is used to specify the model for the latent heat of vaporization for 
each liquid solvent species in a partially saturated porous media flow problem, viz. 
Media Type card set to POROUS_UNSATURATED or POROUS_TWO_PHASE. 
As of 6/13/2002, we only allow single liquid phase solvent, and the porous enthalpy 
equation is being tested. Definitions of the input parameters are as follows:

CONSTANT Name of the constant latent heat of vaporization model.

<integer> - the species equation of liquid phase solvent; 
MUST BE SET TO ZERO for now.

<float> - the value of the latent heat of vaporization.

Examples

The following is a sample input card:

Porous Latent Heat Vaporization = CONSTANT 0 1000.2

Porous Latent Heat Vaporization = CONSTANT <integer> <float> [E/M]



974 Revised: 6/12/13

5.4.22  Porous Latent Heat Fusion  

Technical Discussion

First order phase change involves the adsorption or expulsion of heat. This thermal 
effect is modeled through the porous energy equation (see EQ cards; this equation was 
under development and testing as this manual was being assembled) with a source term 
that depends on the evaporation/condensation rate.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.4.22 Porous Latent Heat Fusion

Description/Usage

This required card is used to specify the model for the latent heat of fusion (or freezing) 
for each liquid solvent species in a partially saturated porous media flow problem, viz. 
Media Type card set to POROUS_UNSATURATED or POROUS_TWO_PHASE. 
As of 6/13/2002, we only allow single liquid phase solvent and the porous enthalpy 
equation is being tested. Definitions of the input parameters are as follows:

CONSTANT Name of the constant latent heat of fusion model.

<integer> - the species equation of liquid phase solvent; 
MUST BE SET TO ZERO for now.

<float> - the value of the latent heat of fusion.

Examples

The following is a sample input card:

Porous Latent Heat Fusion = CONSTANT 0 1000.2

Porous Latent Heat Fusion = CONSTANT <integer> <float> [E/M]
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Technical Discussion

First order phase change involves the adsorption or expulsion of heat. This thermal 
effect is modeled through the porous energy equation (see EQ cards; this equation was 
under development and testing as this manual was being assembled) with a source term 
that depends on the evaporation/condensation rate. Fusion implies a liquid to solid 
transition. It is envisioned that this card will someday be used for porous flow in mushy 
zones of solidifying metals, or the freezing of water in a porous solid.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.4.23 Porous Vapor Pressure

Description/Usage

Used to specify the model for the vapor pressure for each multiphase flow component 
in the porous medium that is activated for Media Type POROUS_UNSATURATED or 
POROUS_TWO_PHASE.

Definitions of the input parameters are as follows:

{model_name} The permissible values for the model in this class are 
KELVIN and FLAT for a volatile liquid, and 
NON_VOLATILE for a non-volatile liquid.

{integer} All models require an integer field after the model name 
which is the species_number; always set to zero until a 
multicomponent capability exists.

Porous Vapor Pressure = {model_name} {integer} {float_list} [M/L-t2]
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{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}.

Porous vapor pressure model choices and their parameters are presented below; consult 
the Technical Discussion for relevant details.

 KELVIN <integer> <float1> <float2>... <float5>

For the KELVIN porous vapor pressure model, the 
{float_list} has a five values:

<float1> - p*v, vapor pressure on a flat interface
<float2> - ρl, the liquid density
<float3> - Mw , molecular weight of liquid
<float4> - R, the gas law constant
<float5> - T, the operating temperature

FLAT <integer> <float1> <float2>... <float5>

For the FLAT porous vapor pressure model, the 
{float_list} has a five values (same as KELVIN above):

<float1> - p*v, vapor pressure on a flat interface
<float2> - ρl, the liquid density
<float3> - Mw , molecular weight of liquid
<float4> - R, the gas law constant
<float5> - T, the operating temperature

The FLAT option requires the same parameters as the 
KELVIN model but leaves out the exponential function.

NON_VOLATILE <integer>

The NON_VOLATILE model requires no additional 
input.

Examples

The sample input card:

Porous Vapor Pressure = FLAT 0 {Vap_Pres} {density} {30.} {Rgas} 
{T}

applies the FLAT model as described above to vapor-liquid equilibrium (assumed to be 
single component for now) using all APREPRO-defined parameters.
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Technical Discussion

The KELVIN option is used to include the effect of vapor-pressure lowering that 
results in equilibrium over high curvature menisci, i.e., small pores. The equation form 
of this is:

(5-84)

The FLAT option requires the same parameters but leaves out the exponential function. 
The constants are still needed so that the gas-phase concentration can be calculated 
with the ideal gas law. The functional form is

(5-85)

where S is the local saturation, and ρgv is the gas phase density of vapor. This model is 
ad-hoc but nonetheless leads to some interesting results. It basically says that as 
saturation increases, the gas-liquid menisci, and correspondingly the interfacial area 
available for evaporation, become more concentrated and hence the gas-phase vapor 
concentration increases.

The NON_VOLATILE option should be set if no gas-phase transport of vapor of the 
liquid phase component is desired, as if the liquid phase were non-volatile. Goma, with 
this choice, sets the gas phase concentration of liquid vapor to zero.

For nonvolatile pore liquids, the vapor pressure on a flat interface, viz. the first required 
floating point on this card, should be set to zero. As of 6/13/02 this card has only been 
implemented for pure liquid solvents, so that no equilibrium solvent partitioning across 
the interface is present.

Theory

No Theory.

FAQs

Sometimes system aborts can happen with the Kelvin model because of real large, 
negative capillary pressures. In this case, the exponential term can exceed the machine 
limit. This can happen well into a transient run. The user should be aware of this; 
consult GT-009.3 for tips related to dealing with this problem.

pv p∗
v

pcMw

ρlRT
--------------–exp=

ρgv

Mwpv

RT
--------------S=
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References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.4.24 Porous Liquid Volume Expansion

Description/Usage

This card is not currently activated.

Examples

No examples.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Not currently enabled (12/21/2001)
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5.4.25 Porous Gas Constants

Description/Usage

This required card is used for Media Types of POROUS_UNSATURATED and 
POROUS_TWO_PHASE, and is used to input some standard thermodynamic gas 
constants needed for vapor-liquid equilibrium calculations (see Media Type card).    
Eventually more than one model may be allowed for nonideal gas situations.

The IDEAL_GAS model is the only model currently requiring standard constants; they 
are defined as follows:

IDEAL_GAS - the model name requiring constants for the thermodynamic 
ideal gas law.

<float1> - MWair, the molecular weight of the insoluble 
gas in the gas phase [g/mole].

<float2> - R, the universal gas law constant [M-L2/t2/K]
<float3> - T, the temperature [deg K]
<float4> - pamb, the ambient gas pressure.

Examples

The sample input card follows:

Porous Gas Constants = IDEAL_GAS 28.0 8. 315  275  1.06e+5

Technical Discussion

For POROUS_UNSATURATED media types the ambient pressure dictates the 
equilibrium pressure for the calculation of the gas-phase density of solvent (viz. the 
total ambient pressure minus the vapor pressure will be the gas partial pressure, from 
which the concentration of gas can be computed based on the other gas constants). In 
POROUS_TWO_PHASE media types, the gas partial pressure is a dependent 
variable and computed as a part of the Darcy law mass balance. In this case the 
dynamic pressure is used instead of <float4> here for the calculation of the gas-phase 
concentrations.

It is important to realize that setting the ambient pressure on this card for Media Types 
of POROUS_UNSATURATED will potentially affect your saturation curve and the 
appropriate values of your liquid phase pressure boundary conditions. If possible, you 
should set this value to zero, and base your Saturation versus vapor pressure curve 
accordingly. Also, in that case your liquid pressure boundary conditions can all be 

Porous Gas Constants = IDEAL_GAS <float_list>                                 [varies]
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referenced to zero. However, if you choose a gauge pressure, or thermodynamic 
pressure, you Saturation/capillary pressure curve must be shifted accordingly, as do 
your boundary conditions. Also, remember these pressures will affect your solid 
pressure state in poroelastic problems.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated 
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media, 
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel 
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J. 
Hurd and C. Brinker (September 1996)

 

5.5 Species Properties

The section of material properties defines the models and parameters governing diffusive mass 
transport, whether it be ordinary, forced or thermal diffusion of species. Included in those 
generalizations are electrical potential-driven species movements. Models include those for single 
species, especially particle-laden suspensions, binary species and multi-component systems. 
Models for various equations of mass transport are included, various models of diffusion 
properties, different representations of species by means of molar, mass or volume concentrations, 
various models of vapor pressure for multiphase flow and on material boundaries for lumped 
parameter analyses, and properties for charged species.
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5.5.1 Number of Species

Description/Usage

This card is no longer used. It may be removed from the Material file.

Examples

No example.

Technical Discussion

The Number of Species is now determined by Goma from the Problem Specification for 
each material in the Goma input file.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.2 Diffusion Constitutive Equation

Description/Usage

This card is used to specify the constitutive equation governing mass transport. 
Definitions of the input parameters are as follows:

{model_name} Name of the model for the diffusion constitutive equation. 
The currently supported options are:

NONE
FICKIAN

Number of Species = 

Diffusion Constitutive Equation = {model_name}
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DARCY
DARCY_FICKIAN
HYDRODYNAMIC
GENERALIZED_FICKIAN
FICKIAN_CHARGED
STEFAN_MAXWELL
STEFAN_MAXWELL_CHARGED

This card requires only the specification of a {model_name}. The Technical Discussion 
subsection below presents each of these models.

Examples

The following is a sample input card:

Diffusion Constitutive Equation = DARCY

Technical Discussion

NONE indicates that the material block to which this material file applies is a non-
diffusing material. FICKIAN implies that the rate of diffusion is proportional to the 
gradient in volume fraction and the diffusion coefficient of each species. DARCY 
implies that mass transport occurs by pressure-driven flow through a porous medium. 
DARCY_FICKIAN implies that mass transport occurs by both diffusion and pressure-
driven flow in a porous medium.

HYDRODYNAMIC implies that mass transport of at least one species is driven by 
gradients in the second invariant of the rate of deformation tensor (shear rate) and 
gradients in viscosity (Phillips, et.al. 1992). This model also includes a sedimentation 
flux term to account for the motion of non-neutrally buoyant particles resulting from 
gravitation (Zhang and Acrivos, 1994) and a curvature-driven flux term from the 
normal component of the acceleration vector (Krishnan et al., 1996). This model is 
used in predicting the particle distributions of particulate suspensions undergoing flow. 
For this model, the mass flux vector J is given by the following:

(5-86)

where

, (5-87)

, (5-88)

, and (5-89)

J Jc Jµ+= Jr Jg+ +

Jc CiDc γ· Ci( )∇–=

Jµ Ci
2γ· Dµ µln( )∇=

Jr Ciγ
· 2

Dr
n
r
---=
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(5-90)

where Ci is the particulate phase volume fraction, i is the species number designation of 
the particulate phase,  the shear rate, µ the viscosity,  the normal unit acceleration 
vector, r the curvature of streamlines, Dc, Dµ, Dr and Dg the “diffusivity” parameters, 
ρs and ρf the particle and fluid phase densities, respectively, and , the gravitational 
acceleration vector.

GENERALIZED_FICKIAN is based on the generalized-Fick’s law (Taylor and 
Krishna, 1993). The mass transport of each species is influenced by all of the species in 
the mixture.

(5-91)

(5-92)

ρ is the mass-concentration of species. The elements along the diagonal, Dii, are self-
diffusivities, while Dij are mutual-diffusivities between species i and j. Note that 
mutual diffusivities in generalized formulation can be both positive and negative.

FICKIAN_CHARGED indicates a model for multicomponent transport (diffusion 
and migration) of charged species in dilute electrolyte solutions will be used. The 
Fickian diffusivity of species i, Di, as defined in the following Fickian flux model (cf. 
Newman 1991; Chen 2000)

(5-93)

is taken to be constant. Here, ci is molar concentration of species i, Φ is electrical 
potential in electrolyte solution, zi is charge number of species i, F is the Faraday 
constant (96487 C/mole), R is the universal gas constant (8.314 J/mole-K), and T the 
electrolyte solution temperature.

STEFAN-MAXWELL activates a model for multicomponent diffusion of neutral 
species in concentrated solutions. The Stefan-Maxwell diffusivities, Dij, as defined in 
the following Stefan-Maxwell flux model (cf. Chen et al. 2000, Chen et al. 1998):

(5-94)

are taken to be constant. Here, xi is mole fraction of species i, Ji the molar flux of 
species i, and c the total molar concentration. Since Dij = Dji and Dii are not defined, 
only n(n-1)/2 Stefan-Maxwell diffusivities are required (here, n is the total number of 

Jg Dg

ρs ρf–( )

µ
---------------------Ci 1 Ci–( )g=

γ· n

g

J ρD w∇( )=

J D ρ∇( )=
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RT
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=
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diffusing species). For example, for n = 3 (i.e., a solution having three species), three 
Stefan-Maxwell diffusivities are needed: D12, D13, and D23.

STEFAN-MAXWELL_CHARGED For multicomponent transport (diffusion and 
migration) of charged species in concentrated electrolyte solutions. The Stefan-
Maxwell diffusivities, Dij, as defined in the following Stefan-Maxwell flux model (cf. 
Chen et al. 2000, Chen et al. 1998)

(5-95)

are taken to be constant, as in the case of multicomponent diffusion of neutral species 
in concentrated solutions. Here, the charged species definitions are the same as for the 
FICKIAN_CHARGED model.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-025.0: Chen, K. S., “Modeling diffusion and migration transport of charged 
species in dilute electrolyte solutions: GOMA implementation and sample computed 
predictions from a case study of electroplating”, Sandia memorandum, September 21, 
2000.

Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R., and Houf, W. G. “Final Report 
on LDRD Project: A Phenomenological Model for Multicomponent Transport with 
Simultaneous Electrochemical Reactions in Concentrated Solutions”, SAND2000-
0207, Sandia National Laboratories Technical Report (2000).

Chen, K. S., Evans, G. H., Larson, R. S., Coltrin, M. E., and Newman, J. “Multi-
dimensional modeling of thermal batteries using the Stefan-Maxwell formulation and 
the finite-element method”, in Electrochemical Society Proceedings, Volume 98-15, p. 
138-149 (1998).

Krishnan, G. P., S. Beimfohr, and D. Leighton, 1996. “Shear-induced radial segregation 
in bidisperse suspensions,” J. Fluid Mech. 321, 371

Newman, J. S., Electrochemical Systems, Prentice Hall, Inc., Englewood Cliffs, New 
Jersey (1991).
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5.5.3 Species Weight Function

Description/Usage

This optional card is used to specify the weight functions to be used on the weighted 
residual of the species convective diffusion equations. For high Peclet number cases, 
you may want to use a Petrov-Galerkin formulation rather than a Galerkin formulation. 

{model_name} Name of the formulation model. Valid entries are 
GALERKIN, for a full Galerkin formulation, SUPG, for a 
streamwise upwinded Petrov-Galerkin formulation.

<float> - the weight function parameter, chosen between 
0. and 1.. The value 0. corresponds to 
GALERKIN weighting and 1. corresponds to a 
full SUPG.

 When this card is absent, the default {model_name} is GALERKIN.

Examples

The following is a sample input card:

Species Weight Function = SUPG 0.5

Technical Discussion

No discussion.

Theory

No Theory.

Species Weight Function = {model_name} <float>
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FAQs

No FAQs.

References

No References.
 

5.5.4 Number of chemical reactions

Description/Usage

This card is used to specify the number of electrochemical reactions being modeled in 
an electrode (anode or cathode), as in a thermal-battery cell.

Example

Following is a sample card:

Number of chemical reactions =  1

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Number of chemical reactions = <integer>
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5.5.5 Reaction Rate

Description/Usage

This card is used to specify rates of species electrochemical reactions in the anode and 
cathode regions in a LiSi/LiCl-KCl/FeS2 thermal battery cell using Butler-Volmer 
kinetics.

This property currently allows for a single {model_name} which has two parameters:

ELECTRODE_KINETICS the name of reaction rate model

<float1> - Anodic direction transfer coefficient
<float2> - Cathodic direction transfer coefficient

Two companion cards, THERMODYNAMIC POTENTIAL and INTERFACIAL AREA 
are required to complete the specification of parameters present in the Butler-Volmer 
kinetic model of current density.

Examples

The following are two sample cards:
Reaction Rate = ELECTRODE_KINETICS   0.5  0.5
Reaction Rate = ELECTRODE_KINETICS   1.0  1.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Reaction Rate = <model_name> <float1> <float2>
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5.5.6 Thermodynamic Potential

Description/Usage

This card is used to specify the anodic or cathodic thermodynamic potential in a 
thermal battery cell.

{model_name} Name of thermodynamic potential model. Currently, two 
thermodynamic potential models are available, namely LiSi 
and FeS2. Each of these and their accompanying input 
parameters (the <float_list>) is given below:

LiSi This model requires seven floating-point parameters:

<float1> - Limit of electrode utilization for the first anode 
reaction.

<float2> - Limit of electrode utilization for the second 
anode reaction.

<float3> - Anode thickness.
<float4> - Anode porosity.
<float5> - Molar volume of active anode material.
<float6> - Current density output by the thermal battery 

cell.
<float7> - Number of electrons involved in anode 

reactions.

FeS2 This model requires eight floating-point parameters:

<float1> - Limit of electrode utilization for the first 
cathode reaction.

<float2> - Limit of electrode utilization for the second 
cathode reaction.

<float3> - Limit of electrode utilization for the third 
cathode reaction.

<float4> - Cathode thickness.
<float5> - Cathode porosity.
<float6> - Molar volume of active cathode material.
<float7> - Current density output by the thermal battery 

cell.
<float8> - Number of electrons involved in cathode 

reactions.

Thermodynamic Potential = {model_name} {float_list}
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Examples

The following are two sample input cards:
Thermodynamic Potential = LiSi 0.283 0.474 0.088 0.275 54.61 0.0246 3.25
Thermodynamic Potential = FeS2 0.375 0.434 0.5 0.046 0.244 23.93 0.0246 4.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.7 Interfacial Area

Description/Usage

This card is used to specify the product of interfacial area per unit volume by exchange 
current density (i.e., ai0) in the Butler-Volmer kinetic model of current density.

{model_name} Name of the model for interfacial area, of which there are 
currently two available, namely CONSTANT and 
THERMAL_BATTERY.

CONSTANT constant value of Interfacial Area

<float1> - the value of the product of interfacial area per 
unit volume and exchange current density.

THERMAL_BATTERY 

this option requires the following nine parameters:

<float1> - Initial value of the product of interfacial area 
per unit volume by exchange current density.

Interfacial Area = {model_name} {float_list}
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<float2> - Limit of electrode utilization beyond which 
ai0 = 0.

<float3> - Activation energy for the Arrhenius 
dependency of ai0 on temperature.

<float4> - Initial electrode/electrolyte temperature.
<float5> - Cathode thickness.
<float6> - Cathode porosity. 
<float7> - Molar volume of active cathode material.
<float8> - Current density output by the thermal battery 

cell.
<float9> - Number of electrons involved in cathode 

reactions.

Examples

The following are two sample input cards:
Interfacial Area = CONSTANT   1.0
Interfacial Area = THERMAL_BATTERY 20.0 0.375 20000.0 846.0 0.046 

0.244 23.93 0.0246 4.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.8 Butler_Volmer_j

Unused; has been removed from Goma as of 12/20/2001
 

None
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5.5.9 Butler_Volmer_ij

 Unused; has been removed from Goma as of 12/20/2001.
 

5.5.10 Solution Temperature

Description/Usage

This card is used to specify the temperature of an electrolyte solution (i.e., when 
diffusion and migration transport of charged species is involved).

{model_name} Name of the electrolyte-solution model, for which there are 
currently two options: CONSTANT and 
THERMAL_BATTERY; the former model has a single 
parameter in the <float_list> while the latter has six.

CONSTANT A constant model of the solution temperature.

<float1> -  the value of electrolyte-solution temperature.

THERMAL_BATTERY

A specialized model of electrolyte solutions for Thermal 
Batteries (Chen, et. al., 2000).

<float1> - Initial electrolyte solution temperature ( K )
<float2> - Ambient temperature ( K )
<float3> - Cross-sectional area from which heat is lost to 

ambient ( m2 )
<float4> - Heat transfer coefficient ( W/m2/K )
<float5> - Mass of battery cell ( kg )
<float6> - Heat capacity of electrolyte solution ( J/kg/K)

Examples

The following are two sample input cards:
Solution Temperature = CONSTANT    313.0
Solution Temperature = THERMAL_BATTERY  846.  298. 0.0316 7.7 0.6 
1030.

None

Solution Temperature = {model_name} <float_list>
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Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0207: Final Report on LDRD Project: A Phenomenological Model for 
Multicomponent Transport with Simultaneous Electrochemical Reactions in 
Concentrated Solutions, Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R., and 
Houf, W. G., January 2000.

 

5.5.11 Porosity

Description/Usage

This card is used to specify the porosity model for the anode or separator or cathode 
region in a thermal battery cell.

Definitions of the {model_name} and the associated input parameters (<float>) are as 
follows:

CONSTANT the name of the porosity model.

{float1} - the porosity value.

THERMAL_BATTERY

the name of the porosity model.

{float1} - the initial value of porosity
{float2} - specifies the change of molar volume in 

the anode or cathode electrode material per 
electron transferred, as stated in

Porosity = {model_name} <float1> [float2]
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 (5-96)

where si is stoichiometric coefficient of 
species or phase i,  is molar volume of 
species or phase i, n is the number of 
electrons transfer in the anodic or cathodic 
electrochemical reaction, and the 
summation is over the number of solid 
phases.

Examples

A sample input card for this material property might look like this:

Porosity = THERMAL_BATTERY  0.244  8.1185

Technical Discussion

• This is a porosity model for a special application in which the model for the 
diffusion constitutive equation is STEFAN_MAXWELL_CHARGED, which 
enables modeling the transport of multiple charged species with simultaneous 
electrochemical reaction(s) in a concentrated solution, as in a thermal-battery cell.

• See the reference below for a discussion of Thermal Battery modeling with Goma.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0207: Final Report on LDRD Project: A Phenomenological Model for 
Multicomponent Transport with Simultaneous Electrochemical Reactions in 
Concentrated Solutions, K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble and W. G. 
Houf, January 2000.
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5.5.12 Diffusivity

Description/Usage

This required card is used to specify the model for the diffusivity for each species. 
Definitions of the input parameters are as follows:

{model_name} Name of the diffusivity model. This parameter can have one 
of the following values:

CONSTANT
USER
POROUS
GENERALIZED
FREE_VOL
GENERALIZED_FREE_VOL
HYDRO
ARRHENIUS
TABLE

<species> An integer designating the species equation.

{float_list} One or more floating point numbers (<float1> through 
<floatn> whose value is determined by the selection for 
{model_name}. Note that not all the models employ a 
{float_list}.

Thus, choices for {model_name} and the accompanying input parameter list are 
dependent on the {model_name} selected for the Diffusion Constitutive Equation. In 
some cases, the above model choices have special definitions, while for others some of 
the above choices do not exist. Thus, the presentation below is keyed to the value 
chosen for the Diffusion Constitutive Equation model.

When the Diffusion Constitutive Equation model is set to NONE, meaning the material 
block to which this material file applies is a non-diffusing material, this Diffusivity card 
should be present in the Material file specification but the model and its parameters will 
not be used.

For the FICKIAN, GENERALIZED_FICKIAN, DARCY and DARCY_FICKIAN 
flux models, the following options are valid choices for the Diffusivity {model_name} 
and accompanying parameter lists.

CONSTANT <species> <float1>

Diffusivity = {model_name} <species> <float_list> [varies]
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a constant diffusivity model

<species> - an integer designating species i
<float1> - Diffusivity of species i, in units [L2/t]

USER <species> <float_list>

a user-defined model, the <species> is specified and the 
set of parameters <float1> through <floatn> is defined 
by the function usr_diffusivity in the file 
user_mp.c.

POROUS <species> <float_list>

a diffusivity that depends on the saturation and porosity 
in a porous medium. For two-phase or unsaturated flow 
in a porous medium, the diffusivity calculated by this 
model is the diffusivity of solvent vapor through the gas 
phase in the pore-space.

This model has been deprecated as the porous equation 
rewrite has proceeded; it is not recommended for use!

GENERALIZED <species> <float1> <float2>

For constant diffusivities used by generalized Fick’s 
law. The {float_list} consists of two values for each 
species i or i-j species pair:

<species> - an integer designating species i
<float1> - Dii, the self-diffusivity
<float2> - Dij; the mutual diffusivities

FREE_VOL <species> <floatlist>

For a diffusivity determined by free volume theory. The 
{float_list} for this model contains twelve values:

<species> - an integer designating species i
<float1> - V*

1, solvent specific critical-hole volume
<float2> - V*

2, polymer specific critical-hole volume
<float3> - K11/γ, solvent free volume parameter
<float4> - K12/γ, solvent free volume parameter
<float5> - K21 - Tg1, free volume/transition parameter
<float6> - K22 - Tg2, free volume/transition parameter
<float7> - χ, Flory-Huggins polymer/solvent 

interaction parameter
<float8> - ξ, ratio of solvent and polymer jumping units
<float9> - D01, binary diffusivity for 0-1 system [L2/t]
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<float10> - E/R, ratio of activation energy to gas 
constant

<float11> - V0
1, solvent specific volume

<float12> - V0
2, polymer specific volume

Note, this model can be run only with a single species 
equation, i.e., two components.

GENERALIZED_FREE_VOL <species> <floatlist>

a diffusivity model based on free volume theory and the 
generalized Fick’s law. This is similar to the FREE_VOL 
model except it is for a ternary mixture of solvent (1), 
solvent (2), and polymer (3). A concentration-dependent 
self-diffusivity is specified. The <species> is defined and 
the {float_list}, consisting of 12 parameters is identical to 
and can be specified in the exact same order as in the binary 
case; see FREE_VOL model above for input parameter list.

TABLE  <integer1>  <character_string1> {LINEAR | BILINEAR}  [integer2] 
[FILE = filenm]

Please see discussion at the beginning of the material 
properties Chapter 5 for input description and options.  
Most likely character_string1 will be 
MASS_FRACTION or TEMPERATURE.  

For the HYDRODYNAMIC flux model (Diffusion Constitutive Equation), there is 
only one valid choice for the Diffusivity {model_name}, i.e., HYDRO. There are no 
accompanying parameters but several additional cards are required to define different 
portions of the model; these cards are identified below. The user is referred to each 
individual card (identified by italic typeset) definition for the associated model choices 
and parameter lists.

HYDRO For mass transport driven by the hydrodynamic field. No 
<species> or {float_list} is required, although five additional 
input cards are required with this diffusivity model. The first 
specifies Dc in the Shear Rate Diffusivity card. The second 
specifies Dµ in the Viscosity Diffusivity card. The third specifies 
Dr in the Curvature Diffusivity card. The fourth specifies the 
diffusivity of a purely Fickian diffusion mode in the Fickian 
Diffusivity card; it is usually set to zero. The last card specifies 
Dg, in the Gravity-based Diffusivity card for the flotation term 
in variable density transport problems.



Revised: 6/12/13 997

5.5.12  Diffusivity 

ARRHENIUS <integer 1> <integer 2> <float1> <float2> <float3>

This is a model for describing effect of temperature on 
Stefan-Maxwell diffusivities for application in modeling 
thermal batteries and thus it is used in conjunction with the 
STEFAN_MAXWELL_CHARGED or  
STEFAN_MAXWELL flux model (Diffusion Constitutive 
Equation). Two integers and three floats are required for 
this diffusivity model: 

 <integer 1>   index for species i.

<integer 2>   index for species j.

<float 1>   Stefan-Maxwell diffusivity, dij in units [L2/t].

<float 2>   activation energy, ED .

<float 3>   reference temperature, T0 .

Note: the units of ED and T0 are such that  is
          dimensionless with R being the universal gas constant.  

For the FICKIAN_CHARGED flux model (Diffusion Constitutive Equation), only 
constant diffusivities are allowed. So the Diffusivity model option is:

CONSTANT <species> <float1>

a constant diffusivity model

<species> - an integer designating species i
<float1> - Diffusivity of species i, in units [L2/t]

In addition, the Charge Number and Solution Temperature cards must also be specified 
in the material file so that the migration flux may be calculated.

The STEFAN_MAXWELL and STEFAN_MAXWELL_CHARGED flux models 
(Diffusion Constitutive Equation) should be used to model the transport of two or more 
species only. The diffusivity model for species in these transport problems is currently 
limited to being CONSTANT and ARRHENIUS.  In the CONSTANT Stefan-
Maxwell diffusivity model, a set (only n(n-1)/2 values since Dij = Dji and Dii are not 
defined) of diffusivities, Dij, is required:

CONSTANT <species> <float1>

a constant diffusivity model

<species> - an integer designating species i
<species> - an integer designating species j

–

–

–

–

–

ED RT( )⁄
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 <float1> - Dij, mutual diffusivity of species i and j, 
in units [L2/t]

In addition, the Charge Number, Molecular Weight and Solution Temperature cards 
must also be specified in the material file so that the migration flux may be calculated.

Examples

Sections of material input files are shown below for several of the Diffusivity model 
options presented above.

Following is a sample input card for the CONSTANT Diffusivity model: 

Diffusivity = CONSTANT 0 1.

Following is a sample section of the material file for the HYDRO Diffusivity model: 
Diffusion Constitutive Equation = HYDRODYNAMIC
Diffusivity                  = HYDRO 0
Shear Rate Diffusivity       = LINEAR   0 6.0313e-5
Viscosity Diffusivity        = LINEAR   0 6.0313e-5
Curvature Diffusivity        = CONSTANT 0 -48.02e-6
Fickian Diffusivity          = ANISOTROPIC 0 0. 0.1e-5 0.
Gravity-based Diffusivity    = RZBISECTION 0 2.14e-5  5.1 0.5 0.5

Following is a sample section of the material file for the 
GENERALIZED_FREE_VOL Diffusivity model:
Diffusion Constitutive Equation = GENERALIZED_FICKIAN
Diffusivity = GENERALIZED_FREE_VOL 1  0.943 1.004 0.000983 0.000239  
-12.12 -96.4 0.395 0.266 0.00143 0 1.265983036 0.9233610342

Sample section of the material file for the  STEFAN_MAXWELL_CHARGED 
Diffusion Constitutive Equation with the CONSTANT Diffusivity model:

Diffusion Constitutive Equation = STEFAN_MAXWELL_CHARGED
Diffusivity                     = CONSTANT
 0  1   2.0e-05
 0  2   2.0e-05
 1  2   2.0e-05

Solution Temperature = THERMAL_BATTERY 846. 298. .03 7.7 0.6 1030.
Molecular Weight                = CONSTANT  0   6.939
Charge Number                   = CONSTANT  0   1.0
Molecular Weight                = CONSTANT  1   39.098
Charge Number                   = CONSTANT  1   1.0
Molecular Weight                = CONSTANT  2   35.4
Charge Number                   = CONSTANT  2   -1.0

Sample section of the material file for the  STEFAN_MAXWELL_CHARGED 
Diffusion Constitutive Equation with the ARRHENIUS Diffusivity model:
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Diffusion Constitutive Equation = STEFAN_MAXWELL_CHARGED
Diffusivity                     = ARRHENIUS
 0  1   1.5e-05 80000.0 846.0
 0  2   1.5e-05 80000.0 846.0
 1  2   1.5e-05 80000.0 846.0

(the Charge Number, Molecular Weight and Solution Temperature cards are   
similarly specified as above in the CONSANT Diffusivity case)

Technical Discussion
Following are brief comments on the various Diffusivity models.

POROUS For this model, diffusivity depends on the saturation and porosity in a 
porous medium. For two-phase or unsaturated flow in a porous medium, the diffusivity 
calculated by this model is the diffusivity of solvent vapor through the gas phase in the 
pore-space (see Martinez, 1995). However as indicated above, this model is not 
recommended for use at his time.

GENERALIZED This model generalizes Fick’s Law for multicomponent diffusion. 
The elements along the diagonal, Dii, are self-diffusivities, while Dij are mutual 
diffusivities between species i and j. Note that mutual diffusivities in generalized 
formulation can be both positive and negative, and are constant values.

FREE_VOL For a diffusivity determined by free volume theory (cf. Duda et al. 1982). 
In mathematical form, the binary mutual diffusion coefficient (solvent diffusion in a 
polymeric solution), using the free volume theory, is given by:

(5-97)

where

(5-98)

(5-99)

Here,  ω1 is the solvent weight fraction, ω2 polymer weight fraction; V0
1 and V0

2 are, 
respectively, solvent and polymer specific volumes;  φ1 solvent volume fraction,   φ2 
polymer volume fraction;  γ overlap factor to account for shared free volume; Tg1 and 
Tg2 respectively solvent and polymer glass transition temperature, T absolute 
temperature; K11, K12, K21 and K22 solvent free-volume parameters; V*

1 and V*
2 

D D01 1 φ1–( )
2
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respectively, solvent and polymer specific critical-hole volumes; D01 constant pre-
exponential factor when E is presumed to be zero (E is energy required to overcome 
attractive forces from neighboring molecules); ξ ratio of solvent and polymer jumping 
units; and χ Flory-Huggins polymer/solvent interaction parameter. In general, D01 
should be expressed as D01 e

- E/RT with R being the universal gas constant. Dependence 
of diffusivity, D, on temperature and mass fraction can be determined once the above 
twelve parameters are specified.

Note: This model (FREE_VOL) can be run ONLY with 1 species equation, i.e., with two 
components.

GENERALIZED_FREE_VOL  This is a diffusivity model based on free volume 
theory and the generalized Fick’s law. For a ternary mixture of solvent (1), solvent (2), 
and polymer (3), the concentration-dependent self-diffusivity is given by (Vrentas, et. 
al., 1984):

(5-100)

where

(5-101)

The parameters for this model are the same twelve parameters as for the binary 
FREE_VOL model and so can be specified in the exact same order. The mutual 
diffusivities required to fill the cross-terms are also concentration-dependent. In 
addition, the gradient in chemical potential is also accounted for (Alsoy and Duda, 
1999; Zielinski and Hanley, 1999).

(5-102)

(5-103)

ai is the activity of species i, which can be written in terms of the activity coefficient, 
γi, and volume fraction, φi. The current implementation of species activity is based on 
the Flory-Huggins model for multicomponent polymer-solvent mixtures (Flory, 1953).

HYDRO implies that mass transport of at least one species is driven by gradients in the 
second invariant of the rate of deformation tensor (shear rate) and gradients in viscosity 
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(Phillips, et.al. 1992). This model also includes a sedimentation flux term to account 
for the motion of non-neutrally buoyant particles resulting from gravitation (Zhang and 
Acrivos, 1994) and a curvature-driven flux term from normal component of the 
acceleration vector (Krishnan, et. al., 1996). This model is used in predicting the 
particle distributions of particulate suspensions undergoing flow. For this model, the 
mass flux vector J is given by the following:

(5-104)

where

, (5-105)

, (5-106)

, and (5-107)

(5-108)

where Ci is the particulate phase volume fraction, i is the species number designation of 
the particulate phase,  the shear rate, µ the viscosity,  the normal unit acceleration 
vector, r the curvature of streamlines, Dc, Dµ, Dr and Dg the “diffusivity” parameters, 
ρs and ρf the particle and fluid phase densities, respectively, and , the gravitational 
acceleration vector.

ARRHENIUS Diffusivities can be strongly dependent on temperature as in processes 
such as thermal batteries. Such temperature dependency can be described using the 
following constitutive model that makes use of Arrhenius temperature dependency:

   

where Dij are the Stefan-Maxwell diffusivities as defined in Equations 13 and 14.  
are the reference Stefan-Maxwell diffusivities at reference temperature T0; ED is the 
activation energy that controls the temperature dependency and R is the universal gas 
constant; and T is temperature. The units of ED, R and T are such that  is 
dimensionless.   
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STEFAN-MAXWELL  For multicomponent diffusion of neutral species in 
concentrated solutions. The Stefan-Maxwell diffusivities, Dij, as defined in the 
following Stefan-Maxwell flux model (cf. Chen, et. al., 2000, Chen, et. al., 1998):

(5-109)

are taken to be constant. Here, xi is mole fraction of species i, Ji the molar flux of 
species i, and c the total molar concentration. Since Dij = Dji and Dii are not defined, 
only n(n-1)/2 Stefan-Maxwell diffusivities are required (here, n is the total number of 
diffusing species). For example, for n = 3 (i.e., a solution having three species), three 
Stefan-Maxwell diffusivities are needed: D12, D13, and D23.

STEFAN-MAXWELL_CHARGED For multicomponent transport (diffusion and 
migration) of charged species in concentrated electrolyte solutions. The Stefan-
Maxwell diffusivities, Dij, as defined in the following Stefan-Maxwell flux model (cf. 
Chen et al. 2002, Chen, et. al., 2000, Chen, et. al., 1998):

(5-110)

are taken to be constant, as in the case of multicomponent diffusion of neutral species 
in concentrated solutions. Here, Φ is electrical potential in electrolyte solution, zi 
charge number of species i, F Faraday constant (96487 C/mole), R universal gas 
constant (8.314 J/mole-K), and T electrolyte solution temperature. 

FICKIAN_CHARGED For multicomponent transport (diffusion and migration) of 
charged species in dilute electrolyte solutions. The Fickian diffusivity of species i, Di, 
as defined in the following Fickian flux model (cf. Newman, 1991; Chen, et. al., 2000):

(5-111)

is taken to be constant. Here, ci is molar concentration of species i.

Theory

No Theory.

FAQs

The following is a discussion of Units in Goma but covers several important Diffusion-
related items. It comes from some emails exchanged at Sandia during January 1998; 
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while the discussions are relevant for each user of the code, the deficiencies or lack of 
clarity have been since been remedied prior to Goma 4.0.

Unit Consistency in Goma (Jan 98)

Question:... I know what you are calling volume flux is mass flux divided by density. 
The point I am trying to make is that the conservation equations in the books I am 
familiar with talk about mass, energy, momentum, and heat fluxes. Why do you not 
write your conservation equations in their naturally occurring form? If density just so 
happens to be common in all of the terms, then it will be obvious to the user that the 
problem does not depend on density. You get the same answer no matter whether you 
input rho=1.0 or rho=6.9834, provided of course this does not impact iterative 
convergence. This way, you write fluxes in terms of gradients with the transport 
properties (viscosity, thermal conductivity, diffusion coefficient, etc.) being in familiar 
units.

Answer: First let me state the only error in the manual that exists with regard to 
the convection-diffusion equation (CDE) is the following:

 in the nomenclature table should be described as a volume flux with units of 
, i.e., , where  is in  units.

Now, this is actually stated correctly elsewhere, as it states the  is a diffusion flux 
(without being specific); to be more specific here, we should say it is a "volume flux of 
species i." So, in this case  is in  units,  is dimensionless and it is immaterial 
that the CDE is multiplied by density or not, as long as density is constant.

Now, in Goma we actually code it with no densities anywhere for the FICKIAN 
diffusion model. For the HYDRO diffusion model, we actually compute a  in the 
code, and handle variable density changes through that . In that case  as computed 
in Goma is a mass flux vector, not a volume flux vector, but by dividing it by  and 
sending it back up to the CDE it changes back into a volume flux. i. e., everything is the 
same.

Concerning the units of the mass transfer coefficient on the YFLUX boundary 
condition, the above discussion now sets those. Goma clearly needs the flux in the 
following form:

         (5-112)

and dimensionally for the left hand side

(5-113)
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where  is in units , the gradient operator has units of  so K has to be in units 
of  (period!) because  is a fraction.

So, if you want a formulation as follows:

(5-114)

then ’s units will have to accommodate for the relationship between  and  in the 
liquid, hopefully a linear one as in Raoult’s law, i.e. if  where  is the vapor 
pressure, then

(5-115)

and so K on the YFLUX command has to be  ....and so on.

Finally, you will note, since we do not multiply through by density, you will have to 
take care of that, i. e., in the Price paper (viz., Price, et. al., 1997) he gives K in units of 

. So, that must be converted as follows:

:   (5-116)

This checks out!
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5.5.13 Shear Rate Diffusivity

Description/Usage

This card is used to specify the coefficient for the shear-rate gradient term when 
HYDRO is specified in the Diffusivity card. Definitions of the input parameters follow 
for the {model_name} options CONSTANT and LINEAR based on the model:

(5-117)

CONSTANT Name of the model for constant shear rate diffusivity.

<species> - an integer designating the species equation.
<float> - Dc when there is no concentration 

dependency.

LINEAR Name of the model in which shear rate diffusivity is a linear 
function of concentration.

<species> - an integer designating the species equation.
<float> -  when the diffusivity is a linear function of 

concentration.

Examples

The following is a sample input card:

Shear Rate Diffusivity = CONSTANT 0 0.

Technical Discussion

Please refer to the technical discussion given under the HYDRO section of the 
Diffusivity card.

Theory

No Theory.

FAQs

No FAQs.

Shear Rate Diffusivity = {model_name} <species> <float>

Dc 1.4kcCi=

kc
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References

No References.
 

5.5.14 Viscosity Diffusivity

Description/Usage

This card is used to specify the coefficient for the viscosity gradient term when 
HYDRO is specified in the Diffusivity card. Definitions of the input parameters follow 
for the {model_name} options CONSTANT and LINEAR based on the model:

(5-118)

CONSTANT Name of the model for constant viscous diffusivity.

<species> - an integer designating the species equation.
<float> - Dµ when there is no concentration 

dependency.

LINEAR Name of the model in which viscosity diffusivity is a linear 
function of concentration.

<species> - an integer designating the species equation.
<float> -  when the diffusivity is a linear function of 

concentration.

Examples

The following is a sample input card:

Viscosity Diffusivity = CONSTANT 0 0.

Technical Discussion

Please refer to the technical discussion given under HYDRO section of the Diffusivity 
card.

Theory

No Theory.

Viscosity Diffusivity = {model_name} <species> <float>

Dµ 1.4kµCi=

kµ



1008 Revised: 6/12/13

5.5.15  Curvature Diffusivity  

FAQs

No FAQs.

References

No References.
 

5.5.15 Curvature Diffusivity

This card is used to specify Dr when the model in the Diffusivity card is HYDRO. 
Definitions of the input parameters follow for the {model_name} options CONSTANT 
and LINEAR based on the model:

(5-119)

CONSTANT Name of the model for a constant curvature diffusivity.

<species> - An integer designating the species equation.
<float> - Dr when there is no concentration 

dependency.

LINEAR Name of the model in which the diffusivity is a linear 
function of concentration.

<species> - An integer designating the species equation.
<float> -  when the diffusivity is a linear function of 

concentration.

Examples

The following is a sample input card:

Curvature Diffusivity = CONSTANT 0 0.

Technical Discussion

It was proposed that adding a curvature contribution of the diffusive flux for 
suspension particles would correct suspension migration behavior in parallel-plate and 
cone-and-plate. However, this correction term is not frame-invariant; hence, it cannot 
be used in generalized flow geometry. It is therefore not recommended.

Curvature Diffusivity = {model_name} <species> <float>

Dr 1.4krCi=

kr
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.16 Fickian Diffusivity

Description/Usage

This card allows the user to select a Fickian diffusion mode when the model in the 
Diffusivity card is HYDRO. There are two {model_name} options for this mode; 
definitions of the input parameters are as follows:

ANISOTROPIC an anisotropic Fickian diffusion.

<species> - an integer designating the species 
equation.

<float1> - the value of the diffusivity for the X 
direction, Dx.

<float2> - the value of the diffusivity for the Y 
direction, Dy.

<float3> - the value of the diffusivity for the Z 
direction, Dz

EXP_DECAY an exponential decay of flux.

<species> - an integer designating the species 
equation.

<float1> - the coefficient to the exponential decay, Do
<float2> - the exponent value for exponential decay, 

D1

Examples

Following are two sample cards:

Fickian Diffusivity = {model_name} <species> {float_list}
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Fickian Diffusivity = ANISOTROPIC 0 2.e-6 2.e-6 0.
Fickian Diffusivity = EXP_DECAY 0 0.01 1.e-3

Technical Discussion

In modeling suspension flow, often a sharp concentration gradient is encountered, and 
the numerical convergence becomes very poor. This card should be used for numerical 
stability (smooth out the wiggles) and should only be introduced as a last resort. The 
magnitudes should remain small relative to shear rate and viscosity diffusivities.

As the name implied, anisotropic Fickian diffusivity defines an additional flux 
contribution much like a classic Fickian diffusion term; i.e.,

(5-120)

If the exponential decay option is used, the flux vector has the form,

(5-121)

where C and Cmax are volume fractions of suspension locally and at maximum packing.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.17 Gravity-based Diffusivity

Description/Usage

This card is used to specify Dg when the model in the Diffusivity card is HYDRO. 
There are two {model_name} options for this mode; definitions of the input parameters 
are as follows:

Gravity-based Diffusivity = {model_name} <species> {float_list} 

Jx Dx x∂
∂C

       Jy Dy y∂
∂C

      Jz Dz z∂
∂C

 =,=,=

Ji Do D1– C( ) D1– Cmax C–( )( )exp+exp( )=
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CONSTANT constant gravity-based diffusivity.

<species> - an integer designating the species 
equation.

<float>- the value of Dg.

RICHARDSON_ZAKI  constant gravity-based diffusivity.

<species> - an integer designating the species 
equation.

<float1> - the value of Dg.
<float2> - the exponent in the Richardson-Zaki 

hindered settling function.

Examples

The following is a sample input card:
Gravity-based Diffusivity = CONSTANT 0  8.88e-7
Gravity-based Diffusivity = RICHARDSON_ZAKI 0  8.88e-7 5.1

Technical Discussion

When a suspension of particles settles or floats in a fluid, particle-particle interactions 
serve to slow the terminal velocity of all the particles relative to the Stokes velocity. 
The terminal velocity is then corrected by what is known as the hindered settling 
function. If a CONSTANT model is chosen, the form of this function is

(5-122)

where φ is the volume fraction of suspension, η(φ) is the relative viscosity of the 
mixture, µ0 is the viscosity of the pure fluid.

On the other hand if RICHARDSON_ZAKI is chosen for the function,

(5-123)

where n is the exponent specified by the user. n=5.1 has been found to fit well for 
suspensions of monodisperse spherical particles at low Reynolds number by Garside 
and Al-Dibouni (1977). Richardson-Zaki approach will not yield a zero f(φ) if φ 
approaches maximum packing, so it is recommended that CONSTANT is used.

Theory

No Theory.

f φ( )
1 φ–( )
η φ( )

----------------   η φ( ) µ φ( )
µ0

-----------= =

f φ( ) 1 φ–( )
n

=
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FAQs

No FAQs.

References

GTM-010.0: The Hindered Settling Function for a Glass Microballoon Suspension, 
March 3, 1999, C. A. Romero.

Garside, J. and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and 
sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., 16, 206 
(1977).

 

5.5.18 Q Tensor Diffusivity

Description/Usage

This card specifies the coefficients for use in the Q-tensor suspension rheology model. 
The <float_list> has three values, one for each direction, so the input parameters are 
defined as follows:

<integer> Species number for suspension volume fraction.

<float1> Coefficient of eigenvectors in the flow direction.

<float2> Coefficient of eigenvectors in the gradient direction.

<float3> Coefficient of eigenvector in the vorticity direction.

Examples

The current best selection of coefficients is given by:

Q Tensor Diffusivity = 0 1.0 1.0 0.5

Technical Discussion

The three directions (1, 2, 3) are often called the (flow, gradient, vorticity) directions. 
Here, vorticity is not curl(u), but defined (along with the other three) for a particular set 
of circumstances: steady simple shear flow. Their analogous definitions in other 
regimes, as well as the selection of the coefficients, is an active area of research. The 
interested reader should review the references listed below.

Q Tensor Diffusivity = <integer> <float_list>
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Theory

No Theory.

FAQs

No FAQs.

References

Brady, J. F. and Morris J. F., “Microstructure of strongly sheared suspensions and its 
impact on rheology and diffusion,” J. of Fluid Mechanics, v. 348 pp.103-139, Oct 10, 
1997.

Fang, Z. W., Mammoli, A. A., Brady, J.F., Ingber, M.S., Mondy, L.A. and Graham, 
A.L., “Flow-aligned tensor models for suspension flows,” Int. J. of Multiphase Flow, v. 
28(#1) pp. 137-166, January 2002.

Hopkins, M. M.,  Mondy, L. A., Rao, R. R., Altobelli, S. A., Fang, Z., Mammoli, A. A. 
and Ingber, M. S., 2001. “Three-Dimensional Modeling of Suspension Flows with a 
Flow-Aligned Tensor Model”, The 3rd Pacific Rim Conference on Rheology, July 8-
13, 2001, Vancouver, B.C., Canada.

Morris, J. F. and Boulay, F., “Curvilinear flows of noncolloidal suspensions: The role of 
normal stresses,” J. of Rheology, v. 43(#5) pp. 1213-1237 Sep-Oct 1999.

 

5.5.19 Species Time Integration

Description/Usage

Sharp gradients are often a feature of convective-diffusive computations involving 
species. Traditional Galerkin time integration is not optimal under these circumstances. 
This optional card is used to change the species time integration scheme to be different 
from the global time integration. Each species equation can use a different time 
integration. The new time integration schemes are based upon a Taylor-Galerkin 
formulation which has better behavior when sharp fronts are present.

Following are the {model_name} options for species time integration, each of which 
requires only a species designation to which the model should be applied:

Species Time Integration= {model_name} <species>
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STANDARD the input deck formulation, i.e., the global time integration 
scheme; this is the default.

<species> - the index of the species equation.

TAYLOR_GALERKIN

an implicit or semi-implicit Taylor-Galerkin time 
integration scheme

<species> - the index of the species equation.

TAYLOR_GALERKIN_EXP

An explicit Taylor-Galerkin time integration scheme

<species> -  the index of the species equation.

Examples

The following sample input card invokes the explicit Taylor-Galerkin time integration 
of the species equation.

Species Time Integration = TAYLOR_GALERKIN_EXP 0

Technical Discussion

The Taylor-Galerkin schemes are designed for advection dominated problems with 
sharp fronts where rigorous mass conservation is important.

• TAYLOR_GALERKIN uses an implicit or semi-implicit form of the Taylor-
Galerkin time integrals depending on what is chosen in the input deck.

• TAYLOR_GALERKIN_EXP uses an explicit form of the equations and is 
favored for volume-of-fluid simulations where the diffusive character of the 
implicit solver creates mass balance errors. The drawback of explicit time 
integration methods is that the time step used is governed by the Courant limit and 
must be quite small for stability.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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5.5.20 Advective Scaling

Description/Usage

This material property card permits the user to scale only the advective terms in one or 
more of the species transport equations by a fixed constant. This may be useful when 
solving problems with non-standard concentrations or for stability reasons.

A single {model_name} is available; it and its parameters are described below:

CONSTANT Model used to specify the advective scaling.

<species> - the index of the species equation to which 
the advective scaling will occur.

<float> - scaling, the actual value for the 
multiplicative scaling factor.

Examples

Here is an example of the card:

Advective Scaling = CONSTANT 0 0.0

In this case, the card is being used to eliminate the advective terms in the conservation 
equation for species 0.

Technical Discussion

The advective terms in the species conservation equations take the form,  where 
c is the species concentration and u the fluid velocity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Advective Scaling = {model_name} <species> <float>

u c∇⋅
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5.5.21 Latent Heat Vaporization

Description/Usage

This required card is used to specify the model for the latent heat of vaporization for 
each species. Definitions of the input parameters are as follows:

CONSTANT Name of the constant latent heat of vaporization model.

<species> - an integer designating the species equation.
<float> - the value of the latent heat of vaporization.

Examples

The following is a sample input card:

Latent Heat Vaporization = CONSTANT 0 0.0

Technical Discussion

See the discussion for the Latent Heat Fusion model.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Latent Heat Vaporization = CONSTANT <species> <float> [E/M]
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5.5.22 Latent Heat Fusion

Description/Usage

This card is used to specify the model for the latent heat of fusion for each species. 
Thus an input deck may include several of these cards. Definitions of the input 
parameters are as follows:

CONSTANT Name of the latent heat of fusion model, the only one 
available.

<species> - an integer designating the species equation.
<float> - the value of the latent heat of fusion.

Examples

The following is a sample input card:

Latent Heat Fusion = CONSTANT 0 0.0

Technical Discussion

This card is used on a species-basis and is unrelated to the latent heat of fusion 
specification for the ENTHALPY model of heat capacity. It is used to calculate the 
standard state heat of formation for the species. A related important card is the Latent 
Heat Vaporization.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

Latent Heat Fusion = CONSTANT <species> <float> [E/M]
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5.5.23 Vapor Pressure

Description/Usage

This required card is used to specify the model for the vapor pressure for each species; 
it has two main classes of use. The first class regards multiphase flow in porous media, 
which is activated when the media type is set to POROUS_UNSATURATED or 
TWO_PHASE (cf. the Media Type card). The second class of use of this data card is 
for specification of vapor pressure at the external boundary of a liquid domain, for 
which the bounding gas phase is modeled with a lumped parameter approach, or at an 
internal interface between a liquid and a gas. No curvature effects are included here. 
Eventually the models in this class will be supported in the porous-media cases. 
Definitions of the input parameters are as follows:

{model_name} Name of the model for the vapor pressure, based on the 
class of use.

For the first class of multiphase flows in porous media, 
{model_name} can be one of the following: 

KELVIN - for a volatile liquid
IDEAL_GAS - for a non-condensable gas
FLAT - for a volatile liquid

For the second class regarding specification of vapor 
pressure at the external boundary of a liquid domain or the 
interface between a gas and a liquid, {model_name} can be 
one of the following:

CONSTANT - for a constant vapor pressure model
ANTOINE - for temperature-dependent, nonideal gases.
RIEDEL -for temperature-dependent, nonideal gases

<species> An integer designating the species equation. Typically 
this value is zero if the problem is one of a single 
solvent in a partially saturated medium.

{float_list} One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection 
for {model_name}.

Vapor pressure model choices and their parameters are discussed below.

Models in the first class...

Vapor Pressure = {model_name} <species> {float_list} [varies]
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KELVIN <species> <float_list>

The <float_list> for the KELVIN option specifies input 
values for seven parameters:

<float1> - Equilibrium vapor pressure across a flat 
interface

<float2> - Liquid density 
<float3> - Molecular weight of the liquid
<float4> - Gas law constant, 
<float5> - Operating temperature
<float6> - Molecular weight of air or gas phase
<float7> - Ambient pressure of that gas phase 

The KELVIN option is used to include the effect of 
vapor-pressure lowering that results in equilibrium over 
high curvature menisci, i.e., small pores. The equation 
form of this is

(5-124)

FLAT <species> <float_list>

The FLAT option requires the same seven parameters as 
the KELVIN model but leaves off the exponential 
function, i.e., the vapor pressure is independent of the 
level of capillary pressure. The constants are still needed 
so that the gas-phase concentration can be calculated 
with the ideal gas law. See the KELVIN option above 
for definition of the <float_list> values.

IDEAL_GAS <species> <float_list>

The <float_list> for this model has three values, where: 

<float1> - Molecular weight of the gas
<float2> - Gas law constant
<float3> - Operating temperature

Models in the second class...

CONSTANT <species> <float1>

This model is used for a constant species source such as 
a homogeneous reaction term. The <float_list> has a 
single value:

<float1> - Vapor pressure

pv p∗
v

pcMw

ρlRT
--------------–exp=
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ANTOINE <species> <float_list>

The ANTOINE model for vapor pressure is used in 
conjunction with the VL_EQUIL boundary condition. If 
specified, a temperature-dependent vapor pressure for 
species i is calculated.

(5-125)

The model requires six values in the <float_list>, where:

<float1> - A, the unit conversion factor for pressure 
based on the units in the material file

<float2> - Bi, Antoine coefficient for species i
<float3> - Ci, Antoine coefficient for species i
<float4> - Di, Antoine coefficient for species i
<float5> - Tmin, Minimum temperature of the range 

over which the Antoine relation will hold
<float6> - Tmax, Maximum temperature of the range 

over which the Antoine relation will hold

RIEDEL <species> <float_list>

The RIEDEL model for vapor pressure is used in 
conjunction with the VL_EQUIL boundary condition 
card. If specified, a temperature-dependent vapor 
pressure for species i is calculated.

(5-126)

The model requires eight values in the <float_list>, where:

<float1> - A, the unit conversion factor for pressure 
based on the units in the material file

<float2> - Bi, Riedel constant for species i
<float3> - Ci, Riedel constant for species i
<float4> - Di, Riedel constant for species i
<float5> - Ei, Riedel constant for species i
<float6> - Fi, Riedel constant for species i
<float7> - Tmin, Minimum temperature of the range 

over which the relation will hold
<float8> - Tmax, Maximum temperature of the range 

over which the relation will hold

 Pi
vap

A Bi

Ci

T Di+( )
--------------------+

 
 
 

exp=     Tmin T Tmax< <
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A Bi
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T
----- Di T EiT
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Examples

An example use of the Antoine model for vapor pressure follows:

Vapor Pressure = ANTOINE 0 1 9.380340229 3096.516433 -53.668 0.1 1000

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.24 Species Volume Expansion

Description/Usage

This card is used to specify the model for the coefficient of volume expansion 
associated with the concentration of a particular species. This property is optional for 
the BOUSS and BOUSSINESQ option on the Navier-Stokes Source card and, if 
nonzero, will result in a buoyancy term to be added to the Navier-Stokes equation that 
is apportioned to the species volume expansion coefficient, defined as the logarithmic 
sensitivity of density to concentration, or .

Definitions of the input parameters are as follows:

CONSTANT Name of the constant volume expansion coefficient model.

<species> - an integer designating the species equation.
<float> - the value of the constant expansion 

coefficient.

Species Volume Expansion = CONSTANT <species> <float> [1/T]

rlnd( ) Cd( )⁄
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Examples

The following is a sample input card: 

Species Volume Expansion = CONSTANT 0 0.

Technical Discussion

WARNING: Please be aware that if the thermal volume expansion coefficient is also 
nonzero, the buoyancy force will be augmented.   

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.25 Standard State Chemical Potential

Description/Usage

This card sets the standard state chemical potential of a species, <integer>, in the 
current material to a specified value, <float>. Currently, only the generic CONSTANT 
model is implemented. However, extensions to polynomial expressions in the 
temperature are easily implemented and forthcoming.

CONSTANT Model name for the standard chemical state chemical 
potential model.

<species> - an integer designating the species equation.
<float> - the value of the chemical potential

The standard state chemical potential, , which is defined to be only a function 
of the temperature, is used in the evaluation of the definition of the pure species 
chemical potential of species k, , which in turn is used in the evaluation of 
the mixture chemical potential of species k, .

Standard State Chemical Potential = CONSTANT <integer> <float>

µk o, T( )

µk
*

T P,( )

µk T P Xi, ,( )
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Examples

The following is a sample input card:

Standard State Chemical Potential = CONSTANT  0 1.0

Technical Discussion

The values in this card are currently only applicable to the IS_EQUIL_PSEUDORXN 
boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.26 Pure Species Chemical Potential

Description/Usage

This card takes the specification of the standard state chemical potential, which is 
defined as a function of temperature only, and completes the definition of the pure 
species chemical potential by possibly adding in a pressure dependence. Two model 
values are permissible:

PRESSURE_INDEPENDENCE

No pressure dependence to the pure species state when 
this value of {model_name} is specified. The standard 
state chemical potential is equal to the pure species 
chemical potential. The <integer> argument specifies 
the species subindex, k

PRESSURE_IDEALGAS

Pure Species Chemical Potential = {model_name} <integer>



1024 Revised: 6/12/13

5.5.26  Pure Species Chemical Potential  

The following expression holds for the pressure 
dependence:

(5-127)

The <integer> argument specifies the species subindex, 
k.

The standard state chemical potential, , which 
is defined to be only a function of the temperature, is 
used in the evaluation of the definition of the pure 
species chemical potential of species k, , 
which in turn is used in the evaluation of the mixture 
chemical potential of species k, .

Examples

Following is a sample card:

Pure Species Chemical Potential = PRESSURE INDEPENDENT  0

Technical Discussion

The values in this card are only applicable to the IS_EQUIL_PSEUDORXN boundary 
condition currently.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

µk
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µk T P Xi, ,( )



Revised: 6/12/13 1025

5.5.27  Chemical Potential 

5.5.27 Chemical Potential

Description/Usage

This card is used to specify the formulation of the chemical potential for the phase. It is 
currently unconnected to Goma’s functionality. Two values are permissible:

IDEAL_SOLUTION Ideal solution thermodynamics

STOICHIOMETRIC_PHASE Phase consists of fixed set of molecular 
composition

Examples

Following is a sample card:

Chemical Potential = IDEAL_SOLUTION

Technical Discussion

The chemical potential of species k in an ideal solution is given by the expression, 
[Denbigh, p. 249],

(5-128)

where  is defined as the chemical potential of species k in its pure state (or a 
hypothetical pure state if a real pure state doesn’t exist) at temperature T and pressure 
P.  is related to the standard state of species k in the phase, , which 
is independent of pressure, through specification of the pressure dependence of the 
pure species k.  is the mole fraction of species k in the phase.

The chemical potential of species k (actually there is only one species!) in a 
stoichiometric phase is equal to

(5-129)

Theory

No Theory.

Chemical Potential = {IDEAL_SOLUTION | STOICHIOMETRIC_PHASE}

µk RT ln Xk( ) µ∗
k

T P( , )+=

µk
*

T P,( )

µk
*

T P,( ) µk o, T( )

Xk

µk µ∗
k

T P( , )=
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FAQs

No FAQs.

References

Denbigh, K., The Principles of Chemical Equilibrium, 4th Ed., Cambridge University 
Press, 1981

 

5.5.28 Reference Concentration

Description/Usage

This required card is used to specify the model for the reference concentration, which is 
required by the BOUSS option on the Navier-Stokes Source card. Definitions of the 
input parameters are as follows:

CONSTANT Model for a constant reference concentration.

<species> - the species equation to which this 
specification applies.

<float> - the value of the reference concentration.

Examples

The following is a sample input card: 

Reference Concentration = CONSTANT 0 0.

Technical Discussion

The Boussinesq model subtracts out the pressure head in its final equations. Thus, to 
zeroth order, hydrodynamic pressure field doesn’t include a static variation in the 
gravity direction due to the pressure head. But, the source term in the momentum 
equations then becomes  instead of simply . The reference 
concentration values entered via this card are used to evaluate  for use in calculating 
the natural convective force due to concentration differences.

The card is also used in various places where a value for a species concentration is 
needed. However, the species unknown variable is not included in the solution vector. 

Reference Concentration = CONSTANT <species> <float> []

g ρ ρo–( )– gρ–

ρo
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.29 Molecular Weight

Description/Usage

This card specifies the molecular weight of a species. It is required when the Stefan-
Maxwell flux model is used in modeling multicomponent transport of neutral or 
charged species. It is also required when vapor-liquid phase equilibrium is considered 
at the material boundaries. Molecular weight is used to convert units of mass fraction to 
mole fraction in a species material balance.

CONSTANT Molecular weight model type.

<integer> - species number
<float> - molecular weight of the species

Examples

The following is a sample input card:

Molecular Weight = CONSTANT  0   6.939

Technical Discussion

This card originated from the development of a multicomponent diffusion model based 
on the Stefan-Maxwell equation. However, it has been generalized to include problems 
where mole fractions are necessary for the consideration of phase equilibria. For 
example, when YFLUX_EQUIL is invoked in the input deck, an equilibrium problem is 
solved rigorously which requires gas and liquid mole fractions. The conversion from 
mass fraction to mole fraction requires molecular weight information.

Molecular Weight = CONSTANT <integer> <float>
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.30 Specific Volume

Description/Usage

This card specifies the specific volume of a species. It is required when polymer-
solvent vapor-liquid phase equilibrium is considered at the material boundaries. 
Specific volume is used to convert units of mass fraction to volume fraction in species 
material balance.

CONSTANT Specific volume model type.

<integer> - species number
<float> - pure component specific volume.

Examples

Following is a sample card:

Specific Volume = CONSTANT 0   1.154734411

Technical Discussion

This is the place where pure component density (inverse of specific volume) 
information is entered in the material property. When Flory-Huggins vapor-liquid 
equilibrium model was first developed in Goma, the equations were based on volume 
fractions, not mass fractions. In order to convert these units, the specific volume 
parameter is required for each component in the mixture.

This card is used only in conjunction with Flory-Huggins nonideal liquid activity 
model for polymer-solvent mixtures. This occurs when two types of BCs are specified: 

Specific Volume = CONSTANT <integer> <float>
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1) when VL_POLY is specified at an discontinuous internal boundary and 2) when 
FLORY model under YFLUX_EQUIL boundary card is specified.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.31 Molar Volume

Description/Usage

This card is referred when molar based equilibrium models are used on the boundaries, 
such as VL_POLY. The float value specified is necessary for converting mass fractions 
to mole fractions.

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - molar volume of the species. [L3/mole]

Examples

An example usage for this card:

Molar Volume = CONSTANT 0 1.

Technical Discussion

The same conversion from mass fraction to mole fraction can be obtained through 
specification of the Molecular Weight and Specific Volume. The redundancy, which will 
be allowed to remain, arose through simultaneous additions to the code by developers 
working on different projects.

Molar Volume = CONSTANT <integer> <float>                                 [L3/mole]
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Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.32 Charge Number

Description/Usage

This card is required when charged species are involved, e.g. when using the 
FICKIAN_CHARGED or the STEFAN_MAXWELL_CHARGED Diffusion 
Constitutive Equation card. It specifies the charge number (e.g., the charge number for 
Ni2+ is 2, and that for SO2-is -2) of a species.

CONSTANT Model for specifying constant charge on species.

<integer>- species number.
<float> - charge number of the species

Examples

Sample usage for this card is shown below:

Charge Number = CONSTANT  0   1.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Charge Number = CONSTANT <integer> <float>
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References

No References.
 

5.5.33 Non-condensable Molecular Weight

Description/Usage

This card specifies the molecular weight of a species when the species is implicit in the 
mixture. This means that in most problems involving n+1 species, only n species are 
independent; i.e.,

(5-130)

It is required when Flory-Huggins vapor-liquid phase equilibrium is considered at the 
material boundaries, as used in VL_POLY and in FLORY under YFLUX_EQUIL. This 
is used to convert units of mass fraction to mole fraction in species material balance.

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - molecular weight of the non-condensable 

species, usually the n+1 component in Goma 
convention.

Examples

The following is an example card:

Non-condensable Molecular Weight = CONSTANT 2   36.

This example shows that two species are solved in the Goma problem explicitly: 
species 0 and species 1.

Technical Discussion

In the current set up, species balance in Goma considers the species to be independent 
of each other. However, the mass or volume fractions of all species must add up to 
unity in any mixtures. This means that some properties of the last species must be 
entered in the material file although that component is not solved explicitly in the 

Non-condensable Molecular Weight = CONSTANT <integer> <float>

yn 1+ 1 yi

i 1=

n

–=
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problem. This is the case for molecular weight, molar volume, and specific volume 
specifications, which are required for calculating Flory-Huggins liquid activity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.34 Non-volatile Molar Volume

Description/Usage

This card specifies the molar volume of a species when the species is implicit in the 
mixture. This means that in most problems involving n+1 species, only n species are 
independent; i.e.,

(5-131)

It is required when Flory-Huggins vapor-liquid phase equilibrium is considered at the 
material boundaries, as used in VL_POLY and in FLORY under YFLUX_EQUIL. This 
is used to convert units of mass fraction to mole fraction in species material balance.

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - molar volume of the non-volatile species, 

usually the n+1 component in Goma 
convention.

Examples

The following is an example card:

Non-volatile Molar Volume = CONSTANT <integer> <float>

yn 1+ 1 yi

i 1=

n

–=
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Non-volatile Molar Volume = CONSTANT  2   1.5e-3

This example shows that two species are solved in the Goma problem explicitly: 
species 0 and species 1.

Technical Discussion

In the current set up, species balance in Goma considers the species to be independent 
of each other. However, the mass or volume fractions of all species must add up to 
unity in any mixtures. This means that some properties of the last species must be 
entered in the material file although that component is not solved explicitly in the 
problem. This is the case for molecular weight, molar volume, and specific volume 
specifications, which are required to calculate Flory-Huggins liquid activity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.5.35 Non-volatile Specific Volume

Description/Usage

This card specifies the specific volume of a species when the species is implicit in the 
mixture. This means that in most problems involving n+1 species, only n species are 
independent; i.e.,

(5-132)

It is required when Flory-Huggins vapor-liquid phase equilibrium is considered at the 
material boundaries, as used in VL_POLY and in FLORY under YFLUX_EQUIL. This 
is used to convert units of mass fraction to mole fraction in species material balance.

Non-volatile Specific Volume = CONSTANT <integer> <float>

yn 1+ 1 yi

i 1=

n

–=
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CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - specific volume of the non-volatile species, 

usually the n+1 component in Goma 
convention.

Examples

The following is an example card:

Non-volatile Specific Volume = CONSTANT  2  0.855e-3

This example shows that two species are solved in the Goma problem explicitly: 
species 0 and species 1.

Technical Discussion

In the current set up, species balance in Goma considers the species to be independent 
of each other. However, the mass or volume fractions of all species must add up to 
unity in any mixtures. This means that some properties of the last species must be 
entered in the material file although that component is not solved explicitly in the 
problem. This is the case for molecular weight, molar volume, and specific volume 
specifications, which are required for calculating Flory-Huggins liquid activity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.
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5.5.36 Flory-Huggins parameters

Description/Usage

This card specifies the Flory-Huggins binary interaction parameters. It is assumed that 
the binary parameters are symmetric; i.e.,

. (5-133)

Therefore, one set of i-j coefficients is sufficient to describe the binary interaction 
coefficients.

CONSTANT Model for constant Flory-Huggins parameters.

<integer1> - first species number.
<integer2> - second species number.
<float> - Flory-Huggins binary interaction coefficient.

Examples

Following is an example set of cards for a three-species mixture:
Flory-Huggins parameters = CONSTANT   0  1   0.3
Flory-Huggins parameters = CONSTANT   0  2   0.3
Flory-Huggins parameters = CONSTANT   1  2   0.3

Technical Discussion

No discussion; see Sun (1998).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA, 
December 10, 1998, A. C. Sun

 

Flory-Huggins parameters = CONSTANT <integer1> <integer2> <float>

γ12 γ21=
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5.6 Source Terms

Source term models cover the internal generation of pressure (in fluids and solids), energy, 
species component mass and electrical potential for each of the main differential equations. 
Several representations are available for fluids, and the user should be aware of some 
consistencies required with density models (see details below). For all of the source models, the 
user must heed the following warning:

Make sure the equation term multipliers for the
source terms being used are set to unity

(Section 4.12 - Problem Description and Equation specification in Volume 1).

5.6.1 Navier-Stokes Source

Description/Usage

This required card is used to specify the model for the fluid momentum source term 
vector in the Navier-Stokes equations. Gravitational and buoyancy effects often enter 
through this card.

Definitions of the input parameters are as follows:

{model_name} Name of the fluid momentum source term model for the 
Navier-Stokes equations. The model name will be one of the 
following strings:

CONSTANT
USER
BOUSS
BOUSS_JXB
BOUSSINESQ
FILL
LEVEL_SET
PHASE_FUNCTION
SUSPEND
SUSPENSION
VARIABLE_DENSITY
EHD_POLARIZATION
ACOUSTIC

Navier-Stokes Source = {model_name} {float_list} [varies]
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{float_list} One or more floating point numbers (<float1> through 
<floatn>); the specific number is determined by the 
selection for {model _name}.

Choices for {model_name} and the accompanying parameter list are given below; 
additional user guidance can be found in the Technical Discussion section following 
the Examples.

CONSTANT <float1> <float2> <float3>

For a constant source model where the body force [M/
L2t2] for this material does not vary. The {float_list} 
contains three values to specify the three components of 
the body force vector, where:

<float1> - a0, x-component of body force
<float2> - a1, y-component of body force
<float3> - a2, z-component of body force

Note this source term has units of force/volume or, 
equivalently, density times acceleration. This is not true 
of all source term models.

USER <float1>... <floatn>

For a user-defined model; the set of {float_list} 
parameters are those required by specifications in the 
function usr_momentum_source.

BOUSS <float1> <float2> <float3>

This option specifies a generalized Boussinesq source 
where the density is linearly dependent upon temperature 
and concentration (species). The individual components 
of the constant acceleration vector a0 are read from the 
three entries in the {float_list}:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

Unlike the CONSTANT model the units for these vector 
components are (L/t2), that is, they are true acceleration 
values. See the technical discussion below for the other 
parameters needed for this model.

BOUSSINESQ <float1> <float2> <float3>

This model prescribes a body force source term that is 
very similar to the BOUSS option except that the 
hydrostatic component is eliminated. The individual 
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components of the constant acceleration vector a0 are 
read from the three entries in the {float_list}:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

BOUSS_JXB <float1> <float2> <float3> <float4>

This source model option specifies a generalized 
Boussinesq source term, as above, but also including 
Lorentz (electromagnetic) forces. The constant 
acceleration vector a0 is again specified using the first 
three constants that appear in the {float_list}. The fourth 
constant of the list is a Lorentz scaling factor (lsf). It may 
be used to scale the Lorentz term; see the Technical 
Discussion for more information.

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration
<float4> - lsf, Lorentz scaling factor

EHD_POLARIZATION <float1>

This source model option can be used to add on a 
dielectrophoretic force to the Navier-Stokes equations 
of the form ., where E is the electric field vector 
and ρ is a user-supplied constant with dimensions [q2T2/
L3].  This term requires the vector efield equation and 
the voltage equation to be solved simultaneously with 
the fluid-phase momentum equation. cf. EQ card 
definitions. 

<float1> is the constant ρ as described above

FILL <float1> <float2> <float3>

This model prescribes the body force momentum source 
term for problems making use of volume-of-fluid 
interface tracking. The card prescribes a constant 
acceleration vector, usually the gravitational acceleration 
[L/T2]. It can only be employed when using the FILL 
density model.

The individual components of the constant acceleration 
vector a0 are read from the three entries after the FILL 
string in the {float_list}, where:

ρE E∇•
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<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

LEVEL_SET <float1> <float2> <float3>

This model prescribes the body force momentum source 
term for problems making use of level set interface 
tracking. The card prescribes a constant acceleration 
vector, usually the gravitational acceleration [L/T2]. It can 
only be used when also using the LEVEL_SET density 
model.

The individual components of the constant acceleration 
vector a0 are read from the three entries after the 
LEVEL_SET string in the {float_list}, where:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

PHASE_FUNCTION <float1> <float2> <float3>

This model prescribes the body force momentum source 
term for problems making use of phase function interface 
tracking (a generalization of the level set method for more 
than two phases). The card prescribes a constant 
acceleration vector, usually the gravitational acceleration 
[L/T2]. It can only be used when also using the 
CONST_PHASE_FUNCTION density model.

The individual components of the constant acceleration 
vector a0 are read from the three entries after the 
PHASE_FUNCTION string in the {float_list}, where:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

VARIABLE_DENSITY <float1> <float2> <float3>

This model sets the momentum body force source term 
for problems that employed the SOLVENT_POLYMER 
density model.  The three parameters on the card are the 
individual components of a constant acceleration vector 
(usually due to gravity):
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<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

The actual body force applied is the local density 
computed from the SOLVENT_POLYMER model 
multiplied by this vector. 

SUSPEND <float1> <float2> <float3> <float4>

This model prescribes a body force source term for 
suspensions where the carrier fluid and the particle phase 
have different densities. Four parameters must be set for 
this card using the {float_list}. The first three parameters 
(<float1>. <float2>, and <float3>) are the three 
components of the gravity vector. The fourth parameter 
(<float4>) is a reference concentration, Cref. 

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration
<float4> - Cref, reference concentration

This source model requires a SUSPENSION density 
model be specified for the Density model. The density 
parameters on this card are used in this source model. If 
this momentum source term is used in conjunction with 
the HYDRODYNAMIC mass flux option, only one 
species can use the HYDRO diffusivity model.

SUSPENSION<float1> <float2> <float3> <float4>

This model is identical to the SUSPEND momentum 
source model (above), with the addition of mass source 
terms in the continuity equation due to transport of 
species with different densities.

<float1> - a0, X-component of acceleration
<float2> - a1, Y-component of acceleration
<float3> - a2, Z-component of acceleration
<float4> - Cref, reference concentration

This source model requires a SUSPENSION density 
model be specified for the Density model. The density 
parameters in this card are used in this source model. If 
this momentum source term is used in conjunction with 
the HYDRODYNAMIC mass flux option, only one 
species can use the HYDRO diffusivity model.
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ACOUSTIC <float1> <float2> <float3> <float4>

This model includes the gradient of the acoustic Reynolds 
stress as a momentum source in addition to the usual 
gravitational source terms. The {float_list} contains four 
values to specify the three components of the body force 
vector plus a Reynolds stress gradient multiplier, where:

<float1> - a0, x-component of body force
<float2> - a1, y-component of body force
<float3> - a2, z-component of body force
<float4> - acoustic term multiplier.

WARNING: Make sure the equation term multipliers for the source terms are set to 
unity.

Examples

Following are some sample input cards:
Navier-Stokes Source = BOUSS 0. -980. 0.
Navier-Stokes Source = LEVEL_SET 0.  -980.  0.

Technical Discussion

This section contains user guidance, and theoretical background when appropriate, for 
each of the options for Navier-Stokes Source models.

CONSTANT A constant source model has a body force [M/L2t2] for the 
material which does not vary. A common usage of this 
model is for an incompressible fluid in a uniform 
gravitational field. Note that the source term has units of 
force/volume or, equivalently, density times acceleration. 
Thus, the values in the {float_list} would need to be 
specified as the product of the fluid density and the 
acceleration of gravity.

USER This model option provides a means for the user to create a 
custom Navier-Stokes Source model for his/her special 
problem. The parameters of the model will be used by the 
the source term model defined in the 
usr_momentum_source function. The {float_list} 
parameters are passed to this function as a one dimensional 
array named param in the order in which they appear on 
the card. The model must return a body force (force/
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volume) vector. An example use of this specification might 
be to construct a Coriolis acceleration term for a fluid in a 
rotating reference frame.

BOUSS A generalized Boussinesq source term has the form

(5-134)

where the linear dependence of the density upon 
temperature and concentration is used for this source term 
only. Density is assumed constant wherever else it happens 
to appear in the governing conservation equations. The 
density has been expanded in a Taylor series to first order 
about a reference state that is chosen so that, at the reference 
temperature T0 and concentration C0 the density is ρ0. The 
reference density is taken from the CONSTANT density 
model specified earlier in the material file on the Density 
card. The coefficient of thermal expansion of the fluid, β, is 
taken from the Volume Expansion card specified under 
Thermal Properties for this material. βc, is taken from the 
Species Volume Expansion card specified under species 
Properties for this material. The individual components of 
the constant acceleration vector a0 are the three entries of 
the {float_list} after the BOUSS string.  

Note that this BOUSS form includes the body force of the 
reference state so that a motionless fluid at a uniform 
temperature of T0 must be sustained by a linearly varying 
pressure field. Below, an alternative means for solving 
Boussinesq problems is presented that eliminates the 
constant hydrostatic feature of the BOUSS formulation.  T0 
is set on the Reference Temperature card.  

BOUSSINESQ This model prescribes a body force source term that is very 
similar to the BOUSS option except that the hydrostatic 
component is eliminated. Thus the form

(5-135)

so that a no-flow solution with uniform temperature and 
concentration may be maintained by a constant pressure 
field. This form for the Boussinesq equations can 
sometimes provide a more well-conditioned equation 
system for weakly buoyant flows. Note again the implied 

g T( ) ρ0 1 β T T0–[ ]– βc C C0–[ ]–( )a0=

g T( ) ρ0 β T T0–[ ] βc C C0–[ ]+{ }– a0=
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convention that the coefficient of thermal expansion is 
positive when the density decreases with increasing 
temperature. That is,

(5-136)

The same convention holds for the coefficient of solutal 
expansion. A source of confusion with buoyancy problems 
is that many sign conventions are applied. In addition to the 
convention for β, another possible source of confusion 
arises from a negative sign on the gravitational acceleration 
vector in many coordinate systems. That is,

(5-137)

is a frequent choice for the constant acceleration for a two-
dimensional problem posed in Cartesian coordinates.T0 is 
set on the Reference Temperature card. 

BOUSS_JXB This model is a generalized Boussinesq source term, as 
above, but also includes Lorentz forces. That is, the source 
term has the form

(5-138)

where, in addition to the term defined for the BOUSS 
option, there is an added term due to electromagnetic forces 
acting upon a conducting fluid. The constant acceleration 
vector a0 is again specified using the first three constants 
that appear in the {float_list}. The fourth constant, lsf, may 
be used to scale the Lorentz term as desired (for example, lsf 
= 1 using a Gaussian system of units, or lsf = 1/c using a 
rationalized MKSA system of units).

The two vector fields J, the current flux, and B, the 
magnetic induction, must be supplied to Goma in order to 
activate this option. At present, these fields must be 
supplied with the External Field cards, which provide the 
specific names of nodal variable fields in the EXODUS II 
files from which the fields are read. The three components 
of the J field must be called JX_REAL, JY_REAL, and 
JZ_REAL. Likewise the B field components must be called 
BX_REAL, BY_REAL, and BZ_REAL. These names are 

β
ρ∂
T∂

------ 
 

T T0=
–=

a0 g– ey=

g T( ) ρ0 1 β T T0–[ ]–( )a0 lsfJ B×+=
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the default names coming from the electromagnetics code 
TORO II (Gartling, 1996). Because of the different 
coordinate convention when using cylindrical components, 
the fields have been made compatible with those arising 
from TORO II. It is the interface with TORO that also 
makes the Lorentz scaling (lsf) necessary so that the fixed 
set of units in TORO (MKS) can be adjusted to the user-
selected units in Goma. T0 is set on the Reference 
Temperature card. 

FILL The body force applied when using this momentum source 
model is as follows:

(5-139)

where  and  are the phase densities obtained from the 
FILL density card, F is the value of the fill color function 
and the constant acceleration vector a0 is read from the 
three entries in the {float_list} of the FILL momentum 
source card.

LEVEL_SET The body force applied when this model is used is given by 
the following function of the level set function value, φ:

(5-140)

(5-141)

(5-142)

where 

(5-143)

is a smooth Heaviside function, φ is the value of the level 
set function, ρ+ and ρ- are the positive and negative phase 
densities, and α is the density transition length scale. The 
latter three parameters are obtained from the LEVEL_SET 
density card. The individual components of the constant 
acceleration vector a0 are   three float parameters appearing 
in the {float_list} following the LEVEL_SET model name.

PHASE_FUNCTION

g F( ) ρ1F ρ0 1 F–( )+[ ]a0=

ρ1 ρ0

g φ( ) ρ-a0,       φ α–<=

g φ( ) ρ- ρ+ ρ-–( )Hα φ( )+[ ]a0,       α φ α< <–=

g φ( ) ρ+a0,       φ α>=

Hα φ( ) 1 φ α⁄ πφ α⁄( )sin π⁄++( ) 2⁄=
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The body force applied when this model is specified is 
identical in concept to that applied with the above 
LEVEL_SET model.  The parameters on this card are 
simply the components of  a constant acceleration vector 
(gravity in most applications).  This card must be used in 
conjunction with the CONST_PHASE_FUNCTION 
density model because the actual body force vector is 
obtained by multiplying the acceleration vector specified 
with this card by the density computed by that latter model.  
Again this is identical in concept to the LEVEL_SET body 
force  source model.

SUSPEND This model prescribes a body force source term that is for 
simulating suspensions when the suspending fluid and 
particle phase have different densities. The difference in 
density can lead to buoyancy driven flow. The form of the 
source term is given below:

(5-144)

where Ci is the solid particle volume fraction tracked using 
a species equation with a HYDRO diffusion model. Four 
parameters must be set for this card using the {float_list}. 

The first three parameters are the three components of the 
gravity vector. The fourth parameter is a reference 
concentration, Cref. The density values are those entered by 
a SUSPENSION density model on the Density card.

NOTE: If this momentum source term is used in 
conjunction with the HYDRODYNAMIC mass flux 
option, only one species can use the HYDRO diffusivity 
model.

SUSPENSION This model is identical to the SUSPEND momentum source 
model in terms of the assembly of the momentum equation. 
However, this model creates a source term that gets applied 
during the assembly of the continuity equation due to 
transport of species with different densities. The suspension 
density models meet the definition of a locally variable 
density model, so the Lagrangian derivative of their 
densities can be represented as a divergence of mass flux. 
This term is integrated by parts and this particle phase flux 
is included separately as a source term for the continuity 
equation.

g Ci( ) Ci Cref–( )– ρf ρs–[ ]a0=
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ACOUSTIC This model contains the usual gravitational source terms in 
the CONSTANT model plus the gradient of the acoustic 
Reynolds stress as an additional momentum source.  The 
acous_reyn_stress equation must be present to use this 
source model.

The user should take special note of the distinction between the different use of the 
{float_list} for CONSTANT body force problems and for the various buoyant options. 
For the CONSTANT model, the three components are the force per unit volume, and 
the user must remember to include density specifically if it is desired. For the buoyancy 
options, the three components are acceleration, and the density value specified on a 
previous card is automatically used by Goma to construct the overall body force source 
term. This is also true for the FILL, LEVEL_SET, SUSPENSION and SUSPEND 
momentum source models.

The user must also take special care that the source term multipliers for the momentum 
equation are set to unity.

Theory

No Theory.

FAQs

No FAQs.

References

Gartling, D. K., TORO II - A Finite Element Computer Program for Nonlinear Quasi-
Static Problems in Electromagnetics, Part I - Theoretical Background, SAND95-2472, 
Sandia National Laboratories, Albuquerque, NM, May 1996.

 

5.6.2 Solid Body Source

Description/Usage

This card is used to specify the model for the body force source term on the solid 
mechanics momentum equations. This card is used most to impose gravitational forces 

Solid Body Source = CONSTANT <species_number> <float1> <float2> <float3>
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on solid phase material elements in the problem. It can be also used to impose body 
forces on the pseudo-solid mesh material if that is desirable.

Definitions of the input parameters are as follows:

CONSTANT A string identifying the constant force model. Currently, this 
is the only body force model for solid materials.

<float1> - the x-component of the body force vector in 
(F/L3).

<float2> - the y-component of the body force vector in 
(F/L3).

<float3> - the z-component of the body force vector in 
(F/L3).

JXB A string identifying a body force model based on external 
current density fields J and external magnetic fields B. See 
Technical discussion.

<float1> - a scale factor, usually set to 1. 

Example

The following is a sample input card:

Solid Body Source = CONSTANT 0.0 0.0 -2000.0

Technical Discussion

Just as there is a body force vector that can be applied to fluid material regions, there is 
a capability to apply a similar body force term to solid material regions. Most often this 
is used to apply gravitational forces in which case the values of the components 
supplied on this card would be the solid density multiplied by the gravitational 
acceleration vector.

The JXB model requires external nodal fields loaded through External Field capability.  
These fields must be named JE_N_1, JE_N_2, and JE_N_3 for the three components of 
the current density and BE_N_1, BE_N_2, and BE_N_3 for the three components of 
the magnetic field. 

Theory

No Theory.

FAQs

No FAQs.
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References

No References.
 

5.6.3 Mass Source

Description/Usage

This source term is inactive in Goma but the card must be present in the input at this 
time. Definitions of the input parameters are as follows.

CONSTANT Name of the model (to prevent heartburn for Goma).

0. A floating point number (the value zero).

Examples

Following is the only allowable card specification:

Mass Source = CONSTANT 0.

Technical Discussion

No discussion.

Theory

No Theory. 

FAQs

No FAQs.

References

No References.
 

Mass Source = CONSTANT 0.
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5.6.4 Heat Source

Description/Usage

This required card is used to specify the model for the source term on the energy 
equation. Definitions of the input parameters are as follows:

{model_name} Name of the model for the source term on the energy 
equation. The permissible values are

CONSTANT
USER
USER_GEN
JOULE
EPOXY
VISC_DISS
BUTLER_VOLMER
ELECTRODE_KINETICS

<float_list> One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection for 
{model_name}. Note that not all models have a 
<float_list>.

Source-term model choices and their parameters are discussed below. WARNING: 
make sure the equation term multipliers for the source terms are set to unity (see the 
Equation Cards segment in the previous chapter).

CONSTANT <float1>

The constant source model adds a constant homogenous 
source term [E/L3t] to the heat equations. The <float_list> 
has a single value: <float1> - Heat source.

USER <float1>... <floatn>

The USER option indicates that a user-defined model has 
been introduced into the usr_heat_source routine in the 
user_mp.c file. The <float_list> is of arbitrary length 
subject to the user’s requirements to parameterize the 
model.

USER_GEN <float1>... <floatn>

Heat Source = {model_name} <float_list> [varies]
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The USER_GEN option provides a user-defined model 
with low-level, general capabilities. For this option one 
must make the appropriate modifications to the routine 
usr_heat_source_gen in the user_mp_gen.c file. 
The difference between the USER and USER_GEN 
capabilities is described at the beginning of this chapter.

JOULE The JOULE model is used to specify a Joule heating source 
term. No input is required for this model as the sole 
independent parameter of the model for the voltage 
equation is the “Electrical Conductivity”, which is specified 
in the material file.

EPOXY <float1> The EPOXY model is used to specify the heat generated 
by an epoxy curing reaction. The single input value is the:

<float1> -  heat of reaction due to curing

VISC_DISS <float> The VISC_DISS model is used to specify the heat 
generated by viscous dissipation. The <float_list> has a 
single value:

<float1> - A multiplier to facilitate different unit 
combinations. Selection of this option 
activates its use.

BUTLER_VOLMER <integer> <float1> <float2> <float3> <float4> 
<float5> <float6> <float7> <float8>

The BUTLER_VOLMER model is used to specify the current 
source or sink due to a homogeneuous electrochemical reaction 
involving a single species (e.g., the hydrogen oxidation and 
oxygen reduction reactions in a hydrogen-feuled polymer-
electrolyte-membrane fuel cell), which is computed using the 
Butler-Volmer kinetic model (as described in the Theory section 
of the BUTLER_VOLMER current source card). This is due 
to that the voltage equation is used to solve for the electrical 
potential in the liquid electrolyte phase whereas the energy 
equation is utilized to solve for the electrical potential in the 
solid-electrode phase such that the electrode potential 
unknowns is represented by the temperature unknown. 
Parameters required for this BUTLER_VOLMER heat source 
model are the same as those for the BUTLER_VOLMER 
current source model; accordingly, detailed description of the 
model parameters can be found in the Current Source section 
of this manual.
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ELECTRODE_KINETICS

The ELECTRODE_KINETICS model is used to specify the 
current generated or consumed in the solid electrode phase in  
electrochemical processes involving concentrated electrolyte 
solution and multiple species as in thermal batteries. As in the 
case of the BUTLER_VOLMER model, this is due to that the 
voltage equation is used to solve for the electrical potential in 
the liquid electrolyte phase whereas the energy equation is 
utilized to solve for the electrical potential in the solid-electrode 
phase such that the electrode potential unknowns is represented 
by the temperature unknown. The {model_name} 
ELECTRODE_KINETICS toggles on the option in the 
equation assembly; no parameters are required.

Examples

The following is a sample input card:

Heat Source = CONSTANT 1.

Technical Discussion

The energy equation solved by Goma, which can be found elsewhere, is a convection-
conduction equation given by

(5-145)

The heat source-term model represented by H is specified by this input record. The 
CONSTANT, USER and USER_GEN options provide the standard means of 
specifying model input and will not be discussed.

JOULE Model: The JOULE model is used to specify a Joule heating term. It is based 
on heat generation in a medium of specified electrical resistance subjected to an 
electrical voltage potential. It computes the heat source as:

(5-146)

where J is the current flux density which is represented as  and  is represented 
using the voltage equation. No input is required for this model since the Electrical 
Conductivity is specified in the material file for the voltage equation.

ρCpT( )d

td
---------------------- v vm–( ) ρCpT( )∇•– q∇•– H+=

h φ( )
1
σ
---J J⋅ φ∇ σ ϕ∇⋅= =

σ∇φ– φ
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EPOXY Model: The EPOXY model is used to specify the heat generated by a 
condensation reaction, which is the heat of reaction, ΔHrxn, multiplied by the reaction 
rate as measured by the extent of reaction. The form of the equation is:

(5-147)

This card is used in conjunction with the EPOXY Species Source so that the reaction 
rate Rα can be determined.

(5-148)

VISC_DISS Model: In heat transfer problems that are accompanied by fluid flow, the 
energy balance equation contains a term which represents the (rate of) work done on 
the fluid by viscous forces. These forces have the potential to raise the fluid 
temperature and therefore it may be necessary to include these forces in your analysis. 
Typically, problems in which this term is significant may be characterized as high-
speed flows with large velocity gradients, rapid extrusion and lubrication problems. 
The Brinkman number ( ) is an indicator of the importance of 
viscous heating relative to the heat flow caused by temperature gradients.

Mathematically, the Heat Source term, , in the energy equation is given by

(5-149)

where (  indicates a double dot product. This mechanism is an irreversible 
process whereby mechanical energy is degraded into thermal energy, as the right hand 
side expands to the sum of quadratic terms which will always be positive, at least for 
Newtonian fluids. In Goma, the VISC_DISS model computes the source term in 
function visc_diss_heat_source in mm_std_models.c; the expression looks like

(5-150)

where  is the viscosity and  is the shear rate.

The multiplier allows the user the flexibility to choose appropriate units for the 
momentum and energy equations. For example, for many problems the momentum 
equations are scaled appropriately using viscosity units of psi-sec. But in the absence of 
this multiplier, this would force the energy equation to be in units of psi/sec; in other 
words, (density*heat capacity) would need to be in units of psi/(deg C) and thermal 
conductivity would need to be in units of psi-in2/(sec-deg C) - these aren’t exactly 
common units! Instead, we can set the multiplier to 6891 (i.e., 6891 Pa = 1 psi) in order 
to have the energy equation in units of J/sec - i.e. leaving (density*heat capacity) in 
units of J/(m3 deg C) and thermal conductivity in terms of J/(m-sec deg C). Another use 

h α( ) ΔHrxn Rα⋅=

Rα k1 k2α
m

+( ) 1 α–( )
n

=

Br µV
2

( ) k TΔ( )⁄=

H

H τ v∇•( )=

•( )

multiplier µ× γ·
2
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of the multiplier is to allow appropriate scales when the momentum equation is 
diffusion-dominated and the thermal equation is convection-dominated. Suppose we 
keep all quantities in MKS units. The convection terms in the thermal equation can 
then be scaled to roughly order unity by dividing through by (density*heat capacity) - 
i.e. set heat capacity=1/density, thermal conductivity = thermal diffusivity, and set the 
dissipation multiplier to 1/(density*heat capacity).

So, in essence, this multiplier allows flexibility in the choice of mechanical and thermal 
units in a convenient manner - i.e. it’s on the term that couples the energy and 
momentum equations.

BUTLER_VOLMER and ELECTRODE_KINETIC Models: As mentioned above, 
these two models are used to specify the current generated or consumed in the solid 
electrode phase in  electrochemical processes such as polymer-electrolyte-membrane 
fuel cells and thermal batteries. This is due to that the voltage equation is used to solve 
for the electrical potential in the liquid electrolyte phase whereas the energy equation is 
utilized to solve for the electrical potential in the solid-electrode phase such that the 
electrode potential unknown is actually represented by the temperature unknown. 
Further details for the BUTLER_VOLMER model are presented in the current source 
model section of this manual and that for the ELECTRODE_KINETIC model can be 
found in the reference provided below (Chen et al. 2000).

VARIABLE_DENSITY Model: Work was begun on a VARIABLE_DENSITY 
model for drying problems but has not been completed. The roots for this may be found 
in the source code but the model is not yet functional; it was not listed above as a valid 
Heat Source option.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0207: Final Report on LDRD Project: A Phenomenological Model for 
Multicomponent Transport with Simultaneous Electrochemical Reactions in 
Concentrated Solutions, K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble and W. G. 
Houf, January 2000.
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5.6.5 Species Source

Description/Usage

This required card is used to specify the model for the source term on the species 
convection diffusion equations. Definitions of the input parameters are as follows:

{model_name} Name of the model for the source term on the species 
convection diffusion equations. The permissible values are

CONSTANT
BUTLER_VOLMER
ELECTRODE_KINETICS
ELECTROOSMOTIC
EPOXY
EPOXY_DEA
FOAM
USER

<species> An integer designating the species equation.

<float_list> One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection for 
{model_name}.

Source-term model choices and their parameters are discussed below. Details are 
contained in the Technical Discussion section below. The <species> definition given 
above applies to all the following choices for which it is specified; its definition will 
not be repeated.

CONSTANT <species> <float1>

This model of a constant species source has a single input 
value: <float1>-Constant species source

BUTLER_VOLMER <species> <float1> <float2> <float3> <float4> 
<float5> <float6> <float7> <float8> <float9>

This is the homogeneous species source or sink term (in units 
of moles per unit volume, e.g. moles/cm3-s) as described by 
the Butler-Volmer kinetic model (see the Theory section 
below). One integer and 9 flotas are required:  

Species Source = {model_name} <species> <float_list> [varies]
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<species> - Index of the species involved in the electrochemical 
reaction (here, we assume that only a single species is 
involved).

<float1> - Stoichiometric coefficient, s.

<float2> - Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float3> - Reaction order, β.

<float4> - Reference species concentration, cref, in units of moles/cm3.

<float5> - Anodic transfer coefficient, αa.

<float6> - Cathodic transfer coefficient, αc.

<float7> - Temperature, T, in unit of K.

<float8> - Open-circuit potential, U0, in unit of V.

<float9> - Number of electrons involved in the reaction, n.

ELECTRODE_KINETICS

The ELECTRODE_KINETICS model is used to specify the 
species generation or consumption in electrochemical processes 
involving concentrated electrolyte solutions and multiple 
species such as thermal batteries. The {model_name} 
ELECTRODE_KINETICS toggles on the option in the 
equation assembly; no parameters are required.

ELECTROOSMOTIC  <int1> <int2> <float1> <float2> <float3> <float4> 
<float5> <float6> <float7> <float8> <float9> <float10>

This is the source or sink term (in units of moles per unit 
volume, e.g. moles/cm3-s) for thw water species due to 
electro-osmotic drag by the protons (H+). Two integers and 10 
flotas are required:  

<int1> - Water species index.

<int2> - Index of the species involved in the electrochemical 
reaction that generates the electrical current (here, we 
assume that only a single species is involved).

<float1> - Stoichiometric coefficient, s.

<float2> - Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float3> - Reaction order, β.

<float4> - Reference species concentration, cref, in units of moles/cm3.

<float5> - Anodic transfer coefficient, αa.

<float6> - Cathodic transfer coefficient, αc.
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<float7> - Temperature, T, in unit of K.

<float8> - Open-circuit potential, U0, in unit of V.

<float9> - Number of electrons involved in the reaction, n.

<float10> - Electro-osmotic drag coefficient, nd.

EPOXY <species> <floatlist>

The EPOXY model adds a reaction source term for a 
condensation polymerization reaction based on an extent of 
reaction variable. Six model parameters make up the 
<float_list> for the EPOXY species source model, as follows:

<float1> - A1 (prefactor)
<float2> - E1/R (activation energy/gas constant)
<float3> - A2 (prefactor)
<float4> - E2/R (activation energy/gas constant)
<float5> - m (exponent)
<float6> - n (exponent)

This model will be used with the EPOXY Heat Source 
model to compute the reaction rate.

EPOXY_DEA <species> <floatlist>

The EPOXY_DEA model was created specifically for a 
diethanolamine-epoxy curing reaction, a different model of 
the reaction kinetics from the EPOXY source model. The 
<float_list> for EPOXY_DEA species source model has 
five values, where

<float1> - A1 
<float2> - E1/R, 
<float3> - A2 for the low-temperature regime
<float4> - E2/R for the low-temperature regime
<float5> - A2 for the mid-temperature regime

FOAM

The FOAM model was created specifically for the 
removable epoxy foam decomposition kinetics. However, 
the basis for evolving the density change can be applied to 
other reactive material models. There are eight float inputs 
in <float_list> which are used to specify two Arrhenius-type 
reaction rates r1 and r2 and two reference temperatures T1 
and T2:

<float1> - A1
<float2> - E1
<float3> - sig_1 (not currently used)
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<float4> - A2
<float5> - E2
<float6> - sig_2 (not currently used)
<float7> - T1
<float8> - T2

where Aj and Ej are the Arrhenius pre-exponential factor 
and activation energy, respectively, for reaction rate rj, 
and T1 and T2 are used to define a dimensionless problem 
temperature .

USER <species> <floatlist>

The USER option indicates that a user-defined model has 
been introduced into the usr_species_source routine in 
the user_mp.c file. The <float_list> is of arbitrary length 
subject to the user’s requirements to parameterize the model.

Examples

Sample card for the CONSTANT model:

Species Source = CONSTANT 0 2.

Sample card for the BUTLER_VOLMER model:

Species Source = BUTLER_VOLMER 1 -1. .02 1. 4.e-5 1. 1. 353. 1.18 4.

Sample card for the ELECTROOSMOTIC model:

Species Source = ELECTROOSMOTIC 2 1 1. .02 1. 4.e-5 1. 1. 353. 1.18 4.0 1.4

Technical Discussion

A discussion of units for species flux terms can be found under FAQs on the Diffusivity 
card.

The CONSTANT option offers the simplest way for prescribing a constant 
homogeneous rate of species generation or consumption involving in a species-
transport process.

In the BUTLER_VOLMER model, the current source or sink due to a homogeneuous 
electrochemical reaction involving a single species (e.g., the hydrogen oxidation and 
oxygen reduction reactions in a hydrogen-feuled polymer-electrolyte-membrane fuel 
cell) is computed using the Butler-Volmer kinetic model as described below in the 
Theory section. 

The ELECTRODE_KINETIC model computes the molar rate of electrolyte-species 
generation or consumption in electrochemical processes involving concentrated 

T∗ T T1–( ) T2 T–( )⁄=
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electrolyte solutions and multiple species as in thermal batteries. The molar rate of 
electrolyte-species consumption is evaluated using Butler-Volmer kinetics along with 
Faraday’s law. Further details can be found in the reference listed below in the 
References sub-section (Chen et al. 2000).

The ELECTROOSMOTIC model computes the water-species flux due to the electro-
osmotic drag of protons (H+), which is proportional to the average current density with 
the proportionality constant being the electro-osmotic drag coefficient, nd.

The EPOXY model adds a reaction source term for a condensation polymerization 
reaction based on an extent of reaction variable. The extent of reaction is tracked as a 
convection equation with a reaction source term. The form of the EPOXY species 
source term is

(5-151)

where α is the extent of reaction, the rate constants, k1 and k2, can depend on 
temperature in the Arrhenius manner, and m and n are exponents.

(5-152)

where R is the gas constant in the appropriate units, Ai is the prefactor, and Ei is the 
activation energy for reaction. Six parameters are required to define the model: A1 and 
A2 (prefactors), E1 and E2 (activation energies), and m and n (exponents), with R 
being the universal gas constant.

The EPOXY_DEA model was created specifically for diethanolamine-epoxy curing 
reaction. While the expression for the source term is identical to the EPOXY model 
(with n=1.6),

(5-153)

the reaction kinetics differs, having three reaction regimes for exponent m and rate 
constant k2. For T< 65 C, m = 2 and

; (5-154)

for 65 C < T< 90C, m = 74*k2 and

   where T in C; (5-155)
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and for T > 90C, m = k2 = 0. Rate constant  is fixed for all these regimes and is 
determined from the prefactor  and activation energy .

The FOAM model computes the mixture volume change rate as:

(5-156)

where ρmix is the mixture density as defined in the REACTIVE_FOAM density model 
(which is required for this model) and Vi is the specific volume of component i.

The USER option indicates that a user-defined model has been introduced into the 
usr_species_source routine in the user_mp.c file. The <float_list> is of arbitrary 
length subject to the user’s requirements to parameterize the model.

Theory

The rate of species generation or consumption in electrochemical processes involving a 
single species such as polymer-electrolyte-membrane fuel cells can be computed using 
the Butler-Volmer kinetic model and the Faraday’s law (cf. Newman 1991, Chen et al. 
2000, Chen and Hickner 2006):

             (0-7)

where r is the homogeneous species source or sink in units of moles/cm3-s;  s is the 
stoichiometric coefficient with a sign comvention such that r represents a source when 
s > 0 and sink when s < 0; n is the number of electrons involved in the electrochemical 
reaction;  denotes the product of interfacial area per unit volume by exchange 
current density, which has units of A/cm3;  c and  are, respectively, species and 
reference molar concentrations in units of moles/cm3; β is reaction order; αa and αc are, 
respetively, the anodic and cathodic transfer coefficients; F is the Faraday’s constant 
( 96487 C/mole) and R is the universal gasl constant ( 8.314 J/mole-K);  and 

 are, respectively, the electrode and electrolyte potentials in unit of V;  is the 
open-circuit potential in unit of V; and T is temperature in unit of K.

FAQs

No FAQs.
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References
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for BUTLER_VOLMER and ELECTRODE_KINETIC Models:

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, Englewood Cliff, NJ 
(1991).

K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble, and W. G. Houf, “Final Report on 
LDRD Project: A Phenomenological Model for Multicomponent Transport with 
Simultaneous Electrochemical Reactions in Concentrated Solutions”, Sandia Report 
SAND2000-0207 (2000).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”, 
in ASME Proceedings of FUELCELL2006-97032 (2006).

 

5.6.6 Current Source

Description/Usage

This card is used to specify the model for the source term on the voltage potential 
equation. Values for the permissible {model_names} and the associated <optional 
integer> and <floatlist> parameters are given below.

{model_name} Name of the model for the source term on the voltage 
equation having permissible values

CONSTANT
USER
BUTLER_VOLMER
ELECTRODE_KINETICS
FICKIAN_CHARGED
NET_CHARGE
STEFAN_MAXWELL_CHARGED

<optional integer> This is required for the BUTLER_VOLMER model only.

Current Source = {model_name} <optional integer> <float_list> [E/M]
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<float_list> One or more floating point numbers (<float1> through 
<floatn>) whose values are determined by the selection for 
{model_name}. Note that not all models have a 
<float_list>.

Source-term model choices and their parameters are discussed below. WARNING: 
make sure the equation term multipliers for the source terms are set to unity (see the 
Equation Cards segment in the previous chapter).

CONSTANT <float1>

For the CONSTANT current source term, there is a single 
input parameter corresponding to the current density.

<float1> - Current density [E/M]

USER <float_list>

For a user-defined model, the set of parameters specified in 
the <floatlist> are defined in file user_mp.c in the function 
usr_current_source.

BUTLER_VOLMER <integer> <float1> <float2> <float3> <float4> 
<float5> <float6> <float7> <float8> 

This is the homogeneous current source or sink term (in units 
of amphere per unit volume, e.g. A/cm3) as described by the 
Butler-Volmer kinetic model (see the  Theory section below). 
One integer and 8 flotas are required:  

<integer> - Index of the species involved in the electrochemical 
reaction (here, we assume that only a single species is 
involved).

<float1> - Stoichiometric coefficient, s.

<float2> - Product of interfacial area per unit volume by exchange 
current density, ai0, in units of A/cm3.

<float3> - Reaction order, β.

<float4> - Reference species concentration, cref, in units of moles/cm3.

<float5> - Anodic transfer coefficient, αa.

<float6> - Cathodic transfer coefficient, αc.

<float7> - Temperature, T, in unit of K.

<float8> - Open-circuit potential, U0, in unit of V.
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ELECTRODE_KINETICS

This is a toggle, turning the model on; no parameters are 
required.

FICKIAN_CHARGED

This is a toggle, turning the model on; no parameters are 
required.

NET_CHARGE

This is a toggle, turning the model on; no parameters are 
required.

STEFAN_MAXWELL_CHARGED

This is a toggle, turning the model on; no parameters are 
required.

Examples

Sample card for the CONSTANT model:

Current Source = CONSTANT  0.50

Sample card for the BUTLER_VOLMER model:

Current Source = BUTLER_VOLMER 0 1. 1000. 0.5 4.e-5 1. 1. 353. 0.

Technical Discussion

The CONSTANT and USER models are those standardly available in Goma. 

In the BUTLER_VOLMER model the current source or sink due to a homogeneuous 
electrochemical reaction involving a single species (e.g., the hydrogen oxidation and 
oxygen reduction reactions in a hydrogen-feuled polymer-electrolyte-membrane fuel 
cell) is computed using the Butler-Volmer kinetic model as described below in the 
Theory section.  

In the FICKIAN_CHARGED  model, current source or sink for electrochemical 
processes involving dilute electrolyte solution and multiple species as in LIGA 
electrodeposition is computed. 

The NET_CHARGE model is used to compute the net charge or current source in a 
region where the concentrations of positively and negatively charged species differ as 
in the space layer of a atmospheric copper sulfidation process, in which the copper hole 
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and vacancy concentrations differ such that charge separation occur (see the reference 
listed below in the Reference sub-section, Chen 2004, for further details).

In the STEFAN_MAXWELL_CHARGED and  ELECTRODE_KINETICS  
models, current sources or sinks for electrochemical processes involving concentrated 
electrolyte solutions and multiple species as in thermal batteries are computed. 

Further details of these models can be found in the SAND Reports and proceeding 
paper referenced below in the Theory sub-section.

Theory

BUTLER_VOLMER model: for the Butler-Volmer kinetic model with the exchange 
current density being dependent on a single species is given by (cf. Newman 1991, 
Chen et al. 2000, Chen and Hickner 2006):

 

where j is the homogeneous current source or sink in units of A/cm3;  s is the 
stoichiometric coefficient with a sign convention such that j represents a source when s 
> 0 and sink when s < 0;  denotes the product of interfacial area per unit volume by 
exchange current density, which has units of A/cm3;  c and  are, respectively, species 
and reference molar concentrations in units of moles/cm3; β is reaction order; αa and αc 
are, respetively, the anodic and cathodic transfer coefficients; F is the Faraday’s 
constant ( 96487 C/mole) and R is the universal gasl constant ( 8.314 J/mole-
K);  and  are, respectively, the electrode and electrolyte potentials in unit of V;  
is the open-circuit potential in unit of V; and T is temperature in unit of K.

NET_CHARGE model: The net charge or current source in a region with charge 
separation (e.g., in a space charge layer in which hole and vacancy concentrations 
differ as in the atmospheric copper sulfidation corrosion process) is given by 

where j is the net charge or current source in units of A/cm3; zi is the charge number and 
ci is the molar concentration in units of moles/cm3, respectively, of species i; F is the 
Faraday’s constant ( 96487 C/mole); and n is the number of charge species present.
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FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble, and W. G. Houf, “Final Report on 
LDRD Project: A Phenomenological Model for Multicomponent Transport with 
Simultaneous Electrochemical Reactions in Concentrated Solutions”, Sandia Report 
SAND2000-0207 (2000).

K. S. Chen and G. H. Evans, “Multi-dimensional Multi-species Modeling of Transient 
Electrodeposition in LIGA Microfabrication”, Sandia Report SAND2004-2864 (2004).

K. S. Chen, “Multi-dimensional Modeling of Atmospheric Copper-Sulfidation 
Corrosion on non-Planar Substrates”, Sandia Report SAND2004-5878 (2004).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”, 
in ASME Proceedings of FUELCELL2006-97032 (2006).

 

5.6.7 Initialize

Description/Usage

This optional card provides a mechanism to set one of the field variables to a constant 
value within the current material block. Definitions of the input parameters are as 
follows:

<char_string> Permissible values for this input string are any variable 
names identified in source file rf_fem_const.h 
beginning at the section labeled Variable Names of 
unknowns, though they should be active in this material 
block. Examples include, but are not limited to, the 
following:

VELOCITY1, VELOCITY2, VELOCITY3 (V123), 
MESH_DISPLACEMENT (MD123), 
SOLID_DISPLACEMENT (SD123), 
MASS_FRACTION, TEMPERATURE, PRESSURE, 

Initialize = {char_string} <integer> <float> [varies]
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VOLTAGE, FILL, LS, POLYMER_STRESS (6 
components, 8 modes), VELOCITY_GRADIENT (9 
components), SHEAR_RATE, VOLF_PHASE (6 
phases),  POR_LIQ_PRES,  POR_GAS_PRES, 
POR_POROSITY, POR_SATURATION, POR_LAST, 
LAGR_MULT (LM123), SURF_CHARGE, 
EXT_VELOCITY, EFIELD(123), SHELL (4 variables), 
SPECIES (7 variables).

Note: for a comprehensive list of initializable variables, 

consult Volume 1 “Initialize” card.   

<integer> Species number to be initialized if the value of 
{char_string} is one of the SPECIES variables (see 
Technical Discussion); otherwise, set <integer> to zero.

<float> Value to which the variable should be initialized.

Multiple applications of this card are valid; Goma automatically counts the number of 
Initialize cards.

Examples

Following is a sample card: 

INITIALIZE = POLYMER_STRESS11  0  1.25E4

Technical Discussion

This card provides the means to set initial values for any of the field variables in the 
element block for a particular material. Since the setting of variables initialized on this 
card takes place after reading the initial guess (see function init_vec in file rf_util.c), it 
can be used to override the value in the initial guess file.

In order to set a field to a specific value over the entire problem domain, a similar 
Initialize capability is provided as a global variable in the General Specifications 
section of the Goma input file. Please check in the Problem Description section of this 
manual.

Note, the SPECIES_UNK variables are NOT used to initialize any of the species 
variables. Rather, the special definitions called SPECIES_MASS_FRACTION, 

SPECIES_MOLE_FRACTION, SPECIES_VOL_FRACTION, SPECIES_DENSITY, 

SPECIES_CONCENTRATION, SPECIES_CAP_PRESSURE and 
SPECIES_UNDEFINED_FORM, having integer representations of 2170 to 2176, and 
representing the various Species Types, are the variables used in Goma input or mat 
files for this input record. Multiple species are initialized by combining one of these 
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variable types with the second parameter (<integer>) on this card. These cards are 
particularly handy for mass transfer problems, where the initial conditions need to 
specify different concentrations of the same species in different materials.

Note: for a comprehensive list of initializable variables, consult Volume 1 “Initialize” 
card.   

Theory

No Theory.

FAQs

No FAQs.

References

No References.
 

5.7 Shell Equation Properties and Models

In this section we list all “material-region” specific models and properties associated with 
GOMA’s extensive shell equation capability. Currently we have specialized shell equations for 
Reynolds lubrication flow (lubp), open Reynolds film flow (shell_film_H), energy (shell_energy, 
convection and diffusion, coupled with lubrication), thin porous media (closed cell and open cell), 
melting and phase change and more. While many of these cards are actual material properties, 
most are geometry and kinematic related. The most appropriate place for these cards are region/
material files because they are actually boundary conditions and related parameters which arise 
from the reduction of order (integration through the thin film). For more information, please see 
the shell-equation tutorial (GT-036). 

5.7.1 Upper Height Function Constants

Description/Usage

This card takes the specification of the upper-height function for the confined channel 
lubrication capability, or the lub_p equation.   This function specifies the height of the 

Upper Height Function Constants  = {model_name}  <floatlist>
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channel versus distance and time.  Currently three models for {model_name} are 
permissible: 

CONSTANT_SPEED This model invokes a squeeze/separation velocity uniformly 

across the entire material region, viz. the two walls are brought 

together/apart at a constant rate.   This option requires two

floating  point values

<float1> the separation velocity (rate) in units of length/time

<float2> the initial wall separation in units of length

<float3>  An OPTIONAL parameter which scales the addition 

of an external field called “HEIGHT” which is read in using

the External Field or External Pixel Field capabilities.  If this

field is present, the value of it is added to the height calculated

with this model. 

ROLL_ON This model invokes a squeeze/separation velocity in a

hinging-motion along one boundary.    The model is best

explained with the figure in the technical discussion section. 

The equation for the gap h as a function of time and the input

parameters (floats) is as follows:

<float1> is x0 in units of length

<float2> is hlow in units of length

 <float3> is h Δ, in units of length

<float4> is the verticle separation velocity (if negative then 

squeeze velocity) in units of length/time

<float5> is the length of the plate, L.  

ROLL  This model is used for a roll coating geometry. This option

requires 8 floats:

h(t, x) = (vsqt + hA )
x − x0

L







+ hlow
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<float1> x-coordinate of origin, L.

<float2> y-coordinate of orgin, L.

<float3> z-coordinate of origin, L.

<float4> Direction angle 1 of rotation axis

<float5> Direction angle 2of rotation axis

<float6> Direction angle 3of rotation axis

<float7> rotation speed L/t. 

FLAT_GRAD_FLATThis model used two arctan functions to mimic a flat region, 

then a region of constant slope, then another flat region.  The 

transitions between the two regions are curved by the arctan 

function.  This currently on works for changes in the x 

direction.  This option requires five floating point values

<float1> x location of the first transition (flat to grad)

<float2> height of the first flat region

<float3> x location of the second transition (grad to flat)

<float4> height of the second flat region

<float5> parameter controlling the curvature of the transitions

POLY_TIMEThis time applies a time-dependent lubrication height in the 

form of a polynomial.  It can take as many arguments as 

GOMA can handle, and the resulting height function is

<floati>  value of Ci

JOURNAL This model simulates a journal bearing.  It is intended to be 

run on a cylindrical shell mesh aligned along the z axis and

centered at (0,0).  It could be extended to be more flexible, but

( )
N

i
i

i

h t C t=
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this is all it is currently capable of.  The height is defined by 

Where C is the mean lubrication height and is the

eccentricity 

of the two cylinders, with the smallest gap in the –y direction.

<float1> C

<float2> 

EXTERNAL_FIELD Not recognized. Oddly, this model is invoked with the extra
optional float on the CONSTANT_SPEED option. 

External Field = HEIGHT Q1 name.exoII (see this card)

Examples

Following is a sample card: 

Upper Height Function Constants = CONSTANT_SPEED {v_sq = -0.001} {h_i=0.001} 

This results in an upper wall speed of 0.001 in a direction which reduces the gap, which 
is initial 0.001. 

Technical Discussion

The material function model ROLL_ON prescribes the squeezing/separation motion of 
two non-parallel flate plates about a hinge point, as shown in the figure below.  

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

) (1 cos( ))(h Cθ ε θ= +

ε

ε
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5.7.2 Lower Height Function Constants

Description/Usage

This card takes the specification of the lower-height function for the confined channel 
lubrication capability, or the lub_p equation.   This function specifies the height of the 
channel versus distance and time.  Currently three models for {model_name} are 
permissible: 

CONSTANT_SPEED This model invokes a squeeze/separation velocity uniformly 

across the entire material region, viz. the two walls are brought 

together/apart at a constant rate.   This option requires two

floating  point values

<float1> the separation velocity (rate) in units of length/time

<float2> the initial wall separation in units of length

<float3>  An OPTIONAL parameter which scales the addition 

of an external field called “HEIGHT” which is read in using

the External Field or External Pixel Field capabilities.  If this

field is present, the value of it is added to the height calculated

with this model. 

ROLL_ON This model invokes a squeeze/separation velocity in a

hinging-motion along one boundary.    The model is best

explained with the figure in the technical discussion section. 

The equation for the gap h as a function of time and the input

parameters (floats) is as follows:

<float1> is x0 in units of length

<float2> is hlow in units of length

Lower Height Function Constants  = {model_name}  <floatlist>

h(t, x) = (vsqt + hA )
x − x0

L







+ hlow
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 <float3> is h Δ, in units of length

<float4> is the verticle separation velocity (if negative then 

squeeze velocity) in units of length/time

<float5> is the length of the plate, L.  

ROLL  This model is used for a roll coating geometry. This option

requires 8 floats:

<float1> x-coordinate of origin, L.

<float2> y-coordinate of orgin, L.

<float3> z-coordinate of origin, L.

<float4> Direction angle 1 of rotation axis

<float5> Direction angle 2of rotation axis

<float6> Direction angle 3of rotation axis

<float7> rotation speed L/t. 

TABLE  <integer1>  <character_string1> {LINEAR | BILINEAR}  [integer2] 
[FILE = filenm]

Please see discussion at the beginning of the material 
properties Chapter 5 for input description and options.  
Most likely character_string1 will be 
LOWER_DISTANCE. This option is good for 
inputing table geometry versus distance. Specifically, an 
arbitrary lower height function model is input as a 
function of the x-direction coordinate of the Lower 
Velocity Function model. This option in turn 
requires the use of SLIDER_POLY_TIME lower 
velocity function model. See example below. 

Examples

Following is a sample card: 

Lower Height Function Constants = CONSTANT_SPEED {v_sq = -0.001} {h_i=0.001} 
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This results in an lower wall speed of 0.001 in a direction which reduces the gap, which 
is initial 0.001. 

In another example:

Lower Height Function Constants = TABLE 2 LOWER_DISTANCE 0 
LINEAR FILE=shell.dat

where shell.dat is a table with 2 columns, the first the position, the second the height. 

Technical Discussion

The material function model ROLL_ON prescribes the squeezing/separation motion of 
two non-parallel flate plates about a hinge point, as shown in the figure below.  

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.3 Upper Velocity Function Constants

Description/Usage

This card takes the specification of the upper-wall velocity function for the confined 
channel lubrication capability, or the lub_p equation.   This function specifies the 
velocity of the upper channel wall as a function of time.  Currently two models for 
{model_name} are permissible: 

CONSTANT This model invokes a squeeze/separation velocity uniformly 

across the entire material region, viz. the two walls are brought 

Upper Velocity Function Constants  = {model_name}  <floatlist>
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together/apart at a constant rate.   This option requires two

floating  point values

<float1> is the velocity component in the x-direction. L/t

<float2> is the velocity component in the y-direction. L/t

<float3> is the velocity component in the z-direction. L/t

(NOTE: this is usually taken as zero as it is set in the Upper

Wall Height Function model)

ROLL This model invokes a wall velocity which corresponds to a

rolling-motion.   This model takes nine constants ???? :

<float1> Roll radius, L. 

<float2> x-coordinate of axis origin, L.

<float3> y-coordinate of axis orgin, L.

<float4> z-coordinate of axis origin, L.

<float5> Direction angle 1 of rotation axis

<float6> Direction angle 2of rotation axis

<float7> Direction angle 3of rotation axis

<float8> Squeeze rate. 

<float9> rotation rate

TANGENTIAL_ROTATE his model allows a velocity that is always tangential to a shell 

surface, not necessarily aligned along the coordinate

directions.  It requires three specifications. First, a vector (v)

that is always non-colinear to the normal vector of the shell

must be specified.  This is used to make unique tangent

vectors.  The last two specifications are the two tangential

components to the velocity.  The first velocity is applied in the

direction of  .  The second velocity is then applied in

the direction.

<float1> vx

<float2> vy

1t nv= ×

2 1t t n= ×
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<float3> vz

<float4> velocity in the t1 direction

<float5> velocity in the t2 direction

CIRCLE_MELT  Model which allows a converging or diverging height that is like a

circle. Also works for melting. 

<float1> - x-location of the circle center (circle is in x-y plane)

<float2> - radius of circle

<float3>- minimum height of circle

Examples

Following is a sample card: 

Upper Velocity Function Constants = CONSTANT {v_x= -0.001} {vy=0.00}  {vz=0}

This card results in an upper wall speed of -0.001 in the x-direction which is tangential 

to the substrate, thus generating a Couette component to the flow field.

Technical Discussion

For non-curved shell meshes, most of the time they are oriented with the x-, y-, or z-
plane.   This card is aimed at applying a tangential motion to that plane, and so one of 
the three components is usually zero. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.
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5.7.4 Lower Velocity Function Constants

Description/Usage

This card takes the specification of the Lower-wall velocity function for the confined 
channel lubrication capability, or the lub_p equation.   This function specifies the 
velocity of the Lower channel wall as a function of time.  Currently two models for 
{model_name} are permissible: 

CONSTANT This model invokes a squeeze/separation velocity uniformly 

across the entire material region, viz. the two walls are brought 

together/apart at a constant rate.   This option requires two

floating  point values

<float1> is the velocity component in the x-direction. L/t

<float2> is the velocity component in the y-direction. L/t

<float3> is the velocity component in the z-direction. L/t

(NOTE: this is usually taken as zero as it is set in the Lower

Wall Height Function model)

SLIDER_POLY_TIMEThis model implements a spatially-uniform velocity in the 

x-direction that is specified as a polynomial in time.  The value

of time may be scaled by a given scaling factor and the 

polynomial may have an unlimited number of terms.

<float1> is the time scaling factor

<float2-N> are the coefficients in front of the t^(i-2) term

Lower Velocity Function Constants  = {model_name}  <floatlist>

2
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ROLL This model invokes a wall velocity which corresponds to a

rolling-motion.   This model takes nine constants ???? :

<float1> Roll radius, L. 

<float2> x-coordinate of axis origin, L.

<float3> y-coordinate of axis orgin, L.

<float4> z-coordinate of axis origin, L.

<float5> Direction angle 1 of rotation axis

<float6> Direction angle 2of rotation axis

<float7> Direction angle 3of rotation axis

<float8> Squeeze rate. 

<float9> rotation rate

TANGENTIAL_ROTATE

This model allows a unique specification of tangential motion in a 

lubrication shell element. Previous implementations allowed specification only in terms 

of coordinate direction, but this option can be used to rotate a cylinder. Five floats are 

required:

<float1> x-comnponent of a vector tangential to the shell.

This vector must never be normal to the shell. It is then

projected onto the shell. 

<float2> y-comnponent of a vector tangential to the shell.

<float3> z-comnponent of a vector tangential to the shell.

<float4> U1, or scalar speed of wall velocity in a direction

determined by the cross product ot the tangent vector and the

normal vector to the shell. (L/t)

<float5> U2 scalar speed component in direction normal 

to U1. (L/t)

Examples

Following is a sample card: 

Lower Velocity Function Constants = CONSTANT {v_x= -0.001} {vy=0.00}  {vz=0}

This card results in an Lower wall speed of -0.001 in the x-direction which is tangential 

to the substrate, thus generating a Couette component to the flow field.
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Technical Discussion

For non-curved shell meshes, most of the time they are oriented with the x-, y-, or z-
plane.   This card is aimed at applying a tangential motion to that plane, and so one of 
the three components is usually zero. 

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.5 Upper Contact Angle

Description/Usage

This card sets contact angle of the liquid phase on the upper-wall for the two-phase 
capability in the lub_p equation (viz. when using the level-set equation to model the 
motion of a meniscus in a thin gap, where the in-plan curvature is neglected.  Currently 
one model {model_name} is permissible: 

CONSTANT         This model is used to set a constant contact able of the the free 

surface at the upper wall.  Contact angle of less than 90 degrees is considered as non-

wetting with respect to the heavier level-set phase.  Only one floating point value is 

required. 

<float1> is the contact angle in degrees. 

Examples

Following is a sample card: 

Upper Contact Angle = CONSTANT  180.

Upper Contact Angle = {model_name}  <floatlist>
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This card results in an upper wall contact able to 180 degrees, which is perfectly 

wetting.  If the lower wall is given the same angle, then the capillary pressure jump will 

go as 2/h, where h is the gap.  

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.6 Lower Contact Angle

Description/Usage

This card sets contact angle of the liquid phase on the lower-wall for the two-phase 
capability in the lub_p equation (viz. when using the level-set equation to model the 
motion of a meniscus in a thin gap, where the in-plan curvature is neglected.  Currently 
one model {model_name} is permissible: 

CONSTANT         This model is used to set a constant contact able of the the free 

surface at the lower wall.  Contact angle of less than 90 degrees is considered as non-

wetting with respect to the heavier level-set phase.  Only one floating point value is 

required. 

<float1> is the contact angle in degrees. 

Lower Contact Angle = {model_name}  <floatlist>
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Examples

Following is a sample card: 

Lower Contact Angle = CONSTANT  180.

This card results in an lower wall contact able to 180 degrees, which is perfectly 

wetting.  If the lower wall is given the same angle, then the capillary pressure jump will 

go as 2/h, where h is the gap.  

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.7 Lubrication Fluid Source

Description/Usage

This card sets a fluid mass source term in the   lub_p equation.  Can be used to specify 
inflow mass fluxes over the entire portion of the lubrication gap in which the lub_p 
equation is active (over the shell material).  This flux might be the result of an injection 
of fluid, or even melting.   Currently two models {model_name} are permissible: 

CONSTANT         This model is used to set a constant fluid source in units of 

velocity.  Only one floating point value is required. 

<float1> is the velocity of the fluid source. 

Lubrication Fluid Source = {model_name}  <floatlist>
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 MELT          This model is used to set fluid source in units of 

Velocity which results from an analytical model of lubricated 

melt bearing flow due to Stiffler (1959).  Three 

floating point values are required. 

<float1> is load on the slider in units of pressure

<float2> is the Stiffler delta factor.   Unitless but depends on 

the aspect ratio.

<float3> is the length of the slider in the direction of the 

motion.

Examples

Following is a sample card: 

Lubrication Fluid Source = CONSTANT  180. 

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.
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5.7.8 Lubrication Momentum Source

Description/Usage

This card sets a fluid “body force per unit volume” source term in the   lub_p 
equation.  This capability can be used to specify a force field over the entire shell area 
(over the shell material)..   Currently two models {model_name} are permissible:

CONSTANT         THIS MODEL NOT IMPLEMENTED AS OF 11/11/2010.  This

model is used to set a constant fluid momentum source in units of 

force per unit volume.  Only one floating point value is required. 

<float1> is the fluid momentum source in F/L^3. 

 JXB  This model is used to set fluid momentum source in units of 

force per unit volume which comes from externally supplied current 

density J field and magnetic B fields.  These fields are suppled with 

the external field capability in Goma in a component wise fashion.

Please consult the technical discussion below.

<float1> is scale factor which may be used for non-

dimensionalization.  Typically this is set to 1.0. 

Examples

Following is a sample card: 

Lubrication Momentum Source = JXB  1.

Technical Discussion
The two vector fields J, the current flux, and B, the magnetic induction, must be 

supplied to Goma in order to activate this option. At present, these fields must be 

supplied with the External Field cards, which provide the specific names of nodal 

variable fields in the EXODUS II files from which the fields are read. The three 

components of the J field must be called JX_REAL, JY_REAL, and JZ_REAL. 

Likewise the B field components must be called BX_REAL, BY_REAL, and 

BZ_REAL. These names are the default names coming from the electromagnetics code 

like Alegra. Because of the different coordinate convention when using cylindrical 

Lubrication Momentum Source = {model_name}  <floatlist>
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components, the fields have been made compatible with those arising from TORO II. It 

is the interface with TORO that also makes the Lorentz scaling (lsf) necessary so that 

the fixed set of units in TORO (MKS) can be adjusted to the user-selected units in 

Goma.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.9 Turbulent Lubrication Model

Description/Usage
This card activates a turbulent model for viscosity in the   lub_p equation. Currently 

one model {model_name} is permissible:   

PRANDTL_MIXING This model is used to determine the pre-multiplier 

on the molecular viscosity in the Reynolds

lubrication equation.  For confined, laminar flow,

this multiplier is 12.   For turbulent flow it is taken

as K(Re), where Re is the local Reynolds number. 

Specifically,  invoking a analytical approximation

for K from Hirs (1973), we set k0 according to the

Reynolds number Re= :

For 0 < Re < 2000  K0=12 (Laminar case),

Turbulent Lubrication Model = {model_name}

ρh |U |

µ
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Else 2000 < Re < 100000 K0 = 0.05Re ¾

Here the wall velocity is used to compute

The Reynolds number, as this turbulence model is

specific to turbulent Couette flow. 

Examples

Following is a sample card: 

Turbulent Lubrication Model = PRANDTL_MIXING

Technical Discussion
Several other models can be implemented in this instance.  We chose this simple 

model which derives from Prandtl mixing length theory. 

Theory

NoTheory.

FAQs

No FAQs.

References

G.G. Hirs, “Bulk flow theory for turbulence in lubricant films”, Trans. ASME, ser. F, 
95, pp 137-146, 1973.

5.7.10 Shell Energy Source QCONV

Description/Usage
This card activates a heat source (or sink, as it were) in the   shell_energy 

equation. The functional form of this source/sink is a lumped heat-transfer coefficient 

model, hence the QCONV in its name (see BC = QCONV card in main user manual).  

Currently two models {model_name} are permissible:   

Shell Energy Source QCONV = {model_name} <float_list>
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CONSTANT This model invokes a simple constant heat-transfer

coefficient and reference temperature, viz.

.   Commensurately there are two

floats required:

<float1> - Heat transfer coefficient in units of 

Energy/time/L2/deg T E.g. W/m2-K in MKS units. 

<float2> - Reference temperature. 

MELT_TURB This model also invokes a lumped parameter model,

but the heat-transfer coefficient depends on the flow

strength (Reynolds number), viz.

.   Three floats are required:

<float1> - Thermal conductivity in units of Energy

time/L/deg (e.g. W/m/k).   

<float2> - Reference temperature. 

<float3> - Latent heat of melting (Energy/M, e.g. J

/Kg). This quantity is required due to the cross use 

of this in the shell_deltah equation (viz. EQ =

shell_deltah). 

Examples

Following is a sample card: 

Shell Energy Source QCONV = MELT_TURB {thermal_conductivity} {Tref}

{latent_heat}

Technical Discussion
The MELT_TURB model warrants further discussion.  The functional form of the heat 

transfer coefficient H is 

.  

Here  cf is the coefficient of friction, which for now is taken as 8./Re. 

q = H (T − Tref )

q = H (T − Tref )

H = 0.0735ρCpc f
1/2uwall (

µCp

K
)
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Theory

NoTheory.

FAQs

No FAQs.

References

None

5.7.11 Shell Energy Source Sliding Contact

Description/Usage
This card activates a heat source (or sink, as it were) in the   shell_energy 

equation. The functional form of this source/sink is a sliding contact model derived in 

the frame-of-reference of the slider on a stationary surface, so that the surface is 

moving in the simulation.  In this case, the conditions for the flux vary from the leading 

edge to the trailing edge of the slider as a thermal boundary layer builds up.  Think of 

this as a hot slider moving over a cold stationary wall, so that the flux at the leading 

edge of the slider into the cold wall will be larger, due to a steeper thermal boundary 

layer. Clearly the contact time will play a role.   Currently two models {model_name} 

are permissible:   

LOCAL_CONTACT This model invokes the following functional form:

   Commensurately there are seven floats required:

<float1> - length l of slider. 

Shell Energy Source Sliding_Contact = {model_name} <float_list>

K
dT

dz 0

=
2K (T − T0 )

πκ (
1

uslider

)

L2 − L1

L2 − L1
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<float2> - Sink temperature of substrate. 

<float3> - Thermal conductivity of substrate.

<float4> - Density of substrate

<float5> - Heat capacity of substrate. 

<float6> - Delta L, or L1 – L2.  This parameter sets

the segment size (less than the total

slider length) over which the heat

flux is resolved.   

<float7> - Leading edge coordinate of slider. 

 

AVERAGE_CONTACT This model invokes the following functional

form:

 Commensurately there are seven floats required:

<float1> - length L of slider. 

 

<float2> - Sink temperature of substrate. 

<float3> - Thermal conductivity of substrate.

<float4> - Density of substrate

<float5> - Heat capacity of substrate. 

Examples

Following is a sample card: 

Shell Energy Source Sliding_Contact = LOCAL_CONTACT {L= 2.5} 
{t_r=20} {t_cond_cu_cgs} {density_cu_cgs} {heat_capacity_cu_cgs}

K
dT

dz 0

=
2K(T − T0 )

πκ (
L

uslider

)
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{delta_L = 0.1} {leading_edge_coordx = 2.5}

Technical Discussion
This boundary condition was derived using the analytical solution for heat conduction 

into an infinite slab, as derived by Carslaw and Jaeger.   The modification here is that 

the temperature source accommodates a motion relative to the substrate, which is what 

leads to the need to segment the slider into bins over which a local heat flux solution is 

derived. 

NOTE: If this card is used and there is no upper-wall or lower wall sliding motion, and  

error is thrown. 

Theory

NoTheory.

FAQs

No FAQs.

References

None

5.7.12 Shell Energy Source Viscous Dissipation

Description/Usage
This card activates a heat source (or sink, as it were) in the   shell_energy 

equation resulting from viscous dissipation due to shear combined Couette and 

pressure-driven flow in the Reynolds lubrication equation (lubp equation). 

LUBRICATION This model invokes a viscous dissipation model

simplified for the lubrication approximation.  

<float1> - Scale factor for the term, typically taken

Shell Energy Source Viscous Dissipation = {model_name} <float_list>
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as 1.0

LUBRICATION_FRICTION     This model invokes the same viscous dissipation

source term as in the LUBRICATION model, but

adds on an additional linear friction model of the

form µ*Pload*vslider. 

<float1> - coefficient of friction, µ.

<float2> - Applied external load Pload

Examples

Following is a sample card: 

Shell Energy Source Viscous Dissipation=
LUBRICATION_FRICTION {load=5e8} {coeff=0.9}

Technical Discussion
None

Theory

NoTheory.

FAQs

No FAQs.

References

None
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5.7.13 Shell Energy Source External

Description/Usage
This card activates a heat source (or sink, as it were) in the  shell_energy equation 

which corresponds to a user-supplied or constant value.  Two models are available.

CONSTANT This model invokes a constant heat source term

(heat sink if negative) in units of energy per area per

time.  

<float1> - Value of heat source. 

JOULE     This model invokes a constant energy source

which is determined by an external current density

field of the form 

.  Here J is the current density, h is

the gap, and is the electrical resistivity, or the

inverse conductivity.  Both h and  are

determined from other models in the material file. 

J is brought in as an external field variable from

another exodusII file (see discussion below). 

<float1> - Scale factor, usually set to 1.0. 

JOULE_LS This model differs from JOULE only in that the 

electrical conductivity is pulled out and must be

specified with a LEVEL_SET model. This model

is not well tested (PRS 12/14/2012)

<float1> - Scale factor, usually set to 1.0. 

Examples

Following is a sample card: 

Shell Energy Source External = JOULE {scale=1.0}

Shell Energy Source Viscous External = {model_name} <float_list>

Q joule = hξ J ⋅ J

ξ

ξ
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Technical Discussion
To bring in an external field of the appropriate form, see the main Goma user’s manual 

and refer to the External Field card.  As an example, you might consider solving 

a simple electrostatic problem using the EQ = V (voltage) equation and output the 

magnitude of the current density vector.   In Goma, this is done with the post 

processing 
Electric Field Magnitude = yes
Card.   This card outputs this J-magnitude as the exodusII variable EE.   You then bring 

it in as follows in the input script:

External Field                   = EE Q1 
current_dens_out.exoII

With the JOULE model, this field is used to compute the Joule heating term. 

Theory

NoTheory.

FAQs

No FAQs.

References

None

5.7.14 FSI Deformation Model

Description/Usage

This card specifies the type of interaction the lubrication shell elements will have with 

any surrounding continuum element friends.  When not coupling the lubrication 

equations to a continuum element, this card should be set to the default value, 

FSI_SHELL_ONLY.  All models are described below:

FSI Deformation Model  = {model_name}
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FSI_MESH_BOTH This model should be used when both the shell 

and neighboring continuum elements use deformable meshes and the user wishes to 

full couple these behaviors. This model is not currently implemented and should not be 

used.

FSI_MESH_CONTINUUM In this model, the neighboring continuum 

elements use mesh equations, but the lubrication shell does not.  This model features a 

two-way coupling, where the lubrication pressure can deform the neighboring solid 

(through the appropriate boundary condition) and deformations to the mesh in turn 

affect the height of the lubrication gap.  This is equivalent to the old “toggle = 1”.

FSI_MESH_SHELL This model accounts for mesh equations present 

in the lubrication shell, but not in the adjoining continuum elements. This model is not 

currently implemented and should not be used. 

FSI_SHELL_ONLY This model can be thought of as the default 

behavior, where there is no coupling between the lubrication shell elements and any 

neighboring continuum elements.  This should also be used if only shells are present. 

FSI_MESH_UNDEF This model is similar to 

FSI_MESH_CONTINUUM, but the normal vectors in the shell are calculated using 

the original undeformed configuration, rather than the current deformed state.  

Implementation of this model is currently in progress and needs to be fully tested. 

FSI_MESH_ONEWAY This model is similar to 

FSI_MESH_CONTINUUM, but only utilizes a one way coupling.  Deformations in the 

neighboring continuum element do not affect the lubrication height, but do affect the 

calculated normal vectors.  This is equivalent to the old “toggle = 0”.

Examples

Technical Discussion

Theory

NoTheory.
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FAQs

No FAQs.

References

None

5.7.15 Film Evaporation Model

Description/Usage
This card takes the specification of the evaporation rate for the film-flow equation 

capability, specifically the shell_filmp equation.   This function specifies the rate 

of evaporation in the unit of length per time.  Currently two models for 

{model_name} are permissible:   

CONSTANT This model specifies a constant evaporation rate.   This option 

requires one floating point values

<float1> is the evaporation rate in the unit of length/time

CONC_POWER This model specifies evaporation rate function of particles

volume fraction and the input parameters (floats). This model

is proposed by Schwartz et al (2001). The functional form is:

<float1> is the pure liquid evaporation rate   in units of

length per time

<float2> is exponent  and it should satisfy 

 <float3> is the maximum packing volume fraction 

Film Evaporation Model  = {model_name}  <floatlist>

0

max

1E E

ν
ϕ

ϕ

 
= − 

 
 

0E

ν 0 1ν< <

maxϕ
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Examples

Following is a sample card: 

Film Evaporation Model = CONC_POWER 1.0e-3 0.5 0.64

This results in film evaporation with the pure liquid evaporation rate of 1.0e-3, exponent 

of 0.5, and maximum packing volume fraction of 0.64.

Technical Discussion

Theory

NoTheory.

FAQs

No FAQs.

References

Leonard W. Schwartz,  R. Valery Roy, Richard R. Eley,  and Stanislaw Petrash, 
“Dewetting Patterns in a Drying Liquid Film”, Journal of Colloid and Interface 
Science 234, 363–374 (2001)

5.7.16 Disjoining Pressure Model

Description/Usage
This card takes the specification of the disjoining pressure model for the film-flow 

equation capability, specifically the shell_filmh equation.   This function 

specifies the disjoining pressure in the unit of force per area.  Currently four models for 

{model_name} are permissible:   

CONSTANT This model specifies a constant disjoining pressure.   This option 

requires one floating point values

<float1> is the evaporation rate in the unit of length/time

Disjoining Pressure Model  = {model_name}  <floatlist>
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ONE_TERMThis model specifies disjoining pressure and the input parameters 

(floats). This model only employs the repulsion part of the van der Waals force. The 

functional form is:

where 

<float1> is the equilibrium liquid-solid contact angle  

<float2> is exponent  and it should satisfy 

 <float3> is the precursor film thickness 

TWO_TERMThis model specifies disjoining pressure and the input parameters 

(floats).  Here, the model only employs both repulsion and attraction part of the van der 

Waals force. The functional form is:

 

where

<float1> is the equilibrium liquid-solid contact angle  

*

n

h
B

h

 
Π =  
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*
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<float2> is exponent  corresponding to the repulsive part of the

van der Waals force. It should satisfy 

<float3> is exponent  corresponding to the attractive part of the

van der Waals force. It should satisfy  since

the attractive part acts in longer range than the repulsive

one.

 <float4> is the precursor film thickness 

 

<float5> is the parameter describing relative importance of the

attractive part to the repulsive part. Typically, is

chosen to be  in order to achieve

more numerical stability.

TWO_TERM_EXT_CAThis model is identical with TWO_TERM except that it 

uses contact angle from an external field identifies as THETA.

 

Examples

Following is a sample card: 

Disjoining Pressure Model = TWO_TERM 120.3 2 1.0e-4 0.1

This results in disjoining pressure with contact angle of 120, repulsive exponent of 3, 

attractive repulsion of 2, precursor film thickness of 1.0e-4, and relative importance of 

attractive part of 0.1.

Technical Discussion
A thorough discussion of disjoining pressure can be found in Teletzke et al (1987). The 

premultiplying constant  is related to contact angle  and surface tension  by 

balancing capillary and disjoining force where the wetting line meets the precursor film. 

See Schwartz (1998) for further detail

n

1n >

m

m n>

*h

α
α

0 1α< <

eθ



1096 Revised: 6/12/13

5.7.17  Diffusion Coefficient Model  

Theory

NoTheory.

FAQs

No FAQs.

References

Leonard W. Schwartz,  R. Valery Roy, Richard R. Eley,  and Stanislaw Petrash, 
“Dewetting Patterns in a Drying Liquid Film”, Journal of Colloid and Interface 
Science 234, 363–374 (2001)

Teletzke, G. F., Davis, H. T., and Scriven, L. E., “How liquids spread on solids”, Chem. 

Eng. Comm., 55, pp 41-81 (1987). 

5.7.17 Diffusion Coefficient Model

Description/Usage
This card takes the specification of the diffusion coefficient model for the conservation 

of particles inside film-flow capability, i.e. equation describing shell_partc.  

Currently two models for {model_name} are permissible:   

CONSTANTThis model specifies a constant diffusion coefficient.   This option

requires one floating point values

<float1> is the diffusion coefficient

STOKES_EINSTEINThis model specifies diffusion coefficient that depends on 

particles

radius and the film viscosity. The functional form is:

Diffusion Coefficient Model  = {model_name}  <floatlist>

6
Bk T

D
Rπµ

=
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<float1> is the Boltzmann constant  where the magnitude

depends on the units chosen by the user.

<float2> is temperature in unit of Kelvin.

 <float3> is the particles radii .

Examples

The Following is a sample card: 

Diffusion Coefficient Model = STOKES_EINSTEIN 1.3807e-16 298 1.0e-6

This results in diffusion coefficient calculated with Stokes Einstein model with

Bolztmann constant of 1.3807e-16 in CGS units, 298 K temperature, and 1.0e-6 cm

radius particles.

Technical Discussion
Viscosity dependence of diffusion coefficient can be exploited to relate particles 

concentration (or volume fraction in this case) to diffusion coefficient by employing 

SUSPENSION viscosity model in the material file. See SUSPENSION viscosity model for 

further detail

Theory

NoTheory.

FAQs

No FAQs.

References

None

Bk

T

R
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5.7.18 Porous Shell Radius

Description/Usage
This card specifies the radius of the pores used in porous_shell_closed and 
porous_shell_open equations.  Currently two models for {model_name} are 

permissible:   

CONSTANT         This model applies a constant pore radius for the entire model.  

It requires a single floating point value. 

<float1> is the pore radius. L

EXTERNAL_FIELDThis model reads in an array of values for the radius from an 

initial exodus file.  This allows for spatial variations in the 

parameter value.

 

Examples

Following is a sample card: 
Porous Shell Radius = CONSTANT 0.00001

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

None

Porous Shell Closed Radius = {model_name}  <floatlist>
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5.7.19 Porous Shell Height 

Description/Usage
This card specifies height of the pores used in porous_shell_closed and 
porous_shell_open equations.  Currently two models for {model_name} are 

permissible:   

CONSTANT         This model applies a constant pore height for the entire model.  

It requires a single floating point value. 

<float1> is the pore height. L

EXTERNAL_FIELDThis model reads in an array of values for the height from an 

initial exodus file.  This allows for spatial variations in the 

parameter value.

 

Examples

Following is a sample card: 
Porous Shell Height = CONSTANT 0.00001

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

None

Porous Shell Height = {model_name}  <floatlist>
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5.7.20   

5.7.20

5.7.21 Porous Shell Closed Porosity

Description/Usage
This card specifies the porosity used in porous_shell_closed equations.  

Currently two models for {model_name} are permissible:   

CONSTANT         This model applies a constant porosity for the entire model.  

It requires a single floating point value. 

<float1> is the porosity

EXTERNAL_FIELDThis model reads in an array of values for the porosity from an 

initial exodus file.  This allows for spatial variations in the 

parameter value.

<float1> scale factor for scaling field value

The ExodusII field variable name should be 
“SH_SAT_CL_POROSITY”, viz. 

External Field = SH_SAT_CLOSED_POROSITY Q1 name.exoII (see 
this card)
 

Examples

Following is a sample card: 
Porous Shell Closed Porosity= CONSTANT 0.5

Technical Discussion

None

Theory

NoTheory.

Porous Shell Closed Porosity = {model_name}  <floatlist>
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FAQs

No FAQs.

References

None

5.7.22 Porous Shell Closed Gas Pressure

Description/Usage
This card specifies the gas pressure used in porous_shell_closed equations.  

Currently one model for {model_name} are permissible:   

CONSTANT         This model applies a constant gas pressure for the entire model.  

It requires a single floating point value. 

<float1> is the gas pressure

Examples

Following is a sample card: 
Porous Shell Closed Gas Pressure = CONSTANT 0.5

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

Porous Shell Closed Gas Pressure = {model_name}  <floatlist>
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References

None

5.7.23 Porous Shell Atmospheric Pressure

Description/Usage

This card is used to set the atmospheric pressure level in a open-cell shell porous 
equation (for partially saturated flow). As of 11/27/2012 this card is NOT used. 

Examples

N/A

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Porous Shell Atmospheric Pressure = {model_name} <floatlist>
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5.7.24 Porous Shell Reference Pressure

Description/Usage

This card is used to set the reference pressure level in a open-cell shell porous equation 
(for partially saturated flow). This pressure is used to shift the saturation-capillary 
pressure curve appropriately. As of 11/27/2012 this card is NOT used as all saturation 
curve information is handled in the main porous flow property input framework, even 
for shell formulations.

Examples

N/A

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.25 Porous Shell Cross Permeability

Description/Usage

This card is used to set the permeability in the thin direction of a shell porous region. 
The property is used for the porous_sat_open equation. The in-shell (in-plane for 

Porous Shell Atmospheric Pressure = {model_name} <floatlist>

Porous Shell Cross Permeability = {model_name} <floatlist>
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a flat shell) permeabilities are set on the Permeability card. Please consult the 
references for the equation form. The property can take on one of two models:

CONSTANT This model applies a constant cross-region

permeability. It requires a single floating point input:

<float1> is the cross region permeability

EXTERNAL_FIELD This model is used to read a finite element mesh 
field representing the cross-term permeability. 
Please consult tutorials listed below for proper 
usage. This model requires one float:

<float1> scale factor for incoming exodusII
field and desired level. 

The ExodusII field variable name should be 
“CROSS_PERM”, viz. 

External Field = CROSS_PERM Q1 
name.exoII (see this card)

Examples

N/A

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation. 

Randy Schunk 2011. GT-038 “Pixel-to-Mesh-Map Tool Tutorial for GOMA”. Memo to 
distribution. 
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5.7.26 Porous Shell Gas Diffusivity

Description/Usageb

This card is used to set the gas diffusivity for the trapped gas in the 
porous_sat_closed equation. Basically, the gas trapped in closed pores during 
the imbibition process is allowed to diffuse into the liquid, and this property is a part of 
that model gas inventory equation R_SHELL_SAT_GASN. Only one model is 
available for this property:

CONSTANT This model applies a constant gas diffusivity. It 
requires a single floating point input:

<float1> is the gas diffusivity (L2/t)

Examples

Porous Shell Gas Diffusivity = CONSTANT 1.e-5

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation. 

Porous Shell Gas Diffusivity = {model_name} <floatlist>
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5.7.27  Porous Shell Gas Temperature Constant  

5.7.27 Porous Shell Gas Temperature Constant

Description/Usage

This card is used to set the temperature constant in Henry’s law for the trapped gas in 
the porous_sat_closed equation. Basically, the gas trapped in closed pores 
during the imbibition process is allowed to diffuse into the liquid, and this property is a 
part of that model for the dissolution constant of gas in pressurized liquid. It is only 
needed if the equation R_SHELL_SAT_GASN is used. Only one model is available for 
this property:

CONSTANT This model sets the Henry’s law temperature 
constant. It requires a single floating point input:

<float1> is the gas temperature constant

Examples

Porous Shell Gas Temperature Constant= CONSTANT 1.e10

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation. 

Porous Shell Gas Temperature Constant = {model_name} <floatlist>
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5.7.28  Porous Shell Henrys Law Constant 

5.7.28 Porous Shell Henrys Law Constant

Description/Usage

This card is used to set the partitionconstant in Henry’s law for the trapped gas in the 
porous_sat_closed equation. Basically, the gas trapped in closed pores during 
the imbibition process is allowed to diffuse into the liquid, and this property is a part of 
that model for the dissolution constant of gas in pressurized liquid. It is only needed if 
the equation R_SHELL_SAT_GASN is used. Please consult the references for a 
detailed explanation. Only one model is available for this property:

CONSTANT This model sets the Henry’s law constant. It requires 
a single floating point input:

<float1> is the Henry’s law constant

Examples

Porous Shell Gas Temperature Constant= CONSTANT 1.e10

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation. 

5.7.29

5.7.30

Porous Shell Henrys Law Constant = {model_name} <floatlist>
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5.7.30   
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Appendix 1: Goma Documentation Lists

The documents identified in this appendix constitute a current list of instructional, technical and 
reference material for Goma and the CRMPC Consortium of Companies.

Reference Manuals

GDM-1.3 GOMA 3.0 - A Full-Newton Finite Element Program for Free and Moving 
Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, 
and Chemical Species Transport: Developer’s Guide, Schunk, P. R., 
Sackinger, P. A., Rao, R. R., Subia, S. R., Baer, T. A., Labreche, D. A., 
Moffat, H. K., Chen, K. S., Hopkins, M. M. and Roach, R. A., October 2000. 
(no link here; see printed document)

GSR-01.3 Advanced Capabilities in GOMA 4.0 - Augmenting Conditions, Automatic 
Continuation, and Linear Stability Analysis, SAND Report, Labreche, D. A., 
Wilkes, E. D., Hopkins, M. M. and Sun, A. C., (In Prep).

SAND95-1559 Aztec User’s Guide Version 1.0, SAND95-1559, Hutchinson, S. A., Shadid, 
J. N. and Tuminaro, R. S., October 1995.

SAND96-2149 Drying in Deformable Partially-Saturated Porous Media: Sol-Gel Coatings, 
SAND96-2149, Cairncross, R. A., Schunk, P. R., Chen, K. S., Prakash, S. S., 
Samuel, J., Hurd, A. J. and Brinker, C. J., September 1996.

SAND97-2404 GOMA 2.0 - A Full-Newton Finite Element Program for Free and Moving 
Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, 
and Chemical Species Transport: User’s Guide, SAND97-2404, Schunk, P. 
R., Sackinger, P. A., Rao, R. R., Chen, K. S., Cairncross, R. A., Baer, T. A. 
and Labreche, D. A.

SAND2000-0207 Final Report on LDRD Project: A Phenomenological Model for 
Multicomponent Transport with Simultaneous Electrochemical Reactions in 
Concentrated Solutions, SAND2000-0207, Chen, K. S., Evans, G. H., 
Larson, R. S., Noble, D. R., and Houf, W. G., January 2000.

SAND2000-0807 TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-Structure 
Interaction Problems, SAND2000-0807, Schunk, P. R., May 2000.

SAND2000-2465 Advanced Capabilities in GOMA 3.0 - Augmenting Conditions, Automatic 
Continuation, and Linear Stability Analysis, SAND2000-2465, Gates, I. D., 
Labreche, D. A. and Hopkins, M. M., January, 2001.

SAND2001-2947 Verification and Validation of Encapsulation Flow Models in GOMA, 
Version 1.1, SAND2001-2947, Rao, R. R., Mondy, L. A., Schunk, P. R., 
Sackinger, P. A., Adolf, D. B., October 2001.

SAND2001-3512J Iterative Solvers and Preconditioners for Fully-coupled Finite Element 
Formulations of Incompressible Fluid Mechanics and Related Transport 
Problems, SAND2001-3512J, Schunk, P. R., Heroux, M. A., Rao, R. R., 
Baer, T. A., Subia, S. R. and Sun., A. C., March 2002. 
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SAND2002-0396 LOCA 1.0: Library of Continuation Algorithms: Theory and Implementation 
Manual, SAND2002-0396, Salinger, A. G., Bou-Rabee, N. M., Pawlowski, 
R. P., Wilkes, E. D., Burroughs, E. A., Lehoucq, R. B. and Romero, L. A., 
March 2002.

SAND2002-3204 GOMA 4.0 - A Full-Newton Finite Element Program for Free and Moving 
Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass, 
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R. Schunk, A. Kassinos and M. P. Kanouff (Unpublished DRAFT)

GTM-017.0 Parallel Plate Viscometer Verification of GOMA, March 8, 2000, E. R. Lindgren

GTM-018.0 Cone-and-Plate Viscometer Verification of GOMA, March 8, 2000, E. R. Lindgren

GTM-019.1 Assessment and Plan to Implement a VGI in GOMA, February 15, 2001, P.R. 
Schunk

GTM-020.0 In-Situ Characterization of Stress Development in Gelatin Film During Controlled 
Drying, M. Lu, S.-Y. Tam, P. R. Schunk and C. J. Brinker, March 2000.

GTM-021.0 Multiparameter continuation and linear stability analysis on highly deformable 
meshes in Goma, M. M. Hopkins, June 22, 2000

GTM-022.0 On the Verification of GOMA’s Capability for Modeling Transient Diffusion 
Processes Involving Dilute Solute Species and Slow Surface Chemical Reaction, K. 
S. Chen, March 31, 2000.
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Appendix 2: Using Goma in Library Mode

A new capability has been added to Goma which allows it to be linked with another finite element 
program. This mode allows Goma to be compiled as a set of subroutines, which can be called 
from another program. This will allow an external driver to use Goma and another code to solve a 
problem which can be suitably decoupled - so that Goma solves some of the governing equations 
and the other code solves the others. In this mode, there are pre-defined sets of variables or fields 
which each code is responsible for assembling and passing on to the other code through a 
common driver. This was designed so that Goma can be coupled with JAS3D; however, an 
attempt has been made to develop a general capability which can be used with other codes as well. 
This may minimize the need to implement new physics equations in Goma when other codes with 
the desired routines are available.

A major component of this implementation within the Goma source is the addition of an alternate 
version of the main program which is called “jas_main.c.” This version divides all tasks into three 
subroutines:

goma_init: Initializes code, parses input and broadcasts, do global array allocations

goma_solve: Calls Goma transient solver

goma_close: Cleans up

There is no "main" function, so there is no Goma executable as such. Instead, the source files are 
compiled and assembled into the standard libraries libgoma.a and libgomau.a. These libraries, 
along with those of the other program, are then used for linking the common driver, which may be 
in a language other than C.

Communication between the codes is handled through four 1D arrays which are passed into and 
out of Goma:

xnv_in: Values of nodal variables imported into Goma.

xev_in: Values of element variables imported into Goma.

xsoln:  Values of Goma solution variables exported from Goma.

xpost:  Values of Goma post processing variables exported from Goma.

These arrays can accommodate multiple variables, one right after the other: First x1[0..N], then 
x2[0..N], and so forth. where N is the number of dofs of that variable in the problem, which is the 
number of nodes except for xev_in where it is the number of elements. For Goma’s purposes, 
these are considered external fields. For this reason, the MAX_EXTERNAL_FIELD in the Goma 
makefile must be set high enough for the number of imported variables. The values passed in are 
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loaded into the efv->ext_fld_ndl_val[] arrays, and used within Goma just as if the values were 
read from an external file. Note that when mesh displacements are imported this way, Goma uses 
a flag efv->ev_porous_decouple which must be set to TRUE - this signals Goma to anneal its 
undisplaced mesh with the external displacements, so that the displaced nodal coordinates are 
used for Jacobians, etc. without having to turn on Goma’s mesh equations.

For the time being, it is assumed that all external fields are used as nodal variables within Goma, 
but may be element variables in the code that calculates them. Therefore, a routine has been added 
to interpolate imported element variables to the nodes. This is a very naive linear interpolation, 
but if this appears to be insufficient, a higher-order interpolation scheme can be easily 
implemented later. The interpolated values still end up in the efv->ext_fld_ndl_val[] array(s).

The fields Goma will be importing must be specified in the input deck. To do this, use the same 
"External Field" card as before, but instead of specifying a file name, place the string "IMPORT" 
for nodal values or "IMPORT_EV" for element variables which must be interpolated. PLEASE 
NOTE that the order of the External Field input cards will determine the order in which the values 
must be loaded into the import arrays. Also, all nodal field cards must be placed before any 
element field cards (otherwise, an EH will result).

There are two types of fields which can be exported from Goma: variables direct from the Goma 
solution vector x[], and scalar post-processing variables. The convention for these is similar.

To specify a solution variable for export, add the following card below the last External Field 
card:

Export Field = <N>

where <N> is the integer value assigned to the variable in the file rf_fem_const.h. There can be up 
to MAX_EXTERNAL_FIELD of these variables to be exported, and they will be loaded into the 
xsoln array in the order of the cards.

Exporting post-processing variables is a little more tricky. Initially, onlyscalar post-processing 
fields have been enabled to be specified for export, in order to simplify the allocation process. The 
export of vector fields (such as electric field) or tensor fields (such as stress) can be enabled in the 
future as the need arises. To do this, go to the relevant card in the Post Processing Specifications 
input section, and change the "yes" to "exp" to enable space for it to be allocated in the xpost 
array. Note, however, that the order in which these fields will be stored in that array (when there 
are two or more) is determined by the order in which they are processed in the function 
load_nodal_tkn(), which may differ from the order of the cards in the input deck.

The way the post-processing export scheme works is as follows: There is a new array "x_pp" of 
type double in solve_problem, which is allocated to size (NNODES * 
MAX_EXTERNAL_FIELD) when the LIBRARY_MODE flag is defined or left NULL 
otherwise. This array is passed into write_solution(), and in turn passed into 
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post_process_nodal(), so that once the post-processing fields are calculated, the requested values 
can be saved there - otherwise they would simply be dumped into the Exodus file and erased from 
memory. This is why there is now an extra argument to each of these functions. These saved 
values are then loaded into xpost before x_pp itself is deallocated.

The four import/export arrays are intended to be allocated within the driver code, using 
information obtained from parsing the Goma input deck and passed back to the driver upon 
exiting goma_init(). This information consists of the number of fields to be stored in each array, 
the number of elements, and the number of nodes. These are pointer arguments to the function 
goma_init().

It is anticipated that Goma will be used in library mode to solve transient problems. Therefore, a 
provision has been made for Goma to be called as a subroutine several times during a run, with a 
start and end time passed in on each step. Goma may take one or several steps to reach the 
requested end time on any given call. In any case, the actual end time is passed back to the driver, 
with a warning if the requested time was not reached (e.g. due to Goma step failure), so that the 
other code will know exactly how far to proceed to remain in sync with Goma. It is also possible 
to have the other code precede Goma at each step. This is handled in the driver code, which passes 
an argument to Goma indicating which code is called first.

To build the Goma libraries (libgoma.a and libgomau.a) in library mode, the makefile must be 
modified as follows: Replace main.c and main.o with jas_main.c and jas_main.o in the 
MAIN_SRC and MAIN_OBJ lists, and add the flag -DLIBRARY_MODE to the list of 
DEFINES. This compiler flag activates many sections of code which were added in developing 
this capability, and also invokes expanded argument lists for some functions which handle 
communication data and arrays. Note that since there is no program “main” in jas_main.c, it will 
not be possible to generate a stand-alone Goma executable in this way. This may cause an error 
message on some platforms (even though the libraries are created successfully); to remedy this, it 
is possible to create a new target in the makefile (e.g. “goma_jas”) in which the final command to 
create the Goma executable is omitted.

Once the libraries for both Goma and the other program are built, then the driver code can be 
compiled and linked with these libraries included to create a global executable. The driver 
currently available for Goma is ANIMAS, which links to Goma and JAS3D. To obtain this driver 
and specific build instructions, please contact Edward Wilkes (edwilke@sandia.gov).
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Symbols
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acous_reyn_stress 723
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acoustic wave equations 630
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adsorption or expulsion of heat 974, 975
advance/recession 282
advancing or receding 257
advection dominated problems 664, 671, 673, 
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advection equation 682
Advective Scaling 1015
advective terms 1015
advective transport 802
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affine deformation 945
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844, 857, 868, 871
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analytical Jacobian 43
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API 629
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APR_PLANE_TRAN 627, 630
APREPRO 27, 32
ARBITRARY 236, 237, 249, 251, 252, 259, 
261, 263, 287, 296, 302, 392, 396, 603, 654, 
760, 762, 782, 843, 853, 869
arbitrary functional form 365
arbitrary grid motion 233
AREA 807
area of the face 816
ARRHENIUS 994
Arrhenius form 909
ASCII file 37
ASCII results 38
attach 267
attraction condition 261, 298
augmenting condition 21, 364, 810
Augmenting Conditions Initial Guess 364
Augmenting Conditions Specifications 117
automated parameter continuation 21
automatic BC counting 631
automatic continuation 223, 294
automatic continuation sequences 309, 414, 
434, 437, 474, 477, 488, 517, 521, 535, 627, 
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629
automatic equation counting 749
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automatic time step control 73
automatically count 183
average absolute magnitude 98, 113
average gradient 101
AVERAGE_CONC 806
axisymmetric 652
azimuthal coordinate 652
Aztec 130, 131, 136, 137, 139, 141, 142, 149
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BAAIJENS_FLUID_SOLID 546
BAAIJENS_SOLID_FLUID 533, 546
Babuska-Brezzi condition 160
Backward Euler 72
Backward-Euler 969
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bar element 711, 713, 715, 718
BASIS 639
BASIS_FIRST 639
BASIS_RESEED 639
bending stiffness 412
bicgstab 120
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BILU 132
bilu 127
binary interaction parameters 1035
BINGHAM 165, 872, 888, 889, 890, 892, 893, 
896, 897, 934
Bingham-Carreau-Yasuda 873, 896, 897
binormal 384, 643
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biquadratic 653
BJacobi 128
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Blake-DeConinck 409, 572
block ILU preconditioner 143
BODY 175
body force 1037, 1047
boundary 291

boundary condition 35, 190, 192, 194, 196, 
198, 200, 213, 236, 237, 819
Boundary Condition Specifications 177
boundary conditions 228, 304, 635, 640, 644
boundary conditions on geometry 235
boundary integral 470
boundary position 233, 234
bounding gas phase 1018
bounds on the concentration 164
BOUSS 933, 934, 1021, 1026, 1036
BOUSS_JXB 1036
BOUSSINESQ 1036
Boussinesq 837, 1026
Boussinesq-Scriven 716, 719
Brinkman 941, 948, 955, 1052
building block 190, 192, 194, 198, 200
bulk 656, 658
bulk element 596, 599
bulk modulus 857
buoyancy 1043
buoyancy effects 1036
buoyancy term 1021
buoyant flows 1042
BUTLER_VOLMER 1060
Butler_Volmer_i 991
Butler_Volmer_j 990
Butler-Volmer 453, 524, 527, 528, 989
Butler-Volmer kinetics 448, 450, 522, 987

C
CA 265, 269, 270
CA_EDGE 266, 270, 273, 274, 279, 281, 284, 
324, 326
CA_EDGE_CURVE 272, 274, 278, 281
CA_EDGE_CURVE_INT 272, 274, 279, 280
CA_EDGE_INT 272, 273, 279, 281
CA_EDGE_OR_FIX 268, 275
CA_OR_FIX 266, 267, 275
calc 131
canonical element 653
CAP_ENDFORCE 378, 380, 382, 383, 919
CAP_ENDFORCE_SCALAR 379, 382
CAP_RECOIL_PRES 376, 596, 597, 599
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CAP_RECOIL_PRESS 375, 557
CAP_REPULSE 372, 376, 596, 597, 599
capacitance term 951
CAPILLARY 332, 370, 372, 376, 379, 383, 
596, 597, 599, 716, 719, 919
capillary forces 370, 381, 385, 399
capillary hydrodynamics 536, 542
Capillary Network Stress 957
capillary number 283, 406
capillary pressure 474, 478, 486, 942, 957, 963, 
977, 980, 1019
Capillary pressure in porous media 801
capillary stress 371, 377, 379, 383, 957
capillary stress jump 381, 920
capillary surface 272, 407
capillary term multiplier 371
CAPILLARY_SHEAR_VISC 399, 716, 719
capture 538
CARREAU 165, 872, 888, 889, 890, 892, 914, 
915
CARREAU_SUSPENSION 872, 888, 889, 
890, 892, 893
CARREAU_WLF 872, 888, 889, 890, 892, 
893, 895
Carreau-Yasuda 873, 874
carrier fluid 1040
CARTESIAN 363, 652
cartesian coordinates 168
cathodic 988
Cauchy stress tensor 851
Cauchy-Green tensor 845
cg 119
cgs 120
Charge Number 997, 1030
charged solid wall 345, 346
charged species 523, 983, 993, 1027
CHARGED_SPECIES_FLUX 807
checkGomaJac 45
Chemical Potential 1025
chemical potential 466, 1000, 1022
Chemkin 291, 389, 661, 835
CIRCLE 91, 111, 275
circles 200

circular arcs 171
class of problems 19
classical Gram-Schmidt 147
closed curve 275
closed flow problems 469
coefficient for slip velocity 330
Coefficient of repulsion 262
coefficient of volume expansion 933, 1021
colinear 236, 237
collocated 243
collocated boundary condition 191, 193, 195
color function 517, 535, 682
Command-line Arguments 150, 154
command-line arguments 26
command-line options 25, 27
component of velocity tangential 329
components 774, 775
components of the stress tensor 758
COMPOSITE 171
compressibility coefficient 951
COMPRESSIBLE 957
concentrated electrolyte solutions 939
concentrated solutions 983, 1002
concentration 433, 1006, 1007
Concentration contours 757
concentration dependency 1008
concentration gradient 1010
concentration in the external phase 253
concentration units 660
concentration-dependent 996
condensation 1056
condensation reaction 1052
condition number 143
condition of the matrix 160
conductive heat flux 928
Conductivity 929
cone-and-plate 1008
conf 44
confidence measure 44
conjugate materials 486
conjugate problems 318, 320, 402, 405, 408
conservation equations 945
conservation of mass 323, 395
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consistent mass matrix 968
CONST_PHASE_FUNCTION 837
constant contact angle 270, 273, 278, 280
constant heat flux 418
constant pressure 469
constant velocity 308
constitutive equation 303, 356, 393, 604, 843, 
847, 852, 857, 867, 872, 883, 906, 917, 918
Constitutive Equations 842
CONT_NORM_VEL 368
CONT_TANG_VEL 367
contact 539
contact angle 267, 275, 278, 282, 332, 386, 
387, 401, 404, 407, 541, 562, 564, 566, 568, 
570, 572, 575, 579, 584, 587, 589
contact angle convention 279
contact angles 265
contact line 267, 275, 282, 285, 326, 330, 342, 
387, 572, 575, 580, 591, 853, 869
contact line to release 275
contact line will advance or recede 267
contact lines 343, 351, 591
CONTACT_LINE 852, 869
contact-angle 265
CONTINOUS 396
continuation 77
continuation run 37
Continuation Specifications 117
continuation step 63
continuation/restart file 25
continue 37
continuity 367, 368, 679
continuity equation 160, 161, 352, 469, 470, 
845, 858
continuity of mass flux 395
CONTINUOUS 398, 485, 941
continuous 941
continuous fluid-phase pressure 485
continuous gas phase 397
continuous medium 395
convected frame of reference 315
convective 417, 553
convective flux 482, 816

convective heat flux 416
convective heat transfer coefficient 417, 553
Convective Lagrangian Velocity 476, 481, 484, 
786, 849
convective portion 807
convention for the units of equations 660
convergence 65, 106, 118, 124, 139, 140, 148, 
149, 154, 156, 229, 305, 910
convergence behavior 774, 775
convergence criterion 158
convergence rate 151, 166
convergence tolerance 149
conversion 1029
Coordinate System 650, 652
coordinates 311
copper-sulfidation kinetics 443
Correction 99
Coulombic coefficient of friction 287, 307
Courant limit 1014
Courant-like limit 69
COX_DIRICHLET 587
created vertex 168
criterion 98
Cross-stream shear rate 754
CURE 872, 888, 899, 900, 901
Cure A Exponent 875, 900
Cure B Exponent 875, 901
Cure Gel Point 875, 899
Cure model 875
Cure Species Number 877, 902
CURRENT 519, 807
current density 451, 453, 524, 526, 989, 1061, 
1063
Current Source 1060
current source 1050, 1063
current step size 74
CURRENT_BV 522
CURRENT_FICKIAN 807
CURRENT_HOR 524
CURRENT_ORR 526
CURRENT_USER 520
Curvature Diffusivity 996, 1008
curvature field 542
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curvature-driven flux term 982, 1001
curving surface 278
Cutoff time 424, 555
CYLINDRICAL 363, 652
cylindrical coordinates 168

D
damp oscillations 72
damping 154
DARCY 982, 994
Darcy 941
Darcy flow 482, 484
Darcy flow equations 966
Darcy flux 397
Darcy liquid phase pressure 486, 489
Darcy pressure 398
Darcy velocity 395, 960
Darcy velocity components 797, 798, 799
DARCY_CONTINUOUS 289, 395, 397
DARCY_FICKIAN 970, 982, 994
Darcy_Vel_g_0 797
Darcy_Vel_g_1 797
Darcy_Vel_g_2 797
Darcy_Vel_l_0 798, 800
Darcy_Vel_l_1 798, 800
Darcy_Vel_l_2 798, 800
Darcy’s law 959
DATA 811, 812, 814
DATA_SENS 818, 819, 821
database file 26
Debug 42, 48
debug 787
Default Database 835
Default Material Species Type 659
deformable porous media 478, 853, 858
deformable porous saturated media 942
deformable solids 786
deformation gradient tensor 349, 351, 845, 855, 
860, 919, 945
deformed configuration 786
deformed mesh coordinates 845
deformed state 315
degree of freedom 41

delta_t 65, 67, 69, 70, 76, 77, 264, 301
DENSE_POWER_LAW 852
Density 769, 837
density 254, 291, 362, 390, 396, 439, 476, 481, 
795, 884, 954, 976, 1037, 1040, 1047
density models 448
Density of liquid phase in porous media 796
Density of solvents in gas phase in porous me-
dia 794
density of solvents in the liquid phase 796
dependence on temperature 456
derivative 228, 229, 304, 305
derivative information 690
derivative of the velocity component 311
determinant of the strain tensor 762
dewetting 538
diagnostic information 41, 42
diagnostic output 130
diagonal entry 145
diagonal term 160
diagonal value 144
dielectric 377, 596, 597, 599
dielectrophoretic force 1038
diethanolamine-epoxy curing reaction 1056
different density 243
differentiable field 500, 502, 504, 505, 507, 
509, 510, 512, 514
differential equation 194, 664, 667, 669, 671, 
673, 676, 677, 679, 681, 685, 686, 691, 692, 
694, 695, 697, 699, 700, 702, 720, 722, 725, 
726
diffusing species 443
diffusion coefficient 971, 982
Diffusion Constitutive Equation 776, 778, 942, 
970, 981, 994, 1030
diffusion velocity 244, 247, 367, 368, 458
diffusive flux 352, 482, 484, 709, 711, 712, 816
diffusive mass flux 441
diffusive mass flux directions 776
Diffusive Mass Flux Vectors 777
diffusive portion 807
diffusive transport 802
Diffusivity 860, 994, 1006, 1007, 1008, 1009, 
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1010
diffusivity model 448
dilute electrolyte solutions 939, 983
direct factorization 118
direct solver 123
directional derivative 241
Dirichlet 293, 515
Dirichlet boundary condition 223, 308, 414, 
433, 436, 469, 473, 477, 488, 490, 491, 493, 
495, 496, 498, 500, 501, 503, 505, 506, 508, 
510, 511, 513, 516, 521, 600, 601, 626, 629
Dirichlet condition 187
Disable Viscosity Sensitivities 165
discontinuities 274
discontinuous 244, 293, 351, 368, 391, 458, 
460
discontinuous basis functions 755
discontinuous concentration 247
discontinuous degrees of freedom 664, 667, 
669, 674
discontinuous Galerkin 672, 675, 682, 686, 910
discontinuous interpolation 517
Discontinuous Jacobian Formulation 910
discontinuous velocity 243, 367
DISCONTINUOUS_VELO 351
displacement equations 678
DISSIPATION 828
dissipative stress tensor 753
DISSOLUTION 352
distance function 90, 98, 105, 110, 114
distinguishing condition 219, 226, 239, 240, 
242, 243, 245, 251, 253, 305, 306
distinguishing conditions 18, 229, 305, 654
DISTNG 219, 226, 230, 255
distributed memory 118
divergence of the tensor 760
DIVV 762
dom_decomp 125
drained network 957
driving force 370, 483
DX_RS 293, 655
DXDISTNG 226
DXDYDZ 223

DXDYDZ_RS 293
DXDYDZ_USER 224
DXYZDISTNG 226
DY_RS 293, 655
DYDISTNG 226
dynamic 285
dynamic contact angle 268
dynamic contact line 324, 327
dynamic contact lines 333, 339
dynamic wetting 331
DYNAMIC_LAGRANGIAN 259, 261, 263, 
287, 392, 655, 782, 843
DZ_RS 293, 655
DZDISTNG 226

E
E11 784
E12 784
E13 784
E22 784
E23 784
E33 784
EDGE 170, 172
edge 270, 273, 275
edge boundary 380
edge curve 278, 280
edges 640
EE 766
effective radius of convergence 155
effective stress principle 942, 957
effective velocities 803
efield 688, 1038
EHD_POLARIZATION 1036
Eigen Matrix Output 163
Eigen Wave Numbers 163
Eigensolver Specifications 163, 166
eigenvalue 163
eigenvector 163, 1012
Elapsed time 75
elastic solid 654
elasticity equations 295
elastic-viscous stress splitting 906
elastoviscoplastic model 846, 848
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elastoviscoplasticity 864, 865
elasto-viscoplasticity model 785
elec_surf_stress 378
Electric Field 764
electric field 345, 377, 596, 598, 689, 1038
Electric Field Magnitude 765
electric stress 376, 377, 596, 597, 599
Electrical Conductivity 377, 596, 597, 599, 
938, 1050
electrical current density 519, 520
Electrical Permittivity 940
electrical permittivity 377, 596, 597, 598, 599, 
940
electrical potential 983, 1002
Electrical Properties 937
electrical resistance 1051
electrically neutral 467
electrochemical 451, 453, 725, 726, 993, 1051, 
1053, 1057, 1061
electrochemical reactions 986
electrode 986
electrode surface 448, 452, 522, 524, 526
ELECTRODE_KINETICS 938, 987, 1049, 
1054, 1060
electrokinetic effects 345, 346
electrolyte solution 523, 991, 1063
electrolyte-species consumption 1057
electromagnetic 1043
ELECTRONEUTRALITY_FICKIAN 938
ELECTRONEUTRALITY_SM 938
ELECTROOSMOTIC 1054
electrostatic nature of a surface 467
element block number 318, 320, 402, 405, 408
Element Mapping 653
element order-map 752
element reordering scheme 752
element type 302, 392, 603
element variable 57, 1121
ELLIPSE 170
elliptical functions 200
embedded interface method 88
embedded interface tracking 80, 116, 343, 591
END OF BC 631

End of BC 183
END OF BODY 175
END OF DATA 811, 814
END OF DATA_SENS 818, 821
END OF EDGE 171, 172
END OF EQ 663, 749
END OF FACE 173, 175
END OF FLUX 805, 810
END OF FLUX_SENS 814, 817
END OF MAT 650, 750
END OF PARTICLES 822, 826
END OF ROT 634, 649
END OF VERTEX 168, 169
END OF VOLUME_INT 827, 830
END TABLE 213
endpoint 378, 382
energy 664
energy conduction paths 779
Energy Conduction Vectors 779, 780
Energy Fluxlines 780
Energy Weight Function 936
ENORM 690
enorm 689
ENORM field variable 766, 767
Enormsq Field 766, 768
Enormsq Field Norm 767
ENTHALPY 931, 935, 936, 1017
enthalpy 489
EPOXY 872, 893, 899, 900, 901, 1049, 1052, 
1054
epoxy curing reaction 1050
Epoxy model 875
EPOXY_DEA 1054
equal-order interpolation 160, 470
equates stresses 316
equation components 635, 645
equations 662
equations of elasticity 782, 783, 784
equations of state 62
equilibrium 464
equilibrium-based mass transfer 442
error norm 73
Error ZZ heat flux 789



1132 OFFICIAL USE ONLY Revised: 6/12/13

  OFFICIAL USE ONLY 

Error ZZ pressure 790
Error ZZ velocity 788
Eulerian 18
evaporating metal alloy 375
EVAPORATION 352
evaporation energy loss 426
evaporation rate of molten metal 455
evaporation/condensation rate 974, 975
evel set interface tracking 79
EVP Yield Stress 848, 864, 865
EVP_HYPER 847
EVSS_F 906
EVSS_G 906
EVSS_L 906
EX 765
Exodus 91, 111
EXODUS II 24, 25, 34, 67
EXP_DECAY 1009
EXPLICIT 910
explicit 1014
EXPONENTIAL 198, 852
exponential distribution 426
export file 176
Exported geometry file 176
extent of reaction 900, 1052, 1056
external boundary 1018
External Field 56, 59, 60, 1122
external fields 1121
external gas 478
external gas phase 428
external interface 429
EY 765
EZ 765

F
F 516
F1F2 F3 F4 F5 534
FACE 173, 175
FACETS 103
fapply_ST 380
fapply_ST_scalar 383
Faraday’s law 522
FEM file 34, 35, 91, 111

FeS2 988
Fick’s first law 939
Fick’s law 995, 996
FICKIAN 256, 439, 776, 778, 981, 994
Fickian diffusion 970
Fickian diffusive flux 397
Fickian Diffusivity 996, 1009
FICKIAN_CHARGED 982, 997, 1030, 1060
field variables 48, 49, 781, 1064, 1065
File Specifications 34
FILL 757, 828, 837, 1036
fill 516, 681, 837
Fill contours 756
FILL dependent viscosity 884
Fill Subcycle 78
Fill Weight Function 79, 106
FILL_CA 343, 386, 564, 591
FILL_INLET 517
FILLED_EPOXY 872, 888, 893, 898, 899, 
900, 901, 902, 903
Filter Concentration 164
finite element discretization 34
finite-rate kinetics 462, 464
First Invariant of Strain 759
first tangent vector 637
FIX 187
fixed time step size 65
fixed-width strip 96
FLAT 975, 1018
flat surfaces 337
FLORY 442, 1029, 1031, 1032, 1033
Flory-Huggins 995, 1028, 1032, 1033
Flory-Huggins model 461
Flory-Huggins parameters 1035
flow field 751
flow through porous media 956
FLOW_GRADV 358
FLOW_HYDROSTATIC 357, 361, 365
FLOW_PRESS_USER 360
FLOW_PRESSURE 354, 357, 361, 364, 365, 
545
FLOW_STRESSNOBC 356, 359
FlowingLiquid Viscosity 942, 955
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FLOWRATE 363
flows of suspensions 693, 694
fluid acceleration 781
fluid and solid materials 392, 603
fluid and solid substrate 343
fluid material 349
fluid momentum balance 530, 774
fluid momentum equation 316, 318, 322, 355, 
407, 412, 536, 543, 544, 548, 574, 576, 581, 
585
fluid momentum equations 313, 392, 546, 603, 
640, 645, 689, 723, 804
fluid momentum source term 1036
fluid phase 349
fluid phase stress tensor 303
fluid velocity 315
fluid velocity components 751
fluid/solid contact 372
fluid/solid interface 348, 683
fluid/solid interfaces 316
FLUID_SOLID 288, 315, 392
FLUID_SOLID_RS 394, 655
fluid-flow time steps 78
fluid-like 896, 897
fluid-solid stress balance 546
fluid-structure interaction 302, 392, 529, 602, 
851
FLUX 806, 810
flux 257, 447
flux continuity 672, 675
flux of gas-phase solvent 480
flux of liquid-phase solvent 475
flux of solvent 478
flux quantity 369
FLUX_SENS 814, 815, 817
FOAM 837, 840, 1054, 1059
foci 171
focus 171
FORCE 258, 261, 264, 296
Force Initial Level Set Renormalization 107
force per unit area 258, 260, 261, 263, 287, 295, 
297, 298, 300, 307
FORCE_NORMAL 806

FORCE_RS 259, 295, 298, 301, 655
FORCE_TANGENT1 806
FORCE_TANGENT2 806
FORCE_USER 261, 263, 300
FORCE_USER_RS 264, 298, 300
force_user_surf 263, 300
FORCE_X 806
FORCE_Y 806
FORCE_Z 806
FORWARD 170
Forward Euler 72
Fourier conductive heat flux 929
frame of reference 19, 851
free boundary 18
free outflow boundary condition 356
free volume theory 995, 999
FREE_VOL 994, 999
free-surface 245, 270, 274, 280, 284, 324, 327, 
370, 376, 378, 380, 382, 399, 595, 597, 598
free-surface boundary 265
free-surfaces 372
freezing of water 975
frequency 721, 723, 724
FRICTION 287, 307
FRICTION_RS 287, 307
front 119, 123
front tracking 18
Frontal Solver Jacobians 46
fuel cell 528, 1050, 1062
fuel cells 452, 524, 526
fugacity 461
FULL 446, 910
fully-developed inflow/outflow 354
FVP11 785
FVP12 785
FVP21 785
FVP22 785
FVP33 785

G
G11 500
G12 501
G13 503



1134 OFFICIAL USE ONLY Revised: 6/12/13

  OFFICIAL USE ONLY 

G21 505
G22 506
G23 508
G31 510
G32 511
G33 513
gain 322
GALERKIN 907, 966, 985
Galerkin 79, 907, 936, 985
Galerkin continuity equation 160
Galerkin integration 243
Galerkin Least square 159
Galerkin time integration 1013
Galerkin weight 664, 667, 669, 671, 673, 676, 
677, 679, 681, 683, 685, 687, 689, 691, 692, 
694, 695, 697, 699, 700, 702, 705, 707, 708, 
711, 712, 713, 715, 717, 718, 720, 722, 723, 
725, 727
Galerkin weight function 160
gas and liquid phase 483
gas and liquid phases 475, 480
gas phase 458, 460, 462, 970
Gas phase Darcy velocity in porous media 797
gas phase density 977
gas phase pressure 801
gas phase velocity 397
gas phase viscosity 960
gas pressure 942
gas vapor 484, 972
gas velocity 397
GAS_DIFFUSION 446
gas-phase concentration 977, 979
gas-phase density 979
gas-phase pore pressure 477
gas-phase pressure 801
gas-phase pressure gradients 797
gas-phase relative permeability 960
gauge pressure 980
Gaussian elimination 119
Gauss-Seidel preconditioner 125
GD_CIRC 200
GD_CONST 190
GD_LINEAR 192, 197

GD_PARAB 194, 197
GD_POLYN 196
GD_TABLE 202, 213, 266
GD_TIME 198
General Specifications 36, 40
GENERALIZED 994
generalized Newtonian 356
GENERALIZED_FICKIAN 982, 994
GENERALIZED_FREE_VOL 994, 1000
generalized-Fick’s law 983
GEOM 229
geometric boundary condition 228, 304
geometric features 275
geometrical solid 245
geometry 167, 168, 176, 233, 265
geometry normal components 266
Geometry Specifications 94, 166, 169, 171, 
172, 173, 175
GEOMXYZ 228
Gibb’s inequality condition 267
GIESEKUS 904, 914, 915, 916
glass transition 999
global coordinates 228, 229, 304, 305
global matrix formats 123
global nonlinear residual vector 156
global time integration 1013
gmres 119, 146, 147
Goma 15
GOMA_MAT 835
grad_v_dot_n1, grad_v_dot_n2, 
grad_v_dot_n3 717
gradient 98, 114, 688, 764, 765
gradients of velocity 470
Gravitational 1036
gravitational acceleration 925, 1038, 1039
gravitational forces 361, 1046
Gravity-based Diffusivity 996, 1010
Grid Peclet Number in porous media 802
GUESS file 36, 37, 38, 364

H
hard set 223, 309, 414, 434, 437, 474, 477, 488, 
517, 521, 535, 627, 629
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Heat Capacity 931, 935, 936
heat capacity 923, 1017
heat flux 417, 551, 553, 554, 557, 558, 559
Heat Flux Model 928
heat flux model 421
heat of vaporization 430
Heat Source 1049
heat transfer coefficient 416, 417, 418, 553
HEAT_FLUX 806
heat-transfer coefficient 430
Helmholtz-Smulkowski relation 346
hemispherical emissivity 418
HERSCHEL_BULKLEY 872, 888, 896, 927
Herschel_Bulkley 880
hierarchy of precedence 648
high capillary numbers 241
high curvature menisci 1019
High Rate Viscosity 873, 889
high-capillary number 243
highly shear-thinning models 165
hindered settling function 1011
Hoffman correlation 405
HOFFMAN_DIRICHLET 589
HOOKEAN_PSTRAIN 844, 867
HOOKEAN_PSTRESS 844
Hunting Specifications 117
Huygens 99, 103, 115
Huygens_Constrained 99, 103, 104, 115
hydraulic resistance 955
HYDRO 256, 439, 994, 1000, 1006, 1007, 
1008, 1009, 1010, 1040
HYDRODYNAMIC 448, 776, 778, 982, 1040
hydrodynamic pressure 472, 486, 755, 1026
hydrogen-oxidation reaction 524, 528
hydrostatic pressure 361, 957
HYDROSTATIC_SYMM 353
hyperelastic 847

I
I/O structure 25
ICC 132
icc 127
ideal solution phases 464

IDEAL_GAS 837, 1018
IDEAL_SOLUTION 1025
IE 759
Ignore Level Set Dependencies 106
IIE 760
IIIE 761
ill-conditioned matrix 161
ILU 132
ilu 127
ILUT 137, 141
ilut 126
impenetrability constraint 318, 321
implementation 249, 250
implicit 1014
implicit in the mixture 1032, 1033
IMPORT 57, 1122
IMPORT_EV 57, 1122
impregnation problems 951
inactive 1048
include 32
INCOMP_3D 844, 867
INCOMP_PSTRAIN 844, 858, 867
INCOMP_PSTRESS 844
incompressible 654, 844, 856, 858, 867
incompressible flow simulations 470
incompressible fluid 1041
incompressible fluids 751
Inertia Coefficient 942, 956
inertial term 956
inflow 379, 383
inflow and outflow boundaries 471
initial condition 144
Initial Guess 36, 47, 50, 91, 111, 187, 364
initial guess 37
initial guess file 1065
initial residual vector 136
initial solution time 77
initial solution vector 39
initial surfaces 105
Initial Time 77
initial time step 65
initial values 1065
initialization 47
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Initialize 1064
inlet boundary 517
inner iteration 158
input 25
input files 26
input mesh 35
input parser 32
integrated condition 313
integrated constraint 274
integrated flux 815
integrated flux sensitivity 816
integrated fluxes 806
integration points 274
interface 247, 302, 315, 322, 349, 351, 389, 
392, 395, 397, 436, 447, 603
interface between two fluids 243
interface tracking 517, 518, 682
interfaces 664, 667, 669, 674
Interfacial Area 987, 989
interfacial mass flux 462, 465
interfacial surface tension 919
interfacial velocity 389
intermediate results 38
Intermediate solutions 164
internal discontinuous boundary 323
internal interface 432, 1018
internal interfaces 462, 464
interphase 436, 458
interphase mass, heat, and momentum transfer 
322, 351
interphase species flux continuity 247
interpolation 56, 61, 208, 211
interpolation function 664, 667, 669, 671, 673, 
676, 677, 679, 681, 683, 685, 687, 688, 689, 
691, 692, 694, 695, 697, 699, 700, 702, 705, 
707, 708, 711, 712, 713, 715, 717, 718, 720, 
722, 723, 725, 727
interpolation functions 323, 352, 436, 462, 465
intersection 245, 270, 273, 280
interstitial space 945
Interval in time steps 75
intervals of time 75
inverse of the fourth power 261

Irreducible air saturation 961
irreducible air saturation 965
Irreducible water saturation 961
irreducible water saturation 965
IS_EQUIL_PSEUDORXN 292, 390, 464, 660, 
1023, 1024
isoparametric 653
isosurface 106
isotherm 219, 226
iterative linear matrix solution 136
iterative linear solver algorithms 148
iterative solution 139, 140, 158
iterative solver 118, 123
Iterative techniques 124

J
Jacobi 124, 128
Jacobian 45, 165
Jacobian entries 313
Jacobian formation 151
Jacobian matrix 106, 149
jacobian matrix 163
Jacobian Reform Time Stride 150, 151, 152
Jacobian reformation 150, 152
JOULE 1049
Joule heating 1051

K
KELVIN 975, 1018
KIN_CHEM 257
KIN_DISPLACEMENT 249, 250, 251, 303
KIN_DISPLACEMENT_COLLOC 250, 252
KIN_DISPLACEMENT_PETROV 249, 252
KIN_LEAK 253, 258, 370, 430, 438, 443, 448
kind of matrix overlap 135
KINEMATIC 239, 241, 243, 251, 252, 318, 
326, 332, 372, 377, 389, 639
kinematic 253, 529, 549, 683
kinematic condition 409
KINEMATIC_COLLOC 239, 242, 243, 250
KINEMATIC_DISC 243, 322, 353
KINEMATIC_DISPLACEMENT 655
KINEMATIC_EDGE 245



Revised: 6/12/13 1137

   

KINEMATIC_PETROV 239, 240, 243, 249, 
319
KINEMATIC_SPECIES 247, 352, 437
kinetic model of current density 989
kinetic models 444
KOZENY_CARMEN 946

L
L1 norm 151
L2 convergence tolerance 156
L2 norm 156, 762
lagr_mult_1, lagr_mult_2, lagr_mult_3 683
Lagrange multiplier 100, 115, 364, 529, 534, 
549, 655
LAGRANGE_NO_SLIP 529, 534
LAGRANGIAN 228, 229, 236, 237, 259, 261, 
263, 264, 287, 315, 349, 392, 396, 654, 760, 
782, 783, 785, 786, 843, 847, 851, 858, 859
Lagrangian 18, 942
Lagrangian Convection 786
Lagrangian mesh 786
Lagrangian mesh region 258, 260, 287
Lame coefficient 844, 852
Lame LAMBDA 855, 857
Lame Lambda 844, 864, 866, 927
Lame MU 852, 857, 927
Lame Mu 844, 864, 866
Langrange multiplier 683
large scale deformation 655
large, chain-like polymers 461
laser flux distribution 426
laser welding 424, 557, 558
latent heat 429, 432
Latent Heat Fusion 1016, 1017
Latent heat of fusion 932
Latent Heat Vaporization 1016, 1017
LATENT_HEAT 429, 432
LATENT_HEAT_INTERNAL 430, 432
LBB stability criterion 755
length scale 329
level of shear strain 760
level set 97, 106, 109, 116, 343, 395, 516, 530, 
535, 544, 546, 547, 551, 553, 557, 558, 560, 

572, 575, 579, 591, 682, 685, 756, 839, 884, 
906, 920, 923, 924, 926, 1039
Level Set Adaptive Integration 84
Level Set Adaptive Order 85, 86
Level Set Contact Extension 104
Level Set Control Width 96, 98
level set distance function 79
level set function 99, 102
level set gradient 96
Level Set Initialization Method 89, 90, 105, 
110
level set interface 98, 114, 536, 538, 541, 542, 
838
Level Set Interface Tracking 80, 108, 386, 562, 
564, 565, 568, 570, 572, 574, 577, 579, 581, 
584, 587, 589
level set interface tracking 582, 585
Level Set Length Scale 88, 96, 580, 839, 885, 
921, 923, 925, 926
level set length scale 582
Level Set Periodic Planes 81, 82, 83, 84, 85, 86, 
94
Level Set PSPP Filtering 87, 97
level set PSPP filtering 87
Level Set Reconstruction Method 103
Level Set Renormalization Frequency 101
Level Set Renormalization Method 99, 103, 
104
Level Set Renormalization Tolerance 96, 98, 
100, 101, 114
Level Set Semi_Lagrange 81, 82, 83, 84, 85, 86
Level Set Slave Surface 105
Level Set Subgrid Integration Depth 82
Level Set Timestep Control 87, 97
LEVEL_SET 837, 925, 1036
level-set 406, 407
LIBRARY_MODE 57, 1122
line tangent 643
LINEAR 198, 208, 211
linear function 192
linear iteration status 149
linear matrix system 118, 124, 128, 129, 158
linear solver iteration 130
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linear solvers 123
linear spatial dependencies 365
Linear Stability 162
linear stability analysis 21, 162
linear system 144
LINEAR_WETTING_SIC 581
liquid activity 1032, 1033, 1034
Liquid Constitutive Equation 165, 872, 887, 
888, 890, 892, 893, 895, 896, 897, 898, 899, 
900, 901, 902, 903, 934, 948
liquid constitutive models 448
liquid phase 315, 458, 460, 462, 957
Liquid phase compressibility 951, 954
Liquid phase Darcy velocity in porous media 
798, 799
liquid phase densities 395
liquid phase pore pressure 473
liquid phase pressure 801, 942
liquid phase pressure gradients 798, 799
Liquid phase reference pressure 951, 952, 954
liquid phase solvent 481, 483, 972
Liquid phase viscosity 961
liquid pressure 484, 942
liquid saturation 963
liquid solvent 484
liquid viscosity 960
liquidus 220, 935
Liquidus Temperature 559, 935
liquidus temperature 932
LIS 149, 158
LiSi 988
list of equations 749
list of materials 750
LOCA 21
local capillary number 285
local contact angle 285
local mass conservation 762
local solvent concentration 655
local velocity field 105
Lorentz 1038, 1043
Lorentz scaling factor 1038
Low Rate Viscosity 872, 873, 886
lower bound 145

ls 125
LS_ADC 538
LS_CA_H 541
LS_CAP_CURVE 541
LS_CAPILLARY 536, 542, 546, 552, 561
LS_FLOW_PRESSURE 544
LS_FLUID_SOLID_CONTACT 546
LS_INLET 547
LS_NO_SLIP 549
LS_Q 551
LS_Q_RAD 553
LS_QLASER 554
LS_RECOIL_PRESSURE 557
LS_VAPOR/LS_QVAPOR 558
LS_YFLUX 560
LU 137
lu 119, 125, 126
lumped parameter 1018

M
MASS 460
mass average velocity 244, 323
mass averaged velocity 351, 464
mass balance errors 1014
mass balance on boundaries 257
mass concentration 435
mass conservation 393, 604
Mass conservation problems 469
Mass Diffusion Vectors 776, 777, 778
mass exchange 244, 247
mass flux 438, 454, 476, 480, 546, 560, 1001, 
1040
mass flux transfer model 455
mass flux vector 982
Mass Fluxlines 778
mass fraction 459, 898, 1027, 1028, 1029, 
1031, 1032, 1033
mass loss/gain rate 239, 240, 242, 245
mass lumping 967
mass matrix 163, 655, 678, 968
mass matrix term 666
Mass Source 1048
mass transfer 253, 369
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mass transfer balance 370
mass transfer coefficient 253, 369, 429, 438, 
483, 560
mass transport 981, 1000
mass unit 660
mass_flux_user_surf 454
mass-diffusion pathlines 778
MAT 650, 651
material block 1064
material coordinates 845
material database 835
material deformation gradient tensor 851
material file 372, 671, 673, 695, 697, 699, 701
material files 25
Material is nondilute 657
material parameter 819
material property 26
material section 651, 662
material surface 243
Matrix Absolute Threshold 143, 144, 145
Matrix auxiliary vector 136
Matrix BILU Threshold 143
Matrix drop tolerance 125, 126, 137, 141
Matrix factorization overlap 125, 133
Matrix factorization reuse 131
Matrix factorization save 132, 140
Matrix graph fillin 127, 132, 142
Matrix ILUT fill factor 126, 137, 141
Matrix output type 130
Matrix overlap type 135
Matrix polynomial order 124, 138
Matrix Relative Threshold 143, 144, 145
Matrix reorder 139
Matrix residual norm type 129, 158
Matrix RILU relax factor 127, 142
Matrix scaling 128
matrix solver packages 118
Matrix storage format 123
Matrix subdomain solver 125, 126, 143
MAX_EXTERNAL_FIELD 58
Maximum Linear Solve Iterations 148, 158
maximum number of iterations 148, 149
Maximum number of time steps 66

maximum packing 1010
Maximum time 67
Maximum time step 69, 70, 71
Mean shear rate 754
Mechanical Properties 842
mechanical property 769
Media Type 393, 396, 473, 475, 477, 480, 481, 
604, 696, 697, 793, 796, 797, 798, 800, 801, 
847, 941, 944, 947, 951, 955, 959, 960, 963, 
966, 968, 971, 975, 979, 1018
meniscus 268
meniscus position 920
mesh 265, 676
mesh displacements 63, 223, 1122
mesh equations 231, 233, 234, 1122
mesh file 34
Mesh Motion 228, 229, 234, 235, 236, 237, 
259, 261, 263, 287, 295, 297, 299, 300, 302, 
304, 305, 392, 396, 603, 650, 654, 760, 782, 
783, 785, 786, 843, 851, 853, 859, 867, 869, 
871, 943
mesh motion 219, 226, 243, 251, 676, 762, 787, 
847, 857, 867
mesh motion equations 239, 240, 245, 295
mesh residual momentum equations 237, 238
Mesh Strain Tensor 784
Mesh Stress Tensor 782, 783
mesh velocity 781
microstructural 941
Microstructure Properties 477, 696, 941
Minimum time step 68
Miscrostructure Properties 697
mixed measure 157
Mobility Parameter 916
modified Gram-Schmidt 147
modified Newton iteration 150
Modified Newton Tolerance 151, 152
modified sparse row 118, 123
MODIFIED_WLF 909
molar concentration of species 983
molar flux 443, 448, 450, 452, 983
Molar Volume 1029
molar volume 992
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mole fraction 459, 1027, 1029, 1031, 1032, 
1033
molecular forces 539
Molecular Weight 998, 999, 1027, 1029
Molecular weight 444, 458
molecular weight 291, 390, 459, 461, 464, 467, 
660, 795, 976, 979, 1032
moles 660
mom_solid 677
MOMENTUM 333
momentum 667, 924
momentum equation 309, 340, 371, 376, 378, 
387, 389, 653, 774, 787, 906, 913, 1026
momentum residual 161
motion of the stress-free state 349
movement of nodes 654
moving boundary 18
moving contact lines 329
Moving Mesh Residuals 775
moving web 282
MOVING_CA 387
MOVING_PLANE 234
MSR 46, 118, 128, 133
MU 768, 771
multicomponent 244, 367, 368
multicomponent diffusion 970, 984, 999
multicomponent transport 984, 1027
multicomponent two-phase flows 247, 323
multimode viscoelastic equations 662
multiphase flow 1018
multiplicative time modulation 198
multipliers 664, 667, 669, 671, 673, 676, 677, 
679, 681, 685, 687, 689, 691, 695, 697, 699, 
700, 702, 720, 722, 723, 725, 727
multivalued 247, 351
mushy zones 975
mutual-diffusivities 983

N
n+1 species 1031, 1032, 1033
n_dot_curl_v 718
N1 787
N2 787

N3 787
natural convective force 1026
Navier slip relation 339
Navier Stokes Residuals 774
Navier’s slip condition 593
Navier’s slip relation 563, 567, 571, 573, 576, 
580, 590
Navier-Stokes equation 753, 755, 872, 942, 
1036
Navier-Stokes slip condition 582
Navier-Stokes Source 689, 837, 933, 934, 
1021, 1026, 1036
negative force 261, 298
negatively charged 467
neo-Hookean 843, 867
network stress 965
Neumann 124
neutral species 983, 1002
Newmark-Beta time integration 655
Newton correction factor 150, 154
Newton iteration 38, 118, 158, 164, 305, 774, 
775
Newton nonlinear iteration loop 149
Newton’s method 155, 156
NEWTONIAN 753, 872
Newtonian models 364, 872
NO_SLIP 315, 393, 604
NO_SLIP_RS 315
nodal field variables 56, 60
nodal variable 57, 187, 190, 192, 194, 196, 
1121
Nodeset 91, 111
NON_VOLATILE 975
non-condensable 459
non-condensable gas 1018
Non-condensable Molecular Weight 1031
nondilute cases 660
nondilute mixture 351
nonideal gases 1018
nonlinear residual 157
nonlinear stress terms 916, 917, 918
non-neutrally buoyant particles 982, 1001
non-Newtonian fluids 768
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non-physical values 164
non-volatile 459
Non-volatile Molar Volume 1032
Non-volatile Specific Volume 1033
NOPOLYMER 904
norm 766, 767
norm of the electric field 689
NORM_FORCE 260, 264
NORM_FORCE_RS 261, 297, 301
Normal and Tangent Vectors 787
normal component 237, 238, 242, 243, 351, 
389
normal component of the mesh velocity 291
normal contact condition 261, 298
normal direction 261, 298
normal mode expansion 162
normal to a surface 317
normal traction 302, 392, 602
normal vector 237, 260, 346, 411, 413
normal velocity 369
normal velocity component 324, 327
normal velocity gradient 358
Normalized Correction Tolerance 157
Normalized Residual Tolerance 156, 157
normal-tangent vector 260, 287, 297, 307
normal-tangential 233, 235, 239, 242, 243, 251
normal-tangential form 220, 229, 305
noscaled 129
no-slip condition 315
Number of BC 183, 631
Number of bulk species 650, 656, 658, 659, 
673
Number of bulk species equations 658
Number of chemical reactions 986
Number of EQ 650, 662, 749
number of equations 662
Number of Jacobian File Dumps 45
Number of Materials 650, 750
Number of Newton Iterations 149, 151, 152, 
156
Number of processors 40
Number of Species 981
number of species 656, 658

number of species equations 656, 657, 658
Number of viscoelastic modes 661, 663
numerical Jacobian 43
Numerical Methods 22

O
off element Jacobian 910
off-processor unknowns 134
OLDROYDB 904, 914, 915
one 47
one phase 942
Orthogonalization 147
orthogonalization directions 146
outflow 379, 383
outflow boundaries 380
outflow edge boundary 384
Output EXODUS II 768, 770, 771, 772, 773
Output EXODUS II file 35, 38, 75
Output Level 41
outward facing normal 384
outward facing surface normal vector 237, 238
outward pointing normal 260, 262
outward velocity component 317, 321
outward-pointing normal 270, 282
Overlap Quadrature Points 86
overlapping subdomain solver results 135
override 50, 1065
overset grid 109, 529, 533, 549, 683
overset mesh 546
OVERSET_FLUID_SOLID/
BAAIJENS_FLUID_SOLID 531
OVERSET_SOLID_FLUID/
BAAIJENS_SOLID_FLUID 533
oxygen-reduction reaction 453, 526

P
P 469
P_LIQ_USER 487
packing of particles 948
paired float values 213
PARABOLA 170
parallel computations 133
parallel-plate 1008
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partial factorization 137
partial pressure 979
partially saturated 396, 697, 951, 959
partially saturated flow 697, 802, 966
partially saturated media 474, 478
partially saturated porous media 792, 801, 960, 
963, 973, 974
partially saturated porous medium 957
PARTIALLY_WETTING 957
PARTICLE 822, 823, 826
particle phase 1040
particle trajectory 823
Particle Velocity Divergence 763
particle-particle interactions 1011
particulate phase volume fraction 983
paths of energy flow 780
Peclet 936
Peclet number 802, 985
PENETRATION 289
per mass basis 441, 454, 456
per mole basis 441, 456
Permeability 942, 945, 946, 961
permeability 798, 799, 800, 943, 959, 964
permeability function 945
permittivity 345, 346
perturbed 44
Petrov-Galerkin 911, 936, 985
Petrov-Galerkin weight function 664, 671, 673, 
685, 695, 697, 699, 701
PF_CAPILLARY 536
Phan-Thien Tanner model 917, 918
phase change 247
phase equilibrium relation 461
phase field 684
phase function 109, 113, 115, 534, 536, 549, 
839, 1039
Phase Function Renormalization Method 115
Phase Function Renormalization Tolerance 
113
Phase Function Slave Surface 109
phase transition 243
PHASE_FUNCTION 839, 1036
Phillip’s model 768, 948

Phillips diffusive-flux model 448
Physical Properties 836
physics capabilities 19
planar surface 231, 233, 234, 261, 298
PLANE 91, 111, 173, 230, 231, 233, 234, 238, 
266, 295, 639
plane stress 844
PLANEX 231, 238
PLANEXYZ 231
PLANEY 231
PLANEZ 231
plastic deformation 847, 863, 865
plastic flow 847
Plastic Viscosity 848, 863
plastic viscosity 848, 866
Plasticity 856
Plasticity Equation 847, 863, 865
plasticity model 847
pmomentum 669
point collocated condition 219, 321
point collocated constraint 325
POINTS 103
POLY 173
POLY_VERT 173
Polymer Constitutive Equation 758, 904, 914, 
915, 916, 917, 918
polymer relaxation times 908
Polymer Shift Function 908
polymer stress equation 907, 908, 910
Polymer Stress Formulation 905, 906
Polymer Time Constant 905, 915
Polymer Viscosity 905, 914, 915
polymer viscosity 913
Polymer Weight Function 905, 907, 911
Polymer Weighting 907, 911
polymerizing system 900
polymer-solvent 1028
polymer-solvent mixtures 460
polynomial function 196
polynomial preconditioning 138
POR_ENERGY 489
Por_Grid_Peclet 802
pore liquid 957



Revised: 6/12/13 1143

   

pore radius 947
pore sizes 947
PORE_LIQ_FLUX 807
pores 942
pore-size distribution 948
poroelastic problems 854
Porosity 942, 944, 992
porosity 476, 481, 853, 858, 943, 947, 952, 995
POROUS 994
porous 941
Porous Diffusion Constitutive Equation 970
porous energy equation 975
porous enthalpy equation 973
porous flow equation 942
Porous Gas Constants 477, 979
Porous Gas Diffusivity 971
porous gas phase pressure 699
porous impregnation 486
Porous Latent Heat Fusion 974
Porous Latent Heat Vaporization 973
porous liquid phase pressure 697
porous liquid pressure 474, 477
Porous Liquid Volume Expansion 978
Porous Mass Lumping 968
porous media 488, 798, 799, 803, 946, 951, 
955, 959, 1018
porous medium 395, 397, 427, 428, 478, 485, 
798, 802, 828, 942, 945, 970, 971, 982, 995
porous phase 397
Porous Saturation 792, 794, 796
porous skeleton 945
Porous Vapor Pressure 795, 975
Porous Weight Function 802, 966
POROUS_BRINKMAN 942, 944, 955, 956
POROUS_CONV 481
porous_deform 700, 942, 945, 946, 957
porous_energy 702
POROUS_GAS 478
porous_gas 699
POROUS_GAS_FLUX_CONST 480
POROUS_GAS_PRES 477
POROUS_KIN 290
porous_liq 696, 697, 942

POROUS_LIQ_FLUX_CONST 475
POROUS_LIQ_PRES 473
POROUS_PART_SAT 398, 963, 966
POROUS_PRESSURE 485
porous_sat 695, 942
POROUS_SATURATED 396, 473, 475, 485, 
487, 488, 697, 793, 796, 941, 944
POROUS_TEMPERATURE 488
POROUS_TWO_PHASE 396, 398, 473, 475, 
477, 480, 481, 483, 485, 487, 488, 696, 697, 
793, 796, 797, 801, 942, 944, 951, 959, 960, 
963, 966, 968, 971, 973, 974, 975, 979
POROUS_UNSAT 963, 966
porous_unsat 696, 697
POROUS_UNSATURATED 396, 473, 474, 
475, 481, 483, 485, 487, 488, 697, 793, 796, 
801, 941, 944, 951, 968, 971, 973, 974, 975, 
979, 1018
porous-media flow 951
Portability 23
positively charged 467
post processing 806, 827, 1121
Post Processing Data 811, 814
Post Processing Data Sensitivities 818, 821
Post Processing Flux Sensitivities 814, 817
Post Processing Fluxes 805, 810
Post Processing Fluxes and Data 805
Post Processing Particle Traces 822, 826
Post Processing Specifications 751, 1122
Post Processing Volumetric Integration 827, 
830
Post-processing 24
potential 528, 595, 598
potential field 688
potential1 725, 726
potential2 725, 726
Power 888
Power Law Exponent 872, 873, 888
power law model 872
power of laser 424, 555
POWER_LAW 165, 852, 872, 888, 914, 915
POWERLAW_SUSPENSION 872, 888, 893
precedence rule 643
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Preconditioner 124, 126
preconditioner 119, 137, 138, 141, 142, 143, 
144, 145
preconditioner construction 131, 132
preconditioner factorization information 140
preconditioner option 123
preconditioning matrix 140
Pre-processing 24
PRESSURE 756
pressure 261, 298, 354, 356, 358, 371, 473, 
484, 544, 654, 768, 797, 798, 799, 942, 951, 
954, 957, 959, 963, 979, 1026, 1042
pressure and velocity fields 363
Pressure contours 755
PRESSURE DATUM 472
Pressure Datum 62
pressure datum 469
pressure dependence 1023
pressure field 365
pressure force 361
pressure gradient 960
Pressure Stabilization 159, 470
Pressure Stabilization Scaling 159, 161
PRESSURE_IDEALGAS 1023
PRESSURE_INDEPENDENCE 1023
PRESSURE_USER 365
pressure-driven flow 982
pressure-stabilized 470
previous factorization 140
primary and secondary sidesets 380
primitive variable 812
principal coordinate 667
principal coordinate directions 669, 676, 678
Printing Frequency 75, 76
probabilistic distribution 947
Problem Description 649
Problem Description File 183, 650, 651, 652, 
654, 656, 657, 662, 749
problem description file 25
problem domain 34
product 257
PROJECTED_CARTESIAN 652
Projection 90, 111

propagating a discontinuity 967
propagation of discontinuities 968
property of an interface 919
PSD_SEXP 946, 961, 963
PSD_VOL 946, 961, 963
PSD_WEXP 946, 961, 963
Pseudo Solid Constitutive Equation 867, 869
Pseudo Solid mesh motion 868
Pseudo-Solid Constitutive Equation 871
pseudo-solid domain-mapping technique 654
Pseudo-Solid Lame LAMBDA 871
Pseudo-Solid Lame Lambda 868
Pseudo-Solid Lame MU 869
Pseudo-Solid Lame Mu 868
pseudo-solid mesh 1047
PSPG 470
PTT 904, 914, 915, 917, 918
PTT Epsilon parameter 905, 918
PTT Xi parameter 905, 917
pure component density 1028
pure liquid 253
Pure Species Chemical Potential 467, 1023
pure state 1025
PUVW 310

Q
Q Tensor Diffusivity 1012
Q_LASER_WELD 376, 424, 426, 558
Q_VELO_SLIP 423
QCONV 416, 418
QRAD 417, 553
QSIDE 418, 420, 552
QUAD_GP 208, 211
QUADRATIC 208, 211
quadratic function 194, 200
QUSER 421

R
r0 129
radiative 417, 553
radius of curvature 337
rand 136
random 47



Revised: 6/12/13 1145

   

random numbers 136
RAOULT 442
Raoult’s law 256, 440, 458, 461, 462
Rate constant 444
rate of 1st species concentration change 781
rate of advance or recession 387
rate of deformation tensor 515, 982, 1000
rate of diffusion 982
rate of temperature change 781
rates 987
RCM 139
RDX 775
RDY 775
RDZ 775
reactant 257
Reaction Rate 987
REACTIVE_FOAM 837, 1059
read 48
read_exoII 48
read_exoII_file 48
real solid 304, 306
real solid displacement 252
Real Solid Stress Tensor 782, 783
real-solid 297, 305
real-solid displacement 293
real-solid elasticity equations 295
real-solid material region 295
real-solid mesh motion 293
recalc 132
recession 275
redistancing 98, 113
Reference Concentration 1026
reference concentration 430, 1040
Reference Temperature 874, 909, 934
References 1109
reformation stride 149
regions of plastic flow 785
Rel Gas Permeability 959
Rel Liq Permeability 959, 960
relative change 44
relative lower bound 144
relative permeability 949
relative size 157

relaxation 154
relaxation factor 142
relaxation scheme 154
relaxed Newton iteration 150
release/adsorption 429, 432
renormalization 102, 107, 113, 115
REP_FORCE 261, 298
REP_FORCE_RS 263, 298
repulsion 261, 298
repulsive force 372
reserved names 58
resid 136
residual 160, 474, 488
residual equation 223, 243, 309, 414, 434, 437, 
477, 517, 521, 535, 626, 629
residual function form 190, 192, 194, 196
residual norm 151
Residual Ratio Tolerance 149, 158
residuals 148
restart 37
restart files 26
Restart Time Integration After Renormaliza-
tion 102
reuse 132
Reverse Cuthill-McKee 139
Reverse Cuthill-McKee algorithm 752
REVERSED 170
Reynolds number 161, 1011
Reynolds stress 723, 1041
rf_fem_const.h 58, 1064
rheology 713, 715, 717, 718
RHO 769
Rho_Liq_Phase 796
Rho_Total_air 793
Rho_Total_Liq 793
Rho_Total_solid 793
rhs 129
RICHARDSON_ZAKI 1011
RIEDEL 1018
rigid porous media 945
rigorous mass conservation 1014
RILU 142
rilu 127
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RMX 774
RMY 774
RMZ 774
rolling motion 330
ROT 220, 229, 230, 232, 238, 239, 240, 242, 
243, 246, 251, 271, 305, 306, 322, 787
ROT EDGE 640
ROT Specifications 787
ROT SURFACE 635, 643
ROT VERTEX 644
rotated 220, 229, 238, 239, 305
rotated condition 233, 234, 351
rotated equation components 635
rotated equations 640, 645
rotating cylindrical surface 341
rotation of equations 635, 639
rotation specification 635, 640, 644
Rotation Specifications 232, 239, 242, 243, 
632, 634, 649
roundoff error 44
row_sum 128

S
S11 490
S12 491
S13 493
S22 495
S23 496
S33 498
SAT 792
satfile 167, 176
saturated medium 942
saturated or partially saturated 395
saturated porous flow 695, 968
Saturation 945, 961, 963, 979
saturation 474, 477, 957, 959, 977
saturation front 802, 951, 954
Saturation function 945
saturation level 792, 951
scalar 691, 723
scalar constraint 279, 281
scalar equation 663
scalar shear rate 515

scalar weak integrated boundary conditions 
210
scale 208, 211
scale factor 911
scaling 342, 344, 592
SDC_KIN_SF 291
SDC_STEFANFLOW 389
Second frequency time 76
second invariant 515, 754
Second Invariant of Strain 760
Second Level Set Conductivity 920
Second Level Set Density 922
Second Level Set Heat Capacity 923
Second Level Set Momentum Source 924
Second Level Set Viscosity 926
second tangent vector 637
sedimentation flux term 982, 1001
SEED 639
seed vector 638, 640, 645
seed_method 638
Segalman 844, 867
SEGREGATED 910
self-diffusivities 983
self-diffusivity 996
semi-implicit 1014
sensitivities 313
sensitivity 44, 819
sensitivity type 816
SH 515
SH_FLUID_STRESS 602
SH_K 601
SH_TENS 600
shape mapping 653
SHARP_BLAKE_VELOCITY 562
SHARP_CA_2D 564
SHARP_COX_VELOCITY 403, 565
SHARP_HOFFMAN_VELOCITY 406, 568
SHARP_WETLIN_VELOCITY 563, 570
SHEAR 755
shear modulus 852, 869, 871
shear rate 165, 515, 982, 983
Shear Rate Diffusivity 996, 1006
shear rate invariant 691, 723
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shear stress 349, 582, 879
shear stresses 342
SHEAR_HARDEN 852
shear_rate 691
shear-rate gradient 1006
shear-thinning viscosity model 165
SHEET_ENDSLOPE 410, 413
Shell bending stiffness 927
shell element 595, 599, 707, 708
shell equations 600, 601, 603
shell surface charge 598
Shell Tension 927
shell_angle 708
shell_curvature 413, 600, 601, 603, 707
shell_diff_curv 711
shell_diff_flux 709
SHELL_GRA 613
SHELL_GRAD_FP_NOBC 613
shell_normal 712
shell_surf_curv 713
shell_surf_div_v 714, 715, 718
SHELL_SURFACE_CHARGE 595
shell_tension 413, 600, 601, 603, 705
short arc 171
sign 257
single node 265
single phase 697
singular value 144, 145
sink temperature 416, 417, 553
SINUSOIDAL 198
Size of Krylov subspace 146
size of the region 88, 96
size of the residuals 129
size of the update vector 157
skeleton bulk modulus 958
slip 341, 343, 402
slip coefficient 339, 344, 349, 562, 566, 568, 
572, 575, 579, 592
slip length 575, 587
slip velocity 345, 346, 423
slipping parameters 329
SLOPE 237
slope at the boundary 236, 237

SLOPEX 236
SLOPEXYZ 236
SLOPEY 236
SLOPEZ 236
small strain theory 845
SNS 753
software libraries 23
sol 129
solenoidal character 762
Solid Body Source 1046
solid bulk modulus 958
Solid Constitutive Equation 760, 762, 782, 784, 
843, 847, 860, 868, 869, 871
solid inertia 655
solid material 251, 349
solid material skeleton 945
solid mechanics 307, 849, 867, 871, 1046
solid model geometry 167
solid momentum balance 530, 775
solid momentum equation 392, 677, 775, 850
solid momentum equations 678
solid network 957
solid phase 315
solid phase stress tensor 303
Solid Reference Temperature 861, 862
solid substrate boundary 341
solid suspensions 876
Solid Thermal Expansion 863
solid velocity 315
solid/liquid 318, 320, 402, 405, 408
SOLID_DIFFUSION 445
SOLID_DIFFUSION_ELECTRONEUTRALI
TY 445
SOLID_DIFFUSION_ELECTRONEUTRALI
TY_LINEAR 446
SOLID_DIFFUSION_SIMPLIFIED 445
SOLID_FLUID 288, 302, 315
SOLID_FLUID_RS 302, 394
solid-body rotation 850
solid-body translation 349, 850
SOLIDIFICATION 946
solid-like 896, 897
solid-liquid interface 478
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solidus 220, 935
Solidus Temperature 426, 557, 935
solidus temperature 932
SOLN 36
SOLN file 37, 38, 75
solute 656, 658
Solution Algorithm 118, 146, 147, 158
solution field 35
Solution Temperature 991, 997
solution update vector 155
solution variable 41
solution vector 36
solvent drying 854
solvent partial pressure 427
solvent viscosity 913
SOLVENT_POLYMER 837, 1039
Solver Specifications 117, 119
species 257
species balance 943
species component 247, 464, 776
species concentration 456, 1026
species conservation equation 247, 1015
species convective diffusion equations 985
species electrochemical reactions 987
species loops 656, 658
species mass flux 438
species material balance 1031, 1032, 1033
Species number 458
species number 983
Species Properties 980
Species Source 1052, 1054
species source 840
Species Time Integration 1013
species transport equations 1015
species variable type 659
Species Volume Expansion 1021
Species Weight Function 985
species_bulk 673, 757, 776
SPECIES_CONCENTRATION 659
SPECIES_DENSITY 659
SPECIES_FLUX 806
SPECIES_MASS_FRACTION 659
SPECIES_MOLE_FRACTION 659

SPECIES_UNDEFINED_FORM 659
SPECIES_VOL_FRACTION 659
Specific Volume 842, 1028, 1029
specific volume 1032
SPHERE 91, 111
SPHERICAL 652
SPLINE 229, 266, 287, 639
SPLINE_RS 304, 305, 307
SPLINEXYZ_RS 304
SS 91, 111
stabilization 471
stabilizing the solution 967
standard 135
Standard State Chemical Potential 467, 1022
standard state chemical potential 1023
standard thermodynamic gas constants 979
starting interface shape 90, 110
static contact lines 270
static or dynamic contact lines 265
stderr 41, 42
stdout 42
steady 64
steady simple shear flow 1012
steady-state solution 163
steep saturation fronts 967
Stefan flow 291, 389
STEFAN_MAXWELL 982, 997
STEFAN_MAXWELL_CHARGED 982, 993, 
997, 1030, 1060
Stefan-Boltzmann constant 417, 418, 553
Stefan-Maxwell 939, 983, 1027
stiff problems 968
Stoichiometric coefficient 444, 1061
stoichiometric coefficients 257
STOICHIOMETRIC_PHASE 1025
Stokes velocity 1011
STRAIGHT 170
strain tensor 759, 760, 761, 844, 854
strain-rate tensor 754
STREAM 751
Stream Function 751
stream function 778, 780
streamline upwind Petrov-Galerkin 802, 907
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streamwise diffusion 967
Streamwise normal stress 753
stress 671
stress and slip 342
stress balance 288, 943
Stress contours 758
stress equations 661
Stress Free Solvent Vol Frac 854, 859, 864
Stress Free Solvent Vol Fraction 864, 866
stress tensor 340, 355, 362, 371, 377, 393, 490, 
491, 493, 495, 496, 498, 530, 536, 543, 548, 
604, 758, 828
stress-free state 252, 315, 348, 351, 476, 481, 
761, 786, 851, 854, 858, 945
stride length 152
stride specification 151
strong integrated constraint 284
strong residual replacement 192, 194, 200
strongly enforced point collocated condition 
279
strongly integrated constraint 280
structural shell 705
subcycle-fill time steps 78
subcycling frequency 78
subcycling rate 78
subelement integration 395, 537, 542, 544, 
548, 551, 553, 557, 558, 560, 563, 565, 566, 
569, 571
subgrid 536, 542, 544, 548, 551, 553, 557, 558, 
560, 593
subparametric 653
substrate vector 280
suction factor 965
sulfidation 1062
SUM_TO_ONE 959
SUPG 79, 802, 907, 911, 937, 966, 985
SUPG Velocity in porous media 803
SURF 91, 111
surf_charge 703
SURF_DISSIP 807
surface absorptivity 424, 555
surface charge 595, 597, 598
surface normal 268

surface potential 345, 346
surface reaction 257, 451, 453
surface recoil 375
Surface Tangent Calculation Method 638
surface tangent forces 378, 382
surface tangent vector 382
Surface Tension 919
surface tension 332, 370, 377, 383, 402, 405, 
408, 412, 536, 541, 542, 548, 562, 566, 568, 
571, 572, 575, 585, 589, 716, 719, 809
surface tension forces 372, 380, 384
surface tension model 372
surface velocity vector 344, 592
SURFACE_CHARGE 467
SURFACE_ELECTRIC_FIELD 598
Surfaces 91, 111
SURFTANG 380
SURFTANG_EDGE 380, 384
SURFTANG_SCALAR 383
SURFTANG_SCALAR_EDGE 384
SUSPEND 1036
SUSPENSION 448, 837, 872, 888, 898, 899, 
1036
suspension flow 1010
Suspension Maximum Packing 876, 898
suspension migration 1008
suspension particles 447
suspension rheology model 1012
Suspension Species Number 876, 899
SUSPENSION_PM 448
SWIRLING 363, 652
sym_diag 128
sym_GS 125
sym_row_sum 128
symmetric 135, 782, 783, 784

T
T 414
T_USER 415
T1 787
T11 782
T11_RS 783
T12 782



1150 OFFICIAL USE ONLY Revised: 6/12/13

  OFFICIAL USE ONLY 

T12_RS 783
T13 782
T13_RS 783
T2 787
T22 782
T22_RS 783
T23 782
T23_RS 783
T3 787
T33 782
T33_RS 783
TA1 787
TA2 787
TA3 787
TABLE 213
table lookup files 25
TABLE_WICS 207, 210
TABLE_WICV 207, 210
tabular data 208, 211, 213
Tafel kinetics 452, 526
TALE 18, 236, 237, 249, 251, 252, 298, 315, 
349, 655, 678
tangent to the contact line 333, 335
tangent vector 379, 635
tangent velocity component 330
tangential 234, 235
tangential direction 340
tangential fluid velocity 348
tangential velocity 348, 349, 367
tangential velocity component 337, 423
TANH 963
Taylor-Galerkin 79
Taylor-Galerkin formulation 1013
TB1 787
TB2 787
TB3 787
TCOND0 779
TCOND1 779
TCOND2 779
TDOT 781
temperature 220, 375, 414, 451, 453, 488, 626, 
629, 1037, 1052, 1063
temperature shift function 908

temperature-dependent 1018
temperature-dependent shift factor 895
temperature-dependent viscosity 875
TENSION_SHEET 411, 412
TENSOR 946
tensor equations 663
tensor stress equations 661
terminal velocity 1011
ternary mixture 996
TFLUX 780
tfqmr 120
THERMAL 872, 893
thermal battery cell 988, 992
thermal boundary conditions 424
thermal conductivity 920, 929
thermal contact resistance 247
thermal expansion 862
thermal expansion coefficient 861
Thermal Exponent 874, 893
Thermal Properties 928
Thermal WLF Constant2 874, 895
THERMAL_BATTERY 837, 989, 991, 992
thermal-battery cell 986
Thermodynamic Potential 987, 988
thermodynamic pressure datum 62
thermodynamic property 920
thermoelasticity 863
thermophysical 769, 919
Third Invariant of Strain 761
three-dimensional 245, 270, 275, 282, 285, 
337, 380, 384
three-dimensional cylindrical 652
three-dimensional stability 652
three-dimensions 278, 280, 324, 327, 333
tie condition 247
time 311, 365
Time Constant 873, 890
Time Derivatives 781
Time Integration 64, 655
time integration 72, 102
time integration method 72
Time Integration Specifications 64, 685
time step 73, 102, 107
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Time step error 73
Time step parameter 72, 969
time-dependent boundary conditions 199
tmp.i.d 38
TORQUE 806
tortuosity factor 947
Total Arbitrary Lagrangian Eulerian 655
Total density of solvents in porous media 793, 
796
total flux 481, 483
total hemispherical emissivity 417, 553
total mass flux 456
total pressure 62
Total Velocity Divergence 764
TOTAL_ALE 63, 251, 293, 295, 297, 300, 
302, 304, 307, 655, 760, 782, 783, 843, 851, 
856, 859, 867, 869, 871
trace 759
traction 258, 260, 261, 263, 287, 295, 297, 298, 
299, 300, 307, 533
transfer mechanisms 957
transient 63, 64, 66, 67, 68, 69, 655
transient problem 77
transient simulations 65
Trapezoid rule 72
Trilinos library 127, 143, 144, 145
two materials 247
two phases 243, 942
TWO_PHASE 1018
two-dimensional flow field 652
two-dimensional tables 208, 212
two-phase flows 244
two-phase models 942
types of norms 129

U
U_supg_porous 803
umf/umff 119
univariate 202, 213
unknown vector 47
unperturbed 44
Unreacted Gel Temperature 877, 903
unsaturated medium 942

unsaturated porous flow problems 969
un-scaled 43
upwinding 664, 671, 673, 685, 695, 697, 699, 
700
USER 91, 111, 275, 790, 921, 923, 925, 1036
user_bc.c 454
USER_GEN 1049
user_gibbs_criterion 276
user-defined 263, 300, 421, 435, 520
user-defined functions 311
user-defined geometry 176
User-Defined Post Processing 790
user-defined subroutine 58, 365, 790
user-defined subroutines 228, 229, 304, 305
user-defined temperature 415, 487
user-definition subroutines 225
user-prescribed function 454
UVW 308, 501, 502, 504, 506, 507, 509, 511, 
512, 514
UVWUSER 313
UVWVARY 311

V
Valid Equation Rotation Strings 635
VAN_GENUCHTEN 961, 963
vapor flux 397, 558
VAPOR PRESSURE 459
Vapor Pressure 1018
vapor pressure curve 474, 477
vapor-liquid equilibria 442
vapor-liquid equilibrium 458, 460, 462, 794, 
795, 976, 979
vapor-liquid external boundary 442
vapor-liquid phase equilibrium 1027, 1028, 
1031, 1032, 1033
VAR_CA_EDGE 272, 274, 279, 281, 282, 
286, 324, 326
VAR_CA_USER 272, 274, 279, 281, 285, 326
variability in time 366
variable block row 118, 123
variable contact angle 282, 285
variable electrical current density 522
variable scaling 339
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variable slip coefficient 351
variable slip coefficient model 340, 341
variable wall normal 401, 405, 407
VARIABLE_DENSITY 1036
variation 311
VBR 46, 118, 127, 128, 133
VDOT0 781
VDOT1 781
VDOT2 781
vector 258, 260, 261, 287, 295, 297, 298, 307
vector condition 316
vector electric field 688
vector equation 663
vector mesh equations 239, 240, 242, 243
vector mesh motion equations 220
vector momentum equation 667
vector particle momentum equation 669
vector traction 260, 262, 297
vector weak integrated boundary conditions 
207
vectors used in rotating 787
VELO_NORM_COLLOC 321
VELO_NORMAL 317, 319, 321, 332, 340, 
344, 393, 573, 575, 580, 586, 604, 639
VELO_NORMAL_DISC 322
VELO_NORMAL_EDGE 324, 327, 333, 336
VELO_NORMAL_EDGE_INT 327
VELO_SLIP 326, 331, 339, 341, 343, 349, 
403, 406, 409, 423
VELO_SLIP_ELECTROKINETIC 345, 346
VELO_SLIP_ELECTROKINETIC3D 346
VELO_SLIP_FILL 343, 387, 564, 584, 587, 
589, 591
VELO_SLIP_LS 564, 573, 575, 580, 584, 587, 
589, 591
VELO_SLIP_ROT 341, 403, 406, 409, 423
VELO_SLIP_SOLID 349
VELO_TANGENT 329, 337, 355, 393, 403, 
406, 409, 604
VELO_TANGENT_3D 337, 346, 355
VELO_TANGENT_EDGE 324, 326, 333, 335
VELO_TANGENT_EDGE_INT 335
VELO_TANGENT_SOLID 348

VELO_THETA_COX 401, 407, 588
VELO_THETA_HOFFMAN 404, 407, 569, 
590
VELO_THETA_TPL 401, 404, 407
velocity component 311, 335
Velocity Divergence 762
velocity field 762
velocity gradient 357, 1052
velocity gradient tensor 500, 501, 503, 505, 
506, 508, 510, 511, 513, 717
velocity of the gas phase 797
velocity of the solid material 349
velocity vectors 786
versus time 234
VERTEX 168, 169, 170, 173
vertex node 645
vertices 644
VISC_DISS 1049
viscoelastic 661, 686, 905, 906, 913
viscoelastic constitutive equation 661
viscoelastic modes 661, 758, 908
Viscoplastic Def_Grad Tensor 785
Viscosity 768, 770, 771, 772, 773, 872, 883, 
942
viscosity 576, 588, 716, 719, 753, 798, 799, 
800, 873, 893, 926, 948, 959, 961, 982, 983, 
1011
Viscosity Diffusivity 996, 1007
viscosity gradient term 1007
viscous dissipation 828, 1050
viscous forces 1052
viscous heating 1052
viscous heating due to slip 423
VL_EQUIL 247, 443, 458, 1020
VL_EQUIL_PSEUDORXN 245, 292, 390, 
462, 465
VL_POLY 443, 460, 1029, 1031, 1032, 1033
VL1 786
VL2 786
VL3 786
VN_POROUS 397
VNORM_LEAK 369, 439
VOF color function 79
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VOF fill function 756
VOL_REVOLUTION 807
volatile 459
volatile liquid 1018
volatile solvent component 461
VOLT 521
VOLT_USER 528
VOLTAGE 377, 596, 597, 599, 690, 764, 765
voltage 521, 528, 596, 598, 686, 688, 1038
voltage equation 688, 1050
VOLTAGE field variable 766, 767
voltage potential equation 1060
VOLUME 460, 828
volume change 759, 761
Volume Expansion 933, 1042
volume fraction 461, 792, 945, 948, 982, 1000, 
1010, 1011, 1028
volume of fluid 343, 591, 682
VOLUME_FLUX 806
VOLUME_INT 827, 830
volume-of-fluid simulations 1014
volumetric flowrate 363
volumetric integrals 827
Volumetric Integration 826
Von Mises 847, 865
vort_dir 692
vort_lambda 694
vorticity direction 694, 1012
vorticity equation 692
Vorticity Vector 804
VORTX 804
VORTY 804
VORTZ 804
VP_EQUIL 427

W
wave transmission 627, 630
wavenumber 721, 723, 724
WEAK_SHELL_GRAD 599
web 324, 327
weighted residual 233, 235, 775, 985
weighted residual function 774
weighting coefficient 956

weighting function 241, 688
weighting vector 46
WETTING 957
wetting 387, 404, 580
wetting line 407, 562, 565, 568, 570, 572, 574, 
581, 584, 587, 589
wetting line model 333
wetting line motion 343, 591
wetting line physics 325
wetting velocity 583
WETTING_SPEED_BLAKE 409, 562, 572, 
573, 575, 581, 584, 591
WETTING_SPEED_COX 403, 574, 587
WETTING_SPEED_HOFFMAN 406, 568, 
577, 589
WETTING_SPEED_LINEAR 409, 570, 573, 
575, 579, 580, 591
WHITE-METZNER 904
Williams-Landel-Ferry shift model 909
WLF model 909
Write initial solution 39
Write Intermediate Results 38, 774, 775
Write Intermediate Solutions 37

X
xdot 781
XDOT0 781
XDOT1 781
XDOT2 781
xx-stress 490
xx-velocity gradient component 500
xy-stress 491
xy-velocity gradient component 501
xz-stress 493
xz-velocity gradient component 503

Y
Y 433
Y_DISCONTINUOUS 436
Y0dif0 776
Y0dif1 776
Y0dif2 776
Y0DOT 781
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Y0FLUX 778
y12m 119
Y1D0T 781
Y1dif0 776
Y1FLUX 778
Y2dif1 776
YFLUX 254, 430, 438, 560
YFLUX_ALLOY 455
YFLUX_BV 448
YFLUX_CONST 441
YFLUX_EQUIL 442, 1027, 1029, 1031, 1032, 
1033
YFLUX_HOR 450
YFLUX_ORR 452
YFLUX_SPECIES 353
YFLUX_SULFIDATION 443
YFLUX_SUS 447
YFLUX_USER 454
yield criterion 847, 865
Yield Exponent 874, 897
Yield Stress 874, 896
yield stress 848, 865, 879, 896
yielded 785
YTOTALFLUX_CONST 456
YUSER 435
yuser_surf 435
yx-velocity gradient component 505
yy-stress 495
yy-velocity gradient component 506
yz-stress 496
yz-velocity gradient component 508

Z
zero 47
zero level set function contour 88
zeta potential 345, 346
zx-velocity gradient component 510
zy-velocity gradient component 511
zz-stress 498
zz-velocity gradient component 513
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