

2 Revised: 6/12/13

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of their
employees, nor any of their contractors, subcontractors, or their employees, make any warranty,
express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use
would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any agency thereof,
or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

4 Revised: 6/12/13

SAND2013-1844
Released July

GOMA 6.0 - A Full-Newton Finite Element Program for
Free and Moving Boundary Problems with Coupled Fluid/
Solid Momentum, Energy, Mass, and Chemical Species

Transport: User’s Guide

P. Randall Schunk, Rekha R. Rao, Ken S. Chen, Duane A. Labreche, Amy C. Sun,
Matthew M. Hopkins, Harry K. Moffat, R. Allen Roach, Polly L. Hopkins and Patrick K.

Notz, S. A. Roberts
Multiphase Transport Processes Department

Philip A. Sackinger and Samuel R. Subia
Thermal/Fluids Computational Engineering Sciences Department

Edward D. Wilkes and Thomas A. Baer
GRAM Incorporated

David R. Noble
Microscale Science and Technology Department

Sandia National Laboratories
P. O. Box 5800

Albuquerque, New Mexico 87185-0827

Robert B. Secor
3M Engineering Systems and Technology

St. Paul, MN 55144

Abstract

Goma 6.0 is a finite element program which excels in analyses of multiphysical processes,
particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy
transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm
which allows for simultaneous solution of the governing principles, making the code ideally
suited for problems involving closely coupled bulk mechanics and interfacial phenomena.
Example applications include, but are not limited to, coating and polymer processing flows,
super-alloy processing, welding/soldering, electrochemical processes, and solid-network or
solution film drying. This document serves as a user’s guide and reference.

Revised: 6/12/13 5

Preface

Over the course of development of this new generation of Goma documentation, the volume of
information collected between the covers has grown immensely while the style of presentation of
that information has also been improved to be more helpful to the analyst and easier to use.
However, having set the goal of producing both a printed and electronic manual, the process has
made it no longer practical to try to contain all the attending knowledge in a single printed
volume. Thus, we have divided the printed version along the boundaries most natural to Goma,
that being a separation according to the division of problem data between the two primary ASCII
input files.

The user of Goma software now has a two-volume manual with information both common and
unique to each volume. The introductory information (Chapters 1 through 3) is common to both
volumes, as is the closing information (References, Appendix and Distribution). The unique
contents of Volume 1 consist of the Problem Definition (Chapter 4), while Volume 2 contains the
Material File description (Chapter 5). In the respective locations of the Chapter 4 and 5
information, a brief explanatory note has been inserted as a placeholder. The user will find a
complete set of introductory and closing information in each volume, but the Table of Contents
and Index entries in each volume will also be unique, containing only the information appropriate
for the particular volume.

Also for practical reasons, this electronic version of the manual will retain the single volume
configuration. Thus the structure will differ from the printed version but the contents of the two
versions of the manual will contain the same information.

Acknowledgment

Development of Goma was funded in part by the Engineering Science Research Foundation,
Laboratory Directed Research and Development, the Coating and Related Manufacturing
Processes Consortium (CRMPC), the Specialty Metals Processing Consortium (SMPC), the
Accelerated Scientific Computing Initiative (ASCI) program of the DOE, and the Basic Energy
Science Program of the DOE. The authors would like to thank Rick Givler, Mike Kanouff, Anne
Grillet, Mark Christon, John Torczynski, and many others for their helpful comments during the
process of developing the code and reviewing this manual. The third and fourth editions of this
manual have benefited from several others. Namely, Chris Monroe, who took over the
responsibility for updating and distributing the second edition of the report, and several internal
Sandia users together with several members of the Coating and Related Manufacturing Processes
Consortium who provided valuable feedback.

6 Revised: 6/12/13

Revised: 6/12/13 7

Contents
Nomenclature . 9

1 Introduction. 15

2 Background Information . 18

2.1 Program Features . 18

2.2 Numerical Methods . 22

2.3 Portability, Software Library Infrastructure, and Code Accessibility 23

3 Code Structure and I/O . 25

3.1 Files for Data Input . 25

3.2 Command-line Arguments. 26

4 Data Input-- Problem Description File . 31

4.1 File Specifications . 34

4.2 General Specifications . 40

4.3 Time Integration Specifications. 64

4.4 Continuation Specifications . 117

4.5 Hunting Specifications. 117

4.6 Augmenting Conditions Specifications . 117

4.7 Solver Specifications . 117

4.8 Eigensolver Specifications. 166

4.9 Geometry Specifications . 166

4.10 Boundary Condition Specifications . 177

4.11 Rotation Specifications . 632

4.12 Problem Description . 649

4.13 Post Processing Specifications. 751

4.14 Post Processing Fluxes and Data . 805

4.15 Post Processing Particle Traces . 822

4.16 Volumetric Integration. 826

5 Data Input-- Material Files . 832

5.1 Physical Properties. 836

5.2 Mechanical Properties and Constitutive Equations . 842

5.3 Thermal Properties. 928

5.4 Electrical Properties . 937

5.5 Species Properties . 980

5.6 Source Terms . 1036

5.7 Shell Equation Properties and Models. 1066

8 Revised: 6/12/13

References . 1109

Appendix 1: Goma Documentation Lists . 1115

Appendix 2: Using Goma in Library Mode . 1121

Index. 1125

Revised: 6/12/13 9

Nomenclature1

a, b, c, d constants in PLANE boundary condition

A, B exponents for Cure model of viscosity

B binormal vector for rotation (cross product of normal with tangent vector);
magnetic induction vector field

local capillary number

Ci concentration of species i;
constant i in general equation

molar gas and liquid concentrations of species k

 heat capacity [E/MT]

 inertial coefficient

molar concentrations of vacancies (V) and holes (h)

cx, cy, cz coordinates of circle center

 strain-rate tensor

D diffusion coefficient

diffusion coefficients

Dij binary diffusion coefficient [L2/t]

 distance between current position and dynamic contact line

(mesh) displacement vector

real solid displacement vector

real solid displacement vector from base reference state

relative change in analytical residual (analytical Jacobian)

diffi difference between two Jacobian terms

 Young’s modulus [M/Lt2];
electric field

Eulerian strain tensor

E, E1, E2 activation energies

unit base vector

F fill function;
level set function

Fm deformation gradient tensor
f force vector

1. Basic Units shown in square brackets: t - time, L - length, M - mass, E - energy, T - temperature; vector and
tensor magnitudes not designated.

CaL

C
g
k C

l
k,

Cp

ĉ

cV ch,

D

Dc Dµ Dr Dg, , ,

d

d
˜
d
˜ m

d
˜

0
m

daj

E

E
˜

eα

10 Revised: 6/12/13

 shear modulus [M/Lt2];
velocity gradient

g momentum source term vector

H volumetric energy source

2H mean curvature [1/L]

h heat transfer or mass transfer coefficient [L/t];
distance parameter

I identity tensor

 second invariant of the strain-rate tensor

 unit vectors representing right-hand orthogonal basis

Ji volume flux vector, species i [L/t]

Ji Jacobian entry i

, mass flux of gas (g) and liquid (l) component i

 bulk modulus [M/Lt2]

concentration equilibrium constant

 permeability [L2]

krel relative permeability

rate constants

pseudo reaction rate

mass transfer coefficient

L-one norm

L-two or mean square norm (root-mean-square over the domain)

maximum or infinity norm (maximum absolute value over domain)

Mw molecular weight

m outward binormal vector

mass loss or gain rate

N normal vector for rotation (outward-pointing normal to primary side set)

 normal vector to surface

orthogonal base vectors attached to surface

outward-pointing normal to primary (f) and secondary (s) side set

x, y and z components of normal vector

normal to free surface at contact line

specified normal vector

 normal vector to solid wall surface

G

IID

i
˜

j
˜

k
˜

, ,

j
g
i

j
l
i

K

K
c
k

k ki j,

k k1 k2, ,

k
f

ki

L1

L2

L∞

m·

n
˜
n t1 t2, ,

nf ns,

nx ny nz, ,

n
˜ cl

n
˜ spec

n
˜ w

Revised: 6/12/13 11

P applied pressure

vapor pressure for species i

capillary pressure

liquid phase pressure in porous medium

gas phase pressure in porous medium

q heat flux vector;
Darcy flux

R universal gas constant

Ri component i volumetric source

Ri i-th component of the Galerkin weighted residual vector

r radius of circle

r(0) initial residual vector

si stoichiometric coefficient of species or phase i

S saturation in porous media

source term for creation of species k in the liquid

SV surface area per solid volume for permeability of porous media

T temperature [T]

Ts sink temperature;
solidus temperature

Tl liquidus temperature

T fluid phase stress tensor

Ts solid phase stress tensor

T tangent vector for rotation, intersection of primary and secondary side set

 tangential vector to surface

tangent to free surface at contact line

u, v, w x, y, z-components of velocity, respectively

, gas (g) and liquid (l) velocity vectors at the free surface

V voltage, electric potential

 velocity vector

fluid velocity

 mesh velocity vector

normal and tangential velocity

velocity of surface or mesh;
solid velocity

P
V
i

pc

pl pliq,

pg pgas,

S
l
k

t
˜
tcl

u
˜

g
u
˜

l

v

vf

vm

vn vt,

vs

12 Revised: 6/12/13

vsfs stress-free-state velocity

x, y, z-component of surface velocity vector

velocity of web in moving substrate problem

x, y, z-component of web/substrate velocity

molecular weight

wi weighting vector for Jacobian entry i

mass fraction of component i in vapor

 mesh velocity

normal component of the contact line velocity

xK mole fraction for species K

 coordinates for Cartesian coordinate system

volume fraction of solvent in liquid phase

mass fraction of species k on gas (g) and liquid (l) sides of interface

 concentration (volume fraction) of species i

, gas (g) and liquid (l) phase volume fraction of component i

zi charge number of species i

 scaling for position-dependent slip;
level set length scale;
linear thermal expansion coefficient

gel point for Cure model of viscosity

 slip coefficient

second invariant of the shear-rate tensor

activity coefficient of species i

smooth Dirac delta function

latent heat of fusion

heat of reaction

heat of vaporization

electrical permittivity;
emissivity;
strain tensor

adaptive, solvent and polymer viscosity in viscoelasticity
constants in equation,

 coefficient of repulsion;
Lame coefficient [M/Lt2];

vs x, vs y, vs z,, ,

uw W,

Wx Wy Wz, ,

Wk

w
V
i

x
˜
·

x· cl

x y z, ,

Xls

Y
g
k Y

l
k,

yi

y
g
i y

l
i

α

αg

β

γ·

γi

δα

HfΔ

HrxnΔ

HvΔ

ε

ηa ηs ηp, ,

λi i 0≥

λ

Revised: 6/12/13 13

time constant in viscosity models

 generic contact angle

static contact angle

advancing and receding contact angle, respectively

 dynamic contact angle

irreducible air or water content of porous medium

 Lame coefficient in solid mechanics (shear modulus) [M/Lt2];
viscosity in fluid mechanics [M/Lt]

chemical potential of species k

 Poisson’s ratio

 density [M/L3]

liquid phase density

gas phase density

 electrical conductivity [];
Stefan-Boltzmann constant
surface tension [M/t2];
real-solid solid phase stress tensor

porosity of porous medium;
electrical potential

basis (shape) function associated with node i;
volume fraction;
level set function at node i

deviatoric portion of fluid stress tensor;
tortuosity factor in porous media

yield stress in constitutive models

Flory-Huggins interaction parameter between components j and k

coefficient of variation

rotation rate of cylindrical substrate surface;
vorticity vector function;
particle mobility in trajectory

θ

θs θstc,

θadv θrec,

θdcl

θair θw,

µ

µ∗
k

υ

ρ

ρl ρl,

ρ
g

ρg,

σ

φ

ϕi

τ

τy

χjk

χ

ω

14 Revised: 6/12/13

Revised: 6/12/13 15

1 Introduction

1 Introduction

”Goma,” which means rubber, gum, or elastic in Spanish, is a two- or three-dimensional finite
element program currently being advanced and specialized for the analysis of manufacturing
flows and related processes that involve one or more transport fields, i.e., any combination of
heat, mass, momentum (solid and fluid) and species transport fields. Specifically, the processes
for which Goma is suited are those which contain free or moving boundaries between dissimilar
materials or phases. Whether determining the position of an interface whose motion is governed
by the underlying physics of the problem, or prescribing the dynamics of a boundary according to
user specified kinematics or geometry, the multiphysics approach on which Goma is based allows
for rapid convergence to the solution. Unique features which make this possible include: (1) a
Lagrangian-Eulerian solid mechanics module for mesh motion, (2) energy and chemical species
transport modules incorporating convection, diffusion and reaction, (3) fluid momentum transport
modules that are fully and mutually coupled, particularly with the mesh motion module through
an analytical Jacobian matrix, (3) a Newton-based solution algorithm (full and modified) which
exploits that Jacobian matrix, and (4) a structure which allows for different physical descriptions
of different materials in the same problem, i.e., conjugate problems. The scope of potentially
accessible problems defined by the interaction and close coupling of the individual field equation
sets is partially shown in Figure 1 (note that missing from this figure are the fully coupled,
partially saturated porous deformable media module and overall variable density mass balance
modules). The analytical Jacobian matrix which provides the coupling facilitates a range of
computer-aided nonlinear analyses such as parametric sensitivity (stability), design, and
optimization as it provides the building blocks (through chain-rule differentiation) for evaluating
sensitivities of process variables to processing conditions.

Goma originated in 1994 from an early version of MP_SALSA (Shadid, et. al., 1995), a finite
element program designed to simulate chemically reacting flows in massively-parallel computing
environments. As a point-of-departure, Goma was originally extended and adapted to free and
moving boundary problems in fluid mechanics, heat transfer, and mass transfer. By virtue of a
novel mesh motion algorithm based on Lagrangian solid elasticity, many multiphysics problems
involving nonlinear elasticity and viscoplasticity in combination with other transport phenomena
are now accessible. The detailed algorithm and underlying physical principles of the moving
mesh scheme together with several advanced examples from capillary hydrodynamics, melting
and solidification, and polymer processing may be found elsewhere (Sackinger, et. al., 1995;
Cairncross, et al., 1995; Chen, et. al., 1995; Cairncross, et. al., 2000; Baer, et. al., 2000; Schunk
and Rao, 1994; Bertram, et. al., 1998; Schunk, et. al., 2002).

Since the original publication of the GOMA 2.0 manual (see Schunk, et. al., 1998) work has
further focused on concentrated chemical species transport (neutral and charged species) and
Eulerian front tracking schemes for large material deformation problems. As in all other
developments, these capabilities are being implemented in a fully-coupled way using Newton’s
method. A concerted effort to bring these capabilities to bear on real-life problems has led to the
addition of many esoteric features that address capillary wetting, phase change, charge neutrality,

16 Revised: 6/12/13

1 Introduction

multicomponent species transport, and a host of other physical features. The best way to survey
the available features is to consult the large library of reports, technical memoranda, tutorials, and
other advanced feature manuals (e.g. Gates, et. al., 2000; Schunk, et. al., 1998; Rao, et. al., 2001;
see Goma Documentation List in the Appendix), most of which are linked together with this
manual in the CD version of the Goma Document System currently under development.

MOMENTUM TRANSPORT

Pseudo-Solid for ALE Scheme
ENERGY TRANSPORT

n-SPECIES TRANSPORT
MOMENTUM TRANSPORT

FLUID MECHANICS

Figure 1. Main physics modules of Goma, their coupling and examples of

potential applications.

(a) (b)

(c) (d)

-Continuous liquid film coating (a),(d)

-Wetting and spreading (a), (d)

-Melting and remelting (a), (b), (c), (d), (e)

-Polymer processing (a), (d)

-Drying/curing/solidification (a), (b), (c)

or

Computational Lagrangian Solid

JACOBIAN MATRIX PROVIDES
COUPLING

EXAMPLES

SOLID MECHANICS

-Corrosion and electrochemical process (a), (c), (d), (e)

-Multiphase transport in deformable porous media (a), (f)

(continuous or porous)

(with coupled viscoelastic stress)
(with concentrated multicomponent)

Revised: 6/12/13 17

1 Introduction

Most recent developments, from 2006 through 2012, that are noteworthy are an extensive library
of thin-shell physics/equations and accompanying boundary conditions, triangle and tetrahedral
elements, phase-field modeling, parallel processing improvements and more. On the thin shell
equations, the capability is fully coupled with continuum element equations. We have
implemented theory and equations for Reynold’s lubrication (laminar or turbulent), thin-shell
energy, thin-porous media, and surface rheology.

The purpose of this report is to provide a practical introduction and reference to Goma; to
introduce the user to the range of options available in Goma; to show how easily the code may be
adapted to investigate novel situations; and to provide a link to several simple illustrative
examples as a tutorial and as a demonstration of the overall utility of the program. By design this
is a reference manual which is best navigated together with a tutorial on the class of problems
being addressed. It is recommended that perusal be undertaken section by section, consulting the
individual input records as needed for a given problem.

18 Revised: 6/12/13

2 Background Information

2 Background Information

2.1 Program Features

2.1.1 Free and moving boundary capabilities

Goma is a general purpose program designed for the solution of both steady and transient, two-
and three-dimensional problems involving heat, mass, and momentum (solid and fluid) transport.
A unique feature is the treatment of all boundaries and interfaces as free (position unknown) or
moving (position unknown or prescribed, but variable). If the material domain of interest is a
solid, a Lagrangian formulation (i.e., the computational mesh follows the motion of material) of
the momentum equations naturally leads to mass conservation and a natural parameterization of
the boundaries and interfaces as material surfaces. If the material domain of interest is a fluid,
then an Arbitrary-Lagrangian-Eulerian (ALE) formulation allows the boundaries to respond to
constraint equations, hereafter referred to as distinguishing conditions. These conditions are
responsible for determining the location of all boundaries and interfaces, providing the necessary
mathematical closure of the system of equations governing the free boundary problem.
Distinguishing conditions available to the user fall into several classes, as described below.

Since publication of the Goma 2.0 manual in 1998 (and more recently the Goma 4.0 manual in
2002), the ALE formulation has been extended to solid-material regions (viz. the TALE
algorithm, Schunk, 2000) and purely Eulerian front tracking schemes based on the method of
level-sets have been incorporated for free surfaces with large deformations; moreover, both
algorithms have been implemented in a completely-coupled way. Of course Eulerian schemes are
inherently transient and less accurate in capturing interfacial physics, even though they are more
robust and even optimal for a certain class of problems. It is fair to say that of all the available
mechanics codes, Goma provides the greatest breadth of free and moving boundary tracking
formulations and options.

With regard to the ALE algorithms, the fully-implicit, pseudo-solid, unstructured mesh
deformation algorithm sets Goma apart from other finite element programs. All surfaces, internal
and external, together with other geometric features such as corners and junction points, are
permitted to move as part of the algorithm. The movement of boundaries, interfaces, and
geometric features is dictated by a weighted residual statement of the distinguishing conditions,
whether based on specific physical constraints or arbitrary conditions described by the analyst.
The internal mesh deforms as if it were embedded in a deforming elastic solid continuum; with
the mechanics of the solid governed by either infinitesimal (linear) or finite (nonlinear)
deformation theory. Through Newton’s method, the deformation of the mesh is determined
simultaneously with all of the other physics of the problem.

The key connection between the mesh deformation and the physics of interest is accomplished

Revised: 6/12/13 19

2.1 Program Features

through a library of distinguishing conditions. Currently, those conditions include (a) kinematic
(material surface of a fluid), (b) isotherm (phase transition temperature, such as melting), (c) iso-
concentration and (d) geometric (either smooth plane curves or fixed point specifications). As part
of the required input for Goma, the analyst specifies the associations between the particular
distinguishing conditions and corresponding sets of material points of the initial pseudo-solid
used to embody the mesh. Chapter 4 describes this process in more detail. Essentially, the
algorithm causes smooth boundaries of the pseudo-solid to slide tangentially in a “frictionless”
fashion. Further details of this algorithm and the corresponding equations can be found in several
references (e.g., Sackinger, Schunk, and Rao, 1995).

2.1.2 Coordinate Systems and Frames of Reference

Coordinate systems accessible through this version of Goma include two-dimensional and three-
dimensional Cartesian coordinates, cylindrical coordinates for axisymmetric problems, spherical
coordinates, and a swirling option for two-dimensional axisymmetric problems with a (swirling)
velocity component in the third dimension. A limited framework has been built within Goma to
use arbitrary orthogonal curvilinear coordinate systems, but this has not yet been extensively
tested. As for frame of reference, all conservation equations are cast in an inertial frame (viz. non-
accelerating) but with extensions to allow for arbitrary frame velocities that may or may not be
related to the material motion. Hereafter, when we refer to the frame/mesh motion type to be of
the Eulerian variety, we mean the mesh is fixed with respect to all material motion, which
basically means it is fixed in the laboratory frame. For now, we allow this frame of reference for
fluid systems and are researching ways to allow this frame for solid systems. The ALE frame of
reference, as mentioned above, allows for independent mesh motion in the interior of the domain,
but seeks to maintain a material frame of reference on the boundary. This means that the mesh
will move to accommodate material boundary motion. Currently, the ALE frame is allowed for all
classes of materials (cf. Schunk, 2000). Finally, a pure Lagrangian frame of reference implies that
our mesh moves with the material. This formulation is quite common in solid mechanics and is
one advocated here for truly solid regions.

2.1.3 Problem Physics and Thermophysical Properties

This brief section summarizes the physics capabilities in Goma and the thermophysical properties
and constitutive equations available to the user. The rest of the manual is designed to greatly
expand on all material parameter options, boundary condition options, and equation options;
perusing Chapter 4 and Chapter 5 is recommended to extract more detail.

The class of problems treated by Goma are those described by any one or a combination of the
incompressible form of the momentum conservation equation for generalized Newtonian fluids,
the momentum conservation and differential stress constitutive equations for viscoelastic fluids,
saturated and unsaturated flow equations cast for rigid or deformable porous media, the energy
conservation equation, the equations of quasi-static equilibrium of an elastic solid, and any

20 Revised: 6/12/13

2.1 Program Features

number of additional or auxiliary species convection-diffusion-reaction equations. Goma has
been tested with the following types of fluid mechanics, solid mechanics, and heat transfer
problems: (a) mixed convection with mesh parameterization of an isotherm, (b) melting, with a
parameterization of the liquidus and solidus isotherms, (c) coating and related flows (slide
coating, curtain coating, etc.), (d) polymer processing (viscoelastic) flows (e.g. fountain flow,
planar and axisymmetric extrusion, simple mold filling, contraction flow), (e) neutral or charged
species transport in multicomponent concentrated systems, (f) partially saturated flow in
poroelastic systems, (g) suspension flows, (h) drying and shrinking of gelled polymer films (with
creep and elastic recovery), and (i) microfluidic systems with fluid-structure interaction (e.g.
MEMS device performance).

Thermophysical properties in the bulk for all equations may be taken as constant or variable, with
dependencies on any of the dependent and independent variables of the problem. General
property variation models of this sort can be implemented with a user-defined subroutine
capability. Moreover, a growing number of often-used standard models are supported within the
core routines. These include a Carreau-Yasuda model for the generalized Newtonian viscosity and
a Boussinesq source term for the fluid momentum equation that provides a means for simulating
flows with thermal and solutal buoyancy. A plethora of other constitutive models and properties
are available, including viscoelasticity, elastoviscoplasticity, nonFickian diffusivity, etc.

To enhance the capability for modeling problems in capillary hydrodynamics, e.g., coating flows,
a boundary condition expressing the normal stress balance for two-dimensional Cartesian and
axisymmetric problems has been implemented and tested. When capillary forces are activated, a
pressure jump term (proportional to the mean curvature) is added to the normal component of the
momentum flux balance at specified fluid material interfaces in a natural fashion. At three-phase
boundaries (points in two dimensions) a contact angle condition and a surface tangent force
condition may be applied. The former is used in place of a specified position on the mesh motion
equations and is best used to set static and dynamic contact angles, and the latter is an additional
endpoint force which is added to the momentum balance, necessitated because the curvature term
is integrated by parts. The current version of Goma also includes the ability to model tangential
shear forces along capillary surfaces, i.e., those originating from surface tension gradients caused,
for example, by variations in temperature or species concentration. To access this capability
requires a constitutive equation for the surface tension. A powerful low-level capability has been
implemented which allows the user to select which degree of freedom, or variable, is associated
with a particular boundary condition. Such a capability is useful at dynamic contact lines, where it
is often desirable to replace the liquid-phase momentum equations with auxiliary constraint
conditions.

Generalized interphase boundary conditions that allow for discontinuous field variables are
supported through a multiple degree-of-freedom capability. The prime targets for this capability
include flowing vapor-liquid equilibrium problems for which there are concentration and velocity
jumps between phases due to change in density and solute partitioning through the phase diagram
and multiphase/multicomponent corrosion problems. A series of boundary conditions which

Revised: 6/12/13 21

2.1 Program Features

allow for the application of ideal and non-ideal vapor/liquid equilibrium (e.g. Raoult’s law and
Flory-Huggins theory), latent heat release/adsorption, and discontinuous velocity components due
to evaporation/condensation have been implemented. In the future this capability can be extended
to thermal contact resistance, which often involves a temperature jump at an interface.

Recently the solid mechanics module of Goma, which was originally installed as a part of the
pseudo-solid ALE mesh motion algorithm, has been exploited to solve problems in transport in
deformable porous media and other outstanding problems of elastohydrodynamics. For modeling
flow in non-deformable porous media, the Brinkman terms in the fluid momentum equations (cf.
Gartling, et. al., 1996) may be activated. Since Goma 2.0, generalized Darcy transport equations
for multiphase components (solid, liquid, gas) have been added and can be used for simulations of
deformable poroelastic media. For incompressible but deformable solids, a pressure term was
added to the solid momentum balance (e.g. rubber). In continuous shrinking or swelling solids,
the dilation is proportional to changes in solvent concentration. In deformable porous media, the
solid deformation is coupled to the pressure in the fluid-filled interstices of the porous matrix.
Several boundary conditions exist to apply normal tractions (i.e. compressive, tensile, or shear
boundary forces) to solid surfaces. To effectively simulate coupled fluid/solid interaction
problems, boundary conditions which balance the surface tractions exerted by the liquid and solid
phases at the common interface have been incorporated as have been the appropriate interface
impregnation/expulsion conditions at boundaries between porous and continuous media.

A complete rewrite of the species transport equations has been undertaken since the release of
Goma 2.0 that allows for generalized phase/species formulations on multimaterial problems.
Accommodating an arbitrary number of species, each of which can exist in an arbitrary number of
phases, was the goal of this development in order to model corrosion and charged species
transport.

Of course there are many more material property models and constitutive equations, specialized
boundary conditions, and more esoteric differential equations that can be solved for just about any
mechanics problem. Many of these capabilities are not cited in this manual because they were
under development at the time of publication. Interested readers should inquire about the status of
the following capabilities: generalized solid-model geometry features, wetting and spreading
models for Eulerian front tracking schemes, Eulerian/Eulerian fluid-structural interaction
capability, multiphase porous energy equation, Generalized surface and volume user-defined
Lagrange multiplier constraints, and much more.

2.1.4 Advanced capabilities

Several developments in Goma that enable advanced engineering analysis of complex systems
have been completed since the last major release. These developments include a complete,
generalized capability of automated parameter continuation (zeroth-order, first-order, arclength,
multiparameter, user-defined parameter continuation, etc.) using the LOCA library (Salinger, et.
al., 2002), linear stability analysis of any dynamic system using normal modes, and augmenting

22 Revised: 6/12/13

2.2 Numerical Methods

condition capability. It is recommended that the user consult a separate manual (Gates et. al.,
2000; contact authors for a more recent version) for a complete user description of these features.
The input record sections required to activate these features are not covered in this document.

2.2 Numerical Methods

With over 150 different boundary conditions for 70 plus differential equation types, Goma’s
algorithms are very extensive for any brief discussion. In this section we simply point out the
foundation algorithms. A developer’s manual, advanced capabilities manual, and tutorial memos
can be consulted for more details (see Goma Document List in the Appendix for the citations.).

Goma is based primarily on the Galerkin/finite element method. The element library currently
includes (in two dimensions) 4- and 9-node isoparametric quadrilaterals (i.e., Q1 and Q2
interpolations) with available interpolations for linear discontinuous (P1) or piecewise constant
(P0) variables, and (in three dimensions) 8-node isoparametric hexahedral elements and 27-node
bricks, also available with piecewise constant interpolations. The overall solution algorithm
centers around a fully-coupled Newton-Raphson iterative scheme for solving the nonlinear
algebraic equations which results from the finite element discretization. That is, all active
equations and boundary conditions are solved simultaneously in a single matrix system at the
same time plane and during the same Newton iteration. The sparse matrix system is stored in a
central element-level matrix data structure that is injected into one of three sparse matrix formats
as dictated by the matrix solver chosen. The three formats are modified sparse row, MSR or
compressed row format (Hutchinson, et. al., 1995, Schunk and Shadid, 1992), the variable block
row, or VBR, format (see Heroux, 1992), or the frontal-solver element-level format (cf. Hood,
1976). If the matrix system is not too poorly conditioned, then iterative solvers of the generalized
preconditioned conjugate gradient-type can be used to solve the system (see Tuminaro, et. al.,
1999, Schunk and Shadid, 1992). A new matrix-services/solver-services library known as
TRILINOS (http://www.cs.sandia.gov/Trilinos), has been installed to handle all iterative solver
and preconditioner options. This package has greatly extended the robustness of iterative solvers
to the class of problems that Goma solves. Virtually all problems and all finite element
formulations are now solvable with these iterative schemes (see Schunk, et al., 2002). If all else
fails, Goma deploys a suite of direct solvers that, even though not always efficient for large three-
dimensional problems, will always get a solution at the current Newton iteration. These solvers
are known as Sparse 1.3 (lu), a classical LU decomposition (Gaussian elimination) method, and
two frontal solvers, Umfpack (umf) and front; these are discussed in the next section.

The Galerkin least squares (GLS) method for pressure stabilization of Hughes and Franca (1987)
has also been added to Goma. The GLS method adds the momentum residual, weighted by the
gradient of the Galerkin weight function, to the standard Galerkin continuity equation, thus
providing a diagonal term for the pressure. This is a first-order convergent and consistent method
that enables the use of iterative solvers for incompressible equations over the entire range of
Reynold’s numbers.

Revised: 6/12/13 23

2.3 Portability, Software Library Infrastructure, and Code

Accessibility

The overall differential-algebraic system of equations may be advanced in time with implicit
time-integration techniques (simple backward Euler and Adams-Bashforth predictor, trapezoidal
corrector algorithms for fluid systems, species transport and energy transport; and Newmark-Beta
algorithms for solid dynamics). Time marching offers an alternative, albeit indirect, route to
attaining solutions to steady equations, as well as providing the capability of simulating process
transients directly. Automatic time step control based on current truncation error is also available.

Perhaps the most complicated part of the algorithm is the construction of the Jacobian sensitivity
matrix. Because the mesh point positions are actually unknowns in a free or moving boundary
problem, that matrix must include sensitivities of each weighted residual equation with respect to
each of the mesh variable unknowns that can affect the value of the residual. Unfortunately,
almost every term of the bulk equations and many boundary conditions contribute to this
sensitivity. This occurs mainly through gradient operators and surface normal and tangent vectors
(see Kistler and Scriven, 1983) and through dependencies on mesh position of the determinant of
the elemental Jacobian transformation matrix that maps between a fixed unit element and any
element in the computational domain. Great care has been taken to include analytical expressions
for all of these mesh sensitivities. However, some of this task inevitably falls to the user when
implementing user-defined boundary conditions, material property models, and constitutive
equations, particularly when any of these quantities depends directly on spatial position or spatial
gradients of other variables. In order to maintain the strong convergence properties of Newton’s
method, these sensitivities must be specified in those user-defined routines. To aid in this task, a
debugging option is available which computes a numerical finite-difference approximation of the
global Jacobian matrix and compares it with its analytical counterpart. This tool enables users and
developers to check the consistency of newly-created equations (whether bulk or boundary
constraints) with their corresponding analytic Jacobian contributions.

2.3 Portability, Software Library Infrastructure, and Code
Accessibility

Goma is written in the C programming language (specifically Kernighan and Ritchie, 1988, C
with some ANSI extensions). It has been ported to a number of UNIX platforms including Solaris
and Linux, with the Linux Enterprise-4 version being the most actively maintained. Most recent
versions are aimed at Red-Hat RHEL5 and RHEL6 levels, almost exclusively. Many of the
machine dependencies in the program have been isolated using C preprocessor directives. Some
of the machine dependencies that occur in the I/O routines are insulated from the user by software
libraries. Building Goma requires EXODUS II v2.02 (Schoof and Yarberry, 1994), SPARSE 1.3
(cf. Kundert and Sangiovanni-Vincentelli, 1988), NetCDF v2.3.2 (Rew, et. al., 1993) libraries,
Umfpack direct solver libraries (Davis and Duff, 1997), and the TRILINOS 10.0 library
(Tuminaro, et. al., 1999; http://software.sandia.gov/trilinos). The first of these is part of the
SEACAS system at Sandia National Laboratories (Sjaardema, 1993); the latter two libraries are
available publicly. Parallel processing is enabled by OPEN-MPI. The user should consult the
build instructions for the most recent library revisitions. The most updated library needs are also

24 Revised: 6/12/13

2.3 Portability, Software Library Infrastructure, and Code Accessibility

made clear in the Goma makefile: Makefile. There are special versions of this makefile for
building for the test suite (Makefile_guts) and debug mode (Makefile_debug). These are
the most general makefiles that are deployed. Generally, pre- and post-processing is performed
outside of Goma, although some post-processing of results is available within the program. This
separation of the functionality permits the use of alternative solid-modeling and mesh-generation
software and visualization packages of choice, insofar as they may be interfaced with the
EXODUS II finite element data model.

Pre-processing options include mesh generation via CUBIT (http://cubit.sandia.gov), PATRAN
(PDA, 1990), and SolidWorks (www.solidworks.com). The latter two require special plug-ins.
These mesh generators currently support and will output a finite element database in the
EXODUS II format.

Post-processing options include BLOT (see the SEACAS distribution, Gilkey and Glick, 1989),
Paraview (www.paraview.org), and Ensight (www.mscsoftware.com.au/products/software/cei/
ensight).

Since Goma is built around the EXODUS II finite element data model, there are numerous
options available for communication with other analysis codes that also exchange data via the
same EXODUS II data model. Recent modifications to Goma permit not only the initialization of
unknown values from an EXODUS II file, but also the ability to incorporate field variables into
the analysis that are not unknowns. For example, the quasi-static and dynamic electromagnetic
fields from codes such as ALEGRA can be used to compute electric fields and current fluxes on a
specified finite element mesh that are input to Goma through the EXTERNAL FIELD data card.

Revised: 6/12/13 25

3 Code Structure and I/O

3 Code Structure and I/O

3.1 Files for Data Input

The Goma file I/O structure is diagrammed in Figure 2. Input to the program is divided into six
categories: (1) command-line options, (2) problem description file, (3) material files, (4) ASCII
continuation/restart file, (5) EXODUS II database file, and (6) sundry material property or
boundary condition table lookup files. Goma is basically set up to run in batch mode, i.e., no input
is required on the command line or after the run command is issued. There are, however, several
command-line switches which can be used to redirect I/O, control the level of I/O, and activate
debugging options.

Figure 2. I/O structure for Goma. Dashed lines indicate that the files or commands are

not required.

The problem-description file is by default called “input” but can be renamed with the -i switch on
the command line. A version of this file is also output as an “echo” file, viz. a prefix “echo”
prepended to the input file name. The echo file is used to verify input into goma, as it clearly
states all default settings for the input file and material files. . The input file itself contains the
general description of the problem and directions to Goma on how to solve it (see Chapter 4). The
file is split into thirteen sections: (1) File Specifications (Section 4.1) which directs I/O, (2)
General Specifications (Section 4.2), (3) Time Integration Specifications (Section 4.3), (4)
Continuation Specifications (Section 4.4), (5) Hunting Specifications (Section 4.5), (6)
Augmenting Condition Specification (Section 4.6), (7) Solver Specifications (Section 4.7), (8)

GOMA

command line options
Problem Description

Default “input”

Material Files
mn.mat

EXODUS II Database
*.exoII

ASCII Continuation/restart file ASCII Continuation/restart file

EXODUS II Database
*.exoII

EXODUS II Databases
with auxiliary nodal fields

echo files for “input”
and *.mat files.

26 Revised: 6/12/13

3.2 Command-line Arguments

Eigensolver Specifications (Section 4.8), (9) Geometry Specification (Section 4.9), (10)
Boundary Condition Specifications (Section 4.10), (11) Rotation Specifications (Section 4.11),
(12) Problem Description (Section 4.12), and (13) Post Processing Specifications (Section 4.13);
this latter section includes breakouts for fluxes and data (Section 4.14), particle traces (Section
4.15) and for volume-based integrals. The file format is described in detail in Chapter 4.
Incidentally, the structure of the data input routines is divided roughly along the same lines as the
input data file itself.

The material description files (using the nomenclature “[material name].mat”) contain all
material property data and material property model and constitutive model specifications. The
names of these files are specified in the problem description file. The format of these files and the
available options are described in Chapter 5. Note that these files are also reproduced as output as
“echo” files, with all default settings specified.

The ASCII continuation/restart files (may have any name) contain an ASCII list of the solution
vector (values of field variables at nodes), which can be used as an initial guess for successive
runs of Goma. The names of these files are specified in the problem description file, but may be
changed with the -c (for input) or -s (for output) command-line options. These restart files are
“recyclable”, in the sense that output from one Goma simulation may be used as input to another
Goma simulation under certain restrictions.

The EXODUS II database files (may have any name but generally end in “.exoII”) contain a
description of the finite-element structure for the current problem. All EXODUS II files contain a
definition of the mesh, material blocks, and boundary sets. In the case of input EXODUS II files
created from mesh generator output, this is the sole content of the file. Output EXODUS II
database files contain a clone of the input EXODUS II mesh information and also contains the
nodal values of all field variables in the solution. The names of these files are specified in the
problem description file, but may be changed with the -ix (for input) or -ox (for output)
command-line options. The only EXODUS II file required when running Goma is the one
containing the current problem mesh. All others are either output for postprocessing or used to
supply auxiliary external fields (e.g. magnetic fields).

3.2 Command-line Arguments

Goma can be run using only the input files (all four listed above) to describe the problem and to
direct the input and output; in this case Goma is run using the command “goma” without any
arguments. However, command-line arguments offer additional flexibility for redirecting input or
output and for adjusting common run-time parameters. The general command line for running
Goma is:

goma [-nd] [-se fn] [-so fn] [-i fn] [-c fn] [-s fn] [-ix fn] [-ox fn] [-d int]

[-n int] [-r dbl] [-a args] [-restart fn] [-h] [-ts dbl] [-te dbl] [-cb dbl] [-ce dbl]

[-cd dbl] [-cn int] [-cmin dbl] [-cmax dbl] [-cm int] [-ct int] [-c_bc int]

Revised: 6/12/13 27

3.2 Command-line Arguments

[-c_df int] [-c_mn int] [-c_mp int] [-bc_list] [-v]

Here fn denotes “file name”, int denotes “integer”, dbl denotes “float or double” and args denotes
multiple sub-options or file names. The input line is parsed into options, which are preceded by a
single hyphen (-) and arguments, which normally are fn, int, or dbl not preceded by a hyphen. The
default, if no options are specified, is the input option (e.g. “goma input.alt” is the same as
“goma -i input.alt”). The following is a list of the command-line options and their
descriptions (two ways are shown to specify each option, an abbreviated and a verbose form).

-a args -aprepro args

Preprocess input files through the APREPRO preprocessor [with args
as arguments to APREPRO] before reading into Goma. With this
option, Goma performs a UNIX system() call to run APREPRO
which will preprocess the input file and the material data files. The
APREPRO input file is preprocessed from “input” or the filename
specified by the -input option and written to “tmp.input”. Likewise,
the material data files are preprocessed from “[material name].mat”
to “tmp.[material name].mat”. After the “-a” on the command line,
options for APREPRO are preceded by two hyphens (--). For exam-
ple, the command line “goma -i input.pre -a CONSTANT1=0.2 --vd”
will preprocess “input.pre” and the material data files specified in
input.pre using APREPRO, and will pass the argument -vd (which
prints version number and values of all variables to the screen) and
CONSTANT1=0.2 (which sets the variable CONSTANT1 equal to
0.2 for preprocessing) to APREPRO; the preprocessed files will be
“tmp.input” and “tmp.[material name].mat”.)

-c fn -contin fn

Change the name of the ASCII continuation/restart input file (speci-
fied in Problem-Description File) to fn, (e.g. “goma -c old.soln.dat”
uses the file “old.soln.dat” as the ASCII input file). Note that this
option has no effect if the initial guess is not read from the ASCII file,
i.e. unless “Initial Guess = read” is specified in the input file.

-d int -debug int

Change the debug flag to int. This option is convenient when debug-
ging and the user wants to see more output from Goma. (e.g. “goma -
d -2” will run Goma with the Debug_Flag set to -2). Higher values
generally produce more output.

-h -help

Prints a helpful message with brief descriptions of these command

28 Revised: 6/12/13

3.2 Command-line Arguments

line options.

-i fn -input fn

Redirect Goma to read the problem description file from fn. The nor-
mal default option is to read from a file named “input”.

-ix fn -inexoII fn

Redirect Goma to read the input EXODUS II database file (often
called “in.exoII”) from fn.

-n int

Change the maximum number of Newton iterations to int. This is
especially convenient for setting the number of iterations to zero so
that Goma just runs the post-processor on the set of input data.

-nd -nodisplay

Do not display the run-time information on the screen. With this
option, Goma sends the stdout and stderr output to temporary files
that are removed at the end of the run. This command takes no argu-
ments.

-ox fn -outexoII fn

Redirect Goma to write the output EXODUS II file (often called
“out.exoII”) to fn.

-r dbl relax dbl

Change the value of the Newton relaxation parameter to dbl. This is
convenient if a few Newton steps with relaxation are desired before
using full Newton. (e.g. “goma -r 0.1” will use Newton’s method with
updates one-tenth of the normal value.

-s fn -soln fn

Redirect Goma to write the output ASCII file (normally called
“soln.dat”) to fn.

-se fn -stderr fn

Redirect the standard error from Goma to fn. This output is com-
prised of more urgent diagnostic error and timing messages.

-so fn -stdout fn

Revised: 6/12/13 29

3.2 Command-line Arguments

Redirect the standard output from Goma to fn. This output is com-
prised of less urgent informational messages.

-ts dbl Start time of simulation.

-te dbl End time of simulation

-cb dbl Continuation: Start value (see Gates et al., SAND2000-2465)

-ce dbl Continuation: Final value (see Gates et al., SAND2000-2465)

-cd dbl Continuation: Path step, ds (see Gates et al., SAND2000-2465)

-cn dbl Continuation: Max number of path steps (see Gates et al., 2000)

-cm int Continuation: Method (see Gates et al., 2000)

-ct int Continuation: Type (see Gates et al., 2000)

-c_bc int Continuation: Boundary condition ID (see Gates et al., 2000)

-c_df int Continuation: BC Data Float ID (see Gates et al., 2000)

-c_mn int Continuation: Material ID (see Gates et al., 2000)

-c_mp int Continuation: Method property ID (see Gates et al, 2000)

-bc_list List BC tags for continuation (see Gates et al., 2000)

-v --version Print code version and exit

NOTE: To get the most up-to-date list, simple issue the “goma -h” command at the command

line. Also note that the continuation input parameters are explained in the Advanced

Capabilities Manual (Gates et al. 2000 or newer version).

The primary purpose of the command-line options is to allow the user an easy way to redirect the
input and output of Goma or to quickly change problem specifications. Most of the options are
overrides of information in the problem description file, so in some cases it may be easier to edit

30 Revised: 6/12/13

3.2 Command-line Arguments

the problem description file than to use command-line arguments.

Revised: 6/12/13 31

4 Data Input-- Problem Description File

4 Data Input-- Problem Description File

The input file for Goma contains the overall description of the problem to be solved together with
instructions on solution strategy. The file (cf. sample in Figure 3) is split into sixteen sections: (1)
File Specifications (Section 4.1) which directs I/O, (2) General Specifications (Section 4.2), (3)
Time Integration Specifications (Section 4.3), (4) Continuation Specifications (Section 4.4), (5)
Hunting Specifications (Section 4.5), (6) Augmenting conditions (Section 4.6), (7) Solver
Specifications (Section 4.7), (8) Eigensolver Specifications (Section 4.8), (9) Geometry
Specifications, (Section 4.9) (10) Boundary Condition Specifications (Section 4.10), (11)
Rotation Specifications (Section 4.11), (12) Problem Description (Section 4.12), (13) Post
Processing Specifications (Section 4.13), (14) Post Processing Fluxes and Data (Section 4.14),
(15) Post Processing Particle Traces (Section 4.15) and (16) Volumetric Integration (Section
4.16). Sections (1), (2), (3), (7), (10), (12), and (13) are required. The rest are optional, depending
on the problem type being solved.

Each section in this chapter discusses a separate part of the input file specification and it indicates
the data cards or input records that may be used, followed by the options available for each
individual record (or line in the file) and the necessary input data/parameters. All input data are
specified in a free field format with successive data items separated by blanks or tabs. In this
version of the user’s manual, a new format has been instituted in which each record is presented in
a template structure. This template has eight parts: 1) a title, which is also the card name, 2) a
syntax, which is enclosed in a framed box and shows the proper contents of the card, 3) a
Description/Usage section, which presents the user options and descriptions of proper input
records, 4) an Example, 5) a Technical Discussion to provide relevant information to help the user
understand how to select from among various options or how to properly determine the desired
parameters, 6) a Theory to provide an understanding of the physics and mechanics that have been
implemented or are being exercised, 7) a FAQs section to present important user experience, and
8) a Reference section to identify citations and/or provide background information to the user.
This is a more lengthy but a more complete form for documenting and instructing users of Goma.

The syntax entry denotes a unique string for each input record which Goma parses in the input
file. All words in these unique strings are separated by a single white space and because the code
parses for these exact strings, the parser becomes case sensitive. The identifying string for a
particular specification is followed by an ‘=’ character. Following this character will be all
additional data for that record, if any. In the syntax box, this additional data is symbolically
represented by one or more variables with some appropriate delimiters. Typically, the user will
find a variable called model_name enclosed in curly braces ‘{}’; this would then be followed by
a description of specific options for model_name in the Description/Usage section. The curly
braces indicate a required input and that the user must select one of the offered options for
model_name. Required parameters, if any, for the model option are enclosed in angle brackets ‘<
>’, while optional parameters for model_name are enclosed in square brackets ‘[]’. Following
the ‘=’ character, the user may use white space freely between and among the remaining
parameters on the command line.

32 Revised: 6/12/13

4 Data Input-- Problem Description File

The nature of the input parser allows the user to freely comment the input deck in any way, so
long as the character strings in the comments do not contain the exact strings described in this
section of the manual at the beginning of the comment line. Simply for the sake of uniformity, it is
recommended that a comment card convention be adopted, i.e., placing some delimiting symbol
(e.g., $, #, \, etc.) at the beginning of each comment line. Moreover, employing some of the basic
text processing capabilities provided in the ACCESS system (Sjaardema, 1993) makes it possible
to connect both the model generation input file, e.g., FASTQ or CUBIT, with the input deck for
Goma. For example, the “include” statement in APREPRO (Sjaardema, 1992) makes it
convenient to include geometrical information contained in a FASTQ input file into the Goma
input file for use with commands like PLANE and SPLINE that make use of global problem
geometry. APREPRO also enables a user to generate customized model parameterizations with
the algebraic preprocessing capability (demonstrated in Goma Tutorials). Finally, employing a
text preprocessor like APREPRO enables the analyst to attach more meaningful labels to entities
such as side sets, node sets and element blocks than the internal names (which are simple integer
identifiers).

The order of the input cards is significant; omitting a required card will often result in an error
message from Goma. To avoid such errors, a good strategy is to copy a current version of a
working input file and then make changes to it. However, as noted below, some cards are optional.
Some file sections, such as boundary condition specification section and equation specification
section, are not order dependent, but number dependent, as only the number of boundary
conditions or equations which are specified by the “Number of BC” and “Number of EQ” cards
will be read (regardless of the number of cards in the file). That is, after the specified number of
individual equation or boundary condition cards is read, any remaining cards are ignored. Figure
3 shows a sample problem description input deck, indicating some optional and required cards
(lines). All possible cards and card sections are not identified in this figure as they are too
numerous. The remainder of this chapter describes each card in detail.

A final note to the user (and reader) of this manual pertains to backward compatibility and
obsolescence. There are several input records that have been superseded or have simply been
dropped from usage as the software has evolved. Rather than eliminate all of these inputs cards
immediately and cause some head-scratching about input cards which exist in users old input
decks, the decision was made to leave these cards in the current manual and simply document the
fact that they are no longer used (and in some cases why this is so). In the CD version of the
Goma Document System, these cards will be removed at a future date and no reference made to
them again.

Revised: 6/12/13 33

4 Data Input-- Problem Description File

Figure 3. Sample problem description input deck. Italic type denotes required data cards

(lines) and plain type denotes optional cards or cards that in number correspond to the

designation above them, e.g., “Number of BC” or “Number of EQ”. (a) These cards are

optional if the “steady” option is chosen on the Time Integration card. (b) This group of

cards is repeated for each different material block in the EXODUS II database file. (c)

These cards are all optional and can appear in any order. Please check this manual for

numerous new post processing options.

Problem Description

------- -----------

Number of Materials = 1

MAT = sample 1

Coordinate System = CARTESIAN

Element Mapping = isoparametric

Mesh Motion = ARBITRARY

Number of bulk species = 1

Number of EQ = 5

EQ = momentum1 Q2 U1 Q2 1 1 1 1 1 0

EQ = momentum2 Q2 U2 Q2 1 1 1 1 1 0

EQ = continuityP1 P P1 1 0

EQ = mesh1 Q2 D1 Q2 0 0 0 1 0 0

EQ = mesh2 Q2 D2 Q2 0 0 0 1 0 0

EQ = energy Q2 T Q2 0 0 0 1 0 0

EQ = species Q2 Y1 Q2 0 0 0 1 0 0

END OF EQ

.

.

.

END OF MAT

Post Processing Specifications

---- ---------- --------------

Stream Function = yes

Streamwise normal stress = no

Pressure contours = yes

First Invariant of Strain = yes

Second Invariant of Strain = yes

Third Invariant of Strain = yes

Mesh Dilatation = no

Navier Stokes Residuals = yes

Moving Mesh Residuals = no

Mass Diffusion Vectors = no

Mass Fluxlines = no

Energy Conduction Vectors = no

Energy Fluxlines = no

Time Derivatives = no

Mesh Stress Tensor = no

Mesh Strain Tensor = yes

Porous Saturation = yes

Bulk density of species in porous media = yes

Gas concentration of species in porous media = yes

Liquid concentration of species in porous media = yes

Gas phase convection vectors in porous media = yes

Liquid phase convection vectors in porous media = yes

Porosity in deformable porous media = yes

Capillary pressure in porous media = yes

Lagrangian Convection = no

User-Defined Post Processing = no

FEM File Specifications

--- ---- --------------

FEM file = in.exoII

Output EXODUS II file = out.exoII

GUESS file = contin.dat

SOLN file = soln.dat

Write intermediate results = no

General Specifications

------- --------------

Number of processors = 1

Output Level = 0

Debug = 0

Initial Guess = zero

Initialize = VELOCITY1 0 0.

External Field = J_FIELD Q2 f.exoII

Time Integration Specifications

---- ----------- --------------

Time integration = steady

delta_t = 6.e-03

Maximum number of time steps = 100

Maximum time = 105

Minimum time step = 1.e-9

Time step parameter = 0.

Time step error = 0.001

Printing Frequency = 1

Solver Specifications

------ --------------

Solution Algorithm = lu

Preconditioner = poly

Matrix Scaling = none

Matrix residual norm type= r0

Matrix output type = none

Matrix factorization reuse= recalc

Matrix factorization overlap= none

Matrix auxiliary vector=resid

Matrix drop tolerance=0

Matrix polynomial order=3

Size of Krylov subspace=30

Orthogonalization = classic

Maximum Linear Solve Iterations = 500

Number of Newton Iterations = 5

Newton correction factor = 1

Normalized Residual Tolerance = 1.0e-11

Residual Ratio Tolerance = 1.0e-3

Pressure Stabilization = yes

Pressure Stabilization Scaling = 1.

Boundary Condition Specifications

-------- --------- --------------

Number of BC = 2

BC = V NS 4 0.

BC = Y NS 7 1 1.

END OF BC

Pressure Datum 0 0

optional

(a)

optional

(b)

(c)

THESE TWO
CARDS IGNORED

34 Revised: 6/12/13

4.1 File Specifications

4.1 File Specifications

In general, this first section of the main input file is used to direct Goma I/O through a series of
named external files that contain information about the finite element mesh, the initial guess of a
solution vector, and output options for saving solutions for continuation, remesh, etc. The
required and optional input records are as follows:

4.1.1 FEM file

Description/Usage

This required card specifies the name of the EXODUS II finite element mesh file. Any
EXODUS II file name is permissible, as specified below.

<file_name> A file name of the form prefix.exoII. The prefix portion is
any user-specified alpha-numeric string, which can be used
as a problem-type descriptor. Preprocessors and
postprocessors (like AVS) might require the “.exoII” suffix
so it is a required part of the file designation. The maximum
length of the file name is 85 characters.

Examples

Following is a sample card:

FEM file = in.exoII

Technical Discussion

This file contains the finite element discretization of the problem domain. Finite
element mesh files from other preprocessors may be used with Goma as long as a
translator from the preprocessor’s output format to the EXODUS II format is available
to the analyst.

Theory

No Theory.

FAQs

No FAQs.

FEM file = <file_name>

Revised: 6/12/13 35

4.1.2 Output EXODUS II file

References

The EXODUS II format is documented in:

• EXODUS II: A Finite Element Data Model, Schoof, L. A. and V. R. Yarberry,
SAND92-2137, Sandia National Laboratories, Albuquerque, NM.

4.1.2 Output EXODUS II file

Description/Usage

This required card specifies the name of the output EXODUS II file. Any EXODUS II
file name is permissible, as specified below.

<file_name> A file name of the form prefix.exoII. The prefix portion is
any user-specified alpha-numeric string, which can be used
as an output file descriptor.

This EXODUS II file contains a replica of the input mesh and boundary condition
information exactly as it was provided in the FEM file, but has appended to it the
solution field information appropriate to the problem type. If the name of this output
EXODUS II file <file_name> is identical to the name of the input EXODUS II file (as
specified in the FEM file card), then no replication of the input mesh data is performed
and any results are simply appended to it.

Examples

Following is a sample card:

Output EXODUS II file = out.exoII

Technical Discussion

Although allowed, it is not advisable to make this file name the same as the file name
input on the FEM file card.

Theory

No Theory.

Output EXODUS II file = <file_name>

36 Revised: 6/12/13

4.1.3 GUESS file

FAQs

No FAQs.

References

The EXODUS II format is documented in:

• EXODUS II: A Finite Element Data Model, Schoof, L. A. and V. R. Yarberry,
SAND92-2137, Sandia National Laboratories, Albuquerque, NM.

4.1.3 GUESS file

Description/Usage

This required card identifies the input file that provides the initial guess for the solution
vector for continuation or time integration, where

<file_name> Specifies the exact name of the file and can be any file
name.

The file <file_name> is read by Goma only if the value of the Initial Guess (next
section on General Specifications) card is set to read. The current format of this ASCII
file is a list of unformatted floating point numbers (the solution variable followed by
the residual value for that degree of freedom) in the order of the unknown map; this is
the same format as the file described in the SOLN file card. A solution file from a
previous simulation may be used.

Examples

Following is a sample card:

GUESS file = contin.dat

Technical Discussion

This file is typically a copy of the SOLN file thus being an exact replica of it. It
represents the only way to continue a previous solution from an ASCII file. Typically a
continuation proceeds from a converged solution but the result from an intermediate
solution could also be used; the user is cautioned about the potential difficulties of
restarting from non-converged solution. (See Initial Guess card about (re-)starting from
a binary file.)

GUESS file = <file_name>

Revised: 6/12/13 37

4.1.4 SOLN file

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.1.4 SOLN file

Description/Usage

This required card identifies the ASCII output file that will provide the initial guess for
continuation or time integration, where

<file_name> Specifies the name of the output file, or if no file is desired,
a value of no or none should be entered.

The current format of this ASCII file is a list of unformatted floating point numbers that
includes every degree of freedom in the problem in the order specified in the unknown
map. Other information (residual for that degree of freedom) may appear beyond the
first column of numbers in this file that is sometimes useful in determining the name
and location of the corresponding degree-of-freedom. If no or none is used in place of
the file name, no ASCII information is written.

Examples

Following is a sample card:

SOLN file = soln.dat

Technical Discussion

This file represents the primary ASCII output of the Goma solution vector and the
primary way to continue or restart a solution from an ASCII file. (See Write
Intermediate Solutions for related information.) When a continuation run is performed,
this file is copied into the file specified in the GUESS file input card.

SOLN file = <file_name>

38 Revised: 6/12/13

4.1.5 Write Intermediate Results

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.1.5 Write Intermediate Results

Description/Usage

This optional card controls the output of intermediate results. The permissible values
for this card are

yes The code will output the latest Newton iteration to a file
named ‘tmp.i.d’, where i is the Newton iteration number.
The format of tmp.i.d will be similar to the ASCII results
data described for the GUESS file and SOLN file cards.
Also, the output EXODUS II database (see the Output
EXODUS II file card) will accumulate the intermediate
iterations as time planes of the solution.

no No intermediate results are written; only the last Newton
iteration is written to the file named in the SOLN file card,
and only the final converged iteration is output to the
EXODUS II file.

Examples

Following is a sample card:

Write Intermediate Results = no

Write Intermediate Results = {yes | no}

Revised: 6/12/13 39

4.1.6 Write initial solution

Technical Discussion

This file is useful to guard against machine crashes or accidental job kills, particularly
for very large problems, as it can be used to restart a simulation (by using this file as the
Guess file). The intermediate results in the output EXODUS II database can be a useful
debugging tool, giving the analyst the ability to use highly relaxed Newton iterations to
see how a free boundary problem diverges.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.1.6 Write initial solution

Description/Usage

This optional card controls the output of an initial solution prior to the start of a time
dependent simulation. The permissible values for this card are:

yes This value sets the flag WRITE_INITIAL_SOLUTION variable
to “TRUE”. The initial solution vector will be written to an
EXODUS II file and to an ASCII file (if the number of
processors is not greater than DP_PROC_PRINT_LIMIT,
currently set to 4 in rf_io.h).

no No initial solution is written.

Examples

Following is a sample card:

Write Initial Solution = yes

Write initial solution = {yes | no}

40 Revised: 6/12/13

4.2 General Specifications

Technical Discussion

This option is useful to activate when help is desired in debugging the startup portion of
a transient simulation.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.2 General Specifications

This section of input records covers additional I/O requests and specifications, including parallel
file I/O information, initial-guess directives (viz., whether a restart comes from a neutral file or
another exoII file), individual field variable initialization, debugging options, developer
diagnostic options, etc. This section and several of its input records are required, as indicated
below.

4.2.1 Number of processors

Description/Usage

This card is no longer used in Goma; it is defunct. Input decks can safely remove this
card without adverse effects as the input parser no longer looks for this as an input
string.

Examples

No examples.

Number of processors = <integer>

Revised: 6/12/13 41

4.2.2 Output Level

Technical Discussion

As the full implementation of parallel Goma has been achieved, this card is no longer
required. The number of processors is designated on the command line, when brking
the mesh during domain decomposition, on the mpirun command line when executing
Goma and on the fix command line when reassembling solution files calculated on
decomposed meshes.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.2.2 Output Level

Description/Usage

This optional card specifies the level of diagnostic information output to the file

stderr. The permissible values for <integer> are 0 through 4, depending on the level
of informational (debugging) output desired; higher values of the output level will
produce more diagnostic information on the stdout and stderr output channels.
The default output level is 0. Specific output is summarized below.

Level Results Output

0 No diagnostic output (default).

1 Identifies the degree of freedom, the solution variable, and
node at which the maximum value of norm is present.

2, 3, 4 Currently unused; available for developer output
specification.

Output Level = <integer>

L∞

42 Revised: 6/12/13

4.2.3 Debug

Examples

Following is a sample card:

Output Level = 1

Technical Discussion

This specification allows the developer a means to output specific information that
would be helpful in diagnosing problems in the software. Currently, the output options
are limited.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.2.3 Debug

Description/Usage

This optional card specifies the level of information output to files stdout and
stderr. The permissible values for <integer> are -3 through 4, depending on the level
of informational (debugging) output desired; higher values of the output level will
produce more diagnostic information output on the stdout and stderr output
channels. The default level is 0. Specific results produced for each level are
summarized below. The user should exercise caution in using values other than the
default for problems with large numbers of unknowns as the volume of information
increases very quickly.

Level Results Output

0 No output (default).

Debug = <integer>

Revised: 6/12/13 43

4.2.3 Debug

1 Logs activity as the code does problem setup, including setting
parameters for the EXODUS II database, major array allocation
addresses and sizes, boundary-condition (BC) conflict-
resolution information, and identification of the rotation
conditions at every node with a boundary flag. Prints out surface
boundary integral setup information. Lists matrix and solver
information for each solution step.

2 Prints same information as level 1, plus provides a summary of
BC type information for each BC and logs the beginning and
end of matrix fill operations.

3 Prints same information as level 2, but also prints a list of
variables/unknowns at each node.

4 Prints same information as for level 3.

-1 Logs activity as the code does problem setup and prints out
surface boundary integral setup information as is done for mode
1. Triggers a comparison of the analytical Jacobian and the
numerical Jacobian in un-scaled form, which can be used to
check the compatibility of the analytical residual equations and
Jacobian. Prints results only if the analytical and numerical
Jacobian are different. Does not solve any equations; terminates
after Jacobian print out.

-2 Same initial information as for level -1. Triggers a comparison
of the analytical Jacobian and the numerical Jacobian scaled by
the sum of each row of the analytical Jacobian (this helps
suppress small errors in large Jacobian entries). Prints results
only if the analytical and numerical Jacobian are different.

-3 Similar to level -2 except each row is scaled by the diagonal
value which is usually the largest. Prints results only if the
analytical and numerical Jacobian are different.

Examples

Following is a sample card:

Debug = -2

Technical Discussion

For options -1, -2, -3, viz. numerical Jacobian checking, the user must take care when
interpreting the cited differences in the numerical and analytical Jacobian. The

44 Revised: 6/12/13

4.2.3 Debug

comparison is made by perturbing each variable and comparing the numerical Jacobian
computed between the perturbed and unperturbed states to the analytical Jacobians at
the two states. A difference is deemed significant if the numerical Jacobian falls outside
the band between the two analytical values with an additional allowance for roundoff
error. It is the roundoff error in the residual that is the most difficult for the Jacobian
checker to estimate. This is particularly true for problems with zero initial conditions
since it is impossible to determine the scale of a velocity, for example, if all the values
of velocity are zero. For this reason, it is often better to use a nonzero initial condition
or a scaled problem (with values order unity) when using the Jacobian checker.

Currently, there are two parameters output by the Jacobian checker that can help the
user decide on the significance of the entry. The first is the relative change in the
analytical residual. This quantity, labeled daj, is the percentage of the acceptance band
that comes from changes in the analytical Jacobian from the unperturbed to perturbed
states. For a non-linear dependency, the difference between the analytical Jacobians
will be significant and it is reasonable to expect that the numerical Jacobian should fall
within the band. If the analytical Jacobian is nearly constant over the perturbation, the
accuracy of the check becomes increasingly dependent on knowing the roundoff error
in the residual. So, as daj gets closer to unity, the user can have more confidence that
the entry is significant.

The second parameter is a confidence measure that is the deviation between the
numerical jacobian and analytical values divided by the expected value of the deviation
based on roundoff error. Since the roundoff error is only known approximately, this
value, called conf, is only a qualitative measure of the confidence. A conf value of 100
means that the deviation between the numerical jacobian and the analytical values is
100 times larger than the expected deviation based on roundoff error.

Here is a sample of output from a convective heat transfer problem, using the -2 option

Eqdof=92 T_0 n=31 Vardof=95 T_0 n=32 x=0
dx=0.0001 aj=-0.008188 nj=-0.008126 aj_1=-0.008188 d_aj=0
conf=1.889e+06

 >>> QCONV on SSID=1

This entry can be read as follows: The sensitivity of global equation number 92, which
happens to be the T_0 energy equation at node 31, with respect to the temperature
variable at node 32 (variable global degree of freedom number 95) has an analytical
Jacobian of -0.008188 at the unperturbed state and a computed numerical Jacobian of
0.008126. The analytical jacobian at the perturbed state is -0.008188. For this problem
the change in the analytical Jacobian is zero between the unperturbed and perturbed
states, so daj is zero. But even though the difference is small between the analytical and
numerical values, it is huge relative to the expected roundoff error, with the deviation
being 1.889e+6 times the deviation attributable to roundoff error.

Revised: 6/12/13 45

4.2.4 Number of Jacobian File Dumps

For each node where a deviation is found, the side boundary conditions applied at the
node are printed, as shown above. If one of these boundary conditions are applied to the
equation that shows an error and have the same dependency that is showing the error,
this boundary condition is flagged as shown for the QCONV boundary condition
above.

Before the user/developer concludes that there is a discrepancy in the analytical
Jacobian, a few things should be tried:

• Giving the problem a nonzero initial guess, either by reading in a STEADY state
solution, if one exists, or on transient problems using the “one” option on the
Initial Guess card. Sometimes this will make many differences disappear.

• Checking whether the nodes cited in the difference outputs are boundary nodes.
Specifically, if they are boundary nodes on which Dirichlet boundary conditions
are specified, artificial errors can occur.

• Also, if you are in doubt that there are not reported errors, put one in by a 10
percent perturbation to the residual. The Jacobian checker should hit on those
errors and report them to you.

• Check the settings in mm_numjac.h.

Theory

No Theory.

FAQs

See troubleshooting tips for Numerical Jacobian checking in Technical Discussion.

References

No References.

4.2.4 Number of Jacobian File Dumps

Description/Usage

This routine will dump a serial machine independent binary file out to disk containing
the Jacobian. The file is meant to be used by the auxiliary program, checkGomaJac, to

Number of Jacobian File Dumps = <integer>

46 Revised: 6/12/13

4.2.4 Number of Jacobian File Dumps

compare two versions of the Jacobian. Ancillary data meant to enhance the printouts in
checkGomaJac are also output to the file. The card takes one mandatory integer
variable.

<integer> If the integer is a positive number, n, then Goma will dump
the first n Jacobians created (for any reason) to the current
directory. If the integer is a negative value, -n, then Goma
will dump a single Jacobian, the n’th Jacobian created, to
the current directory.

 The dumped files are named matrix.000, matrix.001, etc. Overwrites of files are
allowed to occur. The files themselves are written out using the XDR protocol layer
(easy, quick, and machine portable). The VBR format is used to write files out, even if
the internal format used by Goma is MSR. Thus, VBR and MSR formatted Jacobians
may be compared. Frontal Solver Jacobians are not compatible. The algorithm used is
also compatible with parallel jobs using Goma. In other words, the Jacobian file
dumped out for an 8 processor Goma run should be identical to the file dumped out by
a single processor run.

In order to use this feature, it is necessary to compile Goma with the MATRIX_DUMP
flag defined.

To compare two Jacobian files previously dumped out for compatibility, run
checkGomaJac offline:

checkGomaJac matrix1 matrix2

checkGomaJac will compare each entry in the row and column scaled matrices and
print out in an annotated format the entries containing the largest differences.

Examples

Number of Jacobian File Dumps = 2

Technical Discussion

This capability has proven itself to be very useful in tracking changes to the Jacobian
due to differences in the machine architecture, number of processes, and due to changes
in the source code over time. The comparison is done using the standard RTOL, ATOL
logic found in ODE solvers. In other words, a weighting vector of the form,

, (4-1)

is created for each Jacobian entry, . Then, a determination of the difference between
 and by the following formula:

wi ATOL RTOL Ji
1

Ji
2

+()+=

Ji
Ji

1
Ji

2

Revised: 6/12/13 47

4.2.5 Initial Guess

(4-2)

 is also used in the Jacobian column scalings, before the standard row sum scaling is
applied.

Internal Sandia users can find the auxiliary program, checkGomaJac, in the directory /
home/goma/arch/linux/bin on the Linux compute server, and in other ‘arch’
subdirectories for other platforms. External users should contact Goma support staff to
obtain the tool.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.2.5 Initial Guess

Description/Usage

This optional card directs the initialization of the entire unknown vector. Three options
are provided to set the entire solution field to numerical values determined by
{char_string}. Three additional options are available for reading initial values of the
solution vector from data files. The permissible values of {char_string} are:

zero For an initial guess of zero (0.) for each degree of freedom
in the unknown vector.

one For an initial guess of one (1.) for each degree of freedom in
the unknown vector.

random For a random initial guess (between 0. and 1.) for each
degree of freedom in the unknown vector.

Initial Guess = {char_string} [filename]

diffi

Ji
1

Ji
2

–

wi

--------------------------=

wi

48 Revised: 6/12/13

4.2.5 Initial Guess

read To obtain the initial guess by reading the ASCII data file
identified as the GUESS file, which must have initially been
a SOLN file or a tmp_i.d (Write Intermediate Results) file.

read_exoII To obtain the initial guess from the EXODUS II file
specified by the FEM file card that is also used to supply
mesh data. Any extraneous variables in the EXODUS II file
that are not in the list of active variables for the current
problem description are simply ignored.

read_exoII_file file_name

To read the initial guess for the field variables from an
EXODUS II database file different from the initial mesh
database file. The file_name is specified as a single string
following the read_exoII_file keyword. As with the
read_exoII option, any extraneous variables not specified
as active variables for the simulation will be simply ignored.

If this card is omitted, then the default behavior is to assume that a value of zero has
been specified for {char_string}.

Examples

Following are two sample cards:

Initial Guess = zero

Initial Guess = read_exoII_file First_Iteration.exoII

Technical Discussion

This card provides the specification of the initial vector of unknowns in a problem. In
most cases this vector is specified to be identically zero, though in some cases a non-
zero vector may be of value (see Technical Discussion section of Debug card). The first
three options (zero, one, random) employ an internally-generated vector of initial
values, while the read option utilizes the values read from an ASCII solution file (see
SOLN input card) previously calculated by Goma, and the read_exoII options employ
solutions read from binary (exoII) files, not necessarily always generated by Goma.

Theory

No Theory.

FAQs

No FAQs.

Revised: 6/12/13 49

4.2.6

References

No References.

4.2.6

4.2.7 Initialize

Description/Usage

This optional card provides a mechanism to set one of the field variables to a constant
value across the whole domain. Definitions of the input parameters are as follows:

{char_string} Permissible values for this input string are any variable
names identified in source file rf_fem_const.h
beginning at the section labeled Variable Names of
unknowns. Examples include, but are not limited to, the
following (note the shorthand notation for components):

VELOCITY1, VELOCITY2, VELOCITY3 (V123),
MESH_DISPLACEMENT (MD123),
SOLID_DISPLACEMENT (SD123),
MASS_FRACTION, TEMPERATURE, PRESSURE,
VOLTAGE, FILL, LS, POLYMER_STRESS (6
components, 8 modes), VELOCITY_GRADIENT (9
components), SHEAR_RATE, VOLF_PHASE (6
phases), POR_LIQ_PRES, POR_GAS_PRES,
POR_POROSITY, POR_SATURATION, POR_LAST,
LAGR_MULT (LM123), SURF_CHARGE,
EXT_VELOCITY, EFIELD(123), SHELL (4 variables),
SPECIES (7 variables).

For a more comprehensive list, see Technical discussion

below.

<integer> Species number to be initialized if the value of
{char_string} is one of the SPECIES variables (see
Technical Discussion); otherwise, set <integer> to zero.

<float> Value to which the variable should be initialized.

Initialize = {char_string} <integer> <float> [units vary]

50 Revised: 6/12/13

4.2.7 Initialize

Multiple applications of this card are valid; Goma automatically counts the number of
Initialize cards.

Examples

Following is a sample card:

Initialize = VELOCITY1 0 0.

Technical Discussion

This card provides the means to globally set (i.e., the entire problem domain) initial
values for any of the field variables. Since the setting of variables initialized on this
card takes place after reading the initial guess (see function init_vec in file rf_util.c), it
can be used to override the value in the Initial Guess file.

In order to set a field to a specific value in a particular material only, a similar Initialize
capability is provided within each material block. Please check in the Material Files
section of this manual.

Note, the SPECIES_UNK variables are NOT used to initialize any of the species
variables. Rather, the special definitions called SPECIES_MASS_FRACTION,

SPECIES_MOLE_FRACTION, SPECIES_VOL_FRACTION, SPECIES_DENSITY,

SPECIES_CONCENTRATION, SPECIES_CAP_PRESSURE and
SPECIES_UNDEFINED_FORM, having integer representations of 2170 to 2176, and
representing the various Species Types, are the variables used in Goma input or mat
files for this input record. Multiple species are initialized by combining one of these
variable types with the second parameter (<integer>) on this card.

The comprehensive list of keyword variable names can be found in mm_input_util.c, if
you have access to GOMA source code. Search for the function variable_string_to_int.
A snapshot of the initialize-able variables in that routine is shown here:

var = VELOCITY1;

var = VELOCITY2;

var = VELOCITY3;

var = TEMPERATURE;

var = MASS_FRACTION;

var = MESH_DISPLACEMENT1;

var = MESH_DISPLACEMENT2;

var = MESH_DISPLACEMENT3;

var = PRESSURE;

var = POLYMER_STRESS11;

var = POLYMER_STRESS12;

Revised: 6/12/13 51

4.2.7 Initialize

var = POLYMER_STRESS13;

var = POLYMER_STRESS22;

var = POLYMER_STRESS23;

var = POLYMER_STRESS33;

var = SOLID_DISPLACEMENT1;

var = SOLID_DISPLACEMENT2;

var = SOLID_DISPLACEMENT3;

var = VELOCITY_GRADIENT11;

var = VELOCITY_GRADIENT12;

var = VELOCITY_GRADIENT13;

var = VELOCITY_GRADIENT21;

var = VELOCITY_GRADIENT22;

var = VELOCITY_GRADIENT23;

var = VELOCITY_GRADIENT31;

var = VELOCITY_GRADIENT32;

var = VELOCITY_GRADIENT33;

var = VOLTAGE;

var = FILL;

var = SHEAR_RATE;

var = PVELOCITY1;

var = PVELOCITY2;

var = PVELOCITY3;

var = POLYMER_STRESS11_1;

var = POLYMER_STRESS12_1;

var = POLYMER_STRESS22_1;

var = POLYMER_STRESS13_1;

var = POLYMER_STRESS23_1;

var = POLYMER_STRESS33_1;

var = POLYMER_STRESS11_2;

var = POLYMER_STRESS12_2;

var = POLYMER_STRESS22_2;

var = POLYMER_STRESS13_2;

var = POLYMER_STRESS23_2;

var = POLYMER_STRESS33_2;

var = POLYMER_STRESS11_3;

52 Revised: 6/12/13

4.2.7 Initialize

var = POLYMER_STRESS12_3;

var = POLYMER_STRESS22_3;

var = POLYMER_STRESS13_3;

var = POLYMER_STRESS23_3;

var = POLYMER_STRESS33_3;

var = POLYMER_STRESS11_4;

var = POLYMER_STRESS12_4;

var = POLYMER_STRESS22_4;

var = POLYMER_STRESS13_4;

var = POLYMER_STRESS23_4;

var = POLYMER_STRESS33_4;

var = POLYMER_STRESS11_5;

var = POLYMER_STRESS12_5;

var = POLYMER_STRESS22_5;

var = POLYMER_STRESS13_5;

var = POLYMER_STRESS23_5;

var = POLYMER_STRESS33_5;

var = POLYMER_STRESS11_6;

var = POLYMER_STRESS12_6;

var = POLYMER_STRESS22_6;

var = POLYMER_STRESS13_6;

var = POLYMER_STRESS23_6;

var = POLYMER_STRESS33_6;

var = POLYMER_STRESS11_7;

var = POLYMER_STRESS12_7;

var = POLYMER_STRESS22_7;

var = POLYMER_STRESS13_7;

var = POLYMER_STRESS23_7;

var = POLYMER_STRESS33_7;

var = SPECIES_MASS_FRACTION;

var = SPECIES_MOLE_FRACTION;

var = SPECIES_VOL_FRACTION;

var = SPECIES_DENSITY;

var = SPECIES_CONCENTRATION;

var = SPECIES_CAP_PRESSURE;

Revised: 6/12/13 53

4.2.7 Initialize

var = SPECIES_UNDEFINED_FORM;

var = POR_LIQ_PRES;

var = POR_GAS_PRES;

var = POR_POROSITY;

var = POR_TEMP;

var = POR_SATURATION;

var = VORT_DIR1;

var = VORT_DIR2;

var = VORT_DIR3;

var = CURVATURE;

var = BOND_EVOLUTION;

var = SURF_CHARGE;

var = EXT_VELOCITY;

var = EFIELD1;

var = EFIELD2;

var = EFIELD3;

var = ENORM;

var = NORMAL1;

var = NORMAL2;

var = NORMAL3;

var = SHELL_CURVATURE;

var = SHELL_TENSION;

var = SHELL_X;

var = SHELL_Y;

var = SHELL_USER;

var = PHASE1;

var = PHASE2;

var = PHASE3;

var = PHASE4;

var = PHASE5;

var = SHELL_ANGLE1;

var = SHELL_ANGLE2;

var = SHELL_SURF_DIV_V;

var = SHELL_SURF_CURV;

var = N_DOT_CURL_V;

54 Revised: 6/12/13

4.2.7 Initialize

var = GRAD_V_DOT_N1;

var = GRAD_V_DOT_N2;

var = GRAD_V_DOT_N3;

var = ACOUS_PREAL;

var = ACOUS_PIMAG;

var = ACOUS_ENERGY;

var = POR_SINK_MASS;

var = VORT_DIR1

var = VORT_DIR2

var = VORT_DIR3

var = VORT_LAMBDA

var = CURVATURE

var = LAGR_MULT1

var = LAGR_MULT2

var = LAGR_MULT3

var = BOND_EVOLUTION

var = SURF_CHARGE

var = EXT_VELOCITY

var = EFIELD1

var = EFIELD2

var = EFIELD3

var = ENORM

var = NORMAL1

var = NORMAL2

var = NORMAL3

var = SHELL_CURVATURE

var = SHELL_TENSION

var = SHELL_X

var = SHELL_Y

var = SHELL_USER

var = PHASE1

var = PHASE2

var = PHASE3

var = PHASE4

var = PHASE5

Revised: 6/12/13 55

4.2.7 Initialize

var = SHELL_ANGLE1

var = SHELL_ANGLE2

var = SHELL_SURF_DIV_V

var = SHELL_SURF_CURV

var = N_DOT_CURL_V

var = GRAD_S_V_DOT_N1

var = GRAD_S_V_DOT_N2

var = GRAD_S_V_DOT_N3

var = ACOUS_PREAL

var = ACOUS_PIMAG

var = SHELL_DIFF_FLUX

var = SHELL_DIFF_CURVATURE

var = SHELL_NORMAL1

var = SHELL_NORMAL2

var = ACOUS_REYN_STRESS

var = SHELL_BDYVELO

var = SHELL_LUBP

var = LUBP

var = SHELL_FILMP

var = SHELL_FILMH

var = SHELL_PARTC

var = SHELL_SAT_CLOSED

var = SHELL_PRESS_OPEN

var = SHELL_TEMPERATURE

var = SHELL_DELTAH

var = SHELL_LUB_CURV

var = SHELL_SAT_GASN

var = SHELL_SHEAR_TOP

var = SHELL_SHEAR_BOT

var = SHELL_CROSS_SHEAR

var = MAX_STRAIN

var = CUR_STRAIN

var = LUBP_2

var = SHELL_PRESS_OPEN_2

var = SHELL_LUB_CURV_2

56 Revised: 6/12/13

4.2.8

Theory

No theory.

FAQs

No FAQs.

References

No References.
4.2.8

4.2.9 External Field

Description/Usage

This optional card format provides a mechanism for reading-in nodal field variables
stored in an EXODUS II file. Each field variable is specified on a separate input card,
with the following input parameters:

<char_string1> Name of the nodal field to be read; it should correspond
to a nodal variable name in the EXODUS II file.

{char_string2} Two- to eight-character value that identifies the type of
interpolation to be applied to the external variable field.
Possible values are as follows:

Q1 - Linear
Q2 - Quadratic
Q2_LSA - Special quadratic for 3D analysis of

2D LSA
Q1_D - Linear with special surface dofs
Q2_D - Quadratic with special surface dofs
Q2_D_LSA - Special quadratic discontinuous for 3D

analysis of 2D LSA
PQ1 - Bilinear discontinuous
PQ2 - Biquadratic discontinuous
P0 - Piecewise constant
P1 - Piecewise linear

External Field = <char_string1> {char_string2} <file_name> [char_string_3]

Revised: 6/12/13 57

4.2.9 External Field

SP - Subparametric; linear on interior,
quadratic on surface

<file_name> Name of the EXODUS II file from which the nodal field
is to be read. When Goma is compiled with
LIBRARY_MODE defined (see Appendix 2) and the
external field will be passed into Goma from a driver
code, this entry will be either IMPORT (for nodal
variables) or IMPORT_EV (for element variables),
instead of a file name.

[char_string3] Optional character string. Only optional available is
“timedependent” which enables nodal variables to be
interpolated to the current time step. This option is
useful for transient coupling, viz. a case in which a
transient field variable is used to drive a time-dependent
simulation. A good example of this is a transient current
density field from a electromagnetics calculation being
used to drive a transient thermal calculation with Joule
heating.

Examples

Three examples are provided. The first contains two variables to be read, the second
has three variables to be read, and the third applies to fields imported from a driver
code in library mode. Each example is discussed in the Technical Discussion section.

The first example:
External Field = VX Q2 velocity.exoII
External Field = VY Q2 velocity.exoII

the second example:
External Field = JX_FIELD Q2 fields.exoII
External Field = JY_FIELD Q2 fields.exoII
External Field = BTHETA_FIELD Q2 fields.exoII

the third example:
External Field = DMX Q1 IMPORT
External Field = DMY Q1 IMPORT
External Field = P_POR Q1 IMPORT_EV

and the fourth example:
External Field = JE_N_1 Q1 emfields.exoII time_dependent

58 Revised: 6/12/13

4.2.9 External Field

Technical Discussion

The field variables read into Goma from the Example cards can be accessed in any
user-defined subroutine.

In the case of variables named VX, VY, or VZ, these fields are automatically loaded to
the appropriate velocity component so they can be used in an advection-diffusion
analysis, i.e., VX, VY, VZ are reserved names for <char_string1> and a user-defined
routine is not required. Thus the variables for the two fields, “VX” and “VY”, read
from the file named “velocity.exoII” in the first example above, would be automatically
accessed when the advection term is left on in the energy or species_bulk equation
cards. In other words, without solving the momentum equations, one can access an
external velocity field for advection-diffusion problems. These variables would have
quadratic interpolation (Q2) applied to the velocity values read.

The three cards in the second example can be used to read two components of a current
density field (JX_FIELD, JY_FIELD), and the azimuthal component of a magnetic
field (BTHETA_FIELD) from the file “fields.exoII” (generated by some other analysis
code). These fields are then accessed in the user-defined subroutines as

fv->external_field[0], fv->external_field[1], and fv->external_field[2],

respectively, as an interpolated value at an integration point. NOTE that these fields are
brought in as a part of the BOUSS_JXB_FORCE on the Navier Stokes source
card. These are to be distinguished from the electromagnetic fields in the fourth
example which correspond to Solid Momentum Source models.

Note that the number of field variables read from the EXODUS II file must not exceed
the value MAX_EXTERNAL_FIELD set in the include file rf_fem_const.h.
Should that occur, a new version of Goma must be compiled with an increased value of
MAX_EXTERNAL_FIELD. The user should consult notes on building Goma if (s)he
has questions regarding how to do this.

The third example assumes that Goma has been compiled with LIBRARY_MODE and
is linked in to an external driver code along with another program which will compute
some variables and pass their values into Goma; here the imported fields are the X and
Y components of mesh displacement (nodal variables) and porosity (an element
variable). There is a naive first order interpolation function in Goma to obtain nodal
values of fields which are imported as element variables. Although Goma does not
solve for these variables, their values are included in the output Exodus file.

In the fourth example a field JE_N_1, the x-directed current density field, time-
dependent, is brought in from emfields.exoII. Typically, depending on the
dimension of the problem, additional fields JE_N_2, JE_N_3 are also brought in as
current density is a e. These fields are part of the JXB Solid Momentum Source

Revised: 6/12/13 59

4.2.10 Export Field

model, together with the magnetic nodal field quantities, BE_N_1, BE_N_2, and
BE_N_3.

Several other standard external fields variables are supported in GOMA. Namely:

FVP11, FVP22, etc. These fields are useful for the elastoviscoplasticity model. Please
consult GOMA tutorial GT-019.2 for more details.

SAT, HEIGHT, PERM, CROSS_PERM, SH_SAT_CL_POROSITY, etc. These are
specially designated external fields which are mapped to variations in these properties
corresponding to thin porous media. Please see GT-038.

Theory

No Theory.

FAQs

No FAQs.

References

GT-019.2. Elastoviscoplastic (EVP) Consitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam, and K. S. Chen. Memo to Distribution.
March 13, 2003.

GT-038.0: Pixel-to-Mesh Tool Tutorial for GOMA. P R. Schunk, Memo to
distribution, 10 November 2009.

4.2.10 Export Field

Description/Usage

Special capability for use in library mode, a mode in which GOMA is called as a
library from a driver program. This card is used to indicate which fields will be
exported for use in other codes.

Export Field = <integer1>

60 Revised: 6/12/13

4.2.11 External Pixel Field

<integer1> Name of the nodal field to be read; it should correspond
to a nodal variable name in the EXODUS II file.

Examples

None

Technical Discussion

See Appendix 2 .

Theory

No Theory.

FAQs

No FAQs.

References

4.2.11 External Pixel Field

Description/Usage

This optional card format provides a mechanism for reading-in pixel fields which are
converted (mapped, with a least squares algorithm) to finite element fields with the
chosen interpolation. After GOMA execution these fields are output in exodusII
format in a file map.exoII. Please see discussion below and Tutorial GT-038 for more
details and important tips.

<char_string1> Name of the nodal field to be read; it should correspond
to a nodal variable name you wish to have in the output
EXODUS II file. If you subsequently wish to read the
field in again and use as an EXTERNAL_FIELD model
on other material property card, the chosen name
matters.

External Pixel Field = <char_string1> {Q1|Q2} <file_name> <integer1>

Revised: 6/12/13 61

4.2.11 External Pixel Field

{Q1 | Q2} The type of interpolation to be applied to the external
pixel field variable field. Possible values are as follows:

Q1 - Linear
Q2 - Quadratic

<file_name> Name of the text file name with the pixel points. The
pixel field format in this file should be as follows:

pixel points

x_1, y_1, z_1 value

x_2, y_2, z_2 value

...

x_N, y_n, z_n value

<integer1> Material block ID to which the pixel field is mapped.

Examples
External Pixel Field = HEIGHT Q1 tread.txt 1

Technical Discussion

Please consult the tutorial GT-038 before using this capability. Many user tips are
given together with a more thorough explanation on the proper use This capability is
extremely memory intensive, and excessive grid sizes and pixel densities can blow out
the memory on your machine. As of 12/22/2012 (the end of the Mayan calendar)
these fields are used typically to bring in pattern maps for scaling porous media and
lubrication height properties.

SAT, HEIGHT, PERM, CROSS_PERM, SH_SAT_CL_POROSITY, etc. These are
specially designated external fields which are mapped to variations in these properties
corresponding to thin porous media. Please see GT-038.

Theory

No Theory.

FAQs

No FAQs.

62 Revised: 6/12/13

4.2.12 Pressure Datum

References

GT-038.0: Pixel-to-Mesh Tool Tutorial for GOMA. P R. Schunk, Memo to
distribution, 10 November 2009.

4.2.12 Pressure Datum

Description/Usage

This card is used to set a thermodynamic pressure datum on fluid or solid mechanics
problems that calculate equations of state requiring a true value for the total pressure.
The total pressure is then defined as the sum of a constant base thermodynamic
pressure, specified by this card, and a variable hydrodynamic pressure calculated via
the pressure unknown. Definitions of the input parameters are as follows:

<float> Value of the thermodynamic pressure datum.

{ atm | torr | cgs } Units of the float specified above.

Examples

Following is a sample card:

Pressure Datum = 1.0 atm

Technical Discussion

The value of this variable is stored in the unified problem description structure in cgs
units. It is then used in consistency checks and as input into some equation of state
routines, such as the ideal gas equation of state routine.

Theory

No Theory.

FAQs

No FAQs.

Pressure Datum = <float> { atm | torr | cgs }

Revised: 6/12/13 63

4.2.13 Anneal Mesh on Output

References

No References.

4.2.13 Anneal Mesh on Output

Description/Usage

This optional card enables the user to specify that the mesh displacements should be set
to zero for the next continuation step. Valid options for this input card are

yes Set the mesh displacements to zero for the next continuation
step.

no Do not set the mesh displacements to zero for the next
continuation step. This is the default.

There are two important restrictions: 1) annealing the mesh will not work for the
TOTAL_ALE mesh motion types, and 2) only the last time step will be annealed for
transient problems.

Examples

Following is a sample card:

Anneal Mesh on Output = yes

Technical Discussion

Annealing a mesh is accomplished by adding the displacements (from the solution) to
the base positions (from the FEM file) and writing the resulting nodal positions to a
new EXODUS II file, currently anneal.exoII. During the annealing process, the
displacement field is also set to zero. This file would be used to restart a subsequent
analysis where the anneal.exoII is copied to, or becomes, the file used in a
read_exoII option for an Initial Guess.

Theory

No Theory.

Anneal Mesh on Output = {yes | no}

64 Revised: 6/12/13

4.3 Time Integration Specifications

FAQs

No FAQs.

References

No References.

4.3 Time Integration Specifications

The first card in this section dictates whether the problem is a steady state or transient simulation.
This card is required. If the steady state option is chosen, then the remaining input records are not
required, as the rest of the records are used to set parameters for transient simulations, e.g., time
step size, time step error control, etc. Some records are optional even for a transient simulation, as
indicated below. It should be noted that the mass-matrix term multiplier in the Problem
Description section (see, for example, the EQ= cards), must be set to one (1) for the transient run
to evolve the fields in time. The only equations that are taken as purely quasi static are the
EQ=mesh equations for the situation in which the Mesh Motion type is Arbitrary.

In addition to the transient parameter information, some Level-Set function information is also
supplied to Goma in this section. The method of Level-Sets is used to track fluid-fluid or fluid-
solid interfaces in an Eulerian fashion, making the problem inherently transient.

4.3.1 Time Integration

Description/Usage

This required card is used to specify transient or steady-state calculation. Valid options
are:

steady For a solution to the steady (time-derivative free) equations.

transient For transient simulations.

If option steady is chosen, then none of the other Time Integration Specification cards
in this section are needed.

Example

This is a sample card for a steady state simulation:

Time integration = {steady | transient}

Revised: 6/12/13 65

4.3.2 delta_t

Time integration = steady

This is a sample card for a transient simulation:

Time integration = transient

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.2 delta_t

Description/Usage

This card is required for transient simulations to set the value of the initial time step.
The input parameter is defined as:

<float> Any floating point number that indicates the time step in the
appropriate units for your problem.

To specify a fixed time step size for an analysis, set <float> to be a negative number,
e.g. -1.0e-6; the code will use a constant (positive) time step. Should convergence
problems occur when a fixed step size is specified, the size of the time increment
entered for the delta_t card will be reduced by half until convergence is achieved. Once
a constant time step is reduced, it will not be increased.

Examples

Following is a sample card for an initial time step:

delta_t = 6.e-03

delta_t = <float>

66 Revised: 6/12/13

4.3.3 Maximum number of time steps

If a constant time step is desired, use a negative value:

delta_t = -6.e-03

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.3 Maximum number of time steps

Description/Usage

This card sets the maximum number of time steps that may be performed for a
transient simulation. Goma will stop if this limit is reached. The input parameter is
defined as

<integer> Any integer greater than zero, which will limit the number
of time steps taken in a simulation.

Examples

The following sample card sets the maximum number of time steps to 100:

Maximum number of time steps = 100

Technical Discussion

No discussion.

Maximum number of time steps = <integer>

Revised: 6/12/13 67

4.3.4 Maximum time

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.4 Maximum time

Description/Usage

This card sets the maximum value of time that may be achieved in a transient
simulation. Goma will stop if this limit is reached. The input parameter is defined as:

<float> Any floating point number in the same units as specified in
the delta_t card.

The last result written to the EXODUS II and soln.dat file in a successfully
completed simulation will always be at the maximum time. This provides a cutoff time
beyond which the simulation will terminate.

Examples

The following sample card sets the maximum time to 105 (in units consistent with your
simulation):

Maximum time = 105.

Technical Discussion

No discussion.

Theory

No Theory.

Maximum time = <float>

68 Revised: 6/12/13

4.3.5 Minimum time step

FAQs

No FAQs.

References

No References.

4.3.5 Minimum time step

Description/Usage

This card sets the value of the minimum allowable time step size in a transient
analysis, a useful control if the time step is being decreased due to poor convergence of
the transient or iterative algorithm. The input parameter is defined as

<float> Any floating point number in the same units as specified in
the delta_t card.

Examples

A sample card that sets the minimum time step to 1.e-9 follows:

Minimum time step = 1.e-9

Technical Discussion

This specification provides a graceful way for the program to terminate based on the
computed time step dropping below the minimum value rather than terminating by a
segmentation fault or a divide-by-zero error that could result if the time step becomes
too small without the benefit of this control.

Theory

No Theory.

FAQs

No FAQs.

Minimum time step = <float>

Revised: 6/12/13 69

4.3.6 Maximum time step

References

No References.

4.3.6 Maximum time step

Description/Usage

This card sets the value of the maximum allowable time step size in a transient
analysis, where the input parameter is defined as

<float> Any floating point number in the same units as specified in
the delta_t card.

Examples

A sample card that sets the maximum time step to 10.0 follows:

Maximum time step = 10.0

Technical Discussion

This setting is useful for advection dominated simulations, such as FILL, where a
Courant-like limit must be set on the value of the time step for optimal performance.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Maximum time step = <float>

70 Revised: 6/12/13

4.3.7 Minimum Resolved Time Step

4.3.7 Minimum Resolved Time Step

Description/Usage

Its role is to set a lower bound for the time step with respect to the Time step error
tolerance. When a converged time step is obtained by GOMA, the difference between
the predicted solution and final solution for that time step is compared to the Time step
error tolerance. If the difference exceeds this tolerance the step fails and the time step
is cut (usually by a factor of 2), UNLESS the time step falls below the Minimum
Resolved Time Step size. In this case the step is accepted, even if this error tolerance is
not achieved. This provides a mechanism for the modeler to control what phenomena is
resolved and what phenomena is ignored.

<float> Any floating point number in the same units as specified in
the delta_t card.

Examples

A sample card that sets the maximum time step to 10.0 follows:

Maximum Resolved Time Step = 10.0

Technical Discussion

See GT-034 for a thorough discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-034: Tutorial on time step parameter selection for level-set problems in GOMA.
April 1, 2006. D. R. Noble

Minimum Resolved Time Step = <float>

Revised: 6/12/13 71

4.3.8 Courant Number Limit

4.3.8 Courant Number Limit

Description/Usage

This parameter’s roll is to control time step growth based on the well-known Courant
number criterion. This card applies only to level-set problems. This card imposes an
upper limit on the time step size, irrespective of the variable time integrator already in
place.

<float> Any floating point number to indicate the Courant number
limit.

Examples

A sample card that sets the Courant number to 0.2 is:

Courant Number Limit = 0.2

Technical Discussion

See GT-034 for a thorough discussion.

Theory

The time step limit imposed by this limit is computed as

Here e is the element, he is the average size of the element, C is the specified Courant
number, and

FAQs

No FAQs.

Courant Number Limit = <float>

72 Revised: 6/12/13

4.3.9 Time step parameter

References

GT-034: Tutorial on time step parameter selection for level-set problems in GOMA.
April 1, 2006. D. R. Noble

4.3.9 Time step parameter

Description/Usage

This card allows the user to vary the time integration scheme. The usual settings are:

0.0 Backward Euler method (1st order in time)

0.5 Trapezoid rule (2nd order in time)

Examples

This is a sample card that sets the time integration scheme to Trapezoidal rule:

Time step parameter = 0.5

Technical Discussion

One should usually use the Trapezoid rule. When a large time step, , is used the
Trapezoid rule can exhibit oscillations. If such a large is required then the Backward
Euler method can be used (it will damp oscillations), albeit at a cost of accuracy.

If we designate the time step parameter as , the solution at time step as , and the
PDE to be solved as

,

then the time integration method takes the form

where

.

Note that there is no choice of finite that will yield a Forward Euler method. See
Gartling (1987) for more information.

Time step parameter = <float>

Δt

Δt

θ n y
n

∂y
∂t
----- g y()=

y
n 1+

y
n

–
Δt

2θ

1 2θ+
--------------- y·

n 1
1 2θ+
--------------- g y

n 1+
()+=

y·
n 1+ 1 2θ+

Δt
--------------- y

n 1+
y

n
–() 2θy·

n
– g y

n 1+
()= =

θ

Revised: 6/12/13 73

4.3.10 Time step error

Theory

No Theory.

FAQs

For porous flow problems with mass lumping, you should always choose backward
Euler method.

References

SAND86-1816: NACHOS 2: A Finite Element Computer Program for Incompressible
Flow Problems - Part 2 - User’s Manual, Gartling, David K. (September, 1987).

4.3.10 Time step error

Description/Usage

The time step error controls the adjustable time step size based on the difference
between the solution and the predicted solution (L2 norm). The first of the eight
arguments is a floating point number that indicates the error in the time step selection.

<float> the error value, any floating point number.

The smaller this number is, the smaller the time step will tend to be in the automatic
time step control. The original implementation of this capability in Goma did not use a
normalized value for the norm; to enable this most useful feature, use a negative value
of the time step error and a positive, normalized norm will be computed. This way a
percentage value of the solution error will be set.

<integer_list> seven integers, with a value either zero (0) or one (1).

A further degree of control is offered by the seven integers (i1 through i7) that identify
which solution variables will contribute to the error norm calculations. Permissible
values for each of these seven integers are 0 and 1. The correspondence between the
integers and variables is as follows:

i1 (pseudo) solid displacement

i2 fluid velocity

i3 temperature

Time step error = <float> <integer_list>

74 Revised: 6/12/13

4.3.10 Time step error

i4 concentration, porous liquid pressure, gas pressure, porosity,
saturation

i5 pressure

i6 fluid (polymer) extra stress

i7 voltage

A value of 0 for an integer directs Goma to exclude contributions from that variable in
the error norm calculation; correspondingly, a value of 1 means that variable should be
included.

Examples

A sample time step error card follows:

Time step error = 0.01 0 1 1 1 0 0 0

In this example, the L2 norms for the fluid velocity, temperature, and concentration are
summed (and scaled) prior to comparison with the target error value of 0.01. If the
norms of the velocity, temperature, and concentration variables is greater than 0.01, the
time step is halved and the step repeated. Otherwise, the current step size is compared
to other step criteria before continuing to the next step.

If the integer values are omitted, the scaled error norm becomes infinite and the
analysis will terminate in the error norm calculation with an arithmetic overflow.

To use the normalized value of the norm, the following would be specified:

Time step error = -0.01 0 1 1 1 0 0 0

This would set the maximum time step error to be 1%.

Technical Discussion

Note that on porous flow problems the error in step-size is computed as a composite
measure of all porous-flow variables, viz. these cannot currently be controlled
separately.

Theory

No Theory.

FAQs

No FAQs.

Revised: 6/12/13 75

4.3.11 Printing Frequency

References

No References.

4.3.11 Printing Frequency

Description/Usage

This card sets the printing frequency, the step or time interval, at which Goma will print
the solution variables to the Output EXODUS II file and the SOLN file. Definitions of
the <integer> options, and the dependent [float] option when <integer> is set to 0, are:

<integer> Specifies how often the solution will be printed.

> 0 Interval in time steps between successive printings of the
solution, any positive integer value

0 Controls printing of the solution at regularly spaced
(uniform) intervals of time (every [float]), regardless of the
number of time steps over that time interval

[float] Elapsed time (in the same units as specified in
the delta_t card) between successive printings of
the solution (any positive number).

Examples

Goma will print the solution every five time steps given the following sample card:

Printing Frequency = 5

Goma will print the solution every ten time units given the following sample card:

Printing Frequency = 0 10.

Technical Discussion

No discussion.

Theory

No Theory.

Printing Frequency = <integer> [float]

76 Revised: 6/12/13

4.3.12 Second frequency time

FAQs

No FAQs.

References

No References.

4.3.12 Second frequency time

Description/Usage

This card allows the time between successive writings of the solution to change after a
specified time and is only used if the <integer> in the Printing Frequency card is set to
0. Definitions of input parameters are as follows:

<float1> Any number indicating the time at which the printing
frequency should shift from that specified in the Printing
Frequency card to <float2>.

<float2> Printing frequency in time units (same units as specified in
the delta_t card) for printing the solution at times greater
than <float1>.

Examples

The following is a sample card that will change the printing frequency to print every 3
time units after 15 time units:

Second frequency time = 15. 3.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Second frequency time = <float1> <float2>

Revised: 6/12/13 77

4.3.13 Initial Time

References

No References.

4.3.13 Initial Time

Description/Usage

This card sets the time at which the calculation starts. The input parameter is defined as

<float> Any number indicating the initial solution time (in the same
units as specified in the delta_t card). An additional feature
can be triggered if this float is specified to be negative,
which triggers GOMA to look for the nearest restart time in
the restart ExodusII database to use as the start time. Note
that this option can only be used with Initial Guess
options of read_exoII_file or read_exoII.

Normally, the value of <float> will be set to zero unless the problem is a continuation
of a previous transient problem.

Examples

The following is a sample card that shows a restart at 45 time units:

Initial Time = 45.0

The following is a sample card that triggers Goma to look for a restart time of 10 time
units, or the closest time value to 10 time units, to start from :

Initial Time = -10.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Initial Time = <float>

78 Revised: 6/12/13

4.3.14 Fill Subcycle

References

No References.

4.3.14 Fill Subcycle

Description/Usage

This is an optional card that sets the number of subcycle-fill time steps between fluid-
flow time steps in uncoupled level set calculations. The default is 10 subcycle time
steps for every flow time step. The input parameter is defined as

<integer> Any nonzero number indicating the subcycling frequency of
the fill equation versus the flow equations.

For example, if the value of <integer> is 1, the flow and fill equations are solved every
time step. If it is 10, between every transient step in the flow calculation, the fill
(advection) equation is solved 10 times with one-tenth of the time step.

Examples

The following is a sample card that sets the fill subcycling rate to 4:

Fill Subcycle = 4

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, Februray 27, 2001, T.A.
Baer

Fill Subcycle = <integer>

Revised: 6/12/13 79

4.3.15 Fill Weight Function

4.3.15 Fill Weight Function

Description/Usage

Sets the weight function used for the FILL equation for either the VOF or Level Set
methods. The options for this card are as follows:

Galerkin Name of the weight function formulation. This option
requests a standard Galerkin finite element weighted
residual treatment. A floating point parameter is not
used for this option.

Taylor-Galerkin Name of the weight function formulation.

SUPG Name of the weight function formulation. This option
requests a Streamwise Upwinding Petrov Galerkin
formulation. No floating point parameter is required.

The default value for the Fill Weight Function is Taylor-Galerkin.

Examples

This is a sample card:

Fill Weight Function = Galerkin

Technical Discussion

This card selects the integration/weight function used in solving for the VOF color
function or the level set distance function (i.e., the FILL unknown). The user should
refer to the tutorial on Level Set Computations for a detailed description of level set
interface tracking. (See References.)

Theory

No Theory.

FAQs

No FAQs.

Fill Weight Function = {Galerkin | Taylor-Galerkin | SUPG}

80 Revised: 6/12/13

4.3.16 Level Set Interface Tracking

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

A. N. Brooks and T. J. R. Hughes, “Streamline Upwind/Petrov-Galerkin Formulations
for Convection Dominated Flows with Particular Emphasis on the Incompressible
Navier-Stokes Equations,” Comp. Math. In Appl. Mechanics and Eng., 32, 199 - 259
(1992).

A. J. A. Unger, P. A. Forsyth and E. A. Sudicky, “Variable spatial and temporal
weighting schemes for use in multi-phase compositional problems,” Advances in Water
Resources, 19, 1 - 27 (1996).

R. Helmig and R. Huber, “Comparison of Galerkin-type discretization techniques for
two-phase flow in heterogeneous porous media,” Advances in Water Resources, 21,
697-711 (1998).

E. Gundersen and H. P. Langtangen, “Finite Element Methods for Two-Phase Flow in
Heterogeneous Porous Media,” in Numerical Methods and Software Tools in Industrial
Mathematics, Morten Daehlen, Aslak Tveito, Eds., Birkhauser, Boston, 1997.

S. F. Bradford and N. D. Katopodes, “The anti-dissipative, non-monotone behavior of
Petrov-Galerkin Upwinding,” International J. for Numerical Methods in Fluids, v. 33,
583-608 (2000).

4.3.16 Level Set Interface Tracking

Description/Usage

Activates (or deactivates) embedded interface tracking by the level set method. When
activated, the set of cards specifying level set run parameters are read; these should
appear in the input deck following this card. Also when activated a “level_set”
equation type should be included in the list of equations identified in the equations
section.

Examples

A sample input card is:

Level Set Interface Tracking = yes

Level Set Interface Tracking = {yes | no}

Revised: 6/12/13 81

4.3.17 Level Set Semi_Lagrange

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.17 Level Set Semi_Lagrange

Description/Usage

This card is currently inactive because it was developed for decoupled LS fill
problems.

<char1> YES | ON | TRUE.

Examples

Level Set Semi_Lagrange = yes

Technical Discussion

• None

Theory

No Theory.

FAQs

No FAQs.

Level Set Semi_Lagrange = <char1>

82 Revised: 6/12/13

4.3.18 Level Set Subgrid Integration Depth

References

None

4.3.18 Level Set Subgrid Integration Depth

Description/Usage

Subgrid integration is used to improve integration accuracy for all functions which
invoke a diffuse level-set interface representation of properties and surfaces. With
integration depths greater than zero the elements through which the zero level set
crosses are subdivided in a geometric way to achieve more accurate integration. Level-
1 depths implies the smallest grid size is 1/4 of the original, and a level-2 is 1/8th, and
so on. Please see usage nodes below.

<integer1> Level of integration depth. Default is zero. See usage
notes.

Examples

This example sets the subgrid integration depth to two:
Level Set Subgrid Integration Depth = 2

Technical Discussion

• Each level of subgrid integration leads to precipitous growth in computational
load, especially in 3D. Level-2 seems to optimize accuracy and efficiency.
Levels higher than 2 is not recommended.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

Level Set Subgrid Integration Depth = <integer1>

Revised: 6/12/13 83

4.3.19 \\\

4.3.19 \\\

4.3.20 Level Set Subelement Integration

Description/Usage

Subelement integration is used to improve integration accuracy for all functions which
invoke a sharp level-set interface. Note here that the Level Set Length Scale
option must be zero. This is possible because the subelement integration scheme
actually produces a geometric representation of the zero level set surface on which
exact line integrals of the surface tension source term term can be peformed. Please
see usage nodes below.

{ON | YES} Use subelement integration on surface level set capillary
term.

{OFF | NO} Don’t use subelement integration.

Examples

This example invokes the subelement integraton
Level Set Subelement Integration = ON

Technical Discussion

• NOTE: Level Set Length Scale must be set to zero.

• Because of the construction of an in-element interface meshing to find this
representation, subelement integration cannot be used currently for three
dimensional problems. Subgrid integration can be, however, but h tis inefficient.

• Best to use this integration approach with the property specification method of
“Second Level-Set “property_name”, e.g. Second Level Set
Density, etc.

• Typically this capability greatly improves mass conservation and avoids parasitics
for surface tension dominated problems.

• NOTE that the Level Set Renormalization method must be set to Huygens.

Level Set Subelement Integration = {ON | YES | OFF | NO}

84 Revised: 6/12/13

4.3.21 Level Set Adaptive Integration

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.21 Level Set Adaptive Integration

Description/Usage

To be used with Subelement integration to improve integration accuracy. Does not
work with subgrid integration or basic level-set. Requires a sharp interface, viz. level-
set length scale of zero. Please see usage nodes below.

{ON | YES} Use adaptive integration on surface level set capillary term.

{OFF | NO} Don’t use adaptive integration.

Examples

This example invokes the subelement integraton
Level Set Adaptive Integration = ON

Technical Discussion

•

Theory

No Theory.

FAQs

No FAQs.

Level Set Adaptive Integration = {ON | YES | OFF | NO}

Revised: 6/12/13 85

4.3.22

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.22

4.3.23 Level Set Adaptive Order

Description/Usage

To be used with Subelement adaptive integration to improve integration accuracy. Does
not work with subgrid integration or basic level-set. Requires a sharp interface, viz.
level-set length scale of zero. Please see usage nodes below.

<integer1> Adaptive integration order. Single positive integer greater
than zero. Default value is 3.

Examples

This example invokes the subelement adaptive integration order:
Level Set Adaptive Integration = YES
Level Set Adaptive Order = 2

Technical Discussion

•

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

Level Set Adaptive Integration = <integer1>

86 Revised: 6/12/13

4.3.24

4.3.24

4.3.25 Overlap Quadrature Points

Description/Usage

To be used with the overset grid capability. This function sets the number of overlap
quadrature points with this capability. See GT-026 for more details.

<integer1> Overlap quadrature points. Single positive integer greater
than zero. Default value is 3.

Examples

This example invokes the number of overlapping quadrature points:
Overlap Quadrature Points = 2

Technical Discussion

• Please consult the overset grid capability tutorial for futher discussion. (Ref.
below). This is to be use with AC_OVERLAP, or the augmenting condition of
type AC = OV.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.4: “GOMA’s Overset Mesh Method”, P R. Schunk and E. D. Wilkes, 11 Jan.
2006

Overlap Quadrature Points = <integer1>

Revised: 6/12/13 87

4.3.26 Level Set PSPP filtering

4.3.26 Level Set PSPP filtering

Description/Usage

On this card, the user specifies a single char_string.

<YES | ON> This string turns on level set PSPP filtering if it is “yes” or
“on”.

Examples

A typical PSPP filtering input card looks like:

Level Set PSPP filtering = yes

Technical Discussion

Not entirely clear what this card does, but in the vicinity of the level-set interface, the
Bochev PSPP stabilization scheme is altered. This is recommended when this pressure
stabilization scheme is deployed. See the Pressure Stabilization card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Level Set PSPP filtering = <YES | NO>

88 Revised: 6/12/13

4.3.27 Level Set Length Scale

4.3.27 Level Set Length Scale

Description/Usage

On this card, the user specifies a single float value.

<float> This value represents the size of the region around the zero
level set function contour in which interfacial physical
quantities, for example, surface tension, will be present.

Stability and conservation of phase volume are dependent upon this value to a
significant degree. Experimentation has revealed that this float value should be
between two and three times the average linear dimension of the elements in the mesh.

Examples

A typical length scale input card looks like:

Level Set Length Scale = 0.3

Technical Discussion

The level set method is an embedded interface method. That is, the location of the
interface is not known explicitly as a geometric parameter of the problem, but rather it
is abstracted as a level contour of a higher dimensional function. This is convenient in
many ways, but it does mean that phenomena associated with the interface, for
example, surface tension, must enter the problem spread over a region near the zero
level set contour. The Level Set Length Scale sets the size of this region.

A good example of the application of the Level Set Length Scale parameter is in how
surface tension is included in problems using level set interface tracking. The following
tensor is added to the fluid momentum equation:

(4-3)

where F is the level set function itself, , n is the unit normal to the level
set contour, I is the unit tensor, σ the surface tension, and δa(F) is a “smooth” Dirac
function given by:

(4-4)

Level Set Length Scale = <float>

T σδα F() I nn–()=

n F F∇⁄∇=

δα F() F∇ 1 πF α⁄()cos+[] 2α⁄(), F α≤=

Revised: 6/12/13 89

4.3.28 Level Set Initialize

In this example, the parameter α would be equal to one-half the Level Set Length Scale
value specified on this card.

Theory

No Theory.

FAQs

How should the Length Scale value be chosen? Trial and error is often the best method
to determine an appropriate value for this parameter. However, experience has shown
that values for Level Set Length Scale that are between two and three times the average
element linear dimension seem to work best.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.28 Level Set Initialize

Description/Usage

This card is used to initialize fields around the zero level set.

<Char_string> A character string which identifies dependent variable to be
initialized. It is taken from the list of names on the
Initialize card.

<float1> value of the variable on the negative side of the zero level
set.

<float2> Value of the field on the positive side of the zero level set.

Examples

Two examples of initialization methods are provide below:
Level Set Initialize = TEMPERATURE 0. 100.

Level Set Initialize = <char_string> <float1> <float2>

90 Revised: 6/12/13

4.3.29

Technical Discussion

Not clear whether this capability has been used and tested much. (12/3/2012)

Theory

No Theory.

FAQs

No FAQs.

References

4.3.29

4.3.30 Level Set Initialization Method

Description/Usage

This card specifies the means by which the level set function is initialized. That is, it
constructs from a representation of the starting interface shape, a value for the distance
function at every node in the mesh. The syntax of the card is as follows:

{method_name} A character string which identifies the initialization option
desired. Choices for this string are: Projection, Exodus,
Nodeset, Surfaces, SM_object.

{parameter list} This is a variable parameter list specific to each option. The
nature of it for each method is detailed in the syntax
descriptions below.

Below are the exact syntax used for each initialization method, a brief description of
the method and a specification of any additional required parameters.

Projection This method computes the initial level set field by
calling a user-specified routine which returns the signed
distance function for a given point. It has no parameter
list after its name.

Level Set Initialization Method = {method_name} {parameter list}

Revised: 6/12/13 91

4.3.30 Level Set Initialization Method

Exodus Using this card indicates that the initial level set field is
to be read from the exodus file specified earlier (see
FEM file and Initial Guess cards for read_exoII
option). This card has no parameter list after its name.

Nodeset <integer1> EB <integer2>

This method establishes the initial location of the
interface as the boundary between two element blocks.
The value <integer1> is the nodeset identification
number for an internal nodeset defined to exist at the
interface between the two element blocks. The character
string EB is required. The integer <integer2> is the
element block id number to which positive values of
level set function is going to be assigned.

Surfaces <integer> This card establishes the initial level set function by
referring to a set of primitive geometric objects. It is the
easiest to use and the most general. The integer value
<integer> is the number of surface objects that are used
to construct the initial interface. This number of SURF
object cards must follow this card. This is the syntax of
the SURF object card:

SURF = {object_name} {float list}

{object_name}: a character string identifying the
type of geometric object. Options are: PLANE,
CIRCLE, SPHERE, SS, USER.
{float list}: geometric parameters associated with
each object as float values

The following is the syntax and description for each geometric
object option, i.e., the “{object_name} {float list}” part of SURF

PLANE <nx. <ny> <nz> <d>

This card constructs a planar interface surface. The float
values <nx>, <ny>, <nz> define a vector normal to this
plane with the restriction that the sign of the vector must
be such that it points from the negative side of the
interface to the positive side of the interface. The float
value <d> effectively represents the distance of the
plane from the origin. Its value must be set, however, so
that the dot product of any position vector to a point on
the desired plane and the vector (nx,ny,nz) must be

92 Revised: 6/12/13

4.3.30 Level Set Initialization Method

equal to <d> (it is a property of planes that this number
is independent of the point on the plane that is chosen).

CIRCLE <cx> <cy> <radius>

This card constructs a circular interface surface in a
two-dimensional domain. The float values <cx> <cy>
identify the coordinates of the center of the circle. The
float value <radius> establishes the radius of the curve.
By definition, points interior to the circle are assigned
negative level set function values.

SPHERE <cx> <cy> <cz> <radius>

This card constructs a spherical interface surface in a
three-dimensional domain. The float values <cx> <cy>
<cz> identify the coordinates of the center of the circle.
The float value <radius> establishes the radius of the
sphere. By definition, points interior to the sphere are
assigned negative level set function values.

SS {ss_id}

This card uses an existing sideset in the problem as a
defined geometric object for construction of an
interface. The parameter <ss_id> identifies this sideset.

USER {user-defined float list}

This card indicates the user has defined an object
function using the supplied parameter float list that
returns a signed distance value when supplied with the
coordinates of a point in space. This object function
should appear in the function call user_init_object in the
file user_pre.c.

SM_object {object_type} {object_name}

This card allows the user to initialize the level set
location by using a piece of solid model geometry. The
solid model object_type can be either FACE or BODY.
A 2D initialization uses the boundary of the specified
FACE (or surface) as the 0 level set. A 3D initialization
uses the boundary of the specified BODY (or volume)
as the 0 level set.

Revised: 6/12/13 93

4.3.30 Level Set Initialization Method

Examples

Two examples of initialization methods are provide below:
Level Set Initialization Method = Nodeset 20 EB 1

Level Set Initialization Method = Surfaces 3
SURF = PLANE -1. 0. 0. -3.
SURF = CIRCLE -2 0 1
SURF = CIRCLE -3 0 0.5

Level Set Initialization Method = SM_object BODY my_blob

Technical Discussion

• The Projection initialization method was developed early in the level set
development process. It has since been superseded by other more easily used
methods. It is still supported primarily for the use of developers. Users wanting a
complicated interface shape for which they can supply an appropriate distance
function should user the USER surface object option under the Surfaces
initialization method

• The Exodus method deserves little comment. It should be used when restarting
level set computations from a preexisting solution.

• The Nodeset method allows the user to make use of the sophisticated solid body
manipulation software in meshing packages like CUBIT. The procedure for using
this method is to create a domain which contains two element blocks. The desired
starting point for the interface should lie on the curve or surface which these two
blocks have in common. A single nodeset should be defined over this entire curve
or surface. The nodeset identification number should be the first integer parameter
specified on the card. Also note that one of the blocks must be designated as the
“positive” block. This means then when initialized the values of the level set
function in this block will be positive. The values in the other block will be
negative. Note that this initialization method can only by used for problems that
have exactly two blocks, no more.

• The Surfaces initialization method is the most useful method for initialization. It
draws from the fact that it is relatively easy to determine the distance to simple
geometric objects (planes, circles, spheres, etc.). Further, it permits initialization
using more than one of these objects so that relatively complicated initial interface
locations can be constructed. However, the user should recognize that this method
is still somewhat unsophisticated in its approach so there are some caveats
associated with its use. The primary point is that surface objects should never
intersect anywhere within the domain of interest, otherwise it is more than likely
that the starting interface shape will not be what the user expects.

94 Revised: 6/12/13

4.3.31 Level Set Periodic Planes

• The SM_object initialization method allows the user to use solid model geometry
to initialize 2D and 3D level sets. Certain 2D geometries can be created using only
Goma input commands (see FACE). Other 2D geometries, and all 3D geometries,
can be accessed via an ACIS .sat file. The usual way to do this is for the user to
create their desired geometry within Cubit (or, import solid model geometry from
elsewhere into Cubit). Faces (or surfaces) should be created for 2D initialization,
and bodies (or volumes) should be created for 3D initialization. The boundary of
the object is used to initialize the level set. The geometry should be named within
Cubit and exported to an ACIS .sat file via Cubit’s export acis
“filename” ascii command. This same file should be read in via the ACIS
file command in the Geometry Specifications section. The solid model geometry is
then available for the Level Set Initialization Method command. (Note that the
Geometry Specifications section usually comes after the Level Set Initialization
Method command; this is OK).

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.31 Level Set Periodic Planes

Description/Usage

This card directs the level-set renormalization to accommodate peroidic boundary
conditions (see Advanced Capabilities Manual AC_Periodic capability). The periodic
boundary conditions on the level set field are not compatible with renormalization
unless this capability is specified.

<float1> x-coordinate value of first periodic boundary.

Level Set Periodic Planes = <float1> <float2> <float3> <float4> <float5> <float6>

Revised: 6/12/13 95

4.3.31 Level Set Periodic Planes

<float2> x-coordinate value of second periodic boundary. If
equivalent to float1 than this direction is not periodic.

<float3> y-coordinate value of first periodic boundary.

<float4> y-coordinate value of second periodic boundary. If
equivalent to float3 than this direction is not periodic.

<float5> y-coordinate value of first periodic boundary.

<float6> y-coordinate value of second periodic boundary. If
equivalent to float5 than this direction is not periodic.

Examples

Two examples of initialization methods are provide below:
Level Set Periodic Boundary = -0.5 0.5 0 0 0 0

This card instructs renormalization to accommodate the x-directed-boundaries to be
considered as periodic relative to the level-set field.

Technical Discussion

• None

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

96 Revised: 6/12/13

4.3.32 Level Set Control Width

4.3.32 Level Set Control Width

Description/Usage

This card is a multiplier on the Level Set Length Scale to determine the size of the
region around the zero level set contour over which the level set gradient is averaged.
The value of this parameter defaults to 1.0 if this card is not included.

Examples

This sample card sets the control width to be equivalent to the length scale:

Level Set Control Width = 0.5

Technical Discussion

As noted in the description of the Level Set Renormalization Tolerance card,
renormalization is triggered when the average of the level set gradient magnitude has
departed sufficiently from unity. The region over which this average is obtained is
approximately a narrow fixed-width strip on either side of the zero level set contour.
The width of this strip is twice the Level Set Length Scale multiplied by the float value
supplied on this card.

Theory

No Theory.

FAQs

Usually it is best practice to leave this parameter at its default setting and control the
frequency of renormalization with the renormalization tolerance.

References

No References.

Level Set Control Width = <float>

Revised: 6/12/13 97

4.3.33 Level Set Timestep Control

4.3.33 Level Set Timestep Control

Description/Usage

On this card, the user specifies a single char_string.

<YES | ON> This string turns on level set timestep control if it is “yes” or
“on”.

Examples

A typical length scale input card looks like:

Level Set Timestep Control = yes

Technical Discussion

In normal operations, the error norm of the level set function is not included in
controlling the size of the time step decided upon by the variable timestep size
integrator. Inclusion of this card will add the level set unknown to the list of update
error norms used to decide the time step size. In other words, use this card when you
want the changes of the level set function to affect the timestep size. If this card is not
used, the default behavior is to ignore the level set degrees of freedom in controlling
the timestep size.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Level Set Timestep Control = <YES | NO>

98 Revised: 6/12/13

4.3.34 Level Set Renormalization Tolerance

4.3.34 Level Set Renormalization Tolerance

Description/Usage

This parameter provides a means for controlling how often renormalization
(redistancing) operations are performed on the level set function as it evolves by fixing
the size of the deviation allowed between the average absolute magnitude of the level
set function gradient near the level set interface and unity, the theoretical value
observed for a pure distance function.

<float> Value of the tolerance, the allowable deviation.

The range of this parameter is any positive real number, however, it is rare to use values
smaller than 0.1 or larger than 5.0. The value of the tolerance defaults to 0.5 if this card
is not specified.

Examples

This is a sample renormalization card:

Level Set Renormalization Tolerance = 0.05

Technical Discussion

One of the key properties of the level set function is that it is a smooth function near to
the interface. In particular, if the level set function is a distance function then the
magnitude of its gradient on the zero level contour should always be unity. This fact is
used to provide a criterion for invoking a renormalization procedure. The gradient of
the level set function is found within a fixed region around the zero level set contour
(see Level Set Control Width). The integrated average of the magnitude of this vector is
determined and compare to unity. Should this difference differ by greater than the value
for Renormalization Tolerance identified on this card, a renormalization procedure will
presently be initiated.

Theory

No Theory.

FAQs

What is a proper value for this parameter? Values on the order of unity should work
well. Renormalization based on gradient can be disabled completely by choosing a

Level Set Renormalization Tolerance = <float>

Revised: 6/12/13 99

4.3.35 Level Set Renormalization Method

very large value for this parameter. Conversely, a very small value will always result in
a renormalization step.

Is it possible to renormalize too often? Yes. Renormalization is an extraphysical
procedure designed solely to improve the numerical performance of the interface
tracker. As such, it can add or subtract volume to or from the phases represented by the
interface contour. Renormalizing too often, therefore, can result in errors being
introduced. The renormalization procedure, Huygens_Constrained, attempts to
mitigate this effect.

References

No References.

4.3.35 Level Set Renormalization Method

Description/Usage

This card indicates the method to be used to renormalize the level set function during
the course of the computation. The syntax of this card is as follows:

{char_string} A character string which specifies the type of method for
renormalization. Choices for this string are: Huygens,
Huygens_Constrained, Correction.

Each method is described below; see also the Technical Discussion.

Huygens In this method a set of m points P is constructed:

which in a sense represent a discretization of the
interface location. The finite element interpolation
functions are used to find exact locations for these
points. For each mesh node, j, a minimum distance,
Dj, can be found to this set of points.
Renormalization is accomplished by replacing the
level set value at this node, φj, with Dj, multiplied by
the sign of the previous value for the level set
function. This method is fast and robust and
reasonably accurate given sufficiently refined
meshes using high order level set interpolation.

Level Set Renormalization Method = {char_string}

P xi yi zi, ,() i=1,2...m | φ xi yi zi, ,() = 0,{ }=

100 Revised: 6/12/13

4.3.35 Level Set Renormalization Method

However, this method is prone to losing material if
low order level set interpolation is employed.

Huygens_Constrained This method renormalizes the function in much the
same way as the Huygens method, except it
employs a Lagrange multiplier to enforce a global
integrated constraint that requires the volume
occupied by the “negative” phase to remain
unchanged before and after renormalization. This
requirement makes this method better at conserving
mass. However, since it enforces a global constraint,
it is possible that material might be moved non-
physically around the computational domain.

Correction Don’t use this method.

Examples

This is a sample renormalization method input card:

Level Set Renormalization Method = Huygens_Constrained

Technical Discussion

Renormalization is an operation particular to level set embedded interface tracking.
The level set function, φ, is usually specified in terms of a signed distance to the
interface. This type of function has very nice properties in terms of smoothness and a
unitary gradient magnitude in the vicinity of the interface. All of which are beneficial
in accurately integrating the function and applying interfacial physics such as surface
tension. The difficulty appears because of the velocity field, u, used to evolve the level
set function via the relation:

. (4-5)

There is nothing that requires that this velocity preserve the level set function as a
distance function during its evolution. As a result, large gradients in the level set
function might appear that would degrade the accuracy of both its time evolution and
the accuracy of the interfacial terms related to the level set function. To remedy this
problem, periodically the level set function must be reconstructed as a distance
function; this process is referred to as renormalization. The criteria for determining
when renormalization should occur is discussed under Level Set Renormalization
Tolerance.

φ∂
t∂

------ u φ∇⋅+ 0=

Revised: 6/12/13 101

4.3.36 Level Set Renormalization Frequency

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.36 Level Set Renormalization Frequency

Description/Usage

This card sets an upper limit to the number of time steps which are allowed to pass
between renormalization procedures. Possible values for <integer> are listed below:

<integer> -1, never renormalize (default)

 0, renormalize every step

 n, a positive integer >1, renormalize every nth time step

Examples

This is a sample input:

Level Set Renormalization Frequency = 50

Technical Discussion

Renormalization procedures are normally triggered by the average gradient exceeding
one by a specified amount (see Level Set Renormalization Tolerance). However, at
times it might be advantageous to trigger a renormalization independent of the size of
the average level set gradient. For example, it might occur that in a very small region
near the interface, the level set gradient is becoming large but elsewhere the gradient is
still relatively small. Since the average gradient is used, this condition might not trigger
renormalization. By setting an upper limit for the number of time steps that can pass
before renormalization, situations such as this can be remedied.

Level Set Renormalization Frequency = <integer>

102 Revised: 6/12/13

4.3.37 Restart Time Integration After Renormalization

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.37 Restart Time Integration After Renormalization

Description/Usage

This card is used to specify whether or not to restart time integration each time Goma
renormalizes the level set function during the course of the computation. When time
integration is restarted, the time step is reset to its initial size and held at this step size
for the following 3 time steps. If this card is not present, the default is yes (time
integration will be restarted after each renormalization). The syntax of this card is as
follows:

{yes | no} Indicates the specified choice. {yes | on | true}can all be
used to specify restarting of time integration. {no | off |
false} can all be used to specify no restart.

Examples

This is a sample renormalization method input card:

Restart Time Integration After Renormalization = no

Technical Discussion

None.

Theory

No Theory.

Restart Time Integration After Renormalization = {yes | no}

Revised: 6/12/13 103

4.3.38 Level Set Reconstruction Method

FAQs

No FAQs.

References

No References.

4.3.38 Level Set Reconstruction Method

Description/Usage

This card indicates the method used to perform the Huygens renormalization of the
level set function. This card applies only if Level Set Renormalization Method is set to
Huygens or Huygens_Constrained. Permissible values of {char_string} are:

POINTS A list of points on the interface is formed and the
renormalized distance is computed as the distance to the
nearest point in this list; this is the default method.

FACETS A list of connected facets on the interface is formed and the
renormalized distance is computed as the distance to the
nearest point on the nearest facet in this list. Currently this
option is not supported for 3-dimensional calculations.

Examples

This is a sample input card:

Level Set Reconstruction Method = FACETS

Technical Discussion

As described for the Level Set Renormalization Method card, Huygens based
renormalization is performed by reconstructing the level set surface and computing the
distance to the nearest point on this surface. Here, the method of reconstructing the
level set surface is addressed. Either a set of points on the interface is formed or a
connected set of facets is formed. The advantage to using connected facets is that the
interface is better described between the points on the interface. However, the
calculation of the faceted geometry is slightly more expensive computationally. Also,
the current implementation is limited to 2-dimensional simulations.

Level Set Reconstruction Method = {char_string}

104 Revised: 6/12/13

4.3.39 Level Set Contact Extension

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.39 Level Set Contact Extension

Description/Usage

This card specifies whether the level set surface is considered to extend into boundaries
when performing renormalization of the level set distance function. This card applies
only if Level Set Renormalization Method = Huygens_Constrained. Permissible
values for this option are:

yes|on The level set interface is considered to extend smoothly into
the boundaries.

no|off The level set interface ends at the boundaries; this is the
default.

Examples

This is a sample input card:

Level Set Contact Extension = no

Technical Discussion

When renormalizing the level set distance function, the behavior of the interface near
boundaries is important. When the interface is considered to end at the boundary, a
large number of grid points may be closest to this boundary point. This appears as a
cusp in the interface and can make it difficult to achieve sharp contact angles because
of the very large capillary force that results. One method to alleviate this is to extend
the interface smoothly into the boundaries to eliminate the cusp in the interface. The
current algorithm, however, can cause errors when employed near corners of the

Level Set Contact Extension = {yes|no}

Revised: 6/12/13 105

4.3.40 Level Set Slave Surface

domain. Until this is resolved, this option can only be recommended for domains
without interior corners.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.40 Level Set Slave Surface

Description/Usage

This card specifies whether the level set distance function is constrained during the
calculation or evolves with the typical advection equation. Permissible values for this
option are:

yes|on The surface is constrained to remain on the initial surfaces
throughout the calculation (moving with these surfaces if
they are moving).

no|off The surface evolves normally according to the local
velocity field; this is the default.

Examples

This is a sample card:

Level Set Slave Surface = on

Technical Discussion

In a typical level set simulation, the surface is first initialized with the Level Set
Initialization Method card, and then the surface evolves in time according to the local
velocity field. Using this card, however, the surface is constrained to remain on the
initial surfaces. If the initial surfaces are static, then the level set surface remains

Level Set Slave Surface = {yes|no}

106 Revised: 6/12/13

4.3.41

stationary. For moving interfaces such as those defined by an isosurface or a side set,
the level set function is reinitialized at each Newton iteration to match the moving
surface.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.41

4.3.42 Ignore Level Set Dependencies

Description/Usage

Including this card in your input deck with the string parameter set to “yes” instructs
Goma to discard the sensitivities of all equations to the level set variable when
constructing the Jacobian matrix. This may have benefits when it comes to stability
and convergence; although, the effectiveness of this card is very much case by case.
Note also that use of this card is consistent only with Fill Weight Function = Explicit.
Any other choice will result in an error.

Examples

A sample input card is:

Ignore Level Set Dependencies = yes

Technical Discussion

No discussion.

Ignore Level Set Dependencies = {yes | no}

Revised: 6/12/13 107

4.3.43 Force Initial Level Set Renormalization

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.43 Force Initial Level Set Renormalization

Description/Usage

This card is used to invoke a renormalization step prior to the first time step of any
transient computation.

<char_string> YES|ON (not case sensitive) will cause the renormalization
procedure to occur on the first step. If this card is not
included or some other string is used here a renormalization
will automatically occur on the first time step.

Examples

A typical length scale input card looks like:

Force Initial Level Set Renormalization = yes

Technical Discussion

Restarts occur fairly frequently during level set computations. It has been discovered
that the robustness of the subsequent computation can be improved by quite a bit if the
level set field is renormalized at the start of the restart, regardless of the current average
gradient norm error. This card is employed to invoke a renormalization at the start of
any computation, that is, a renormalization procedure is conducted prior to the initial
time step if this card is present in the input deck. It has become standard operating
procedure that when a level set computation runs into computational difficulty the first
step in recovery should be to restart with a forced initial renormalization using this
card.

Force Initial Level Set Renormalization = <char_string>

108 Revised: 6/12/13

4.3.44 Number of phase functions

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.44 Number of phase functions

Description/Usage

Activates generalized phase function capability. Currently, the number of phase
functions cannot exceed five. Phase function fields are essentially identical to level set
fields, but more than one can be activated for various purposes. Please see technical
discussion below.

Examples

A sample input card is:

Number of phase functions = 1

Technical Discussion

Various uses of the phase function approach have been explored. To track multiple
interface types from multiple fluids requires more than one level-set field. This
capability can also be deployed for tracking imprinted solid surfaces (moving) together
with capillary free surfaces. Consult the tutorials.

Theory

No Theory.

Number of phas functions = {integer}

Revised: 6/12/13 109

4.3.45 Phase Function Slave Surface

FAQs

No FAQs.

References

GT-026.3 GOMA’s Overset Mesh Method: User Tutorial, November 19 2003. P. R.
Schunk and E. D. Wilkes

4.3.45 Phase Function Slave Surface

Description/Usage

This card is used to designate that the phase function degree of freedom is being slaved
to a boundary. This card is used primarily in the overset grid algorithm in which a
phase function field is slaved to the surface of the embedded body.

<char_string> YES|ON (not case sensitive) will allow the phase function
field to be slaved to a surface. Currently, no support is
given to more than one slaved function fields or to problems
in which there are slaved and unslaved (free?) phase
function fields.

Examples

A typical length scale input card looks like:

Phase Function Slave Surface = yes

Technical Discussion

One of the nice properties of level set/phase function fields is that they can be used to
find distances from surfaces. This function can be used quite apart from their abilities
to track interfaces. Including this card informs Goma that the phase function 1 field is
going to be used in this capacity and that no PDE is going to be solved to evolve it.
Instead, the values of this field will be “slaved” to a specific surface in the problem and
their values will be determined in reference to this surface in a process very reminicent
of renormalization.

Phase Function Slave Surface = <char_string>

110 Revised: 6/12/13

4.3.46 Phase Function Initialization Method

The overset grid method makes use of a slaved phase function field. In that case, the
phase function field is slaved to the surface of the embedded object. As the embedded
object moves through the flow field, the slaved phase function values will be updated
by determining the distance of a given node to the object’s surface. This slaved phase
function field is then used in a variety of ways to compute the influence of the
embedded object on the flow and stresses of the surrounding fluid.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.3.46 Phase Function Initialization Method

Description/Usage

This card specifies the means by which the phase functions are initialized. After the
initial instance, subsequent instances of {model_name} {parameter_list} are used to
describe initializations of phase fields 2 through 5. This card constructs from a
representation of the starting interface shape, a value for the distance function at every
node in the mesh. The syntax of the card is as follows:

{method_name} A character string which identifies the initialization option
desired. Choices for this string are: Projection, Exodus,
Nodeset, Surfaces, SM_object.

{parameter list} This is a variable parameter list specific to each option. The
nature of it for each method is detailed in the syntax
descriptions below.

Below are the exact syntax used for each initialization method, a brief description of
the method and a specification of any additional required parameters.

Phase Function Initialization Method = {method_name} {parameter list}

Revised: 6/12/13 111

4.3.46 Phase Function Initialization Method

Projection This method computes the initial phase function field by
calling a user-specified routine which returns the signed
distance function for a given point. It has no parameter
list after its name.

Exodus Using this card indicates that the initial phase function
field is to be read from the exodus file specified earlier
(see FEM file and Initial Guess cards for read_exoII
option). This card has no parameter list after its name.

Nodeset <integer1> EB <integer2>

This method establishes the initial location of the
interface as the boundary between two element blocks.
The value <integer1> is the nodeset identification
number for an internal nodeset defined to exist at the
interface between the two element blocks. The character
string EB is required. The integer <integer2> is the
element block id number to which positive values of
phase function function is going to be assigned.

Surfaces <integer> This card establishes the initial phase function function
by referring to a set of primitive geometric objects. It is
the easiest to use and the most general. The integer
value <integer> is the number of surface objects that are
used to construct the initial interface. This number of
SURF object cards must follow this card. This is the
syntax of the SURF object card:

SURF = {object_name} {float list}

{object_name}: a character string identifying the
type of geometric object. Options are: PLANE,
CIRCLE, SPHERE, SS, USER.
{float list}: geometric parameters associated with
each object as float values

The following is the syntax and description for each geometric
object option, i.e., the “{object_name} {float list}” part of SURF

PLANE <nx. <ny> <nz> <d>

This card constructs a planar interface surface. The float
values <nx>, <ny>, <nz> define a vector normal to this
plane with the restriction that the sign of the vector must
be such that it points from the negative side of the
interface to the positive side of the interface. The float

112 Revised: 6/12/13

4.3.46 Phase Function Initialization Method

value <d> effectively represents the distance of the
plane from the origin. Its value must be set, however, so
that the dot product of any position vector to a point on
the desired plane and the vector (nx,ny,nz) must be
equal to <d> (it is a property of planes that this number
is independent of the point on the plane that is chosen).

CIRCLE <cx> <cy> <radius>

This card constructs a circular interface surface in a
two-dimensional domain. The float values <cx> <cy>
identify the coordinates of the center of the circle. The
float value <radius> establishes the radius of the curve.
By definition, points interior to the circle are assigned
negative phase function function values.

SPHERE <cx> <cy> <cz> <radius>

This card constructs a spherical interface surface in a
three-dimensional domain. The float values <cx> <cy>
<cz> identify the coordinates of the center of the circle.
The float value <radius> establishes the radius of the
sphere. By definition, points interior to the sphere are
assigned negative phase function function values.

SS {ss_id}

This card uses an existing sideset in the problem as a
defined geometric object for construction of an
interface. The parameter <ss_id> identifies this sideset.

USER {user-defined float list}

This card indicates the user has defined an object
function using the supplied parameter float list that
returns a signed distance value when supplied with the
coordinates of a point in space. This object function
should appear in the function call user_init_object in the
file user_pre.c.

SM_object {object_type} {object_name}

This card allows the user to initialize the phase function
location by using a piece of solid model geometry. The
solid model object_type can be either FACE or BODY.
A 2D initialization uses the boundary of the specified
FACE (or surface) as the 0 phase function. A 3D

Revised: 6/12/13 113

4.3.47 Phase Function Renormalization Tolerance

initialization uses the boundary of the specified BODY
(or volume) as the 0 phase function.

Examples

Three examples of initialization methods for a single phase function are provide below:
Phase Function Initialization Method = Nodeset 20 EB 1

Phase Function Initialization Method = Surfaces 3
SURF = PLANE -1. 0. 0. -3.
SURF = CIRCLE -2 0 1
SURF = CIRCLE -3 0 0.5

Phase Function Initialization Method = SM_object BODY my_blob

Technical Discussion

Please consult Level Set Initialization Method card for discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.3.47 Phase Function Renormalization Tolerance

Description/Usage

This parameter provides a means for controlling how often renormalization
(redistancing) operations are performed on the phase function fields as they evolve by
fixing the size of the deviation allowed between the average absolute magnitude of the

Phase Funtion Renormalization Tolerance = <float>

114 Revised: 6/12/13

4.3.47 Phase Function Renormalization Tolerance

phase function gradient near each respecitve interface and unity, the theoretical value
observed for a pure distance function.

<float> Value of the tolerance, the allowable deviation.

The range of this parameter is any positive real number, however, it is rare to use values
smaller than 0.1 or larger than 5.0. The value of the tolerance defaults to 0.5 if this card
is not specified. Note that a global parameter value is applied to all phase function
fields in the problem. Currently, there is no provision for each phase function field to
have a unique value for this parameter.

This parameter is exactly analogous to the similarly named parameter used in standard
level set interface tracking.

Examples

This is a sample renormalization card:

Phase Function Renormalization Tolerance = 0.25

Technical Discussion

The reader is referred to the Technical Discussion associated with Level Set
Renormalization Tolerance card as it is virtually identical to the operation of it in the
current context. The only thing to note is that each phase function is evaluted
separately against this tolerance and each function is renormalized independently if the
tolerance is exceeded. That is, exceeding the tolerance by one phase function field only
triggers renormalization for that field. The other phase function fields are left
unaltered.

Theory

No Theory.

FAQs

What is a proper value for this parameter? Values on the order of unity should work
well. Renormalization based on gradient can be disabled completely by choosing a
very large value for this parameter. Conversely, a very small value will always result in
a renormalization step.

Is it possible to renormalize too often? Yes. Renormalization is an extraphysical
procedure designed solely to improve the numerical performance of the interface
tracker. As such, it can add or subtract volume to or from the phases represented by the
interface contour. Renormalizing too often, therefore, can result in errors being

Revised: 6/12/13 115

4.3.48

introduced. The renormalization procedure, Huygens_Constrained, attempts to
mitigate this effect.

References

No References.

4.3.48

4.3.49 Phase Function Renormalization Method

Description/Usage

This card indicates the method to be used to renormalize the phase function fields
during the course of the computation.

<char_string> A character string which specifies the type of method for
renormalization. Choices for this string are: Huygens,
Huygens_Constrained.

Huygens In this renormalization method a set P of m discrete points
is constructed that lie on the zero contour of the jth phase
function field:

The finite element interpolating functions make this an easy
task for Goma. For each mesh node, k, a minimum distance
to this set of points is determined, Dk and the value of phase
function at that node is replaced by Dk multiplied by the
original phase function sign at that node. This method is
fast and robust and, given sufficiently refined meshes and
high order (Q2) interpolation of the phase function fields,
reasonably accurate. Howeverr, for lower order
interpolation this method is prone to lose mass over time.

Huygens_Constrained

This method of renormalization functions in much the same
way as the previous method, except it employs Lagrange

Phase Function Renormalization Method = <char_string>

P xi yi zi, ,(),i=1,2...m | φj xi yi zi, ,() 0={ }=

116 Revised: 6/12/13

4.3.49 Phase Function Renormalization Method

multiplier to enforce a global constraint that requires that
the volume of “negative” phase function remain unchanged
before and after the renormalization. This requirement
makes the method significantly better at conserving mass.
However, it also does introduce an extraphysical movement
of material within the domain.

Examples

This is a sample card

Phase Function Renormalization Method = Huygens_Constrained

Technical Discussion

Renormalization is an operation particular to phase function (and level set) embedded
interface tracking. The phase function fields are defined originally as distanes from a
known curve or surface. This type of function offers benefits in terms of smoothness of
representation and the easy with which interfacial physics can be included. However,
typically we are evolving these functions using the commonplace advection operator:

which does not necessarily perpetuate the phase field as a distance function. Sharp
gradients or flat regions in the function may therefore appear near the interface which
have various detrimental effects on the accuracy of the solution. The solution that is
most often used is to periodically construct the interfaces from the phase function field
and renormalize the phase function fields, i.e. reevaluated them so that they return to
being distance functions from the interface. In general, this is a satisfactory solution if
the frequency of renormalization is not too great. To set the criteria for determining
when to renormalize the phase functions see the Phase Function Renormalization
Tolerance card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Dφj

Dt
--------- 0=

Revised: 6/12/13 117

4.4 Continuation Specifications

4.4 Continuation Specifications

This section of input records is used to direct all automatic continuation procedures. The entire
section is completely optional. Basically, automatic continuation can be accomplished in steady
state simulations (see Time Integration card) through any one or combination of parameters.
These parameters can be any one or combination of the input floats required on the boundary
condition cards (see Section 4.10) or material property cards (see Chapter 5). The cards in this
section are used to specify the parameters that will be marched automatically, the method of
marching (e.g. zero-order, first-order, multiparameter first-order, etc.), the limits of parameter
values, and other sundry options. Much of this capability can now be managed from the LOCA
library package (Library of Continuation Algorithms - Salinger et al. 2002).

Input specifications for this section of input records is discussed in a separate, comprehensive
manual (Gates, et. al., 2000); an update to this manual has been completed during the summer of
2006 (Labreche, et. al., 2006).

4.5 Hunting Specifications

The cards in this section are used to direct multiparameter continuation with the hunting
technique, which is a linear, multiparameter capability. The user is referred to discussions for the
Continuation Specifications for the important details of Continuation. As is true for the
Continuation Specifications, this entire section is completely optional. Hunting Specification
cards are used in conjunction with Continuation Specifications.

Input specifications for this section of input records is discussed in a separate, comprehensive
manual (Gates, et. al., 2000); an update to this manual has been completed during the summer of
2006 (Labreche, et. al., 2006).

4.6 Augmenting Conditions Specifications

Input records in this section are used to direct the solution of augmenting constraints on the base
system of differential equations. Addition of these conditions may require some programming in
the file user_ac.c. This entire section of the input deck is optional.

Input specifications for this section of input records is discussed in a separate, comprehensive
manual (Gates, et. al., 2000); an update to this manual has been completed during the summer of
2006 (Labreche, et. al., 2006).

4.7 Solver Specifications

118 Revised: 6/12/13

4.7.1 Solution Algorithm

This required section directs the nonlinear iteration strategy with associated parameters (e.g.,
Newton’s method options), matrix solution strategy and parameters, and other sundry options and
toggles for the pressure stabilization approach and linear stability analysis capability. With regard
to the parameters associated with matrix solution methods, it is important to understand that there
are two major classes of solvers - direct and iterative solvers. Direct solvers are the most robust,
but can be computationally impractical for some larger systems. Iterative solvers and associated
preconditioners are the only practical options for large-scale problems (viz., very large two-
dimensional problems and virtually all three-dimensional problems). Choosing the solver settings
for good convergence of iterative matrix solvers can be an artful task for Navier-Stokes problems
and other poorly conditioned systems. It is recommended that the user consult the comprehensive
report by Schunk, et al. (2002) for an overview and further usage tips.

4.7.1 Solution Algorithm

Description/Usage

This required card selects an algorithm for the solution of the linear matrix system that
arises at each Newton iteration (either for a steady-state solution or for the solution at
each discrete time). Please note that at the time of this writing, new solver capabilities
were being generated; although the following information was complete and accurate,
it will likely be out of date by the time of publishing. Users should consult the CD
version of this document in the Goma Documentation System for up to date options.

There are three major matrix solver packages accessible in Goma, two direct
factorization collections and an iterative solver package. The first collection of direct
factorization methods in Goma include the Sparse1.3 package (Kundert and
Sangiovanni-Vincentelli, 1988) and Y12M direct factorization technique (Zlatev,
Wasniewski and Schaumburg, 1981) accessible via the Aztec linear solver package.
The second collection of direct factorization methods include two frontal solvers,
SNL_MPFRONT, an adaptation of R. Benner’s implementation of Hood’s (1976)
frontal method, and UMFPACK (Davis and Duff, 1997). SNL_MPFRONT is a
traditional frontal method while UMFPACK is a multi-frontal solver.

The Aztec 2.x linear solver package (Tuminaro, et. al., 1999) is the iterative solver
component of Goma. A successor to the krysolve 1.0 package (Schunk and Shadid,
1992) and the Aztec 1.0 package (Hutchinson, Shadid and Tuminaro, 1995), Aztec 2.x
includes support for distributed memory architectures and for matrices in either a
modified sparse row (MSR) format or a variable block row (VBR) format, as well as
their distributed memory extensions. Generally, convergence of these iterative methods

Solution Algorithm = {char_string}

Revised: 6/12/13 119

4.7.1 Solution Algorithm

can be accelerated by judicious use of a preconditioner (which many of the other Solver
Specifications cards address).

The options for this input card are listed below, but additional usage comments are
included as part of the Technical Discussion section of this card. These comments
provide assistance in choosing the Solution Algorithm for your problem.

Valid options for {char_string} are as follows:

lu Direct factorization via Gaussian elimination using Sparse
1.3. This solver is robust even for poorly conditioned matrix
systems. It is unavailable when running Goma on multiple
processors.

front Direct factorization based on Benner’s SNL_MPFRONT
that eliminates equations and variables as the fully
assembled rows of the matrix are acquired. This is the latest
solver installed within Goma and users are encouraged to
report their successes and failures with this option as part of
testing. It is unavailable when running Goma on multiple
processors.

umf/umff Direct factorization using UMFPACK. This multi-frontal
solver has been hardwired to perform elimination only upon
complete assembly. The umff option forces a full
factorization every time, whereas umf does not. It is
unavailable when running Goma on multiple processors.

y12m Direct factorization using the Y12M package. This package
is accessible through the Aztec matrix solver interface and
cannot be used for multiple processor computations. Other
direct solvers are recommended against this one.

gmres Iterative solver from the Aztec package using the restarted
generalized minimum residual method. Iterative solver
options are important to convergence of this method, e.g.
Preconditioner, Size of Krylov subspace, Matrix, etc.

cg Iterative solver from the Aztec package using the conjugate
gradient method. Like other iterative solvers, the successful
convergence of the conjugate gradient method for a linear
system depends on preconditioners and other cards in the
Solver Specifications section.

120 Revised: 6/12/13

4.7.1 Solution Algorithm

cgs Iterative solver from the Aztec package using the conjugate
gradient squared method. Convergence of this method is
frequently contingent on the linear system and on the choice
of other cards in the Solver Specifications section.

tfqmr Iterative solver from the Aztec package using the transpose-
free quasi-minimum residual method. Convergence of this
method is frequently contingent on the linear system and on
the choice of other cards in the Solver Specifications
section.

bicgstab Iterative solver from the Aztec package using the
biconjugate gradient with stabilization. Convergence of this
method is frequently contingent on the linear system and on
the choice of other cards in the Solver Specifications
section.

amesos Allows access to direct solver options implemented in
parallel. Please see the user-notes below for Goma build
options that must be exercised. This package is part of the
Trilinos 6.0 framework. With this option, you must add an
additional input card to specify the parallel direct solvers:

 Amesos Solver Package = {superlu | klu | umfpack}

Of these three options, we currently recommend “superlu”.
All options can be run in parallel.

Examples

Following is a sample card:

Solution Algorithm = lu

Another example (two cards) shows how to invoke a parallel direct solver:

Solution Algorithm = amesos

Amesos Solver Package = superlu

Technical Discussion

The direct factorization options are the most robust but consume the most
computational resources (CPU time and memory, particularly for large and 3D
problems). The iterative methods consume less resources but may take some
experimentation to obtain convergence to the solution of the linear system. For
example, a poorly conditioned linear system may require a lot of preconditioning. The
conjugate gradient method may not be very useful on linear systems that are not

Revised: 6/12/13 121

4.7.1 Solution Algorithm

symmetric positive definite. Although the following guidelines are useful, selection of
the “right” linear solver requires experience, understanding and sometimes, luck.

• lu - The Sparse1.3 direct solver, is the most robust solver in Goma in terms of
obtaining successful convergence for even poorly conditioned matrix systems. A
significant disadvantage, however, is that it can be computationally expensive for
large problems. Not only do the memory and CPU requirements grow with
problem size, but the initial symbolic factorization that seeks optimal reordering
also consumes greater CPU resources with larger problem sizes. For example, a
problem with 70,000 degrees of freedom that required 22 hours of CPU for the
initial factorization required only 1/2 hour for subsequent factorizations.
Furthermore, this solver is unavailable when Goma is run on multiple processors.
Its robustness makes it an excellent choice for small- and medium-sized problems.

• front - This solver is an adaptation for Goma of R. Benner’s frontal solver, which
itself includes considerable improvements compared to the pioneering frontal
solvers (Irons, 1970; Hood, 1976). The SNL_MPFRONT library is compiled and
linked into Goma only by choice. Direct factorization is done as the fully
assembled rows of the matrix are acquired. The frontal solver consumes CPU time
roughly comparable to Sparse 1.3, with the noted advantage of eliminating intra-
element fully summed equations as they are encountered and only keeping the
active working matrix in-core, thereby reducing memory requirements and
possible storage of matrix components to disk.

• umf/umff - UMFPACK 2.0d is a powerful direct solver that is generally faster
than Sparse 1.3a, though it might lack the robustness of the latter on infrequent
occasions. The implementation of UMFPACK within Goma is only barebones, i.e.
the multi-frontal solver has been hardwired to perform elimination only upon
complete assembly. Finally, usage of UMFPACK is governed by a license that
limits usage to educational, research and benchmarking purposes by nonprofit
organizations and the U.S. government. Please refer to the license statement
contained in the UMFPACK distribution for exact details. This solver was
implemented prior to front so it was the only direct solver alternative to lu for a
period of time. User’s should now evaluate performance of this solver against
front on a case by case basis.

• gmres, cg, cgs, tfqmr, bicgstab - The convergence of each of these iterative
solvers is highly influenced by the kind of preconditioning selected. Often, the
method(s) will not converge at all without an appropriate level of preconditioning.
GMRES is considered one of the best iterative methods available, although there
are instances where each of the others is superior. It is a Krylov-based method and
has an additional input card, Size of Krylov subspace. As mentioned earlier, CG
should only be used on systems that are symmetric positive definite. See the

122 Revised: 6/12/13

4.7.1 Solution Algorithm

Matrix subdomain solver card, and other Solver Specifications cards for guidance
on appropriate use of preconditioners; also consult Schunk, et. al. (2002).

• amesos: superlu, klu, umfpack - These solvers are all direct (not iterative, but
based on Gaussian elimination) and can be run in parallel with mpi. We
recommend these solvers when robustness is required over iterative solvers and
when the matrix assembly time is excessive, which is often the case when
overloaded equations like species diffusion, porous media equations, etc. are used.
This option also performs well for three-dimensional problems of small to
moderate size. To exercise these options you must build Goma in the following
way (viz. make the following changes to the default Goma.mk file):

1) you must include the compiler define ENABLE_AMESOS.

2) the TRILINOS_DIR must be set to /home/goma/production/rhel4/

trilinos-6.0.14.

3) the TRILINOS_ARCH must be set to RHEL4_PARALLEL.

4) Comment out the line setting AMESOS_LIB to null and uncomment the

line directly below this in Goma.mk

5) Comment out the line setting SUPERLU_LIB to null and uncomment the

line directly below this in Goma.mk Recompile Goma.

Note that these options might change with time as this version of Trilinos
becomes the default case.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun, March 2002.

Revised: 6/12/13 123

4.7.2 Matrix storage format

G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD 3rd ed. (1996)

For all other references, please see References at the end of this manual.

4.7.2 Matrix storage format

Description/Usage

This optional card can be used to choose between two formats accepted by the Aztec
2.1 solver package. Valid options are:

msr modified sparse row format (see Schunk and Shadid, 1992).
This option is the default option and is automatically used
for all direct solver options.

vbr variable block row format (see Heroux, 1992). This option
should only be selected when an Aztec iterative solver is
chosen.

Examples

Following is a sample card:

Matrix storage format = msr

Technical Discussion

Goma supports two global matrix formats for its linear solvers. The advantage of
choosing vbr over the default msr format is a matter of which preconditioner option is
selected. (See Schunk, et al., 2002 on iterative methods.) When using the front solver
package, another format known as estifm is employed internally but not specified by
this card, which is not used in this case.

Theory

No Theory.

Matrix storage format = {msr | vbr}

124 Revised: 6/12/13

4.7.3 Preconditioner

FAQs

No FAQs.

References

SAND92-1158: Iterative Solvers in Implicit Finite Element Codes, Sandia Technical
Report, Schunk, P. R. and Shadid, J. N. (1992)

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun, March 2002.

TR/PA/92/90: M. A. Heroux, A proposal for a sparse BLAS toolkit, Technical Report,
CERFACS, December 1992.

4.7.3 Preconditioner

Description/Usage

Iterative techniques for solving a linear matrix system (see above) often benefit from
preconditioning to aid convergence. This optional card provides for the selection of a
preconditioner from those available through Aztec. For direct factorization Solution
Algorithm specifications, the Preconditioner specification is immaterial since none is
performed; in such cases, this card should be omitted.

Valid options for {char_string} are listed below.

none No preconditioning is performed.

This is the default specification if no preconditioner has
been specified.

Jacobi A k-step Jacobi preconditioner is used (block Jacobi for
VBR matrices). The number of Jacobi steps, k, is set using
the Matrix polynomial order card.

Neumann A Neumann series polynomial preconditioner is used,
where the order of the polynomial, k, is set using the Matrix
polynomial order card.

Preconditioner = {char_string}

Revised: 6/12/13 125

4.7.3 Preconditioner

ls A least-squares polynomial preconditioner is used, where
the order of the polynomial, k, is set using the Matrix
polynomial order card.

sym_GS A k-step symmetric Gauss-Seidel preconditioner is used for
non-overlapping domain decomposition (additive Schwarz).
In parallel, each processor performs one step of symmetric
Gauss-Seidel on its local matrix, followed by
communication to update boundary values from adjacent
processors before performing the next local symmetric
Gauss-Seidel step. The number of steps, k, is set using the
Matrix polynomial order card.

lu Approximately solve the processor’s local matrix via direct
factorization using Sparse 1.3 in conjunction with a user-
specified Matrix drop tolerance.

dom_decomp A domain-decomposition-based preconditioner (additive
Schwarz). Each processor augments its local matrix
according to the Matrix factorization overlap card and then
approximately solves the resulting linear system using the
solver specified by the Matrix subdomain solver card. This
is the most often used Preconditioner card.

Examples

The following is a sample card:

Preconditioner = dom_decomp

Technical Discussion

Note that prior to Aztec 2.x, certain subdomain solvers were specified simply as
arguments to the Preconditioner card. While this historical usage is permitted via
limited backward compatibility in order to ease the transition from Aztec 1 usage, the
preferred usage is to specify ILU (and similar) preconditioners as a subdomain solver
using the more powerful and flexible options that are available using Aztec 2.x together
with this option for the preconditioner. Since subdomain solvers such as ILU and ILUT
are powerful and frequently used, this preconditioner option will predominate when
iterative solvers are being used, even in serial execution.

The most popular setting is dom_decomp, with a subdomain solver specified in the
Matrix Subdomain Solver card. For further details, consult Mike Heroux’s recipe for
applying preconditioners and what to dial the knobs to (in Schunk, et. al., 2002).

126 Revised: 6/12/13

4.7.4 Matrix subdomain solver

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun, March 2002.

4.7.4 Matrix subdomain solver

Description/Usage

This optional card selects a solver to use in constructing a preconditioner. It is used in
conjunction with a Preconditioner setting.

Preconditioner = dom_decomp

All of these preconditioners are available through the Aztec library. Valid options for
{char_string} are listed below.

lu Approximately solve the processor’s local matrix via direct
factorization using Sparse 1.3 in conjunction with a user-
specified Matrix drop tolerance.

ilut Approximately solve the processor’s local matrix via ILUT
(Saad, 1994.) The factorization is affected by user-specified
options for Matrix drop tolerance as well as Matrix ILUT
fill factor.

This subdomain solver is among the more robust to
recommend as a first attempt; thus it has been chosen as the
default if no subdomain solver is specified.

Matrix subdomain solver = {char_string}

Revised: 6/12/13 127

4.7.4 Matrix subdomain solver

ilu Approximately factor the processor’s local matrix using
ILU(k), where k is specified by the user in the argument to
Matrix graph fillin.

rilu Approximately factor the processor’s local matrix using
RILU(k,ω), where k is specified by the user in the argument
to Matrix graph fillin and ω is specified by the user in the
argument to Matrix RILU relax factor. (This option applies
only to Trilinos.)

bilu Approximately factor the processor’s local matrix using
block ILU(k) for a VBR format matrix, where k is specified
by the user in the argument to Matrix graph fillin. While not
the most efficient preconditioner, bilu is very robust. (This
option applies only to Trilinos.)

icc Incomplete Cholesky factorization. See the Aztec manual
for a reference.

If this Matrix subdomain solver card is omitted, then the default selection is ilut.

Examples

Following is a sample card:

Matrix subdomain solver = ilut

Technical Discussion

There is no real recipe to follow when choosing a preconditioner. In general, the
cheapest preconditioner that works should be used. If ILUT(1) does the job, great.
Sometimes the only preconditioner(s) that will work are very expensive. When the
preconditioner seems to take too much time, remember that you may not be choosing
the “wrong” preconditioner; the problem may just be that difficult.

Although Aztec 2.1 is being maintained and supported as a solver package for Goma,
the interative solvers and preconditioners are now primarily accessed through the
Trilinos library (as AztecOO), which is actively being developed and maintained at
Sandia National Laboratories. Note that some features can only be accessed through
Trilinos, as indicated above.

Theory

No Theory.

128 Revised: 6/12/13

4.7.5 Matrix scaling

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun, March 2002.

Saad, Y., 1994. “ILUT: a dual threshold incomplete ILU factorization”, Numerical
Linear Algebra with Applications, 1:387-402.

4.7.5 Matrix scaling

Description/Usage

This optional card selects a scaling for the linear matrix system solution step.Valid
options for {char_string} are listed below.

none No scaling is performed. This is the default if no Matrix
Scaling card is present.

Jacobi Point Jacobi scaling is performed.

BJacobi Block Jacobi scaling is performed if the underlying matrix
format is VBR. If the MSR matrix format is used, the
scaling reverts to point Jacobi.

row_sum Scale each row so the sum of the magnitudes of the nonzero
elements is 1.

sym_diag Symmetric scaling so that diagonal elements are 1.

sym_row_sum Symmetric scaling using the matrix row sums.

If the Matrix Scaling card is omitted, the default selection is none.

Examples

Following is a sample card:

Matrix scaling = {char_string}

Revised: 6/12/13 129

4.7.6 Matrix residual norm type

Matrix scaling = sym_diag

Technical Discussion

All of these scalings are supplied via the Aztec library and thus will not affect the linear
systems that are solved by other means (using front, for example). In an odd twist of
fate, the linear system always undergoes a row sum scaling (equivalent to the row_sum
option) before these other scalings are applied. Note that when a nontrivial scaling is
selected, the matrix is overwritten with a rescaled system.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.6 Matrix residual norm type

Description/Usage

This optional card selects the type of norm that is used to measure the size of the
residuals occurring during the solution of the linear matrix system r(z) = b - Az, where
z is an approximation to the solution x of the linear matrix problem Ax = b. The types
of norms used by the linear solver are controlled by values of {char_string}:

r0

rhs

Anorm

sol

noscaled

The (0) superscript for the r0 specification indicates the initial value of the residual.

Matrix residual norm type = {char_string}

r 2 r
0

⁄ 2

r 2 b⁄
2

r 2 A ∞⁄

r ∞ A ∞ x 1 b ∞+()⁄

r

130 Revised: 6/12/13

4.7.7 Matrix output type

If the Matrix residual norm type card is omitted, the default is r0.

Examples

Following is a sample card:

Matrix residual norm type = r0

Technical Discussion

For direct factorization linear solution algorithms, the norm should become very small
in the single iteration that is performed. This card is more pertinent when an iterative
solution algorithm has been specified.

Note the distinction between the residual for the overall global Newton iteration and
use of the term residual to describe an aspect of the linear solver iteration. For the linear
matrix systems, a residual r may be computed for any guess of the solution to Ax = b as
r(z) = b - Az. If z = x, the actual solution, then the residual is zero; otherwise, it is some
vector with a nonzero norm.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.7 Matrix output type

Description/Usage

This optional card indicates a level of diagnostic output for Aztec. The valid input
parameters for {char_string} are either a string or a positive integer:

all Print matrix and indexing vectors for each processor and all
intermediate residual expressions.

Matrix output type = {char_string}

Revised: 6/12/13 131

4.7.8 Matrix factorization reuse

none No intermediate results are printed. This is the default.

warnings Only Aztec warnings are printed.

last Only the final residual expression is printed.

k Residual expressions are printed every k iterations, .

If the Matrix output type card is omitted, the default is none.

Examples

Following is a sample card:

Matrix output type = 10

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.8 Matrix factorization reuse

Description/Usage

This optional card directs the approximate factorization solvers used in preconditioner
construction to reuse matrix information that may have been obtained during previous
linear solution stages. This card only has an effect when using an Aztec solver. Valid
options for {char_string} are:

calc Use no information from previous linear solutions.

Matrix factorization reuse = {char_string}

k 0>

132 Revised: 6/12/13

4.7.9 Matrix graph fillin

recalc Use information from previous linear solutions but
recalculate the preconditioning factors, with the implication
that the symbolic factorization will be similar.

reuse Use information from previous linear solution; do not
recalculate preconditioner factorizations. However, use
scaling factors from previous linear solutions to scale right-
hand sides, initial guesses, and final solutions.

If the Matrix factorization reuse card is omitted, the default is recalc.

Examples

Following is a sample card:

Matrix factorization reuse = recalc

Technical Discussion

No discussion. See related discussions for Matrix factorization save.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.9 Matrix graph fillin

Description/Usage

This optional card sets the graph level of fill-in for approximate factorizations used in
preconditioner construction for ILU(k), ICC(k) and BILU(k). The input parameter is
defined as

<integer> k, specifies the graph level of fill-in, .

Matrix graph fillin = <integer>

k 0>

Revised: 6/12/13 133

4.7.10 Matrix factorization overlap

If the Matrix graph fillin card is omitted, the default value of k is 0.

Examples

Following is a sample card:

Matrix graph fillin = 2

Technical Discussion

As the level of graph fill-in increases, the accuracy (usefulness) of the preconditioner
increases; however, so does memory usage as well as the time required to compute the
preconditioner.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.10 Matrix factorization overlap

Description/Usage

This optional card determines how much matrix factorization overlap occurs with other
processors. This specification is only relevant for parallel computations. The valid
options for {char_string} are:

none No augmentation is performed, equivalent to a setting of
k=0. This is the default.

diag Augment the processor’s local matrix to include the
diagonal (MSR) or diagonal blocks (VBR) for external
rows.

Matrix factorization overlap = {char_string}

134 Revised: 6/12/13

4.7.10 Matrix factorization overlap

k Augment the processor’s local matrix to include external
rows. The rows are selected by examining non-zero
columns from the current local system that refer to off-
processor unknowns, and including the rows associated
with those off-processor unknowns. This process is repeated
k times, where . When complete, all non-zero columns
whose associated rows have not been included are
discarded. A value of 0 is equivalent to a setting of none.

If the Matrix factorization overlap card is omitted, the default is none.

Examples

Following is a sample card:

Matrix factorization overlap = 1

Technical Discussion

This optional card determines how much a processor’s local matrix is to be augmented
with information from adjacent processors during the approximate factorizations used
to build preconditioners. This card should be omitted or given a value of none for serial
executions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

k 0≥

Revised: 6/12/13 135

4.7.11 Matrix overlap type

4.7.11 Matrix overlap type

Description/Usage

This card selects the kind of matrix overlap that occurs (for parallel computations).
Valid options are:

standard The local processor considers only its own estimate for any
unknown; results from adjacent processors are ignored. This
is the default.

symmetric The local processor adds its own estimate together with
estimates from adjacent processors, retaining symmetry of
preconditioners if a symmetric technique is being
employed.

If the Matrix ovelap type card is omitted, the default is standard.

Examples

Following is a sample card:

Matrix overlap type= symmetric

Technical Discussion

This optional card determines how overlapping subdomain solver results are combined
when different processors derive different estimates for the same solution unknown.

This overlap option is moot for serial problems whose data decomposition is trivial.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Matrix overlap type = {standard | symmetric}

136 Revised: 6/12/13

4.7.12 Matrix auxiliary vector

4.7.12 Matrix auxiliary vector

Description/Usage

This optional card indicates to Aztec how the auxiliary vector r is determined.
Permissible options are:

resid The auxiliary vector is set to the initial residual vector, viz. r
= r(0).

rand The auxiliary vector is filled with random numbers, each in
the range [-1,1].

If the Matrix auxiliary vector card is omitted, the default is resid.

Examples

Following is a sample card:

Matrix auxiliary vector = rand

Technical Discussion

The auxiliary vector is only used for certain iterative linear matrix solution algorithms.

 The rand option may cause difficulties with initial iterative solver steps because
different processors may have different initial unknown values at shared unknowns.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Matrix auxiliary vector = {resid | rand}

Revised: 6/12/13 137

4.7.13 Matrix drop tolerance

4.7.13 Matrix drop tolerance

Description/Usage

This optional card indicates to Aztec a drop tolerance to be used in conjunction with
preconditioners based on LU or on ILUT. The <float> input parameter is:

<float> tol, a floating point number () that specifies the drop
tolerance.

If the Matrix drop tolerance card is omitted, the default is 0.0.

Examples

Following is a sample card:

Matrix drop tolerance = 0.01

Technical Discussion

When constructing the partial factorization(s), any value less than tol is dropped. If set
to 0.0, then other parameters will govern preconditioner size and components (e.g.,
Matrix ILUT fill factor for the ILUT preconditioner).

The two main parameters when using the ILUT preconditioner are this card and the
Matrix ILUT fill factor card. The restrictions in Matrix ILUT fill factor take precedence
over the dropped entries caused by this card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Matrix drop tolerance = <float>

tol 0≥

138 Revised: 6/12/13

4.7.14 Matrix polynomial order

4.7.14 Matrix polynomial order

Description/Usage

This optional card allows selection of polynomial order when a polynomial
preconditioning option is selected (see the Preconditioner card). The input parameter is
defined as:

<integer> Number of steps, k (), to take when using matrix
polynomial based preconditioners (Jacobi and symmetric
Gauss-Seidel, for example).

If the Matrix polynomial order card is omitted, then the default selection is k=3.

Examples

Following is a sample card:

Matrix polynomial order = 4

Technical Discussion

When used, the value of this parameter should be greater than 0, and probably no more
than 10. In some, if not all, cases, a value of 0 is meaningless.

This card is not used if the preconditioner does not use matrix polynomials.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Matrix polynomial order = <integer>

0≥

Revised: 6/12/13 139

4.7.15 Matrix reorder

4.7.15 Matrix reorder

Description/Usage

This optional card determines whether RCM (Reverse Cuthill-McKee) reordering of
the linear system is to be performed. Valid options are:

none the equations are not reordered.

rcm the equations are reordered using an RCM scheme.

If the Matrix reorder card is omitted, then the default selection is none.

Examples

Following is a sample card:

Matrix reorder = rcm

Technical Discussion

Note that reordering frequently is helpful in achieving convergence for iterative
solution of linear systems. In a few instances, however, Goma users have noted that
RCM reordering hinders convergence for selected problems. The default for Goma is to
not use the RCM reordering so that quantitatively comparable results are obtained
using either Aztec 1 (which did not have RCM reordering as an option) or Aztec 2.x. In
summary, users are encouraged to try RCM reordering when using iterative solvers,
foregoing the option only as a further resort in the face of repeated convergence
failures.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Matrix reorder = {none | rcm}

140 Revised: 6/12/13

4.7.16 Matrix factorization save

4.7.16 Matrix factorization save

Description/Usage

This optional card is a boolean specification that determines whether the preconditioner
factorization information should be kept after a solve. Valid options are

0 Factorization information is discarded.

1 Factorization information is kept for that step.

If the Matrix factorization save card is omitted, then the default selection is 0.

Examples

Following is a sample card:

Matrix factorization save = 1

Technical Discussion

This option is most useful for iterative solution techniques where the computed
preconditioning matrix found from an incomplete factorization requires significant
computational resources. Such a preconditioner may be useful in later matrix solves
and obviate the need to compute another expensive preconditioner at the later stage.
Although a lot of time may be saved by re-using a previous factorization, the loss in
accuracy may cause convergence problems.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Matrix factorization save = {0 | 1}

Revised: 6/12/13 141

4.7.17 Matrix ILUT fill factor

4.7.17 Matrix ILUT fill factor

Description/Usage

This optional card provides a second criterion to Aztec to be used in conjunction with
preconditioners based on ILUT approximate factorization, where

<float> fac, a floating point value () that specifies, very
crudely, how many nonzero entries the approximate
factorization will contain relative to the number of nonzero
entries in the original matrix.

If the Matrix ILUT fill factor card is omitted, the default is 1.

Examples

Following is a sample card:

Matrix ILUT fill factor = 2.0

Technical Discussion

By increasing this factor, the preconditioner becomes more accurate because more
terms in the preconditioner (pseudo-inverse) are retained. A value of 1.0 indicates that
the preconditioner would contain approximately the same number of nonzero entries as
the original matrix.

The two main parameters when using the ILUT preconditioner are this card and the
Matrix drop tolerance card. If the Matrix drop tolerance is 0.0, then this card
determines the size of the preconditioner. If Matrix drop tolerance is greater than 0.0,
then the approximate factorization is first created subject to this card’s restriction, and
then the drop tolerance is applied. This can result in a preconditioner with significantly
fewer nonzero entries.

Theory

No Theory.

FAQs

No FAQs.

Matrix ILUT fill factor = <float>

fac 0≥

142 Revised: 6/12/13

4.7.18 Matrix RILU relax factor

References

No References.

4.7.18 Matrix RILU relax factor

Description/Usage

This optional card provides a relaxation factor to Aztec to be used in conjunction with
preconditioners based on RILU(k,ω) approximate factorization. The input parameter
<float> is defined as

<float> fac, a floating point number ()that specifies a
relaxation factor.

If the Matrix RILU relax factor card is omitted, the default is 1.

Examples

Following is a sample card:

Matrix RILU relax factor = 0.5

Technical Discussion

Some limiting values for fac provide specific behavior:

• for a value of zero, the ILU(k) is obtained

• for a value of one, the MILU(k) is obtained.

The value of k is set by the Matrix graph fillin card.

Theory

No Theory.

FAQs

No FAQs.

Matrix RILU relax factor = <float>

fac 0≥

Revised: 6/12/13 143

4.7.19 Matrix BILU Threshold

References

No References.

4.7.19 Matrix BILU Threshold

Description/Usage

This capability is only present within the Trilinos library. This optional card provides a
means to modify the way the block ILU preconditioner (Matrix subdomain solver =
bilu) is constructed. The input parameter is defined as:

<float> t, a floating point number () that sets the Matrix
Relative Threshold and Matrix Absolute Threshold
thresholds.

When the Matrix BILU threshold card is omitted, the default value is 0.0.

Examples

Following is a sample card:

Matrix BILU Threshold = 1.0e-14

Technical Discussion

Using this card is equivalent to supplying both the Matrix Relative Threshold and
Matrix Absolute Threshold with the value specified with this card.

The value of t defaults to zero, and if given a small value, say 1.0e-14, the condition
number of the preconditioner, as reported when using the bilu option, should decrease.
Try increasing up to around 1.0e-3 to get added benefit. The bilu preconditioner is not
actually the cheapest or most efficient preconditioner, but it is very robust.

Theory

No Theory.

FAQs

No FAQs.

Matrix BILU threshold = <float>

t 0.0≥

144 Revised: 6/12/13

4.7.20 Matrix Relative Threshold

References

No References.

4.7.20 Matrix Relative Threshold

Description/Usage

This card is only available with the Trilinos library. The effect of this card is to impose
a relative lower bound to either a diagonal value or a singular value. The legal values
for <float> are:

<float> r, a floating point number () that specifies a relative
threshold.

If this card is omitted, the default is 0.0.

Examples

A sample input card follows:

Matrix Relative Threshold = 1.e-4

Technical Discussion

This card, along with the Matrix Absolute Threshold card, allow the user to modify the
linear system prior to calculation of the preconditioner. Note that the modification is
only to change the “initial condition” of the preconditioner--it does not actually change
the linear system.

Let t be the value specified with the Matrix Absolute Threshold card. For a scalar-based
preconditioner (ilut, ilu, rilu, icc), each value on the diagonal undergoes the following
substitution:

dnew = r*dold + sgn(dold)*t.

For the bilu preconditioner, each singular value of the diagonal block preconditioner is
compared to:

σmin = r*σ1 + t

where σ1 is the largest singular value of the diagonal block under consideration. All σk
are modified (if necessary) to be at least as large as σmin.

Matrix Relative Threshold = <float>

r 0.0≥

Revised: 6/12/13 145

4.7.21 Matrix Absolute Threshold

The appropriate values for the threshold can vary over many orders of magnitude
depending on the situation. Refer to Schunk, et. al., 2002 for information and for
further guidance.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun, March 2002.

4.7.21 Matrix Absolute Threshold

Description/Usage

This card is only available with the Trilinos library. It allows the user to specify a lower
bound for either a diagonal entry or a singular value. The exact meaning depends on the
kind of preconditioner used (scalar-based or block-based). The legal values are:

<float> t, a floating point number () that specifies a minimum
threshold value for diagonal or singular value.

Along with the Matrix Relative Threshold card, this card gives the user the ability to
modify what matrix the preconditioner operates on. See the Matrix Relative Threshold
card for a full description.

If this card is omitted, the default is 0.0.

Examples

A sample input card follows:

Matrix Absolute Threshold = 1.e-4

Matrix Absolute Threshold = <float>

t 0.0≥

146 Revised: 6/12/13

4.7.22 Size of Krylov subspace

Technical Discussion

Refer to the discussion for card Matrix Relative Threshold. The appropriate values for
the threshold can vary over many orders of magnitude depending on the situation.
Refer to Schunk, et. al., 2002 for information and for further guidance.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun, March 2002.

4.7.22 Size of Krylov subspace

Description/Usage

This optional card allows the user to specify the dimension (size) of the Krylov
subspace for the gmres option of the Solution Algorithm card, where

<integer> m, specifies the number of orthogonalization directions and
can be any positive integer less than or equal to the order of
the matrix.

If the Size of Krylov subspace card is omitted, then the default dimension is m = 30.

Examples

The following is a sample input card:

Size of Krylov subspace = 128

Size of Krylov subspace = <integer>

Revised: 6/12/13 147

4.7.23 Orthogonalization

Technical Discussion

If the size of the subspace is at least as large as the maximum number of iterations
permitted by the solver then the gmres iteration will not include any restarts.
Depending on the problem, restarts may be beneficial, and then again they may not.
Particularly poorly conditioned linear systems may never converge below a certain
tolerance if gmres is allowed to restart (i.e. they “level off”). However, some linear
systems will admit a converged solution more rapidly with restarts than without.
Consequently, the user may wish to experiment with different values of this parameter.
See the Orthogonalization card for related information.

gmres’ internal iterations create a Krylov subspace up to dimension m (less in some
circumstances, such as convergence). The time and space required by the internal
iterations increases nonlinearly with m (but see the Orthogonalization card) - a
doubling of m will result in more than a doubling of space and time requirements. So
simply choosing a very large dimension is generally not recommended.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.23 Orthogonalization

Description/Usage

This optional card selects the orthogonalization scheme used internally for the gmres
solution algorithm (see the Solution Algorithm card). Valid options are

classic | classical Two steps of classical Gram-Schmidt orthogonalization.

modified A modified Gram-Schmidt orthogonalization.

Orthogonalization = {classic | modified}

148 Revised: 6/12/13

4.7.24 Maximum Linear Solve Iterations

If the Orthogonalization card is omitted, then the default selection is classic. Goma’s
parser will accept classical as equivalent to classic.

Examples

Following is a sample card:

Orthogonalization = modified

Technical Discussion

By specifying modified, the user is greatly speeding up the gmres algorithm at the
expense of possibly losing convergence. A good indication that you should not have
used the modified setting is a premature “leveling off” of the sequence of residuals
produced internally within gmres.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.24 Maximum Linear Solve Iterations

Description/Usage

This optional card limits the maximum number of iterations used by iterative linear
solver algorithms. The input parameter is defined as

<integer> n, any positive integer () that specifies the maximum
number of iterations.

If the Maximum Linear Solve Iterations card is omitted, the default selection is 500.

Maximum Linear Solve Iterations = <integer>

n 0>

Revised: 6/12/13 149

4.7.25 Number of Newton Iterations

Examples

Following is a sample card:

Maximum Linear Solve Iterations = 5

Technical Discussion

If the linear system can be solved within a specified tolerance (see the Residual Ratio
Tolerance card) in less than n iterations, then a normal return from Aztec occurs and
the actual number of iterations required to obtain convergence will be printed on the
status line. If the specified convergence tolerance is not met within n iterations, then an
abnormal return status occurs and, in place of the number of iterations, the string “max”
will be printed on the status line under the LIS (linear iteration status) heading. Other
abnormal returns from Aztec are possible and are indicated on the LIS status line; see
the Aztec User’s Guide (Hutchinson, Shadid and Tuminaro, 1995) for further
interpretation of different abnormal return status indicators.

Theory

No Theory.

FAQs

No FAQs.

References

SAND95-1559: Aztec User’s Guide Version 1.0, Sandia Internal Report, Hutchinson,
S. A., Shadid, J. N. and Tuminaro, R. S., 1995.

4.7.25 Number of Newton Iterations

Description/Usage

This required card sets the maximum number of iterations allowed for convergence of
the Newton nonlinear iteration loop. It also provides an optional parameter for setting
the reformation stride for the Jacobian matrix. Definitions of the input parameters are
as follows:

Number of Newton Iterations = <integer1> [integer2]

150 Revised: 6/12/13

4.7.25 Number of Newton Iterations

<integer1> n1, any integer indicating the maximum number of
iterations allowed for convergence of the Newton nonlinear
iteration loop.

[integer2] n2, an optional parameter indicating the reformation stride
for the Jacobian matrix.

The Number of Newton Iterations card is required, there is no default.

See the Jacobian Reform Time Stride card for some detailed examples of the interaction
amongst various input parameters that influence when a Jacobian reformation occurs.

Examples

Following is a sample card:

Number of Newton Iterations = 5

Technical Discussion

For an unrelaxed Newton iteration with a good initial guess, five or six iterations (for
n1) should be sufficient to achieve convergence for most problems. One iteration will
suffice for problems that are linear; two can be specified, with the second iteration
verifying that the residual norms are small. More iterations may be required for relaxed
Newton iteration schemes using the correction factor described in the Newton
correction factor card. This parameter can also be controlled from the command line
(see the -n option in the section on Command-line Arguments, Chapter 3).

The optional second parameter can be used to invoke a modified Newton iteration. If
this value is missing, the stride is set to unity. This capability enables the user to save
on assembly time when near a solution, particularly when doing transient simulations.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 151

4.7.26 Modified Newton Tolerance

4.7.26 Modified Newton Tolerance

Description/Usage

This optional card allows the user to exert finer control over Jacobian formation than a
stride specification (as with the Number of Newton Iterations card’s second parameter
or the Jacobian Reform Time Stride card). Input parameters are defined as:

<float1> r, if the convergence rate is below this level (), a
Jacobian reformation will be forced.

<float2> t, if the residual norm is above this level (), a Jacobian
reformation will be forced.

If the Modified Newton Tolerance card is omitted, then reformations are always
computed, subject to the Number of Newton Iterations’ second parameter and the
Jacobian Reform Time Stride value.

See the Jacobian Reform Time Stride card for some detailed examples of the interaction
amongst various cards that influence when a Jacobian reformation occurs.

Examples

Following is a sample card:

Modified Newton Tolerance = 1.5 1.0e-8

Technical Discussion

The convergence rate is defined as:

. (4-6)

This rate should be equal to 2 when Newton’s method is in its region of convergence
(this is what it means to converge quadratically). A secant method would have a
convergence rate of (the golden ratio!), approximately 1.6.

The residual norm is simply the L1 norm of the residual after a Newton iteration.

The method used to determine if a Jacobian reformation should take place is
conservative. If either test condition for reformation is satisfied, a reformation occurs.
Often, this card will allow you to speed up your runs by foregoing a fresh Jacobian

Modified Newton Tolerance = <float1> <float2>

r 0.0>

t 0.0≥

convergence rate
current L1 norm()log

previous L1 norm()log
--=

1 5+() 2⁄

152 Revised: 6/12/13

4.7.27 Jacobian Reform Time Stride

reformation, but still maintain strong convergence. Moreover, without a Jacobian
reformation, the lu solver (see the Solution Algorithm card) can use a previously
factored matrix and simply do a resolve.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.27 Jacobian Reform Time Stride

Description/Usage

This optional card has a single input parameter:

<integer> k, the stride length for Jacobian reformations ().

The Jacobian Reform Time Stride card is optional; there is no default.

Examples

Three examples are provided to illustrate how to use this card.

Example 1:
Number of Newton Iterations = 12 1
Modified Newton Tolerance = 1.9 0.1
Jacobian Reform Time Stride = 2
Newton correction factor = 1

This will reform the Jacobian every 2 steps. Furthermore, if the convergence rate falls
below 1.9 or the L1 residual is greater than 0.1 on an off-stride step a Jacobian reforma-
tion will occur. Specifically, the Modified Newton Tolerance takes precedence over a
reformation stride setting (from either Number of Newton Iterations or Jacobian
Reform Time Stride).

Jacobian Reform Time Stride = <integer>

k 1≥

Revised: 6/12/13 153

4.7.27 Jacobian Reform Time Stride

Example 2:
Number of Newton Iterations = 12 1
Modified Newton Tolerance = 1.9 0.1
Jacobian Reform Time Stride = 2
Newton correction factor = 1

Note this differs from the previous example only by omitting the Modified Newton
Tolerance card. This causes the Jacobian to be reformed every other time step.

Example 3:
Number of Newton Iterations = 12 2
Modified Newton Tolerance = 1.9 0.1
Jacobian Reform Time Stride = 1
Newton correction factor = 1

We’ve changed the Jacobian Reform Time Stride from 2 to 1 and changed the second
parameter of the Number of Newton Iterations card from 1 to 2. This will cause the
Jacobian to be reformed every other step.

Technical Discussion

If the second parameter on the Number of Newton Iterations card is present and greater
than 1, this Jacobian Reform Time Stride card is ignored. Otherwise, this card simply
forces the Jacobian to be rebuilt every k Newton steps. Often, this card will allow you
to speed up your runs by foregoing a fresh Jacobian formation, but still maintain strong
convergence. Moreover, without a Jacobian formation, the lu solver (see the Solution
Algorithm card) can use a previously factored matrix and simply do a resolve.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

154 Revised: 6/12/13

4.7.28 Newton correction factor

4.7.28 Newton correction factor

Description/Usage

This required card indicates the damping (or relaxation) factor for the Newton updates
and offers customization of the relaxation choice based on the size of the nonlinear
residual from the Newton iteration. Definitions of the <float_list> input parameters,
from one (f1) to six (f2, ... f6) floating point numbers (one required and five optional),
are as follows:

<float1> f1, damping factor for the Newton updates, where
(). A value of 1.0 gives the usual Newton’s
method, otherwise, only a portion of the Newton update
is applied to the solution. Values near 0 (e.g., 0.1) may
be used effectively to aid convergence for sensitive
problems where the initial guess is not very close to the
final solution for the first several Newton iterations.
This parameter can also be controlled from the
command line (see -r option, Command-line
Arguments, Chapter 3).

[floatn] These five floats [f2, ... f6] are optional but give a way to
more finely control the amount of relaxation applied to
Newton updates. See the description below and the
example for an explanation.

Examples

A simple example is the following:

Newton correction factor = 0.1

This tells Goma to take the specified number of Newton iterations (from the Number of
Newton Iterations card) at a fixed relaxation parameter of 0.1. This is a moderately
large amount of relaxation, but of course “moderately large” is always problem
dependent.

A more interesting example:

Newton correction factor = 0.8 1.0e-6 0.4 1.0e-4 0.1 1.0e-3

causes the following relaxation scheme to be used according to the norm of the
nonlinear residual:

Newton correction factor = <float_list>

0.0 f1 1.0≤<

L∞

Revised: 6/12/13 155

4.7.28 Newton correction factor

• If , the relaxation factor is taken as 0.1.

• If , the relaxation factor is taken as 0.4.

• If , the relaxation factor is taken as 0.8.

• If , the relaxation factor is taken as the usual Newton’s method
relaxation of 1.0.

The default relaxation level for small residuals is 1.0.

Technical Discussion

The relaxation factor is used to intentionally shorten the solution update vector
computed by the Newton iteration. There are many factors that can cause the effective
radius of convergence of Newton’s method to be quite small or malformed:

• the underlying nonlinear problem is stiff,
• the initial solution is poor,
• non-analytic constitutive models or boundary conditions,
• poor linear solver performance, etc.

Under these kinds of circumstances, the update computed by Newton’s method may be
too large and end up not improving the overall solution. In such cases it is
recommended that one uses some relaxation (e.g., 0.9), and possibly a lot (e.g., 0.05).

What one really wishes to do is to use shortened updates when far from convergence,
and full updates as the solution converges. This is the capability that the optional five
parameters makes available. While they don’t directly measure how far the solution is
from convergence, it does use the residual as an indicator. The full set of six parameters
allows the user to specify four different residual intervals with four different relaxation
factors. The f1, f3 and f5 values are relaxation factors and must lie in ,
while the f2, f4, and f6 values are interval endpoints. The supplied interval endpoints
must be in ascending order, . Although no such restriction is put on the
relaxation factors, they should generally satisfy .

Theory

No Theory.

FAQs

No FAQs.

L∞ 1.0e 3–>

1.0e 4– L∞ 1.0e 3–≤<

1.0e 6– L∞ 1.0e 4–≤<

L∞ 1.0e 6–≤

0.0 f
i

1.0≤<

0 f2 f4 f6< < <

0 f5 f3 f1 1.0≤ ≤ ≤<

156 Revised: 6/12/13

4.7.29 Normalized Residual Tolerance

References

No References.

4.7.29 Normalized Residual Tolerance

Description/Usage

This required card indicates the value of the L2 norm of the global nonlinear residual
vector that indicates termination of Newton’s method (i.e., convergence). The input
parameter is defined as

<float> tol, a non-negative floating point number ()
specifying the L2 convergence tolerance for the global
nonlinear residual vector.

The Normalized Residual Tolerance card is required; there is no default.

Examples

Following is a sample card:

Normalized Residual Tolerance = 1.0e-11

Technical Discussion

Newton’s method is terminated when the global nonlinear residual falls below tol, or
the maximum number of iterations specified in the Number of Newton Iterations is
reached.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Normalized Residual Tolerance = <float>

tol 0.0≥

Revised: 6/12/13 157

4.7.30 Normalized Correction Tolerance

4.7.30 Normalized Correction Tolerance

Description/Usage

This optional card sets the tolerance for a mixed measure of the size of the update
vector which must be satisfied for the solution to be considered converged. The input
parameter is defined as

<float> rel, a floating point value () used as the
convergence tolerance for the mixed measure of the update
vector (defined in the Technical Discussion).

When the Normalized Correction Tolerance card is omitted, the default value of rel is
1.0e+10.

Examples

Following is a sample card:

Normalized Correction Tolerance = 1.0e-4

Technical Discussion

The mixed measure used here is:

. (4-7)

This measures the relative size of the update vector when the solution vector is large
(i.e., size of unknowns is greater than 1), and measures the absolute size of the update
vector when the solution vector is small (i.e., size of unknowns is much less than 1).

This mixed measure must be less than rel, in addition to the nonlinear residual
satisfying the absolute residual tolerance specified in the Normalized Residual
Tolerance card for a solution to be considered converged.

If (larger values are not really imposing any restrictions), mixed measure
values are output instead of the update vector norms.

Theory

No Theory.

Normalized Correction Tolerance = <float>

rel 0.0≥

Δxi()
2

1 xi
2+()⁄

 1 2/

rel 1.0<

158 Revised: 6/12/13

4.7.31 Residual Ratio Tolerance

FAQs

No FAQs.

References

No References.

4.7.31 Residual Ratio Tolerance

Description/Usage

This optional card sets the convergence criterion for the iterative solution of the linear
matrix system solved at each Newton iteration. The input parameter is defined as

<float> tol, a non-negative real number () specifying the
value of the convergence criterion.

The default value of tol is 1.0e-6.

Examples

Following is a sample card:

Residual Ratio Tolerance = 1.0e-3

Technical Discussion

The value of tol is ignored when a direct factorization algorithm (such as lu) for the
linear solve is specified in the Solution Algorithm card. When an iterative matrix
solution technique is specified (such as gmres), tol acts as the inner iteration
termination relative tolerance. Letting r0 represent the initial residual norm, when the
nth iteration’s linear residual norm rn satisfies , the iterative solution is
deemed acceptable and the inner iterations terminate. The number of iterations required
is reported under the LIS column of the Newton iteration output. If the maximum
number of iterations (specified in the Maximum Linear Solve Iterations card) is
reached, then max appears instead of a number. Although the standard residual is
usually used as the residual norm, the type of matrix residual norm used can be
changed through the Matrix residual norm type card.

Residual Ratio Tolerance = <float>

tol 0.0≥

r
n

r0⁄ tol≤

Revised: 6/12/13 159

4.7.32 Pressure Stabilization

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.32 Pressure Stabilization

Description/Usage

This optional card indicates whether or not pressure stabilization should be used. Valid
options are

yes Use the Galerkin Least square pressure stabilization method
developed by Hughes, et. al. (1986).

local Use the Galerkin Least square pressure stabilization method
with local scaling.

pspp Use polynomial stabilized pressure projection stabilization
method developed by Dohrmann and Bochev (2004). Please
see Level Set PSPP filtering card if using with
the level-set front tracking technique.

pspp_e Use polynomial stabilized pressure projection method with
upgrade for nonuniform/graded meshes (recommended)

no Do not use any pressure stabilization.

The amount of pressure stabilization to use is specified with the Pressure Stabilization
Scaling card.

The default is no, to not use pressure stabilization.

Pressure Stabilization = {yes | no | local | pspp | pspp_e}

160 Revised: 6/12/13

4.7.32 Pressure Stabilization

Examples

Following is a sample card:

Pressure Stabilization = yes

Technical Discussion

If input for this card is yes, the Hughes, et. al. (1986) method adds the residual of the
momentum equation weighted by the gradient of the Galerkin weight function to the
Galerkin continuity equation. The result is that the continuity equation now has a
diagonal term to stabilize it and improve the condition of the matrix, allowing for the
use of iterative solvers. When pressure stabilization is used, equal-order interpolation
can (and should) be used for velocity and pressure, e.g., velocity and pressure both Q2
or both Q1. If input for this card is no, then the standard Galerkin finite-element weight
functions are used and velocity and pressure interpolations should be chosen to satisfy
the Babuska-Brezzi condition, e.g., velocity Q2 and pressure Q1 or P1, or velocity Q1
and pressure P0.

An improvement on the Hughes approach was developed by Bochev and Dohrmann
(2004) called the polynomial stabilized pressure projection. In its fundamental form, it
is like PSPG just an additional term on the continuity equation residual that helps
stabilize the pressure, and it is predicated on the fact that the pressure field is governed
by an elliptical equation known as the pressure Poisson equation. Please consult this
paper for details. An additional improvement to that technique was developed
internally to Sandia which better accommodates graded meshes. This technique is
invoked with the pspp_e option, which we recommend.

Theory

No Theory.

FAQs

No FAQs.

References

Hughes, T. J. R., L. P. Franca and M. Balestra, “A New Finite Element Formulation for
Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A
Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-
Order Interpolations,” Comput. Methods Appl. Mech. Engrg., 59 (1986) 85-99.

Revised: 6/12/13 161

4.7.33 Pressure Stabilization Scaling

4.7.33 Pressure Stabilization Scaling

Description/Usage

This optional card is only used if the Pressure Stabilization card is set to yes, where

<float> tau, a positive real value () that scales the
momentum residual being added to the continuity equation
for pressure stabilization.

The default value of tau is 0.1. If the Pressure Stabilization card is omitted, or set to
no, then tau is ignored.

Examples

Following is a sample card:

Pressure Stabilization Scaling = 0.01

Technical Discussion

Generally, if tau is small, then more accurate solutions may be obtained at the cost of a
more ill-conditioned matrix system that may not be easily amenable to iterative solvers
(but stay tuned!). Conversely, larger values of this parameter result in equation systems
that are easier to solve using the available iterative matrix solvers, but the solution thus
obtained may be less accurate. A good choice for tau is 0.1.

The scaling value, tau, is further scaled inside of Goma. Knowledge of this scaling is
sometimes useful. First, an average Reynolds number (Re) is computed according to:

(4-8)

where ρ and µ are local values for density and viscosity, is a norm of the velocity
field, and is a global average value for element size. If Re < 3.0, the pressure
stabilization scaling is given by this expression:

(4-9)

On the other hand, if Re > 3.0, the following scales the pressure stabilization terms in
the continuity equation:

Pressure Stabilization Scaling = <float>

tau 0.0>

Re
ρ U h

2µ
---------------------=

U

h

tau h 2

12µ

162 Revised: 6/12/13

4.7.34 Linear Stability

(4-10)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.34 Linear Stability

Description/Usage

This optional card indicates whether or not linear stability analysis should be
performed, as well as what kind.

The valid options for {char_list} are:

no Do not perform any kind of linear stability analysis.

yes Perform regular linear stability analysis. If your problem
was 2D, then 2D analysis is performed. If your problem was
3D, then 3D analysis is performed.

inline Same as yes, perform regular linear stability analysis.

3D Subject the 2D flow to 3D linear stability analysis by
normal mode expansion for the modes specified with the
Eigen Wave Numbers card.

file Set up the problem as in yes or inline, but output the
matrices involved instead of determining stability.

3Dfile Set up the problem as in 3D, but output the matrices
involved instead of determining stability.

Linear Stability = {char_list}

tau h
2ρ U

Revised: 6/12/13 163

4.7.34 Linear Stability

The default value is no.

Examples

Here is a sample card:

Linear Stability = yes

Technical Discussion

When linear stability analysis is performed, a steady-state solution is first acquired, and
then the eigenvalue/eigenvector spectrum is computed subject to the choices made in
the Eigensolver Specifications section. In the case of file or 3Dfile, the steady-state
solution is acquired and then the matrices that would have been used to compute the
spectrum are exported to file and no spectrum is actually computed. Refer to the
Advanced Capabilities (Gates, et. al., 2001) document for a more thorough description.

The name of the output files when file is specified are:

• LSA_mass_coo.out for the mass matrix, B or M,
• LSA_jac_coo.out for the jacobian matrix, J,
• LSA_vars.out for variable names associated with unknowns.

When 3Dfile is specified, the names are:

• LSA_mass_coo-<f>.out, for the mass matrix, B or M,
• LSA_jac_coo-<f>.out, for the jacobian matrix, J,
• LSA_vars.out, for variable names associated with unknowns.

where <f> is the value of the requested normal mode (see the Eigen Wave Numbers
card). The Eigen Matrix Output card must be set to yes in order to create and write
these files.

When computing the 3D stability of a base 2D flow, other modifications need to be
made (see the 3D stability of 2D flow memo).

See the Advanced Capabilities document (Gates, et. al., 2001), or it’s replacement
(Labreche, et. al., 2002).

Theory

No Theory.

FAQs

No FAQs.

164 Revised: 6/12/13

4.7.35 Filter Concentration

References

SAND2000-2465: Advanced Capabilities in Goma 3.0 - Augmenting Conditions,
Automatic Continuation, and Linear Stability Analysis, I. D. Gates, D. A. Labreche and
M. M. Hopkins (January 2001)

SAND2002-xxxx: Advanced Capabilities in Goma 4.0 - Augmenting Conditions,
Automatic Continuation, and Linear Stability Analysis, Labreche, D. A., Wilkes, E. D.,
Hopkins, M. M. and Sun, A. C., (in preparation)

4.7.35 Filter Concentration

Description/Usage

This optional card allows the user to enforce strict bounds on the concentration of a
specific species. The input parameters are defined as:

<integer> i, this integer indicates which species () receives this
special restriction.

<float1> min, a real number indicating the minimum concentration.

<float2> max, a real number indicating the maximum concentration.

There are no default values; concentrations take on whatever values are naturally
dictated by the Newton iterations.

Examples

The following is a sample card:

Filter Concentration = 0 0.0 1.0

Technical Discussion

Although a correct solution should not have concentrations less than 0 or greater than
1.0, such values may arise in the solution vector due to various sources. Intermediate
solutions during the Newton iteration may cause non-physical values to arise.
Numerical error due to inexact linear solves, rounding, etc., may cause the values to be
inexact. This card allows the user to force the concentration of species i to be corrected
to fall within a strict concentration range [min,max] after the Newton iterations have
terminated.

Filter Concentration = <integer> <float1> <float2>

i 0≥

Revised: 6/12/13 165

4.7.36 Disable Viscosity Sensitivities

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.7.36 Disable Viscosity Sensitivities

Description/Usage

This optional card permits the analyst to omit the sensitivities of a shear-thinning
viscosity model with respect to shear rate from the Jacobian.Valid options for this card
are

yes Omit the sensitivities of a shear-thinning viscosity model
with respect to shear rate from the Jacobian

no Form the complete Jacobian.

Currently, this card will have an effect only when using the following viscosity models:
POWER_LAW, CARREAU, BINGHAM (see the Liquid Constitutive Equation
card).

The default value is no.

Examples

Following is a sample card:

Disable Viscosity Sensitivities = yes

Technical Discussion

 It has been observed that when these terms are included for very highly shear-thinning
models the result can be non-convergence. In such situations, disabling these terms can

Disable Viscosity Sensitivities = {yes | no}

166 Revised: 6/12/13

4.8 Eigensolver Specifications

often result in a convergent answer but at a convergence rate far less than the usual
quadratic.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.8 Eigensolver Specifications

The ability to solve for the stability of a base flow is a very powerful tool. Often, the important
characteristics of a flow can be summarized in the answer to the question “is the flow stable?”.
Although the following cards are in active use at the time of this writing, sweeping changes are
coming to the eigensolver sections of Goma. In particular, the old code (called “eggroll”) is being
replaced with newer methods (in the ARPACK library), as well as being coupled to the
continuation and tracking algorithms (in the LOCA library).

Input specifications for this section of input records is discussed in a separate, comprehensive
manual (Gates, et. al., 2000); an update to this manual will be completed during the summer of
2006 (Labreche, et. al., 2006). Either of these manuals contains a thorough discussion of how to
successfully compute the stability and interesting modes of an underlying base flow.

4.9 Geometry Specifications

Geometry commands allow the user to import geometry from a pre-existing file in the ACIS
format (files with the “.sat” extension) and to generate geometry through primitive commands
within the Goma input file. This geometry is usually of an analytic nature which helps
convergence. It is used with the MESH_CONSTRAINT boundary condition (and soon to initialize
a level set). The main advantage in using geometry is one of practicality - once the geometry is
created to generate a mesh within CUBIT, that same geometry can be exported and used within
Goma without a laborious reconstruction of the geometry through other BC commands. At the
time of this writing, only 2D geometry had been verified.

The geometry capability is only available when the CGM library is linked in. A tutorial has been
written to assist in defining input at the present time. The user is referred to that document at the

Revised: 6/12/13 167

4.9.1 ACIS file

present time (GT-021.2, Common Geometry Model (CGM) Usage for GOMA, August 22, 2002,
M. M. Hopkins).

4.9.1 ACIS file

Description/Usage

This optional card allows the user to read in an ACIS .sat file containing solid model
geometry. The valid input form is:

<file_name> satfile, the name of the ACIS file (usually with a .sat
extension) containing predefined geometry.

There is no default <file_name>.

Examples

Here is a sample card:

ACIS file = my_geometry.sat

Technical Discussion

This file contains ACIS geometry. It is usually created from within Cubit via an

export acis “satfile” ascii

command. Any geometry within the current Cubit scope is then exported to satfile. If
geometry has been named then those user-defined names are also exported. The
geometry defined within satfile is then available for boundary conditions and further
geometry constructions within the Goma input file.

Theory

No Theory.

FAQs

No FAQs.

ACIS file = <file_name>

168 Revised: 6/12/13

4.9.2 VERTEX

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M.
M. Hopkins

4.9.2 VERTEX

Description/Usage

This optional card creates a vertex. The valid card input is:

<vertex_name> The user-supplied name of the vertex.

<float1> The x coordinate of the vertex.

<float2> The y coordinate of the vertex.

<float3> The z coordinate of the vertex.

If the Geometry Specifications section is present, then the END OF VERTEX card is
required, even if there are no VERTEX cards.

There is no default value for any VERTEX arguments.

Examples

Here is a sample card, where vertex v1 is located at point (1.5, 2.3, 1.0):

VERTEX = v1 1.5 2.3 1.0

Technical Discussion

The created vertex is usable in later geometry commands (e.g., EDGE) by referencing
its name, vertex_name. When performing a computation in 2D, set the third
component to 0.0 (it is always required). The x, y coordinates may, of course, represent
z, r cylindrical coordinates instead of cartesian coordinates. This geometry may be
exported through the Exported geometry file card.

Theory

No Theory.

VERTEX = <vertex_name> <float1> <float2> <float3>

Revised: 6/12/13 169

4.9.3 END OF VERTEX

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M.
M. Hopkins.

4.9.3 END OF VERTEX

Description/Usage

This card is required if the Geometry Specifications section is present. It indicates the
end of the list of VERTEX commands. It is required even if there are no VERTEX cards.

Examples

Here is the card:

END OF VERTEX

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

END OF VERTEX

170 Revised: 6/12/13

4.9.4 EDGE

4.9.4 EDGE

Description/Usage

This optional card allows the user to create edges (curves). There are multiple formats,
each of which has variable input requirements, each of which is described below.

The first parameter supplies a name

edge_name user-supplied name for the new edge.

while the {char_list} parameter, which has four options, identifies the geometric nature
of the edge. The four options have unique inputs (<input_list>) parameterizing its
curve; these are listed below for each {char_list} option:

STRAIGHT

vertex1 - an endpoint (see VERTEX) of the new edge.
vertex2 - an endpoint (see VERTEX) of the new edge.

ELLIPSE

vertex1 - an endpoint (see VERTEX) of the new edge.
vertex2 - an endpoint (see VERTEX) of the new edge.
x - x-coordinate of control point (see Technical

Discussion).
y - y-coordinate of control point (see Technical

Discussion).
z - z-coordinate of control point (see Technical

Discussion).
orientation - a direction for sweeping the curve (see

Technical Discussion)
FORWARD
REVERSED

PARABOLA

vertex1 - an endpoint (see VERTEX) of the new edge.
vertex2 - an endpoint (see VERTEX) of the new edge.
x - x-coordinate of control point (see Technical

Discussion).
y - y-coordinate of control point (see Technical

Discussion).
z - z-coordinate of control point (see Technical

EDGE = <edge_name> {char_list} <input_list>

Revised: 6/12/13 171

4.9.4 EDGE

Discussion).
orientation - a direction for sweeping the curve (see

Technical Discussion)
FORWARD
REVERSED

COMPOSITE

<integer> N, the number of curves to be composited
together.

edge1, ..., edgeN names of the N edges to be
composited together.

If the Geometry Specifications section is present, then the END OF EDGE card is
required, even if there are no EDGE cards.

There is no default value for any argument.

Examples

Here is a sample card of each edge type:
EDGE = edge1 STRAIGHT v1 v2
EDGE = edge2 ELLIPSE v2 v3 1.0 1.1 0.0 FORWARD
EDGE = edge3 PARABOLA v3 v4 -2.1 0.3 0.0 REVERSED
EDGE = big_edge COMPOSITE 3 edge1 edge2 edge3

where the vertices v1 through v4 must already exist.

Technical Discussion

In its simplest form, the EDGE command creates a STRAIGHT segment between the
two endpoints. The vertices required in the STRAIGHT, ELLIPSE, and PARABOLA
forms, as well as the edges required in the COMPOPSITE form must already exist.
They can be created via other Goma input VERTEX and EDGE commands, or they can
be read from an ACIS .sat file via the ACIS file command.

In the ELLIPSE form, the EDGE command creates a curve from vertex1 to vertex2
along an ellipse with one of the foci equal to the control point (x,y,z). This is often
used to create circular arcs, where (x,y,z) is in fact the center of the circle that vertex1
and vertex2 lie upon. The orientation parameter determines if the short arc is selected
(FORWARD) or the long one (REVERSED).

The PARABOLA form is similar to the ELLIPSE form except that the control vertex
(x,y,z) is the focus of the parabola.

The COMPOSITE form will create a new curve that is simply the union of the N curves
edge1, edge2, ..., edgeN.

172 Revised: 6/12/13

4.9.5 END OF EDGE

Note that extensive use of the EDGE command has only occured in 2D; 3D capability
is not guaranteed.

Theory

No Theory.

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M.
M. Hopkins

4.9.5 END OF EDGE

Description/Usage

This card is required if the Geometry Specifications section is present. It indicates the
end of the list of EDGE commands. It is required even if there are no EDGE cards.

Examples

Here is the card:

END OF EDGE

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

END OF EDGE

Revised: 6/12/13 173

4.9.6 FACE

References

No References.

4.9.6 FACE

Description/Usage

This optional card allows the user to create faces (surfaces). There are multiple formats,
each of which has variable input requirements, each of which is described below.

The first parameter supplies a name

face_name user-supplied name for the new face.

while the {char_list} parameter, which has four options, identifies the geometric nature
of the face. The four options have unique inputs (<input_list>) parameterizing its face;
these are listed below for each {char_list} option:

PLANE N - number of edges (see EDGE) bounding the face.

e1 ... eN - names of the edges bounding the face.

POLY N - number of vertices on the boundary.

x y z ...- coordinates of the vertices on the boundary.
There should be N triplets (see Technical
Discussion).

POLY_VERT N - number of vertices on the boundary.

v1 ... vN - names of vertices (see VERTEX) on the
boundary. There should be N triplets (see
Technical Discussion).

If the Geometry Specifications section is present, then the END OF FACE card is
required, even if there are no FACE cards.

There is no default value for any argument.

Examples

Here is a sample card of each face type:
FACE = face1 PLANE 3 e1 e2 e3
FACE = face2 POLY 3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0

FACE = <face_name> {char_list} <input_list>

174 Revised: 6/12/13

4.9.6 FACE

FACE = POLY_VERT 3 v1 v2 v3

where the vertices v1 through v3 and the edges e1 through e3 already existed.

Technical Discussion

The FACE command will create planar faces. These are a type of surface, but are of
course flat. The edges and vertices that the FACE and POLY_VERT version use can be
created either in the Goma input deck (via EDGE and VERTEX commands), or read in
from an ACIS file via the ACIS file command.

The PLANE version will construct a FACE with a boundary created by compositing
the specified edges. They must be linked serially (i.e., e2 connects to e3, e3 connects
to e4, etc.), and they must all be coplanar. A common error is to specify curves created
in Cubit that are a mix of “free” curves and “bound” curves. A “free” curve is one that
is created directly (e.g., “create curve ...”), whereas a “bound” curve is one
that is created indirectly (e.g., you create a brick and get 12 boundary curves). They are
not compatible within the PLANE command.

The POLY version will create a polygon whose boundary edges are straight line
segments between the specified vertices (coordinates). The vertices must be coplanar.
There is a known outstanding issue with non-convex polygons. If you need non-convex
polygons the workaround is to create them in Cubit and pass them to Goma via the
ACIS file command. The example POLY command will result in a 2D (z=0) triangle.

The POLY_VERT command is identical to the POLY command except the vertices are
referenced by name instead of specified numerically.

Theory

No Theory.

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M.
M. Hopkins

Revised: 6/12/13 175

4.9.7 END OF FACE

4.9.7 END OF FACE

Description/Usage

This card is required if the Geometry Specifications section is present. Although there
is currently no legal FACE command, it is expected to exist in the future and this card
will be required at that time.

Examples

Here is the card:

END OF FACE

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.9.8 END OF BODY

Description/Usage

This card is required if the Geometry Specifications section is present. Although there
is currently no legal BODY command, it is expected to exist in the future and this card
will be required at that time.

END OF FACE

END OF BODY

176 Revised: 6/12/13

4.9.9 Exported geometry file

Examples

Here is the card:

END OF BODY

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.9.9 Exported geometry file

Description/Usage

This optional card specifies a filename into which the user-defined geometry is
exported. Valid card syntax is given by:

<file_name> satfile, name of the export file for user-defined geometry.

There is no default value for satfile.

Examples

Here is a sample card:

Exported geometry file = new_geometry.sat

Technical Discussion

Any geometry created with one of the other primitive geometry commands (e.g.,
VERTEX) will be exported to this file in the ACIS format (a .sat extension is

Exported geometry file = <file_name>

Revised: 6/12/13 177

4.10 Boundary Condition Specifications

customary). No geometry read-in through the ACIS file card will be exported -- only
user-defined geometry. The file can then be imported into CUBIT and manipulated,
checked for correctness, etc. The relevant CUBIT command is

import acis “satfile”

Theory

No Theory.

FAQs

No FAQs.

References

GT-021.2: Common Geometry Model (CGM) Usage for GOMA, August 20, 2002, M.
M. Hopkins

4.10 Boundary Condition Specifications

The broad range of mechanics capabilities that has been built into Goma necessitates an equally
broad range of boundary conditions (BCs) to provide all boundary condition information that the
differential equations specified in the Problem Description section will require for a well-posed
system. The BCs for Goma have been categorized according to the differential equation set to
which they apply. First are listed those boundary conditions which can be applied to any equation
followed by BCs for mesh, real solid, fluid momentum, energy, mass, continuity, porous, stress,
gradient, shear rate, fill and potential equations. Each boundary condition (BC) card follows a
general syntax as follows:

BC = <bc_name> <bc_type> <bc_id> {integer_list}/{float_list}

The <bc_name> identifies the desired control of the physics/mechanics at the boundary as
identified by the <bc_type> and its associated <bc_id>. The <bc_type> is either nodeset, NS
(NODEBC or POINBC in EXODUS II) or sideset, SS (ELEMBC in EXODUS II) depending on
the <bc_name> and can be located in the problem domain by means of its flag or <bc_id> number
(set in EXODUS II). The {integer_list} and/or {float_list} specify parameters of the boundary
condition. Within each equation category are Dirichlet nodeset boundary conditions (i.e. T, U, V,
W, DX, DY, DZ, Y, S11, S12, S13, S22, S23, S33, G11, G12, G13, G21, G22, G23, G31, G32,
G33) that can be handled (i.e., processed) in two ways in Goma. The first way is application of the
BC as a “hard-set” on the primitive variable, and the second as a residual equation; differences in
these methods are discussed below. The cards belonging to this category have the following
general syntax:

178 Revised: 6/12/13

4.10 Boundary Condition Specifications

BC = <bc_name> <bc_type> <bc_id> <float1> <float2>

where <float2> flags whether a hard-set or residual equation is to be used.

Prior to introducing individual boundary conditions and their parameters, some general comments
regarding the first category of BCs, boundary condition types and the resolution of boundary
condition conflicts will be made.

Any Equation Boundary Conditions There are several boundary condition types that are
not necessarily best binned with a specific equation type. The FIX, GD_* and TABLE boundary
condition types are general and can be applied to any equation type. A general description of these
types (called Category 1 conditions) is given below.

Boundary condition types Beyond the generalized boundary conditions types and the Di-
richlet types, Goma has strong-collocated, weak form, and several others that are intrinsic to the
Galerkin finite element method; these are applied in a variety of ways. Because of this, boundary
conditions at a given node might interact in ways that produce unexpected results. For this reason,
it is important to understand the differing methods of application that occur in Goma and how
each affects the other. In addition, by cleverly mixing boundary conditions, the analyst is often
able to achieve a desired result, but only if the nature of each boundary condition is understood.
Toward this end, the user will find a special label assigned to each boundary condition, which,
with the ensuing explanation below, will provide each user with an understanding of how that BC
is applied within Goma.

On each boundary condition card, the boundary condition type appears in the Description/Usage
section. These are the following boundary condition types that will be found here:

DIRICHLET (DC)

STRONGLY INTEGRATED (SIC)

STRONGLY INTEGRATED EDGE (SIC_EDGE)

COLLOCATED (PCC)

COLLOCATED EDGE (PCC_EDGE)

WEAKLY INTEGRATED (WIC)

The following sections discuss the method of application of each boundary condition type along
with the implications of using each.

DIRICHLET (DC):

In the hierarchy of boundary conditions, Dirichlet conditions are at the top.
Nothing trumps a Dirichlet conditions. A Dirichlet condition is applied by
discarding all mechanics information related to a particular field variable that has
been accumulated at a given node and replacing it with a direct assignment of the
nodal unknown of that field with a fixed a priori value. Algorithmically, applying
a Dirichlet condition on a degree of freedom at a node involves zeroing the entire

Revised: 6/12/13 179

4.10 Boundary Condition Specifications

equation row, inserting a unity value on the diagonal element of the Jacobian
matrix, inserting a zero value at the appropriate place in the residual vector, and
inserting the known boundary condition value at the appropriate place in the
solution vector. This is referred to in many places as the “hard set” method. An
alternate formulation imposes the boundary condition by replacing the mechanics
equation at a node with the simple residual equation, , where φ and φ0
are the nodal unknown field and its assigned value, respectively.The sensitivities
of this residual equation are entered into the Jacobian appropriately and solution
takes place normally.

Dirichlet conditions are strictly node-based. Neighbor nodes and shared elements
have no influence on them. For this reason, all Dirichlet conditions are applied to
nodesets. Furthermore, Dirichlet conditions are assigned the highest precedence in
terms of boundary conditions. If a Dirichlet condition appears at a node, it will be
applied. Any other boundary condition that could be applied will be discarded (at
that node).

Dirichlet conditions are limited, however in that they can only affect the nodal
value of a degree of freedom. Derived quantities cannot be set with a Dirichlet
condition. You will never see a Dirichlet condition being applied to a heat flux for
example.

STRONGLY INTEGRATED (SIC):

The next class of boundary condition is referred to within Goma as the strongly
integrated boundary conditions. These boundary conditions replace the mechanics
equation at the ith node with a surface integral of some derived quantity. The
general form of these conditions is:

(4-11)

where φι is the finite element weight function attached to node i, x is the vector of
degrees of freedom, g(x) is the boundary constraint written as a residual, and S is
the surface over which the boundary condition is applied. Because these
constraints are applied by integration of a weighted residual they are referred to as
“integrated” constraints. Note also that since the constrained is applied in this
manner, it will only be satisfied on the surface in an “average” sense, a concept
clear to anyone who has experience with the finite element method.

Strongly integrated constraints are enforced by penalizing (multiplying by a very
large number) the preceding equation and adding it to the mechanics equation
already accumulated at the node. The equation at that node is therefore made
sensitive only to the constraint residual and during the iterative process only that
residual will be satisfied at that node; the residual of the mechanics equation will
not be zero at that node. In the common parlance, the mechanics equation at that
node is “clobbered” by the constraint.

STRONGLY INTEGRATED EDGE (SIC_EDGE):

φ φ0– 0=

φig x() Sd

S

 0=

180 Revised: 6/12/13

4.10 Boundary Condition Specifications

This class of boundary conditions is very similar to strongly integrated conditions,
which are applied to surfaces typically. The difference is that the integration of the
weighted constraint residual is done along the edge curve, which is defined as the
curve where two specified sidesets intersect. Consequently, the boundary
constraint will be satisfied only on this curve and only in an average sense.

COLLOCATED (PCC):

This class of boundary conditions is also often referred to as point collocated
conditions. In contrast to the strongly integrated conditions, this class enforces
boundary constraints precisely at nodal locations. That is to say that at node i, the
constraint:

, (4-12)

where again g(x) is a generalized boundary constraint and xi are the nodal degree
of freedom values at node i, is satisfied exactly. At other points on the boundary, it
is not guaranteed that the constraint is satisfied, even in an average sense.
Although, these boundary conditions resemble Dirichlet conditions in function
there is an important difference. In this class of boundary conditions, the constraint
g(x) might contain derived quantities, for example, normal vectors or gradients,
which require information be obtained from surrounding elements. For this reason,
collocated boundary conditions require the user to specify a sideset over which
they apply instead of a nodeset.

Like the strongly integrated conditions, the collocated conditions are applied by
penalizing the preceding equation and adding this directly onto the accumulated
mechanics residual at each applicable node. This clobbers the mechanics residual
and ensures only the boundary constraint will be satisfied in the final solution.
Note, however, that each element that shares a boundary node will add its version
of the preceding equation, based upon its own specific geometry and set of nodal
unknowns. Since all elements use the same penalizing factor, the effect is that the
constraint applied at a given node is the simple average of the contributions from
surrounding elements.

COLLOCATED EDGE (PCC_EDGE):

This class of boundary conditions is very similar to point collocated conditions,
which are applied at nodal locations. The difference is that the generalized
boundary constraint is satisfied only along the edge curve, which is defined as the
curve where two specified sidesets intersect. The boundary constraint will be
satisfied exactly only at the nodes on this curve.

WEAKLY INTEGRATED (WIC):

Weakly integrated conditions are the last major class of boundary conditions that
one is likely to encounter in normal operations. They are weak because they do not
clobber the mechanics equation and replace it with a separate constraint. Instead,
they add an additional quantity, associated only with the boundary surface, to the
mechanics equation accumulated at a node. Like the strongly integrated constraint,

g xi() 0=

Revised: 6/12/13 181

4.10 Boundary Condition Specifications

the term that is added is multiplied by the nodal weight function and integrated
over the surface S:

(4-13)

where in this case g(x) is not a residual equation but some derived quantity. Unlike
strong constraints, this term is not multiplied by a penalizing factor before it is
added to the accumulated mechanics equation at node i. Consequently, it
represents boundary contributions to the mechanics at that node. Note also that
since these conditions only make additions to the boundary mechanics, if a
strongly enforced condition (SIC or PCC) is also present at the node, the weakly
integrated constraint will be clobbered along with the rest of the mechanics. As an
example, a CAPILLARY boundary condition that is applied to the same sideset as
a VELO_NORMAL condition will have no effect in the final answer.

Weakly integrated boundary conditions are also very much a consequence of the
“natural” boundary conditions that emerge from the finite element formulation. As
anyone familiar with the finite element method knows, these are the ghostly
boundary terms that enforce zero boundary fluxes or forces as a convenient
default. The weakly integrated boundary condition step into the space afforded by
the natural boundary conditions and allow the user to specify values for these
boundary fluxes or forces as functions of conditions on those boundaries.

In addition, to the various classes of boundary conditions detailed above, there are special cases
that arise when applying boundary conditions to the “vector” degrees of freedom. Currently, the
only “vector” degrees of freedom are the mesh displacement and fluid velocity unknowns. When
a boundary condition is applied to these degrees of freedom, it may be ROTATED, VECTOR or
SCALAR. These labels appear in the boundary condition documentation along with the class of
the condition.

ROTATED:

When a boundary condition is designated as “ROTATED,” the vector components
of the appropriate equations for the surface nodes are projected into a new
coordinate system that is locally based on the surface normal vector and tangent
vectors. It is the presence of the “ROTATED” boundary condition that prompts
this process. Usually, only one of these rotated components is then affected by the
boundary condition constraint and in this sense ROTATED conditions are
SCALAR conditions (see below). Also generally speaking, ROTATED boundary
conditions are strongly enforced as described above.

VECTOR:

When a boundary condition is designated as a “VECTOR” condition, the
implication is that a vector quantity will be added to the vector components of the
original mechanics equations. “VECTOR” boundary conditions are generally
always applied weakly.

φig

S

 x() Sd 0=

182 Revised: 6/12/13

4.10 Boundary Condition Specifications

SCALAR:

When a boundary condition is designated a “SCALAR” condition, only a single
mechanics equation is going to be influenced by the boundary condition. In the
case of the vector degrees of freedom, only a single component would be affected
by the boundary condition. Boundary conditions that apply to degrees of freedom
that are naturally scalars, for instance temperature and species, are by default
SCALAR conditions.

An example of these special labels for the VELO_NORMAL_EDGE condition (found on the line
with the Description/Usage section header) is PCC-EDGE/ROTATED MOMENTUM indicat-
ing a rotated collocated edge condition applied to the fluid momentum equation. Given this label-
ing convention, boundary conditions which are not specified to be rotated or vector conditions can
be presumed to be unrotated scalar conditions. Boundary conditions that may be applied to any
equation are labeled “varied.”

The user will not find “periodic boundary conditions” discussed in this manual. Those interested
in such conditions should consult the Advanced Capabilities Manual (SAND2006-7304).

Resolving Conflicts between Boundary Conditions In Goma, the bulk equations and
boundary conditions are evaluated on an element-by-element basis. After the residual and Jacobi-
an entries for the bulk equations have been calculated, the boundary conditions are used to modify
or replace the bulk entries where necessary. Often the selection of boundary conditions from the
input deck may cause two boundary conditions to be applied to the same equation (equation asso-
ciated with a nodal point); this is especially true at junction points. Frequently the multiple bound-
ary conditions perform the same function (i.e. duplicates) but in some important instances they
are different (i.e. conflicts). In Goma, a decision making process was developed for determining
which boundary conditions have priority. The flow chart for this decision-making is shown in Fig-
ure 4. While this process resolves boundary-condition conflicts, it does not eliminate the possibil-
ity of setting boundary conditions that are incompatible and lead to errors in solving the problem.
However, this method should clarify how BC’s are chosen from the input deck and should enable
the user to determine why a given combination of boundary conditions does not work.

The flow chart in Figure 3 shows the procedure for resolving what boundary conditions get ap-
plied to a given equation at a given node. The starting point assumes that a list of all the potential
boundary conditions for the equation are known. Boundary conditions in Goma fall into several
classes: Dirichlet, Pointwise Collocation, Strong Integrated, Weak Integrated and Special condi-
tions, in order of priority. For boundary conditions applied to vector equations (mesh or momen-
tum), a boundary condition can cause the bulk equations to be rotated prior to applying the
boundary condition; in conflicts between boundary conditions, conditions which do not rotate the
bulk equations (unrotated conditions) have priority over conditions which rotate the bulk equa-
tions (rotated conditions). In certain cases (e.g. two PLANE conditions which intersect at a point),
conflicting boundary conditions can be checked to determine if they are duplicates, in which case
only the first of the duplicates in the input deck is applied. Most boundary conditions are designed
to apply by themselves, but a special class of boundary conditions, the generalized dirichlet (GD)

Revised: 6/12/13 183

4.10.1 Number of BC

conditions, are designed so that multiple GD conditions can apply along the same boundary and to
the same equation.

While running, Goma prints the results of conflict resolution for every node at which it found at
least two boundary conditions being applied to the same equation. The results indicate the node
number, equation type, boundary conditions chosen by Goma, and the side-set or node-set num-
bers to which the boundary conditions apply. Thus to determine what boundary conditions are ac-
tually used by Goma, carefully check the output from conflict resolution. Setting the Debug_Flag
= 1 causes Goma to print out more information regarding which boundary conditions apply and
which do not. Despite the complexity of the logic built into Goma to resolve conflicts between
boundary conditions, there are several combinations of boundary conditions that do not have a
clear resolution. It is up to the user to resolve the final conflicts.

And finally, the first (Number of BC) and last (END OF BC) boundary condition cards are a pair
and stand alone; the remaining cards belong to the categories of conditions discussed above. The
ordering of input cards within this collection of BC input records (i.e., section) is sequential and
some sections of interspersed comments accompany each boundary condition category.

4.10.1 Number of BC

Description/Usage

This required card indicates how many boundary condition (BC) cards are contained in
the Problem Description File. The single input parameter is defined as

<integer> The number of BC cards that follow.

 If <integer> is set to -1, Goma will automatically count the number of BC cards
between the Number of BC card and the End of BC card. This latter usage is generally
preferred if a large number of BCs are to be specified.

Examples

Following is a sample card, indicating that there are two BC cards that follow this card.

Number of BC = 2

Technical Discussion

If there are more BC cards listed in an input deck than specified on this card, Goma
ignores the extras; in other words, only the first <integer> cards are read by Goma. If

Number of BC = <integer>

184 Revised: 6/12/13

4.10.1 Number of BC

the number of BCs is fewer than the amount specified by <integer>, Goma will stop
with an error.

Also note, that if more than one BC on the same variable is specified, only the last one
is applied.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Category 1: Boundary Conditions for Any Equation

This category includes a set of cards that are used to provide all boundary condition information
for a generalized dirichlet (GD) boundary condition. The condition is applied as a pointwise
collocation along a given node set. The general syntax for the GD_cards is as follows:

BC = <bc_name> <bc_type> <bc_id> <equation_name> <integer1> <variable_name> <integer2> {float_list}

The current allowable definitions and/or values for < bc_name>, <bc_type>, <bc_id>,
<integer1>, <integer2> and {float_list} are provided in the individual cards. As a general note,
<integer1> and <integer2> are the species number of the mass transport equation and
concentration variable, respectively; they should be zero for other equation and variable types.
Currently these conditions assume that the variable is defined at all the nodes at which the
equation is defined (no subparametric mapping).

However, the values for <equation_name> and <variable_name>, which apply generally to all
cards in this category (except as subsequently noted), are given here:

<equation_name> A character string indicating the equation to which this
boundary condition is applied, which can be
R_MOMENTUM1, R_MOMENTUM2,
R_MOMENTUM3, R_MESH1, R_MESH2, R_MESH3,
R_MASS, R_ENERGY, R_MASS_SURF,
R_PRESSURE, R_STRESS11, R_STRESS12,
R_STRESS13, R_STRESS22, R_STRESS23,
R_STRESS33, R_GRADIENT11, R_GRADIENT12,

Revised: 6/12/13 185

4.10.1 Number of BC

R_GRADIENT13, R_GRADIENT21,
R_GRADIENT22, R_GRADIENT23,
R_GRADIENT31, R_GRADIENT32,
R_GRADIENT33, R_POTENTIAL, R_FILL,
R_SHEAR_RATE, R_MESH_NORMAL (rotate mesh
equations and apply this condition to normal component),
R_MESH_TANG1, R_MESH_TANG2,
R_MOM_NORMAL (rotate momentum equations and
apply this condition to normal component),
R_MOM_TANG1, R_MOM_TANG2,
R_POR_LIQ_PRESS, R_POR_GAS_PRESS,
R_POR_POROSITY, R_POR_SATURATION,
R_POR_ENERGY, R_POR_LAST,
R_POR_SINK_MASS, R_VORT_DIR1,
R_VORT_DIR2, R_VORT_DIR3, R_VORT_LAMBDA,
R_CURVATURE, R_LAGR_MULT1,
R_LAGR_MULT2, R_LAGR_MULT3,
R_BOND_EVOLUTION, R_SURF_CHARGE,
R_EXT_VELOCITY, R_EFIELD1, R_EFIELD2,
R_EFIELD3, R_ENORM, R_NORMAL1,
R_NORMAL2, R_NORMAL3, R_ _CURVATURE,
R_SHELL_TENSION, R_SHELL_X, R_SHELL_Y,
R_SHELL_USER, R_PHASE1, R_PHASE2,
R_PHASE3, R_PHASE4, R_PHASE5,
R_SHELL_ANGLE1, R_SHELL_ANGLE2,
R_SHELL_SURF_DIV_V, R_SHELL_SURF_CURV,
R_N_DOT_CURL_V, R_GRAD_S_V_DOT_N1,
R_GRAD_S_V_DOT_N2, R_GRAD_S_V_DOT_N3,
R_ACOUS_PREAL, R_ACOUS_PIMAG,
R_SHELL_DIFF_FLUX,
R_SHELL_DIFF_CURVATURE,
R_SHELL_NORMAL1, R_SHELL_NORMAL2,
R_ACOUS_REYN_STRESS, R_SHELL_BDYVELO,
R_SHELL_LUBP, R_LUBP, R_SHELL_FILMP,
R_SHELL_FILMH, R_SHELL_PARTC,
R_SHELL_SAT_CLOSED, R_SHELL_SAT_OPEN,
R_SHELL_ENERGY, R_SHELL_DELTAH,
R_SHELL_LUB_CURV, R_SHELL_SAT_GASN,
R_SHELL_SHEAR_TOP, R_SHELL_SHEAR_BOT,
R_SHELL_CROSS_SHEAR, R_MAX_STRAIN,
R_CUR_STRAIN , R_LUBP_2,
R_SHELL_SAT_OPEN_2, or
R_SHELL_LUB_CURV_2

186 Revised: 6/12/13

4.10.1 Number of BC

<variable_name> A character string indicating the variable which should be
fixed, which can be VELOCITY1, VELOCITY2,
VELOCITY3, MESH_DISPLACEMENT1,
MESH_DISPLACEMENT2,
MESH_DISPLACEMENT3, MESH_POSITION1,
MESH_POSITION2, MESH_POSITION3,
MASS_FRACTION, SURFACE, TEMPERATURE, or
PRESSURE (pressure will have no effect if not using Q1 or
Q2 basis functions), POLYMER_STRESS11,
POLYMER_STRESS12, POLYMER_STRESS13,
POLYMER_STRESS22, POLYMER_STRESS23,
POLYMER_STRESS33, VOLTAGE, FILL,
SHEAR_RATE, VEL_NORM, D_VEL1_DT,
D_VEL2_DT, D_VEL3_DT, D_T_DT, D_C_DT,
D_X1_DT, D_X2_DT, D_X3_DT, D_S_DT, D_P_DT,
VELOCITY_GRADIENT11,
VELOCITY_GRADIENT12,
VELOCITY_GRADIENT13,
VELOCITY_GRADIENT21,
VELOCITY_GRADIENT22,
VELOCITY_GRADIENT23,
VELOCITY_GRADIENT31,
VELOCITY_GRADIENT32,
VELOCITY_GRADIENT33, POR_LIQ_PRESS,
POR_GAS_PRESS, POR_POROSITY,
POR_POROSITY, POR_TEMP , POR_SATURATION,
POR_LAST, MAX_POROUS_NUM,
POR_SINK_MASS, VORT_DIR1, VORT_DIR2,
VORT_DIR3, VORT_LAMBDA, CURVATURE,
LAGR_MULT1, LAGR_MULT2, LAGR_MULT3,
BOND_EVOLUTION, SURF_CHARGE,
EXT_VELOCITY, EFIELD1, EFIELD2, EFIELD3,
ENORM, NORMAL1, NORMAL2, NORMAL3,
SHELL_CURVATURE, SHELL_TENSION,
SHELL_X, SHELL_Y, SHELL_USER, PHASE1,
PHASE2, PHASE3, PHASE4, PHASE5,
SHELL_ANGLE1, SHELL_ANGLE2,
SHELL_SURF_DIV_V, SHELL_SURF_CURV,
N_DOT_CURL_V, GRAD_S_V_DOT_N1,
GRAD_S_V_DOT_N2, GRAD_S_V_DOT_N3,
ACOUS_PREAL, ACOUS_PIMAG,
SHELL_DIFF_FLUX, SHELL_DIFF_CURVATURE,
SHELL_NORMAL1, SHELL_NORMAL2,

Revised: 6/12/13 187

4.10.2 FIX

ACOUS_REYN_STRESS, SHELL_BDYVELO,
SHELL_LUBP, LUBP, SHELL_FILMP,
SHELL_FILMH, SHELL_PARTC,
SHELL_SAT_CLOSED, SHELL_PRESS_OPEN,
SHELL_TEMPERATURE, SHELL_DELTAH,
SHELL_LUB_CURV, SHELL_SAT_GASN,
SHELL_SHEAR_TOP, SHELL_SHEAR_BOT,
SHELL_CROSS_SHEAR, MAX_STRAIN,
CUR_STRAIN, LUBP_2, SHELL_PRESS_OPEN2,
SHELL_LUB_CURV_2

EXCEPTIONS to the above parameter definitions: For the GD_TIME card, the <variable_names>
of LINEAR, EXPONENTIAL, or SINUSOIDAL are acceptable (see examples below). There
are also differences in the use of the GD_TABLE card, which are explained in the description of
that card below.

A GD boundary condition can be applied multiple times to the same side set and equation to build
up a general multiparameter condition. When this is done, the function is built by expanding the
equations sequentially in the order specified in the BC list.

Descriptions of the GD cards are given next. An insert entitled “Usage Notes on the GD Cards”
follows the descriptions, explaining how the cards are used together in various combinations.

4.10.2 FIX

Description/Usage (DC/VARIED)

This boundary condition card is used to fix the value of a nodal variable along a node
set to the value it receives from an initial guess file (viz. either from the neutral file
specified by the Initial Guess card or an input EXODUS II file as also specified by the
read_exoII_file option on the Initial Guess card). The boundary condition is applied as
a Dirichlet condition (see technical discussion below).

Definitions of the input parameters are as follows:

FIX Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

BC = FIX NS <bc_id> {char_string} <integer1>

188 Revised: 6/12/13

4.10.2 FIX

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

{char_string} Variable name that is to be fixed. This parameter can have
the following permissible values: VELOCITY1,
VELOCITY2, VELOCITY3,
MESH_DISPLACEMENT1,
MESH_DISPLACEMENT2,
MESH_DISPLACEMENT3,
SOLID_DISPLACEMENT1,
SOLID_DISPLACEMENT2,
SOLID_DISPLACEMENT3, MASS_FRACTION,
TEMPERATURE, PRESSURE, VOLTAGE, FILL,
POLYMER_STRESS11, POLYMER_STRESS12,
POLYMER_STRESS13, POLYMER_STRESS22,
POLYMER_STRESS23, POLYMER_STRESS33,
VELOCITY_GRADIENT11,
VELOCITY_GRADIENT12,
VELOCITY_GRADIENT13,
VELOCITY_GRADIENT21,
VELOCITY_GRADIENT22,
VELOCITY_GRADIENT23,
VELOCITY_GRADIENT31,
VELOCITY_GRADIENT32,
VELOCITY_GRADIENT33, POR_LIQ_PRES,
POR_GAS_PRES, POR_POROSITY,
POR_POROSITY, POR_TEMP, POR_SATURATION,
POR_LAST, MAX_POROUS_NUM,
POR_SINK_MASS, VORT_DIR1, VORT_DIR2,
VORT_DIR3, VORT_LAMBDA, CURVATURE,
LAGR_MULT1, LAGR_MULT2, LAGR_MULT3,
BOND_EVOLUTION, SURF_CHARGE,
EXT_VELOCITY, EFIELD1, EFIELD2, EFIELD3,
ENORM, NORMAL1, NORMAL2, NORMAL3,
SHELL_CURVATURE, SHELL_TENSION,
SHELL_X, SHELL_Y, SHELL_USER, PHASE1,
PHASE2, PHASE3, PHASE4, PHASE5,
SHELL_ANGLE1, SHELL_ANGLE2,
SHELL_SURF_DIV_V, SHELL_SURF_CURV,
N_DOT_CURL_V, GRAD_S_V_DOT_N1,
GRAD_S_V_DOT_N2, GRAD_S_V_DOT_N3,
ACOUS_PREAL, ACOUS_PIMAG,

Revised: 6/12/13 189

4.10.2 FIX

SHELL_DIFF_FLUX, SHELL_DIFF_CURVATURE,
SHELL_NORMAL1, SHELL_NORMAL2,
ACOUS_REYN_STRESS, SHELL_BDYVELO,
SHELL_LUBP, LUBP, SHELL_FILMP,
SHELL_FILMH, SHELL_PARTC,
SHELL_SAT_CLOSED, SHELL_PRESS_OPEN,
SHELL_TEMPERATURE, SHELL_DELTAH,
SHELL_LUB_CURV, SHELL_SAT_GASN,
SHELL_SHEAR_TOP, SHELL_SHEAR_BOT,
SHELL_CROSS_SHEAR, MAX_STRAIN,
CUR_STRAIN, LUBP_2, SHELL_PRESS_OPEN2,
SHELL_LUB_CURV_2

<integer1> Species number of concentration, or zero if variable is not
concentration.

Examples

The following is an example of using this card to set the mesh displacement
components in a 2-D problem:

BC = FIX NS 4 MESH_DISPLACEMENT1 0
BC = FIX NS 4 MESH_DISPLACEMENT2 0

In this example, several continuation steps were taken to deform part of an elastic block
of material. The displacements on boundary node set 4 were then held constant while
moving another boundary (because the current displacements were not known, FIX
was a convenient tool).

Technical Discussion

This boundary condition capability is indispensable for moving-mesh problems when
the dependent variable is the mesh displacement from a stress free state. If one were to
try to use the DX/DY/DZ type Dirichlet condition to suddenly freeze a mesh along a
node set after a parameter continuation or transient problem restart, then they would be
faced with figuring out the displacement of each node and defining individual node sets
for each node for boundary condition application. This capability is also beneficial
when using previous simulation results to generate boundary conditions for more
complex analysis. We have on occasion used this boundary condition for most of the
variable types shown.

190 Revised: 6/12/13

4.10.3 GD_CONST

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.3 GD_CONST

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a
constant value for any nodal variable, using the residual function form

(4-14)

C1 being the constant value (<float>) and x being the <variable_name>. This boundary
condition card can be used in combination with any of the other GD_* conditions as a
building block to construct more complicated conditions. Please see the examples on
all of these cards for details and instructive uses. Definitions of the input parameters are
as follows:

GD_CONST Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied (see the list of permissible
values in the discussion above for Category 1).

BC = GD_CONST SS <bc_id> <equation_name> <integer1> <variable_name>
<integer2> <float>

x C1– 0=

Revised: 6/12/13 191

4.10.3 GD_CONST

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<variable_name> A character string indicating the variable that should be
fixed (see the list of permissible values in the discussion
above for Category 1).

<integer2> Species number of the concentration variable.The value
should be 0 unless the <variable_name> is of type
MASS_FRACTION.

<float> Value of variable, C1.

Examples

Following is a sample card:

BC = GD_CONST SS 2 R_MESH_NORMAL 0 MASS_FRACTION 0 0.2

This boundary condition results in the equation C1 - 0.2 = 0 being applied as a
boundary condition to the mesh-motion equation and being rotated into a normal-
tangential basis. C1 is the concentration of the zeroth species. The equation is actually
applied as a replacement to the normal component of the mesh motion equation and in
this case would cause the mesh surface, defined by side set 2, to move as the
isoconcentration surface of C1 = 0.2.

Technical Discussion

Note that this collocated boundary condition may be applied as a rotated, vector or
scalar condition depending on the equation to which this condition applies. The
example above is a powerful demonstration of this boundary condition as a
distinguishing condition. Please consult the example discussions on the other GD_*
options for more detailed examples, as this boundary condition card can be used in an
additive way with other GD_* cards.

Theory

No Theory.

FAQs

No FAQs.

192 Revised: 6/12/13

4.10.4 GD_LINEAR

References

No References.

4.10.4 GD_LINEAR

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a linear
function for any nodal variable, using the residual function form

(4-15)

where C1 and C2 being the constant values and x representing any variable
(<variable_name>). This boundary condition card can be used in combination with any
of the other GD_* conditions as a building block to construct more complicated
conditions. Moreover, the resulting boundary condition can be applied as a strong
residual replacement to any differential equation type. Please see the examples on all of
these cards for details and instructive uses. Definitions of the input parameters are as
follows:

GD_LINEAR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied (see the list of permissible
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<variable_name> A character string indicating the variable that should be
fixed (see the list of permissible values in the discussion
above for Category 1).

BC = GD_LINEAR SS <bc_id> <equation_name> <integer1> <variable_name>
<integer2> <float1> <float2>

C1 C2x+ 0=

Revised: 6/12/13 193

4.10.4 GD_LINEAR

<integer2> Species number of the concentration variable.The value
should be 0 unless the <variable_name> is of type
MASS_FRACTION.

<float1> Intercept, C1

<float2> Slope, C2

Examples

Following is a sample card:

BC = GD_LINEAR SS 1 R_MESH1 0 MESH_POSITION1 0 -1. 2.

This boundary condition results in the equation 2.0*x - 1.0 = 0 to be applied as a
boundary condition to the x-component of the mesh motion equation. x is the x-
component of the mesh position (N.B. not displacement, as MESH_POSITION1 would
be replaced by MESH_DISPLACEMENT1 in the above). The equation is actually
applied as a replacement to the x-component of the mesh motion equation and in this
case would lead to the mesh surface, defined by side set 1, to move or position itself
according to this linear relationship.

Technical Discussion

Note that this collocated boundary condition may be applied as a rotated, vector or
scalar condition depending on the equation to which this condition applies. Please
consult the example discussions on the other GD_* options for more detailed
examples, as this boundary condition card can be used in an additive way with those.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

194 Revised: 6/12/13

4.10.5 GD_PARAB

4.10.5 GD_PARAB

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a
quadratic function for any nodal variable, using the residual function form

(4-16)

where C1, C2 and C3 are the constant values (<floati>) and x represents any variable
(<variable_name>). This boundary condition card can be used in combination with any
of the other GD_* conditions as a building block to construct more complicated
conditions. Moreover, the resulting boundary condition can be applied as a strong
residual replacement to any differential equation type. Please see the examples on all of
these cards for details and instructive uses. Definitions of the input parameters are as
follows:

GD_PARAB Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied (see the list of permissible
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<variable_name> A character string indicating the variable that should be
used in the function (see the list of permissible values in
the discussion above for Category 1).

<integer2> Species number of the concentration variable.The value
should be 0 unless the <variable_name> is of type
MASS_FRACTION.

BC = GD_PARAB SS <bc_id> <equation_name> <integer1> <variable_name>
<integer2> <float1> <float2> <float3>

C1 C2x C3x
2

+ + 0=

Revised: 6/12/13 195

4.10.5 GD_PARAB

<float1> Intercept, C1.

<float2> Slope, C2.

<float3> Acceleration, C3.

Examples

Following is a sample card:
BC = GD_PARAB SS 4 R_MESH1 0 MESH_POSITION2 0 1. -2. -3.
BC = GD_LINEAR SS 4 R_MESH1 0 MESH_DISPLACEMENT1 0 0. -1.

This boundary condition results in the equation -3*y2-2.0*y + 1.0 = 0 to be applied as a
boundary condition to the x-component of the mesh motion equation. y is the y-
component of the mesh position (N.B. not displacement, as MESH_POSITION2 would
be replaced by MESH_DISPLACEMENT2 in the above). The equation is actually
applied as a replacement to the x-component of the mesh motion equation and in this
case would lead to the mesh surface, defined by side set 4, to move or position itself
according to this quadratic relationship.

Technical Discussion

This condition is convenient for applying Poiseuille velocity profiles, as a circular
condition on geometry, together with many other uses.

Note that this collocated boundary condition may be applied as a rotated, vector or
scalar condition depending on the equation to which this condition applies. Please
consult the example discussions on the other GD_* options and the examples below for
more detailed examples, as this boundary condition card can be used in an additive way
with those.

Theory

No Theory.

FAQs

No FAQs.

References

Please consult the following reference (on Roll Coating) for examples of roll surface
geometry.

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29,
2000, P. R. Schunk and Matt Stay

196 Revised: 6/12/13

4.10.6 GD_POLYN

4.10.6 GD_POLYN

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a
polynomial function for any nodal variable, using the residual function form of a 6th-
order polynomial dependence on a variable

(4-17)

There are three required and four optional parameters in the <float_list>; definitions of
the input parameters are as follows:

GD_POLYN Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied (see the list of permissible
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<variable_name> A character string indicating the variable that should be
fixed (see the list of permissible values in the discussion
above for Category 1).

<integer2> Species number of the concentration variable. The value
should be 0 unless the <variable_name> is of type
MASS_FRACTION.

<float1> Intercept, C1.

BC = GD_POLYN SS <bc_id> <equation_name> <integer1> <variable_name>
<integer2> <float_list>

C1 C2x C3x
2

C4x
3

C5x
4

C6x
5

C7x
6

+ + + + + + 0=

Revised: 6/12/13 197

4.10.6 GD_POLYN

<float2> Slope, C2.

<float3> Acceleration, C3.

<float4> Coefficient for 3rd-order term, C4.

<float5> Coefficient for 4th-order term, C5.

<float6> Coefficient for 5th-order term, C6.

<float7> Coefficient for 6th-order term, C7.

Examples

Following is a set of sample cards
BC = GD_POLYN SS 2 R_ENERGY 0 MESH_POSITION1 0 {c1} {c2} {c3} {c4}
{c5} {c6} {c7}
BC = GD_LINEAR SS 2 R_ENERGY 0 TEMPERATURE 0 0. -1.

This boundary condition results in the equation

(4-18)

to be applied as a boundary condition on the energy equation, i.e., made a boundary
condition on temperature with second card, which brings in a dependence on
temperature. Here the coefficients are set by APREPRO, x is the x-component of the
mesh position (N.B. not displacement, as MESH_POSITION2 would be replaced by
MESH_DISPLACEMENT2 in the above).

Technical Discussion

This condition is not used as often as GD_LINEAR and GD_PARAB, and in fact
supersedes those conditions. Please consult the example discussions on the other GD_*
options and the example section after GD_TABLE for more descriptive examples.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

C1 C2x C3x
2

C4x
3

C5x
4

C6x
5

C7x
6

+ + + + + + T=

198 Revised: 6/12/13

4.10.7 GD_TIME

4.10.7 GD_TIME

Description/Usage (PCC/VARIED)

This boundary condition card is actually a multiplicative building block that can be
used to impose a multiplicative time modulation of a specified functional form on any
set of GD_ * conditions. NOTE: unlike the other GD_* cards which are additive, this
card is multiplicative. This condition must be placed after any single or set of GD_ *
cards for which the user wishes to modulate (viz. GD_LINEAR, GD_PARAB, etc.). The
card can be used as many times as needed to construct the desired function. The
examples below will clarify its use. Definitions of the input parameters are as follows:

GD_TIME Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied (see the list of permissible
values in the discussion above for Category 1).

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<time_func_name> Keyword to identify the functional form of the time
modulation. Permissible values for this parameter are
LINEAR, EXPONENTIAL, and SINUSOIDAL.

<integer2> Set this required but unused parameter to zero.

<float1> C0 model parameter

<float2> C1 model parameter

The functional form of each time-modulation model is as follows:

LINEAR: (4-19)

BC = GD_TIME SS <bc_id> <equation_name> <integer1> <time_func_name>
<integer2> <float1> <float2>

f t() C0 C1t+=

Revised: 6/12/13 199

4.10.7 GD_TIME

EXPONENTIAL: (4-20)

SINUSOIDAL: (4-21)

Examples

Following is a sample card set:
BC = GD_LINEAR SS 1 R_MESH_NORMAL 0 MESH_DISPLACEMENT1 0 1. 0.
BC = GD_TIME SS 1 R_MESH_NORMAL 0 SINUSOIDAL 0 10. 2.
BC = GD_LINEAR SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 0. -1.

This set of cards leads to the application of to the normal component
of the mesh displacement at side set 1. If side set 1 were a surface of constant x (viz.
normal in the x-direction) then this condition could be used to impose a piston motion
to the surface. Recall that GD_LINEAR cards are additive with each other and
GD_TIME is multiplicative with the previous cards. The first card is used to put a
constant of 1.0 in the equation, the second card (GD_TIME card) multiplies that
constant with the sinusoidal time function, and the third card is used to put the linear
term on mesh position. Note carefully the signs used.

Technical Discussion

This boundary condition building block is very useful for imposing time-dependent
boundary conditions with some fairly standard functional forms without the
inconvenience of writing a user-defined boundary condition. Boundary conditions for
pulsating flow, piston motion, roll-eccentricity effects in coating, time-evolving
temperature transients, etc. can all be constructed using this card. The examples at the
end of this section on GD_* options will help the user construct such functions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

f t() C0 C1t+()exp=

f t() C0 C1t+()sin=

x 10.0 2t+()sin=

200 Revised: 6/12/13

4.10.8 GD_CIRC

4.10.8 GD_CIRC

Description/Usage (PCC/VARIED)

This boundary condition of type Category 1 (see discussion) is used to impose a
quadratic function for any nodal variable using the residual function form

. (4-22)

where C1, C2 and C3 are the constant values (<floati>) and x represents any variable
(<variable_name>). This boundary condition card can be used in combination with any
of the other GD_* conditions as a building block to construct more complicated
conditions. GD_CIRC happens to be a convenient building block for circles or
elliptical functions (see examples below). Moreover, the resulting boundary condition
can be applied as a strong residual replacement to any differential equation type. Please
see the examples on all of these cards for details and instructive uses. Definitions of the
input parameters are as follows: (convenient for circles):

GD_CIRC Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied. See the list of
permissible values in the introduction to the Category 1
BCs following the Number of BC card.

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<variable_name> A character string indicating the variable that should be
fixed. See the list of permissible values in the
introduction to the Category 1 BCs following the
Number of BC card.

BC = GD_CIRC SS <bc_id> <equation_name> <integer1> <variable_name>
<integer2> <float1> <float2> <float3>

C
2

1– C3 x C2–()
2

+ 0=

Revised: 6/12/13 201

4.10.8 GD_CIRC

<integer2> Species number of the concentration variable. The value
should be 0 unless the <variable_name> is of type
MASS_FRACTION.

<float1> Radius, C0. This should appear in only one GD_CIRC
condition on each boundary.

<float2> Origin, C1.

<float3> Ellipticity, C2.

Examples

Following is a sample set of cards:
BC = GD_CIRC SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 1. 1. 1.
BC = GD_CIRC SS 1 R_MESH_NORMAL 0 MESH_POSITION2 0 0. 1. 1.

This set of cards can be used to prescribe a mesh distinguishing condition for a mesh
surface with a quadratic dependence on x and y, a circle center at [1., 1.], and a radius
of 1.0 (note the radius only appears on one card).

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

202 Revised: 6/12/13

4.10.9 GD_TABLE

4.10.9 GD_TABLE

Description/Usage (PCC/VARIED)

This card is used to specify arbitrary, univariate (one abscissa and one ordinate: x1 - x2)
data for boundary conditions on two-dimensional boundaries, e.g., the inlet velocity
profile of a non-Newtonian fluid in a two-dimensional channel. The GD_TABLE
specification differs slightly from the other cards in this category: the data are scalable
and the data can be read from a file. Like the other GD_* cards, this card can be used as
an additive building block for more complicated conditions. The examples below and
at the end of the GD_* section will provide more detailed guidance.

Definitions of the input parameters are described next. Differences between this card
and other GD_* cards are pointed out.

GD_TABLE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<equation_name> A character string indicating the equation to which this
boundary condition is applied. See the list of
permissible values in the discussion above for Category
1. In contrast to other GD_* cards, this parameter also
serves to identify the equation that is being supplanted.

<integer1> Species number of the mass transport equation. The
value should be 0 unless the <equation_name> is of type
R_MASS.

<variable_name> A character string indicating the variable that should be
used in the function. See the list of permissible values in
the discussion above for Category 1. For this card, in
contrast to other GD_* cards, this parameter also
identifies what value is to serve as abscissa when
interpolating the table.

BC = GD_TABLE SS <bc_id> <equation_name> <integer1> <variable_name>
<integer2> <scale> <interpolation> [FILE = <fname>]

Revised: 6/12/13 203

4.10.9 GD_TABLE

<integer2> Species number of the concentration variable.The value
should be 0 unless the <variable_name> is of type
MASS_FRACTION.

<scale> A floating point value by which to multiply the ordinate
list after interpolation. It can be used to scale the table
values or change their sign, e.g. C0, scale factor in
f(x1) = C0*x2

<interpolation> Specifies the method to use in interpolating between
supplied data points. Currently the only choice available
is LINEAR, which invokes a simple linear interpolation
method. Alternative methods will/can be added latter as
required or requested.

The table data will be read from within the input deck itself (following the GD_TABLE
BC card). The end of the table is signaled by the keywords "END TABLE." (See the
second example below.) An alternative to this method is to read a file with table data.

[FILE = <fname>] The optional keyword ‘FILE =’ indicates that the table
data is to be read from a separate file identified by
<fname>.

Note that this boundary condition card functions as every other GD condition, be it
LINEAR, QUADRATIC, POLYNOMIAL, or in this case TABULAR. It is used simple as
a piece of a residual on the appropriate equation. Hence, it usually requires more than
one GD card to completely specify the boundary condition.

Examples

Following is a sample card set in which the table data is to be read from an external file
called upstream_land.dat:

BC = GD_LINEAR SS 1 R_MESH_NORMAL 0 MESH_POSITION2 0 0. -1.
BC = GD_TABLE SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 1.0 LINEAR
FILE=upstream_land.dat

This card set first creates a linear term in MESH_POSITION2, which is the y-coordinate
of the mesh points along side set 1. The second, GD_TABLE card then creates a table of
y-coordinate values based on x-mesh position. This boundary condition describes a
land/filet composite geometry with x-y data points.

Following is a sample card, where the table data is to be read directly from the input
deck:

BC = GD_TABLE SS 1 R_MOMENTUM1 0 MESH_POSITION2 0 1.0 LINEAR

204 Revised: 6/12/13

4.10.9 GD_TABLE

$ r/R Uz
0.000000 1.666667
0.050000 1.666458
0.100000 1.665000
0.150000 1.661042
0.200000 1.653333
0.250000 1.640625
0.300000 1.621667
.
.
0.900000 0.451667
0.950000 0.237708
1.000000 0.000000
END TABLE

This table is used to specify the radial dependence of an axial velocity profile along the
specified side set.

Technical Discussion

This capability is widely used for geometry and velocity profile boundary conditions
that do not have a convenient closed form. Note that for geometry specifications you
cannot specify multi-valued functions, like for a cutback angle.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-021.0: Multiparameter continuation and linear stability analysis on highly
deformable meshes in Goma, M. M. Hopkins, June 22, 2000

__

Usage Notes on the GD Cards

Following are several examples of uses of the Generalized Dirichlet conditions:

• For a circular boundary (with radius 1, center at (0,0),):

BC = GD_PARAB SS 1 R_MESH2 0 MESH_POSITION2 0 -1. 0. 1.

BC = GD_PARAB SS 1 R_MESH2 0 MESH_POSITION1 0 -0. 0. 1.

• For a planar boundary ()

x
2

y
2

+ 1=

2x y+ 1=

Revised: 6/12/13 205

4.10.9 GD_TABLE

BC = GD_LINEAR SS 1 R_MESH1 0 MESH_POSITION1 0 -1. 2.

BC = GD_LINEAR SS 1 R_MESH1 0 MESH_POSITION2 0 0. 1.

• For a parabolic inflow velocity profile ():

BC = GD_LINEAR SS 4 R_MOMENTUM1 0 VELOCITY1 0 0. -1.

BC = GD_PARAB SS 4 R_MOMENTUM1 0 MESH_POSITION2 0 1. -2. -3.

• For a distinguishing condition where the mesh is an iso-concentration surface (C = 0.2 with mesh equa-
tions rotated):

BC = GD_CONST SS 2 R_MESH_NORMAL 0 MASS_FRACTION 0 0.2

• For a temperature boundary condition with APREPRO constants (ci) of the form

:

BC = GD_LINEAR SS 2 R_ENERGY 0 TEMPERATURE 0 -1

BC = GD_POLYN SS 2 R_ENERGY 0 MESH_POSITION1 0 {c1 c2 c3 c4 c5 c6 c7}

Note, in the first three examples, two cards are combined to create a single boundary
condition that is a function of two variables. Thus, with a little creativity, the General-
ized Dirichlet conditions can replace many of the other boundary condition types.

To help generalize the Dirichlet conditions even more, GD_TIME can be used to mod-
ulate any combination of spatial GD conditions (the CONST, LINEAR, PARAB,
POLYN, CIRC and TABLE options above) which appears prior to the set. Some ex-
amples here are warranted:

• For a parabolic inflow velocity profile which is ramped from zero to a linearly growing multiplier
times ():

BC = GD_PARAB SS 4 R_MOMENTUM1 0 MESH_POSITION2 0 1. -2. -3.

BC = GD_TIME SS 4 R_MOMENTUM1 0 LINEAR 0 0. 1.

BC = GD_LINEAR SS 4 R_MOMENTUM1 0 VELOCITY1 0 0. -1.

(This set of 3 conditions actually applies in place of the
x-momentum equation.)

• For a sinusoidally time-varying roller surface with equation with a fre-
quency of 2. and a phase lag of 10:

BC = GD_PARAB SS 1 R_MESH_NORMAL 0 MESH_POSITION2 0 {x0*x0 + y0*y0 -
R0*R0} {-2.*y0} 1

BC = GD_PARAB SS 1 R_MESH_NORMAL 0 MESH_POSITION1 0 {0.} {-2.*x0} 1

BC = GD_TIME SS 1 R_MESH_NORMAL 0 SINUSOIDAL 0 10. 2.

This set of cards applies to the normal
component of the mesh equations along side set 1.

u 1 2y– 3y
2

–=

T c1 c2x c3x
2

c4x
3

c5x
4

c6x
5

c7x
6

+ + + + + +=

u 1 2y 3y
2

––=

f x y z t u, , , ,() 1t 1 2y 3y
2

––() u– 0==

x x0–()
2

y y0–()
2

+ R
2
0=

f x y z t, , ,() x x0–()
2

y y0–()
2

2t 10+()sin R
2
0–+ 0= =

206 Revised: 6/12/13

4.10.9 GD_TABLE

• For a sinusoidally varying gap on a slot coater, the substrate has been made to oscillate according to
 :

BC = GD_LINEAR SS 9 R_MESH2 0 MESH_POSITION1 0 -3.0 0.

BC = GD_TIME SS 9 R_MESH2 0 SINUSOIDAL 0 5. 0.25

BC = GD_LINEAR SS 9 R_MESH2 0 MESH_POSITION2 0 0. 1.0

• Setting the u-velocity on an inlet boundary for a power law fluid:

BC = GD_LINEAR SS 1 R_MOMENTUM1 0 VELOCITY1 0 0. -1.

BC = GD_TABLE SS 1 R_MOMENTUM1 0 MESH_POSITION2 0 1.0 LINEAR

$ r/R Uz
0.000000 1.666667
0.050000 1.666458
0.100000 1.665000
0.150000 1.661042
0.200000 1.653333
0.250000 1.640625
0.300000 1.621667
. .
. .
. .
0.900000 0.451667
0.950000 0.237708
1.000000 0.000000

END TABLE

• Setting the inlet concentration profile for species 0 from data in y0.table

BC = GD_LINEAR SS 1 R_MASS 0 MASS_FRACTION 0 0.0 -1.0

BC = GD_TABLE SS 1 R_MASS 0 MESH_POSITION2 0 1.0 LINEAR FILE = y0.table

• Setting the inlet concentration profile for species 0 from an implicit relation.

Occasionally, we have analytic representations that are in the wrong form. For example, in particu-
late suspension modelling, a relation exists that gives the radial coordinate as a function of the con-
centration, i.e. r = F(C), where F is a non-linear relation. We would prefer it the other way around.
We can use GD_TABLE to solve this dilemma. First, a file is prepared with the two columns,
eqn.table for example:

C_0 F(C_0)

C_1 F(C_1)

.

.

C_N . F(C_N)

This just requires function evaluation. In the input deck, we then use the following cards

f x y t, ,() y 3 t 4⁄ 5+()sin– 0= =

Revised: 6/12/13 207

4.10.10 TABLE_WICV

BC = GD_LINEAR SS 1 R_MASS 0 MESH_POSITION2 0 0.0 -1.0

BC = GD_TABLE SS 1 R_MASS 0 MASS_FRACTION 0 1.0 LINEAR FILE = eqn.table

and the right inlet concentration profile results.

__

4.10.10 TABLE_WICV

Description/Usage (WIC/VECTOR VARIED)

This boundary allows the user to supply boundary data for vector weak integrated
boundary conditions. See the TABLE_WICS card for scalar weak integrated boundary
conditions. A prime example of the use of the TABLE_WICV card is application of a
force for a solid deformation problem.

Definitions of the input parameters are as follows:

TABLE_WICV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
TABLE_WICV that identifies the boundary location
(side set in EXODUS II) in the problem domain.

{abscissa} For one-dimensional tables (i.e. for use in 2D
problems), the choices are restricted to one of the three
coordinate directions. Use the strings X, Y or Z to
identify the direction of choice. For two-dimensional
tables (i.e. for use in 3D problems) use XY, XZ, YX,
YZ, ZX, or ZY to denote the coordinate of the first and
second columns in the table.

{ordinate} This string identifies the equation of the weak integrated
boundary term that the boundary data is added to. For
example, use of the VELOCITY1 string will cause the
table data to be used for all components of the liquid

BC = TABLE_WICV SS <bc_id> {abscissa} {ordinate} {scale} {interpolation}
[FILE = <fname>]

208 Revised: 6/12/13

4.10.10 TABLE_WICV

traction in the boundary integral for the liquid
momentum equations. See the following table.

{scale} A floating point scale multiplier which can be used to
scale the tabular data. The boundary data used will be
the product of {scale} and the tabular data.

{interpolation} This is the method chosen to interpolate between
supplied data points.

For one-dimensional tables, the choices are LINEAR,
which denotes linear interpolation, QUADRATIC,
which denotes quadratic Lagrangian interpolation and
requires an odd number of data points, and QUAD_GP,
which denotes quadratic interpolation where the data
points represent Gauss point values. 3N data points (see
Technical Discussion) are required for QUAD_GP
interpolation.

For two-dimensional tables, BIQUADRATIC is
currently the only choice. The first two columns of the
table should define a rectangular, mapped grid where the
second coordinate changes more quickly than the first.
More complicated methods could be added latter.

[FILE = <fname>] The keyword "FILE =" indicates that the table data be
read from a separate file identified by <fname>. This
parameter is optional and if it is left out the table data
will be read from the input deck itself following the
TABLE_WICV card. In this latter case, the end of the
table is signaled by the keywords "END TABLE". Note
that the file specified by FILE = is fully apreproable,
i.e., it will be preprocessed by APREPRO before
reading if APREPRO is enabled.

String replaces Equation

VELOCITY1 or U liquid
tractions

R_MOMENTUM[1-3]

MESH_DISPLACEMENT1 or DX
or MESH_POSITION1

mesh tractions R_MESH[1-3]

SOLID_DISPLACEMENT1 solid tractions R_SOLID[1-3]

Revised: 6/12/13 209

4.10.10 TABLE_WICV

Examples

Following is a sample card:

BC = TABLE_WICV SS 12 ZX MESH_DISPLACEMENT1 BIQUADRATIC FILE =
load.table

load.table:
0 0 0 6 0
0 1 0 4 0
1 0 0 3 0
1 1 0 1 0

Technical Discussion

The table data itself appears as columns of numbers. One-dimensional TABLE_WICV
tables have three columns (column1=abscissa, column2=ordinate component1,
column3=ordinate component2), whereas two-dimensional TABLE_WICV tables have
five columns (column1=abscissa1, column2=abscissa2, column3=ordinate
component1, column4=ordinate component2, column5=ordinate component3). Goma
will try to read float values from any line whose first parameter can be converted to a
float.

The QUAD_GP interpolation option is meant for the case when the table data comes
from another finite element model or another Goma run and the data is most readily
available at the integration points of the finite element mesh. Hence, with quadratic
Gaussian quadrature, there are three data points per element. N is the number of
elements from the model that the data is coming from and therefore 3N data points are
the total expected.

The user is also referred to the section on Boundary Condition Types at the beginning
of the Boundary Condition Specifications. In particular, look at the discussion of
Weakly Integrated Conditions (WIC).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

210 Revised: 6/12/13

4.10.11 TABLE_WICS

4.10.11 TABLE_WICS

Description/Usage (WIC/VARIED)

 This boundary allows the user to supply boundary data for scalar weak integrated
boundary conditions. See the TABLE_WICV card for vector weak integrated boundary
conditions. A prime example of the use of the TABLE_WICS card is application of heat
flux for a thermal problem.

Definitions of the input parameters are as follows:

TABLE_WICS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
TABLE_WICS that identifies the boundary location (side
set in EXODUS II) in the problem domain.

{abscissa} For one-dimensional tables (i.e. for use in 2D
problems), the choices are restricted to one of the three
coordinate directions. Use the strings X, Y or Z to
identify the direction of choice. For two-dimensional
tables (i.e. for use in 3D problems) use XY, XZ, YX,
YZ, ZX, or ZY to denote the coordinate of the first and
second columns in the table.

{ordinate} This string identifies the equation of the weak integrated
boundary term that the boundary data is added to. For
example, use of the VELOCITY1 string will cause the
table data to be used for the x-component of the liquid
traction in the boundary integral for the x-momentum
equation. See the following table.

BC = TABLE_WICS SS <bc_id> {abscissa} {ordinate} {scale} {interpolation}
[FILE = <fname>]

String replaces Equation

VELOCITY1 or U liquid x-
traction

R_MOMENTUM1

Revised: 6/12/13 211

4.10.11 TABLE_WICS

{scale} A floating point scale multiplier which can be used to
scale the tabular data. The boundary data used will be
the product of {scale} and the tabular data.

{interpolation} This is the method chosen to interpolate between
supplied data points.

For one-dimensional tables, the choices are LINEAR,
which denotes linear interpolation, QUADRATIC,
which denotes quadratic Lagrangian interpolation and
requires an odd number of data points, and QUAD_GP,
which denotes quadratic interpolation where the data
points represent Gauss point values. 3N data points (see
Technical Discussion) are required for QUAD_GP
interpolation.

VELOCITY2 or V liquid y-
traction

R_MOMENTUM2

VELOCITY3 or W liquid z-
traction

R_MOMENTUM3

TEMPERATURE diffusive
energy flux

R_ENERGY

MESH_DISPLACEMENT1 or DX
or MESH_POSITION1

mesh x-
traction

 R_MESH1

MESH_DISPLACEMENT2 or DY
or MESH_POSITION2

mesh y-
traction

 R_MESH2

MESH_DISPLACEMENT3 or DZ
or MESH_POSITION3

mesh z-
traction

 R_MESH3

SOLID_DISPLACEMENT1 solid x-
traction

R_SOLID1

SOLID_DISPLACEMENT2 solid y-
traction

R_SOLID2

SOLID_DISPLACEMENT3 solid z-
traction

R_SOLID3

S[1-3][1-3]_[1-7] polymer mode
traction

R_STRESS[1-3][1-
3]_[1-7]

String replaces Equation

212 Revised: 6/12/13

4.10.11 TABLE_WICS

For two-dimensional tables, BIQUADRATIC is
currently the only choice. The first two columns of the
table should define a rectangular, mapped grid where the
second coordinate changes more quickly than the first.
More complicated methods could be added latter.

[FILE = <fname>] The keyword "FILE =" indicates that the table data be
read from a separate file identified by <fname>. This
parameter is optional and if it is left out the table data
will be read from the input deck itself following the
TABLE_WICS card. In this latter case, the end of the
table is signaled by the keywords "END TABLE". Note
that the file specified by FILE = is fully apreproable,
i.e., it will be preprocessed by APREPRO before
reading if APREPRO is enabled.

Examples

Following is a sample card:

BC = TABLE_WICS SS 12 X TEMPERATURE QUADRATIC FILE =heatflux.table

heatflux.table:
0.0 1.0
0.5 1.5
1.0 1.75
1.5 2.0
2.0 2.0

Technical Discussion

The table data itself appears as columns of numbers. One-dimensional TABLE_WICS
tables have two columns (column1=abscissa, column2=ordinate), whereas two-
dimensional TABLE_WICS tables have three columns (column1=abscissa1,
column2=abscissa2, column3=ordinate). Goma will try to read float values from any
line whose first parameter can be converted to a float.

The QUAD_GP interpolation option is meant for the case when the table data comes
from another finite element model or another Goma run and the data is most readily
available at the integration points of the finite element mesh. Hence, with quadratic
Gaussian quadrature, there are three data points per element. N is the number of
elements from the model that the data is coming from and therefore 3N data points are
the total expected.

Revised: 6/12/13 213

4.10.12 TABLE

The user is also referred to the section on Boundary Condition Types at the beginning
of the Boundary Condition Specifications. In particular, look at the discussion of
Weakly Integrated Conditions (WIC).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.12 TABLE

Description/Usage (PCC/VARIED)

This boundary condition is a stand-alone version of the more complicated GD_TABLE
card. It allows the user to supply arbitrary univariate (one abscissa and one ordinate)
data about the spatial variation of unknowns fields on a boundary. The abscissa will be
one of the three spatial coordinates or time and the ordinate is one of a choice of
unknown field variables. All TABLE_BC conditions must have attached tabular data as
a list of paired float values either directly following the card or in a separate file
(identified on the card). The list of data pairs is terminated by the string “END TABLE”
on its own line.

Definitions of the input parameters are as follows:

TABLE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

BC = TABLE SS <bc_id> {X|Y|Z|TIME} {ordinate} [species] {interpolation}
[FILE = <fname>] [NAME = <identifier>]

214 Revised: 6/12/13

4.10.12 TABLE

{X|Y|Z|TIME} A char_string that identifies the independent table
variable (abscissa). The strings X,Y, and Z refer of
course to the three spatial coordinates. Depending on the
choice here, the x, y, or z coordinate value at a given
point, respectively, is used to obtain an interpolated
ordinate value using the attached table data. If the TIME
string appears here, however, the current simulation
time is used to interpolate an ordinate value. This single
value is applied uniformly to the sideset.

{ordinate} This string associates a variable type with the values of
the ordinate in the attached table. It also identifies the
equation that is supplanted by the boundary condition
on the sideset. The following table lists the available
string choices and the corresponding equation
component clobbered by the boundary condition.

String replaces Equation

VELOCITY1 or U R_MOMENTUM1

VELOCITY2 or V R_MOMENTUM2

VELOCITY3 or W R_MOMENTUM3

MASS_FRACTION or Y or SPECIES R_MASS

TEMPERATURE R_ENERGY

MESH_DISPLACEMENT1 or DX R_MESH1

MESH_DISPLACEMENT2 or DY R_MESH2

MESH_DISPLACEMENT3 or DZ R_MESH3

PRESSURE or P R_PRESSURE

SOLID_DISPLACEMENT1 or DX_RS R_SOLID1

SOLID_DISPLACEMENT2 or DY_RS R_SOLID2

SOLID_DISPLACEMENT3 or DZ_RS R_SOLID3

SHEAR_RATE or SH R_SHEAR_RATE

Revised: 6/12/13 215

4.10.12 TABLE

S11
S12
S22
S13
S23
S33

R_STRESS11
R_STRESS12
R_STRESS22
R_STRESS13
R_STRESS23
R_STRESS33

S11_1
S12_1
S22_1
S13_1
S23_1
S33_1

R_STRESS11_1
R_STRESS12_1
R_STRESS22_1
R_STRESS13_1
R_STRESS23_1
R_STRESS33_1

S11_2
S12_2
S22_2
S13_2
S23_2
S33_2

R_STRESS11_2
R_STRESS12_2
R_STRESS22_2
R_STRESS13_2
R_STRESS23_2
R_STRESS33_2

S11_3
S12_3
S22_3
S13_3
S23_3
S33_3

R_STRESS11_3
R_STRESS12_3
R_STRESS22_3
R_STRESS13_3
R_STRESS23_3
R_STRESS33_3

S11_4
S12_4
S22_4
S13_4
S23_4
S33_4

R_STRESS11_4
R_STRESS12_4
R_STRESS22_4
R_STRESS13_4
R_STRESS23_4
R_STRESS33_4

S11_5
S12_5
S22_5
S13_5
S23_5
S33_5

R_STRESS11_5
R_STRESS12_5
R_STRESS22_5
R_STRESS13_5
R_STRESS23_5
R_STRESS33_5

String replaces Equation

216 Revised: 6/12/13

4.10.12 TABLE

[species] An optional integer parameter that identifies the index
of the appropriate species. Note, it should appear only
when the <ordinate> string is MASS_FRACTION.

{interpolation} A char_string parameter that identifies the method
chosen to interpolate between the attached table data
points. For one-dimensional tables, the choices are
LINEAR, which denotes simple linear interpolation, and
QUADRATIC, which denotes quadratic Lagrangian
interpolation. Note that the latter requires an odd
number of data points be supplied in the table.

[FILE = <fname>] The optional char_string keyword "FILE =" indicates
that the table data be read from a separate file identified
by <fname>. This parameter is optional and if it is left
out the table data will be read from the input deck itself
following the TABLE BC card. Note that the file
specified by <fname> will be first preprocessed by
APREPRO if that option was enabled on the command
line. This is a useful feature that allows for a quick way
to introduce analytic expressions onto boundaries.

[NAME = <identifier>]

The optional char_string keyword NAME = allows for a
set of table data to be attached to the char_string
parameter <identifier>. This option can only be used if
the table data is read from a separate file identified by
FILE = <fname>. In this case, the file <fname> is

S11_6
S12_6
S22_6
S13_6
S23_6
S33_6

R_STRESS11_6
R_STRESS12_6
R_STRESS22_6
R_STRESS13_6
R_STRESS23_6
R_STRESS33_6

S11_7
S12_7
S22_7
S13_7
S23_7
S33_7

R_STRESS11_7
R_STRESS12_7
R_STRESS22_7
R_STRESS13_7
R_STRESS23_7
R_STRESS33_7

String replaces Equation

Revised: 6/12/13 217

4.10.12 TABLE

scanned for the char_string “identifier:” (note the
colon). Once found the table data is read until
encountering END TABLE. This option permits multiple
sets of data in the same file.

The second half of the TABLE_BC implementation is the tabular data itself. In the
TABLE boundary condition, it consists of a set of paired float values, each pair on its
own line. This data should follow directly after the TABLE boundary condition card if
the FILE = option is not used. If a value for <fname> is supplied, the table data should
be written in the file so indicated. Note that in most implementations of UNIX,
<fname> can include a complete path specification in case the datafile is in a different
directory than the run directory. In either case, input deck or separate file, the set of
data table pairs should always be terminated by the string END TABLE to terminate
reading of the data. When reading the table data, Goma attempts to read a float value on
each line. If it is unsuccessful, e.g., a string might start the line, it will proceed to the
next line. If it is successful, it will attempt to read a second float value to complete the
data pair. An unsuccessful read here is an error. Once the second value is read,
however, the remainder of the line is discarded and the next line is read. This procedure
permits inclusion of comments within. See the next section for some examples.

Thus,
3. 1.e-4
1. 3. % this is a good example
$ 1. 40.0
$ I have no idea where the following data came from
 3.4 2.1
 1.e-2 6000.0

will result in four data points being read, whereas, both of the following

6.443 3.43c
5.4099 % 099.0

will result in an error.

Examples

The following is an example of a tabular data set that will be read correctly
$ This data came from M. Hobbs. God only knows where he got it.
T k
0.5 1.e-4
1. 15. % I’m not particularly sure about this one.
3.4 8.1
5.6 23.0
$ 1.0 40.0

In this case, four data pairs will be read to form the table.

Example usage of the TABLE card follows:

218 Revised: 6/12/13

4.10.12 TABLE

• Setting the u-velocity on an inlet boundary for a power law fluid:

BC = TABLE SS 1 Y U LINEAR
$ r/R Ux
0.000000 1.666667
0.050000 1.666458
0.100000 1.665000
0.150000 1.661042
0.200000 1.653333
0.250000 1.640625
0.300000 1.621667
..
..
0.900000 0.451667
0.950000 0.237708
1.000000 0.000000
END TABLE

• Setting the inlet concentration profiles for species 0 and species 1 from data in
y.table:
BC = TABLE SS 1 Y SPECIES 0 QUADRATIC FILE = y.table NAME = y0
BC = TABLE SS 1 Y SPECIES 1 QUADRATIC FILE = y.table NAME = y1

 The file y.table contains:
y0:

0. 1.0
0.25 0.75
0.5 0.60
0.75 0.30
1.0 0.20

END TABLE
y1:

0. 0.0
0.25 0.2
0.5 0.3
0.75 0.5
1.0 0.8

END TABLE

• Setting a temperature history on a sideset
BC = TABLE SS 1 TIME TEMPERATURE LINEAR
0.0 0.0
10.0 373.0
40.0 373.0
50.0 500.0
100.0 500.0
150 0.0
100000.0 0.0
END TABLE

Revised: 6/12/13 219

4.10.13 DISTNG

Technical Discussion

The TABLE boundary condition provides similar functionality to the GD_TABLE
boundary condition but with a simplified interface the notion behind both cards is that
often information on boundaries is known only as a set of data points at specific
positions on the boundary. The TABLE boundary condition can use that boundary
information to provide interpolated values at nodal locations and then impose them as a
strong point collocated condition.

Interpolation orders for this method are limited to LINEAR and QUADRATIC with the
latter requiring an odd number of data points be supplied in the table.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Category 2: Boundary Conditions for the Mesh Equations

The boundary conditions in this section involve the mesh motion equations in LAGRANGIAN or
ARBITRARY form (cf. Mesh Motion card). These conditions can be used to pin the mesh, specify
its slope at some boundary intersection, apply a traction to a surface, etc. Several more boundary
conditions that are applied to the mesh motion equations but include other problem physics are
also available.

4.10.13 DISTNG

Description/Usage (PCC/ROTATED MESH)

This boundary condition card is used to specify a distinguishing condition for mesh
motion based on an isotherm, viz. the distinguishing condition forces the mesh
boundary to which it is applied to take on a position such that the temperature is
constant and at the specified value, all along the boundary. This condition causes the

BC = DISTNG SS <bc_id> <float>

220 Revised: 6/12/13

4.10.13 DISTNG

vector mesh motion equations (viz. mesh1, mesh2, and mesh3 on EQ cards) to be
rotated into normal-tangential form. In two dimensions, this condition is applied to the
normal component automatically; in three dimensions it is suggested to put it on the
normal component, as specified by the ROT conditions. Definitions of the input
parameters are as follows:

DISTNG Name of the boundary condition (<bcname>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> Value of temperature/isotherm. To apply a variable
temperature, e.g., as a function of the concentration, it is
suggested that the user-defined boundary conditions be
used, like SPLINE or GEOM.

Examples

The following is a sample input card:

BC = DISTNG SS 123 273.0

This card forces the boundary defined by EXODUS II side set number 123 to conform
to the isotherm temperature of 273.0.

Technical Discussion

The mathematical form of this distinguishing condition is as follows:

(4-23)

where is the specified temperature parameter. This condition has been used
extensively for macroscale and microscale melting problems, whereby one needs to
distinguish a molten region from a solidified or mushy region with liquidus and solidus
temperatures. In three dimensions, usage needs to be completed with a companion ROT
input card which directs the equation application of the condition.

Theory

No Theory.

T Tmp– 0=

Tmp

Revised: 6/12/13 221

4.10.13 DISTNG

FAQs

Continuation Strategies for Free Surface Flows In free surface problems, there exists
one or more boundaries or internal surfaces whose position(s) are unknown a priori. As
such, the geometry of the problem becomes part of the problem and must be
determined together with the internal physics. Most problems of this sort cannot be
solved with a trivial initial guess to the solution vector, mainly because the conditions
which determine the surface position are closely coupled to the active physics in the
bulk. Thus, these problems require continuation (zero or higher order) to achieve a
converged solution to a desired state. The continuation strategy typically involves
turning on and off the conditions which distinguish the position of the free surface(s);
one such strategy is described in this FAQ.

Distinguishing conditions in Goma serve two purposes: (1) they can be used to locate a
surface whose position depends on internal and interfacial transport phenomena, and
(2) they can be used to prescribe solid boundary position or motion. The first type of
condition contains field variables needed to locate the interface or free surface position,
and hence ties the mesh motion to the problem physics, i.e., mass, momentum, and
energy transport phenomena. Currently, the side-set boundary conditions of type
DISTNG, KINEMATIC, and KIN_LEAK fall into this class. The second type of
condition requires only geometrical information from the mesh, and, although
geometrically couples the mesh motion to the problem physics, it tends not to be so
tightly coupled. Currently, boundary conditions PLANE, PLANEX, PLANEY, PLANEZ,
SPLINE, SPLINEX, SPLINEY, and SPLINEZ fall into this class.

In two dimensions, there is no need to use PLANEX, PLANEY, PLANEZ, SPLINEX,
SPLINEY, and SPLINEZ. Because the code automatically rotates the mesh residual
equations and the corresponding Jacobian entries into normal-tangential form on the
boundary, SPLINE, PLANE, and DISTNG are the only cards required to specify the
position of the boundary. Currently, in three dimensions, the logic for the same rotation
concept is not totally functional, and one must use the PLANEX, etc. cards to designate
which component of the mesh stress residual equation receives the distinguishing
conditions.

If cards DISTNG, KINEMATIC and KIN_LEAK, i.e., distinguishing conditions of type
1, are absent in any simulation, then any initial guess for the transport field equations,
i.e., energy and momentum, has a chance of converging, as long as the initial mesh
displacement guess is within the radius of convergence of the mesh equations and
associated boundary conditions. For example, if the side sets of the EXODUS II
database mesh correspond somewhat closely to what is prescribed with PLANE and
SPLINE-type conditions, then an initial guess of the NULL vector has a good chance of
converging, so long as the velocities and temperatures are within “converging
distance.”

222 Revised: 6/12/13

4.10.13 DISTNG

When conditions from the first class are present, i.e., either DISTNG, KIN_LEAK or
KINEMATIC, then the following procedure should be followed:

• Set the keyword for the Initial Guess character_string to zero, one, or random.

• Obtain a solution (run Goma) with the initial guess for the free surfaces
distinguished as KINEMATIC (or other) coming from the EXODUS II database,
but without the KINEMATIC (or other) card(s). That is, “fix” those surfaces with
either a PLANE or SPLINE command, or simply place no distinguishing condition
on them (this works only if the grid has not been previously “stressed”, i.e., all the
displacements are zero). The rest of the “desired” physics should be maintained. If
any surface is distinguished as KINEMATIC, then it is highly advantageous to
place a VELO_NORMAL condition on that surface for startup, and set the
corresponding floating point datum to zero. This effectively allows the fluid to
“slip” along that boundary as if it were a shear free condition.

• Set the keyword in the Initial Guess character_string to read.

• Copy the file named in SOLN file into the file named in GUESS file.

• Release the free boundaries by taking off any current distinguishing condition
cards and adding the appropriate KINEMATIC (or other) card. Adjust all other
boundary conditions appropriately.

• Run Goma, using a relaxed Newton approach (factor less than unity but greater
than zero - e.g., 0.1) for complex flows.

When dealing with material surface boundaries distinguished by the kinematic
boundary condition, the nature of that condition requires a non-zero and substantial
component of velocity tangent to the surface upon start-up. In this case, it can be
advantageous to use the VELO_TANGENT card to set the velocity along the free
surface to some appropriate value prior to releasing the free surface (in the third step
above). Of course this card will be removed in subsequent steps. Also, although not
necessary, a smooth, “kinkless”, initial guess to the free surface shape is helpful
because it reduces the amount of relaxation required on the Newton iteration.

Obtaining start-up solutions of most coating flow configurations is still an art. The best
way to start up a coating flow analysis may be to acquire a “template” developed from
a previous analysis of some closely related flows.

References

Allen Roach’s or Randy’s ESR tutorials. Perhaps these need to be put into the
repository.

Revised: 6/12/13 223

4.10.14 DXDYDZ

4.10.14 DXDYDZ

Description/Usage (DC/MESH)

This boundary condition format is used to set a constant X, Y, or Z displacement. Each
such specification is made on a separate input card. These boundary conditions must be
applied to node sets. Definitions of the input parameters are as follows:

{DX | DY | DZ} Two-character boundary condition name (<bc_name>) that
defines the displacement, where:

DX - X displacement
DY - Y displacement
DZ - Z displacement

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of the displacement (X, Y, or Z) defined above.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following is a sample card which applies an X-displacement boundary condition to the
nodes in node set 100, specifically an X-Displacement of 1.0. These displacements are
applied immediately to the unknowns and hence result in immediate mesh
displacements from the initial state.

BC = DX NS 100 1.0

This sample card applies the same condition as above, except as a residual equation
that is iterated upon with Newton’s method.

BC = {DX | DY | DZ} NS <bc_id> <float1> [float2]

224 Revised: 6/12/13

4.10.15 DXUSER DYUSER DZUSER

BC = DX NS 100 1.0 1.0

The second float 1.0 forces this application. This approach is advisable in most
situations, as the nodes are gradually moved as a part of the mesh deformation process;
sudden movements, as in the first example, can lead to folds in the mesh.

Technical Discussion

Application of boundary conditions of the Dirichlet type on mesh motion requires
different considerations than those on non-mesh degrees of freedom. Sudden
displacements at a point, without any motion in the mesh surrounding that point, can
lead to poorly shaped elements. It is advisable to apply these sorts of boundary
conditions as residual equations, as discussed above. Examples of how these conditions
are used to move solid structures relative to a fluid, as in a roll-coating flow, are
contained in the references below.

Theory

No Theory.

FAQs

No FAQs.

References

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29,
2000, P. R. Schunk and M. S. Stay

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk.

4.10.15 DXUSER DYUSER DZUSER

Description/Usage (PCC/MESH)

This boundary condition format is used to set a constant X, Y, or Z displacement as a
function of any independent variable available in Goma. These boundary conditions
require the user to edit the routines dx_user_surf, dy_user_surf, and/or dz_user_surf to
add the desired models. These routines are located in the file user_bc.c. In the input

BC = {DXUSER | DYUSER | DZUSER} SS <bc_id> <float_list>

Revised: 6/12/13 225

4.10.15 DXUSER DYUSER DZUSER

deck each such specification is made on a separate input card. These boundary
conditions must be applied to side sets. Definitions of the input parameters are as
follows:

{DX_USER | DY_USER | DZ_USER}Seven-character boundary condition
name (<bc_name>) that defines the displacement, where:

DX_USER-X displacement, user-defined
DY_USER-Y displacement, user-defined
DZ_USER-Z displacement, user-defined

SS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutine so the user can
vary the parameters of the boundary condition. This list
of float values is passed as a one-dimensional double
array to the appropriate C function.

Examples

Following is a sample card which applies an X-displacement boundary condition to the
nodes in node set 100, with a functional form set by the user and parameterized by the
single floating point number . These displacements are applied immediately to the
unknowns and hence result in immediate mesh displacement from the initial state.

BC = DX_USER SS 100 1.0

Please consult the user-definition subroutines for examples. .

Technical Discussion

None.

Theory

No Theory.

FAQs

No FAQs.

226 Revised: 6/12/13

4.10.16

References

No References.

4.10.16

4.10.17 DXYZDISTNG

Description/Usage (PCC/MESH)

This boundary condition card is used to specify a distinguishing condition for mesh
motion based on an isotherm, viz. the distinguishing condition forces the mesh
boundary to which it is applied to take on a position such that the temperature is
constant and at the specified value, all along the boundary. Although of the same
mathematical form as the DISTNG boundary condition, this condition does not force a
boundary rotation of the vector mesh residuals. Instead, it is recommended that the
condition be chosen such that the predominant direction of the normal vector is close to
one of the three Cartesian coordinates, X, Y, or Z. For example, if the boundary in
question is basically oriented so that the normal vector is mostly in the positive or
negative Y-direction, then DYDISTNG should be chosen. Definitions of the input
parameters are as follows:

{DXDISTNG | DYDISTNG | DZDISTNG}

Eight-character boundary condition name (<bc_name>)
that defines the distinguishing condition, where:

DXDISTNG - X condition
DYDISTNG - Y condition
DZDISTNG - Z condition

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float> Value of temperature isotherm. If one wanted to apply a
variable temperature, e.g. as a function of the
concentration, it is suggested that the user-defined
boundary conditions be used.

BC = {DXDISTNG | DYDISTNG | DZDISTNG} SS <bc_id> <float>

Revised: 6/12/13 227

4.10.17 DXYZDISTNG

Examples

The following is a sample input card:

BC = DYDISTNG SS 123 273.0

This card forces the boundary defined by EXODUS II side set number 123 to conform
to the isotherm temperature of 273.0. Most importantly, the y-component of the mesh
equation residuals is replaced by this condition.

Technical Discussion

The mathematical form of this distinguishing condition is as follows:

(4-24)

where is the specified temperature parameter. This condition has been used
extensively for macroscale and microscale melting problems, whereby one needs to
distinguish a molten region from a solidified or mushy region with liquidus and solidus
temperatures. In three dimensions usage needs to be completed with a companion ROT
input card which directs the equation application of the condition, even though
rotations are not actually performed.

 As a bit of software trivia, this is the first distinguishing condition ever written in
Goma, and one of the first boundary conditions, period.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

T Tmp– 0=

Tmp

228 Revised: 6/12/13

4.10.18 SPLINEXYZ/GEOMXYZ

4.10.18 SPLINEXYZ/GEOMXYZ

Description/Usage (PCC/MESH)

This card is used to specify a general surface (solid) boundary description for ALE (or
in special cases LAGRANGIAN) type mesh motion (see Mesh Motion card). These
boundary conditions are tantamount to SPLINE or GEOM, except that they do not
invoke a mesh-equation vector residual rotation into normal-tangential form. Instead,
SPLINEX or, equivalently, GEOMX invokes the geometric boundary condition on the
x-component of the mesh equation residual, and so on. The card requires user-defined
subroutines. Templates for these routines are currently located in the routine
“user_bc.c”. Both a function routine, fnc, for function evaluation and
corresponding routines dfncd1, dfncd2, and dfncd3 for the derivative of the
function with respect to global coordinates are required. GEOMX and SPLINEX are
exactly the same condition. SPLINE* usage is being deprecated. Note that it takes an
arbitrary number of floating-point parameters, depending on the user’s needs.

Definitions of the input parameters are as follows:

{bc_name} Boundary condition name that defines the general surface;
the options are:

SPLINEX/GEOMX - X general surface
SPLINEY/GEOMY - Y general surface
SPLINEZ/GEOMZ - Z general surface

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in
user-defined routine fnc.

Examples

The following is a sample input card:

BC = GEOMZ SS 10 1.0 100. 20.0 1001.0 32.0

BC = {bc_name} SS <bc_id> [floatlist]

Revised: 6/12/13 229

4.10.19 SPLINE/GEOM

applies a user-defined distinguishing condition parameterized by the list of floating
points to the boundary defined by side set 10. Most importantly, the condition replaces
the Z-component of the momentum equation.

Technical Discussion

The mathematical form of this distinguishing condition is arbitrary and is specified by
the user in the fnc routine in user_bc.c. Derivatives of the user-specified function
must also be provided so as to maintain strong convergence in the Newton iteration
process. These functions are located next to fnc and are named dfncd1, dfncd2, and
dfncd3.Several examples for simple surfaces exist in the template routine. In three
dimensions, usage needs to be completed with a companion ROT input card which
directs the equation application of the condition, even though rotations are not actually
performed.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.19 SPLINE/GEOM

Description/Usage (PCC/ROTATED MESH)

This card is used to specify a general surface (solid) boundary description for ALE (or
in special cases LAGRANGIAN) type mesh motion (see Mesh Motion card). Like most
other distinguishing conditions, this condition causes the mesh-motion equations, viz.
mesh1, mesh2, and mesh3, to be rotated into boundary normal-tangential form. The
card requires user-defined subroutines. Templates for these routines are currently
located in the routine “user_bc.c”. Both a function routine, fnc, for function
evaluation and corresponding routines dfncd1, dfncd2, and dfncd3 for the
derivative of the function with respect to global coordinates are required. The SPLINE
condition is exactly the same and uses the same routine as the GEOM card option, and

BC = {SPLINE|GEOM} SS <bc_id> [floatlist]

230 Revised: 6/12/13

4.10.19 SPLINE/GEOM

hence as of the time of this writing we are deprecating the use of SPLINE. Note that it
takes an arbitrary number of floating-point parameters, depending on the user’s needs.

Definitions of the input parameters are as follows:

SPLINE/GEOM Name of the boundary condition <bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in
user-defined routine fnc.

Examples

The following sample input card:

BC = SPLINE SS 10 1.0 100. 20.0 1001.0 32.0

applies a user-defined distinguishing condition, parameterized by the list of five
floating point values, to the boundary defined by side set 10.

Technical Discussion

This condition, like DISTNG, PLANE, and others that can be applied to geometry, is
applied to the normal component of the mesh motion equations along a boundary in
two dimensions; in three dimensions application needs to be further directed with the
ROT conditions. Examples of typical distinguishing conditions can be found in
user_bc.c in the fnc routine and companion derivative routines.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 231

4.10.20

4.10.20

4.10.21 PLANEXYZ

Description/Usage (PCC/ MESH)

This boundary condition card is used to specify a planar surface (solid) boundary
description as a replacement on the X, Y, or Z-component (PLANEX, PLANEY,
PLANEZ, respectively) of the mesh equations (see EQ cards mesh1, mesh2, or mesh3).
The form of this equation is given by

(4-25)

This mathematical form and its usage is exactly like the BC = PLANE boundary
condition card (see PLANE for description), but is applied to the mesh motion
equations without rotation. Definitions of the input parameters are given below; note
that <floatlist> has four parameters corresponding to the four constants in the equation:

{PLANEX | PLANEY | PLANEZ}

Boundary condition name (<bc_name>) where:

PLANEX - normal predominantly in X direction
PLANEY - normal predominantly in Y direction
PLANEZ - normal predominantly in Z direction

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> a in function

<float2> b in function

<float3> c in function

<float4> d in function

BC = {PLANEX | PLANEY | PLANEZ} SS <bc_id> <floatlist>

f x y z, ,() ax by cz d+ + + 0= =

f x y z, ,()

f x y z, ,()

f x y z, ,()

f x y z, ,()

232 Revised: 6/12/13

4.10.21 PLANEXYZ

Examples

Following is a sample input card for a predominantly X-directed surface (viz, as planar
surface whose normal has a dominant component in the positive or negative X
direction):

BC = PLANEX SS 101 1.0 1.0 -2.0 100.0

This boundary condition leads to the application of the equation
 to the mesh1 equation on EXODUS II side set number 101.

Technical Discussion

These conditions are sometimes used instead of the more general PLANE boundary
condition in situations where ROTATION (see ROT command section) leads to poor
convergence of the matrix solvers or is not desirable for some other reason. In general,
the PLANE condition should be used instead of these, but in special cases these can be
used to force the application of the planar geometry to a specific component of the
mesh stress equation residuals. Full understanding of the boundary rotation concept is
necessary to understand these reasons (see Rotation Specifications).

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-013.2: Computations for slot coater edge section, October 10, 2002, T.A. Baer

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer

1.0x 1.0y 2.0z–+ 100.0–=

Revised: 6/12/13 233

4.10.22 PLANE

4.10.22 PLANE

Description/Usage (PCC/ROTATED MESH)

This card is used to specify a surface (solid) boundary position of a planar surface. It is
applied as a rotated condition on the mesh equations (see EQ cards mesh1, mesh2
mesh3). The form of this equation is given by

(4-26)

Definitions of the input parameters are given below; note that <floatlist> has four
parameters corresponding to the four constants in the equation:

PLANE Name of the boundary condition name (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> a in function

<float2> b in function

<float3> c in function

<float4> d in function

Examples

Following is a sample input card:

BC = PLANE SS 3 0.0 1.0 0.0 -0.3

results in setting the side set elements along the side set 3 to a plane described by the
equation .

Technical Discussion

This, like most boundary conditions on geometry with arbitrary grid motion, is applied
to the weighted residuals of the mesh equation rotated into the normal-tangential basis
on the boundary. Specifically, this boundary condition displaces the normal component

BC = PLANE SS <bc_id> <floatlist>

f x y z, ,() ax by cz d+ + + 0= =

f x y z, ,()

f x y z, ,()

f x y z, ,()

f x y z, ,()

f x y z t, , ,() y 0.3– 0= =

234 Revised: 6/12/13

4.10.23 MOVING_PLANE

after rotation of the vector residual equation, leaving the tangential component to
satisfy the natural mesh-stress free state. That is to say, this boundary condition allows
for mesh to slide freely in the tangential direction of the plane surface.

This boundary condition can be applied regardless of the Mesh Motion type, and is
convenient to use when one desires to move the plane with time normal to itself.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

GT-013.2: Computations for slot coater edge section, October 10, 2002, T.A. Baer

4.10.23 MOVING_PLANE

Description/Usage (PCC/ROTATED MESH)

The MOVING_PLANE card is used to specify a surface (solid) boundary position
versus time for a planar surface (cf. PLANE boundary condition card). It is applied as a
rotated condition on the mesh equations (see EQ cards mesh1, mesh2, mesh3). The
form of the equation is given by

(4-27)

and the function is defined as

(4-28)

Definitions of the input parameters are given below; note that <floatlist> has seven
parameters corresponding to the seven constants in the above equations:

MOVING_ PLANE

BC = MOVING_PLANE <bc_id> <floatlist>

f x y z t, , ,() ax by cz d g t()+ + + + 0= =

g t()

g t() λ1t λ2t
2

λ3t
3

+ +=

Revised: 6/12/13 235

4.10.23 MOVING_PLANE

Name of the boundary condition name (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> a in function

<float2> b in function

<float3> c in function

<float4> d in function

<float5> λ1 coefficient in

<float6> λ2 coefficient in

<float7> λ3 coefficient in

Examples

The boundary condition card

BC = MOVING_PLANE SS 3 0. 1. 0. -0.3 0.1 0.0 0.0

results in a plane originally positioned at to move at a velocity of -0.1, viz.
the position of all nodes on the plane will follow:

. (4-29)

Technical Discussion

This, like most boundary conditions on geometry with arbitrary grid motion, is applied
to the weighted residuals of the mesh equation rotated into the normal-tangential basis
on the boundary. Specifically, this boundary condition displaces the normal component
after rotation of the vector residual equation, leaving the tangential component to
satisfy the natural mesh-stress free state. That is to say, this boundary condition allows
for mesh to slide freely in the tangential direction of the plane surface.

This boundary condition can be applied regardless of the Mesh Motion type, and is
convenient to use in place of PLANE when one desires to move the plane with time
normal to itself.

f x y z t, , ,()

f x y z t, , ,()

f x y z t, , ,()

f x y z t, , ,()

g t()

g t()

g t()

y 0.3=

f x y z t, , ,() y 0.3 0.1t+– 0= =

236 Revised: 6/12/13

4.10.24 SLOPEXYZ

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.24 SLOPEXYZ

Description/Usage (SIC/MESH)

This boundary condition card applies a slope at the boundary of a LAGRANGIAN,
TALE, or ARBITRARY solid (see Mesh Motion card) such that the normal vector to the
surface is colinear with the vector specified as input, viz . Here
is the vector specified component-wise via the three <floatlist> parameters on the input
card. Definitions of the input parameters are as follows:

{SLOPEX | SLOPEY | SLOPEZ}

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> X-component of the slope vector .

<float2> Y-component of the slope vector .

<float3> Z-component of the slope vector .

Examples

The following is a sample input card:

BC = {SLOPEX | SLOPEY | SLOPEZ} SS <bc_id> <floatlist>

n
˜

n
˜ spec

⋅ 0= n
˜ spec

n
˜ spec

n
˜ spec

n
˜ spec

Revised: 6/12/13 237

4.10.25 SLOPE

BC = SLOPEX SS 10 1.0 1.0 0.0

This card invokes a boundary condition on the normal component of the mesh residual
momentum equations such that the outward facing surface normal vector along side set
10 is colinear with the vector [1.0, 1.0, 0.0]. This condition is applied to the x-
component of the mesh residual equations.

Technical Discussion

See discussion for BC card SLOPE. The only difference in these conditions and the
SLOPE conditions, is that the latter invokes rotation of the vector mesh residual
equations on the boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.25 SLOPE

Description/Usage (SIC/ROTATED MESH)

This boundary condition card applies a slope at the boundary of a LAGRANGIAN,
TALE, or ARBITRARY solid (see Mesh Motion card) such that the normal vector to the
surface is colinear with the vector specified as input, viz . Here is
the vector specified component-wise via the three <float> parameters on the input card.
Definitions of the input parameters are as follows:

SLOPE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database

BC = SLOPE SS <bc_id> <float1> <float2> <float3>

n
˜

n
˜ spec

⋅ 0= n
˜ spec

238 Revised: 6/12/13

4.10.25 SLOPE

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> X-component of the slope vector .

<float2> Y-component of the slope vector .

<float3> Z-component of the slope vector .

Examples

The following is a sample input card:

BC = SLOPE SS 10 1.0 1.0 0.0

This card invokes a boundary condition on the normal component of the mesh residual
momentum equations such that the outward facing surface normal vector along side set
10 is colinear with the vector [1.0, 1.0, 0.0].

Technical Discussion

This condition, although not often used, allows for a planar boundary condition (cf.
PLANE, PLANEX, etc.) to be specified in terms of a slope, rather than a specific
equation. Clearly, at some point along the surface (most likely at the ends), the
geometry has to be pinned with some other boundary condition (cf. DX, DY, DZ) so as
to make the equation unique. This condition has the following mathematical form:

(4-30)

and is applied in place of the normal component of the mesh motion equations, i.e., it is
a rotated type boundary condition. If used in three dimensions, it will require a rotation
description with the ROT cards.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n
˜ spec

n
˜ spec

n
˜ spec

n
˜

n
˜ spec

⋅ 0=

Revised: 6/12/13 239

4.10.26 KINEMATIC

4.10.26 KINEMATIC

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary
of the mesh defined by the side set to conform to a transient or steady material surface,
with an optional, pre-specified mass loss/gain rate. In two dimensions, this condition is
automatically applied to the normal component of the vector mesh equations, which is
rotated into normal-tangential form. In three dimensions, the application of this
boundary condition needs to be further directed with the ROT cards (see Rotation
Specifications). The application of this condition should be compared with
KINEMATIC_PETROV and KINEMATIC_COLLOC.

 Definitions of the input parameters are as follows:

KINEMATIC Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> Mass-loss (positive) or mass-gain (negative) velocity at the
free boundary.

[integer] Optional integer value indicating the element block id from
which to apply the boundary condition.

Examples

The following sample card

BC = KINEMATIC SS 7 0.0

leads to the application of the kinematic boundary condition to the boundary-normal
component of the mesh-stress equation on the boundary defined by side set 7.

Technical Discussion

The functional form of the kinematic boundary condition is:

BC = KINEMATIC SS <bc_id> <float1> [integer]

240 Revised: 6/12/13

4.10.27 KINEMATIC_PETROV

 (4-31)

Here is the unit normal vector to the free surface, is the velocity of the fluid, is
the velocity of the surface (or mesh), and is the mass loss/gain rate. In two
dimensions this equation is applied to the normal component of the vector mesh
position equation, and hence is considered as a distinguishing condition on the location
of the mesh relative to the fluid domain.

Theory

No Theory.

FAQs

See the FAQ pertaining to “Continuation Strategies for Free Surface Flows” on the
DISTNG boundary condition card.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

4.10.27 KINEMATIC_PETROV

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary
of the mesh defined by the side set to conform to a transient or steady material surface,
with an optional, pre-specified mass loss/gain rate. In two dimensions, this condition is
automatically applied to the normal component of the vector mesh equations, which is
rotated into normal-tangential form. In three dimensions, the application of this
boundary condition needs to be further directed with the ROT cards (see ROTATION
specifications). Please consult the Technical Discussion for important inofrmation.

Definitions of the input parameters are as follows:

KINEMATIC_PETROV

Name of the boundary condition (<bc_name>).

BC = KINEMATIC_PETROV SS <bc_id> <float1> [integer]

n
˜

v
˜

v
˜s–()• m·=

n
˜

v
˜

v
˜s

m·

Revised: 6/12/13 241

4.10.27 KINEMATIC_PETROV

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> Mass-loss (positive) or mass-gain (negative) velocity at the
free boundary.

[integer] Optional integer value indicating the element block id from
which to apply the boundary condition.

Examples

The following sample card

BC = KINEMATIC_PETROV SS 7 0.0

leads to the application of the kinematic boundary condition to the boundary-normal
component of the mesh-stress equation to the boundary defined by side set 7.

Technical Discussion

Important note: This condition is actually the same as the KINEMATIC condition but
is applied with different numerics for special cases. Specifically, rather than treated in a
Galerkin fashion with a weighting function equal to the interpolation function for
velocity, the residual of the equation is formed as weighted by the directional derivative
of the basis functions along the free surface. Specifically,

(4-32)

where the nodal basis function is replaced by in the residual equation. Compare
this to the KINEMATIC boundary condition description.

 This form is purportedly good for high capillary numbers and tends to reduce the
wiggles in the free surface in some cases.

Theory

No Theory.

FAQs

No FAQs.

n
˜

v
˜

v
˜ s–()• m·–()ϕ

i
Ad R

i
0= =

ϕ
i

s∂
∂

ϕ
i

242 Revised: 6/12/13

4.10.28 KINEMATIC_COLLOC

References

No References.

4.10.28 KINEMATIC_COLLOC

Description/Usage (PCC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary
of the mesh defined by the side set to conform to a transient or steady material surface,
with an optional, pre-specified mass loss/gain rate. In two dimensions this condition is
automatically applied to the normal component of the vector mesh equations, which is
rotated into normal-tangential form. In three dimensions the application of this
boundary condition needs to be further directed with the ROT cards (see Rotation
Specifications). Definitions of the input parameters are as follows:

KINEMATIC_COLLOC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Mass-loss (positive) or mass-gain (negative) velocity at
the free boundary.

Examples

Following is a sample card:

BC = KINEMATIC_COLLOC SS 7 0.0

leads to the application of the kinematic boundary condition to the boundary-normal
component of the mesh-stress equation to the boundary defined by side set 7.

BC = KINEMATIC_COLLOC SS <bc_id> <float1>

Revised: 6/12/13 243

4.10.29 KINEMATIC_DISC

Technical Discussion

Important note: This condition is actually the same as the KINEMATIC condition but
is applied with different numerics for special cases. Specifically, rather than treated in a
Galerkin fashion, with a weighting function equal to the interpolation function for
velocity, the residual equation is formed at each node directly, in a collocated fashion,
without Galerkin integration. This method is better suited for high-capillary number
cases in which Galerkin’s method is often not the best approach.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.29 KINEMATIC_DISC

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion
equations (viz. mesh1, mesh2, and mesh3 under the EQ card) in the special case of an
interface between two fluids of different density (e.g. a gas and a liquid, both meshed
up as Goma materials) through which a phase transition is occurring and there is a
discontinuous velocity (see the mathematical form in the technical discussion below).
Like the KINEMATIC boundary condition, it is used to distinguish a material surface
between two phases exchanging mass. In two dimensions, this condition is
automatically applied to the normal component of the vector mesh equations which is
rotated into normal-tangential form. In three dimensions, the application of this
boundary condition needs to be further directed with the ROT cards (see Rotation
Specifications). The application of this condition should be compared with
KINEMATIC_PETROV and KINEMATIC_COLLOC.

BC = KINEMATIC_DISC SS <bc_id> <float1>

244 Revised: 6/12/13

4.10.29 KINEMATIC_DISC

This condition must be applied to problem description regions using the Q1_D or
Q2_D interpolation type, indicating a discontinuous variable treatment at the interface
(see EQ card).

Definitions of the input parameters are as follows:

KINEMATIC_DISC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Set to zero for internal interfaces; otherwise used to
specify the mass average velocity across the interface
for external boundaries.

Examples

The following sample card

BC = KINEMATIC_DISC SS 10 0.0

is used at internal side set 10 (note, it is important that this side set include elements
from both abutting materials) to enforce the overall conservation of mass exchange.

Technical Discussion

This boundary condition is typically applied to multicomponent two-phase flows that
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity
at the interface. The best example of this is rapid evaporation of a liquid component
into a gas.

This boundary condition card is used for a distinguishing condition and its functional
form is:

(4-33)

where 1 denotes evaluation in phase 1 and 2 denotes evaluation in phase 2.

This condition is applied to the rotated form of the mesh equations. The condition only
applies to interphase mass, heat, and momentum transfer problems with discontinuous
(or multivalued) variables at an interface, and it must be invoked on fields that employ

ρ1n v vs–()
1

⋅ ρ2n v vs–()
2

⋅=

Revised: 6/12/13 245

4.10.30 KINEMATIC_EDGE

the Q1_D or Q2_D interpolation functions to “tie” together or constrain the extra
degrees of freedom at the interface in question (see for example boundary condition
VL_EQUIL_PSEUDORXN).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-015.1: Implementation Plan for Upgrading Boundary Conditions at
Discontinuous-Variable Interfaces, January 8, 2001, H. K. Moffat

4.10.30 KINEMATIC_EDGE

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It enforces the boundary
of the mesh defined by the side set to conform to a transient or steady material surface,
with an optional, pre-specified mass loss/gain rate. This condition is applied only in
three-dimensional problems along contact lines that define the intersection of a free-
surface and a geometrical solid, the intersection of which is partially characterized by
the binormal tangent as described below.

 Definitions of the input parameters are as follows:

KINEMATIC_EDGE

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This surface is
the “primary solid surface”

BC = KINEMATIC_EDGE <bc_id1> <bc_id2> <float1>

246 Revised: 6/12/13

4.10.30 KINEMATIC_EDGE

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This surface is
the “free surface”

<float1> Mass-loss (positive) or mass-gain (negative) velocity at
the free boundary.

Examples

BC = KINEMATIC_EDGE SS 10 20 0.0

In this example, the KINEMATIC_EDGE boundary condition is applied to the line
defined by the intersection of side sets 10 and 20. The normal vector used in
application of this condition is the one in the plane of side-set 10, viz. it is tangent to
the surface delineated by side set 10.

Technical Discussion

The functional form of the kinematic boundary condition is:

 (4-34)

Here is the unit normal tangent vector to a line in space defined by two surfaces, in
the plane of the primary surface, viz. tangent to that surface. is the velocity of the
fluid, is the velocity of the surface (or mesh). This condition only makes sense in
three dimensions, and needs to be directed with ROT conditions for proper application.

Theory

No Theory.

FAQs

No FAQs.

n
˜ cl

v
˜

v
˜s

–()• 0=

n
˜ cl

v
˜

v
˜s

ncl

tcl

Contact line vw

Free surface

nw

Revised: 6/12/13 247

4.10.31 KINEMATIC_SPECIES

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

4.10.31 KINEMATIC_SPECIES

Description/Usage (WIC/MASS)

This boundary condition card is used to impose an interphase species flux continuity
constraint on species components undergoing phase change between two materials.
The species conservation equation (see EQ card and species_bulk) for a single gas or
liquid phase component requires two boundary conditions because of the multivalued,
discontinuous concentration at the interface. This condition should be used in
conjunction with VL_EQUIL tie condition for each species. Definitions of the input
parameters are as follows:

KINEMATIC_SPECIES

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number.

<float1> Unused floating point number

This boundary condition is typically applied to multicomponent two-phase flows that
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity
at the interface, and to thermal contact resistance type problems. The best example of
this is rapid evaporation of a liquid component into a gas.

Examples

Following is a sample card:

BC = KINEMATIC_SPECIES SS 10 2 0.0

BC = KINEMATIC_SPECIES SS <bc_id> <integer>

248 Revised: 6/12/13

4.10.31 KINEMATIC_SPECIES

This card invokes the species flux balance condition on species 2 at shared side set 10
to be applied to the liquid phase convective diffusion equation. It should be used in
conjunction with a VL_EQUIL type condition on the same species, but from the
bounding phase. Note: side set 10 must be a double-sided side set between two
materials (i.e., must be attached to both materials), each deploying basis function
interpolation of type Q1_D or Q2_D.

Technical Discussion

The condition only applies to interphase mass transfer problems with discontinuous (or
multivalued) variables at an interface, and it must be invoked on fields that employ the
Q1_D or Q2_D interpolation functions to “tie” together or constrain the extra degrees
of freedom at the interface in question. The mathematical form is

(4-35)

Here and are the gas and liquid velocity vectors at the free surface, respectively;
 is the mesh velocity at the same location; and are the liquid and gas phase

densities, respectively; and are the liquid and gas phase volume fractions of
component i; and and the mass fluxes of component i. This condition constrains
only one of two phase concentrations at the discontinuous interface. The other needs to
come from a Dirichlet boundary condition like (BC =) Y, or an equilibrium boundary
condition like VL_EQUIL.

Theory

No Theory.

FAQs

No FAQs.

References

Schunk, P. R. and Rao, R. R. 1994. “Finite element analysis of multicomponent two-
phase flows with interphase mass and momentum transport”, Int. J. Numer. Meth.
Fluids, 18, 821-842.

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA,
December 10, 1998, A. C. Sun

n
˜

u
˜ s u

˜
l–()yl

iρl j
˜

l
i–[]⋅ n

˜
u
˜ s u

˜
g–()yg

iρg j
˜

g
i–[]⋅=

u
˜

g
u
˜

l

u
˜ s ρ

l
ρ

g

yi
l

yi
g

j
˜i

l
j
˜i

g

Revised: 6/12/13 249

4.10.32 KIN_DISPLACEMENT_PETROV

4.10.32 KIN_DISPLACEMENT_PETROV

Description/Usage (SIC/ROTATED MESH)

The KIN_DISPLACEMENT_PETROV boundary condition is exactly the same as
KIN_DISPLACEMENT except in the way in which it is applied numerically to a
problem. See KIN_DISPLACEMENT for a full discussion.

Definitions of the input parameters are as follows:

KIN_DISPLACEMENT_PETROV

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Element block identification number for the region of TALE
solid mesh motion.

Sometimes this condition is a better alternative to KIN_DISPLACEMENT to stabilize
the surface and prevent wiggles. If the user wants to know more regarding numerical
issues and implementation, consult the description for the fluid-counterpart
KINEMATIC_PETROV card.

Examples

The following sample card:

BC = KIN_DISPLACEMENT_PETROV SS 7 12

leads to the application of the kinematic boundary condition (displacement form, see
below) to the boundary-normal component of the mesh-stress equation to the boundary
defined by side set 7. The element block ID number which shares this boundary with a
neighboring TALE or fluid ARBITRARY region is 12.

Technical Discussion

See discussions on the KINEMATIC_PETROV and KIN_DISPLACEMENT cards.

BC = KIN_DISPLACEMENT_PETROV SS <bc_id> <integer>

250 Revised: 6/12/13

4.10.33 KIN_DISPLACEMENT_COLLOC

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.33 KIN_DISPLACEMENT_COLLOC

Description/Usage (SIC/ROTATED MESH)

The KIN_DISPLACEMENT_COLLOC boundary condition is exactly the same as
KIN_DISPLACEMENT except in the way in which it is applied numerically to a
problem. See KIN_DISPLACEMENT for a full discussion.

Definitions of the input parameters are as follows:

KIN_DISPLACEMENT_COLLOC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Element block identification number for the region of TALE
solid mesh motion.

Sometimes this condition is a better alternative to KIN_DISPLACEMENT to stabilize
the surface and prevent wiggles. If the user wants to know more regarding numerical
issues and implementation, consult the description for the fluid-counterpart
KINEMATIC_COLLOC card.

BC = KIN_DISPLACEMENT_COLLOC SS <bc_id> <integer>

Revised: 6/12/13 251

4.10.34 KIN_DISPLACEMENT

Examples

Following is a sample card:

BC = KIN_DISPLACEMENT_COLLOC SS 7 12

leads to the application of the kinematic boundary condition (displacement form, see
below) to the boundary-normal component of the mesh-stress equation to the boundary
defined by side set 7. The element block ID number which shares this boundary with a
neighboring TALE or fluid ARBITRARY region is 12.

Technical Discussion

See discussions on the KINEMATIC_COLLOC and KIN_DISPLACEMENT cards.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.34 KIN_DISPLACEMENT

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition on the mesh motion
equations (viz. mesh1, mesh2, and mesh3 under the EQ card). It forces the boundary of
the mesh defined by the side set to conform to a transient or steady material surface.
Unlike the KINEMATIC condition, which is designed for material surfaces between
two fluids, or the external material boundary of a fluid, this condition is applied to solid
materials to which the TOTAL_ALE mesh motion scheme is applied (see technical
discussion below and the Mesh Motion card). In two dimensions, this condition is
automatically applied to the normal component of the vector mesh equations, which is
rotated into normal-tangential form. In three dimensions, the application of this
boundary condition needs to be further directed with the ROT cards (see ROTATION

BC = KIN_DISPLACEMENT SS <bc_id> <integer>

252 Revised: 6/12/13

4.10.34 KIN_DISPLACEMENT

specifications). The application of this condition should be compared with
KIN_DISPLACEMENT_PETROV and KIN_DISPLACEMENT_COLLOC.

Definitions of the input parameters are as follows:

KIN_DISPLACEMENT

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Element block identification number for the region of TALE
solid mesh motion.

Examples

The following sample card:

BC = KIN_DISPLACEMENT SS 7 12

leads to the application of the kinematic boundary condition (displacement form, see
below) to the boundary-normal component of the mesh-stress equation to the boundary
defined by side set 7. The element block ID number which shares this boundary with a
neighboring TALE or fluid ARBITRARY region is 12.

Technical Discussion

The functional form of the kinematic boundary condition is:

(4-36)

Here is the unit normal vector to the solid-fluid free surface, is the mesh
displacement at the boundary, is the mesh displacement from the base reference state
(which is automatically updated from the stress-free state coordinates and for
remeshes, etc. in Goma and need not be specified), is the real solid displacement,
and is the real solid displacement from the base reference state (or mesh). In stark
contrast with the KINEMATIC condition, which too is used to distinguish a material
fluid surface) this condition is written in Lagrangian displacement variables for TALE
mesh motion and is applied as a distinguishing condition on the mesh between a fluid
and TALE solid region. In essence, it maintains a real solid displacement field such that
no real-solid mass penetrates the boundary described by this condition.

n
˜

d
˜ m

d
˜

0
m–()• n

˜
d
˜

d
˜

0
–()•– 0=

n
˜

d
˜

d
˜ 0

d
˜ m

d
˜

0
m

Revised: 6/12/13 253

4.10.35 KIN_LEAK

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk, May 2000

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

4.10.35 KIN_LEAK

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used as a distinguishing condition - kinematic with
mass transfer on mesh equations. The flux quantity is specified on a per mass basis so
heat and mass transfer coefficients are in units of L/t.

Definitions of the input parameters are as follows:

KIN_LEAK Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> Mass transfer coefficient for bulk fluid (species n+1).

<float2> Driving force concentration in external phase.

Please see Technical Discussion regarding the appropriate units for the mass transfer
coefficient and concentration in the external phase. For a pure liquid case, these inputs

BC = KIN_LEAK SS <bc_id> <float1> <float2>

254 Revised: 6/12/13

4.10.35 KIN_LEAK

are read directly from this card, while for a multi-component case these values are read
from YFLUX boundary conditions corresponding to each species that is needed. See
following examples.

Examples

Following are two sample input cards:

Pure Liquid Case

BC = KIN_LEAK SS 3 0.1 0.

Two Component Case

BC = KIN_LEAK SS 3 0. 0.
BC = YFLUX SS 3 0 0.12 0.

Note, in the two component case, when Goma finds the KIN_LEAK card, it scans the
input deck to locate the applicable YFLUX conditions associated with side set 3 and
creates a linked list which is used by the applying function (kin_bc_leak). The
existence of this list is denoted in Goma by the addition of an integer into an unused
field of the BC structure for side set 3. The bulk fluid constitutes the second component
and is non-volatile so it requires no YFLUX card; a second volatile species would
require a second YFLUX input card.

Technical Discussion

Functionally, the KIN_LEAK boundary condition can be represented as the following:

(4-37)

where is the vector velocity; is the velocity of the boundary itself (not independent
from the mesh velocity); is the normal vector to the surface; is the concentration
of species i; is the ambient concentration of species i at a distance from the surface
of interest and is the mass transfer coefficient for species i. This function returns a
volume flux term to the equation assembly function.

KIN_LEAK is implemented through function kin_bc_leak; it sums the fluxes for all
species plus the bulk phase evaporation. These fluxes are computed via several other
function calls depending on the particular flux condition imposed on the boundary.
(See various YFLUX* cards for Mass Equations.) However, at the end of the
kin_bc_leak function, the accumulated flux value is assigned to variable vnormal, i.e.,
the velocity of fluid relative to the mesh. The apparent absence of a density factor here
to convert a volume flux to a mass flux is the crucial element in the proper usage of the
flux boundary conditions. The explanation is rooted in the formulation of the
convective-diffusion equation.

n
˜

v
˜

v
˜s

–()• hi yi y
0
i–()

i

=

v
˜

v
˜ s

n
˜

yi

˜y
0
i

hi

Revised: 6/12/13 255

4.10.35 KIN_LEAK

The convective-diffusion equation in Goma is given as

(4-38)

with mass being entirely left out of the expression. is divided by density before
adding into the balance equation; this presumes that volume fraction and mass fraction
are equivalent. The users must be aware of this. This formulation is certainly
inconvenient for problems where volume fraction and mass fraction are not equal and
multicomponent molar fluxes are active elements of an analysis. However, kin_bc_leak
is entirely consistent with the convective-diffusion equation as a velocity is a volume
flux, and multiplied by a density gives a proper mass flux. If is a mass concentration,
and were in its typical velocity units, the result is a mass flux; if is a volume
fraction, then we have a volume flux. So kin_bc_leak is consistent.

The burden here lies with the user to be consistent with a chosen set of units. A
common approach is to build density into the mass transfer coefficient .

Theory

No Theory.

FAQs

1. See the FAQ pertaining to “Continuation Strategies for Free Surface Flows” on the
DISTNG boundary condition card.

2. A question was raised regarding the use of volume flux in Goma; the following
portion of the question and response elucidate this topic and the subject of units. Being
from several emails exchanged during January 1998, the deficiencies or lack of clarity
have since been remedied prior to Goma 4.0, but the discussions are relevant for each
user of the code.

Question: ... I know what you are calling volume flux is mass flux divided by
density. The point I am trying to make is that the conservation equations in the books I
am familiar with talk about mass, energy, momentum, and heat fluxes. Why do you not
write your conservation equations in their naturally occurring form? If density just so
happens to be common in all of the terms, then it will be obvious to the user that the
problem does not depend on density. You get the same answer no matter whether you
input rho=1.0 or rho=6.9834, provided of course this does not impact iterative
convergence. This way, you write fluxes in terms of gradients with the transport
properties (viscosity, thermal conductivity, diffusion coefficient, etc.) being in familiar
units.

yid

td
------- v vm–() yi∇•– Ji∇• Ri+–=

J

yi
hi yi

hi

256 Revised: 6/12/13

4.10.35 KIN_LEAK

Answer: First let me state the only error in the manual that exists with regard to
the convection-diffusion equation (CDE) is the following:

 in the nomenclature table should be described as a volume flux with units of
, i.e., , where is in units.

Now, this is actually stated correctly elsewhere, as it states the is a diffusion flux
(without being specific); to be more specific here, we should say it is a "volume flux of
species i." So, in this case is in units, is dimensionless and it is immaterial
that the CDE is multiplied by density or not, as long as density is constant.

Now, in Goma we actually code it with no densities anywhere for the FICKIAN
diffusion model. For the HYDRO diffusion model, we actually compute a in the
code, and handle variable density changes through that . In that case as computed
in Goma is a mass flux vector, not a volume flux vector, but by dividing it by and
sending it back up to the CDE it changes back into a volume flux. i. e., everything is the
same.

Concerning the units of the mass transfer coefficient on the YFLUX boundary
condition, the above discussion now sets those. Goma clearly needs the flux in the
following form:

 (4-39)

and dimensionally for the left hand side

(4-40)

where is in units , the gradient operator has units of so K has to be in units
of (period!) because is a fraction.

So, if you want a formulation as follows:

(4-41)

then ’s units will have to accommodate for the relationship between and in the
liquid, hopefully a linear one as in Raoult’s law, i.e. if where is the vapor
pressure, then

(4-42)

and so K on the YFLUX command has to be and so on.

Ji

L t⁄ D yi∇⋅ D L
2

t⁄

Ji

D L L t⁄⋅ yi

Ji ρ⁄

ρ Ji

ρ

n
˜

D Y∇⋅ K yi yi
∞

–()⋅=

L
2

t⁄() 1 L⁄()⋅ L t⁄=

D L
2

t⁄ 1 L⁄

L t⁄ yi

n
˜

D Y∇⋅ K̂ pi p
∞
i–()=

K̂ pi yi

pi PVyi= PV

n
˜

D Y∇⋅ KPV yi y
∞
i–()=

KPV

Revised: 6/12/13 257

4.10.36 KIN_CHEM

Finally, you will note, since we do not multiply through by density, you will have to
take care of that, i. e., in the Price paper he gives K in units of . So, that must be
converted as follows:

: (4-43)

This checks out!

References

Price, P. E., Jr., S. Wang, I. H. Romdhane, “Extracting Effective Diffusion Parameters
from Drying Experiments,” AIChE Journal, 43, 8, 1925-1934 (1997)

4.10.36 KIN_CHEM

Description/Usage (SIC/ROTATED MESH)

This boundary condition card is used to establish the sign of flux contributions to the
overall mass balance on boundaries so that movements are appropriately advancing or
receding depending on whether a species is a reactant or product in a surface reaction.

Definitions of the input parameters are as follows:

KIN_CHEM Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (set in
EXODUS II) in the problem domain.

<float1> Stoichiometric coefficient for species 0.

<floatn> Stoichiometric coefficient for species n+1.

The input function will read as many stoichiometric coefficients as specified by the
user for this card; the number of coefficients read is counted and saved. The
stoichiometric coefficient is +1 for products or -1 for reactants. When a species is a
product, the surface will advance corresponding to production/creation of mass of that

BC = KIN_CHEM SS <bc_id> <float1> ... <floatn>

t L⁄

Kprice PV ρ⁄() Kgoma=
t L⁄() M Lt

2
⁄() L

3
M⁄() L t⁄=

258 Revised: 6/12/13

4.10.37 FORCE

species, versus recession of that interface when a reaction leads to consumption of that
species.

Examples

Following is a sample card for two reactant and one product species:

BC = KIN_CHEM SS 25 -1.0 -1.0 1.0

Technical Discussion

This function is built from the same function as boundary condition KIN_LEAK, i.e.,
kin_bc_leak, so the user is referred to discussions for this boundary condition for
appropriate details. The stoichiometric coefficients are read from the KIN_CHEM card
or set equal to 1.0 in the absence of KIN_CHEM.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.37 FORCE

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) on a Lagrangian
mesh region. The force per unit area is applied uniformly over the boundary delineated
by the side set ID. The applied force is of course a vector. Definitions of the input
parameters are as follows:

FORCE Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

BC = FORCE SS <bc_id> <float1> <float2> <float3>

Revised: 6/12/13 259

4.10.37 FORCE

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> X-component of traction in units of force/area.

<float2> Y-component of traction in units of force/area.

<float3> Z-component of traction in units of force/area.

Examples

Following is a sample card:

BC = FORCE SS 10 0. 1.0 1.0

This card results in a vector traction defined by being
applied to the side set boundary delineated by the number 10.

Technical Discussion

Important note: this boundary condition can only be applied to LAGRANGIAN,
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card).
For real-solid mesh motion types, refer to FORCE_RS. Furthermore, it is rare and
unlikely that this boundary condition be applied to ARBITRARY mesh motion regions.
An example application of this boundary condition card is to address the need to apply
some load pressure to a solid Lagrangian region, like a rubber roller, so as to squeeze
and drive flow in a liquid region.

Theory

No Theory.

FAQs

On internal two-sided side sets, this boundary condition results in double the force in
the same direction.

References

A MEMS Ejector for Printing Applications, A. Gooray, G. Roller, P. Galambos, K.
Zavadil, R. Givler, F. Peter and J. Crowley, Proceedings of the Society of Imaging
Science & Technology, Ft. Lauderdale FL, September 2001.

F 0.0 ex() 1.0 ey() 1.0 ez()+ +=

260 Revised: 6/12/13

4.10.38 NORM_FORCE

4.10.38 NORM_FORCE

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) on a Lagrangian
mesh region. The force per unit area is applied uniformly over the boundary delineated
by the side set ID. The applied traction is of course a vector. Unlike the FORCE
boundary condition card, the vector traction here is defined in normal-tangent vector
basis. Definitions of the input parameters are as follows:

NORM_FORCE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which
is an integer that identifies the boundary location (side
set in EXODUS II) in the problem domain.

<float1> Normal component of traction in units of force/area.

<float2> Tangential component of traction in units of force/area

<float3> Second tangential component of traction in units of
force/area (in 3-D).

This card actually applies a traction that is then naturally integrated over the entire side
set of elements. Hence, the units on the floating point input must be force/area.

Examples

Following is a sample card:

BC = NORM_FORCE SS 10 0. 1.0 1.0

This card results in a vector traction defined by being
applied to the side set boundary delineated by the number 10. The normal vector is
defined as the outward pointing normal to the surface. For internal surfaces defined by
side sets which include both sides of the interface, this condition will result in exactly a
zero traction, i.e., internal surface side sets must be attached to one element block only
to get a net effect.

BC = NORM_FORCE SS <bc_id> <float1> <float2> <float3>

F 0.0 n() 1.0 t1() 1.0 t2()+ +=

Revised: 6/12/13 261

4.10.39 REP_FORCE

Technical Discussion

Important note: this boundary condition can only be applied to LAGRANGIAN,
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card).
For real-solid mesh motion types, refer to NORM_FORCE_RS. Furthermore, it is rare
and unlikely that this boundary condition be applied to ARBITRARY mesh motion
regions. An example application of this boundary condition card is to apply some load
pressure uniformly on the inside of a solid-membrane (like a pressurized balloon). In
more advanced usage, one could tie this force to an augmenting condition on the
pressure, as dictated by the ideal gas law.

This boundary condition is not used as often as the FORCE or FORCE_USER
counterparts.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.39 REP_FORCE

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) that varies as the
inverse of the fourth power of the distance from a planar surface to a Lagrangian or
dynamic Lagrangian mesh region. This boundary condition can be used to impose a
normal contact condition (repulsion) or attraction condition (negative force) between a
planar surface and the surface of a Lagrangian region. The force per unit area is applied
uniformly over the boundary delineated by the side set ID. The applied force is a vector
in the normal direction to the Lagrangian interface.

Definitions of the input parameters are as follows, with <float_list> having five
parameters:

BC = REP_FORCE SS <bc_id> <float_list>

262 Revised: 6/12/13

4.10.39 REP_FORCE

REP_FORCE Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> Coefficient of repulsion, λ.

<float2> Coefficient a of plane equation.

<float3> Coefficient b of plane equation.

<float4> Coefficient c of plane equation.

<float5> Coefficient d of plane equation.

Refer to the Technical Discussion for an explanation of the various coefficients.

Examples

The following sample card:

BC = FORCE_REP SS 10 1.e+03. 1.0 0.0 0.0 -3.0

results in a vector traction of magnitude in the normal direction to surface
side set 10 and the distance h is measured from side set 10 to the plane defined by

.

Technical Discussion

The REP_FORCE boundary condition produces a vector traction in the normal
direction to a surface side set, defined by:

(4-44)

where F is a force per unit area that varies with the distance h from a plane defined by

(4-45)

The normal vector is defined as the outward pointing normal to the surface. For internal
surfaces defined by side sets which include both sides of the interface, this condition
will result in exactly a zero traction, i.e., internal surface side sets must be attached to
one element block only to get a net effect.

1.0e3 h
4

⁄–

1.0x 3.– 0=

F F n() λ

h
4

-----–= =

ax by cz d+ + + 0=

Revised: 6/12/13 263

4.10.40 FORCE_USER

Important note: this boundary condition can only be applied to LAGRANGIAN,
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card).
For real-solid mesh motion types, refer to REP_FORCE_RS. Furthermore, it is rare and
unlikely that this boundary condition be applied to ARBITRARY mesh motion regions.
An example application of this boundary condition card is to apply some load pressure
uniformly on a surface that is large enough such that this surface never penetrates a
predefined planar boundary. Hence, this condition can be use to impose an
impenetrable contact condition.

Theory

No Theory.

FAQs

On internal two-sided side sets, this boundary condition results in double the force in
the same direction.

References

No References.

4.10.40 FORCE_USER

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a user-defined force per unit area (traction) on a
Lagrangian or dynamic Lagrangian (see Mesh Motion card) mesh region. The
functional form of the force is programmed in the function force_user_surf in
bc_user.c, and can be made a function of any of the independent or dependent
variables of the problem, including position (see example below). The force per unit
area is applied to boundary delineated by the side set ID. Definitions of the input
parameters are as follows:

FORCE_USR Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

BC = FORCE_USER SS <bc_id> <float1> ...<floatn>

264 Revised: 6/12/13

4.10.40 FORCE_USER

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1>...<floatn> Parameters list (length arbitrary) for parameterizing the
user defined force. These parameters are accessed
through the p[]array in force_user_surf.

Examples

The input card

BC = FORCE_USER SS 3 {delta_t} 0. 1000.0 0.

used in conjuction with the following snippet of code in force_user_surf:

/* Comment this out FIRST!!!!! */
/* EH(-1,"No FORCE_USER model implemented"); */
/**************************** EXECUTION BEGINS
*******************************/
 if (time <= p[0])
 {
 func[0] = p[1]*time/p[0];
 func[1] = p[2]*time/p[0];
 func[2] = p[3]*time/p[0];
 }
else
 {
 func[0] = p[1];
 func[1] = p[2];
 func[2] = p[3];
 }

applies a time-dependent force ramped from zero to 1000.0 in the +y direction over the
time period {delta_t}.

Technical Discussion

Used commonly to apply a force per unit area to an external surface of a solid region
(LAGRANGIAN type, cf. FORCE_USER_RS), that is nonconstant, viz. time varying or
spatially varying. The FORCE and NORM_FORCE boundary conditions can be used
for constant forces. This condition is applied as a weak integrated condition in Goma,
and hence will be additive with others of its kind.

Theory

No Theory.

Revised: 6/12/13 265

4.10.41 CA

FAQs

On internal two-sided side sets, this boundary condition results in double the force in
the same direction.

References

No References.

4.10.41 CA

Description/Usage (PCC/ROTATED MESH)

This boundary condition card applies a specified contact-angle on the mesh at a single
node nodeset. It is used exclusively in two dimensional computations. Its primary
application is imposing contact angles at static or dynamic contact lines. Consequently,
the nodeset is usually found where a free-surface boundary intersects a fixed,
“geometry” boundary.

 The <float_list> for this boundary condition has four values; definitions of the input
parameters are as follows:

CA Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> θ, angle subtended by wall normal and free surface normal,
in units of radians.

<float2> nx , x-component of normal vector to the geometry
boundary (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float3> ny , y-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

BC = CA NS <bc_id> <float_list>

266 Revised: 6/12/13

4.10.41 CA

<float4> nz , z-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

Examples

Following is a sample card:

BC = CA NS 100 1.4 0. 1. 0.

This condition applies a contact angle of 1.4 radians between the free surface normal at
the 100 nodeset and the vector (0,1,0). Normally, this latter vector is the normal to the
solid surface in contact with the free surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is:

 . (4-46)

where n is the normal to the geometry specified on the card itself, and nfs is the
normal to the outward free surface computed internally by Goma. Also see the
CA_OR_FIX card for an extension to this condition and CA_EDGE for its
extension to three dimensions

• In addition for the case in which the geometry normal components are set to zero,
the wall normal is allowed to vary with a geometrical boundary condition, i.e.,
GD_TABLE, SPLINE, PLANE, etc. The geometry normal is found on the same or
on a neighboring element that contains the dynamic contact angle in question. If a
GD_ type boundary condition is used to describe the wall (i.e., GD_TABLE), one
must specify the R_MESH_NORMAL equation type on that equation for the
variable wall normal to take effect.

• Important: Variable Wall Normals. Situations for which the wall shape is non-
planar, meaning that the normal vector is not invariant as the contact line moves,
there is an option to leave all of the normal-vector components zero. In this case
Goma then seeks to determine the local wall normal vector from the geometry it is
currently on, using the element facets. It is recommended that this option not be
used unless the geometry is truly nonplanar, as the logic is complex and not 100%
reliable. An example of such a case is as follows:

BC = CA NS 100 1.4 0. 0. 0.

Notice how all three components of the normal vector are set to zero.

• Important: Wall Normal convention. The wall normal vector on an external
solid boundary is defined in goma as the inward facing normal to the mesh, and the

n
˜

n
˜ fs⋅ θcos=

Revised: 6/12/13 267

4.10.42 CA_OR_FIX

free surface normal to the liquid (or wetting phase for two-liquid systems) is
defined as the outward facing normal to the free surface. Put another way and
referring to the picture below, the wall normal is directed from the “solid phase” to
the “liquid phase”, and the free surface normal is directed from the “liquid phase”
or “wetting phase” to the “vapor phase” or “Non-wetting phase”. Note that for
zero contact angle the liquid is “perfectly wetting”. The air-entrainment limit (viz.
the hydrodynamic theory interpretation) would occure at a 180 degree contact
angle. Recall that the angle is specified in radians on this card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.42 CA_OR_FIX

Description/Usage (PCC/ROTATED MESH)

 This boundary condition card allows the application of Gibb’s inequality condition in
conjuction with a contact angle. This allows for a point to be specified at which a
contact line will attach itself and no longer move. Up to that point, the contact line will
advance or recede with a specified fixed contact angle. When the contact line attaches,
its contact angle is allowed to vary permitting the user to include discontinuities in

BC = CA_OR_FIX NS <bc_id> <float_list>

Liquid or
wetting phase

Gas (or nonwetting) phase

Solid phase

nfs

nwall

θ n
˜ wall

n
˜ fs

⋅()acos=

268 Revised: 6/12/13

4.10.42 CA_OR_FIX

surface slope as features of the problem. The Gibb’s condition also permits the contact
line to detach from its fixed point if the contact angle enters a certain range after
attaching. This boundary condition is applicable only to two-dimensional problems;
see CA_EDGE_OR_FIX for details on three dimensional implementations.

The <float_list> has seven values, with definition of the input parameters as follows:

CA_OR_FIX Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> θdcl, dynamic contact angle, in radians.

<float2> nx, x-component of outward-pointing wall surface normal.

<float3> ny, y-component of outward-pointing wall surface normal.

<float4> nz, z-component of outward-pointing wall surface normal.

<float5> x0, x-coordinate of the point or feature at which the
meniscus will pin.

<float6> y0, y-coordinate of the point or feature at which the
meniscus will pin.

<float7> z0, z-coordinate of the point or feature at which the
meniscus will pin.

Examples

Following is a sample card:

BC = CA_OR_FIX NS 100 1.3 0. 1. 0. -0.5 1. 0.

Technical Discussion

The Gibb’s inequality condition is illustrated in the accompanying figure. The fixed
point is indicated by the plane, x = x0. Initially, the contact line is far from this point as
the condition at the contact line fixes the contact angle to the value θdcl. However,
when the contact line approaches to within ε (1.e-6) of the fixed point, it attaches there
and stops moving. The contact angle condition is no longer enforced and the angle of
the free surface with respect to the solid normal vector is allowed to vary freely. The

Revised: 6/12/13 269

4.10.42 CA_OR_FIX

other part of the Gibb’s inequality is illustrated (above) by the last sketch. Here, by
virture of the overall fluid mechanics, the contact angle withdraws until it is larger than
θdcl. When this happens the contact line is no longer affixed at x = x0 and is allowed to
move freely. Once again the contact angle condition is enforced.

Also, please see the important note under the BC = CA card regarding the convention
used for specifying wall and free surface normal vectors.

x

θ

nsnfs θ

Pinned at geometry discontinuity

θ < θdcl

θ > θdcl + εcl

x0

x0

 θ = θdcl for x - x0 > ε
 x = x0 for x - x0 < ε

Mobile Contact line

at x = x0
Contact Line releases
when contact angle
exceeds critical value.

Figure 5. Contact angles and Gibb’s inequality condition in Goma, for the

special case when the meniscus is moving along a surface of constant x.

270 Revised: 6/12/13

4.10.43 CA_EDGE

Theory

The principle behind this condition applies when a contact line encounters a sharp
feature on a surface. The feature from a distance might appear as a sharp corner at
which the meniscus/contact line prefers to locate rather than undergo continued
migration. Actually on a smaller scale, the corner feature is not infinitely small, and the
contact line undergoes no perceptable movement on the macroscale in order to satisfy a
true contact angle. Rather than resolving this feature with a fine mesh, it is an expedient
to pin the contact line there and allow it to take on any macroscale contact angle within
a certain range. The line can release again if the meniscus pulls the contact line
sufficiently to overcome specified bounds.

FAQs

No FAQs.

References

No References.

4.10.43 CA_EDGE

Description/Usage (PCC-EDGE/ROTATED MESH)

This boundary condition card specifies a constant contact angle on the edge defined by
the intersection of the primary and secondary side sets. This card is used most often to
enforce contact angle conditions on three-dimensional static contact lines. It should not
be used in two-dimensional problems, where the CA boundary condition is the
appropriate choice.

The contact angle supplied on the card will be enforced so that it is the angle between
the outward-pointing normal of the primary side set and the unit vector supplied on the
card. It is important to note that this outward-pointing normal should be variable, that is
to say, the primary side set is most likely a free-surface.

Definitions of the input parameters are as follows:

CA_EDGE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

BC = CA_EDGE SS <bc_id1> <bc_id2> <float_list>

Revised: 6/12/13 271

4.10.43 CA_EDGE

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
primary side set; in almost all cases it should also be a free
surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
secondary side set, which plays no other role in this
boundary condition than to provide a means of defining the
appropriate edge geometry in conjunction with the primary
side set. Thus, the secondary side set will often represent a
solid boundary.

<float1> angle, value specifying the enforced angle, in degrees; it
should lie in the range .

<float2> nx, the x-component of the fixed unit vector.

<float3> ny, the y-component of the fixed unit vector.

<float4> nz, the z-component of the fixed unit vector.

This boundary condition is a point collocated condition so it will be enforced exactly at
every node that lies on the edge (subject to overriding ROT cards or Dirichlet
conditions).

Examples

The following is a sample input card:

BC = CA_EDGE SS 40 50 33.0 0. 1. 0.

This card will result in an angle of 33 degrees between the outward-pointing normal to
side set 40 and the vector (0,1,0) at all points on the edge defined by the intersection of
side set 40 and side set 50.

Technical Discussion

• Although this constraint deals with vector quantities, it is a scalar constraint. The
actual requirement that is imposed is:

(4-47)

0 angle 180≤ ≤

nf n⋅ θ()cos=

272 Revised: 6/12/13

4.10.43 CA_EDGE

where nf is the outward-pointing normal to the primary side set, n is the vector
supplied on the card, and θ is the angle supplied on the card. It should be
recognized that there are usually two orientations for nf which would satisfy this
constraint. Most often the surrounding physics will choose the correct one, but
there is nothing to guarantee this in special situations, for example, values for θ
near zero or near 180.

• This boundary condition is a point collocated condition so the preceding
constraint, will be enforce exactly and strongly for each node on the edge. The
actual free surface normal is an average of vectors supplied by adjacent elements
sharing a given node.

• As noted above, this boundary condition is most often used in three-dimensional
free surface problems to enforce static contact angle conditions at the junction of a
free, capillary surface and a solid boundary. The normal vector supplied on the
card would be the normal to this solid boundary. Since this vector is a constant,
there is the restriction that in this application this boundary condition can only be
used to specify a contact angle with respect to a planar solid boundary. A different
boundary condition, CA_EDGE_CURVE, should be used if the solid boundary is
not planar.

• Related boundary conditions: CA_EDGE_INT, CA_EDGE_CURVE,
CA_EDGE_CURVE_INT, VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 273

4.10.44 CA_EDGE_INT

4.10.44 CA_EDGE_INT

Description/Usage (SIC-EDGE/ROTATED MESH)

This boundary condition card specifies a constant contact angle on the edge defined by
the intersection of the primary and secondary side sets. It is identical in format and
function as the CA_EDGE boundary condition. The only difference is that this
boundary condition is a strong integrated constraint.

Definitions of the input parameters are as follows:

CA_EDGE_INT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
primary side set; in almost all cases it should also be a free
surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
secondary side set, which plays no other role in this
boundary condition than to provide a means of defining the
appropriate edge geometry in conjunction with the primary
side set. Thus, the secondary side set will often represent a
solid boundary.

<float1> angle, value specifying the enforced angle, in degrees; it
should lie in the range .

<float2> nx, the x-component of the fixed unit vector.

<float3> ny, the y-component of the fixed unit vector.

<float4> nz, the z-component of the fixed unit vector.

Examples

The following is a sample input card:

BC = CA_EDGE_INT SS <bc_id1> <bc_id2> <float_list>

0 angle 180≤ ≤

274 Revised: 6/12/13

4.10.44 CA_EDGE_INT

BC = CA_EDGE_INT SS 40 50 33.0 0. 1. 0.

This card will result in an angle of 33 degrees between the outward-pointing normal to
side set 40 and the vector (0,1,0) at all points on the edge defined by the intersection of
side set 40 and side set 50.

Technical Discussion

• As noted above, this boundary condition is identical in function to the CA_EDGE
condition. It differs only in the manner of its application. Whereas, the former was
a point collocated constraint, this boundary condition strongly enforces the
following integrated constraint at a node i:

(4-48)

where φi is the finite element trial function for node i, Γ is the edge space curve, nf
is the outward-pointing normal to the primary sideset, n is the vector supplied on
the card, and θ is the angle supplied on the card. Because it is an integrated
constraint, evaluation of the free-surface normal vector is done at integration
points between nodes on the edge. Therefore, there is no averaging of normal
vectors. This is sometimes advantageous when there are discontinuities in the
slope of the edge curve.

• Related boundary conditions: CA_EDGE, CA_EDGE_CURVE,
CA_EDGE_CURVE_INT, VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

φi nf n θ()cos–⋅() Γd

Γ
 0=

Revised: 6/12/13 275

4.10.45

4.10.45

4.10.46 CA_EDGE_OR_FIX

Description/Usage (PCC/ROTATED MESH)

In analogy to the two-dimensional condition, CA_OR_FIX, boundary condition, this
boundary condition imposes a contact angle on an edge feature in a three-dimensional
mesh. However, this condition also permits the user to specify a closed curve on the
substrate plane on which the contact line will attach and not move past. This permits
modeling of geometric features in which the substrate slope is discontinuous. When
contact lines encounter such sharp features, usually they arrest. The boundary
condition also permits the contact line to release from the curve if the overall fluid
mechanics would promote a recession of the contact line.

Description of the card parameters is as follows:

CA_EDGE_OR_FIX Name of boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
primary side set defining the edge curve on which this
condition applies.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
secondary side set defining the edge curve on which this
condition applies. Taken together, the edge curve is the
intersection of the primary and secondary sidesets.

<type_string> A string identifying the type of feature curve being defined;
currently, there are only two choices: CIRCLE and USER.
The CIRCLE options indicates that the surface feature on
which a Gibb’s criterion is applied is a circle in the substrate
plane. The USER option indicates that the user will have to

BC = CA_EDGE_OR_FIX SS <bc_id1> <bc_id2> <type_string> {float_list}

276 Revised: 6/12/13

4.10.46 CA_EDGE_OR_FIX

provide a geometric definition in the user subroutine
user_gibbs_criterion in the file user_bc.c.

{float_list} A list of float parameters to be used in defining the contact
angle, the normal to the substrate, and other geometric
parameters used to define the feature curve. For each
<type_string> choice there is a different set of float
parameters:

CIRCLE <float_list>
<float1> θdcl, contact angle at dynamic contact line,

in radians
<float2> nx, x-component of outward substrate

normal
<float3> ny, y-component of outward substrate

normal
<float4> nz, z-component of outward substrate

normal
<float5> cx, x coordinate of circle center.
<float6> cy, y-coordinate of circle center.
<float7> cz, z-coordinate of circle center.
<float8> r, radius of circle.

The sign of this last parameter is important. If negative, the
implication is that the starting location of the contact line is
outside of the circle. If positive, the original location is
assumed to be completely inside the circle.

USER <float_list>
<floati> a list of float values that are passed to the

function user_gibbs_criterion in
the one-dimensional array p in the order in
which they appear on the card from left to
right. The user must be certain that the
parameters appearing here are sufficient
for applying the Gibbs criterion as well as
imposing the appropriate contact angle.

Examples

An example making use of the CIRCLE feature curve option is as follows:

BC = CA_EDGE_OR_FIX SS 10 20 CIRCLE 1.3 0. -1. 0. 0. 0. 0. 1.0

This card applies to the intersection between side sets 10 and 20. The constant contact
angle applied is 1.3 radians. The substrate outward normal is (0, -1, 0). The feature is a

Revised: 6/12/13 277

4.10.46 CA_EDGE_OR_FIX

circle of radius 1.0 centered at (0.0, 0.0, 0.0). The original location for the contact line
must be completely inside of the feature circle. Note also that the circle center should
lie in the substrate plane.

Technical Discussion

• See the Technical Discussion under the boundary condition CA_OR_FIX for a
detailed discussion of the nature of the Gibb’s criterion as it applies to contact
lines. In a nutshell, however, the basic notion is that the contact line is free to
advance over the substrate with an imposed contact angle, constant or dependent
on the local conditions. When the contact angle encounters the geometric feature
defined in the function user_gibbs_criterion, it is captured at that point
and no longer advances. The contact angle is allowed to vary as long as it is held at
the feature. The boundary condition also permits the contact line to release from
the feature curve and recede the way it came if the contact angle ever becomes
larger than its mobile value.

• So the phenomena that can be modeled with this boundary condition are those in
which a contact line moves to, for example, the edge of cylinder. At the edge, the
very small curvature of this feature effectively presents a barrier to further advance
of the contact line provided the deformation of the free surface beyond the vertical
boundaries of the cylinder is not too large. In the fullness of time, it might also be
the case that the free surface is drawn backwards in the direction of the cylinder
axis. The contact line should also recede and this boundary condition permits this
once the contact angle it makes with the cylinder top exceeds the mobile contact
angle by a small amount.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

278 Revised: 6/12/13

4.10.47 CA_EDGE_CURVE

4.10.47 CA_EDGE_CURVE

Description/Usage (PCC-EDGE/ROTATED MESH)

This boundary condition allows the user to specify a constant contact angle along an
edge in three-dimensions. It is similar in function to the CA_EDGE boundary condition
in which the contact angle is enforced with respect to a fixed vector. However, for this
boundary condition, the contact angle is enforced with respect to the normal of the
secondary side set thereby permitting a contact angle constraint to be applied on a
curving surface. The boundary condition is applied to the edge curve defined by the
intersection of the primary and secondary side sets.

Definitions of the input parameters are as follows:

CA_EDGE_CURVE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
primary side set; in almost all cases it should also be a free
surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain. This identifies the
secondary side set. The outwards-pointing normal vector to
this side set is used as the substrate vector when enforcing
the contact angle constraint.

<float1> the enforced contact angle, in degrees. Its value should lie in
the range .

Examples

The following is a sample input card:

BC = CA_EDGE_CURVE SS 40 50 135.0

This boundary condition will enforce a 135 degree angle between the normal to the free
surface on side set 40 and the outward-pointing normal to side set 50 at all points along

BC = CA_EDGE_CURVE SS <bc_id1> <bc_id2> <float1>

0 angle 180≤ ≤

Revised: 6/12/13 279

4.10.47 CA_EDGE_CURVE

the edge defined by side set 40 and 50. There is no restriction on whether side set 50’s
normal vectors must be constant.

Technical Discussion

• Although this boundary condition deals with vector quantities it is a scalar
constraint. The actual requirement that is imposed is:

(4-49)

where nf is the outward-pointing normal to the
primary side set, ns is the outward-pointing normal
to the secondary side set, and θ is the angle
supplied on the card. There is always some
confusion regarding the sense of the angle; use the
figure to the right for guidance. Note that the sense
depicted here is at odds with the usual contact
angle convention. Keep this in mind when using
this card.

• As in the case of the CA_EDGE condition, this condition is also a strongly
enforced point collocated condition.

• Related boundary conditions: CA_EDGE, CA_EDGE_INT,
CA_EDGE_CURVE_INT, VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

nf ns⋅ θ()cos=

θ

nf

ns

side set1

side set2

280 Revised: 6/12/13

4.10.48 CA_EDGE_CURVE_INT

4.10.48 CA_EDGE_CURVE_INT

Description/Usage (SIC/ROTATED MESH)

This boundary condition allows the user to specify a constant contact angle along an
edge in three-dimensions. It is identical in function to CA_EDGE_CURVE boundary
condition, but applies as a strongly integrated constraint. The boundary condition is
applied to the edge curve defined by the intersection of the primary and secondary side
sets.

Definitions of the input parameters are as follows:

CA_EDGE_CURVE_INT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This identifies
the primary side set; in almost all cases it should also be
a free-surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This identifies
the secondary side set. The outwards-pointing normal
vector to this side set is used as the substrate vector
when enforcing the contact angle constraint.

<float1> the enforced contact angle, in degrees. Its value should
lie in the range .

Examples

The following is a sample input card:

BC = CA_EDGE_CURVE_INT SS 40 50 135.0

This boundary condition will enforce a 135 degree angle between the normal to the free
surface on side set 40 and the outward-pointing normal to side set 50 at all points along
the edge defined by side set 40 and 50. The is no restriction on whether side set 50’s
normal vectors must be constant.

BC = CA_EDGE_CURVE_INT SS <bc_id1> <bc_id2> <float1>

0 angle 180≤ ≤

Revised: 6/12/13 281

4.10.48 CA_EDGE_CURVE_INT

Technical Discussion

• Although this boundary condition deals with vector quantities it is a scalar
constraint. As noted above the form of the constraint is identical to that in the
CA_EDGE_CURVE boundary. In this case, it is applied as a strong integrated
constraint:

(4-50)

where φi is the finite element trial function for node
i, Γ is the edge space curve, nf is the outward-
pointing normal to the primary sideset, ns is the
outward-pointing normal to the secondary sideset,
and θ is the angle supplied on the card. There is
always some confusion regarding the sense of the
angle. Use the figure to the right for guidance. Note
that the sense depicted here is at odds with the
usual contact angle convention. Keep this in mind
when using this card

• As in the case of the CA_EDGE_INT condition, this condition is also a strongly
integrated constraint.

• Related boundary conditions: CA_EDGE, CA_EDGE_INT, CA_EDGE_CURVE,
VAR_CA_EDGE, VAR_CA_USER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

φi nf ns θ()cos–⋅() Γd

Γ
 0=

θ

nf

ns

side set1

side set2

282 Revised: 6/12/13

4.10.49 VAR_CA_EDGE

4.10.49 VAR_CA_EDGE

Description/Usage (SIC-EDGE/ROTATED MESH)

This card is used to set a variable contact angle on a dynamic three-dimensional contact
line. A local contact angle is determined based upon the local rate of advance/recession
of the contact line with respect to a web, and is always associated with the secondary
sideset. This card specifies the static contact angle, θs, and a linear proportionality
constant cT between the local advance/recession rate and the cosine of the contact
angle. The speed of the moving web is specified by components of the web velocity.
The contact angle is imposed between the outward-pointing normal of the primary
sideset and the outward-pointing normal of the secondary sideset.

Definitions of the input parameters are as follows:

VAR_CA_EDGE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This identifies
the primary side set; it should be a free surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This identifies
the secondary side set, which should be a “fixed”
geometric entity, e.g. PLANE or SPLINE. Taken
together, the primary and secondary sidesets define an
edge over which this boundary is applicable.

<float1> θs, parameter that is the static contact angle, in degrees.
This is the contact angle that the fluid approaches when
the relative motion of the contact line and substrate is
zero.

<float2> cT, parameter that is the linear proportionality constant
between the local advance/recession rate and the cosine
of the contact angle; see details below in the Technical
Discussion.

BC = VAR_ CA_EDGE SS <bc_id1> <bc_id2> <float_list>

Revised: 6/12/13 283

4.10.49 VAR_CA_EDGE

<float3> Wx, x-component of the substrate velocity.

<float4> Wy, y-component of the substrate velocity.

<float5> Wz, z-component of the substrate velocity.

Examples

The following is a sample input card:

BC = VAR_CA_EDGE SS 60 20 135. 0.02 0. -1. 0.

This card sets a variable contact angle condition on the edge between side sets 60 and
20. The static contact angle is 135 degrees and the slope parameter is 0.02. The solid
substrate is moving at the fixed velocity (0, -1., 0.).

Technical Discussion

• A contact line that moves relative to its underlying solid substrate is referred to as
a dynamic contact line. For a dynamic contact line associated with three-
dimensional flows, it is recognized that the dynamic contact angle must change
from point to point along the curve because the local advance/recession rate of the
contact line with respect to the substrate changes. Taking this variability into
account is the function of this card.

To understand the function of this card, we first define that the advance (or
recession) rate of the contact line, uwet, as the normal component of the contact
line velocity, , relative to the substrate velocity, W:

(4-51)

where ncl is a unit vector normal to the contact
line in the plane of the substrate as illustrated
in the sketch at right. For an advancing contact
line uwet is negative and the converse. We can
also define a local capillary number by non-
dimensionalizing the advance rate as follows,

(4-52)

where µ is the viscosity and σ the surface tension.

x· cl

uwet ncl W x· cl–()⋅=

ncl

tcl

Contact line W

Free surface

CaL µuwet σ⁄=

284 Revised: 6/12/13

4.10.49 VAR_CA_EDGE

We choose to define the contact angle as the angle
between the outward normal to the free-surface and
the substrate normal pointing away from the fluid
phase as illustrate here. From direct observation of
contact lines, we know that increasing the advance
rate will decrease the contact angle towards zero.
Conversely, a decrease in the advance rate or increase
of recession rate will increase the contact angle
towards 180. We capture the essence of this behavior

via a simple linear relationship between the local capillary number and the cosine
of the contact angle:

 (4-53)

where θs and cT are two input parameters. The function of this card is to apply this
model for contact angle on the contact line curve.

• This model has many restrictions. It is really only valid for very very small |CaL|
and also does not predict that the contact angle asymptotically approaches 0 or 180
for |CaL| very large. Instead, it is algorithmically restricted to returning 0 or 180 if
the above linear relation would predict an angle outside of these bounds.

• Unlike the CA_EDGE boundary condition, the VAR_CA_EDGE condition is
applied as a strong integrated constraint. The equation associated with each node
on the edge is:

(4-54)

where φi is the shape function associated with node i.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

θ

nf

ns

side set1

side set2

θcos θscos cTCaL–=

φi nf ns θscos cTCaL–()–⋅() Γd

Γ
 0=

Revised: 6/12/13 285

4.10.50 VAR_CA_USER

4.10.50 VAR_CA_USER

Description/Usage (SIC-EDGE/ROTATED MESH)

This card is used to set a variable contact angle on a dynamic three-dimensional contact
line. It is identical in function to the VAR_CA_USER except that it allows the user to
provide a contact angle model to relate local contact angle to local capillary number.

Definitions of the input parameters are as follows:

VAR_CA_USER Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This identifies
the primary side set; it should be a free surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This identifies
the secondary side set, which should be a “fixed”
geometric entity, e.g. PLANE or SPLINE. Taken
together, the primary and secondary sidesets define an
edge over which this boundary is applicable.

<float1> Wx, x-component of the substrate velocity.

<float2> Wy, y-component of the substrate velocity.

<float3> Wz, z-component of the substrate velocity.

[float4-floatn] An optional list of floats which will be passed to the
user-supplied function for use with the user model.

Examples

The following is a sample input card:

BC = VAR_CA_USER SS 60 20 -1. 0. 0. 1.e-3 135.0

BC = VAR_CA_USER SS <bc_id1> <bc_id2> <float_list>

286 Revised: 6/12/13

4.10.50 VAR_CA_USER

This card sets a variable contact angle condition on the edge between side sets 60 and
20. The solid substrate is moving at the fixed velocity (-1., 0., 0.). The var_CA_user
function is passed the constants 1.e-3 and 135.0 in variable locations p[0] and p[1],
respectively.

Technical Discussion

• VAR_CA_USER function is identical to VAR_CA_EDGE. It is applied to three-
dimensional dynamic contact lines in order to set a variable contact angle. The user
must supply internal coding for the function var_CA_user in the file user_bc.c.
This function receives as parameters the local capillary number as described under
VAR_CA_EDGE and a double array containing the optional list of float
parameters. It should return the cosine of the desired contact angle.

• What follows is an example that implements the linear contact angle model
described in VAR_CA_EDGE.

double
var_CA_user(double Ca_local,
 int num,
 const double *a,
 double *d_cos_CA_Ca_local)
{
 double cos_CA;
 double static_CA;
 double cT;
 static_CA = a[0]*M_PIE/180.0;
 cT = a[1];
 cos_CA = cos(static_CA) - cT * Ca_local;
 *d_cos_CA_Ca_local = cT;
 return (cos_CA);
}

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 287

4.10.51 FRICTION

4.10.51 FRICTION

Description/Usage (WIC/VECTOR MESH)

This boundary condition card applies a force per unit area (traction) on a Lagrangian
mesh region. The force per unit area is applied according to Coulomb’s friction law
over the boundary delineated by the side set ID. The applied traction is of course a
vector. The vector traction is defined in normal-tangent vector basis. Definitions of the
input parameters are as follows:

FRICTION Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which
is an integer that identifies the boundary location (side
set in EXODUS II) in the problem domain.

<float1> µ, Coulombic coefficient of friction.

[integer1] optional specification of the element block id to which
this condition will be applied.

This card actually applies a traction that is then naturally integrated over the entire side
set of elements.

Examples

Following is a sample card:

BC = FRICTION SS 10 0.1 2

Technical Discussion

Important note: this boundary condition can only be applied to LAGRANGIAN,
DYNAMIC_LAGRANGIAN or ARBITRARY mesh motion types (cf. Mesh Motion card).
For real-solid mesh motion types, refer to FRICTION_RS.

This condition should be utilized in conjunction with a rotated condition such as
SPLINE in order to apply a tangential force which is proportional to the normal force;

BC = FRICTION SS <bc_id> <float1> [integer1]>

288 Revised: 6/12/13

4.10.52 SOLID_FLUID

(4-55)

where µ is the coefficient of friction and v is the velocity of the convected solid. Note
that the direction of the frictional force is determined by the velocity direction.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.52 SOLID_FLUID

Description/Usage (PCC/VECTOR REALSOLID)

The SOLID_FLUID condition performs the exact same task as the FLUID_SOLID
condition. The usage and example are also the same, so consult the discussion on that
card for further information.

At one time this condition applied the stress balance between solid and fluid phases in a
different fashion that proved not to be useful. To preserve backward compatibility, we
have kept this boundary condition around even though it invokes the exact same
function that the FLUID_SOLID boundary condition does.

Definitions of the input parameters are as follows:

SOLID_FLUID Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

BC = SOLID_FLUID SS <bc_id> <integer1> <integer2> [float]

F µFn
v

v
-----=

Revised: 6/12/13 289

4.10.53 PENETRATION

<integer1> Element block ID of solid phase from the EXODUS II
database.

<integer2> Element block ID of liquid phase from the EXODUS II
database.

[float] Scale factor for stress balance for non-dimensionalization.
This parameter, which multiplies the liquid phase
contribution of stress, is optional. The default is 1.0.

Examples

See FLUID_SOLID description.

Technical Discussion

See FLUID_SOLID description.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.53 PENETRATION

Description/Usage ()

No longer supported/used in Goma. See DARCY_CONTINUOUS boundary condition
card.

Examples

No example.

BC = PENETRATION

290 Revised: 6/12/13

4.10.54

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.54

4.10.55 POROUS_KIN

Description/Usage ()

This boundary condition card was used as a distinguishing condition for the Darcy-
Flow in porous medium, in an arbitrary frame of reference.

This boundary condition was disabled in November of 2001 due to the new formulation
in Goma for poroelasticity; this boundary condition was poorly formulated.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

BC = POROUS_KIN

Revised: 6/12/13 291

4.10.56 SDC_KIN_SF

FAQs

No FAQs.

References

No References.

4.10.56 SDC_KIN_SF

Description/Usage (SIC/ROTATED MESH)

This boundary condition represents the specification of the normal component of the
mesh velocity. This is a DVI_MULTI_PHASE_SINGLE boundary condition that has an
additional property. The first time encountered in the formation of the residual, the
results of a subcalculation are stored either at the node structure level or at the surface
gauss point level. The surface reaction and surface species are specified as part of a
surface domain within Chemkin.

The SURFDOMAINCHEMKIN_KIN_STEFAN_FLOW boundary condition (shortened to
SDC_KIN_SF in the name2 member of the BC_descriptions struct in mm_names.h)
solves the following equation representing Stefan flow at a boundary.

(4-56)

where is the outward facing normal to the liquid material, is the liquid density,
 is the (mass average) velocity at the current surface quadrature point, and the

velocity of the mesh (i.e., the interface if the mesh is fixed at the interface). The
summation over N species is for the product of molecular weight () and the source
term for creation of species k in the liquid (). SDC_KIN_SF is linked to the
SDC_SPECIES_RXN boundary conditions just as the KINEMATIC_CHEM boundary
conditions are by the expression for the interface reaction. The sum is over all of the
interfacial source terms for species in the phase.

Definitions of the input parameters are as follows:

SDC_KIN_SF Name of the boundary condition (<bc_name>).

BC = SDC_KIN_SF SS <bc_id> <integer> {char_string}

nl ρ
l

u
l

us–()[]• WkSk
l

–

k 1=

N

=

nl ρ
l

u
l

us

Wk
S

l
k

292 Revised: 6/12/13

4.10.56 SDC_KIN_SF

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Element Block ID of the phase on whose side of the
interface this boundary condition will be applied.

char_string , string indicating where the surface source term
information for this boundary condition will be
obtained. Three options exist:

IS_EQUIL_PSEUDORXN
VL_EQUIL_PSEUDORXN
SDC_SURFRXN

These are boundary conditions that apply to the Species
Equations. The last boundary condition is not yet
implemented, so SDC_SURFRXN currently does
nothing.

Examples

Following is a sample card:

BC = SDC_KIN_SF SS 1 0 VL_EQUIL_PSEUDORXN

The above card will create a strongly integrated boundary condition specifying the
normal component of the velocity on side set 1 on the element block 0 side of the
interface. The source term to be used in the above equation will be taken from multiple
previously specified multiple VL_EQUIL_PSEUDORXN cards.

Technical Discussion

• This boundary condition is exactly the same as SDC_STEFANFLOW, except for the
fact that it is applied on the normal component of the mesh velocity instead of the
normal component of the mass averaged velocity. It is similar to a single phase
boundary condition, because all of its input comes from one side of the interface.
Thus, it can equally be applied to external surfaces as well as internal ones with
some development work.

• Currently, it has only been tested out on internal boundaries using the
IS_EQUIL_PSEUDORXN source term.

Sk
l

Revised: 6/12/13 293

4.10.57 DXDYDZ_RS

• The DVI_MULTI_PHASE_SINGLE variable is a nomenclature adopted by Moffat
(2001) in his development of a revised discontinuous variable implementation for
Goma. It pertains to Discontinuous Variable Interfaces (DVI) and boundary
conditions that involve the addition of a surface integral to each side of an internal
boundary for a variable that is continuous across the interface. The user is referred
to Moffat (2001) for detailed presentation on discontinuous variables.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-015.1: Implementation Plan for Upgrading Boundary Conditions at
Discontinuous-Variable Interfaces, January 8, 2001, H. K. Moffat

Category 3: Boundary Conditions for Real Solid Equations

The reader is referred to a report by Schunk (2000) for a complete description of this equation
type. Briefly, these boundary conditions pertain to the TOTAL_ALE mesh motion type (see Mesh
Motion card), and are applied to the real solid only, viz. the boundary conditions applied to the
companion mesh motion equations are still needed to control the mesh, independent of the real-
solid material.

4.10.57 DXDYDZ_RS

Description/Usage (DC/REALSOLID)

This boundary condition format is used to set a constant X, Y, or Z real-solid
displacement on the real-solid mesh motion equations (see TOTAL_ALE option on the
Mesh Motion card). Each such specification is made on a separate input card. These
boundary conditions are of the Dirichlet type and must be applied on EXODUS II node
sets. Definitions of the input parameters are as follows:

{DX_RS | DY_RS | DZ_RS}

BC = {DX_RS | DY_RS | DZ_RS} NS <bc_id> <float1> [float2]

294 Revised: 6/12/13

4.10.57 DXDYDZ_RS

Boundary condition name (<bc_name>) that defines the
displacement, where:

DX_RS - real solid X displacement
DY_RS - real solid Y displacement
DZ_RS - real solid Z displacement

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of the real_solid displacement (X, Y, or Z) defined
above.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following is a sample card which applies in an X-displacement boundary condition to
the real-solid to the nodes in node set 100, specifically an X- real-solid Displacement of
0.1. These displacements are applied immediately to the unknowns, and hence result in
immediate mesh displacement from the initial state.

BC = DX_RS NS 100 1.0

This sample card applies the same condition above, but as a residual equation that is
iterated upon with Newton’s method.

BC = DX_RS NS 100 1.0 1.0

The second float 1.0 forces this application. This approach is advisable in most
situations, as the nodes are gradually moved as a part of the mesh deformation process.
Sudden movements, as in the first example, can lead to folds in the mesh.

Technical Discussion

This condition performs the same function as DX|DY|DZ boundary conditions, except
that it is applied to the real-solid of a TOTAL_ALE solid mesh motion model (see Mesh

Revised: 6/12/13 295

4.10.58 FORCE_RS

Motion card). More than likely, these conditions are applied together with geometry
conditions on the mesh equations, e.g. PLANE, DX, DY, GEOM, etc., on the same
boundary. TOTAL_ALE mesh motion involves two sets of elasticity equations: mesh
motion equations (mesh1 and mesh2), and real-solid elasticity equations (mom_solid1
and mom_solid2).

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

4.10.58 FORCE_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a force per unit area (traction) on a real-solid
material region (as opposed to a Lagrangian solid region), as is the case with
TOTAL_ALE mesh motion type (see Mesh Motion card). The force per unit area is
applied uniformly over the boundary delineated by the side set ID. The applied force is
of course a vector. Definitions of the input parameters are as follows:

FORCE_RS Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> X-component of traction in units of force/area.

BC = FORCE_RS SS <bc_id> <float1> <float2> <float3>

296 Revised: 6/12/13

4.10.58 FORCE_RS

<float2> Y-component of traction in units of force/area.

<float3> Z-component of traction in units of force/area.

Examples

Following is a sample card:

BC = FORCE_RS SS 10 0. 1.0 1.0

This card results in a vector traction defined by applied
to the side set boundary delineated by flag 10, where the element block bounded by this
boundary is of a TOTAL_ALE mesh motion type.

Technical Discussion

It is important to note that this boundary condition can only be applied to TOTAL_ALE
mesh motion types (cf. Mesh Motion card). (see FORCE for all other mesh motion
types). Furthermore, it is rare and unlikely that this boundary condition be applied to
ARBITRARY mesh motion regions. As an example of how this boundary condition card
is used, consider the need to apply some load pressure to a real solid of a TOTAL_ALE
region, like a rubber roller, so as to squeeze and drive flow in a liquid region. Some of
the usage tutorials cited below will direct you to some specifics.

Theory

No Theory.

FAQs

On internal two-sided side sets, this boundary condition results in double the force in
the same direction.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

F 0.0 ex() 1.0 ey() 1.0 ez()+ +=

Revised: 6/12/13 297

4.10.59 NORM_FORCE_RS

4.10.59 NORM_FORCE_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a force per unit area (traction) on a real-solid in a
TOTAL_ALE mesh region (see Mesh Motion card). The force per unit area is applied
uniformly over the boundary delineated by the side set ID. The applied traction is of
course a vector. Unlike the FORCE_RS boundary condition card, the vector traction
here is defined in normal-tangent vector basis. Definitions of the input parameters are
as follows:

NORM_FORCE_RS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Normal component of traction in units of force/area.

<float2> Tangential component of traction in units of force/area

<float3> Second tangential component of traction in units of
force/area (in 3-D).

This card actually applies a traction that is then naturally integrated over the entire side
set of elements. Hence, the units on the floating point input must be force/area.

Examples

The following is a sample input card:

BC = NORM_FORCE_RS SS 10 0. 1.0 1.0

This card results in a vector traction to the real-solid in a TOTAL_ALE mesh motion
type (not the mesh) defined by applied to the side set
boundary delineated by flag 10. The normal vector is defined as the outward pointing
normal to the surface. For internal surfaces defined by side sets which include both
sides of the interface, this condition will result in exactly a zero traction, i.e., internal
surface side sets must be attached to one element block only to get a net effect.

BC = NORM_FORCE_RS SS <bc_id> <float1> <float2> <float3>

F 0.0 n() 1.0 t1() 1.0 t2()+ +=

298 Revised: 6/12/13

4.10.60 REP_FORCE_RS

Technical Discussion

It is important to note that this boundary condition can only be applied to TOTAL_ALE
mesh motion types (cf. Mesh Motion card). As an example of how this boundary
condition card is used, consider the need to apply some load pressure uniformly on the
inside of a solid-membrane (like a pressurized balloon). In more advanced usage, one
could tie this force to an augmenting condition on the pressure, as dictated by the ideal
gas law.

This boundary condition is not used as often as the FORCE_RS or FORCE_USER_RS
counterparts.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.60 REP_FORCE_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a force per unit area (traction) that varies as the
inverse of the fourth power of the distance from a planar surface (see Technical
Discussion below) on a TALE or Dynamic Lagrangian mesh region. This boundary
condition can be used to impose a normal contact condition (repulsion) or attraction
condition (negative force) between a planar surface and the surface of a TALE region. It
differs from REP_FORCE card only in the mesh-motion type to which it applies. The
force per unit area is applied uniformly over the boundary delineated by the side set ID.
The applied force is a vector in the normal direction to the Lagrangian interface.

Definitions of the input parameters are as follows, where <floatlist> has five
parameters:

REP_FORCE_RS Name of the boundary condition (<bc_name>)

BC = REP_FORCE_RS SS <bc_id> <floatlist>

Revised: 6/12/13 299

4.10.60 REP_FORCE_RS

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Coefficient of repulsion, λ.

<float2> Coefficient a of plane equation.

<float3> Coefficient b of plane equation.

<float4> Coefficient c of plane equation.

<float5> Coefficient d of plane equation.

Examples

The following is a sample input card:

BC = REP_FORCE_RS SS 10 1.e+03. 1.0 0.0 0.0 -3.0

This card results in a vector traction in the normal direction on surface side set 10

defined by where F is a force per unit area that varies with the distance
h from the plane specified by .

Technical Discussion

The repulsive force is defined by where F is a force per unit area that varies
with the distance h from a plane defined by the equation . The
magnitude of the function is defined as:

(4-57)

The normal vector is defined as the outward pointing normal to the surface. For internal
surfaces defined by side sets which include both sides of the interface, this condition
will result in exactly a zero traction, i.e., internal surface side sets must be attached to
one material only to get a net effect.

It is important to note that this boundary condition can only be applied to TALE mesh
motion types (cf. Mesh Motion card). As an example of how this boundary condition
card is used, consider the need to apply some load pressure uniformly on a surface that
is large enough such that this surface never penetrates a predefined planar boundary.
This condition hence can be use to impose an impenetrable contact condition.

F 1.0e3 h
4

⁄–=

1.0x 3.0– 0.0=

F F n()=

ax by cz d+ + + 0=

F

F
λ

h
4

-----–=

300 Revised: 6/12/13

4.10.61 FORCE_USER_RS

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

4.10.61 FORCE_USER_RS

Description/Usage (WIC/VECTOR REALSOLID)

This boundary condition card applies a user-defined force per unit area (traction) on a
TOTAL_ALE real solid region (see Mesh Motion card). It differs from its counterpart
FORCE_USER only in the type of material to which the force is applied, as described
on the Mesh Motion card. The functional form of the force is programmed in the
function force_user_surf in bc_user.c, and can be made a function of any of
the independent or dependent variables of the problem, including position (see example
below). The force per unit area is applied to boundary delineated by the side set ID.
Definitions of the input parameters are as follows:

FORCE_USER_RS Name of the boundary condition (<bc_name>)

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1>...<floatn> Parameters list (length arbitrary) for parameterizing the
user defined force. These parameters are accessed
through the p[]array in force_user_surf.

BC = FORCE_USER_RS SS <bc_id> <float1>...<floatn>

Revised: 6/12/13 301

4.10.61 FORCE_USER_RS

Examples

The input card

BC = FORCE_USER_RS SS 3 {delta_t} 0. 1000.0 0.

used in conjuction with the following snippet of code in force_user_surf:

/* Comment this out FIRST!!!!! */
/* EH(-1,"No FORCE_USER model implemented"); */
/**************************** EXECUTION BEGINS
*******************************/
 if (time <= p[0])
 {
 func[0] = p[1]*time/p[0];
 func[1] = p[2]*time/p[0];
 func[2] = p[3]*time/p[0];
 }
else
 {
 func[0] = p[1];
 func[1] = p[2];
 func[2] = p[3];
 }

applies a time-dependent force ramped from zero to 1000.0 in the +y direction over the
time period {delta_t}. Note how p[0] is the time period, viz. {delta_t}, over which the
force is ramped up.

Technical Discussion

Used commonly to apply a force per unit area to an external surface of a solid region
(TOTAL_ALE type, cf. FORCE_USER), that is nonconstant, viz. time varying or
spatially varying. The FORCE_RS and NORM_FORCE_RS boundary conditions can
be used for constant forces. This condition is applied as a weak integrated condition in
Goma, and hence will be additive with others of its kind.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

302 Revised: 6/12/13

4.10.62 SOLID_FLUID_RS

4.10.62 SOLID_FLUID_RS

Description/Usage (PCC/VECTOR REALSOLID)

Used for fluid-structure interaction problems, the SOLID_FLUID_RS condition
equates the normal traction between adjacent fluid and solid materials. (By “normal
traction” we mean the tangential and normal force components, per unit area.) This
condition is only to be used on boundaries between regions of ARBITRARY mesh
motion with fluid-momentum equations and of TOTAL_ALE mesh motion (cf.
SOLID_FLUID boundary condition card for LAGRANGIAN mesh motion regions),
with solid momentum equations (or mesh equations) - see Mesh Motion and EQ cards.
All elements on both sides of the interface must have the same element type (the same
order of interpolation and basis functions) e.g., Q1 or Q2. Also, such interfaces must
include element sides from both sides of the interface in the defining side set.

Definitions of the input parameters are as follows:

SOLID_FLUID_RS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> Element block ID of the solid phase (of TOTAL_ALE
motion type) from the EXODUS II database.

<integer2> Element block ID of the liquid phase from the
EXODUS II database.

[float] Scale factor for stress balance for non-
dimensionalization. This parameter, a multiplier on the
liquid phase contribution, is optional; the default is 1.0.

Examples

The following set of input cards is a sample specification for a fluid-structure
interaction problem:

BC = SOLID_FLUID_RS SS 5 2 1
BC = NO_SLIP_RS SS 5 2 1
BC = KIN_DISPLACEMENT SS 5 2

BC = SOLID_FLUID_RS SS <bc_id> <integer1> <integer2> [float]

Revised: 6/12/13 303

4.10.62 SOLID_FLUID_RS

In this example, side set 5 is a boundary between a solid rubber blade and a liquid; the
material in element block 2 is the blade, and the material in element block 1 is the fluid.
Along the blade, a companion boundary condition is applied to ensure no slip on the
same side set. Also, because this condition involves a TOTAL_ALE mesh region, a
KIN_DISPLACEMENT boundary condition is needed on the same side set to force the
solid boundary to follow the side set.

Technical Discussion

The functional form of the SOLID_FLUID_RS boundary condition is:

(4-58)

where is the fluid phase stress tensor given by any one of the specified fluid-phase
constitutive equations, and is the real-solid solid phase stress tensor, also given by
any one of the solid-phase constitutive equation (see Mat file specifications). is a
scaling factor that defaults to unity (and is usually best taken as such unless some
scaling is invoked). With this boundary condition, the local residual and Jacobian
contributions from the fluid mechanics momentum equations (on the ARBITRARY side
of the boundary) are added into the weak form of the residual and Jacobian entries for
the real-solid solid mechanics equations (viz. the EQ = mom_solid* options on the
real-solid TOTAL_ALE side of the boundary).

TOTAL_ALE mesh motion regions cannot be porous and deformable (as of 11/19/
2001).

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

λ n
˜

T
˜

⋅() n
˜

σ
˜

⋅=

T
˜

σ
˜ λ

304 Revised: 6/12/13

4.10.63 SPLINEXYZ_RS

4.10.63 SPLINEXYZ_RS

Description/Usage (PCC/MESH)

This card is used to specify a general surface (solid) boundary description for
TOTAL_ALE real solid equations (see Mesh Motion card). These boundary conditions
are tantamount to SPLINE_RS , except that they do not invoke a vector residual
rotation into normal-tangential form. Instead, SPLINEX_RS invokes the geometric
boundary condition on the x-component of the real solid equation residual, and so on.
The card requires user-defined subroutines. Templates for these routines are currently
located in the routine “user_bc.c”. Both a function routine, fnc, for function
evaluation and corresponding routines dfncd1, dfncd2, and dfncd3 for the
derivative of the function with respect to global coordinates are required. Note that it
takes an arbitrary number of floating-point parameters, depending on the user’s needs.

Definitions of the input parameters are as follows:

{bc_name} Boundary condition name that defines the general surface;
the options are:

SPLINEX_RS - X general surface
SPLINEY_RS - Y general surface
SPLINEZ_RS - Z general surface

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in
user-defined routine fnc.

Examples

The following is a sample input card:

BC = SPLINEZ_RS SS 10 1.0 100. 20.0 1001.0 32.0

applies a user-defined distinguishing condition parameterized by the list of floating
points to the boundary defined by side set 10. Most importantly, the condition replaces
the Z-component of the real solid equation.

Revised: 6/12/13 305

4.10.64 SPLINE_RS

Technical Discussion

The mathematical form of this distinguishing condition is arbitrary and is specified by
the user in the fnc routine in user_bc.c. Derivatives of the user-specified function
must also be provided so as to maintain strong convergence in the Newton iteration
process. These functions are located next to fnc and are named dfncd1, dfncd2, and
dfncd3.Several examples for simple surfaces exist in the template routine. In three
dimensions, usage needs to be completed with a companion ROT input card which
directs the equation application of the condition, even though rotations are not actually
performed.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.64 SPLINE_RS

Description/Usage (PCC/ROTATED REAL SOLID)

This card is used to specify a general surface (solid) boundary description for
TOTAL_ALE type mesh motion (see Mesh Motion card). Like most other
distinguishing conditions, this condition causes the real-solid equations, viz. solid1,
solid2, and solid3, to be rotated into boundary normal-tangential form. The card
requires user-defined subroutines. Templates for these routines are currently located in
the routine “user_bc.c”. Both a function routine, fnc, for function evaluation and
corresponding routines dfncd1, dfncd2, and dfncd3 for the derivative of the
function with respect to global coordinates are required. . Note that it takes an arbitrary
number of floating-point parameters, depending on the user’s needs.

Definitions of the input parameters are as follows:

SPLINE_RS Name of the boundary condition <bc_name>).

BC = SPLINE_RS SS <bc_id> [floatlist]

306 Revised: 6/12/13

4.10.64 SPLINE_RS

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

[floatlist] Constants to parameterize any f(x,y,z) = 0 function input in
user-defined routine fnc.

Examples

The following sample input card:

BC = SPLINE_RS SS 10 1.0 100. 20.0 1001.0 32.0

applies a user-defined distinguishing condition, parameterized by the list of five
floating point values, to the boundary defined by side set 10.

Technical Discussion

This condition is applied to the normal component of the real solid equations along a
boundary in two dimensions; in three dimensions application needs to be further
directed with the ROT conditions. Examples of typical distinguishing conditions can be
found in user_bc.c in the fnc routine and companion derivative routines.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 307

4.10.65 FRICTION_RS

4.10.65 FRICTION_RS

Description/Usage (WIC/VECTOR REAL SOLID)

This boundary condition card applies a force per unit area (traction) on the
TOTAL_ALE solid mechanics equations. The force per unit area is applied according
to Coulomb’s friction law over the boundary delineated by the side set ID. The applied
traction is of course a vector. The vector traction is defined in normal-tangent vector
basis. Definitions of the input parameters are as follows:

FRICTION_RS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which
is an integer that identifies the boundary location (side
set in EXODUS II) in the problem domain.

<float1> µ, Coulombic coefficient of friction.

[integer1] optional specification of the element block id to which
this condition will be applied.

This card actually applies a traction that is then naturally integrated over the entire side
set of elements.

Examples

Following is a sample card:

BC = FRICTION_RS SS 10 0.1 2

Technical Discussion

Important note: this boundary condition can only be applied to TOTAL_ALE mesh
motion types (cf. Mesh Motion card). For other mesh motion types, refer to FRICTION.

This condition should be utilized in conjunction with a rotated condition such as
SPLINE_RS in order to apply a tangential force which is proportional to the normal
force;

BC = FRICTION_RS SS <bc_id> <float1> [integer1]>

308 Revised: 6/12/13

4.10.66 Category 4: Boundary Conditions for the Fluid Momentum Equations

(4-59)

where µ is the coefficient of friction and v is the velocity of the convected solid. Note
that the direction of the frictional force is determined by the velocity direction.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.66 Category 4: Boundary Conditions for the Fluid Momentum
Equations

The fluid-momentum equations, e.g., the momentum equations in the Navier-Stokes system for
incompressible flows, require many boundary conditions mainly because they are formulated in
an arbitrary frame of reference. The plethora of boundary conditions here contain Dirichlet, finite-
element weak form, finite-element strong form, and many other boundary condition types.

4.10.67 UVW

Description/Usage (DC/MOMENTUM)

This Dirichlet boundary condition specification is used to set a constant velocity in the
X-, Y-, or Z-direction. Each such specification is made on a separate input card.
Definitions of the input parameters are as follows:

{U | V | W} One-character boundary condition name (<bc_name>) that
defines the velocity direction, where:

U - Indicates X velocity component
V - Indicates Y velocity component
W - Indicates Z velocity component

BC = {U | V | W} NS <bc_id> <float1> [float2]

F µFn
v

v
-----=

Revised: 6/12/13 309

4.10.67 UVW

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of velocity component.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following are sample input cards for the X velocity component Dirichlet card:
BC = U NS 7 1.50
BC = U NS 7 1.50 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

This class of card is used to set Dirichlet conditions on the velocity components. When
the second optional float parameter is not present, the matrix rows corresponding to the
appropriate velocity component for nodes on this node set are filled with zeros, the
diagonal element is set to one, the corresponding residual entry is also set to zero, and
in the solution vector the appropriate degree of freedom is set to the value specified by
<float1>. This is the so-called “hard set” method for specifying Dirichlet conditions.

An alternate method for specifying Dirichlet conditions is applied when the second
float parameter is present (the actual value is not important except that it be different
from -1.0). In this case, the Dirichlet constraint is applied as a residual equation. That
is, the momentum equation for the appropriate component at each node in the nodeset
is replaced by the residual equation,

(4-60)R v float1 –=

310 Revised: 6/12/13

4.10.68 PUVW

This residual equation is included in the Newton’s method iteration scheme like any
other residual equation. Note that in this case, nothing is set in the solution vector since
that will occur automatically as part of the iteration method.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.68 PUVW

Description/Usage (DC/PMOMENTUM)

This card is currently not implemented.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

BC = {PU | PV | PW}

Revised: 6/12/13 311

4.10.69 UVWVARY

4.10.69 UVWVARY

Description/Usage (PCC/MOMENTUM)

The UVARY, VVARY and WVARY boundary condition format is used to set variation in
X, Y, or Z velocity component, respectively, with respect to coordinates and time on a
specified sideset. Each such specification is made on a separate input card.

The UVARY, VVARY, and WVARY cards each require user-defined functions be supplied
in the file user_bc.c. Four separate C functions must be defined for a boundary
condition: velo_vary_fnc, dvelo_vary_fnc_d1, dvelo_vary_fnc_d2,
and dvelo_vary_fnc_d3. The first function returns the velocity component at a
specified coordinate and time value, the second, third, and fourth functions return the
derivative of the velocity component with x, y and z respectively.

A description of the syntax of this card follows:

{UVARY | VVARY | WVARY}

Five-character boundary condition name (<bc_name>)
identifies the velocity component:

UVARY - X velocity component
VVARY - Y velocity component
WVARY - Z velocity component

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

[float_list] An optional list of float values separated by spaces
which will be passed to the user-defined subroutines to
allow the user to vary the parameters of the boundary
condition. This list of float values is passed as a one-
dimensional double array designated p in the parameter
list of all four C functions.

Examples

Following is a sample card for an X component

BC = {UVARY | VVARY | WVARY} SS <bc_id> [float_list]

312 Revised: 6/12/13

4.10.69 UVWVARY

BC = UVARY SS 10 2.0 4.0

Following are the C functions that would have to be implemented in “user_bc.c” to
apply the preceding boundary condition card to set a parabolic velocity profile along a
sideset.

double velo_vary_fnc(const int velo_condition, const double x,
const double y, const double z, const double p[], const double
time)

{
double f = 0;
double height = p[0];
double max_speed = p[1];

if (velo_condition == UVARY) {
f = max_speed*(1.0 - pow(y/height, 2));
}

return(f);
}
/* */
double dvelo_vary_fnc_d1(const int velo_condition, const double

x, const double y, const double z, const double p[], const
double time)

{
double f = 0;
return(f);
}
/* */
double dvelo_vary_fnc_d2(const int velo_condition, const double

x, const double y, const double z, const double p[], const
double time)

{
double f = 0;
double height = p[0];
double max_speed = p[1];

if (velo_condition == UVARY) {
f = -2.0*max_speed*(y/height)/height;
}

return(f);
}
/* */
double dvelo_vary_fnc_d3(const int velo_condition, const double

x, const double y, const double z, const double p[], const
double time)

{
double f = 0;
return(f);

Revised: 6/12/13 313

4.10.70 UVWUSER

}
/* */

Technical Discussion

• Including the sensitivities is a pain, but required since Goma has no provision for
computing Jacobian entries numerically.

• Note that the type of boundary condition (UVARY, VVARY, or WVARY) is sent to
each function in the velo_condition parameter. Since there can be only one
set of definition functions in user_bc.c, this allows the user to overload these
functions to allow for more than one component defined in this manner. It would
also be possible to use these functions to make multiple definitions of the same
velocity component on different sidesets. However, this would have to be done by
sending an identifier through the p array.

• This is a collocated-type boundary condition. It is applied exactly at nodal
locations but has lower precedence of application than direct Dirichlet conditions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.70 UVWUSER

Description/Usage (SIC/MOMENTUM)

This card permits the user to specify an arbitrary integrated condition to replace a
component of the fluid momentum equations on a bounding surface. Specification of
the integrand is done via the functions uuser_surf, vuser_surf and
wuser_surf in file “user_bc.c.”, respectively.

A description of the syntax of this card follows:

BC = {UUSER | VUSER | WUSER} SS <bc_id> <float_list>

314 Revised: 6/12/13

4.10.70 UVWUSER

{UUSER | VUSER | WUSER}

Five-character boundary condition name (<bc_name>)
identifies the momentum equation component:

UUSER - X momentum component
VUSER - Y momentum component
WUSER - Z momentum component

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutines so the user can
vary the parameters of the boundary condition. This list
of float values is passed as a one-dimensional double
array to the appropriate C function.

Examples

The following is an example of card syntax:

BC = VUSER SS 10 1.0

Implementing the user-defined functions requires knowledge of basic data structures in
Goma and their appropriate use. The uninitiated will not be able to do this without
guidance.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 315

4.10.71 NO_SLIP/NO_SLIP_RS

4.10.71 NO_SLIP/NO_SLIP_RS

Description/Usage (SIC/ VECTOR MOMENTUM)

This card invokes a special boundary condition that applies a no-slip condition to the
fluid velocity at an interface between a liquid phase and a solid phase so that the fluid
velocity and solid velocity will be in concert. The solid phase must be treated as a
Lagrangian solid and may be in a convected frame of reference. The fluid velocity is
equal to the velocity of the stress-free state mapped into the deformed state (for steady-
state problems).

In general, a SOLID_FLUID boundary condition must also be applied to the same
boundary so that the force balance between liquid and solid is enforced. Note that a
FLUID_SOLID boundary condition will have no effect since the strongly enforced
NO_SLIP/NO_SLIP_RS on the fluid momentum equation will clobber it.

All elements on both sides of the interface must have the same element type, i.e., the
same order of interpolation and basis functions, e.g., Q1 or Q2.

Definitions of the input parameters are as follows:

{NO_SLIP | NO_SLIP_RS}

Boundary condition name applied in the following
formulations:

NO_SLIP - this condition applies when the solid
phase is a purely LAGRANGIAN solid

NO_SLIP_RS - this condition should be used instead
when the displacements in the solid phase are
determined via a TALE formulation.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This side set
should be the intersection of liquid and solid element
blocks and be defined so that it is present in both
element blocks.

<integer1> the element block ID number of the solid phase
material.

BC = {NO_SLIP | NO_SLIP_RS} SS <bc_id> <integer1> <integer2>

316 Revised: 6/12/13

4.10.71 NO_SLIP/NO_SLIP_RS

<integer2> the element block ID number of the liquid phase
material.

Examples

The following is a sample input card:

BC= NO_SLIP SS 10 2 1

This card will enforce continuity of velocity between the solid phase in element block 2
with the fluid phase in element block 1. Side set 10 should be in common with both
element blocks.

Technical Discussion

• This boundary condition is a vector condition meaning that all three components
of the fluid momentum equation are affected by use of a single boundary
condition. The actual constraints that are imposed at node j are:

(4-61)

where φj is the finite element trial function, vf is the fluid velocity, and vs is the
solid phase velocity. These three constraints are strongly enforced so they
replace completely the x, y, and z fluid momentum components. The boundary
condition is not rotated since all three components of the momentum equation
are supplanted.

• As mentioned above this boundary condition is used most often in conjunction
with the SOLID_FLUID boundary condition which equates stresses across fluid/
solid interfaces. As described in the section discussing this card, this latter card
imposes these forces by using the residuals of the fluid momentum equation as
surrogates for the fluid phase forces. These forces however are imposed on the
solid equations prior to imposition of the NO_SLIP boundary condition.

• As noted above, for this boundary condition to function properly it is necessary
that the side set between the fluid and solid element block be present in both
element blocks. To explain this it is necessary to recognize that side sets are
defined as a set of faces attached to specific elements. This is in contrast to node
sets which are simply a list of node numbers. Therefore, in the case of a side set
that lies at the interface of two element blocks, it is possible for a given face in that
side set to appear twice, once attached to the element in the first element block and
a second time attached to the adjoining element in the second element block. This
is the condition that is required for the proper execution of this boundary
condition. Fortunately, this is the default of most meshing tools that interface with
Goma.

φj vf vs–() δx⋅ Γd 0 φj vf vs–() δy⋅ Γd 0 φj vf vs–() δz⋅ Γd 0= = =

Revised: 6/12/13 317

4.10.72 VELO_NORMAL

• It is also important to reiterate that another necessary condition for the proper
function of this boundary condition is that the interpolation order of the pseudo-
solid mesh unknowns and the fluid velocity unknowns in the ALE fluid phase block
be identical to the interpolation order of the solid displacement unknowns in the
LAGRANGIAN or TALE adjoining solid phase block. This usually means that the
element type must be the same in both phases. In two-dimensions this generally is
not a problem, but in three dimensions it can impose a considerable hardship on
the analyst.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.72 VELO_NORMAL

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition allows the user to set the outward velocity component normal
to a surface.

Definitions of the input parameters are as follows:

VELO_NORMAL Boundary condition designation

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

BC = VELO_NORMAL SS <bc_id> <float> [integer]

318 Revised: 6/12/13

4.10.72 VELO_NORMAL

<float> Vn, value of the normal velocity component. Note that
this velocity component is relative to the motion of the
underlying mesh.

[integer] blk_id, an optional parameter that is the element block
number in conjugate problems that identifies the
material region where the VELO_NORMAL condition
will be applied (usually the liquid element block in
solid/liquid conjugate problems). For external
boundaries, this optional parameter can be set to unity to
force the condition to be kept at a corner between two
side sets (2D only). This is handy for corner conditions.
Please see GTM-004.0 for details.

Examples

The following is a sample input card:

BC = VELO_NORMAL SS 10 0.0

This boundary condition will enforce an impenetrability constraint over side set 10 as it
excludes normal velocity of the fluid relative to the mesh. This is by far the most
common context for this boundary condition.

Technical Discussion

• The actual weighted residual equation that is applied to a node, j, on the surface in
question is as follows:

(4-62)

where φj is the finite element trial function, n the outward-pointing normal to the
surface, v the fluid velocity, vs the velocity of the underlying mesh, and vn is the
normal velocity set by Vn (the input value).

• This constraint is a rotated strongly integrated equation so that it will replace one
of the rotated components of the fluid momentum equation. This component
should generally always be the normal rotated component. In two dimensions, this
replacement is automatic. In three dimensions, this replacement must be specified
by a ROT condition.

• This card applies the identical constraint that is applied by the KINEMATIC
boundary condition. The only difference is that this card replaces the normal
component of the rotated fluid momentum equation, while the latter card replaces
the normal component of the rotated (pseudo-solid) mesh momentum equation.

φjn v vs–() Γd⋅ φjvn
Γd=

Revised: 6/12/13 319

4.10.73 VELO_NORMAL_LS

• In conjugate liquid/solid problems, the VELO_NORMAL condition is often used to
enforce the impenetrability condition of the liquid/solid interface. The optional
blk_id parameter can be used to insure that the VELO_NORMAL condition is
correctly applied to the liquid side of the interface. blk_id should be set equal to the
element block ID of the liquid in this case. This also applies to the KINEMATIC
and KINEMATIC_PETROV boundary conditions.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

GTM-004.1: Corners and Outflow Boundary Conditions in Goma, April 24, 2001, P. R.
Schunk

4.10.73 VELO_NORMAL_LS

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition relaxes the VELO_NORMAL condition in the light phase of a
level-set simulation, thereby allowing gas to escape from a confined space.

Definitions of the input parameters are as follows:

VELO_NORMAL_LSBoundary condition designation

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

BC = VELO_NORMAL_LS SS <bc_id> 0.0 <blk_id> <float1> <float2>

320 Revised: 6/12/13

4.10.73 VELO_NORMAL_LS

<blk_id> blk_id, an optional parameter that is the element block
number in conjugate problems that identifies the
material region where the VELO_NORMAL_LS
condition will be applied (usually the liquid element
block in solid/liquid conjugate problems). For external
boundaries, this optional parameter can be set to unity to
force the condition to be kept at a corner between two
side sets (2D only). This is handy for corner conditions.
Please see GTM-004.0 for details.1

<float> L=interface half-width over which the
VELO_NORMAL bc changes.

<float2> alpha=shift in the VELO_NORMAL change relative to
the LS interface. With alpha=0, VELO_NORMAL
begins to be enforced when the LS interface reaches a
distance L from a wall. With alpha=1,
VELO_NORMAL begins to be enforced when the LS
inteface reaches the wall.

Examples

The following is a sample input card:

BC = VELO_NORMAL_LS SS 10 0.0 {blk_id=1} 0.05 0.4.

Technical Discussion

The technical discussion under VELO_NORMAL largely applies here as well.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

GTM-004.1: Corners and Outflow Boundary Conditions in Goma, April 24, 2001, P. R.
Schunk

Revised: 6/12/13 321

4.10.74

4.10.74

4.10.75 VELO_NORM_COLLOC

Description/Usage (PCC/ROTATED MOMENTUM)

This boundary condition allows the user to set the outward velocity component normal
to a surface. It is identical in function to the VELO_NORMAL boundary condition, but
differs in that it is applied as a point collocated condition.

Definitions of the input parameters are as follows:

VELO_NORM_COLLOC

Boundary condition designation

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> Vn, value of normal velocity component. Note that this
velocity component is relative to the motion of the
underlying mesh.

Examples

Following is a sample card:

BC = VELO_NORM_COLLOC SS 20 0.0

This boundary condition will enforce an impenetrability constraint over side set 20 as it
excludes normal velocity of the fluid relative to the mesh. This is by far the most
common context for this boundary condition.

Technical Discussion

• The actual equation that is applied to a node, j, on the surface in question is as
follows:

(4-63)

BC = VELO_NORM_COLLOC SS <bc_id> <float>

n vj vs–()⋅ vn=

322 Revised: 6/12/13

4.10.76

where vj is the fluid velocity at the node, n the outward-pointing normal to the
surface, vs the velocity of the underlying mesh at the node, and vn is the normal
velocity set by <float> above.

• This constraint is a rotated collocated equation so that it will replace one of the
rotated components of the fluid momentum equation. This component should
generally always be the normal rotated component. In two dimensions, this
replacement is automatic. In three dimensions, this replacement must be specified
by a ROT condition.

• As noted above this boundary condition applies exactly the same constraint as the
VELO_NORMAL condition but via a point collocated method instead of as a
strongly integrated condition. This might be advantageous at times when it is
desirable to enforce a normal velocity component unambiguously at a point in the
mesh.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.76

4.10.77 VELO_NORMAL_DISC

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition card balances mass loss from one phase to the gain from an
adjacent phase. It is the same as the KINEMATIC_DISC card but is applied to the fluid
momentum equation. The condition only applies to interphase mass, heat, and
momentum transfer problems with discontinuous (or multivalued) variables at an
interface, and it must be invoked on fields that employ the Q1_D or Q2_D

BC = VELO_NORMAL_DISC SS <bc_id> <float>

Revised: 6/12/13 323

4.10.77 VELO_NORMAL_DISC

interpolation functions to “tie” together or constrain the extra degrees of freedom at the
interface in question.

Definitions of the input parameters are as follows:

VELO_NORMAL_DISC

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. It is important
to note that this side set should be shared by both
element blocks for internal boundaries.

<float> Set to zero for internal interfaces; otherwise used to
specify the mass average velocity across the interface
for external boundaries.

Examples

Following is a sample card:

BC = VELO_NORMAL_DISC SS 66 0.0

is used at internal side set 10 (note, it is important that this side set include elements
from both abutting materials) to enforce the overall conservation of mass exchange.

Technical Discussion

• This boundary condition card applies the following constraint to nodes on the side
set:

(4-64)

where 1 denotes evaluation in phase 1 and 2 denotes evaluation in phase 2. This
constraint replaces only one of the momentum equations present at an internal
discontinuous boundary between materials. There usually must be another
momentum boundary condition applied to this side set. In addition, there must also
be a distinguishing condition applied to the mesh equations if mesh motion is part
of the problem.

• This boundary condition is typically applied to multicomponent two-phase flows
that have rapid mass exchange between phases, rapid enough to induce a diffusion

ρ1n v vs–()
1

⋅ ρ2n v vs–()
2

⋅=

324 Revised: 6/12/13

4.10.78 VELO_NORMAL_EDGE

velocity at the interface, and to thermal contact resistance type problems. The best
example of this is rapid evaporation of a liquid component into a gas.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.78 VELO_NORMAL_EDGE

Description/Usage (PCC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to specify the normal velocity component on a
dynamic contact line in three-dimensions. The velocity component is normal to the
contact line in the plane of the web and is equal to Vn. The free-surface side set should
always be <bc_id1>, the primary side set, and the web side set should be <bc_id2>, the
secondary side set. Usually, this boundary condition is used to model dynamic contact
lines in three dimensions and is usually found in conjunction with a
VELO_TANGENT_EDGE card, a VAR_CA_EDGE or CA_EDGE card as explained
below.

Definitions of the input parameters are as follows:

VELO_NORMAL_EDGE

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This is the
primary side set defining the edge and should also be

BC = VELO_NORMAL_EDGE SS <bc_id1> <bc_id2> <float>

Revised: 6/12/13 325

4.10.78 VELO_NORMAL_EDGE

associated with the capillary free surface if used in the
context of a dynamic contact line.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. Together with
<bc_id1>, this secondary side set defines the edge/curve
on which the boundary condition applies as the
intersection of the two side sets. In problems involving
dynamic contact lines, this side set should correspond to
the moving substrate.

<float> Vn, a parameter supplying the imposed normal velocity
component. This component is taken normal to the edge
curve parallel to <bc_id2>. See below for a more
detailed description.

Examples

The following is a sample input card:

BC = VELO_NORMAL_EDGE SS 5 4 0.0

This card sets the normal-to-contact line component of the velocity to zero along the
curve defined by the intersections of side set 5 and 4.

Technical Discussion

• This boundary condition imposes a point
collocated constraint of the form:

(4-65)

where v is the fluid velocity, vm is the mesh
velocity and ncl is the normal to the contact
line in the plane of <bc_id2>. The sketch at
right depicts the orientation of this latter
vector. Note that the collocation points for this boundary condition only are not the
nodes on the edge curve but integration points in each of the edge elements. The
reason for this is historical and uninteresting from a user point of view.

• This boundary condition is used almost exclusive in problems involving dynamic
contact lines in three dimensions. Imposition of wetting line physics is a difficult
problem in modeling situations involving dynamic contact lines. In two-
dimensions, the assumption is often made that the effect of any wetting line force

ncl

tcl

Contact line W

Free surface

ncl v v
m

–()⋅ Vn=

326 Revised: 6/12/13

4.10.78 VELO_NORMAL_EDGE

is to locally produce a condition in which the fluid velocity at the contact line is
zero in the laboratory reference frame. That is to say, that at the contact line no-
slip between fluid and moving substrate is not enforced and instead a zero velocity
condition is imposed. In this way, the difficult-to-model wetting line forces are not
included directly, but instead are included by their effect on the velocity. One
might argue with this model, and many do, but as a practical approach, this has
been shown to work well.

Generalizing this notion into three dimensions is the primary motivation for this
boundary condition. In the case of a dynamic contact line that is a curve in three
dimensions, it is not correct to simply set all velocity components to zero because
that would imply that the wetting forces act equally in all three directions. It is
more reasonable to say that the wetting forces can act only in a direction normal to
the contact line in the plane of the substrate. Therefore, the correct generalization
of the wetting line model described in the previous paragraph is to set the velocity
component normal to the contact line in the plane of the substrate to zero. This is
done by using the VELO_NORMAL_EDGE boundary condition with Vn set to
zero. In the case of a transient problem, it is necessary to add the qualifier,
“relative to the mesh motion.” This accounts for the mesh motion velocity in the
constraint equation. See Baer, et.al. (2000) for a more complete discussion of this
wetting line model.

• Generally, a VELO_NORMAL_EDGE card must be accompanied by other
boundary conditions for a correct application. Firstly, since
VELO_NORMAL_EDGE forces the velocity vector to be parallel to the contact
line (at least in steady state), the KINEMATIC condition on any free surface
attached to the contact line will overspecify the problem at the contact line. For
this reason, it is generally the case that a CA_EDGE, VAR_CA_EDGE or
VAR_CA_USER (or their variants) should also be present for the contact line.
These boundary conditions replace the KINEMATIC card on the mesh at the
contact line.

In addition, a VELO_TANGENT_EDGE card should be present to enforce no-slip
between fluid and substrate in the tangential direction. Also it should be
recognized that VELO_NORMAL_EDGE will not override other Dirichlet
conditions on the substrate side set. Typically, the latter are used to apply no slip
between fluid and substrate. If such conditions are used over the entirety of the
substrate side set, both VELO_NORMAL_EDGE and VELO_TANGENT_EDGE
conditions applied at the contact will be discarded.

There are two potential solutions to this. First, the substrate region could be
divided into two side sets, a narrow band of elements adjacent to the contact line
and the remainder of substrate region. In the narrow band of elements, the no slip
condition is replaced by a VELO_SLIP card with the substrate velocity as

Revised: 6/12/13 327

4.10.79 VELO_NORMAL_EDGE_INT

parameters. This allows the velocity field to relax over a finite region from the
velocity imposed at the contact line to the substrate field. The second method uses
only a single side set for the substrate region, but replaces the Dirichlet no slip
boundary conditions with a penalized VELO_SLIP condition. That is, the slip
parameter is set to a small value so that no slip is effectively enforced, but within
the context of a weakly integrated condition. Since the VELO_NORMAL_EDGE
and VELO_TANGENT_EDGE cards are strongly enforced on the contact lines, the
VELO_SLIP card will be overridden in those locations and the velocity field will
deviate appropriately from the substrate velocity.

Theory

No Theory.

FAQs

No FAQs.

References

Baer, T.A., R.A. Cairncross, P.R.Schunk, R.R. Rao, and P.A. Sackinger, “A finite
element method for free surface flows of incompressible fluids in three dimensions.
Part II. Dynamic wetting lines.” IJNMF, 33, 405-427, (2000).

4.10.79 VELO_NORMAL_EDGE_INT

Description/Usage (SIC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to specify the normal velocity component on a
dynamic contact line in three-dimensions. The velocity component is normal to the
contact line in the plane of the web and is equal to Vn. The free-surface side set should
always be <bc_id1>, the primary side set, and the web side set should be <bc_id2>, the
secondary side set. This boundary condition is identical in function to
VELO_NORMAL_EDGE. It differs only in that is applied as a strongly integrated
condition along the curve defined by <bc_id1> and <bc_id2>

Definitions of the input parameters are as follows:

VELO_NORMAL_EDGE_INT

Name of the boundary condition.

BC = VELO_NORMAL_EDGE_INT SS <bc_id1> <bc_id2> <float>

328 Revised: 6/12/13

4.10.79 VELO_NORMAL_EDGE_INT

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) for the primary side set in the problem
domain. This side set should also be the side set
associated with the capillary free surface if used in the
context of a dynamic contact line.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) for the secondary side set defining the
edge in the problem domain. Together with <bc_id1>,
this defines the curve on which the boundary condition
applies as the intersection of the two side sets. In
problems involving dynamic contact lines, this side set
should correspond to the moving substrate.

<float> Vn, a parameter supplying the imposed normal velocity
component value. This component is taken normal to
the edge curve parallel to <bc_id2>. See below for a
more detailed description.

Examples

The following is a sample card:

BC = VELO_NORMAL_EDGE_INT SS 5 4 0.0

This card sets the normal-to-contact line component of the velocity to zero along the
curve defined by the intersections of side set 5 and 4.

Technical Discussion

• This boundary condition imposes a strongly
integrated constraint of the form:

(4-66)

where φi is the velocity trial function, v is the
fluid velocity, vm is the mesh velocity and ncl
is the normal to the contact line in the plane of

ncl

tcl

Contact line W

Free surface

φi ncl v v
m

–()⋅ Vn–() Cd

C

 0=

Revised: 6/12/13 329

4.10.80 VELO_TANGENT

the moving substrate <bc_id2>. The sketch at right depicts the orientation of this
latter vector.

• As noted above, this boundary condition functions nearly identically to the
VELO_NORMAL_EDGE condition (except for its manner of application within
Goma) and all comments appearing for the latter apply equally well for this
boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.80 VELO_TANGENT

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition is used to specify strongly the component of velocity
tangential to the side set. An added feature is the ability to relax the condition near a
point node set according to supplied length scale and slipping parameters. This has
application to problems involving moving contact lines. Note that this boundary
condition is applicable only to two-dimensional problems and will result in an error if it
is used in a three-dimensional context.

The <float_list> has three parameters; definitions for all input parameters is as follows:

VELO_TANGENT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

BC = VELO_TANGENT SS <bc_id> <integer> <float_list>

330 Revised: 6/12/13

4.10.80 VELO_TANGENT

<integer> Ncl, parameter that identifies a single-node node set that
coincides with the location in the model of the moving
contact line. Distances in the slipping model are
computed relative to the location of this node. When the
slipping model is not used, this parameter can safely be
set to zero. Another toggle setting can be triggered by
setting this integer to -1; with this the VELO_TANGENT
condition is kept at a rolling motion dynamic contact
line. (See FAQ below on rolling motion conditions.)

<float1> vt, a parameter specifying the value of the tangent
velocity component. The component direction is
where k is the z-component unit vector.

<float2> β, a parameter specifying the coefficient for slip
velocity (see model below); setting to zero disables
the slipping model.

<float3> α, a parameter specifying the length scale for the
position dependent slip (see model below); setting to
zero disables the slipping model.

Examples

The following is a sample input card:

BC = VELO_TANGENT SS 10 100 0.0 1.0 0.1

Technical Discussion

• Most often this boundary condition is used only to set the tangential speed on a
side set because simpler Dirichlet conditions are not appropriate. An example is a
sloping fully-developed inlet plane which does coincide with a coordinate axis. In
this case, this boundary condition would be used to set the tangential velocity to be
zero. The constraint applied at node i is as follows:

(4-67)

• Alternatively, a dynamic contact line might be present in the problem and it is
desirable that this condition be relaxed near the position of this contact line. This
can be done by supplying non-zero values for α and β. In this case, the constraint
that is applied at the ith node on the boundary is:

n k×

β

α

φi t v vt–⋅() Γd

Γ
 0=

Revised: 6/12/13 331

4.10.80 VELO_TANGENT

(4-68)

in which d is the straightline distance to the node attached to <Ncl> and is the
velocity vector of the mesh. It should be recognized that for steady state problems
the mesh motion is by definition always zero so this constraint reverts to the
previous expression.

Theory

No Theory.

FAQs

Rolling Motion Conditions for high Capillary number dynamic wetting. Often times it
is desirable to model a case of dynamic wetting for which the conditions result in a high
capillary number. At this limit, it is well known that a contact angle specification is in
fact an overspecification. Goma has always been able to model this case, except
recently some changes have been made to allow for the combination of conditions at a
dynamic contact line to be controlled. It should be stressed that all finite capillary
number cases still work as always. This FAQ addresses the special case in which you
desire to specify no-slip right up to the contact line. In most cases a VELO_SLIP card
or outright setting the velocity components to zero at the moving contact line in order
to impart slip will circumvent the issue taken up here.

The figure below diagrams the situation:

Basically the web in this example corresponds to side set 5 and the free surface to side
set 4. The conditions we desire in the vicinity of the contact line are as follows:

$web surface
BC = VELO_TANGENT SS 5 0 {web_sp} 0.0 0.0
BC = VELO_NORMAL SS 5 0.0
BC = GD_PARAB SS 5 R_MESH2 0 MESH_POSITION1 0 0. 0. 1.
BC = GD_PARAB SS 5 R_MESH2 0 MESH_POSITION2 0 0. {2*roll_rad} 1.

φi t v βx· e
α– d

v– t–⋅() Γd

Γ
 0=

x·

~180 degree contact angle (unspecified)

SS 4
SS 5

332 Revised: 6/12/13

4.10.80 VELO_TANGENT

$ upstream heel
BC = KINEMATIC SS 4 0.
BC = CAPILLARY SS 4 {inv_cap} 0.0 0.0

Notice how there is no contact angle specified and even with the CAPILLARY card, the
effect of ,

 VELO_NORMAL, surface tension is very small. The desired set of conditions that
should be applied at the dynamic contact line are as follows:

At node 1:
 R_MOMENTUM1 gets VELO_NORMAL from SS 5, CAPILLARY from SS 4,
 R_MOMENTUM2 gets VELO_TANGENT from SS 5, CAPILLARY from SS 4,
 R_MESH1 gets KINEMATIC from SS 4,
 R_MESH2 gets GD_PARAB from SS 5, GD_PARAB from SS 5,

This clearly shows that at the contact line, which happens to be node number 1 as
shown by this clip from the BCdup.txt file resulting from the run, both
VELO_NORMAL and VELO_TANGENT cards are applied, which implies no-slip. This
is the so-called rolling-motion case (or tank-tread on a moving surface) in which the
“kinematic paradox” is no longer a paradox. That is, both the KINEMATIC condition
on the free surface and the no-slip condition on the substrate can be satisfied without
loss or gain of mass through the free surface (see Kistler and Scriven, 1983). In order to
make sure that both the combination above is applied, a “-1” must be placed in the first
integer input of the VELO_TANGENT card, vis.,

BC = VELO_TANGENT SS 5 -1 {web_sp} 0.0 0.0

This integer input slot is actually reserved for a variable slip coefficient model and is
normally used to designate the nodal bc ID of the contact line. In this case of no-slip, it
is not needed so we added this special control. If the following card is issued:

BC = VELO_TANGENT SS 5 0 {web_sp} 0.0 0.0

then the following combination results:
At node 1:
 R_MOMENTUM1 gets VELO_NORMAL from SS 5, CAPILLARY from SS 4,
 R_MOMENTUM2 gets CAPILLARY from SS 4,
 R_MESH1 gets KINEMATIC from SS 4,
 R_MESH2 gets GD_PARAB from SS 5, GD_PARAB from SS 5,

which is desired in the case for which a contact angle and liquid slip is applied.

References

Kistler, S. F. and Scriven, L. E. 1983. Coating Flows. In Computational Analysis of
Polymer Processing. Eds. J. A. Pearson and S. M. Richardson, Applied Science
Publishers, London.

Revised: 6/12/13 333

4.10.81 VELO_TANGENT_EDGE

4.10.81 VELO_TANGENT_EDGE

Description/Usage (PCC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to make the velocity component tangent to the
contact line in the plane of the web equal to the component of web velocity
(Wx,Wy,Wz) along the contact line. This constraint replaces the tangential component
of the MOMENTUM equation along the contact line. It is used with the
VELO_NORMAL_EDGE condition to impose a wetting line model onto dynamic
contact lines in three-dimensions. The constraint is a rotated collocated condition.

Definitions of the input parameters are as follows:

VELO_TANGENT_EDGE

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) of the primary side set defining the edge
geometry in the problem domain. When applied to
dynamic contact lines, this side set should correspond to
the free surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) of the secondary side set defining the
edge geometry in the problem domain. The boundary
condition is applied to the curve defined as the
intersection of this side set with the primary side set
When applied to dynamic contact lines, this side set
should correspond to the substrate.

<float1> Wx, x-component of the substrate (or web) velocity.

<float2> Wy, y-component of the substrate (or web) velocity.

<float3> Wz, z-component of the substrate (or web) velocity.

BC = VELO_TANGENT_EDGE SS <bc_id1> <bc_id2> <float_list>

334 Revised: 6/12/13

4.10.81 VELO_TANGENT_EDGE

Examples

The following is a sample input card:

BC = VELO_TANGENT_EDGE SS 5 4 -1.0 0.0 0.0

This card imposes a tangent velocity component along the curve formed by the
intersection of sidesets 5 and 4. The value of the component is the projection of the
substrate velocity (-1.0, 0. ,0.) into the tangent direction. The tangent direction is along
the curve itself.

Technical Discussion

• This equation imposes the following constraint as a point collocated condition at
the integration points of the elements along the curve:

(4-69)

where tcl is a vector tangent to the curve, v is the fluid velocity, and W is the
(constant) velocity of the moving substrate. The reader is referred to the sketch
appearing with the VELO_NORMAL_EDGE card for a depiction of these vectors.
It is applied as a point collocated condition at the integration points of the line
elements along the curve.

• As noted above this boundary condition is used in concert with the
VELO_NORMAL_EDGE condition to impose a model of wetting line physics
along a dynamic contact line in three dimensions. The reader is referred to the
discussion section of this latter boundary condition for a thorough exposition of
this model. Suffice it to say that this boundary condition enforces no-slip between
substrate and fluid in the tangent direction to the contact line. This is an essential
part of the wetting line model because it implies that the wetting line forces related
to surface tension etc. do not act tangential to the wetting line. Therefore, there is
no agent in this direction which could account for departures from a strictly no-slip
boundary condition.

• The astute user might note that the mesh velocity doesn’t appear in this expression
whereas it does in the expression for VELO_NORMAL_EDGE. In the latter
expression, the normal motion of the mesh represents the wetting velocity of the
contact line normal to itself. It has a physical significance and so it make senses to
connect it to the fluid velocity at that point. In the case of the tangential mesh
motion velocity, it cannot be attached to any obvious physical part of the wetting
model. It makes no sense that the tangential motion of nodes along the contact line
should induce velocity in the fluid and vice versa. As a result, mesh motion is left
out of the preceding relation.

tcl v⋅ tcl W⋅=

Revised: 6/12/13 335

4.10.82 VELO_TANGENT_EDGE_INT

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.82 VELO_TANGENT_EDGE_INT

Description/Usage (SIC-EDGE/ROTATED MOMENTUM)

This boundary condition card is used to make the velocity component tangent to the
contact line in the plane of the web equal to the component of web velocity
(Wx,Wy,Wz) along the contact line. It imposes the identical constraint as the
VELO_TANGENT_EDGE card, but applies it as a strongly integrated condition rather
than a point collocated condition.

Definitions of the input parameters are as follows:

VELO_TANGENT_EDGE_INT

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) of the primary side set defining the edge
geometry in the problem domain. When applied to
dynamic contact lines, this side set should correspond to
the free surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) of the secondary side set defining the
edge geometry in the problem domain. The boundary

BC = VELO_TANGENT_EDGE_INT SS <bc_id1> <bc_id2> <float_list>

336 Revised: 6/12/13

4.10.82 VELO_TANGENT_EDGE_INT

condition is applied to the curve defined as the
intersection of this side set with the primary side set
When applied to dynamic contact lines, this side set
should correspond to the substrate.

<float1> Wx, x-component of the substrate (or web) velocity.

<float2> Wy, y-component of the substrate (or web) velocity.

<float3> Wz, z-component of the substrate (or web) velocity.

Examples

The following is a sample input card:

BC = VELO_TANGENT_EDGE_INT SS 5 4 -1.0 0.0 0.0

This card imposes a tangent velocity component along the curve formed by the
intersection of sidesets 5 and 4. The value of the component is the projection of the
substrate velocity (-1.0, 0. ,0.) into the tangent direction. The tangent direction is along
the curve itself.

Technical Discussion

• This equation imposes the following constraint as a point collocated condition at
the integration points of the elements along the curve:

(4-70)

where tcl is a vector tangent to the curve, v is the fluid velocity, W is the (constant)
velocity of the moving substrate, φi is the shape function each node along the curve
C. This integral condition is imposed strongly at each node. The reader is referred
to the sketch appearing with the VELO_NORMAL_EDGE card for a depiction of
these vectors.

• The reader is referred to the VELO_TANGENT_EDGE discussion for information
about the context in which this condition is applied. Because it is applied in a
different fashion than the former condition, it sometimes is the case that it will
allow more flexibility in situations involving many boundary conditions applied in
close proximity. There may also be situations where an integrated constraint
results in better matrix conditioning that a collocated constraint.

Theory

No Theory.

φi tcl v⋅ tcl W⋅–() Cd

C

 0=

Revised: 6/12/13 337

4.10.83 VELO_TANGENT_3D

FAQs

No FAQs.

References

No References.

4.10.83 VELO_TANGENT_3D

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition is the three dimensional analog of the VELO_TANGENT
condition. It is used to strongly set the tangential velocity component along a side set in
a three-dimensional problem. It is not a completely general condition since it can set
only a single tangential velocity component. It can only be applied to flat surfaces or
surfaces which have only one radius of curvature such as a cylinder.

The <float_list> requires four values be specified; a description of the input parameters
follows:

VELO_TANGENT_3D The name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> vt, the value assigned to the tangential velocity
component.

<float2> tx, the x-component of a unit normal vector tangent to
the surface; this vector must be tangent at all points on
the surface. The direction of the imposed tangential
velocity component is with n the outward-
pointing normal.

<float3> ty, the y-component of a unit normal vector tangent to
the surface; this vector must be tangent at all points on
the surface. The direction of the imposed tangential

BC = VELO_TANGENT_3D SS <bc_id> <float_list>

n t×

338 Revised: 6/12/13

4.10.83 VELO_TANGENT_3D

velocity component is with n the outward-
pointing normal.

<float4> tz, the z-component of a unit normal vector tangent to
the surface; this vector must be tangent at all points on
the surface. The direction of the imposed tangential
velocity component is with n the outward-
pointing normal.

Examples

The following is an example of the card:

BC = VELO_TANGENT_3D SS 10 1.0 0.0 0.0 1.0

One could use this card to set the tangential velocity on a cylindrically shaped side set
10 provided that the cylinders axis was parallel to the z-axis. In this fashion, the
tangential velocity component perpendicular to the z-axis is set to 1.0.

Technical Discussion

• The constraint applied to the velocity vector by this condition on the side set is:

(4-71)

where with the components of t supplied on the card. The advantages of
introducing the normal vector is that it permits use of this card on curving surfaces
provided the curvature occurs in only one direction and a single tangent vector
exists that is perpendicular to both the surface normal and the direction of
curvature. This of course implies that the tangential component can only be
applied in the direction of the curvature.

• Such conditions are of course met by a planar surface, but also a cylindrical
surface. In the latter case, the vector t should be parallel to the axis of the cylinder.
One application for this condition is in three-dimensional eccentric roll coating in
which the roll speed can be set using this condition. The axis vectors of both roll
coaters are supplied on the card.

Theory

No Theory.

FAQs

No FAQs.

n t×

n t×

t̃ v⋅ vt=

t̃ n t×=

Revised: 6/12/13 339

4.10.84 VELO_SLIP

References

No References.

4.10.84 VELO_SLIP

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows for slip between the fluid and a boundary using an
implementation of the Navier slip relation. This relation fixes the amount of slip as a
function of the applied shear stress. The scaling between stress and slip is a user
parameter. This implementation also permits (in two dimensions only) variable scaling
dependent upon distance from a mesh node. The latter can be used in modeling
dynamic contact lines. This condition cannot currently be used on connecting surfaces.

There are four required values in <float_list> and two optional values; definitions of
the input parameters are as follows:

VELO_SLIP Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> β, the slip coefficient. The inverse of β defines the scaling
between stress and slip. Hence, for small values of β, large
shear stresses are needed for a given amount of slip, and
conversely, for large values of β, the amount of stress
needed for the same degree of slip decreases (see below for
a more rigorous description).

<float2> vs,x, the x-component of surface velocity vector. This would
be the x-component of the fluid velocity if a no slip
condition were applied.

<float3> vs,y, the y-component of surface velocity vector. This would
be the y-component of the fluid velocity if a no slip
condition were applied.

BC = VELO_SLIP SS <bc_id> <float_list> [integer1] [float5]

340 Revised: 6/12/13

4.10.84 VELO_SLIP

<float4> vs,z, the z-component of surface velocity vector. This would
be the z-component of the fluid velocity if a no slip
condition were applied.

[integer] Ncl, a single-node node set identification number. When the
variable coefficient slip relation is used, distance is
measured relative to this node (see discussion below).
Normally, this node set represents the location of the
dynamic contact line. Note that this option is generally only
used in two-dimensional simulations.

[float5] α, the distance scale in the variable slip model (see the
discussion below). Both Ncl and α should be present to
activate the variable slip model.

Examples

Following is a sample card without the optional parameters:

BC = VELO_SLIP SS 10 0.1 0.0 0.0 0.0

Technical Discussion

• The general form of this boundary condition is

(4-72)

where is the deviatoric portion of the fluid stress tensor, is the Navier slip
coefficient and is the velocity of the solid surface. The velocity of the surface
must be specified, as described in the Description/Usage subsection above. It is a
weakly integrated vector condition, as noted above, so it will be added to each of
the three momentum equation components.

This last point is important to keep in mind, especially when applying this
condition to boundaries that are not parallel to any of the principle axes. It is
possible under these circumstances that this condition will allow motion through a
boundary curve in addition to slip tangential to it. This can be avoided by including
a rotated boundary condition like VELO_NORMAL on the same sideset. This will
cause the momentum equations to be rotated to normal and tangential components
and also enforce no normal flow of the material. Whatever slipping that takes place
will be in the tangential direction.

• The variable slip coefficient model is quite simple: , where d is
the absolute distance from node Ncl identified on the card; the coefficients β and α
are also supplied on input. This relation is protected against overflowing as d

n τ⋅
1
β
--- v vs–()=

τ β

vs

β d() β α– d()exp=

Revised: 6/12/13 341

4.10.85 VELO_SLIP_ROT

increases. This model can be used to allow slipping to occur in a region close to the
node set, but at points further removed, a no slip boundary (β large) is reinstated on
the sideset.

Theory

No Theory.

FAQs

No FAQs

References

No References.

4.10.85 VELO_SLIP_ROT

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is a variant of the VELO_SLIP boundary condition and serves
much the same function: to allow the fluid to slip relative to a solid substrate boundary.
The difference is that the assumed substrate is a rotating cylindrical surface with axis
parallel to the z-direction. Also as in the VELO_SLIP case, an optional variable slip
coefficient model is available that allows for slip to occur only in a region near to a
mesh node. This boundary condition is applicable generally only to two-dimensional
problems or very specialized three dimensional problems.

The <float_list> has four values and there are two optional values; definitions of the
input parameters are as follows:

VELO_SLIP_ROT Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

BC = VELO_SLIP_ROT SS <bc_id> <float_list> [integer] [float5]

342 Revised: 6/12/13

4.10.85 VELO_SLIP_ROT

<float1> β, the slip coefficient. The inverse of β defines the
scaling between stress and slip. Hence, for small values
of β, large shear stresses are needed for a given amount
of slip, and conversely, for large values of β, the amount
of stress needed for the same degree of slip decreases
(see below for a more rigorous description).

<float2> ω, rotation rate of the cylindrical substrate surface in
radians/T. Positive values for this parameter correspond
to rotation in the clockwise direction.

<float3> xc, the x-position of rotation axis.

<float4> yc, the y-position of rotation axis.

[integer] Ncl, a single-node node set identification number. When
variable coefficient slip relation is used, distance is
measured relative to this node (see discussion below).
For problems involving dynamic contact lines, this
nodeset coincides with the location of the contact line.

[float5] α, the distance scale in the variable slip model (see the
discussion below). Both Ncl and α should be present to
activate the variable slip model.

Examples

The following is a sample card without the optional parameters:

BC = VELO_SLIP_ROT SS 10 0.1 3.14 0.0 1.0

This condition specifies a moderate amount of slip (0.1) on a cylindrical surface
rotating at 3.14 rad/sec around the point (0.0,1.0).

Technical Discussion

The comments that appear in the Technical Discussion section of the VELO_SLIP card
apply equally well here. In particular, the discussion of the variable slip coefficient
model applies here as well. The only significant difference is that the velocity of the
substrate is not a fixed vector; instead, it is tangent to the cylindrical substrate with a
magnitude consistent with the radius of the cylinder and the rotation rate.

Theory

No Theory.

Revised: 6/12/13 343

4.10.86 VELO_SLIP_FILL

FAQs

No FAQs

References

No References.

4.10.86 VELO_SLIP_FILL

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is applied only in problems involving embedded interface
tracking, that is, level set or volume of fluid. As in the case of the VELO_SLIP card, it
allows for slip to occur between fluid and solid substrate, but in this case slipping is
allowed only in a narrow region around the location of the interface where it intercepts
the solid boundary. Elsewhere, this boundary condition enforces a no-slip condition
between fluid and substrate.

When using the level set tracking, slip is allowed only near the intersection of the zero
level set contour and the substrate boundary, and then only in a region twice the level
set length scale wide centered on the zero level set. When using volume of fluid, the
criterion for slipping is that the absolute value of the color function should be less than
0.25.

This boundary condition is most often used in conjunction with the FILL_CA boundary
condition. The latter applies forces to contact lines in order to simulate wetting line
motion. These forces are applied in a weak sense to the same regions near the interface
so it is necessary to use VELO_SLIP_FILL with a large slipping coefficient so that
effectively no-slip is relaxed completely near the interface.

Definitions of the input parameters are as follows:

VELO_SLIP_FILL Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

BC = VELO_SLIP_FILL SS <bc_id> <float_list>

344 Revised: 6/12/13

4.10.86 VELO_SLIP_FILL

<float1> β, the slip coefficient. The inverse of β defines the
scaling between stress and slip. The parameter supplied
on the input deck is used only in the region define
above. Elsewhere, the slip coefficient is uniformly set to
10-6.

<float2> vs,x, the x-component of surface velocity vector. This
would be the x-component of the fluid velocity if a no-
slip condition were applied.

<float3> vs,y, the y-component of surface velocity vector. This
would be the y-component of the fluid velocity if a no-
slip condition were applied.

<float4> vs,z, the z-component of surface velocity vector. This
would be the z-component of the fluid velocity if a no-
slip condition were applied.

Examples

Following is a sample card without the optional parameters:

BC = VELO_SLIP SS 10 100000.0 0.0 0.0 0.0

The large value of slip coefficient ensures nearly perfect slip in the region around the
interface.

Technical Discussion

• See the documentation under VELO_SLIP boundary condition for a description of
the nature of this boundary condition.

• An important caveat when using this boundary condition to relax no-slip in the
vicinity of the interface is that it relaxes all constraints on the velocities in the
region. This includes the constraint to keep fluid from passing through the
substrate boundary. For this region, it is usually also necessary to use a
impenetrability condition, VELO_NORMAL for example, in conjunction with this
boundary condition for appropriate results.

Theory

No Theory.

FAQs

No FAQs.

Revised: 6/12/13 345

4.10.87 VELO_SLIP_ELECTROKINETIC

References

No References.

4.10.87 VELO_SLIP_ELECTROKINETIC

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition allows for slip between the fluid and a solid boundary due to
electrokinetic effects on the charged solid wall. The user provides the following
parameters: zeta potential at the wall and permittivity of the fluid.

VELO_SLIP_ELECTROKINETIC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> ε, absolute permittivity of the fluid.

<float2> ζ, the surface potential of solid boundary. It is referred
to as the zeta potential.

Examples

Following is a sample card:

BC = VELO_SLIP_ELECTROKINETIC SS 10 1.e-5 1.e-2

Technical Discussion

• The general form of this boundary condition is

(4-73)

where is the absolute permittivity of the medium, is the zeta potential, Et is the
electric field tangent to the solid surface, and vs is the slip velocity.

BC = VELO_SLIP_ELECTROKINETIC SS <bc_id> <float1> <float2>

vs

εζEt

µ
-----------–=

ε ζ

346 Revised: 6/12/13

4.10.88 VELO_SLIP_ELECTROKINETIC3D

Theory

No Theory.

FAQs

No FAQs

References

No References.

4.10.88 VELO_SLIP_ELECTROKINETIC3D

Description/Usage (SIC/ROTATED MOMENTUM)

This is a 3D generalization of the VELO_SLIP_ELECTROKINETIC boundary
condition. It is similar to VELO_TANGENT_3D except the slip velocity is calculated
based on Helmholtz-Smulkowski relation. This boundary condition allows for slip
between the fluid and a solid boundary due to electrokinetic effects on the charged
solid wall. The user provides the following parameters: zeta potential at the wall,
permittivity of the fluid and.

VELO_SLIP_ELECTROKINETIC3D

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> ε, absolute permittivity of the fluid.

<float2> ζ, the surface potential of solid boundary. It is referred
to as the zeta potential.

<float3> tx, the x-component of a unit normal vector tangent to
the surface; this vector must be tangent at all points on
the surface. The direction of the imposed tangential

BC = VELO_SLIP_ELECTROKINETIC3D SS <bc_id> [floatlist]

Revised: 6/12/13 347

4.10.88 VELO_SLIP_ELECTROKINETIC3D

velocity component is with n the outward-
pointing normal.

<float4> ty, the y-component of a unit normal vector tangent to
the surface; this vector must be tangent at all points on
the surface. The direction of the imposed tangential
velocity component is with n the outward-
pointing normal.

<float5> tz, the z-component of a unit normal vector tangent to
the surface; this vector must be tangent at all points on
the surface. The direction of the imposed tangential
velocity component is with n the outward-
pointing normal.

Examples

Following is a sample card:

BC = VELO_SLIP_ELECTROKINETIC3D SS 10 1.e-5 1.e-2 0. 0. 1.

Technical Discussion

• The general form of this boundary condition is

(4-74)

where is the absolute permittivity of the medium, is the zeta potential, Et is the
electric field tangent to the solid surface, and vs is the slip velocity.

Theory

No Theory.

FAQs

No FAQs

References

No References.

n t×

n t×

n t×

vs

εζEt

µ
-----------–=

ε ζ

348 Revised: 6/12/13

4.10.89 VELO_TANGENT_SOLID

4.10.89 VELO_TANGENT_SOLID

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition sets the tangential fluid velocity component at a fluid/solid
interface to the tangential velocity component of the solid material. The latter includes
any motion of the stress-free state. This boundary condition is applicable only to two-
dimensional problems and is normally used in conjunction with the Total Arbitrary
Lagrangian/Eulerian algorithm in Goma (See GT-005.3). .

Definitions of the input parameters are as follows:

VELO_TANGENT_SOLID

The name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> The element block id defining the solid phase adjacent
to <bc_id>.

<integer2> The element block id defining the liquid phase adjacent
to <bc_id>.

Examples

The following is an example of this card

BC = VELO_TANGENT_SOLID SS 10 2 1

In this case, sideset 10 is an internal sideset between two separate materials, the solid
material in element block 2 and the liquid material in element block 1.

Technical Discussion

The boundary condition being applied is the strong integrated condition:

BC = VELO_TANGENT_SOLID SS <bc_id> <integer1> <integer2>

t
˜

v
˜m

⋅
fluid

t
˜

vsfs F
˜ m⋅ ⋅ t

˜ td

dx
˜m⋅+=

Revised: 6/12/13 349

4.10.90

where vm is the fluid velocity, vsfs is the velocity of the solid material stress-free-state
(usually solid-body translation, or rotation..see Advected Langragian Velocity card)
including the motion of the deformed coordinates, and t is the vector tangent to the side
set. Fm is the deformation gradient tensor and the time derivative term is the motion of
the deformed state tangential to the surface in question.

This condition is advocated for use with the TALE algorithm (see GT-005.3).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.90

4.10.91 VELO_SLIP_SOLID

Description/Usage (WIC/ROTATED MOMENTUM)

This boundary condition is similar in function to the VELO_SLIP condition in that it
permits a tangential velocity in a fluid phase to be proportional to the shear stress at the
boundary. This boundary condition allows for this type of slip to occur at the interface
between a fluid material and a LAGRANGIAN or TALE solid material. The velocity of
the solid substrate is obtained automatically from the motion of the solid material,
including advection of the stress-free state. As in the case of the VELO_SLIP condition,
this condition also permits the user to vary the slip coefficient depending upon the
distance from a specified point in the mesh. The variable slip model can only be used in
two-dimensional problems.

The <integer_list> has two values; the definitions of the input parameters and their
significance in the boundary condition parameterization is described below:

VELO_SLIP_SOLID

BC = VELO_SLIP_SOLID SS <bc_id> <integer_list> <float1> [integer3, float2]

350 Revised: 6/12/13

4.10.91 VELO_SLIP_SOLID

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This should be
an internal sideset defined at the interface between solid
and liquid material blocks.

<integer1> The element block id defining the solid material phase.

<integer2> The element block id defining the liquid material phase.

<float1> β, the slip coefficient. The inverse of β defines the
scaling between stress and slip. Hence, for small values
of β, large shear stresses are needed for a given amount
of slip, and conversely, for large values of β, the amount
of stress needed for the same degree of slip decreases
(see below for a more rigorous description).

[integer3] Ncl, a single-node node set identification number. When
the variable coefficient slip relation is used, distance is
measured relative to this node (see discussion below).
Normally, this node set represents the location of the
dynamic contact line. Note that this option is generally
only used in two-dimensional simulations.

[float2] α, the distance scale in the variable slip model (see the
discussion below). Both Ncl and α should be present to
activate the variable slip model.

Examples

The following is a sample card:

BC = VELO_SLIP_SOLID SS 20 2 1 0.001 0.0 4 0.01

This boundary condition sets the slip coefficient between solid material 2 and liquid
material 1 to be 0.001 except in the vicinity of the nodeset 4 (a single node) where the
variable model is used.

Technical Discussion

• The general form of this boundary condition is

Revised: 6/12/13 351

4.10.92 DISCONTINUOUS_VELO

(4-75)

where is the deviatoric portion of the fluid stress tensor, is the Navier slip
coefficient and is the velocity of the solid surface stress-free state, with Fm the
deformation gradient tensor; this motion includes any rigid solid body motion and
any superimposed deformation velocity.

• It is worthwhile noting that, unlike the VELO_SLIP condition, this condition is
actually a rotated condition. It is applied to the tangential component of the rotated
momentum equations weakly. This means that the normal component of the
momentum equation is not affected by this boundary condition. Normally, some
sort of no-penetration condition must accompany this boundary condition for this
reason.

• The reader is referred to the documentation of the variable slip coefficient model to
apply slip near contact lines under the VELO_SLIP boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.92 DISCONTINUOUS_VELO

Description/Usage (SIC/MOMENTUM)

This boundary condition card, used to set the normal component of mass averaged
velocity at an interface, specifies that the net flux of the last component in a nondilute
mixture across an internal interface, is equal to zero. The condition only applies to
interphase mass, heat, and momentum transfer problems applied to nondilute material
phases with discontinuous (or multivalued) variables at an interface, and it must be

BC = DISCONTINUOUS_VELO SS <bc_id> <char_string> <integer1> <integer2>

t
˜

v
˜

⋅
fluid

t
˜

vsfs F
˜ m⋅ ⋅ t

˜ td

dx
˜m

⋅––

βn
˜

t
˜

T
˜ fluid

⋅ ⋅=

τ β

vsfs

352 Revised: 6/12/13

4.10.92 DISCONTINUOUS_VELO

invoked on fields that employ the Q1_D or Q2_D interpolation functions to “tie”
together or constrain the extra degrees of freedom at the interface in question.

Definitions of the input parameters are as follows:

DISCONTINOUS_VELO

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<char_string> A character string identifiying the condition to be
applied on the liquid phase relative to the gas phase.

EVAPORATION
DISSOLUTION - not currently valid.

Note, this parameter replaces the boundary condition
EVAPORATION_VELO.

<integer1> Element block id of liquid or high density phase.

<integer2> Element block id of gas or low density phase.

Examples

Following is a sample input card that applies this BC on the block 1 side of side set 7,
the liquid side; the block 2 side is the gas side.

BC = DISCONTINUOUS_VELO SS 7 EVAPORATION 1 2

Technical Discussion

The DISCONTINUOUS_VELO boundary condition applies the following equation:

(4-76)

It specifies the diffusive flux of the last species in the mechanism, i.e., the one for
which no explicit continuity equation exists, to be equal to zero. This is done via a
strong integral condition applied to one side of the interface, the “+” side of the
interface. This boundary condition, combined with the KINEMATIC_SPECIES and

ns ρ
+

1 Yi
+

i 1=

N 1–

–

u
+

us–() ji
+

i 1=

N 1–

–• φ
u

+

i
Γd

Γ
 0=

Revised: 6/12/13 353

4.10.93 HYDROSTATIC_SYMM

KINEMATIC_DISC boundary conditions, implies that the diffusive flux of the last
species on both sides of the boundary is equal to zero.

The DISCONTINUOUS_VELO boundary condition requires an evaluation of the
derivative of the species mass fraction at the interface. Thus, the mesh convergence
properties of the algorithm are reduced to O(h). Also, discretization error must interfere
with the total mass balance across a phase, since the expression for is substituted for
in some places, the YFLUX_SPECIES boundary condition, but used in the
DISCONTINUOUS_VELO boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.93 HYDROSTATIC_SYMM

Description/Usage (WIC/VECTOR MOMENTUM)

No longer supported in GOMA. Do not use.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

BC = HYDROSTATIC_SYMM

ji
+

354 Revised: 6/12/13

4.10.94 FLOW_PRESSURE

FAQs

No FAQs.

References

No References.

4.10.94 FLOW_PRESSURE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to set a constant value of pressure on a boundary.
Most often this condition is used to set an upstream or downstream pressure over a
fully-developed inflow/outflow boundary.

Definitions of the input parameters are as follows:

FLOW_PRESSURE Boundary condition name

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float> Pex, the applied pressure. Positive values imply
compressive forces on the fluid, negative values imply
tensile forces.

Examples

The following sample input card will impose a constant compressive pressure force on
the boundary defined by sideset 23:

BC = FLOW_PRESSURE SS 23 5.0

Technical Discussion

• The actual boundary condition that is applied to the fluid is given as follows:

BC = FLOW_PRESSURE SS <bc_id> <float>

Revised: 6/12/13 355

4.10.94 FLOW_PRESSURE

(4-77)

where n is the outward normal vector to the boundary, T is the total fluid stress
tensor, and P is the applied pressure equal to <float1> above. From this the user
should be able to deduce the appropriate sign for his/her pressure value.

• This boundary condition is a weak integrated condition implying that it is added to
all three components of the fluid momentum equation prior to rotation of equations
or application of strongly enforced conditions or Dirichlet conditions.

• The astute user who is also well-versed in finite element formulations and
terminology will recognize that this boundary condition is providing a value for
the boundary condition term that appears after application of the divergence
theorem to the weighted fluid momentum residual equations. Hence, imposing a
value of zero for <float1> is exactly equivalent to saying nothing at all about the
fluid velocity at a boundary.

• This boundary condition is found predominantly in two applications. First, setting
the external pressure imposed on a free surface, and second, providing the driving
force for flow by being imposed on an inflow or outflow fully-developed
boundary. In this latter role, the usual procedure is to apply the
FLOW_PRESSURE condition while strongly enforcing a zero condition on the
velocity components transverse to the boundary. For boundaries parallel to one of
the principle coordinate directions, Dirichlet conditions can be used to set these
transverse components. For other inflow or outflow boundaries, it is suggested that
the VELO_TANGENT and VELO_TANGENT_3D cards be employed instead.

• This boundary condition is very useful when working with non-Newtonian models
where the inlet velocity field is apt to be complicated and hard to determine a
priori. By imposing a pressure at the inflow with this card, the non-Newtonian
inlet velocity profile will be determined implicitly. Augmenting conditions can
then be used to couple the imposed pressure to the average flow rate over the
boundary for an even more advanced capability.

Theory

No Theory.

FAQs

No FAQs.

n T
fluid

⋅ nP–=

356 Revised: 6/12/13

4.10.95 FLOW_STRESSNOBC

References

No References.

4.10.95 FLOW_STRESSNOBC

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card applies the free outflow boundary condition developed
by Papanastasiou, et.al. (1992) on the fluid momentum with the option of setting the
pressure level. It is appropriate only for outflow boundaries where it is inappropriate to
use natural boundary conditions or FLOW_PRESSURE-class boundary conditions. It is
only supported for generalized Newtonian fluid constitutive equations.

Definitions of the input parameters are as follows:

FLOW_STRESSNOBC

Name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float> Papplied, the applied pressure.

[integer] An optional parameter.

blank/-1 the pressure in the normal stress is replaced
by Papplied.
the pressure in the solution vector is
retained in the normal stress.

Examples

Following is a sample card:

BC = FLOW_STRESSNOBC SS 10 1.0 -1

Here the boundary condition is applied to sideset 10 with a constant pressure of 1.0
required.

BC = FLOW_STRESSNOBC SS <bc_id> <float> [integer]

1–≠

Revised: 6/12/13 357

4.10.95 FLOW_STRESSNOBC

Technical Discussion

• The finite element formulation of the fluid momentum equations generates
boundary integrals of the form:

(4-78)

where P is the isotropic pressure and τ the viscous stress. Often this boundary term
is left off entirely on a particular boundary with the result that a zero normal force
is applied implicitly. These are referred to as imposing a “natural” boundary
conditions. Alternatively, this integral might be included but with the integrand
replaced by an known value of force. This is the concept behind the
FLOW_PRESSURE and FLOW_HYDROSTATIC boundary conditions.

However, both types of boundary conditions imply that something is known about
the stress and, by association, the velocity field on the boundary. It is often the case
that outflow boundaries are present where it is difficult to provide this information.
A prime example is the outflow of a fluid jet accelerating downward due to
gravity. In this case, the downward velocity field is still developing at this
boundary so it is problematic to specify a stress value. Other examples include
imposing conditions at a “truncated” outflow where the exiting fluid is still
developing.

The FLOW_STRESSNOBC seeks to remedy this problem. Formulationally, the
boundary term as written above is included as just another term dependent upon
solution degrees of freedom. This permits the pressure and velocity gradients on
the boundary to float as needed so that one does not need to say anything about the
stress or pressure on the boundary.

Now strictly speaking, the ellipticity of the viscous flow equations suggests that
this operation should result in an ill-posed problems. Elliptic equations by their
very nature require that something be said about every boundary in the problem.
However, in the case of outflow boundaries it appears that this restriction can be
relaxed in certain circumstances with good results. Papanastasiou, et.al., (1997),
Renary (1997), Griffiths (1997) and Sani and Gresho (1994) discuss this.

• The boundary condition does permit that the pressure value be fixed while the
viscous stress is allowed to float. This is done by setting the optional parameter to
-1 and supplying the pressure value as Papplied. When this is done depends upon
circumstance. Note that this is distinctly different from setting a normal stress
component using FLOW_PRESSURE.

φin Pδ– τ+()⋅ Ad

A

358 Revised: 6/12/13

4.10.96 FLOW_GRADV

• As noted above, this boundary condition is currently implemented only for
generalized Newtonian fluid models. Polymeric fluid models will not work with it.

Theory

No Theory.

FAQs

No FAQs.

References

Griffiths, D.F., “The ‘no boundary condition’ outflow boundary condition,” IJNMF, 24,
393-411, (1997)

Papanastasiou, T. C., N. Malamataris, and K. Ellwood, “A New Outflow Boundary
Condition”, IJNMF, 14, 587-608, (1992).

Renardy, M., “Imposing ‘NO’ boundary conditions at outflow: Why does this work?”
IJNMF, 24, 413-417, (1997).

Sani, R.L., and P.M. Gresho, “Resume and remarks on the open boundary condition
minisymposium,” IJNMF, 18, 983-1008, (1994).

4.10.96 FLOW_GRADV

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card stipulates a vanishing normal velocity gradient on a
boundary with the option of setting the pressure level.

Definitions of the input parameters are as follows:

FLOW_GRADV Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

BC = FLOW_GRADV SS <bc_id> <float> [integer]

Revised: 6/12/13 359

4.10.96 FLOW_GRADV

<float> Papplied, the applied pressure.

[integer] An optional parameter.

blank/-1 the pressure in the normal stress is replaced by
Papplied.
the pressure in the solution vector is retained in
the normal stress.

Examples

The sample input card:

BC = FLOW_GRADV SS 15 0.0

sets the gradient of velocity normal to sideset 15 to zero. A pressure value of zero is
used in the boundary condition.

 BC = FLOW_GRADV SS 15 0.0 1.0

In the preceding example, the pressure value used is obtained from the solution itself.

Technical Discussion

• This boundary condition is related in form and formulation to the
FLOW_STRESSNOBC boundary condition in that it includes terms for the
boundary integrals that appear in the momentum equation after application of
integration by parts and the divergence theorem. In this boundary condition, the
following integral is included with the momentum equation:

(4-79)

where µ is the viscosity of a Newtonian or generalized Newtonian fluid. As in the
case of the FLOW_STRESSNOBC condition the preceding integral appears as a
function of pressure and velocity unknowns as any other term.

• The pressure term in the preceding may be replaced by a fixed, imposed pressure
value. This is done by setting the optional input integer to -1 and providing the
imposed value in Papplied; otherwise, the value set in Papplied is ignored.

Theory

No Theory.

1–≠

φin Pδ– µ v∇+()⋅ Ad

A

360 Revised: 6/12/13

4.10.97 FLOW_PRESS_USER

FAQs

No FAQs.

References

No References.

4.10.97 FLOW_PRESS_USER

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition has been deprecated in favor of the PRESSURE_USER
boundary condition; use the latter instead.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

BC = FLOW_PRESS_USER

Revised: 6/12/13 361

4.10.98 FLOW_HYDROSTATIC

4.10.98 FLOW_HYDROSTATIC

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows the user to impose a pressure force that varies linearly
with position over the boundary. It functions in much the same manner as the
FLOW_PRESSURE boundary condition except that more variability is allowed in the
imposed pressure. As the name implies, this boundary condition is most often used to
impose hydrostatic pressure profiles in problems in which gravitational forces play a
role.

The <float_list> has four values to be specified; definitions of the input parameters are
as follows:

FLOW_HYDROSTATIC

Boundary condition name

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> δPx, the pressure variation in x-direction.

<float2> δPy, the pressure variation in y-direction.

<float3> δPz, the pressure variation in z-direction.

<float4> P0, the pressure value at the coordinate point (0,0,0).
This serves as a means of establishing a datum and it is
not required that (0,0,0) lie on the sideset.

Examples

Following is a sample card:

BC = FLOW_HYDROSTATIC SS 15 0.0 0.0 -1.5 10.0

This card will impose a pressure profile on side set 15 so that the pressure decreases by
1.5 as the z coordinate increases by one unit. At the point, (0,0,0) the pressure imposed
is 10.0. Note that (0,0,0) does not necessarily have to be on side set 15.

BC = FLOW_HYDROSTATIC SS <bc_id> <float_list>

362 Revised: 6/12/13

4.10.98 FLOW_HYDROSTATIC

Technical Discussion

• The mathematical form of the boundary condition imposed by this card is as
follows:

(4-80)

where n is the outward normal vector to the boundary, T is the total fluid stress
tensor, and x, y, z are the global coordinate positions.

• Like the FLOW_PRESSURE conditions, this is a weakly integrated condition and
the comments appearing with that card apply equally well here.

• Most often this boundary condition is used in problems in which gravity is present.
Under these circumstances, the pressure profile across a fully-developed flow inlet
is not constant but varies according to hydrostatic head. Hence, the
FLOW_PRESSURE condition cannot be used to provide the inlet pressure.
Instead, this card is used with the variation in the pressure being imposed
according to the direction of gravity. Thus, some if not all of δPx, δPy, or δPz will
be functions of gravity and the fluid density.

• It is true that this variation could be determined automatically by Goma from its
known values for density and gravitational direction. But for a variety of reasons,
this may not always be the best option. Instead, the user is allowed to vary the
pressure on a boundary independently of the density and gravitational forces set
elsewhere in the material file. If consistency is important in the problem at hand,
then the user is cautioned to be consistent.

• The input parameter P0 as noted above serves as a datum to the relationship. In
theory, it is the pressure value that would be computed at the point (0,0,0), but in
reality it is chosen to impose a known pressure at some point in the domain.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n T
fluid

⋅ n xδPx yδPy zδPz P0+ + +()–=

Revised: 6/12/13 363

4.10.99

4.10.99

4.10.100 FLOWRATE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows the user to specify a single value for the volumetric
flowrate of material across an inflow (or outflow) boundary. The pressure and velocity
fields on this boundary are then computed implicitly by Goma.

Definitions of the input parameters are as follows:

FLOWRATE name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float> flowrate, a parameter fixing the value of volumetric
flowrate across this boundary. For two-dimensional
CARTESIAN simulations, this value should be per unit
distance in the out-of-plane coordinate. For
CYLINDRICAL and SWIRLING coordinate systems, this
flowrate value should include integration in the
azimuthal direction.

<float|char_string> This parameter can either be a <float> or a
<char_string>.

float Pguess, an initial guess for the pressure
on the inlet

char_string read, indicating that the initial guess
for the pressure file should be read
from the ASCII file identified on the
GUESS file card.

Examples

Specifying the average velocity on the inlet to a tube of radius 1.0:

BC = FLOWRATE SS <bc_id> <float> <float | char_string>

364 Revised: 6/12/13

4.10.100 FLOWRATE

BC = FLOWRATE SS 10 3.1415 10.0

Since the radius is 1.0, the area of the surface is 3.1415 so the volumetric flowrate must
be specified as shown. An initial pressure guess of 10.0 is also supplied. Note this does
not specify the pressure on the boundary as the final value will generally be different
than specified here.

Continuing in the flowrate by reading the last pressure value from GUESS file:

BC = FLOWRATE SS 10 3.2 read

Technical Discussion

• The requirement that is imposed by this boundary condition is the following
integral:

(4-81)

where U is the flowrate value supplied on the card. It is imposed by the addition of
a Lagrange multiplier unknown on the boundary in question which will be
determined as a part of the solution process. For Newtonian and generalized
Newtonian models, the value of the multiplier is the inverse of the pressure value
on the boundary. Thus, a boundary condition nearly identical to a
FLOW_PRESSURE condition is applied to the sideset, but it takes as its pressure
the value of the inverse of the Lagrange multiplier unknown as it is computed.

The augmenting condition capability in Goma is used to impose the above integral.
When the boundary condition is invoked, an augmenting condition of the
appropriate type is automatically created. Its associated degree of freedom is the
Lagrange multiplier. During the iteration sequence, the user will see updates and
residuals for this augmenting condition.

• Originally, the initial guessed value for the pressure over the side set is read from
the float value specified on this card, or from the GUESS file (if the parameter read
is specified on this card). However, it can also be read from an EXODUS II
database file. This is the same file the rest of the solution vector is read from if the
problem is being restarted from a previous computation. If a value for the
augmenting condition is present in this EXODUS II file, it will be read in. This
value will override the float value specified on this card. The initial guess may still
be read from the ASCII GUESS file by specifying read on the Initial Guess card
and on the Augmenting Conditions Initial Guess card.

u n⋅() Γd

Γ
 U=

Revised: 6/12/13 365

4.10.101 PRESSURE_USER

Theory

No Theory.

FAQs

No FAQs.

References

No References

4.10.101 PRESSURE_USER

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition allows the user to specify an arbitrary functional form for the
pressure field on a boundary via a user-defined subroutine. The boundary condition is
identical in form to the FLOW_PRESSURE and FLOW_HYDROSTATIC conditions,
but whereas the latter conditions have constant and linear spatial dependencies for the
pressure, this boundary condition allows for any dependency, including dependencies
on other degrees of freedom and time.

Definitions of the input parameters are as follows:

PRESSURE_USER Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutine so the user can
vary the parameters of the boundary condition. This list
of float values is passed as a one-dimensional double
array to the appropriate C function.

BC = PRESSURE_USER SS <bc_id> <float_list>

366 Revised: 6/12/13

4.10.101 PRESSURE_USER

Examples

The following is a sample input card:

BC = PRESSURE_USER SS 10 0.0 3.0 0.5

Technical Discussion

• Frequently, it is desired to be able to set a pressure on a boundary that is more
complicated than constant or linear; this boundary condition is used for this
purpose. By modifying a function in user_bc.c (fn_dot_T_user), any
functional dependence of pressure can be installed. This dependence may entail a
more complicated spatial dependence, variability in time, and/or dependence on
other degrees of freedom.

• An example is supplied in fn_dot_T_user that illustrates how this boundary
condition can be used to set a sinusoidal-type of spatial dependence. A similar
function could be used to set a temporal sinusoidal variation. The only caveat is
that when inserting a function, it is very important that the sensitivities of the
function with respect to position (and other degrees of freedom if they exist) be
added to the array d_func. This does not apply to the time variable however.

• Like FLOW_PRESSURE and FLOW_HYDROSTATIC, this boundary condition is
a weakly integrated condition. Therefore, it is additive with other weak conditions,
but is superseded by strong conditions or Dirichlet conditions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 367

4.10.102 CONT_TANG_VEL

4.10.102 CONT_TANG_VEL

Description/Usage (SIC/MOMENTUM)

This boundary condition card enforces continuity of tangential velocity between two
phases with discontinuous velocity treatment. The condition only applies to interphase
mass, heat, and momentum transfer problems with discontinuous (or multivalued)
variables at an interface, and it must be invoked on fields that employ the Q1_D or
Q2_D interpolation functions to “tie” together or constrain the extra degrees of
freedom at the interface in question.

Definitions of the input parameters are as follows:

CONT_TANG_VEL

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

This boundary condition is typically applied to multicomponent two-phase flows that
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity
at the interface, and to thermal contact resistance type problems. The best example of
this is rapid evaporation of a liquid component into a gas.

Examples

The following is a sample card:

BC = CONT_TANG_VEL SS 10

Technical Discussion

No discussion.

Theory

No Theory.

BC = CONT_TANG_VEL SS <bc_id>

368 Revised: 6/12/13

4.10.103 CONT_NORM_VEL

FAQs

No FAQs.

References

No References.

4.10.103 CONT_NORM_VEL

Description/Usage (SIC/MOMENTUM)

This boundary condition card is similar to the VELO_NORM_DISC card except that it
enforces a continuous normal velocity component in a discontinuous boundary field.
The condition only applies to interphase mass, heat, and momentum transfer problems
with discontinuous (or multivalued) variables at an interface, and it must be invoked on
fields that employ the Q1_D or Q2_D interpolation functions to “tie” together or
constrain the extra degrees of freedom at the interface in question.

Definitions of the input parameters are as follows:

CONT_NORM_VEL

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

This boundary condition is typically applied to multicomponent two-phase flows that
have rapid mass exchange between phases, rapid enough to induce a diffusion velocity
at the interface, and to thermal contact resistance type problems. The best example of
this is rapid evaporation of a liquid component into a gas.

Examples

The following is a sample card:

BC = CONT_NORM_VEL SS 10

BC = CONT_NORM_VEL SS <bc_id>

Revised: 6/12/13 369

4.10.104 VNORM_LEAK

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.104 VNORM_LEAK

Description/Usage

This boundary condition card is used to specify a normal velocity boundary condition
with mass transfer on momentum equations. The flux quantity is specified on a per
mass basis so the heat and mass transfer coefficients are in units of L/t.

(4-82)

Definitions of the input parameters are as follows:

VNORM_LEAK Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> hi, mass transfer coefficient for bulk fluid (n+1th
species).

BC = VNORM_LEAK SS <bc_id> <float1> <float2>

n v vs–()• hi yi yi
0

–()

i

=

370 Revised: 6/12/13

4.10.105 CAPILLARY

<float2> , driving force concentration in external phase.

Examples

The following is a sample input card:

BC = VNORM_LEAK SS 1 1. 0.

Technical Discussion

This card is the equivalent of KIN_LEAK except it is solved for the normal component
of the momentum equation. Similar to KIN_LEAK, this flux provides an overall mass
transfer balance at an interface. Please refer to the technical discussion of KIN_LEAK
boundary card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.105 CAPILLARY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to apply capillary forces (surface tension) to the
momentum equation on a free-surface.

Definitions of the input parameters are as follows:

CAPILLARY Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

BC = CAPILLARY SS <bc_id> <float_list> [integer]

y
0

i

Revised: 6/12/13 371

4.10.105 CAPILLARY

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> σ, surface tension or capillary term multiplier. IMPORTANT
NOTE: if no Surface Tension card appears in the material
file, this parameter is the surface tension value used here. If
Surface Tension is set in the material file, however, this float
value will multiply the surface tension value from the
material file prior to it’s application in this boundary
condition. Best practice is to set this parameter to 1.0 and
set the surface tension value in the material file.

<float2> Pex, the external applied isotropic pressure on the free
surface.

<float3> Pr, deprecated capability. Always set to zero.

[integer] Optional integer value indicating the element block id from
which to apply the boundary condition. This is used to force
the capillary stresses to be applied from within a phase
where the momentum equations are defined.

Examples

Following is a sample card:

BC = CAPILLARY SS 12 1.0 10.0 0.0

This card specifies that capillary forces be applied to the free surface on side set 12. If a
surface tension material parameter value or model is supplied, this is the surface
tension value used. If not, the surface tension value used is 1.0. An external isotropic
pressure of 10.0 is applied from the surrounding environment.

Technical Discussion

• One of the primary characteristics of a free-surface is the presence of surface
tension-related forces. This boundary condition permits application of such forces.
The forces on the fluid at the free-surface are set via the following relation:

(4-83)

where n is the outward normal to the surface, T is the fluid stress tensor, Pex is the
external applied pressure described above, H is the surface curvature defined as,

n T
fluid

⋅ n– Pex 2Hσn s∇ σ⋅+ +=

372 Revised: 6/12/13

4.10.106 CAP_REPULSE

, σ is the surface tension, and is the surface divergence
operator defined as .

• Typical usage of this boundary condition is in conjunction with a KINEMATIC
boundary condition. The latter enforces no penetration of fluid through a free
surface by deforming the mesh and this boundary condition acts on the fluid
momentum equation to enforce the capillary jump condition given above.

• No end of confusion results from use of this card primarily because of overloading
the surface tension parameter. To reiterate, the value for surface tension that
appears on this card is the actual (constant) value of surface tension that is used if a
surface tension model has NOT been specified explicitly in the material file. If
such a model has been identified, the surface tension parameter in the CAPILLARY
card is a multiplier to the surface tension. The best practice is to simply always use
1.0 for this parameter and set the surface tension in the material file.

• The optional (integer) element block ID corresponds to the material numbers given
in the Problem Description section of the input file.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.106 CAP_REPULSE

Description/Usage (WIC/VECTOR MOMENTUM)

This card functions much in the same way as the CAPILLARY card. It imposes surface
tension forces on free-surfaces. The addition to this card, however, is that in the vicinity
of a specified planar boundary, an additional repulsive force is added to the surface
tension force. This force is directed away from the planar surface and increases in
proportion to 1/r2 as the free-surface approaches the planar surface. This condition can
be used to contend with the difficult problem of fluid/solid contact in an approximate

BC = CAP_REPULSE SS <bc_id> <float_list> [mat_id]

H s∇– n 2⁄⋅= s∇

fs∇ I nn–() f∇⋅=

Revised: 6/12/13 373

4.10.106 CAP_REPULSE

way. This boundary condition is only applicable to two-dimensional problems; trying
to apply it in a three-dimensional problem will cause an error.

There are seven values in the <float_list>; definitions of the input parameters are as
follows:

CAP_REPULSE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> σ, the surface tension value or a multiplier for the
capillary effect. See the important caveat under the
CAPILLARY card regarding the use of this parameter
when a surface tension value is supplied in the material
file.

<float2> Pex, the applied external pressure field on the free
surface.

<float3> Prep, the coefficient on the surface repulsion term. This
parameter should have units of (ML/T2). See below for
an exact description of the surface repulsion term.

<float4> a, the sensitivity with respect to x-coordinate (the a
coefficient) of the plane surface that is repelling the free
surface sideset

<float5> b, the sensitivity with respect to y-coordinate (the b
coefficient) of the plane surface that is repelling the free
surface sideset

<float6> c, the sensitivity with respect to z-coordinate (the c
coefficient) of the plane surface that is repelling the free
surface sideset

<float7> d, the constant d coefficient of the plane surface
equation that is repelling the free surface sideset.

[mat_id] In the case of a surface node shared by more than one
material, this optional integer parameter allows the user

374 Revised: 6/12/13

4.10.106 CAP_REPULSE

to specify which material the condition will be applied
in. This is rarely used.

Examples

The following sample card:

BC = CAP_REPULSE SS 24 1.0 0.0 0.1 1. 1. 0. 2.

applies a standard capillary surface tension pressure jump condition to side set 24,
except as the free surface approaches the plane surface defined by a solution to the
equation x + y = -2.0.

Technical Discussion

• This boundary condition applies the following force term to the fluid momentum
equation:

(4-84)

which is almost identical to the force applied by the CAPILLARY card. The only
difference is the last term on the right in which d is the normal distance from a
given point on the free-surface side set and the planar surface defined by the
equation:

(4-85)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n T
fluid

⋅ nPex– 2Hσn s∇ σ⋅ Prep d
2

⁄+ + +=

ax by cz+ + d–=

Revised: 6/12/13 375

4.10.107 CAP_RECOIL_PRESS

4.10.107 CAP_RECOIL_PRESS

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition calculates the surface recoil from an evaporating metal alloy
component or water.

There are seven values in the <float_list>; definitions of the input parameters are as
follows:

CAP_RECOIL_PRESS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> This float is currently disabled.

<float2> This float is currently disabled.

<float3> Temperature at which the metal alloy begins to boil.

<float4> Liquidus temperature of metal alloy.

<float5> Reference temperature.

<float6> Conversion scale for pressure.

<float7> Conversion scale for temperature.

Examples

The following is a sample input card:

BC = CAP_RECOIL_PRESS SS 1 0.0 0.0 3000.0 1623.0 0.0 1.0 1.0

Technical Discussion

Currently this boundary condition has coefficients for only iron and water. Several
required pieces of information to use this boundary condition are not in final form, and

BC = CAP_RECOIL_PRESS SS <bc_id> <float_list>

376 Revised: 6/12/13

4.10.108 ELEC_TRACTION

the user can expect future changes and improvements. This boundary condition is
designed for use with Q_LASER_WELD.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.108 ELEC_TRACTION

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to add to the momentum equation the electric, or
Maxwell, stress at a free-surface. Definitions of the input parameters are as follows:

ELEC_TRACTION Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Integer value indicating the element block ID from
which to apply the boundary condition.

<float> A term-multiplier.

Since this boundary condition only adds the electric stress, it is commonly used with
one of the CAPILLARY, CAP_RECOIL_PRES or CAP_REPULSE boundary
conditions, viz. the capillary stress must be added separately.

BC = ELEC_TRACTION SS <bc_id> <integer> <float>

Revised: 6/12/13 377

4.10.108 ELEC_TRACTION

Examples

For a system consisting of an insulating liquid (element block ID 1) and an insulating,
passive gas (element block ID 2) with a free-surface designated by side set 12, the
following is a sample usage:

BC = ELEC_TRACTION SS 12 1 1.0
BC = ELEC_TRACTION SS 12 2 1.0
BC = CAPILLARY SS 12 1.0 0.0 0.0 1

The first and second lines adds the electric stress due to the electric field in the liquid
and gas phases, respectively. The third line adds the capillary stress due to surface
tension. IMPORTANT NOTE: the optional element block ID argument to the
CAPILLARY card is used to make sure that the capillary stress is added from within a
phase where the momentum equations are defined. The same holds for the KINEMATIC
boundary condition.

Technical Discussion

This boundary condition adds the electric, or Maxwell, stress contribution to the
traction condition. To use this boundary condition there must be a VOLTAGE equation
present in one or both of the materials neighboring the interface, i.e., one or both of the
neighboring materials must be a dielectric. The electrical permittivity of each dielectric
material must be supplied via the Electrical Conductivity card (yes, this is a kludge) in
the material property file.

In its most general form, the traction condition is written

(4-86)

where T is the stress tensor, the superscripts (o) and (i) denote the outer and inner
phases, n is a unit normal pointing into the outer phase, -H is the local mean curvature,
and σ is the surface tension.

The stress tensor can be written as the sum of the mechanical stress Tm (e.g., the
Newtonian stress tensor) and an electrical stress Te, viz. T = Tm + Te. The electric
stress tensor provided through this boundary condition applies to incompressible,
polarizable materials:

(4-87)

where ε is the electrical permittivity, is the electric field and V is the voltage
or electric potential.

n T o() T i()–[]⋅ 2Hσn– σ∇–=

Te εEE
1
2
---εE EI⋅–=

E V∇–=

378 Revised: 6/12/13

4.10.109 CAP_ENDFORCE

In expanded form, the traction condition becomes

(4-88)

The ELEC_TRACTION boundary condition is responsible for applying either the first
or second terms on the right hand side (specified through the element block ID
parameter) whereas the CAPILLARY (or related boundary condition) is responsible for
the third and fourth terms.

The term multiplier supplied by the <float> input is used in the elec_surf_stress()
function (mm_ns_bc.c) which applies the ELEC_TRACTION boundary condition. It is
the etm function argument. The normal term multipliers couldn’t be used because this
boundary condition can be applied from within a material that doesn’t have the
momentum equations defined (or properly set).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.109 CAP_ENDFORCE

Description/Usage (SPECIAL/VECTOR MOMENTUM)

This boundary condition card adds surface tangent forces to the momentum equations
at the endpoint of a free-surface. There are four values to be input for the <float_list>;
definitions of the input parameters are as follows:

CAP_ENDFORCE Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

BC = CAP_ENDFORCE NS <bc_id> <float_list>

n Tm
o() Tm

i()–[]⋅ n– T o()
e n T i()

e⋅+⋅ 2Hσn– σ∇–=

Revised: 6/12/13 379

4.10.109 CAP_ENDFORCE

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<float1> X-component of surface tangent vector at end point.

<float2> Y-component of surface tangent vector at end point.

<float3> Z-component of surface tangent vector at end point.

<float4> Equilibrium surface tension value. (See Technical
Discussion.)

This condition need only be applied at the intersection of outflow or inflow surfaces
and the free-surface. The sign on the tangent vector depends on whether the computed
tangent vector is facing inward or outward. This can be figured by .

Examples

The following is a sample input card using several APREPRO variables:

BC = CAP_ENDFORCE NS 100 {sind(th2)} {-cosd(th2)} 0.0 {surf_tens}

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply
capillary forces to surfaces. The surface divergence theorem is used to simplify the
curvature term in the capillary stress jump condition. This produces integrals of the
form:

(4-89)

where C is the bounding curve of the capillary free surface, σ is the surface
tension, φι is a finite element shape function and m is a vector that is at once
normal to the capillary surface and also normal to the curve C. It always points
outward from the domain in question. While this is completely general for three-
dimensions, a surface can be reduced to a curve for two-dimensions and the
divergence theorem still applies (for this boundary condition).

• This card or the CAP_ENDFORCE_SCALAR is used in conjunction with the
CAPILLARY card to complete (as indicated above) the treatment of capillarity
conditions. It is only required when an inflow or outflow boundary intersects a free
surface.

t n k×=

φiσm Cd

C

380 Revised: 6/12/13

4.10.110 SURFTANG_EDGE

• The CAP_ENDFORCE boundary condition is applied through function
fapply_ST (in file mm_ns_bc.c). The boundary term is computed as the product
of the surface tension supplied on this card (<float4>) and the value supplied on
the Surface Tension card in the material file. When the latter card is missing, Goma
defaults its value to 1.0.

• This card was previously called SURFTANG for the surface tangent component of
the capillary force. Old input decks can be updated simply by changing the name
of the boundary condition without changing the parameters.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.110 SURFTANG_EDGE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to insert surface tension forces on an edge
boundary defined by the primary and secondary sidesets. The direction of application
of the surface tension (σ) is specified by the vector (defined by (<mx>, <my>, <mz>)).
This card is the three-dimensional analog of the CAP_ENDFORCE card. It is often
used at free-surface outflow boundaries if the outflow velocity is not set by a strong
condition. This condition is an unrotated, weak integrated vector condition.

There are four values to be supplied in the <float_list>; definitions of the input
parameters are as follows:

SURFTANG_EDGE Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

BC = SURFTANG_EDGE SS <bc_id1> <bc_id2> <float_list>

Revised: 6/12/13 381

4.10.110 SURFTANG_EDGE

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the primary boundary location
(side set in EXODUS II) in the problem domain. This
side set is usually attached to a free surface.

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the secondary boundary
location (side set in EXODUS II) in the problem
domain. The boundary condition is applied on the edge
defined by the intersection of this side set with the
primary side set.

<float1> mx, the x-component of direction of application of
surface tension force.

<float2> my, the y-component of direction of application of
surface tension force.

<float3> mz, the z-component of direction of application of
surface tension force.

<float4> a factor multiplying the surface tension value read from
the material file when evaluating the surface integral
imposed by this boundary condition.

Examples

The following is a sample input card:

BC = SURFTANG_EDGE SS 80 60 0. -1. 0. 1.

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply
capillary forces to surfaces in three-dimensions. The surface divergence theorem is
used to simplify the curvature term in the capillary stress jump condition. This
produces integrals of the form:

(4-90)

where C is the bounding curve of the capillary free surface, σ is the surface
tension, φι is a finite element shape function and m is a vector that is at once
normal to the capillary surface and also normal to the curve C. It always points
outward from the domain in question.

φiσm Cd

C

382 Revised: 6/12/13

4.10.111 CAP_ENDFORCE_SCALAR

Most often this boundary condition appears at outflow boundaries of free-surfaces.
It is applied along the edge where the free-surface intercepts the outflow plane. In
this case, the m vector is normal to the outflow plane. If the outflow velocity is not
strongly set by a Dirichlet condition or other strongly enforced condition, this
boundary condition needs to be present so that a proper inclusion of all relevant
surface tension terms is performed.

• The <factor> parameter is provided to allow the user to independently vary the
surface tension value associated with this term alone. The value for σ used in the
preceding expression is the surface tension value obtained from the model
specified in the material file multiplied by the value of <float>. Reasons for doing
this are somewhat obscure but important to the practitioners of this art.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.111 CAP_ENDFORCE_SCALAR

Description/Usage (SPECIAL/VECTOR MOMENTUM)

This boundary condition card is very similar to the CAP_ENDFORCE card. It adds
surface tangent forces to the momentum equations at the endpoint of a free-surface, but
does not require specification of the surface tangent vector. The current free-surface
tangent vector is used as the surface tangent vector. Definitions of the input parameters
are as follows:

CAP_ENDFORCE_SCALAR

Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

BC = CAP_ENDFORCE_SCALAR NS <bc_id> <float>

Revised: 6/12/13 383

4.10.111 CAP_ENDFORCE_SCALAR

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<float> Equilibrium surface tension value. (See Technical
Discussion.)

This condition need only be applied at the intersection of outflow or inflow surfaces
and the free-surface.

Examples

The following is a sample input card:

BC = CAP_ENDFORCE_SCALAR NS 100 60.0

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply
capillary forces to surfaces. The surface divergence theorem is used to simplify the
curvature term in the capillary stress jump condition. This produces integrals of the
form:

(4-91)

where C is the bounding curve of the capillary free surface, σ is the surface
tension, φι is a finite element shape function and m is a vector that is at once
normal to the capillary surface and also normal to the curve C. It always points
outward from the domain in question. While this is completely general for three-
dimensions, a surface can be reduced to a curve for two-dimensions and the
divergence theorem still applies (for this boundary condition).

• This card or the CAP_ENDFORCE is used in conjunction with the CAPILLARY
card to complete (as indicated above) the treatment of capillarity conditions. It is
only required when an inflow or outflow boundary intersects a free surface.

• The CAP_ENDFORCE_SCALAR boundary condition is applied through function
fapply_ST_scalar (in file mm_ns_bc.c). The boundary term is computed as the
product of the surface tension supplied on this card (<float>) and the value
supplied on the Surface Tension card in the material file. When the latter card is
missing, Goma defaults its value to 1.0.

• This card was previously called SURFTANG_SCALAR for the surface tangent
component of the capillary force. Old input decks can be updated simply by
changing the name of the boundary condition without changing the parameters.

φiσm Cd

C

384 Revised: 6/12/13

4.10.112 SURFTANG_SCALAR_EDGE

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.112 SURFTANG_SCALAR_EDGE

Description/Usage (WIC/VECTOR MOMENTUM)

Like the SURFTANG_EDGE card, this boundary condition card is used to insert
surface tension forces on an outflow edge boundary defined by the primary and
secondary sidesets. In contrast to the SURFTANG_EDGE card, the direction of
application of the surface tension (σ) is predetermined automatically as the binormal
along the edge with respect to the outward facing normal of the primary sideset. This
condition is also an unrotated, weak integrated vector condition. It should be used only
in three-dimensional applications.

Definitions of the input parameters are as follows:

SURFTANG_EDGE_SCALAR

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database. Since it is
an EDGE condition, it applies to a curve defined as the
intersection of the primary and secondary sideset.

<bc_id1> The boundary flag identifier, an integer associated with
<bc_type> that identifies the primary boundary location
(side set in EXODUS II) in the problem domain. This
side set is used in defining the edge and the local vector
basis (normal, tangent, binormal) and is usually attached
to a free surface.

BC = SURFTANG_SCALAR_EDGE SS <bc_id1> <bc_id2> <float>

Revised: 6/12/13 385

4.10.112 SURFTANG_SCALAR_EDGE

<bc_id2> The boundary flag identifier, an integer associated with
<bc_type> that identifies the secondary boundary
location (side set in EXODUS II) in the problem
domain. It is used in defining the edge and the local
vector basis (normal, tangent, binormal).The boundary
condition is applied on the edge defined by the
intersection of this side set with the primary side set.

<float> A factor multiplying the surface tension value read from
the material file when evaluating the surface integral
imposed by this boundary condition.

Examples

The following sample input card:

BC = SURFTANG_EDGE_SCALAR SS 5 10 1.0

applies the boundary integral (see the Technical Discussion) along the curve described
by the intersection of side sets 5 and 10. The value for surface tension in the material
file is used unmodified since the multiplying factor is 1.0.

Technical Discussion

• The need for this boundary condition appears out of the formulation used to apply
capillary forces to surfaces in three-dimensions. The surface divergence theorem is
used to simplify the curvature term in the capillary stress jump condition. This
produces integrals of the form:

(4-92)

where C is the bounding curve of the capillary free surface, σ is the surface
tension, φι is a finite element shape function and m is the outward binormal vector
to the curve C with respect to the normal of the primary side set.

Most often this boundary condition appears at outflow boundaries of free surfaces.
It is applied along the edge where the free surface intercepts the outflow plane. If
the outflow velocity is not strongly set by a Dirichlet condition or other strongly
enforced condition, this boundary condition needs to be present so that a proper
inclusion of all relevant surface tension terms is performed.

• The <factor> parameter is provided to allow the user to independently vary the
surface tension value associated with this term alone. The value for σ used in the
preceding expression is the surface tension value obtained from the model

φiσm Cd

C

386 Revised: 6/12/13

4.10.113 FILL_CA

specified in the material file multiplied by the value of <float>. Reasons for doing
this are somewhat obscure but important to the practitioners of this art.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.113 FILL_CA

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to impose a contact angle on a boundary when using
Level Set Interface Tracking.

A description of the input parameters follows:

FILL_CA the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> θ, the contact angle imposed, in degrees.

Examples

An example:

BC = FILL_CA SS 10 30.0

BC = FILL_CA SS <bc_id> <float>

Revised: 6/12/13 387

4.10.114 MOVING_CA

Technical Discussion

This boundary condition must be used in conjunction with the VELO_SLIP_FILL
boundary condition. This latter condition permits the fluid to slip in the vicinity of the
contact line. The FILL_CA acts by imposing a force on the momentum equation. The
size of this force is more or less in proportion between the actual contact angle on the
boundary and the value specified on the card. This force is applied as a weakly
integrated condition and if the VELO_SLIP_FILL condition is not present, the
FILL_CA will be overwritten and ipso facto absent.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.114 MOVING_CA

Description/Usage (PCC/ROTATED MOMENTUM)

The intent of this boundary condition is to apply a contact angle at wetting in a two-
dimensional flow that is a function of the rate of advance or recession of the contact
line over the substrate. It is experimental, untested, and unsupported; use it at your own
risk.

There are ten values that must be specified in the <float_list>; definitions of the input
parameters are as follows:

MOVING_CA Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in

BC = MOVING_CA NS <bc_id> <float_list>

388 Revised: 6/12/13

4.10.114 MOVING_CA

EXODUS II) in the problem domain. A KINEMATIC free
surface must terminate at this single-node node set.

<float1> θstc, the static contact angle, in degrees.

<float2> nx, the x-component of solid surface normal vector.

<float3> ny, the y-component of solid surface normal vector.

<float4> nz, the z-component of solid surface normal vector.

<float5> θadv, the advancing contact angle, in degrees.

<float6> θrec, the receding contact angle, in degrees.

<float7> α, the scale-factor, see below.

<float8> vwx, the x-component of wall velocity.

<float9> vwy, the y-component of wall velocity.

<float10> vwz, the z-component of wall velocity.

Examples

The following is a sample input card:

BC = MOVING_CA NS 100 90.0 0. 1. 0. 135.0 45.0 1.0 -1. 0. 0.

Technical Discussion

• This boundary condition applies a point collocated constraint on the angle between
the solid surface vector and the free-surface normal of the form:

(4-93)

where n is the solid surface vector specified on the card and nfs is the free-surface
normal computed automatically by Goma. The contact angle is variable depending
upon the relative velocity of the mesh speed, , and the substrate speed,
specified on the card float_list:

(4-94)

• This constraint on the moving contact angle replaces a rotated component of the
momentum equation. In effect a wetting force is applied at the contact line whose
magnitude depends on the discrepancy between actual contact angle and that
computed by the above expressions. Note that other contact angle constraints are

n nfs⋅ θ()cos=

x· vw

θ θstc θadv θstc–() α x· vw–() nfs⋅()tanh+=

Revised: 6/12/13 389

4.10.115

applied to rotated components of the mesh equation. A real question exists whether
such a formulation is consistent with a KINEMATIC boundary condition also
applied to this node.

• Not also that since this boundary condition is applied to the momentum equation,
care must be taken to relax any Dirichlet on the substrate velocity. Otherwise, this
latter constraint will override this constraint.

• Users are again cautioned that this boundary condition is untested and potentially
inconsistent. It may not work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.115

4.10.116 SDC_STEFANFLOW

Description/Usage (SIC/MOMENTUM)

This boundary condition represents the specification of the normal component of the
interfacial velocity on one side of the interface. These are DVI_SIDTIE_VD boundary
conditions (Moffat, 2001) that have an additional property. The first time encountered
in the formation of the residual, the results of a sub calculation are stored either at the
node structure level or at the surface Gauss point level. The surface reaction and
surface species are specified as part of a surface domain within Chemkin.

The SURFDOMAINCHEMKIN_STEFAN_FLOW (shortened to SDC_STEFANFLOW
in the name2 member of the BC_descriptions struct in mm_names.h) boundary
condition solves the following equation representing Stefan flow at a boundary.

BC = SDC_STEFANFLOW SS <bc_id> <integer> {char_string}

390 Revised: 6/12/13

4.10.116 SDC_STEFANFLOW

(4-95)

where is the outward facing normal to the liquid material, is the liquid density,
 is the (mass average) velocity at the current surface quadrature point, and the

velocity of the mesh (i.e., the interface if the mesh is fixed at the interface). The
summation over N species is for the product of molecular weight () and the source
term for creation of species k in the liquid (). Note, while it may seem that one side
of the interface is getting special treatment, the combination of this boundary condition
with the KINEMATIC_CHEM boundary condition actually creates a symmetric treatment
of the boundary condition. SDC_STEFANFLOW is linked to the SDC_SPECIES_RXN
boundary conditions just as the KINEMATIC_CHEM boundary conditions are by the
expression for the interface reaction. The sum is over all of the interfacial source terms
for species in the phase.

Definitions of the input parameters are as follows:

SDC_STEFANFLOW Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Element Block ID of the phase on whose side of the
interface this boundary condition will be applied.

char_string , string indicating where the surface source term
information for this boundary condition will be
obtained. Three options exist:

IS_EQUIL_PSEUDORXN
VL_EQUIL_PSEUDORXN
SDC_SURFRXN

These are boundary conditions that apply to the Species
Equations. The last boundary condition is not yet
implemented, so SDC_SURFRXN currently does
nothing.

Examples

The following is a sample input card:

nl ρ
l

u
l

us–()[]• WkSk
l

–

k 1=

N

=

nl ρ
l

u
l

us

Wk
S

l
k

Sk
l

Revised: 6/12/13 391

4.10.116 SDC_STEFANFLOW

BC = SDC_STEFANFLOW SS 1 0 VL_EQUIL_PSEUDORXN

The above card will create a strongly integrated boundary condition specifying the
normal component of the velocity on side set 1 on the element block 0 side of the
interface. The source term to be used will be taken from multiple previously specified
VL_EQUIL_PSEUDORXN cards.

Technical Discussion

• Currently, this card has only been tested on internal interfaces containing
discontinuous interfaces using the VL_EQUIL_PSEUDORXN source term. The
SDC_SURFRXN boundary condition has not been implemented yet.

• The DVI_SIDTIE_VD variable is a nomenclature adopted by Moffat (2001) in his
development of a revised discontinuous variable implementation for Goma. It
pertains to Discontinuous Variable Interfaces (DVI) and the strongly integrated
Dirichlet (SID) boundary conditions prescribing the discontinuous value of
variables on either side of an interface (TIE boundary conditions). The user is
referred to Moffat (2001) for detailed presentation on discontinuous variables.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-015.1: Implementation Plan for Upgrading Boundary Conditions at
Discontinuous-Variable Interfaces, January 8, 2001, H. K. Moffat

392 Revised: 6/12/13

4.10.117

4.10.117

4.10.118 FLUID_SOLID

Description/Usage (PCC/VECTOR MOMENTUM)

Used for fluid-structure interaction problems, the FLUID_SOLID condition equates the
normal traction (the tangential and normal force components, per unit area) between
adjacent fluid and solid materials. This condition is only to be used on boundaries
between regions of ARBITRARY mesh motion with fluid momentum equations and of
LAGRANGIAN or DYNAMIC_LAGRANGIAN mesh motion, with solid momentum
equations (or mesh equations); see Mesh Motion and EQ cards. With this boundary
condition, the local residual and Jacobian contributions from the fluid mechanics
momentum equations (on the ARBITRARY side of the boundary) are added into weak
form of the residual and Jacobian entries for the solid mechanics equations (on the solid
LAGRANGIAN side of the boundary). All elements on both sides of the interface must
have the same element type, i.e., the same order of interpolation and basis functions,
e.g., Q1 or Q2. Also, such interfaces must include element sides from both sides of the
interface in the defining side set.

Definitions of the input parameters are as follows:

FLUID_SOLID Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer1> Element block ID of solid phase (of LAGRANGIAN motion
type) from the EXODUS II database.

<integer2> Element block ID of liquid phase from the EXODUS II
database.

[float] Scale factor for stress balance for non-dimensionalization.
This parameter, which multiplies the solid phase
contribution, is optional; the default is 1.0.

BC = FLUID_SOLID SS <bc_id> <integer1> <integer2> [float]

Revised: 6/12/13 393

4.10.118 FLUID_SOLID

Examples

The following is a sample input card:

BC = FLUID_SOLID SS 5 2 1

In this example, side set 5 is a boundary between a solid blade and a liquid; material 2
is the rubber blade, and material 1 is the fluid. Along that blade, a companion boundary
condition of the form

BC = NO_SLIP SS 5 2 1

should also be applied.

Technical Discussion

The functional form of the boundary condition is:

(4-96)

where is the fluid phase stress tensor given by any one of the specified fluid-phase
constitutive equations, and is the solid-phase stress tensor, also given by any one of
the solid-phase constitutive equation (see material file specifications). is a scaling
factor that defaults to unity (and is usually best taken as such unless some scaling is
invoked).

This balance is applied to the weak form of the solid-phase momentum residuals, from
the fluid phase, viz. in the fluid-phase, the fluid-stress at the interface is added to the
solid-phase momentum residuals. As mentioned above, this condition usually needs to
be supplemented by a statement of mass conservation across the interface, which will
depend on whether the solid phase is of CONTINUOUS or POROUS media (see Media
Type card).

Theory

No Theory.

FAQs

Troubleshooting 1: This boundary condition requires that the side set contain elements
from both the fluid and the solid side of the interface. For the FASTQ tool, this is the
default case; for CUBIT and possibly other related tools, this can be forced on the side
set definition options. Interestingly, the boundary condition does work if the side set is
attached to the fluid phase only, but just due to the way in which it is applied.

Troubleshooting 2: This boundary condition does not enforce mass conservation. A
combination of NO_SLIP or VELO_NORMAL/VELO_TANGENT must be invoked to

n
˜

T
˜

⋅ n
˜

σ
˜

⋅()λ=

T
˜

σ
˜ λ

394 Revised: 6/12/13

4.10.119

achieve a material surface. For the latter, care must be taken to maintain the application
of the VELO_NORMAL condition after a remesh. This condition is applied only to one
side of the interface and depends on the ss_to_blks connectivity structure; it may be
necessary to force its application, especially after remeshes. To be sure that the proper
set of conditions is being applied, look at the BC_dup.txt file for nodes along the
interface.

References

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29,
2000, P. R. Schunk and Matt Stay

GT-006.3: Slot and Roll coating with remeshing templates and tutorial for GOMA and
CUBIT/MAPVAR, August 3, 1999, R. R. Lober and P. R. Schunk

4.10.119

4.10.120 FLUID_SOLID_RS

Description/Usage (WIC/VECTOR MOMENTUM)

Please see SOLID_FLUID_RS. This boundary condition has not yet been implemented.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

BC = FLUID_SOLID_RS SS <bc_id> <integer1> <integer2> [float]

Revised: 6/12/13 395

4.10.121 DARCY_CONTINUOUS

References

No References.

4.10.121 DARCY_CONTINUOUS

Description/Usage (SIC/ROTATED MOMENTUM)

This condition enforces continuity of mass flux at an interface between a continuous
medium and a saturated or partially saturated porous medium. In other words,
DARCY_CONTINUOUS is a boundary condition that equates the velocity component
in the liquid phase normal to the interface with the Darcy velocity in the porous phase,
normal to the same interface, with proper accounting for conservation of mass using
the liquid phase densities in the material files.

DARCY_CONTINOUS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> Element block ID of porous phase from the EXODUS II
database.

<integer2> Element block ID of continuous fluid phase from the
EXODUS II database.

[float1] An optional floating point that is used for level-set free
surface problems. This floating point represents a length
scale over which “contact” of a liquid free surface
represented by a level set field and a porous medium. It
should be set to some small integer multiple of the
smallest element size along the boundary. Note that this
length scale is only required in cases where “sharp”
interfaces using subelement integration are used. It is
not required for diffuse interface representations.

BC = DARCY_CONTINOUS SS <bc_id> <integer1> <integer2> [float1]

396 Revised: 6/12/13

4.10.121 DARCY_CONTINUOUS

Examples

The boundary condition

BC = DARCY_CONTINUOUS SS 5 2 1

applies to the interface defined by side set 5 which joins EXODUS II block 2 (porous
phase) and block 1 (continuous phase).

Technical Discussion

The DARCY_CONTINUOUS boundary condition imposes the following requirement at
the interface between a continuous medium and a saturated or partially saturated
porous medium:

(4-97)

where is the outward-pointing normal to the surface, is the Darcy flux, is the
liquid density, presumed to be the same in the adjacent phases, is the fluid velocity
and is the mesh velocity.

Typically this boundary condition is applied between two blocks, one being of a
LAGRANGIAN mesh motion type (see Mesh Motion card) and the other being of an
ARBITRARY mesh motion type. Within the LAGRANGIAN material the Media Type
card is set to POROUS_SATURATED, POROUS_UNSATURATED, or
POROUS_TWO_PHASE. The other block is of type CONTINOUS.

Refer to the citations below where this boundary condition is discussed in more detail.

Theory

No Theory.

FAQs

Important troubleshooting note: Density, as specified in the material files for the
continuous and porous phase, MUST be the same for this boundary condition to make
sense.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

n
˜

q
˜

⋅ ρln˜
v
˜

v
˜s

–()⋅=

n
˜

q
˜

ρl
v
˜

v
˜s

Revised: 6/12/13 397

4.10.122 VN_POROUS

GT-028.0: Liquid Drop Impact on a Porous Substrate: a level-set tutorial, August 15,
2005.

4.10.122 VN_POROUS

Description/Usage (SIC/ROTATED MOMENTUM)

This boundary condition is used to calculate the normal component of gas phase
velocity at the interface between a continuous gas phase and porous phase. The
condition is basically the unsaturated equivalent to DARCY_CONTINUOUS, and hence
is a condition on the normal component of fluid (gas) velocity on the continuous side of
the interface (see below). The flux on the porous medium side includes Darcy flux and
Fickian diffusive flux in the porous phase. The vapor flux into gas is used to determine
gas velocity. The condition is similar to the solid-liquid interface conditions that apply
to interfaces between a porous medium and an external gas (in which the energy
equation is used to solve for solvent concentration in the gas phase). This boundary
condition is still under development and has not been recently tested. Its last use was
for evaporation from a porous unsaturated film in a sol-gel application (see references
below).

There are three values to be supplied for the <integer_list>; definitions of the input
parameters are as follows:

VN_POROUS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer1> Element block ID of solid, porous phase from the EXODUS
II database.

<integer2> Element block ID of gas phase from the EXODUS II
database.

<integer3> Set to zero for now, indicating that this condition pertains
to the primary liquid solvent vapor. At some point this will
be generalized to include all vapor components.

BC = VN_POROUS SS <bc_id> <integer_list> <float>

398 Revised: 6/12/13

4.10.122 VN_POROUS

<float> Density of pure solvent vapor.

Examples

The following is a sample input card:

BC = VN_POROUS SS 5 1 2 0 1.e-3

This condition applies to internal side set 5, which defines the interface between
element block 1 (the solid porous phase which has Media Type of
POROUS_PART_SAT or POROUS_TWO_PHASE) and element block 2 (the fluid
phase which has Media Type CONTINUOUS). It is based on the flux of liquid solvent
in the porous phase (denoted by the integer 0), the vapor form of which has a density of
1.e-3. The condition results in a blowing or sucking velocity at the interface in the fluid
(gas) continuous phase.

Technical Discussion

The functional form of this boundary condition is

(4-98)

Here, the left hand side is the total flux of liquid solvent, in both gas and liquid phases.
The first two terms are the Darcy pressure driven contributions, and the second two
terms are the Fickian flux contributions.

This condition would be useful for predicting the gas-flow pattern above a drying
porous matrix, in which the vapor flux being driven out of the porous skeleton were a
mass source to drive flow in the surrounding gas. The condition has not been tested
since 1995.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-028.0: Modeling Drying of Dip-Coated Films with Strongly-Coupled Gas Phase
Natural Convection, R. A. Cairncross, 1999.

n vgρg
i

vlρl
i

+ Jg
i

Jl
i

+ +()⋅ n
˜

v
˜

v
˜m–()⋅=

Revised: 6/12/13 399

4.10.123 CAPILLARY_SHEAR_VISC

4.10.123 CAPILLARY_SHEAR_VISC

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition card is used to apply additional capillary forces beyond
surface tension and surface tension gradients (as applied with use of the CAPILLARY
BC) to the momentum equation on a free-surface. These additional forces are caused
by surface deformation (surface expansion/contraction/shear) in the presence of
surface-active species. Microstructural layers of surfactants in a capillary free surface
can lead to significant dissipation of mechanical energy due to an effective surface
viscosity. These additional properties are specified as inputs to this boundary
condition.

Definitions of the input parameters are as follows:

CAPILLARY_SHEAR_VISC

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> µs, surface shear viscosity.

<float2> κs,, surface extensional/dilatational viscosity.

[integer] Optional integer value indicating the element block id from
which to apply the boundary condition. This is used to force
the capillary stresses to be applied from within a phase
where the momentum equations are defined.

Examples

Following is a sample card:

BC = CAPILLARY SS 12 1.0 10.0 0.0

BC = CAPILLARY_SHEAR_VISC SS 12 0.001 0.01

BC = CAPILLARY_SHEAR_VISC SS <bc_id> <float_list> [integer]

400 Revised: 6/12/13

4.10.123 CAPILLARY_SHEAR_VISC

These cards specifies that capillary forces be applied to the free surface on side set 12.
If a surface tension material parameter value or model is supplied, this is the surface
tension value used. If not, the surface tension value used is 1.0. An external isotropic
pressure of 10.0 is applied from the surrounding environment. The second card adds a
surface viscosity effect. Note that you must solve the shell equation EQ = n_dot_curl_v
to pick up this term.

Technical Discussion

• One of the primary characteristics of a free-surface is the presence of surface
tension-related forces. This boundary condition permits application of such forces.
The forces on the fluid at the free-surface are set via the following relation:

(4-99)

where n is the outward normal to the surface, T is the fluid stress tensor, Pex is the
external applied pressure described above, H is the surface curvature defined as,

, σ is the surface tension, and is the surface divergence
operator defined as .

The Boussinesq-Scriven surface rheological constitutive equation is as follows:

Here, is the surface gradient operator, and is the surface
unit tensor. µs and ks are the surface shear viscosity and surface dilatational viscosity,
respectively. The terms beyond the first three on the right are added by this boundary
condition card. Note that the first three terms on the right are balance of the stress in
the standard goma CAPILLARY condition, with surface tension gradients being
accommodated through variable surface tension. The boundary condition
CAPILLARY_SHEAR_VISC is used to set the additional terms of this constitutive
equation. As of January 2006 only the 7th term on the right hand side is implemented,
as it is the only nonzero term in a flat surface shear viscometer. The building blocks
for the other terms are available through additional shell equations (specifically you
must solve EQ = n_dot_curl_v equation on the same shell surface). . These remaining
terms actually represent additional dissipation caused by surface active species
microstructures flowing in the surface. The best source of discussion of this equation
is a book by Edwards et al. (1991. Interfacial Transport Processes and Rheology.
Butterworth-Heinemann, Boston).

n T
fluid

⋅ n– Pex 2Hσn s∇ σ⋅+ +=

H s∇– n 2⁄⋅= s∇

fs∇ I nn–() f∇⋅=

n
˜

T
˜

⋅()– F
w

2Hσn
˜

∇sσ k
s

µ
s

+() ∇s v
˜

⋅() 2µ
s
n
˜

b
˜

2HI
˜s–() ∇sv

˜
2µ

s
n
˜

k
s

µ
s

+()∇s v
˜

⋅+•+s∇+ + +=

µ
s

n
˜

× ∇s ∇s × v
˜

[] n
˜

⋅() 2 b
˜

2HI
˜s–() ∇sv

˜
() n

˜
⋅ ⋅–{ }+

∇s I
˜

n
˜
n
˜

–() ∇⋅≡ Is I
˜

n
˜
n
˜

–()≡

Revised: 6/12/13 401

4.10.124 VELO_THETA_COX

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.124 VELO_THETA_COX

Description/Usage (PCC/R_MOM_TANG1)

This boundary condition card applies a dynamic contact angle dependent velocity
condition in a similiar fashion to VELO_THETA_TPL, but the functional form of the
velocity is different. The functional form stems from the hydrodynamic theory of
wetting by Cox.

 The <float_list> for this boundary condition has eight values; definitions of the input
parameters are as follows:

VELO_THETA_COX

Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> θ, equilibrium (static) contact angle subtended by wall
normal and free surface normal, in units of degrees.

<float2> nx , x-component of normal vector to the geometry
boundary (see important note below regarding variable wall
normals, viz. non-planar solid walls).

BC = VELO_THETA_COX NS <bc_id> <float_list> [integer]

402 Revised: 6/12/13

4.10.124 VELO_THETA_COX

<float3> ny , y-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float4> nz , z-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float5> εs
 is the dimensionless slip length, i.e. the ratio of the slip

length to the characteristic length scale of the macroscopic
flow .

<float6> σ is the surface tension. This value is multiplied by the
surface tension value stipulated by the surface tension
material model.

<float7> trelax is a relaxation time which can be used to smooth the
imposed contact point velocity for transient problems. Set
to zero for no smoothing.

<float8> Vold is an initial velocity used in velocity smoothing for
transient problems. Set to zero when smoothing is not used.

[integer] blk_id, an optional parameter that is the element block
number in conjugate problems that identifies the material
region to which the contact angle applies (usually the liquid
element block in solid/liquid conjugate problems).

Examples

Following is a sample card:

BC = VELO_THETA_COX NS 100 {45} 0. 1. 0. 0.1 72.0
0 0 2

This condition applies a contact angle of 45 degrees between the free surface normal at
the 100 nodeset and the vector (0,1,0). The surface tension is 72, the reciprocal of the
slip coefficient is 0.1, and the dynamic contact angle is taken from element block 2.
Normally, this latter vector is the normal to the solid surface in contact with the free
surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is as follows:

Revised: 6/12/13 403

4.10.124 VELO_THETA_COX

 . (4-100)

where vCox is computed from

(4-101)

where the Cox functions, f and g, are given by;

(4-102)

(4-103)

• The parameters λ, qinner, and qouter are currently not accessible from the input card
and are hard-set to zero. λ is the ratio of gas viscosity to liquid viscosity whereas
qinner and qouter represent influences from the inner and outer flow regions

(4-104)

When smoothing is not used, i.e. trelax = 0 , the imposed velocity is equal to that
stipulated by the Hoffman correlation. Also see WETTING_SPEED_COX and
SHARP_COX_VELOCITY for level-set versions.

• For steady problems, the substrate velocity will be extracted from adjoining
VELO_TANGENT, VELO_SLIP, or VELO_SLIP_ROT boundary conditions.

• The Cox wetting velocity requires evaluation of integrals for the function g(θ, λ)
which is currently done numerically using 10-point Gaussian quadrature. As such
the evaluation of the integrals is expected to become inaccurate as either θeq tends
toward zero or θ tends toward 180 degrees. Note that the integrand becomes
singular as θ tends toward 0 or 180 degrees.

• This condition was motivated by the Cox hydrodynamic theory of wetting (cf.
Stephan F. Kistler, “Hydrodynamics of Wetting,” in Wettability edited by John
Berg, 1993).

Theory

No Theory.

v Vold vCox Vold–() 1
t

trelax

-----------–
 exp–+=

Ca
µvCox

σ
--------------≡

g θ λ,() g θeq λ,()–

εs
1–

()ln
qinner

f θeq λ,()

qouter

f θ λ,()
----------------–+

---=

f θ λ,()
2 θ λ2 θ2 θsin()

2
–() 2λ θ π θ–() θsin()

2
+[] π θ–()

2
θsin()

2
–[]+ +{ }sin

λ θ2 θsin()
2

–() π θ– θ θcossin+[] π θ–()
2

θsin()
2

–[] θ θ θcossin–[]+
--≡

g θ λ,()
1

f θ λ,()
---------------- βd

0

θ

≡

f θ 0,()
2 θsin

θ θ θcossin–[]
-------------------------------------≡

404 Revised: 6/12/13

4.10.125 VELO_THETA_HOFFMAN

FAQs

No FAQs.

References

No References.

4.10.125 VELO_THETA_HOFFMAN

Description/Usage (PCC/R_MOM_TANG1)

This boundary condition card applies a dynamic contact angle dependent velocity
condition in a similiar fashion to VELO_THETA_TPL, but the functional form of the
velocity is different. The functional form stems not from a theory of wetting, but
instead, from a correlation of many empirical measurements.

 The <float_list> for this boundary condition has eight values; definitions of the input
parameters are as follows:

VELO_THETA_HOFFMAN

Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> θ, equilibrium (static) contact angle subtended by wall
normal and free surface normal, in units of degrees.

<float2> nx , x-component of normal vector to the geometry
boundary (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float3> ny , y-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

BC = VELO_THETA_HOFFMAN NS <bc_id> <float_list> [integer]

Revised: 6/12/13 405

4.10.125 VELO_THETA_HOFFMAN

<float4> nz , z-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float5> currently not used.

<float6> σ is the surface tension. This value is multiplied by the
surface tension value stipulated by the surface tension
material model.

<float7> trelax is a relaxation time which can be used to smooth the
imposed contact point velocity for transient problems. Set
to zero for no smoothing.

<float8> Vold is an initial velocity used in velocity smoothing for
transient problems. Set to zero when smoothing is not used.

[integer] blk_id, an optional parameter that is the element block
number in conjugate problems that identifies the material
region to which the contact angle applies (usually the liquid
element block in solid/liquid conjugate problems).

Examples

Following is a sample card:

BC = VELO_THETA_HOFFMAN NS 100 {45} 0. 1. 0. 0.
72.0 0 0 2

This condition applies a contact angle of 45 degrees between the free surface normal at
the 100 nodeset and the vector (0,1,0). The surface tension is 72 and the dynamic
contact angle is taken from element block 2. Normally, this latter vector is the normal
to the solid surface in contact with the free surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is as follows:

 . (4-105)

where vHoffman is computed from the implicit solution of the Hoffman correlation;

(4-106)

or

v Vold vHoffman Vold–() 1
t

trelax

-----------–
 exp–+=

θ fHoff Ca f 1–
Hoff θeq()+[]=

406 Revised: 6/12/13

4.10.125 VELO_THETA_HOFFMAN

(4-107)

where the Hoffman functions, fHoff and gHoff, which are inverses of each other are
given by;

(4-108)

(4-109)

When smoothing is not used, i.e. trelax = 0 , the imposed velocity is equal to that
stipulated by the Hoffman correlation. Also see WETTING_SPEED_HOFFMAN
and SHARP_HOFFMAN_VELOCITY for level-set versions.

• For steady problems, the substrate velocity will be extracted from adjoining
VELO_TANGENT, VELO_SLIP, or VELO_SLIP_ROT boundary conditions.

• Because the Hoffman functions are implicit, iteration is required in the
determination of the wetting velocity. As a result, for very high capillary numbers,
i.e. > 106, the iteration procedure in Goma may need to be modified.

• This condition was motivated by the Hoffman empirical correlation (cf. Stephan F.
Kistler, “Hydrodynamics of Wetting,” in Wettability edited by John Berg, 1993).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Ca
µvHoffman

σ
-----------------------≡ gHoff θ() gHoff θeq()–=

fHoff Ca() arc 1 2 5.16
Ca

1 1.31Ca0.99+

 0.706

tanh–

cos=

gHoff θ() 1 1.31gHoff θ()0.99+()
1

2 5.16()
------------------ 3 θcos–

1 θcos+
---------------------ln=

Revised: 6/12/13 407

4.10.126 VELO_THETA_TPL

4.10.126 VELO_THETA_TPL

Description/Usage (PCC/R_MOM_TANG1)

This boundary condition card applies a dynamic contact angle dependent velocity
condition in place of one component of the fluid momentum equation (unlike CA_BC
which applies a fixed contact angle condition ot the mesh equation). The functional
form of this condition is given below and stems from the Blake-DeConinck psuedo-
molecular kinetics theory of wetting. It is recommended that this condition or other
forms of it (cf. VELO_THETA_HOFFMAN or VELO_THETA_COX) be used for
steady and transient ALE problems. If you are deploying level-set technology to track
moving capillary surfaces and three-phase wetting lines then the counterpart to this
condition is WETTING_SPEED_LINEAR. It is noteworthy that this condition is
applied to the fluid momentum equation, so that the velocity of the wetting line and the
cosine of the current measured contact angle difference with the specified static value
are related in a linear way.

 The <float_list> for this boundary condition has eight values; definitions of the input
parameters are as follows:

VELO_THETA_TPL

Name of the boundary condition.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> θ, equilibrium (static) contact angle subtended by wall
normal and free surface normal, in units of degrees.

<float2> nx , x-component of normal vector to the geometry
boundary (see important note below regarding variable wall
normals, viz. non-planar solid walls).

BC = VELO_THETA_TPL NS <bc_id> <float_list> [integer]

408 Revised: 6/12/13

4.10.126 VELO_THETA_TPL

<float3> ny , y-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float4> nz , z-component of normal vector to the geometry
boundary. (see important note below regarding variable wall
normals, viz. non-planar solid walls).

<float5> V_0 is a pre-exponential velocity factor (see functional
form below)

<float6> g is a thermally scaled surface tension, i.e. σ/2nkT. This
value is multiplied by the surface tension value stipulated
by the surface tension material model.

<float7> trelax is a relaxation time which can be used to smooth the
imposed contact point velocity for transient problems. Set
to zero for no smoothing.

<float8> Vold is an initial velocity used in velocity smoothing for
transient problems. Set to zero when smoothing is not used.

[integer] blk_id, an optional parameter that is the element block
number in conjugate problems that identifies the material
region to which the contact angle applies (usually the liquid
element block in solid/liquid conjugate problems). NOTE/
WARNING: As of 1/13/2013 this option seems not to work
with TALE problems.

Examples

Following is a sample card:

BC = VELO_THETA_TPL NS 100 {45} 0. 1. 0. 1000.0
5.e-4 0 0

This condition applies a contact angle of 45 degrees between the free surface normal at
the 100 nodeset and the vector (0,1,0). The velocity scale is 1000 and the sensitivity
scale is 5.e-4. Normally, this latter vector is the normal to the solid surface in contact
with the free surface at this point.

Technical Discussion

• The constraint that is imposed at the nodeset node is as follows:

Revised: 6/12/13 409

4.10.126 VELO_THETA_TPL

 . (4-110)

(4-111)

When smoothing is not used, i.e. trelax = 0 , the imposed velocity is equal to that
stipulated by the Blake-DeConinck equation. Also see
WETTING_SPEED_LINEAR and WETTING_SPEED_BLAKE for level-set
versions of this and VELO_THETA_HOFFMAN and VELO_THETA_COX for
other functional forms.

• We recommend use of this condition over CA_BC for all transient problems. In
this case this condition displaces a momentum equation component, with the other
component being used to enforce no substrate penetration. The kinematic
condition is applied to the mesh motion a this node so as to conserve mass.

• For steady problems, the substrate velocity will be extracted from adjoining
VELO_TANGENT, VELO_SLIP, or VELO_SLIP_ROT boundary conditions.

• Important: Variable Wall Normals. Situations for which the wall shape is non-
planar, meaning that the normal vector is not invariant as the contact line moves,
there is an option to leave all of the normal-vector components zero. In this case
Goma then seeks to determine the local wall normal vector from the geometry it is
currently on, using the element facets. It is recommended that this option not be
used unless the geometry is truly nonplanar, as the logic is complex and not 100%
reliable. See documentation for CA_BC for an example.

• This condition was motivated by T. D. Blake and is the so-called Blake-
DeConinck condition (T. D. Blake, J. De Coninck 2002. “The influence of solid-
liquid interactions on dynamic wetting”, Advances in Colloid and Interface
Science 96, 21-36.). See this article for some options for the form of the pre-
exponential velocity, V_0.

• Important: Wall Normal convention. The wall normal vector on an external
solid boundary is defined in goma as the inward facing normal to the mesh, and the
free surface normal to the liquid (or wetting phase for two-liquid systems) is
defined as the outward facing normal to the free surface. Put another way and
referring to the picture below, the wall normal is directed from the “solid phase” to
the “liquid phase”, and the free surface normal is directed from the “liquid phase”
or “wetting phase” to the “vapor phase” or “Non-wetting phase”. Note that for
zero contact angle the liquid is “perfectly wetting”. The air-entrainment limit (viz.
the hydrodynamic theory interpretation) would occure at a 180 degree contact
angle. Recall that the angle is specified in radians on this card.

v Vold vBlake Vold–() 1
t

trelax

-----------–
 exp–+=

vBlake v0 g θeq θcos–cos()[]sinh=

410 Revised: 6/12/13

4.10.127

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.127

4.10.128 SHEET_ENDSLOPE

Description/Usage (SPECIAL/VECTOR MOMENTUM)

This boundary condition card is used to enforce a slope of a membrane surface (cf. to
be used in conjuction with BC = TENSION_SHEET) at its enpoints. . There are two
values to be input for the <float_list>; definitions of the input parameters are as
follows:

SHEET_ENDFORCE

Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

BC = SHEET_ENDSLOPE NS <bc_id> <float_list>

Liquid or
wetting phase

Gas (or nonwetting) phase

Solid phase

nfs

nwall

θ n
˜ wall

n
˜ fs

⋅()acos=

Revised: 6/12/13 411

4.10.128 SHEET_ENDSLOPE

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<float1> X-component of upstream idler point (see discussion
below)

<float2> Y-component of upstream idler point.

Examples

The following is a sample input card using several APREPRO variables:

BC = SHEET_ENDSLOPE NS 100 {sind(th2)} {-cosd(th2)

This condition would enforce a slope equivalent to that defined between the
coordinates of the node at NS 100 with the point [sind(th2), -cosd(th2)].

Technical Discussion

Only two dimensional applications, viz. the nodeset is a single-node nodeset.

This is a single point nodeset boundary condition. Its function is to set the slope of the
web at the single point nodeset N. It does this by enforcing continuity of the slope of
the TENSION_SHEET sideset with the straight line that connects the point (X,Y) with
nodeset N. Thus, this boundary condition can be used to model the influence of an
upstream idler roller located at the point (X,Y). Indeed, this boundary condition has an
alternate name: IDLER_LOC.

This boundary condition exploits the natural boundary conditions associated with the
TENSION_SHEET formulation so it really can only beused in conjunction with the
latter boundary condition.

 One caveat that must be mentioned is that the formulation of these two boundary
conditions is not general and therefore they should only be applied to web geometries
that are predominantly horizontal. That is, the x component of the normal vector to the
web sideset should at each point be less than or equal to the y component

Theory

No Theory.

FAQs

No FAQs.

412 Revised: 6/12/13

4.10.129 TENSION_SHEET

References

No References.

4.10.129 TENSION_SHEET

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition card is used to apply a membrane force to the fluid
momentum equation in order to model a membrane-like structure, viz. one with no
bending stiffness but with significant tension much larger than the fluid viscous
stresses. This boundary condition is basically the same mathematically as the capillary
condition, with the tension here specified instead of a capillary surface tension. The
only difference is the way in which it is applied: it is applied as a strong integrated
condition instead of a weak form condition.

Definitions of the input parameters are as follows:

TENSION_SHEET

Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> Τ, Tension of the membrane.

Examples

Following is a sample card:

BC = TENSION_SHEET SS 12

Technical Discussion

Usage notes:

-Can only be applied in two dimensions.

BC = TENSION_SHEET SS <bc_id> <float>

Revised: 6/12/13 413

4.10.129 TENSION_SHEET

-One caveat that must be mentioned is that the formulation of these two boundary
conditions is not general and therefore they should only be applied to web geometries
that are predominantly horizontal. That is, the x component of the normal vector to the
web sideset should at each point be less than or equal to the y component.

-To set the slope of the membrane at an endpoint, see the BC = SHEET_ENDSLOPE
card.

-This boundary condition that can be used to model the interaction of fluid with a thin
sheet under a constant tension load. The sideset to which it is applied must be fully
“wetted” by a fluid. Note that this boundary condition arises as a simplification of the
tensioned-web shell equations (cf. shell_tension and shell_curvature equations as
described in GT-033.0 and GT-027.0) subject to two simplifying assumptions:

 1) The sheet supports no bending moments. That is, it isn’t very rigid.

 2) The tension in the sheet is significantly larger than the viscous stresses in the fluid.

Given these assumptions this boundary condition can be used to model tensioned web
applications without having to resort to the shell equations. It is a strongly integrated,
rotated boundary condition on the mesh equations. It can only be used in two-
dimensional applications.

Theory

No Theory.

FAQs

No FAQs.

References

GT-033.0 and GT-027.0.

Category 5: Boundary Conditions for the Energy Equations

The following conditions are applied as boundary conditions to the energy equation. These
conditions include strong Dirichlet conditions, such as hard sets on temperature on a boundary as
a constant or function of position, weak-form conditions, such as a specified heat flux from a
convective heat transfer model or a constant flux, and a host of interfacial conditions for phase
change (viz. latent heat effects), etc. The energy equation is of course a scalar equation. Some
highly specialized equations are also available, such as a heat flux model for a laser interaction

414 Revised: 6/12/13

4.10.130 T

with a molten metal surface. These conditions will also apply in general to the porous energy
equation (see Porous Energy).

4.10.130 T

Description/Usage (DC/ENERGY)

This Dirichlet boundary condition card is used to set constant temperature. Definitions
of the input parameters are as follows:

T Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of temperature.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample input card:

BC = T NS 100 273.13

Technical Discussion

No discussion.

Theory

No Theory.

BC = T NS <bc_id> <float1> [float2]

Revised: 6/12/13 415

4.10.131 T_USER

FAQs

No FAQs.

References

No References.

4.10.131 T_USER

Description/Usage (PCC/ENERGY)

This boundary condition card is used to call a routine for a user-defined temperature.
Specification is made via the function tuser in file “user_bc.c.” Definitions of the
input parameters are as follows:

T_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutine so the user can vary
the parameters of the boundary condition. This list of float
values is passed as a one-dimensional double array to the
appropriate C function in file user_bc.c.

Examples

The following is a sample input card with two parameters passed to function tuser:

BC = T_USER SS 100 273.13 100.0

Technical Discussion

No discussion.

BC = T_USER SS <bc_id> <float_list>

416 Revised: 6/12/13

4.10.132

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.132

4.10.133 QCONV

Description/Usage (WIC/ENERGY)

This boundary condition card specifies convective heat flux. Definitions of the input
parameters are as follows:

QCONV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> h, heat transfer coefficient.

<float2> Ts, sink temperature.

Examples

The following is a sample card:

BC = QCONV SS 100 10.0 293.0

Technical Discussion

The convective heat flux is defined as

BC = QCONV SS <bc_id> <float1> <float2>

Revised: 6/12/13 417

4.10.134 QRAD

(4-112)

where h and Ts are the convective heat transfer coefficient and the sink temperature,
respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.134 QRAD

Description/Usage (WIC/ENERGY)

This boundary condition card specifies heat flux using both convective and radiative
terms. The <float_list> has four parameters; definitions of the input parameters are as
follows:

QRAD Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> h, convective heat transfer coefficient.

<float2> Ts, sink temperature.

<float3> ε, total hemispherical emissivity.

<float4> σ, Stefan-Boltzmann constant.

BC = QRAD SS <bc_id> <float_list>

n
˜

q
˜

⋅ h T Ts–()=

418 Revised: 6/12/13

4.10.135 QSIDE

Examples

Following is a sample card:

BC = QRAD SS 100 10.0 273.0 0.3 5.6697e-8

Technical Discussion

The heat flux definition for this card is a combined convective and radiative
formulation:

(4-113)

where h and Ts are the convective heat transfer coefficient and the sink temperature,
and ε and σ are the total hemispherical emissivity and Stefan-Boltzmann constant,
respectively. The latter constant has been made an input parameter rather than a code
constant so that the user can specify its value in units that are consistent for the problem
being modeled.

The QRAD boundary condition can be used in place of QCONV by simply setting the
emissivity value to zero.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.135 QSIDE

Description/Usage (WIC/ENERGY)

This boundary condition card is used to specify a constant heat flux. Definitions of the
input parameters are as follows:

BC = QSIDE SS <bc_id> <float1>

n
˜

q
˜

⋅ h T Ts–() εσ T
4

T
4
s–()+=

Revised: 6/12/13 419

4.10.135 QSIDE

QSIDE Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> Value of heat flux. A positive value implies that energy is
being added to system; a negative value implies energy is
being taken from the system through the boundary.

Examples

The following is a sample card:

BC = QSIDE SS 22 1.50

Technical Discussion

The mathematical form of the boundary condition.

(4-114)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n q qo=⋅

420 Revised: 6/12/13

4.10.136 \ T_CONTACT_RESIS, T_CONTACT_RESIS_2

4.10.136\ T_CONTACT_RESIS, T_CONTACT_RESIS_2

Description/Usage (WIC/ENERGY)

This boundary condition set is used to specify a thermal contact resistance at an
interface between two mesh regions defined by a side set. Please see special usage
notes below regarding proper side-set specification and the reasons that both BC cards
are required for an internal interface. NOTE that the temperature field MUST be
interpolated with the discontinous versions of Q1 or Q2, viz. Q1_D and Q2_D.
Definitions of the input parameters are as follows:

T_CONTACT_RESIS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database. Note this side set
MUST contain elements on both sides of the interface.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<int1> Material/region ID associated with first material

<int2> Material/region ID associated with second material. Note
that these material IDs are reversed on the second BC.

<float1> Value contact resistance in units of thermal conductivity
divided by length.

Examples

The following is a sample card:

BC = T_CONTACT_RESIS SS 3 1 2 10.0

BC = T_CONTACT_RESIS_2 SS 3 2 1 10.0

Note that both boundary condition cards are required at an internal interface. In this
case the interface divides mesh/material ID 1 and 2. Note also how these material IDs
are reversed on the second card. These conditions apply a thermal contact resistance of
10. (units of thermal conductivity divided by length) at the interface defined by SS 3.

BC = T_CONTACT_RESIS SS <bc_id> <int1> <int2> <float1>
BC = T_CONTACT_RESIS_2 SS <bc_id> <int2> <int1> <float1>

Revised: 6/12/13 421

4.10.137 QUSER

Technical Discussion

The mathematical form of the boundary condition.

(4-115)

The flux into the interface from material “a” is equivalent to that into material “b”, both
equal to the temperature jump across the interface times the contact resistance R-1.

The side set to which this boundary condition is applied must contain elements on both
sides of the interface. Look up any special commands in your mesh generator to make
sure this occurs. In CUBIT, for example, you have to add “wrt volume 1 2” like
qualifiers on the side set command. The reason for the “double application” of this
condition is to pick up the all the terms from both sides of the interface with the proper
sign. The nodes at the interface have two temperatures, one from each side, and so two
weak form applications of this equation are required, one from each side.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.137 QUSER

Description/Usage (WIC/ENERGY)

This boundary condition card is used to call a routine for a user-defined heat flux
model. Definitions of the input parameters are as follows:

QUSER Name of the boundary condition (<bc_name>).

BC = QUSER SS <bc_id> <float_list>

n q
a

R
1–

Ta Tb–()=⋅ n qb⋅=

422 Revised: 6/12/13

4.10.137 QUSER

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutines so the user can vary
the parameters of the boundary condition. This list of float
values is passed as a one-dimensional double array to the
quser_surf C function in file user_bc.c.

Examples

The following is a sample input card for a heat flux model requiring two parameters:

BC = QUSER SS 100 10.0 3.14159

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 423

4.10.138

4.10.138

4.10.139 Q_VELO_SLIP

Description/Usage (WIC/ENERGY)

This boundary condition card is used to calculate the surface integral for viscous
heating due to slip in the tangential velocity component on a surface. Definitions of the
input parameters are as follows:

Q_VELO_SLIP Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

Examples

The following is a sample input card:

BC = Q_VELO_SLIP_BC SS 10

Technical Discussion

Use of this boundary condition requires specification of the slip velocity components
by using either the VELO_SLIP or VELO_SLIP_ROT boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

BC = Q_VELO_SLIP SS <bc_id>

424 Revised: 6/12/13

4.10.140 Q_LASER_WELD

4.10.140 Q_LASER_WELD

Description/Usage (WIC/ENERGY)

This boundary condition card specifies the thermal boundary conditions for laser
welding. The <float_list> requires twenty-seven values be specified; definitions of the
input parameters are as follows:

Q_LASER_WELD Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Nominal power of laser.

<float2> Power of laser at base state (simmer).

<float3> Base value of surface absorptivity.

<float4> Switch to allow tracking of normal component of liquid
surface relative to laser beam axis for surface absorption
(0 = OFF, 1 = ON)

<float5> Cutoff time for laser power.

<float6> Time at which laser power drops to 1/e.

<float7> For pulse weld, the laser power overshoot (%) of peak
power at time to reach peak laser power.

<float8> Radius of laser beam.

<float9> For pulse weld, the time for laser pulse to reach peak
power.

<float10> For pulse weld, the time for laser pulse to reach steady
state in power.

<float11> Switch to either activate laser power distribution from
beam center based on absolute distance (0) or based on
radial distance in 2D plane (1).

BC = Q_LASER_WELD SS <bc_id> <float_list>

Revised: 6/12/13 425

4.10.140 Q_LASER_WELD

<float 12> Location of laser beam center (x-coordinate).

<float 13> Location of laser beam center (y-coordinate).

<float 14> Location of laser beam center (z-coordinate).

<float 15> Laser beam orientation, normal to x-coordinate of body.

<float 16> Laser beam orientation, normal to y-coordinate of body.

<float 17> Laser beam orientation, normal to z-coordinate of body.

<float 18> For pulse weld, spot frequency.

<float 19> For pulse weld, total number of spots to simulate.

<float 20> Switch to set type of weld simulation. (0=pulse weld,
1=linear continuous weld, -1=pseudo pulse weld,
2=sinusoidal continous weld)

<float 21> For pulse weld, spacing of spots.

<float 22> For radial traverse continuous weld, radius of beam
travel.

<float 23> Switch to activate beam shadowing for lap weld
(0=OFF, 1=ON). Currently only active for ALE
simulations.

<float 24> Not active, should be set to zero.

<float 25> For continuous weld, laser beam travel speed in x-
direction (u velocity).

<float 26> For continuous weld, laser beam travel speed in y-
direction (v velocity).

<float 27> For continuous weld, laser beam travel speed in z-
direction (w velocity).

Examples

The following is a sample input card:

BC = Q_LASER_WELD SS 10 4.774648293 0 0.4 1 1 1.01 4.774648293 0.2
0.01 0.01 1 0.005 0 -0.198 -1 0 0 0.025 1 1 0.2032 -1000 0 0 0 0 0.0254

426 Revised: 6/12/13

4.10.141 Q_VAPOR_BC

Technical Discussion

Several required pieces of information to use this boundary condition are not in final
form, and the user can expect future changes and improvements. Below is a listing of
some of these parameters:

• This boundary condition requires that node sets 1001 is defined in the EXODUS II
file. NS 1001 should include the point at the center of the keyhole on the surface
closest to the beam.

• Currently the laser flux distribution is set as a fixed exponential distribution. Plans
are to include more options including a user-defined exponential and a TABLE
option.

• Correlations are used to specify the evaporation energy loss. Currently only iron
and ice correlations exist; the appropriate correlation is selected based on the value
set for the Solidus Temperature (in Thermal Properties portion of the material file).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.141 Q_VAPOR_BC

Description/Usage (WIC/ENERGY)

This boundary condition card is used to specify heat loss due to evaporation. It is
typically used in conjunction with Q_LASER_WELD.

Q_VAPOR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

BC = Q_VAPOR SS <bc_id> <float_list>

Revised: 6/12/13 427

4.10.142

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Temperature scale

<float2> energy unit scale.

Examples

The following is a sample input card:

BC = Q_VAPOR SS 10 100. 10.

Technical Discussion

This condition is turned on above the boiling point, which is story in the melting point
solidus temperature.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.142

4.10.143 VP_EQUIL

Description/Usage (SIC/ENERGY)

This boundary condition card is used to equate solvent partial pressure in the gas
between the porous medium and the external phase. The condition is similar to the
solid-liquid interface conditions that apply to interfaces between a porous medium and

BC = VP_EQUIL SS <bc_id> <integer_list> <float>

428 Revised: 6/12/13

4.10.143 VP_EQUIL

an external gas phase (in which the energy equation is used to solve for solvent
concentration in the gas phase). This boundary condition is still under development.

There are three values to be specified for the <integer_list>; definitions of the input
parameters are as follows:

VP_EQUIL Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer1> Element block ID of solid, porous phase from the EXODUS
II database.

<integer2> Element block ID of gas phase from the EXODUS II
database.

<integer3> Species number of liquid phase in porous medium.

<float> Ambient pressure in external gas phase.

Examples

The following is a sample input card:

BC = VP_EQUIL SS 100 1 2 0 0.0

 where the solid/porous phase is present in element block 1 and the gas phase is present
in element block 2. The external gas phase pressure has been set to 0.0.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Revised: 6/12/13 429

4.10.144 LATENT_HEAT

References

No References.

4.10.144 LATENT_HEAT

Description/Usage (WIC/ENERGY)

This boundary condition card is used for latent heat release/adsorption at an external
interface. The flux quantity is specified on a per mass basis so the heat and mass
transfer coefficients are in units of L/t.

The <float_list> has three values to be specified; definitions of the input parameters are
as follows:

LATENT_HEAT Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number.

<float1> Latent Heat for the pure w+1 species component.

<float2> Mass transfer coefficient for the w+1 species
component.

<float3> Sink concentration for the w+1 species component.

The float values on this card apply to the bulk species (i.e., the w+1 component) in a
multi-species problem and in the case of a pure fluid. Important usage comments are
contained in the Technical Discussion below.

Examples

The following is a sample input card:

BC = LATENT_HEAT SS 3 0 540. 0.1 0.

BC = LATENT_HEAT SS <bc_id> <integer> <float_list>

430 Revised: 6/12/13

4.10.144 LATENT_HEAT

Two more detailed examples are contained in the Technical Discussion section.

Technical Discussion

The LATENT_HEAT boundary condition has the form

(4-116)

where is the outward normal to the surface, is the heat flux vector, is the
heat of vaporization, is density, is the heat-transfer coefficient for species i, and

 is the reference concentration of species i at locations remote from the boundary;
the summation is over the number of species in the material block. The manner of
usage of this boundary condition depends on the set of conditions characterizing the
problem; example conditions are described below.

This card is used for external surfaces for which heat transfer and mass transfer beyond
it’s surfaces are governed by heat and mass transfer coefficients. The LATENT_HEAT
BC is applied to the energy equation so a heat flux can be specified for thermal
problems alone. The mass transfer portion of the vaporization phenomenon is handled
by the KIN_LEAK and YFLUX BC cards; these boundary conditions are applied to the
mesh equations. The LATENT_HEAT_INTERNAL card should be used for internal
surfaces, or interfaces, at which transfer is governed by actual physics being modeled
as a part of the problem.

When vaporization of a pure liquid is being modeled, there is only a ’single species’,
the bulk volatile liquid. In the single species case, the Species Properties of the
corresponding material file (which includes the Heat of Vaporization card) is not even
read so the actual value of the latent heat of vaporization must be entered on the
LATENT_HEAT card (<float1>). If multiple species are present, the latent heat value
for each species is entered in the material file and the LATENT_HEAT card does for the
energy equation the same thing the KIN_LEAK card does for the mesh equation (i.e.,
collects the flux conditions that apply for each species).

For mass transfer in the single species/pure liquid case, the mass transfer coefficient is
specified on the KIN_LEAK card. When multiple species are present, the mass transfer
coefficient and driving concentration on the KIN_LEAK card are set to zero and the
appropriate coefficient and driving concentration are set for each species on the YFLUX
card, one for each species. The KIN_LEAK card (or the LATENT HEAT for energy flux)
must be present to signal Goma to look for multiple YFLUX cards.

The latent heat quantity is specified on a per mass basis and the transfer coefficients are
in units of L/t. Some examples of LATENT_HEAT application follow:

n
˜

q
˜

⋅ HυΔ ρhi

i 1=

Numspec

 yi yi
0

–()=

n
˜

q
˜

HυΔ

ρ hi
yi

0

Revised: 6/12/13 431

4.10.144 LATENT_HEAT

Pure Liquid Case

BC = LATENT HEAT SS 3 0 540. 0.1 0.
BC = KIN_LEAK SS 3 0.1 0.

Two-Species Case

BC = LATENT HEAT SS 3 0 0. 0.1 0.
BC = KIN_LEAK SS 3 0. 0.
BC = YFLUX SS 3 0 0.12 0.
BC = YFLUX SS 3 1 0.05 0.

plus, in the corresponding material file:

---Species Properties

Diffusion Constitutive Equation= FICKIAN
Diffusivity = CONSTANT 0 1.e-8
Latent Heat Vaporization = CONSTANT 0 540.
Latent Heat Fusion = CONSTANT 0 0.
Vapor Pressure = CONSTANT 0 0.
Species Volume Expansion = CONSTANT 0 1.
Reference Concentration = CONSTANT 0 0.

Diffusivity = CONSTANT 1 1.e-6
Latent Heat Vaporization = CONSTANT 1 125.
Latent Heat Fusion = CONSTANT 1 0.
Vapor Pressure = CONSTANT 1 0.
Species Volume Expansion = CONSTANT 1 1.
Reference Concentration = CONSTANT 1 0.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

432 Revised: 6/12/13

4.10.145 LATENT_HEAT_INTERNAL

4.10.145 LATENT_HEAT_INTERNAL

Description/Usage (WIC/ENERGY)

This boundary condition card is used for latent heat release/adsorption at an internal
interface. See usage comments in the Technical Discussion.

The <integer_list> requires two values be specified; definitions of the input parameters
are as follows:

LATENT_HEAT_INTERNAL

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

{char_string} Variable name with the following permissible values:

LIQUID_VAPOR
SOLID_LIQUID

<integer1> NOT ACTIVE. Any integer will do.

<integer2> NOT ACTIVE. Any integer will do.

<float3> Value of latent heat of vaporization/fusion for a pure
material case, in units of Energy/mass.

Examples

The following is a sample input card:

BC = LATENT_HEAT_INTERNAL SS 40 SOLID_LIQUID 1 2 2.6e5

Technical Discussion

The LATENT_HEAT_INTERNAL card should be used for internal surfaces, or
interfaces, at which transfer is governed by actual physics being modeled as a part of
the problem. See LATENT_HEAT card for further information.

BC = LATENT_HEAT_INTERNAL SS {char_string} <integer_list> <float>

Revised: 6/12/13 433

4.10.146 Y

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Category 6: Boundary Conditions for the Mass Equations

The collection of boundary conditions in this category are applied to the mass balance equations,
specifically the species component balance equations. Most boundary conditions are weakly
integrated conditions defining fluxes at internal or external surfaces, although strongly integrated
and Dirichlet conditions are also available to control known values of dependent variables or
integrated quantities. Boundary conditions are available for chemical species as well as charged
species, suspensions and liquid metals. An important capability in Goma is represented by the
discontinuous variable boundary conditions, for which users are referred to Schunk and Rao
(1994) and Moffat (2001). Care must be taken if the species concentration is high enough to be
outside of the dilute species assumption, in which case transport of species through boundaries
will affect the volume of the bounding fluids. In these cases, users are referred to the
VNORM_LEAK condition for the fluid momentum equations and to KIN_LEAK for the solid
momentum (mesh) equations. And finally, users are cautioned about different bases for
concentration (volume, mass, molar) and several discussions on or references to units.

4.10.146 Y

Description/Usage (DC/MASS)

This card is used to set the Dirichlet boundary condition of constant concentration for a
given species. Definitions of the input parameters are as follows:

Y Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

BC = Y NS <bc_id> <integer> <float1> [float2] [integer2]

434 Revised: 6/12/13

4.10.146 Y

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<integer1> Species number of concentration.

<float1> Value of concentration, in user’s choice of units, e.g. moles/
cm3.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

[integer2] Element block ID; only applicable to node sets, this optional
parameter specifies the element block on which to impose
the boundary condition, if there is a choice, as occurs at
discontinuous variable interfaces where there may be more
that one unknown corresponding to species 0 at a single
node. This parameter allows the user to specify which
unknown to set the boundary condition on, and allows for a
jump discontinuity in species value across a discontinuous
variables interface.

Examples

The following is a sample card with no Dirichlet flag:

BC = Y NS 3 0 0.00126

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Revised: 6/12/13 435

4.10.147 YUSER

References

No References.

4.10.147 YUSER

Description/Usage (SIC/MASS)

This is a user-defined mass concentration boundary. The user must supply the
relationship in function yuser_surf within user_bc.c.

YUSER Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<integer> Species number

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutines so the user can vary
the parameters of the boundary condition. This list of float
values is passed as a one-dimensional double array to the
appropriate C function.

Examples

The following sample input card applies a user flux condition to side set 100 for species
0 that requires two input parameters:

BC = YUSER SS 100 0 .5 .5

Technical Discussion

No discussion.

Theory

No Theory.

BC = YUSER SS <bc_id> <integer> <float_list>

436 Revised: 6/12/13

4.10.148

FAQs

No FAQs.

References

No References.

4.10.148

4.10.149 Y_DISCONTINUOUS

Description/Usage (DC/MASS)

This card is used to set a constant valued Dirichlet boundary condition for the species
unknown. The condition only applies to interphase mass, heat, and momentum transfer
problems applied to discontinuous (or multivalued) species unknown variables at an
interface, and it must be invoked on fields that employ the Q1_D or Q2_D
interpolation functions to “tie” together or constrain the extra degrees of freedom at the
interface in question.

Definitions of the input parameters are as follows:

Y_DISCONTINUOUS

Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<integer1> Species subvariable number.

<float1> Value of the species unknown on the boundary. Note,
the units depend on the specification of the type of the
species unknown.

[float2] An optional parameter (that serves as a flag to the code
for a Dirichlet boundary condition). If a value is present,

BC = Y_DISCONTINUOUS NS <bc_id> <integer1> <float1> [float2 integer2]

Revised: 6/12/13 437

4.10.149 Y_DISCONTINUOUS

and is not -1.0, the condition is applied as a residual
equation. Otherwise, it is a “hard set” condition and is
eliminated from the matrix. The residual method must
be used when this Dirichlet boundary condition is used
as a parameter in automatic continuation sequences.

[integer2] Element block ID; only applicable to node sets, this
optional parameter specifies the element block on which
to impose the boundary condition, if there is a choice, as
occurs at discontinuous variable interfaces where there
may be more that one unknown corresponding to
species 0 at a single node. This parameter allows the
user to specify which unknown to set the boundary
condition on, and allows for a jump discontinuity in
species value across a discontinuous variables interface.

Examples

The following is a sample input card with no Dirichlet flag:

BC = Y_DISCONTINUOUS SS 3 0 0.00126

Technical Discussion

Typically, this boundary condition may be used to set the species unknown variable on
one side of a discontinuous variables interface, while the species unknown variable on
the other side of the interface is solved for via a KINEMATIC_SPECIES boundary
condition. Note, this boundary condition is not covered by the test suite, and thus, may
or may not work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

438 Revised: 6/12/13

4.10.150 YFLUX

4.10.150 YFLUX

Description/Usage (WIC/MASS)

This boundary condition card is used to specify the mass flux of a given species normal
to the boundary (or interface) using a mass transfer coefficient. When used in
conjunction with the KIN_LEAK card, the YFLUX card also enables the determination
of velocity normal to the moving boundary at which the YFLUX boundary condition is
applied.

Definitions of the input parameters are as follows:

YFLUX Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> i, species number of concentration.

<float1> ki, value of mass transfer coefficient of species i.

<float2> , value of reference concentration of species i.

Examples

Following are two sample cards:
BC = YFLUX SS 3 0 0.12 0.
BC = YFLUX SS 3 1 0.05 0.

Technical Discussion

Specifically, the species mass flux is given by

(4-117)

where n is the unit vector normal to the boundary, Ji is mass flux of species i, v is the
fluid velocity, vm is the mesh displacement velocity, ki is mass transfer coefficient of
species i, ci is concentration of species i at the boundary surface, and is reference
concentration of species i. The units of Ji, ki, ci and depend on the user’s choice. For

BC = YFLUX SS <bc_id> <integer1> <float1> <float2>

ci
∞

n Ji⋅ n v v
m

–()ci k= i ci c
∞
i–()⋅+

ci
∞

ci
∞

Revised: 6/12/13 439

4.10.150 YFLUX

example, if ci and are chosen to have units of moles/cm3, then ki has the unit of cm/
s, and Ji has the units of moles/cm2/s.

For the KIN_LEAK and VNORM_LEAK cards, the information from YFLUX boundary
conditions corresponding to each species is needed. Goma automatically searches for
these boundary conditions and uses an extra variable in the BC data storage to record
the boundary condition number of the next YFLUX condition in a linked list; when the
extra storage value is -1, there are no more YFLUX conditions at this boundary.

Theory

No Theory.

FAQs

A question was raised regarding the use of volume flux in Goma; the following portion
of the question and response elucidate this topic and the subject of units. Note the
references in the response are to the Version 2.0 Goma User’s Manual.

Question: ... I know what you are calling volume flux is mass flux divided by
density. The point I am trying to make is that the conservation equations in the books I
am familiar with talk about mass, energy, momentum, and heat fluxes. Why do you not
write your conservation equations in their naturally occurring form? If density just so
happens to be common in all of the terms, then it will be obvious to the user that the
problem does not depend on density. You get the same answer no matter whether you
input rho=1.0 or rho=6.9834, provided of course this does not impact iterative
convergence. This way, you write fluxes in terms of gradients with the transport
properties (viscosity, thermal conductivity, diffusion coefficient, etc.) being in familiar
units.

Answer: First let me state the only error in the manual that exists with regard to
the convection-diffusion equation is the following:

 in the nomenclature table ... should be described as a volume flux with units
of , i.e., , where is in units.

Now, ... this is actually stated correctly, as it states the is a diffusion flux (without
being specific); to be more specific here, we should say it is a "volume flux of species
i." So, in this case is in units, is dimensionless and it is immaterial that (the
mass conservation equation) is multiplied by density or not, as long as density is
constant.

Now, in Goma we actually code it up EXACTLY as in the ... (mass conservation
equation), i.e., there are no densities anywhere for the FICKIAN diffusion model. For
the HYDRO diffusion model, we actually compute a in the code, and handle

ci
∞

Ji

L t⁄ D yi∇⋅ D L
2

t⁄

Ji

D L L t⁄⋅ yi

Ji ρ⁄

440 Revised: 6/12/13

4.10.150 YFLUX

variable density changes through that . In that case as computed in Goma is a mass
flux vector, not a volume flux vector, but by dividing it by and sending it back up to
the mass conservation equation it changes back into a volume flux. i. e., everything is
the same.

Concerning the units of the mass transfer coefficient on the YFLUX boundary
condition, the above discussion now sets those. Goma clearly needs the flux in the
following form:

 (4-118)

and dimensionally for the left hand side

(4-119)

where is in units , the gradient operator has units of so K HAS to be in units
of (period!) because is a fraction.

So, if you want a formulation as follows:

(4-120)

then ’s units will have to accommodate for the relationship between and in the
liquid, hopefully a linear one as in Raoult’s law, i.e. if where is the vapor
pressure, then

(4-121)

and so K on the YFLUX command has to be and so on.

Finally, you will note, since we do not multiply through by density, you will have to
take care of that, i. e., in the Price paper he gives K in units of . So, that must be
converted as follows:

: (4-122)

This checks out!

References

Price, P. E., Jr., S. Wang, I. H. Romdhane, 1997. “Extracting Effective Diffusion
Parameters from Drying Experiments”, AIChE Journal, 43, 8, 1925-1934.

ρ Ji

ρ

n
˜

D Y∇⋅ K yi yi
∞

–()⋅=

L
2

t⁄() 1 L⁄()⋅ L t⁄=

D L
2

t⁄ 1 L⁄

L t⁄ yi

n
˜

D Y∇⋅ K̂ pi p
∞
i–()=

K̂ pi yi

pi PVyi= PV

n
˜

D Y∇⋅ KPV yi y
∞
i–()=

KPV

t L⁄

Kprice PV ρ⁄() Kgoma= t L⁄() M Lt
2

⁄() L
3

M⁄() L t⁄=

Revised: 6/12/13 441

4.10.151 YFLUX_CONST

4.10.151 YFLUX_CONST

Description/Usage (WIC/MASS)

This boundary condition card is used to specify a constant diffusive mass flux of a
given species. This flux quantity can be specified on a per mass basis (e.g. with units of
g/cm2/s) or on a per mole basis (e.g. with units of moles/cm2/s), depending on the
user’s choice of units in the species unknown.

Definitions of the input parameters are as follows:

YFLUX_CONST Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number.

<float> Value of diffusive mass flux; the units of this quantity
depends on the user’s choice of units for species
concentration.

Examples

Following is a sample card:

BC = YFLUX_CONST SS 1 0 10000.2

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

BC = YFLUX_CONST SS <bc_id> <integer> <float>

442 Revised: 6/12/13

4.10.152 YFLUX_EQUIL

References

No References.

4.10.152 YFLUX_EQUIL

Description/Usage (WIC/MASS)

This boundary card is used when equilibrium-based mass transfer is occurring at an
vapor-liquid external boundary; i.e.,

. (4-123)

This is different from an internal boundary since only one phase is represented in the
computational domain. This boundary condition then describes the rate of mass
entering or leaving the boundary via vapor-liquid equilibria. The is the mass
fraction of component i in vapor that is in equilibrium with the liquid phase. The
is the bulk concentration of component i in vapor.

The <float_list> requires three input values; definitions of the input parameters are as
follows:

YFLUX_EQUIL Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

{char_string} This refers to the equilibrium model for mass transfer; the
options are either FLORY or RAOULT.

<integer1> Species id.

<float1> Total system pressure.

<float2> Mass transfer coefficient.

<float3> Bulk concentration in vapor ().

BC = YFLUX_EQUIL SS <bc_id> {char_string} <integer> <float_list>

Ji ki wi
v

wi
v ∞,

–()=

wi
v

wi
v ∞,

w
v ∞,
i

Revised: 6/12/13 443

4.10.153

Examples

The following is a sample input card:

BC = YFLUX_EQUIL SS 1 FLORY 0 1. 5.4e-3 0.

Technical Discussion

This boundary condition is very similar to VL_EQUIL and VL_POLY except that it is
only applied at an external boundary where vapor phase is not modeled in the problem.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA,
December 10, 1998, A. C. Sun

4.10.153

4.10.154 YFLUX_SULFIDATION

Description/Usage (WIC/MASS)

The YFLUX_SULFIDATION card enables computation of the molar flux of the
diffusing species (e.g. copper vacancy) using copper-sulfidation kinetics at the
specified boundary (gas/Cu2S or Cu/Cu2S interface). When used in conjunction with
the KIN_LEAK card, it also enables the determination of velocity normal to the moving
gas/Cu2S interface.

The <float_list> contains ten values to be defined; these and all input parameter
definitions are as follows:

YFLUX_SULFIDATION

Name of the boundary condition (<bc_name>).

BC = YFLUX_SULFIDATION SS <bc_id> {char_string} <integer> <float_list>

444 Revised: 6/12/13

4.10.154 YFLUX_SULFIDATION

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

{char_string} Name of sulfidation kinetic models. Allowable names
are:

SOLID_DIFFUSION_SIMPLIFIED

SOLID_DIFFUSION

SOLID_DIFFUSION_ELECTRONEUTRALITY

SOLID_DIFFUSION_ELECTRONEUTRALITY_LINEAR

GAS_DIFFUSION

FULL

ANNIHILATION

ANNIHILATION_ELECTRONEUTRALITY

Detailed description of kinetic models with these name
key words are presented in the Technical Discussion
section below.

<integer> Species number of concentration.

<float1> Stoichiometric coefficient

<float2> Rate constant for forward copper sulfidation reaction

<float3> Activation energy for forward copper sulfidation
reaction

<float4> Rate constant for backward copper sulfidation reaction

<float5> Activation energy for backward copper sulfidation
reaction

<float6> Temperature

<float7> Bulk concentration of H2S

<float8> Bulk concentration of O2

<float9> Molecular weight of copper sulfide (Cu2S)

Example

Examples of this input card follow:

Revised: 6/12/13 445

4.10.154 YFLUX_SULFIDATION

BC = YFLUX_SULFIDATION SS 3 SOLID_DIFFUSION_ELECTRONEUTRALITY 0 -2.0
1.46e+7 6300.0 1.2e+14 6300.0 303.0 1.61e-11 8.4e-6 159.14 5.6

BC = YFLUX_SULFIDATION SS 1 ANNIHILATION_ELECTRONEUTRALITY 0 1.0 10.0
0.0 0.0 0.0 303.0 1.61e-11 8.4e-6 159.14 5.6

BC = YFLUX_SULFIDATION SS 3 SOLID_DIFFUSION 1 -2.0 1.46e7 6300.0 1.2e+14
6300.0 303.0 1.61e-11 8.4e-6 159.14 5.6

BC = YFLUX_SULFIDATION SS 1 ANNIHILATION 1 1.0 10.0 0.0 0.0 0.0
303.0 1.61e-11 8.4e-6 159.14 5.6

Technical Discussion

Key word SOLID_DIFFUSION_SIMPLIFIED refers to the following simplified
kinetic model of copper sulfidation in which gas-phase diffusion is neglected and Cu is
taken to be the diffusing species:

(4-124)

where r is molar rate of formation of sulfidation-corrosion product, Cu2S, per unit area,
 is the molar concentration of H2S taken to be fixed at its bulk value, is the

molar concentration of Cu at the sulfidation surface (Cu2S/gas interface), k is the rate
constant, E is the activation energy, R is the universal gas constant, and T is the
temperature.

Key word SOLID_DIFFUSION refers to the following kinetic model of copper
sulfidation in which gas-phase diffusion is neglected and Cu vacancies and electron
holes are taken as the diffusing species:

(4-125)

where r is molar rate of formation of Cu2S per unit area, and are the molar
concentrations of H2S and O2, respectively, taken to be fixed at their bulk values,
and are the molar concentrations of Cu vacancies and electron holes, respectively,
at the sulfidation surface, k1 and k-1 are rate constants, respectively, for the forward and
backward sulfidation reactions, E1 and E-1 are activation energies, respectively, for the
forward and the backward sulfidation reactions.

Key word SOLID_DIFFUSION_ELECTRONEUTRALITY refers to the following
kinetic model of copper sulfidation in which Cu vacancies and electron holes are taken
as the diffusing species and the electroneutrality approximation is applied such that
concentrations of Cu vacancies and electron holes are equal to each other:

r ke

E
RT
-------–

cH2ScCu=

cH2S cCu

r k1e

E1

RT
-------–

cH2S cO2
k 1– e

E 1–

RT
--------–

c
2
V

c
2
h–=

cH2S cO2
cV

ch

446 Revised: 6/12/13

4.10.154 YFLUX_SULFIDATION

(4-126)

Key word SOLID_DIFFUSION_ELECTRONEUTRALITY_LINEAR refers to the
following kinetic model of copper sulfidation:

(4-127)

Key word GAS_DIFFUSION refers to the following simplified kinetic model of
copper sulfidation in which solid-phase diffusion is neglected, and H2S and O2 are
taken to be the diffusing species:

(4-128)

Key word FULL refers to the following kinetic model in which diffusion in both the
gas phase and the solid phase are important, and H2S, O2, Cu vacancies, and electron
holes are taken as the diffusing species:

(4-129)

where and are the time-dependent molar concentrations of H2S and O2,
respectively, at the sulfidation surface.

Key word ANNIHILATION refers to the following kinetic model in which diffusion
in both the gas phase and the solid phase are important, and H2S, O2, Cu vacancies, and
electron holes are taken as the diffusing species:

(4-130)

where k2 are E2 are the rate constant and activation energy, respectively, for the
annihilation reaction.

Key word ANNIHILATION_ELECTRONEUTRALITY is similar to
ANNIHILATION except that, here, the electroneutrality approximation is applied and
concentrations of Cu vacancies and electron holes are taken to be equal to each other:

r k1e

E1

RT
-------–

cH2S cO2
k 1– e

E 1–

RT
--------–

c
4
V

–=

r k1e

E1

RT
-------–

cH2S cO2
k 1– e

E 1–

RT
--------–

cVch–=

r ke

E
RT
-------–

cH2S cO2
=

r k1e

E1

RT
-------–

cH2S cO2
k 1– e

E 1–

RT
--------–

c
2
V

c
2
h–=

cH2S cO2

r k2e

E2

RT
-------–

cVch=

Revised: 6/12/13 447

4.10.155 YFLUX_SUS

. (4-131)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.155 YFLUX_SUS

Description/Usage (WIC/MASS)

This boundary defines a flux of suspension particles at an interface. Definitions of the
input parameters are as follows:

YFLUX_SUS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Species id; the species number for suspension particles.

Examples

The following is a sample input card:

BC = YFLUX_SUS SS 1 0

BC = YFLUX_SUS SS <bc_id> <integer>

r k2e

E2

RT
-------–

c
2
V=

448 Revised: 6/12/13

4.10.156

Technical Discussion

This condition is only used in conjunction with the SUSPENSION liquid constitutive
models, HYDRODYNAMIC diffusivity model, and SUSPENSION or
SUSPENSION_PM density models. A theoretical outflux condition associated with
suspension particles leaving the domain is tied to the Phillips diffusive-flux model.
Please refer to discussions on HYDRODYNAMIC diffusivity to gain more
understanding of the suspension flux model.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.156

4.10.157 YFLUX_BV

Description/Usage (WIC/MASS)

The YFLUX_BV card enables computation of the molar flux of the specified species
using Butler-Volmer kinetics at the specified boundary (namely, the electrode surface).
When used in conjunction with the KIN_LEAK card, it also enables the determination
of velocity normal to the moving solid-electrode surface.

The <floatlist> consists of nine values; definitions of the input parameters are as
follows:

YFLUX_BV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

BC = YFLUX_BV SS <bc_id> <integer1> <floatlist>

Revised: 6/12/13 449

4.10.157 YFLUX_BV

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer1> Species number of concentration.

<float1> Stoichiometric coefficient

<float2> Kinetic rate constant.

<float3> Reaction order.

<float4> Anodic direction transfer coefficient.

<float5> Cathodic direction transfer coefficient.

<float6> Electrode potential or applied voltage.

<float7> Theoretical open-circuit potential.

<float8> Molecular weight of solid deposit.

<float9> Density of solid deposit.

Example

The following is a sample input card:

BC = YFLUX_BV SS 1 0 -1. 0.00001 1. 0.21 0.21 -0.8 -0.22 58.71 8.9

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

450 Revised: 6/12/13

4.10.158 YFLUX_HOR

4.10.158 YFLUX_HOR

Description/Usage (WIC/MASS)

The YFLUX_HOR card enables computation of the molar flux of the specified species
at the specified boundary (i.e., at the electrode surface) using the linearized Butler-
Volmer kinetics such as that for the hydrogen-oxidation reaction in polymer-
electrolyte-membrane fuel cells.

The <floatlist> consists of 10 values; definitions of the input parameters are as follows:

YFLUX_HOR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Anodic direction transfer coefficient, αa.

<float5> Cathodic direction transfer coefficient, αc.

<float6> Temperature, T, in unit of K.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

<float9> Number of electrons involved in the reaction, n.

<float10> Electrode potential, V, in unit of V.

Example

The following is a sample input card:

BC = YFLUX_HOR SS 14 0 1000. 0.001 4.e-5 1. 1. 353. 0. 0.5 2. 0.

BC = YFLUX_HOR SS <bc_id> <integer> <floatlist>

Revised: 6/12/13 451

4.10.158 YFLUX_HOR

Technical Discussion

For electrochemical reactions such as the hydrogen-oxidation reaction (HOR), surface
overpotential is relatively small such that the Butler-Volmer kinetic model can be
linearized to yield:

where r is the surface reaction rate in units of moles/cm2-s; denotes the product of
interfacial area per unit volume by exchange current density, which has units of A/cm3;
H is the catalyst layer or catalyzed electrode thickness in unit of cm; n is the number of
electrons involved in the electrochemical reaction; R is the universal gas constant
(8.314 J/mole-K); T is temperature in unit of K; c and are, respectively, species
and reference molar concentrations in units of moles/cm3; β is reaction order; αa and αc
are, respetively, the anodic and cathodic transfer coefficients; V and are,
respectively, the electrode and electrolyte potentials in unit of V; and is the open-
circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”,
in ASME Proceedings of FUELCELL2006-97032 (2006).

r
ai0H

nRT

c
cref

 β

αa αc+() V Φ– U0–()=

ai0

≡ cref

Φ

U0

452 Revised: 6/12/13

4.10.159

4.10.159

4.10.160 YFLUX_ORR

Description/Usage (WIC/MASS)

The YFLUX_ORR card enables computation of the molar flux of the specified species
at the specified boundary (i.e., at the electrode surface) using the Tafel kinetics such as
that for the oxygen-reduction reaction in polymer-electrolyte-membrane fuel cells.

The <floatlist> consists of 9 values; definitions of the input parameters are as follows:

YFLUX_ORR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Cathodic direction transfer coefficient, αc.

<float5> Temperature, T, in unit of K.

<float6> Electrode potential, V, in unit of V.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

<float9> Number of electrons involved in the reaction, n.

Example

The following is a sample input card:

BC = YFLUX_ORR SS 15 1 0.01 0.001 4.e-5 1. 353. 0.7 1.18 1. 4.

BC = YFLUX_ORR SS <bc_id> <integer> <floatlist>

Revised: 6/12/13 453

4.10.160 YFLUX_ORR

Technical Discussion

For electrochemical reactions such as the oxygen-reduction reaction (ORR), surface
overpotential is large and negative such that the first exponential term in the Butler-
Volmer kinetic model is much smaller than the second term and thus can be dropped to
yield the Tafel kinetic model:

where r is the surface reaction rate in units of moles/cm2-s; denotes the product of
interfacial area per unit volume by exchange current density, which has units of A/cm3;
H is the catalyst layer or catalyzed electrode thickness in unit of cm; n is the number of
electrons involved in the electrochemical reaction; F is the Faraday’s constant
(96487 C/mole); c and are, respectively, species and reference molar
concentrations in units of moles/cm3; β is reaction order; αc is the anodic and cathodic
transfer coefficient; R is the universal gas constant (8.314 J/mole-K); T is
temperature in unit of K; V and are, respectively, the electrode and electrolyte
potentials in unit of V; and is the open-circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”,
in ASME Proceedings of FUELCELL2006-97032 (2006).

r
ai0H

nF
------------–

c
cref

 β

e

αcF

RT
--------- V Φ– U0–()–

=

ai0

≡ cref

≡

Φ

U0

454 Revised: 6/12/13

4.10.161

4.10.161

4.10.162 YFLUX_USER

Description/Usage (WIC/MASS)

This boundary condition card is used to set mass flux to a user-prescribed function and
integrate by parts again. The user should provide detailed flux conditions in the
mass_flux_user_surf routine in user_bc.c. The flux quantity is specified on a per mass
basis so the heat and mass transfer coefficients are in units of L/t.

Definitions of the input parameters are as follows:

YFLUX_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer> Species number of concentration.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutines so the user can vary
the parameters of the boundary condition. This list of float
values is passed as a one-dimensional double array to the
appropriate C function.

Examples

The following is a sample input card:

BC = YFLUX_USER SS 2 0 .5 .5

Technical Discussion

No discussion.

Theory

No Theory.

BC = YFLUX_USER SS <bc_id> <integer> <float_list>

Revised: 6/12/13 455

4.10.163

FAQs

No FAQs.

References

No References.

4.10.163

4.10.164 YFLUX_ALLOY

Description/Usage (WIC/MASS)

This boundary condition card calculates the surface integral for a mass flux transfer
model for the evaporation rate of molten metal.

The <float_list> requires six values; definitions of the input parameters are as follows:

YFLUX_ALLOY Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> Species number

<float1> Liquidus temperature of metal alloy, .

<float2> Base Concentration, .

<float3> Coefficient c0.

<float4> Coefficient c1

<float5> Coefficient c2

<float6> Coefficient c3

BC = YFLUX_ALLOY SS <bc_id> <integer1> <float_list>

Tm

y
∞

456 Revised: 6/12/13

4.10.165 YTOTALFLUX_CONST

Examples

The following is a sample input card:

BC = YFLUX_ALLOY SS 10 0 1623.0 0.5 0.01 -1e-3 1e-4 -1e-5

Technical Discussion

Basically the difference between this model and the simple convective mass transfer
coefficient (say ki for YFLUX) is that the transfer coefficient here (the exponential
term) has a cubic dependence on temperature.

(4-132)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.165 YTOTALFLUX_CONST

Description/Usage (WIC/MASS)

This boundary condition card is used to specify a constant total mass flux (including
contribution from diffusion, migration, and convection) of a given species. This card
enables the treatment of the situation in which diffusion, migration and convection
fluxes cancel each other such that the total flux vanishes (e.g. is equal to zero). This
flux quantity can be specified on a per mass basis (i.e., with units of g/cm2/s) or on a
per mole basis (e.g. with units of moles/cm2/s), depending on the user’s choice of units
in the species concentration unknown.

Definitions of the input parameters are as follows:

YTOTALFLUX_CONST

BC = YTOTALFLUX_CONST SS <bc_id> <integer> <float>

n ji⋅ c0 c1 T Tm–() c2 T Tm–()
2

– c3 T Tm–()
3

+ +[]exp yi y
∞
i–()⋅=

Revised: 6/12/13 457

4.10.165 YTOTALFLUX_CONST

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number of concentration.

<float> Value of total mass flux - the units of this quantity
depends on the user’s choice of units for species
concentration.

Examples

Following is a sample card:

BC = YTOTALFLUX_CONST SS 5 0 0.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

458 Revised: 6/12/13

4.10.166 VL_EQUIL

4.10.166 VL_EQUIL

Description/Usage (SIC/MASS)

This boundary condition card enforces vapor-liquid equilibrium between a gas phase
and a liquid phase using Raoult’s law. The condition only applies to interphase mass,
heat, and momentum transfer problems with discontinuous (or multivalued) variables
at an interface, and it must be invoked on fields that employ the Q1_D or Q2_D
interpolation functions to “tie” together or constrain the extra degrees of freedom at the
interface in question.

The <integer_list> has three values and the <float_list> has five values; definitions of
the input parameters are as follows:

VL_EQUIL Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<integer1> Species number.

<integer2> Element block ID of liquid phase.

<integer3> Element block ID of gas phase.

<float1> Base ambient pressure in gas phase.

<float2> Molecular weight of first volatile species.

<float3> Molecular weight of second volatile species.

<float4> Molecular weight of condensed phase.

<float5> Molecular weight of insoluble gas phase.

This boundary condition is applied to ternary, two-phase flows that have rapid mass
exchange between phases, rapid enough to induce a diffusion velocity at the interface,
and to thermal contact resistance type problems. The best example of this is rapid
evaporation of a liquid component into a gas. In the current discontinuous mass transfer
model, we must require the same number of components on either side of interface. In

BC = VL_EQUIL SS <bc_id> <integer_list> <float_list>

Revised: 6/12/13 459

4.10.166 VL_EQUIL

this particular boundary, two of three components are considered volatile, so they
participate in both vapor and liquid phases. The third component is considered either
non-volatile or non-condensable, so it remains in a single phase.

Examples

A sample input card follows for this boundary condition:

BC = VL_EQUIL SS 4 0 1 2 1.e+06 28. 18. 1800. 18.

The above card demonstrates these characteristics: species number is “0”; liquid phase
block id is 1; gas phase block id is 2; ambient pressure is 1.e6 Pa; the molecular
weights of the volatile species are 28 and 18; of the condensed phase and insoluble
portion of the gas phase, 1800 and 18, respectively.

Technical Discussion

One of the simplest forms of the equilibrium relation is the Raoult’s law, where the
mole fraction of a species is equal to its mole fraction in the liquid multiplied by the
ratio of its pure component vapor pressure to the total pressure in the system.

(4-133)

where yi are the mole fraction of species i in the gas phase and xi is the mole fraction in
the liquid phase. The molecular weights required in this boundary card are used for
converting mass fractions to mole fractions. The temperature dependency in the
equilibrium expression comes from a temperature-dependent vapor pressure model.
Either Riedel or Antoine temperature-dependent vapor pressure model can be specified
in the VAPOR PRESSURE material card in order to link temperature to Raoult’s law.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA,
December 10, 1998, A. C. Sun

Schunk, P.R. and Rao, R.R. 1994. “Finite element analysis of multicomponent two-
phase flows with interphase mass and momentum transport,” IJNMF, 18, 821-842.

yiP
total

xiP
v

i ∀=

460 Revised: 6/12/13

4.10.167 VL_POLY

4.10.167 VL_POLY

Description/Usage (SIC/MASS)

This boundary condition card enforces vapor-liquid equilibrium between a gas phase
and a liquid phase using Flory-Huggins activity expression to describe polymer-solvent
mixtures. The condition only applies to interphase mass, heat, and momentum transfer
problems with discontinuous (or multivalued) variables at an interface, and it must be
invoked on fields that employ the Q1_D or Q2_D interpolation functions to “tie”
together or constrain the extra degrees of freedom at the interface in question.

There are three input values in the <integer_list>; definitions of the input parameters
are as follows:

VL_POLY Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

{char_string} the concentration basis; two options exist:

MASS - the concentration variable in Goma is equivalent
to mass fractions.

VOLUME - the concentration variable in Goma is based
on volume fractions for all species.

<integer1> Species number of concentration.

<integer2> Element block id that identifies the liquid phase.

<integer3> Element block id that identifies the vapor phase.

<float> Total pressure of the system.

Examples

This is a sample input card for this boundary condition:

BC = VL_POLY SS 7 MASS 0 1 2 1.e+05

BC = VL_POLY SS <bc_id> {char_string} <integer_list> <float>

Revised: 6/12/13 461

4.10.167 VL_POLY

Technical Discussion

For a mixture of dissimilar molecules, such as in a solvent-polymer system, Raoult’s
law is no longer valid. The evaporation of the volatile solvent component is greatly
influenced by the presence of large, chain-like polymers. The phase equilibrium
relation can be rewritten for this type of mixture.

(4-134)

(4-135)

γi is defined as the activity coefficient of species i and is considered a departure
function from the Raoult’s law. The fugacity in the liquid is reformulated in terms of
volume fraction φi for polymer mixtures to avoid referencing the molecular weight of
polymer (Patterson, et. al., 1971).

Based on an energetic analysis of excluded volume imposed by the polymer, the
activity coefficient model of Flory-Huggins is widely used for polymer-solvent
mixtures (Flory, 1953). The general form of the Flory-Huggins model for
multicomponent mixtures is a summation of binary interactions terms; i.e.,

. (4-136)

 is the molar volume of component i (or the average-number molar volume if i is a
polymer). δki is the Dirac delta. χjk is known as the Flory-Huggins interaction
parameter between components j and k, and is obtainable by fitting the solubility data
to the above model. For a simple binary pair (solvent (1)-polymer (2)) and assuming

, the above model reduces to a simpler form.

(4-137)

Theory

No Theory.

FAQs

No FAQs.

yiP
total

φiγiPi
v
 i∀=

φi

i 1=

N

 1=

γiln
vi

vk

δki φi–() δijφkχjk

vi

vj

φj δki φk–()χjk+

j 1=

k 1–

k 2=

N

+

k 1=

N

=

vi

v2 v1»

γ1ln φ2 χ12φ2
2

+=

462 Revised: 6/12/13

4.10.168

References

Flory, P., Principles of Polymer Chemistry, Cornell University Press, New York (1953)

Patterson, D., Y.B. Tewari, H.P. Schreiber, and J.E. Guillet, "Application of Gas-Liquid
Chromatography to the Thermodynamics of Polymer Solutions,"Macromolecules, 4, 3,
356-358 (1971)

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA,
December 10, 1998, A. C. Sun

4.10.168

4.10.169 VL_EQUIL_PSEUDORXN

Description/Usage (WIC/MASS)

This boundary condition card enforces vapor-liquid equilibrium between a gas phase
and a liquid phase species component using Raoult’s law expressed via a finite-rate
kinetics formalism. The condition only applies to problems containing internal
interfaces with discontinuous (or multilevel) species unknown variables. The species
unknown variable must employ the Q1_D or Q2_D interpolation functions in both
adjacent element blocks. This boundary condition constrains the species equations on
both sides of the interface (i.e., supplies a boundary condition) by specifying the
interfacial mass flux on both sides.

Definitions of the input parameters are as follows:

VL_EQUIL_PSEUDORXN

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> Species number.

<integer2> Element Block ID of the liquid phase.

BC = VL_EQUIL_PSEUDORXN SS <bc_id> <integer_list> <float>

Revised: 6/12/13 463

4.10.169 VL_EQUIL_PSEUDORXN

<integer3> Element Block ID of the gas phase.

<float> Rate constant for the forward reaction in units of length
divided by time.

This boundary condition is typically applied to multicomponent two-phase flows that
have rapid mass exchange between phases. The best example of this is rapid
evaporation of a liquid component into a gas.

Examples

The following sample input card

BC = VL_EQUIL_PSEUDORXN SS 4 0 1 2 100.

demonstrates the following characteristics: species number is “0”; liquid phase element
block id is “1”; gas phase element block id is “2”; a forward rate constant of 100.0 cm
s-1.

Technical Discussion

The VL_EQUIL_PSEUDORXN boundary condition uses the following equations
representing a kinetic approach to equilibrium expressed by Raoult’s law, relating
species k on the liquid side to species k on the gas side.

(4-138)

(4-139)

where

 and (4-140)

and where

 (4-141)

The usage of the same index, k, on either side of the interface is deliberate and
represents a stoichiometric limitation to this type of boundary condition. and
are the mass fraction of species k on the liquid and gas sides of the interface,
respectively. is the molecular weight of species k. is the source term for
creation of species k in the liquid phase at the interface (mol cm-2 s-1). is the pseudo

nl ρ
l
Yk

l
u

l
us–() jk

l
+[]• Wk

l
Sk

l
–=

ng ρ
g

Yk
g

u
g

us–() jk
g

+[]• Wk
g

Sk
g

–=

Sk
l

k
f

Ck
g

Kk
c
Ck

l
–[]= Sk

g
Sk

l
–=

Kk
c pk

v

RT

1

C̃
l

-----=

Yk
l

Yk
g

Wk
l

Sk
l

k
f

464 Revised: 6/12/13

4.10.170 IS_EQUIL_PSEUDORXN

reaction rate (cm s-1) input from the boundary condition card. is the concentration
equilibrium constant, which for the restricted stoichiometry cases covered by this
boundary condition, is unitless. is the vapor pressure of gas species k above a liquid
entirely consisting of liquid species k. It is a function of temperature. is the average
concentration in the liquid (mol cm-3). and are the liquid and gas concentrations
of species k (mol cm-3).

The choice for the independent variable is arbitrary, although it does change the actual
equation formulation for the residual and Jacobian terms arising from the boundary
condition. The internal variable Species_Var_Type in the
Uniform_Problem_Description structure may be queried to determine what the
actual species independent variable is. Also note, if mole fractions or molar
concentration are chosen as the independent variable in the problem, the convention
has been to formulate terms of the residuals in units of moles, cm, and seconds.
Therefore, division of the equilibrium equations by would occur before their
inclusion into the residual. and are the diffusive flux of species k (gm cm-2 s-1)
relative to the mass averaged velocity. is the velocity of the interface. A typical
value of that would lead to good numerical behavior would be 100 cm s-1,
equivalent to a reaction with a reactive sticking coefficient of 0.01 at 1 atm and 300 K
for a molecule whose molecular weight is near to N2 or H2S.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.170 IS_EQUIL_PSEUDORXN

Description/Usage (WIC/MASS)

This boundary condition card enforces equilibrium between a species component in
two ideal solution phases via a finite-rate kinetics formalism. The condition only
applies to problems containing internal interfaces with discontinuous (or multilevel)

BC = IS_EQUIL_PSEUDORXN SS <bc_id> <integer_list> <float>

Kk
c

pk
v

C̃
l

Ck
l

Ck
g

Wk
jk
l

jk
g

us
k

f

Revised: 6/12/13 465

4.10.170 IS_EQUIL_PSEUDORXN

species unknown variables. The species unknown variable must employ the Q1_D or
Q2_D interpolation functions in both adjacent element blocks. This boundary
condition constrains the species equations on both sides of the interface (i.e., supplies a
boundary condition) by specifying the interfacial mass flux on both sides.

IS_EQUIL_PSEUDORXN is equivalent to the VL_EQUIL_PSEUDORXN except for
the fact that we do not assume that one side of the interface is a gas and the other is a
liquid. Instead, we assume that both materials on either side of the interface are ideal
solutions, then proceed to formulate an equilibrium expression consistent with that.

The <integer_list> requires three values; definitions of the input parameters are as
follows:

IS_EQUIL_PSEUDORXN

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> Species number.

<integer2> Element Block ID of the first phase, the “+” phase.

<integer3> Element Block ID of the second phase, the “-” phase.

<float> Rate constant for the forward reaction in units of length
divided by time.

Examples

The sample card:

BC = IS_EQUIL_PSEUDORXN SS 4 0 1 2 100.

demonstrates the following characteristics: species number is “0”; the “+” phase
element block id is “1”; the “-” phase element block id is “2”; a forward rate constant of
100. cm s-1.

Technical Discussion

The IS_EQUIL_PSEUDORXN boundary condition uses the following equations
representing a kinetic approach to equilibrium expressed by an ideal solution model for
thermodynamics on either side of the interface. Initially, we relate species k on the +

466 Revised: 6/12/13

4.10.170 IS_EQUIL_PSEUDORXN

side to species k on the - side of the interface via a kinetic formulation, whose rate
constant is fast enough to ensure equilibrium in practice. However, later we may extend
the capability to more complicated stoichiometric formulations for equilibrium, since
the formulation for the equilibrium expression is readily extensible, unlike Goma’s
previous treatment.

(4-142)

(4-143)

where

 and (4-144)

The “-” phase is defined as the reactants, while the “+” phase is defined to be the
products. The expression for the concentration equilibrium constant, , is based on
the ideal solution expression for the chemical potentials for species k in the two phases
[Denbigh, p. 249],

(4-145)

where is defined as the chemical potential of species k in its pure state (or a
hypothetical pure state if a real pure state doesn’t exist) at temperature T and pressure
P. is related to the standard state of species k in phase +, , which is
independent of pressure, through specification of the pressure dependence of the pure
species k. Two pressure dependencies are initially supported:

PRESSURE_INDEPENDENT (4-146)

IDEAL_GAS . (4-147)

With these definitions, can be seen to be equal to

(4-148)

where

n
+

ρ
+

Yk
+

u
+

us–() jk
+

+[]• Wk
+

Sk
+

–=

n
-

ρ
-
Yk

-
u

-
us–() jk

-
+[]• Wk

-
Sk

-
–=

Sk
+

k
f

Ck
- Ck

+

Kk
c

-------–= Sk
-

Sk
+

–=

Kk
c

µk
+

RT Xk
+

()ln µk
+*

T P,()+=

µk
+*

T P,()

µk
+*

T P,() µk o,
+

T()

µk
+*

T P,() µk o,
+

T()=

µk
+*

T P,() µk o,
+

T() RT P 1 atm ⁄()ln+=

Kk
c

Kk
c C

+

C
-

Gk

*
Δ–

RT
--------------exp=

Revised: 6/12/13 467

4.10.171 SURFACE_CHARGE

. (4-149)

The chemical potential for a species in a phase will be calculated either from
CHEMKIN or from the Chemical Potential, Pure Species Chemical Potential, and
Standard State Chemical Potential cards in the materials database file.

The choice for the independent variable for the species unknown is relatively arbitrary,
although it does change the actual equation formulation for the residual and Jacobian
terms arising from the boundary condition. The internal variable Species_Var_Type in
the Uniform_Problem_Description structure is queried to determine what the actual
species independent variable is. A choice of SPECIES_UNDEFINED_FORM is
unacceptable. If either mole fractions or molar concentration is chosen as the
independent variable in the problem, the convention has been to formulate terms of the
residuals in units of moles, cm, and seconds. Therefore, division of the equilibrium
equations by occurs before their inclusion into the residual. and are the
diffusive flux of species k (gm cm-2 s-1) relative to the mass-averaged velocity. is
the velocity of the interface. A typical value of that would lead to good numerical
behavior would be 100 cm s-1, equivalent to a reaction with a reactive sticking
coefficient of 0.01 at 1 atm and 300 K for a molecule whose molecular weight is near to
N2 or H2S.

Theory

No Theory.

FAQs

No FAQs.

References

Denbigh, K., The Principles of Chemical Equilibrium, Cambridge University Press,
Cambridge, 1981

4.10.171 SURFACE_CHARGE

Description/Usage (SIC/MASS)

The SURFACE_CHARGE card specifies the electrostatic nature of a surface:
electrically neutral, positively charged or negatively charged.

BC = SURFACE_CHARGE SS <bc_id> <integer> <float>

Gk
*

Δ µk
+*

T P,() µk
*–

T P,()–=

Wk jk
l

jk
g

us
k

f

468 Revised: 6/12/13

4.10.171 SURFACE_CHARGE

Definitions of the input parameters are as follows:

SURFACE_CHARGEName of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Index of species to which surface charge condition
applies.

<float> z, value of surface charge.

0 - electroneutrality
positive z - positively charged surface
negative z - negatively charged surface

Example

The following input card indicates that on side set 1 species 1 is electrically neutral:

BC = SURFACE_CHARGE SS 1 1 0.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Category 7: Boundary Conditions for the Continuity Equation

The continuity equation rarely requires a boundary condition as it represents an overall mass
balance constraint on the velocity field for the fluid, viz. normally it is used to enforce

Revised: 6/12/13 469

4.10.172 P

incompressibility. Boundary conditions for pressure are most often put on the fluid-momentum
equations as a part of the stress condition at an inflow or outflow plane (see for example boundary
condition cards FLOW_PRESSURE, FLOW_HYDROSTATIC, etc.). On occasion, however, we
can use a pressure condition as a pressure datum, as the Dirichlet pressure condition below
allows, though the user must keep in mind that it is a condition on continuity and not momentum.
When using pressure stabilization, viz. PSPG techniques, then also there is an occasional need for
a boundary condition on this equation.

4.10.172 P

Description/Usage (DC/CONTINUITY)

This Dirichlet boundary condition specification is used to set a constant pressure on a
node set. It is generally used for specifying a pressure datum on a single-node node set.
The pressure datum is useful for setting the absolute value of the pressure, which, for
many problems, is indeterminate to a constant. Pressure datums are especially
important for closed flow problems, such as the lid driven cavity, where there is no
inflow or outflow. Mass conservation problems can arise if this card is used to specify
the pressure along a group of nodes, since this equation replaces the continuity
equation. To specify pressure for a group of nodes, it is preferable to use the flow
pressure boundary condition, which is applied in a weak sense to the momentum
equation and does not cause mass conservation problems. Definitions of the input
parameters are as follows:

P One-character boundary condition name (<bc_name>) that
defines the pressure.

NS Type of boundary condition (<bc_type>), where NS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of pressure.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when

BC = P NS <bc_id> <float1> [float2]

470 Revised: 6/12/13

4.10.173

this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Example

The following are sample cards for specifying a pressure Dirichlet card:
BC = P NS 7 0.
BC = P NS 7 0. 1.0

where the second form is an example using the “residual” method for applying the
same Dirichlet condition.

Technical Discussion

See the technical discussion for the UVW velocity for a discussion of the two ways of
applying Dirichlet boundary conditions.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.173

4.10.174 PSPG

Description/Usage (WIC/CONTINUITY)

This special type of boundary condition exists for pressure-stabilized incompressible
flow simulations only. This card should be used only if the value of the Pressure
Stabilization card has been set to yes. In conjunction with this feature, equal-order
interpolation should be used for the velocity and pressure. If PSPG is used, a boundary
integral will be added to the continuity equation to represent the gradients of velocity in

BC = PSPG SS <bc_id>

Revised: 6/12/13 471

4.10.174 PSPG

the momentum residual, which has been added onto the continuity equation for
stabilization. This term is only needed on inflow and outflow boundaries; in the rest of
the domain, it cancels out. For more details about the derivation of this term, see the
paper by Droux and Hughes (1994).

This boundary condition card requires no integer or floating point constants.
Definitions of the input parameters are as follows:

PSPG Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

Examples

The following is an example of using this card on both the inflow and outflow planes of
the domain.

BC = PSPG SS 40
BC = PSPG SS 20

Technical Discussion

Please see Rao (1996) memo for a more detailed discussion of pressure stabilization
and its implementation in Goma.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-001.0: Pressure Stabilization in Goma using Galerkin Least Squares, July 17,
1996, R. R. Rao

Droux, J. J. and T. J. R. Hughes, “A Boundary Integral Modification of the Galerkin
Least Squares Formulation for the Stokes Problem, ” Comput. Methods Appl. Mech.
Engrg., 113 (1994) 173-182.

472 Revised: 6/12/13

4.10.175

4.10.175

4.10.176 PRESSURE DATUM

Description/Usage

This card is used to set a hydrodynamic pressure datum on fluid mechanics problems
that contain no implicit or explicit boundary conditions on stress or pressure.
Definitions of the input parameters are as follows:

<integer> Element number on which the datum is set. This number
should correspond to that shown when viewing the mesh,
less one, as the numbering convention in the C language
starts at zero rather than at one.

<float> Value of the hydrodynamic pressure datum.

Noteworthy is that this card is optional, and if used, is placed outside the BC section
and just below it.

Examples

Following is a sample card:

PRESSURE DATUM = 10 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

PRESSURE DATUM = <integer> <float>

Revised: 6/12/13 473

4.10.177

4.10.177

Category 8: Boundary Conditions for the Porous Equations

The following conditions are applied as boundary conditions to the porous-flow equations. These
conditions include strong Dirichlet conditions, such as hard sets on porous phase pressure on a
boundary as a constant or function of position, weak-form conditions, such as a specified phase
flux from a convective mass transfer model or a constant flux, and a host of interfacial conditions
for impregnation, etc. The porous flow equations are actually scalar equations that represent
component mass balances. Specifically, there is one component mass balance for the liquid phase,
one for the gas phase, and one for the solid phase. The corresponding three dependent variables in
these balances are the liquid phase pressure, the gas phase pressure, and the porosity, respectively.
These variables are related to the flow through a boundary by their normal gradients (Darcy’s law
formulation) and to the local inventory of liquid and gas through the saturation function. These
implicit terms can often lead to some confusion in setting the boundary conditions so it is
recommended that the user consult the supplementary documentation referenced in the following
porous boundary condition cards.

4.10.178 POROUS_LIQ_PRESSURE

Description/Usage (DC/POR_LIQ_PRES)

This Dirichlet boundary condition is used to set the liquid phase pore pressure at a node
set. It can be applied to a node set on a boundary of a POROUS_SATURATED,
POROUS_UNSATURATED or POROUS_TWO_PHASE medium type (see Media Type
card).

POROUS_LIQ_PRESSURE

Boundary condition name (bc_name).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<float1> Value of liquid phase pressure.

[float2] An optional parameter (that serves as a flag to the code
for a Dirichlet boundary condition). If a value is present,

BC = POROUS_LIQ_PRESSURE NS <bc_id> <float1> [float2]

474 Revised: 6/12/13

4.10.178 POROUS_LIQ_PRESSURE

and is not -1.0, the condition is applied as a residual
equation. Otherwise, it is a "hard set" condition and is
eliminated from the matrix. The residual method must
be used when this Dirichlet boundary condition is used
as a parameter in automatic continuation sequences.

Examples

The boundary condition card

BC = POROUS_LIQ_PRESSURE NS 101 {pcmin}

sets the porous liquid pressure at the boundary denoted by node set 101 to the value
represented by the APREPRO variable {pcmin}.

Technical Discussion

Setting the porous liquid pressure to a value cannot be done independently of the
saturation as the two are related through the vapor pressure curve for simulations in
partially saturated media (see Saturation model card). Keep in mind that when using
this card in these situations, you are setting also the saturation level based on the
capillary pressure, defined as . The convention in Goma is that when
the capillary pressure is greater than zero, the saturation level is less than unity, viz.
the medium is partially saturated. When is less than zero, i.e., when the liquid
phase pressure is greater than the gas phase pressure, then the medium is saturated (in
this case the capillary pressure is poorly defined, though). Also, for Media Type options
of POROUS_UNSATURATED, the ambient gas pressure is constant within the pore
space and is set by the Porous Gas Constants card in the material file. This boundary
condition, when setting the liquid phase pressure, must be used with consideration of
these definitions.

For saturated media (viz. Media Type of POROUS_SATURATED), this discussion is
not relevant. In this case, one must only consider the pressure level as it may effect the
isotropic stress in poroelastic problems.

Theory

No Theory.

FAQs

No FAQs.

pgas pliq– pc=

pc
pc

Revised: 6/12/13 475

4.10.179 POROUS_LIQ_FLUX_CONST

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.10.179 POROUS_LIQ_FLUX_CONST

Description/Usage (WIC/POR_LIQ_PRES)

This boundary condition sets the flux of liquid-phase solvent to a constant value in the
Galerkin finite element weak sense. Specifically, this flux is applied to a side set as a
weak-integrated constant and will set the net flux of liquid phase solvent component (in
both gas and liquid phases) to a specified value. It can be applied to material regions of
Media Type POROUS_SATURATED, POROUS_UNSATURATED, and
POROUS_TWO_PHASE (see Technical Discussion below).

 Definitions of the input parameters are as follows:

POROUS_LIQ_FLUX_CONST

Name of boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Value of the liquid-solvent total flux, in M/L2-t.

[float2] This optional parameter is not applicable to this
boundary condition type, even though it is parsed if
present. This parameter is used for boundary conditions
of the Dirichlet type.

Examples

The input card

BC = POROUS_LIQ_FLUX_CONST SS <bc_id> <float1> [float2]

476 Revised: 6/12/13

4.10.179 POROUS_LIQ_FLUX_CONST

BC = POROUS_LIQ_FLUX_CONST SS 102 200.0

sets the total liquid-solvent mass flux, in both gas and liquid phases, to 200.0 along the
side set 102.

Technical Discussion

This boundary condition is of the mathematical form:

(4-150)

where is the user supplied convection velocity of the stress-free state as defined on
the Convective Lagrangian Velocity card (this is usually zero except in advanced
cases), is the total bulk density of liquid phase solvent (in both gas and liquid
phase, and hence depends on the local saturation), is the pure liquid density, is the
porosity, is the liquid phase pressure, and the other quantities on the second term
help define the Darcy velocity. The const quantity is the input parameter identified
above (<float1>). Note that this sets the flux relative to the boundary motion to the
const value, but by virtue of the Galerkin weak form this condition is automatically
applied with const=0 if no boundary condition is applied at the boundary. In a saturated
case, viz. POROUS_SATURATED media type, this condition is applied as

. (4-151)

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

ρl
T
n vs()φ

ρlkkl

µl

------------ pl∇–
 –⋅ const=

vs

ρ
T

l
ρl φ

pl

ρln vs()φ
ρlk

µl

------- pl∇–
 –⋅ const=

Revised: 6/12/13 477

4.10.180 POROUS_GAS_PRESSURE

4.10.180 POROUS_GAS_PRESSURE

Description/Usage (DC/POR_GAS_PRES)

This Dirichlet boundary condition is used to set the gas-phase pore pressure at the
boundary of a POROUS_TWO_PHASE medium type (see Media Type card). This
condition makes no sense on other POROUS Media Types; the gas pressure in those
cases is constant and set using the Porous Gas Constants card (Microstructure
Properties).

POROUS_GAS_PRESSURE

Boundary condition name (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<float> Value of gas phase pressure.

[float2] An optional parameter (that serves as a flag to the code
for a Dirichlet boundary condition). If a value is present,
and is not -1.0, the condition is applied as a residual
equation. Otherwise, it is a “hard set” condition and is
eliminated from the matrix. The residual method must
be used when this Dirichlet boundary condition is used
as a parameter in automatic continuation sequences.

Examples

The boundary condition card

BC = POROUS_GAS_PRESSURE NS 101 {pgas}

sets the porous gas pressure at the boundary denoted by node set 101 to the value
represented by the APREPRO variable {pgas}.

Technical Discussion

Setting the porous liquid pressure to a value cannot be done independently of the
saturation as the two are related through the vapor pressure curve for simulations in

BC = POROUS_GAS_PRESSURE NS <bc_id> <float1> [float2]

478 Revised: 6/12/13

4.10.181

partially saturated media (see Saturation model card). Keep in mind that when using
this card in these situations, you are setting also the saturation level based on the
capillary pressure, defined as . The convention in Goma is that when
the capillary pressure is greater than zero, the saturation level is less than unity, viz.
the medium is partially saturated. When is less than zero, i.e., when the liquid
phase pressure is greater than the gas phase pressure, then the medium is saturated (in
this case the capillary pressure is poorly defined, though). Also, this pressure sets the
datum of pressure for deformable porous media and must be set in a manner compatible
with the solid-stress values on the boundaries of the porous matrix.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.10.181

4.10.182 POROUS_GAS

Description/Usage (SIC/POR_LIQ_PRES)

This boundary condition card is used to equate flux of solvent in the porous medium
and external gas. The condition is similar to the solid-liquid interface conditions that
apply to interfaces between a porous medium and an external gas (in which the energy
equation is used to solve for solvent concentration in the gas phase). This boundary
condition is still in development.

There are three values in the <integer_list> and two values in the <float_list> for which
to supply values; definitions of the input parameters are as follows:

BC = POROUS_GAS SS <bc_id> <integer_list> <float_list>

pgas pliq– pc=

pc
pc

Revised: 6/12/13 479

4.10.182 POROUS_GAS

POROUS_GAS Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer1> Element block ID of solid, porous phase from the
EXODUS II database.

<integer2> Element block ID of gas phase from the EXODUS II
database.

<integer3> Species number of liquid phase in porous medium.

<float1> Vapor density.

<float2> Factor to allow normal velocity in gas.

Examples

Users are referred to the Cairncross (1999) reference for the best example of card
usage.

Technical Discussion

This highly specialized boundary condition is best explained in a paper by Cairncross
(1999).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-028.0: Modeling Drying of Dip-Coated Films with Strongly-Coupled Gas Phase
Natural Convection, R. A. Cairncross, 1999.

480 Revised: 6/12/13

4.10.183

4.10.183

4.10.184 POROUS_GAS_FLUX_CONST

Description/Usage (WIC/POR_GAS_PRES)

This boundary condition card is used to set the flux of gas-phase solvent to a constant
value in the Galerkin finite element weak sense. Specifically, this flux is applied to a
side set as a weak-integrated constant and will set the net flux of gas phase solvent
component (in both gas and liquid phases, but because the gas solvent is assumed
insoluble in the liquid phase, the liquid phase portion vanishes) to a specified value.
This boundary condition can be applied to material regions of Media Type
POROUS_TWO_PHASE only, as only this type contains a field of gas-phase solvent
flux. (See technical discussion below).

 Definitions of the input parameters are as follows:

POROUS_GAS_FLUX_CONST

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> Value of the gas-solvent total flux, in M/L2-t.

[float2] This optional parameter is not applicable to this
boundary condition type, even though it is parsed if
present. This parameter is used for boundary conditions
of the Dirichlet type.

Examples

The input card

BC = POROUS_LIQ_FLUX_CONST SS 102 200.0

sets the total gas-solvent mass flux, in the gas phase only, to 200.0 along the side set
102.

BC = POROUS_GAS_FLUX_CONST SS <bc_id> <float1> [float2]

Revised: 6/12/13 481

4.10.185 POROUS_CONV

Technical Discussion

This boundary condition is of the mathematical form:

(4-152)

where is the user supplied convection velocity of the stress-free state as defined on
the Convective Lagrangian Velocity card (this is usually zero except in advanced
cases), is the total bulk density of gas phase solvent (in both gas and liquid phase,
and hence depends on the local saturation), is the pure gas density, is the porosity,

 is the gas-phase pressure, and the other quantities on the second term help define the
Darcy velocity. The const quantity is the input parameter described above (<float1>).
Note that this sets the flux relative to the boundary motion to the const value, but by
virtue of the Galerkin weak form this condition is automatically applied with const = 0
if no boundary condition is applied at the boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.185 POROUS_CONV

Description/Usage (WIC/POR_LIQ_PRES)

This boundary condition is used to set the total flux of the liquid phase solvent (in both
the gas and liquid phase) at the surface of a POROUS_UNSATURATED or
POROUS_TWO_PHASE medium to the net convection of solvent due to a
superimposed convective Lagrangian velocity (see Media Type card and Convective
Lagrangian Velocity card). The only input is an integer indicating which component of
the liquid phase solvent is to be set (as of 11/2/01 this component selectability option is

BC = POROUS_CONV SS <bc_id> <integer>

ρg
T
n vs()φ

ρgkkg

µg

------------- pg∇–
 –⋅ const=

vs

ρT
g

ρg φ

pg

482 Revised: 6/12/13

4.10.185 POROUS_CONV

not available and as indicated below should be set to zero; this card has not been
tested).

Definitions of the input parameters are as follows:

POROUS_CONV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number of transported species. (currently only
used for multicomponent species in the phases, which as
of 11/2/01 is not active, so set to zero).

Examples

Following is a sample card:

BC = POROUS_CONV SS 12 0

that applies a convective flux to side set 12 for porous liquid phase species 0. This
species number is currently not used and ignored.

Technical Discussion

This boundary condition has the following form

(4-153)

where the left hand side is the total flux of the solvent i in the medium, which includes,
in order, the flux due to Darcy flow of gas vapor, the Darcy flow of liquid solvent, the
diffusive flux of gas vapor in the pore space and the diffusive flux of liquid solvent in
the liquid phase. is the user supplied convection velocity of the stress-free state as
defined on the Convective Lagrangian Velocity card. As of now (11/2/01), this
condition is used for a single component liquid solvent and has not been furbished for a
single component of that solvent. Also, as of 11/02/01 the condition has not been
tested.

Theory

No Theory.

n vgρg
i

vlρl
i

+ Jg
i

Jl
i

+ +()⋅() n vs⋅()ρg
i

=

vs

Revised: 6/12/13 483

4.10.186 POROUS_FLUX

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.10.186 POROUS_FLUX

Description/Usage (WIC/POR_LIQ_PRES)

This boundary condition is used to set the total flux of the liquid phase solvent (in both
the gas and liquid phase) at the surface of a POROUS_UNSATURATED or
POROUS_TWO_PHASE medium to mass transfer coefficient times driving force (see
Media Type card). The flux quantity is specified on a per mass basis so the mass
transfer coefficient is in units of L/t, and the sink density is in units of M/L3.

The <float_list> for this boundary condition has four values; the definitions of the input
parameters are as follows:

POROUS_FLUX Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number of transported species (currently only
used for multicomponent species in the phases, which as
of 11/2/01 is not active; so set to zero).

<float1> Value of mass transfer coefficient, h1 in units of L/t,
consistent with gas phase concentration driving force.

BC = POROUS_FLUX SS <bc_id> <integer> <float_list>

484 Revised: 6/12/13

4.10.186 POROUS_FLUX

<float2> Driving force concentration in external phase, i.e., sink
density, in units of M/L3.

<float3> Value of pressure-driven mass transfer coefficient, h2 in
units of 1/L, for a liquid exiting a partially saturated
domain.

<float4> Driving force concentration in external phase, i.e., sink
pressure for liquid extraction, in units of M/L/t.

Examples

Following is a sample card:

BC = POROUS_FLUX SS 12 0 0.03 0. 0. 0. 0.

This card applies the lumped mass transfer model for the liquid phase solvent with a
mass transfer coefficient of 0.03 and a sink density of 0.0 for the total flux. The
boundary condition is applied to side set 12 and to the species number 0. This species
number is currently not used and ignored.

Technical Discussion

The mathematical form for this boundary condition is as follows

(4-154)

where the left hand side is the total flux of the liquid solvent i in the medium, which
includes, in order, the flux due to Darcy flow of gas vapor, the Darcy flow of liquid
solvent, the diffusive flux of gas vapor in the pore space and the diffusive flux of liquid
solvent in the liquid phase. The parameters are , , , and as defined on the
input card. is the user supplied convection velocity of the stress-free state as defined
on the Convective Lagrangian Velocity card.

At the present time (11/2/01), this condition is only used for single component liquid
phases and has not been furbished for multicomponent capability yet. Note that usually
the second term on the right is turned off, as in the example above, unless the liquid
pressure at the surface of the sample is greater than the external pressure. This term was
added for applications in which liquid is being squeezed out of a medium and then
drips off or disappears, as liquid is not allowed to be sucked back in (Heaviside
function, H), although the condition could be furbished for this.

ρ
0
gi

p
0
liq

n vgρg
i

vlρl
i

+ Jg
i

Jl
i

+ +()⋅ =

h1φ ρg
i

ρg
i

0
–() H pliq p

0
liq–()h2φ pliq p

0
liq–() n vs⋅()ρg

i
–+=

h1 ρgi

0
h2 p

0
liq

vs

Revised: 6/12/13 485

4.10.187 POROUS_PRESSURE

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.10.187 POROUS_PRESSURE

Description/Usage (PCC/POR_LIQ_PRES)

This condition enforces a continuous fluid-phase pressure between material types, and
is applied to a side set between two materials, one of type POROUS_SATURATED,
POROUS_UNSATURATED, or POROUS_TWO_PHASE, and the other of type
CONTINUOUS (see material card Media Type). Basically it sets the continuity of
hydrodynamic pressure in the continuous fluid to the liquid Darcy pressure in the
porous medium, at the interface. The input data is as follows:

POROUS_PRESSURE

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where NS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<integer1> Element block ID of the porous phase medium.

<integer2> Element block ID of the continuous fluid phase medium.

BC = POROUS_PRESSURE SS <bc_id> <integer1> <integer2>

486 Revised: 6/12/13

4.10.187 POROUS_PRESSURE

Examples

An example input card for this boundary condition follows:

BC = POROUS_PRESSURE NS 101 1 2

This card sets the Darcy liquid phase pressure (p_liq in the output EXODUS II file) in
element block 1 equal to the continuous phase hydrodynamic pressure (P in the output
EXODUS II file) in element block 2.

Technical Discussion

This condition is essential for porous impregnation problems involving conjugate
materials, one porous and one continuous. The mathematical form of this boundary
condition is trivial

(4-155)

but its implementation is not; a memo describing the details of this boundary condition
and how it is applied is cited below. This continuity of pressure is critical for the
sensitivity of pressurizing the continuos phase to the penetration rate of the porous
phase. Interestingly, it forces one to set the pore-phase pressure datum to the same
datum in the continuous phase, and that effects the level of the Saturation versus
capillary pressure curve (see Saturation material card).

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

ppore pcontinous=

Revised: 6/12/13 487

4.10.188

4.10.188

4.10.189 P_LIQ_USER

Description/Usage (PCC/R_POR_LIQ_PRES)

This boundary condition card is used to call a routine for a user-defined liquid-phase
pressure for porous flow problems at an external boundary of a material of one of the
following media types: POROUS_SATURATED, POROUS_UNSATURATED,
POROUS_TWO_PHASE.. Specification is made via the function
p_liq_user_surf in file “user_bc.c.” Definitions of the input parameters are as
follows:

P_LIQ_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutine so the user can vary
the parameters of the boundary condition. This list of float
values is passed as a one-dimensional double array to the
appropriate C function in file user_bc.c.

Examples

The following is a sample input card with two parameters passed to function tuser:

BC =P_LIQ_USER SS 100 273.13 100.0

Technical Discussion

No discussion.

Theory

No Theory.

BC = P_LIQ_USER SS <bc_id> <float_list>

488 Revised: 6/12/13

4.10.190

FAQs

No FAQs.

References

No References.

4.10.190

4.10.191 POROUS_TEMPERATURE

Description/Usage (DC/POR_TEMP)

This Dirichlet boundary condition is used to set the temperature for a nonisothermal
porous media problem at a node set. It can be applied to a node set on a boundary of a
POROUS_SATURATED, POROUS_UNSATURATED or POROUS_TWO_PHASE
medium type (see Media Type card).

POROUS_TEMPERATURE

Boundary condition name (bc_name).

NS Type of boundary condition (<bc_type>), where NS
denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node
set in EXODUS II) in the problem domain.

<float1> Value of temperature at the NS in the porous medium

[float2] An optional parameter (that serves as a flag to the code
for a Dirichlet boundary condition). If a value is present,
and is not -1.0, the condition is applied as a residual
equation. Otherwise, it is a "hard set" condition and is
eliminated from the matrix. The residual method must
be used when this Dirichlet boundary condition is used
as a parameter in automatic continuation sequences.

BC = POROUS_TEMPERATURE NS <bc_id> <float1> [float2]

Revised: 6/12/13 489

4.10.192

Examples

An example input card for this boundary condition follows:

BC = POROUS_TEMPERATURE NS 101 1.0 1.0

This card sets the temperature(p_temp in the output EXODUS II file) in element block
1 at the nodes defined by nodeset 101. Also, the second 1.0 float is to instruct goma to
apply this condition in a residual form.

Technical Discussion

This condition is used to set a temperature boundary condition for nonisothermal
porous media problems, viz. problems that use the R_POR_ENERGY equation (called
EQ = porous_energy). This energy equation is written in multiphase enthalpy form
and hence requires a different equatioin that for continuous media.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.10.192

Category 9: Boundary Conditions for the Stress Equations

The following conditions provide a means to set boundary conditions for the hyperbolic
viscoelastic stress equations; all are of the Dirichlet type.

490 Revised: 6/12/13

4.10.193 S11

4.10.193 S11

Description/Usage (DC/STRESS11)

This Dirichlet boundary condition specification is used to set a constant xx-stress for
any given mode of the stress tensor. Each such specification is made on a separate input
card. Definitions of the input parameters are as follows:

{S11 | S11_1 | S11_2 | S11_3 | S11_4 | S11_5 | S11_6 | S11_7}

Boundary condition name (<bc_name>) that defines the xx-
stress for a given mode, where:

S11 - xx-component of stress tensor for mode 1
S11_1 - xx-component of stress tensor for mode 2
S11_2 - xx-component of stress tensor for mode 3
S11_3 - xx-component of stress tensor for mode 4
S11_4 - xx-component of stress tensor for mode 5
S11_5 - xx-component of stress tensor for mode 6
S11_6 - xx-component of stress tensor for mode 7
S11_7 - xx-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of xx-stress.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the xx-stress
component for mode 2 on node set 7:

BC = {bc_name} NS <bc_id> <float1> [float2]

Revised: 6/12/13 491

4.10.194 S12

BC = S11_1 NS 7 4.0
BC = S11_1 NS 7 4.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.194 S12

Description/Usage (DC/STRESS12)

This Dirichlet boundary condition specification is used to set a constant xy-stress (also
known as the shear stress) for any given mode of the stress tensor. Each such
specification is made on a separate input card. Definitions of the input parameters are
as follows:

{S12 | S12_1 | S12_2 | S12_3 | S12_4 | S12_5 | S12_6 | S12_7}

Boundary condition name (<bc_name>) that defines the xy-
stress for a given mode, where:

S12 - xy-component of stress tensor for mode 1
S12_1 - xy-component of stress tensor for mode 2

BC = {bc_name} NS <bc_id> <float1> [float2]

492 Revised: 6/12/13

4.10.194 S12

S12_2 - xy-component of stress tensor for mode 3
S12_3 - xy-component of stress tensor for mode 4
S12_4 - xy-component of stress tensor for mode 5
S12_5 - xy-component of stress tensor for mode 6
S12_6 - xy-component of stress tensor for mode 7
S12_7 - xy-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of xy-stress.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the xy-stress
component for mode 5 on node set 10:

BC = S12_4 NS 10 1.25
BC = S12_4 NS 10 1.25 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

Revised: 6/12/13 493

4.10.195 S13

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.195 S13

Description/Usage (DC/STRESS13)

This Dirichlet boundary condition specification is used to set a constant xz-stress for
any given mode of the stress tensor. Each such specification is made on a separate input
card. Definitions of the input parameters are as follows:

{S13 | S13_1 | S13_2 | S13_3 | S13_4 | S13_5 | S13_6 | S13_7}

Boundary condition name (<bc_name>) that defines the xz-
stress for a given mode, where:

S13 - xz-component of stress tensor for mode 1
S13_1 - xz-component of stress tensor for mode 2
S13_2 - xz-component of stress tensor for mode 3
S13_3 - xz-component of stress tensor for mode 4
S13_4 - xz-component of stress tensor for mode 5
S13_5 - xz-component of stress tensor for mode 6
S13_6 - xz-component of stress tensor for mode 7
S13_7 - xz-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of xz-stress.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.

BC = {bc_name} NS <bc_id> <float1> [float2]

494 Revised: 6/12/13

4.10.195 S13

Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following is a sample card for applying a Dirichlet condition for the xz-stress
component for mode 5 on node set 10:

BC = S13_4 NS 10 1.3
BC = S13_4 NS 10 1.3 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

Revised: 6/12/13 495

4.10.196 S22

4.10.196 S22

Description/Usage (DC/STRESS22)

This Dirichlet boundary condition specification is used to set a constant yy-stress for
any given mode of the stress tensor. Each such specification is made on a separate input
card. Definitions of the input parameters are as follows:

{S22 | S22_1 | S22_2 | S22_3 | S22_4 | S22_5 | S22_6 | S22_7}

Boundary condition name (<bc_name>) that defines the yy-
stress for a given mode, where:

S22 - yy-component of stress tensor for mode 1
S22_1 - yy-component of stress tensor for mode 2
S22_2 - yy-component of stress tensor for mode 3
S22_3 - yy-component of stress tensor for mode 4
S22_4 - yy-component of stress tensor for mode 5
S22_5 - yy-component of stress tensor for mode 6
S22_6 - yy-component of stress tensor for mode 7
S22_7 - yy-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of yy-stress.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the yy-stress
component for mode 8 on node set 20:

BC = {bc_name} NS <bc_id> <float1> [float2]

496 Revised: 6/12/13

4.10.197 S23

BC = S22_7 NS 20 5.0
BC = S22_7 NS 20 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.197 S23

Description/Usage (DC/STRESS23)

This Dirichlet boundary condition specification is used to set a constant yz-stress for
any given mode of the stress tensor. Each such specification is made on a separate input
card. Definitions of the input parameters are as follows:

{S23 | S23_1 | S23_2 | S23_3 | S23_4 | S23_5 | S23_6 | S23_7}

Boundary condition name (<bc_name>) that defines the yz-
stress for a given mode, where:

S23 - yz-component of stress tensor for mode 1
S23_1 - yz-component of stress tensor for mode 2
S23_2 - yz-component of stress tensor for mode 3

BC = {bc_name} NS <bc_id> <float1> [float2]

Revised: 6/12/13 497

4.10.197 S23

S23_3 - yz-component of stress tensor for mode 4
S23_4 - yz-component of stress tensor for mode 5
S23_5 - yz-component of stress tensor for mode 6
S23_6 - yz-component of stress tensor for mode 7
S23_7 - yz-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of yz-stress.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the yz-stress
component for mode 8 on node set 20:

BC = S23_7 NS 20 5.0
BC = S23_7 NS 20 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

498 Revised: 6/12/13

4.10.198 S33

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.198 S33

Description/Usage (DC/STRESS33)

This Dirichlet boundary condition specification is used to set a constant zz-stress for
any given mode of the stress tensor. Each such specification is made on a separate input
card. Definitions of the input parameters are as follows:

{S33 | S33_1 | S33_2 | S33_3 | S33_4 | S33_5 | S33_6 | S33_7}

Boundary condition name (<bc_name>) that defines the zz-
stress for a given mode, where:

S33 - zz-component of stress tensor for mode 1
S33_1 - zz-component of stress tensor for mode 2
S33_2 - zz-component of stress tensor for mode 3
S33_3 - zz-component of stress tensor for mode 4
S33_4 - zz-component of stress tensor for mode 5
S33_5 - zz-component of stress tensor for mode 6
S33_6 - zz-component of stress tensor for mode 7
S33_7 - zz-component of stress tensor for mode 8

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of zz-stress.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.

BC = {bc_name} NS <bc_id> <float1> [float2]

Revised: 6/12/13 499

4.10.198 S33

Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following are sample cards for applying a Dirichlet condition on the zz-stress
component for mode 1 on node set 100:

BC = S33 NS 100 5.0
BC = S33 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

See the technical discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions.

For details of the stress tensor and its use for solving viscoelastic flow problems, please
see the viscoelastic flow tutorial (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

Category 10: Boundary Conditions for the Gradient Equations

As companion equations to the viscoelastic stress equations, a continuous velocity gradient is
determined through the so-called Velocity Gradient Equations. These boundary conditions are of
the Dirichlet type and can be used to put conditions on this class of equations.

500 Revised: 6/12/13

4.10.199 G11

4.10.199 G11

Description/Usage (DC/GRADIENT11)

This Dirichlet boundary condition specification is used to set a constant xx-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G11 Boundary condition name (<bc_name>) that defines the xx-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of xx-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the xx-velocity
gradient component on node set 100:

BC = G11 NS 100 5.0
BC = G11 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get

BC = G11 NS <bc_id> <float1> [float2]

Revised: 6/12/13 501

4.10.200 G12

estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-156)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.200 G12

Description/Usage (DC/GRADIENT12)

This Dirichlet boundary condition specification is used to set a constant xy-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G12 Boundary condition name (<bc_name>) that defines the xy-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

BC = G12 NS <bc_id> <float1> [float2]

G v∇=

502 Revised: 6/12/13

4.10.200 G12

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of xy-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following is a sample card for applying a Dirichlet condition on the xy-velocity
gradient component on node set 100:

BC = G12 NS 100 5.0
BC = G12 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get
estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-157)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

G v∇=

Revised: 6/12/13 503

4.10.201 G13

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.201 G13

Description/Usage (DC/GRADIENT13)

This Dirichlet boundary condition specification is used to set a constant xz-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G13 Boundary condition name (<bc_name>) that defines the xz-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of xz-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the xz-velocity
gradient component on node set 100:

BC = G13 NS <bc_id> <float1> [float2]

504 Revised: 6/12/13

4.10.201 G13

BC = G13 NS 100 5.0
BC = G13 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get
estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-158)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

G v∇=

Revised: 6/12/13 505

4.10.202 G21

4.10.202 G21

Description/Usage (DC/GRADIENT21)

This Dirichlet boundary condition specification is used to set a constant yx-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G21 Boundary condition name (<bc_name>) that defines the yx-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of yx-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the yx-velocity
gradient component on node set 100:

BC = G21 NS 100 5.0
BC = G21 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get

BC = G21 NS <bc_id> <float1> [float2]

506 Revised: 6/12/13

4.10.203 G22

estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-159)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.203 G22

Description/Usage (DC/GRADIENT22)

This Dirichlet boundary condition specification is used to set a constant yy-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G22 Boundary condition name (<bc_name>) that defines the yy-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

BC = G22 NS <bc_id> <float1> [float2]

G v∇=

Revised: 6/12/13 507

4.10.203 G22

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of yy-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the yy-velocity
gradient component on node set 100:

BC = G22 NS 100 5.0
BC = G22 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get
estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-160)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

G v∇=

508 Revised: 6/12/13

4.10.204 G23

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.204 G23

Description/Usage (DC/GRADIENT23)

This Dirichlet boundary condition specification is used to set a constant yz-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G23 Boundary condition name (<bc_name>) that defines the yz-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of yz-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the yz-velocity
gradient component on node set 100:

BC = G23 NS <bc_id> <float1> [float2]

Revised: 6/12/13 509

4.10.204 G23

BC = G23 NS 100 5.0
BC = G23 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get
estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-161)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

G v∇=

510 Revised: 6/12/13

4.10.205 G31

4.10.205 G31

Description/Usage (DC/GRADIENT31)

This Dirichlet boundary condition specification is used to set a constant zx-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G31 Boundary condition name (<bc_name>) that defines the zx-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of zx-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the zx-velocity
gradient component on node set 100:

BC = G31 NS 100 5.0
BC = G31 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get

BC = G31 NS <bc_id> <float1> [float2]

Revised: 6/12/13 511

4.10.206 G32

estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-162)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.206 G32

Description/Usage (DC/GRADIENT32)

This Dirichlet boundary condition specification is used to set a constant zy-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G32 Boundary condition name (<bc_name>) that defines the zy-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

BC = G32 NS <bc_id> <float1> [float2]

G v∇=

512 Revised: 6/12/13

4.10.206 G32

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of zy-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the zy-velocity
gradient component on node set 100:

BC = G32 NS 100 5.0
BC = G32 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get
estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-163)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

G v∇=

Revised: 6/12/13 513

4.10.207 G33

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.10.207 G33

Description/Usage (DC/GRADIENT33)

This Dirichlet boundary condition specification is used to set a constant zz-velocity
gradient component of the velocity gradient tensor. Definitions of the input parameters
are as follows:

G33 Boundary condition name (<bc_name>) that defines the zz-
velocity gradient.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of zz-velocity gradient.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the zz-velocity
gradient component on node set 100:

BC = G33 NS <bc_id> <float1> [float2]

514 Revised: 6/12/13

4.10.207 G33

BC = G33 NS 100 5.0
BC = G33 NS 100 5.0 1.0

where the second example uses the “residual” method for applying the same Dirichlet
condition.

Technical Discussion

We solve a simple least squares equation to determine the continuous velocity gradient
G from the velocity field. This is done so that we may have a differentiable field to get
estimates of the second derivative of the velocity field for applications in complex
rheology. The velocity gradient equation is:

. (4-164)

Note, that boundary conditions are almost never set on the velocity gradient equation
since it is just a least squares interpolation of the discontinuous velocity gradient
derived from the velocity field.

See the Technical Discussion for the UVW velocity boundary condition for a discussion
of the two ways of applying Dirichlet boundary conditions. For details of the velocity
gradient tensor and its use for solving viscoelastic flow problems, please see Rao
(2000).

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

Category 11: Boundary Conditions for the Shear Rate Equation

The single boundary condition in this category is used to set a Dirichlet condition for the scalar
shear rate equation. This differential equation is employed by the Phillips model for a suspension
constitutive equation.

G v∇=

Revised: 6/12/13 515

4.10.208 SH

4.10.208 SH

Description/Usage (DC/SHEAR_RATE)

This boundary condition is used to set a Dirichlet condition for the scalar shear rate
unknown field.

Description of the input parameters is as follows:

SH Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value at which the scalar shear rate unknown will be fixed
on node set <bc_id>.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

An example of its used:

BC = SH NS 10 0.5

This boundary condition sets the scalar shear rate unknown to 0.5 on nodeset 10.

Technical Discussion

The scalar shear rate unknown field is otherwise known as the second invariant of the
rate of deformation tensor.

BC = SH NS <bc_id> <float1> [float2]

516 Revised: 6/12/13

4.10.209 F

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Category 12: Boundary Conditions for the Fill Equation

The so-called Fill equation is used by the volume-of-fluid and level-set Eulerian interface
tracking in Goma. Basically it is a statement of Lagrangian invariance and is hence a hyperbolic
statement of the so-called kinematic equation. Given a velocity field, this equation advances the
fill function as a set of material points; hence material surfaces remain ostensibly intact. The
boundary conditions in this section are used to specify the level-of-fill at a boundary at which a
fluid of a specific phase is flowing into the problem domain.

4.10.209 F

Description/Usage (DC/FILL)

This Dirichlet boundary condition specifies a value of the fill or level set unknown field
on a node set.

A description of the input parameters is as follows:

F Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value at which the fill or level set unknown will be fixed on
this node set.

BC = F NS <bc_id> <float1> [float2]

Revised: 6/12/13 517

4.10.210 FILL_INLET

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

An example:

BC = F NS 100 1.0

Technical Discussion

This boundary condition finds most of its use in the VOF/FILL interface tracking
algorithm where it is used to fix the value of the color function at an inlet or outlet
boundary. In the level set formulation, it is used less but is still useful in defining the
absolute fixed location of an interface by setting the value assigned to 0 on a node set.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.210 FILL_INLET

Description/Usage (SPECIAL/FILL)

This boundary condition allows the user to specify a value on a inlet boundary from
VOF problems employing discontinuous interpolation of the color function, F.

Description of the input parameters is as follows:

BC = FILL_INLET SS <bc_id> <float1>

518 Revised: 6/12/13

4.10.210 FILL_INLET

FILL_INLET boundary condition name

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> The value of the fill function, F, as it flows across <bc_id>
into the domain.

Examples

An example:

BC = FILL_INLET SS 10 1.0

Technical Discussion

• This boundary condition is useful only in problems involving VOF interface
tracking in which the fill function is interpolated discontinuously. In this
formulation, communication of the fill function value can only be made by finding
the value of the fill function in the element upstream of the current position. While
this is a stable formulation for the advective VOF method, it does introduce the
complexity of determining which element is actually upstream.

• When there is no element upstream, as in the case of an inlet boundary, this
boundary condition must be present to establish the value of the fill function that is
flowing across the inlet boundary into the domain. Consequently, this boundary
condition should be present on all inlet boundaries of the problem. It sometimes is
also useful to have it on outflow boundaries as well, just in case a backflow
situation arises.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 519

4.10.211 CURRENT

Category 13: Boundary Conditions for the Potential Equation

The Potential equation is a Laplace equation for the voltage (potential) given a charge distribution
in a dielectric medium or a voltage or current boundary condition in an electrically conductive
medium. The following boundary conditions allow the current or voltage to be set on a boundary.

4.10.211 CURRENT

Description/Usage (WIC/POTENTIAL)

This card specifies the electrical current density at a given boundary.

Definitions of the input parameters are as follows:

CURRENT Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> Value of current density (in A/m2 or A/cm2, depending on
units of length scale used in the problem).

Examples

An example input card:

BC = CURRENT SS 1 -0.05

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

BC = CURRENT SS <bc_id> <float>

520 Revised: 6/12/13

4.10.212 CURRENT_USER

References

No References.

4.10.212 CURRENT_USER

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to define a routine for a user-defined electrical
current density model. Definitions of the input parameters are as follows:

CURRENT_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutines so the user can
vary the parameters of the boundary condition. This list
of float values is passed as a one-dimensional double
array to the appropriate C function.

Examples

The following is a sample input card:

BC = CURRENT_USER SS 100 10.0 3.14159

Technical Discussion

No discussion.

Theory

No Theory.

BC = CURRENT_USER SS <bc_id> <float_list>

Revised: 6/12/13 521

4.10.213 VOLT

FAQs

No FAQs.

References

No References.

4.10.213 VOLT

Description/Usage (DC/POTENTIAL)

This Dirichlet boundary condition card is used to set a constant voltage. Definitions of
the input parameters are as follows:

VOLT Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of voltage.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following is a sample card:

BC = VOLT NS 3 -0.22

BC = VOLT NS <bc_id> <float1> [float2]

522 Revised: 6/12/13

4.10.214 CURRENT_BV

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.214 CURRENT_BV

Description/Usage (WIC/POTENTIAL)

The CURRENT_BV card enables the specification of variable electrical current density
as given by Butler-Volmer kinetics and the Faraday’s law at the specified boundary
(namely, an electrode surface).

The <floatlist> has seven parameters for this boundary condition; definitions of the
input parameters are as follows:

CURRENT_BV Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number of concentration.

<float1> Stoichiometric coefficient

<float2> Kinetic rate constant

<float3> Reaction order

BC = CURRENT_BV SS <bc_id> <integer> <floatlist>

Revised: 6/12/13 523

4.10.214 CURRENT_BV

<float4> Anodic direction transfer coefficient

<float5> Cathodic direction transfer coefficient

<float6> Electrode potential or applied voltage

<float7> Theoretical open-circuit potential

Example

An example input card:

BC = CURRENT_BV SS 1 0 -1.0 0.000002 1.0 0.21 0.21 -0.65 -0.22

Technical Discussion

Users are referred to Chen (2000) for details of the Butler-Volmer model and also
Newman (1991), particularly Equations 8.6 and 8.10 and Chapter 8, pp. 188-189 in the
latter.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-025.0: Modeling diffusion and migration transport of charged species in dilute
electrolyte solutions: GOMA implementation and sample computed predictions from a
case study of electroplating, K. S. Chen, September 21, 2000

J. S. Newman, "Electrochemical Systems", Second Edition, Prentice-Hall, Inc. (1991).

524 Revised: 6/12/13

4.10.215

4.10.215

4.10.216 CURRENT_HOR

Description/Usage (WIC/POTENTIAL)

The CURRENT_HOR card enables the specification of the variable current density as
given by linearized Butler-Volmer kinetics (such as that for the hydrogen-oxidation
reaction in polymer-electrolyte-membrane fuel cells) at the specified boundary (i.e., at
the electrode surface).

The <floatlist> consists of 9 values; definitions of the input parameters are as follows:

CURRENT_HOR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit
of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Anodic direction transfer coefficient, αa.

<float5> Cathodic direction transfer coefficient, αc.

<float6> Temperature, T, in unit of K.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

<float9> Electrode potential, V, in unit of V.

Example

The following is a sample input card:

BC = CURRENT_HOR SS <bc_id> <integer> <floatlist>

Revised: 6/12/13 525

4.10.216 CURRENT_HOR

BC = CURRENT_HOR SS 14 0 1000. 0.001 4.e-5 1. 1. 353. 0. 0.5 0.

Technical Discussion

For electrochemical reactions such as the hydrogen-oxidation reaction (HOR), surface
overpotential is relatively small such that the Butler-Volmer kinetic model can be
linearized to yield a simplified equation for computing current density:

where j is current density in units of A/cm2; denotes the product of interfacial area
per unit volume by exchange current density, which has units of A/cm3; H is the
catalyst layer or catalyzed electrode thickness in unit of cm; c and are, respectively,
species and reference molar concentrations in units of moles/cm3; β is reaction order;
αa and αc are, respetively, the anodic and cathodic transfer coefficients; F is the
Faraday’s constant (96487 C/mole); R is the universal gasl constant (8.314
J/mole-K); T is temperature in unit of K; V and are, respectively, the electrode and
electrolyte potentials in unit of V; and is the open-circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”,
in ASME Proceedings of FUELCELL2006-97032 (2006).

j ai0H
c

cref

 β

αa αc+()
F V Φ– U0–()

RT
------------------------------------=

ai0

cref

≡ ≡

Φ

U0

526 Revised: 6/12/13

4.10.217

4.10.217

4.10.218 CURRENT_ORR

Description/Usage (WIC/POTENTIAL)

The CURRENT_ORR card enables the specification of the variable current density as
given by the Tafel kinetics (such as that for the oxygen-reduction reaction in polymer-
electrolyte-membrane fuel cells) at the specified boundary (i.e., at the electrode
surface).

The <floatlist> consists of 8 values; definitions of the input parameters are as follows:

CURRENT_ORR Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<integer> Species number of concentration

<float1> Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float2> Catalyst layer or catalyzed electrode thickness, H, in unit
of cm.

<float3> Reference concentration, cref, in units of moles/cm3.

<float4> Cathodic direction transfer coefficient, αc.

<float5> Temperature, T, in unit of K.

<float6> Electrode potential, V, in unit of V.

<float7> Theoretical open-circuit potential, U0, in unit of V.

<float8> Reaction order, β.

Example

The following is a sample input card:

BC = CURRENT_ORR SS <bc_id> <integer> <floatlist>

Revised: 6/12/13 527

4.10.218 CURRENT_ORR

BC = CURRENT_ORR SS 15 1 0.01 0.001 4.e-5 1. 353. 0.7 1.18 1.

Technical Discussion

For electrochemical reactions such as the oxygen-reduction reaction (ORR), surface
overpotential is large and negative such that the first exponential term in the Butler-
Volmer kinetic model is much smaller than the second term and thus can be dropped to
yield the Tafel kinetic model for computing current density:

where j is current density in units of A/cm2; denotes the product of interfacial area
per unit volume by exchange current density, which has units of A/cm3; H is the
catalyst layer or catalyzed electrode thickness in unit of cm; c and are, respectively,
species and reference molar concentrations in units of moles/cm3; β is reaction order;
αc is the anodic and cathodic transfer coefficient; F is the Faraday’s constant
(96487 C/mole); R is the universal gasl constant (8.314 J/mole-K); T is
temperature in unit of K; V and are, respectively, the electrode and electrolyte
potentials in unit of V; and is the open-circuit potential in unit of V.

Theory

No Theory.

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”,
in ASME Proceedings of FUELCELL2006-97032 (2006).

j ai0H–
c

cref

 β

e

αcF

RT
--------- V Φ– U0–()–

=

ai0

cref

≡ ≡

Φ

U0

528 Revised: 6/12/13

4.10.219

4.10.219

4.10.220 VOLT_USER

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to specify a voltage or potential computed via a
user-defined function. Definitions of the input parameters are as follows:

VOLT_USER Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float_list> A list of float values separated by spaces which will be
passed to the user-defined subroutines so the user can
vary the parameters of the boundary condition. This list
of float values is passed as a one-dimensional double
array to the appropriate C function.

Examples

The following is a sample input card:

BC = VOLT_USER SS 14 0.33 1000. 0.001 4e-5 1. 1. 353. 0.

Technical Discussion

In the VOLT_USER model currently implemented in GOMA, the electrolyte potential
is given by the linearized Butler-Volmer kinetic model as in the hydrogen-oxidation
reaction of a hydrogen-fueled polymer-electrolyte-membrane fuel cell. See the
user_bc.c routine for details.

Theory

No Theory.

FAQs

No FAQs.

BC = VOLT_USER SS <bc_id> <float_list>

Revised: 6/12/13 529

4.10.221

References

No References.

4.10.221

Category 14: Fluid-Solid Interaction Boundary Conditions

This is a special group of boundary conditions for problems in which there are two distinct
material phases (fluid and solid) with relative motion between them. These BC’s provide a means
to apply conditions to a moving boundary with sensitivities to variables in both phases. These
problems are formulated in Goma as overset-grid or phase function problems.

4.10.222 LAGRANGE_NO_SLIP

Description/Usage (CONTACT_SURF/R_LAGR_MULT1)

This boundary condition is used to apply a kinematic Lagrange multiplier constraint to
a solid/fluid boundary while using Goma’s overset grid capability. The condition is
used when the complete fluid-structure interaction problem is being solved, viz.
stresses between fluid and solid are both accommodated as is the dynamics of the
structure and fluid. In contrast, Goma allows for a structure to be moved through a
fluid under prescribed kinematics, and in that case a different Lagrange multiplier
constraint is advocated (see LS_NO_SLIP, for example). Two integer inputs together
with a sideset ID integer are required for this boundary condition:

LAGRANGE_NO_SLIP Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<integer1> Element block ID of solid phase from the EXODUS II
database.

<integer2> Element block ID of liquid phase from the EXODUS II
database.

BC = LAGRANGE_NO_SLIP SS <bc_id> <integer1> <integer2>

530 Revised: 6/12/13

4.10.222 LAGRANGE_NO_SLIP

Examples

Following is a sample card:

BC = LAGRANGE_NO_SLIP SS 2 1 2

.

In this case the kinematic condition (viz. a velocity match of fluid and solid at the
interface) is applied to the interface imprinted by sideset 2. That side set is imprinted
on the background fluid mesh. The solid material block ID is 1 in this case and the
background fluid material ID is 2. .

Technical Discussion

In this work, the governing equations consist of a fluid momentum balance:

a mass balance:

and a solid momentum balance:

The kinematic constraint at the fluid-solid interface is:

and the level set function is evaluated at each fluid mesh node by:

The first four equations are written in a Galerkin/Finite form, with φi representing the
weighting functions at node i. The first three equations are enforced at all nodes i that
contain the appropriate degrees of freedom (viz. solid or fluid dofs). The fourth
equation applies at the solid-liquid interface. ρf and ρs are the fluid and solid material
densities, respectively, v is the fluid velocity, F represents any body forces such as
gravity, τ is the fluid stress tensor, γ is the Lagrange multiplier vector unknown, x is the
solid displacement vector unknown, σ is the solid stress tensor, f is the level set
unknown, Θ is a step function which is -1 for points within the region occupied by the
solid and +1 outside this region, xi and xs are the position vectors of a fluid node and of
the closest point to it on the solid boundary, respectively, V is the fluid volume domain,
S is the solid volume domain, and Γ is the solid boundary (interface) surface domain.

φv
i

ρf
Dv

Dt
------- τ ρf+ F∇•+ V φk

i

Γ
– γd Γ 0=d

V

φc
i

v∇•[] Vd

V

 0=

φx
i

ρsx·· σ ρsF]+∇•+[V φk
i
γ Γ 0=d

Γ
+d

S

φγ
i

x· v–[] Γ 0=d

Γ

f Θ x
i

x
s

–=

Revised: 6/12/13 531

4.10.223

Noteworthy is that this boundary condition applies the second-to-last “kinematic”
constraint.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3: Goma’s Overset Mesh Capability. Randy Schunk.

4.10.223

4.10.224 OVERSET_FLUID_SOLID/BAAIJENS_FLUID_SOLID

Description/Usage(EMBEDDED_SURF/R_MOMENTUM1)

 This boundary condition is used to apply a traction to the fluid that comes from a solid
while using Goma’s overset grid capability. The condition is used when the complete
fluid-structure interaction problem is being solved, viz. stresses between fluid and solid
are both accommodated as is the dynamics of the structure and fluid. The condition is
applied to the fluid phase along a zero-level-set contour, hence the PF BC ID type. In
another mode of usage, Goma allows for a structure to be moved through a fluid under
prescribed kinematics, and in that case this condition is still applied as a solid traction
to the fluid. The value of that traction is dictated by the Lagrange multiplier kinematic
constraint (cf. LANGRANGE_NO_SLIP BC and LS_NO_SLIP BC). Note that the
condition is applied to a boundary in the fluid defined by a phase-field function (see
phase1 equation type). . Two integer inputs together with a sideset ID integer are
required for this boundary condition:

BAAIJENS_FLUID_SOLD Name of the boundary condition.

PF Type of boundary condition (<bc_type>), where PF denotes
a surface defined by a phase function (level-set).

BC = BAAIJENS_FLUID_SOLID PF <pf_id> <integer1> <integer2>

532 Revised: 6/12/13

4.10.224 OVERSET_FLUID_SOLID/BAAIJENS_FLUID_SOLID

<pf_id> The boundary flag identifier basically sets the number of the
phase field function to which this condition applies. For
now you must set this to 1, as this phase-field is hardwired
to handle the imprinted fluid solid boundary. .

<integer1> Element block ID of solid phase from the EXODUS II
database.

<integer2> Element block ID of liquid phase from the EXODUS II
database.

The peculiar name was derived from a paper by Frank Baaijens, from which
Goma’s formulation was generated. We are in the process of changing that
name to OVERSET_FLUID_SOLID.

Examples

Following is a sample card:

BC = BAAIJENS_FLUID_SOLID PF 1 1 2

BC = LS_NO_SLIP PF 1 1 2

This condition set applies a fluid traction condition to a surface defined by phase field
1, which is slaved to a side set that is set in the phase function slave surface capability.
(see Phase Function Initialization Method).

Technical Discussion

See discussion on LANGRANGE_NO_SLIP. This condition applies the fluid traction
boundary term on the fluid momentum equation.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3

Revised: 6/12/13 533

4.10.225 OVERSET_SOLID_FLUID/

BAAIJENS_SOLID_FLUID

4.10.225 OVERSET_SOLID_FLUID/BAAIJENS_SOLID_FLUID

Description/Usage (CONTACT_SURF/ MESH)

 This boundary condition is used to apply a traction to a solid that comes from the fluid
while using Goma’s overset grid capability. The condition is used when the complete
fluid-structure interaction problem is being solved, viz. stresses between fluid and solid
are both accommodated as is the dynamics of the structure and fluid. The condition is
applied to the solid phase along a side set that defines the fluid/solid interface. Two
integer inputs together with a sideset ID integer are required for this boundary
condition:

BAAIJENS_SOLID_FLUID Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<ss_id> The boundary flag identifier that sets the side set number. .

<integer1> Element block ID of solid phase from the EXODUS II
database.

<integer2> Element block ID of liquid phase from the EXODUS II
database.

The peculiar name was derived from a paper by Frank Baaijens, from which
Goma’s formulation was generated. We are in the process of changing that
name to OVERSET_SOLID_FLUID

Examples

Following is a sample card set:

BC = BAAIJENS_SOLID_FLUID SS 1 2 1

BC = BAAIJENS_FLUID_SOLID PF 1 2 1

BC = LAGRANGE_NO_SLIP SS 1 2 1

Here, the BAAIJENS_SOLID_FLUID cared applies a boundary fluid traction to a
solid phase defined by side set 1. In this case the solid phase material ID is 2 and the
fluid phase 1.

BC = OVERSET_SOLID_FLUID SS <bc_id> <float_list>

534 Revised: 6/12/13

4.10.226

Technical Discussion

See discussion on LAGRANGE_NO_SLIP. Basically, this condition results in a
boundary traction set by the Lagrange multiplier constraint to be applied to the solid
momentum equation (note the weak term that appears on that equation).

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3

4.10.226

4.10.227 F1 F2 F3 F4 F5

Description/Usage (DC/R_PHASE)

This boundary condition format is used to set a constant phase function field values at
node sets. Please see “phase#” equation types for a description of the variables. Each
such specification (for each field being used) is made on a separate input card. These
boundary conditions must be applied to node sets. Definitions of the input parameters
are as follows:

{F1 | F2 | F3 | F4 | F5 }Two-character boundary condition name (<bc_name>)
that defines which phase field variable is being set. There
are a maximum of five addtional level-set/phase fields.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

BC = {F1 | F2 | F3 | F4 | F5} NS <bc_id> <float1> [float2]

Revised: 6/12/13 535

4.10.228

<float1> Value at which the phase field unknown will be fixed on this
node set.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

Following is a sample card which applies an phase field boundary condition to the
nodes in node set 100, specifically an phase field-3 value of 1.0.

BC = F3 NS 100 1.0

Technical Discussion

This boundary condition finds most of its use in the Phase Function interface tracking
algorithm where it is used to fix the value of the color function at an inlet or outlet
boundary. The phase function fields were put in to supplement Goma’s base level set
capability to provide the ability to model multiple (more than two) materials. We don’t
anticipate that these boundary conditions will be used much. Nonetheless, this
condition allows Dirichlet conditions to be applied to each of the five additional level
set fields.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3

4.10.228

536 Revised: 6/12/13

4.10.229 PF_CAPILLARY

4.10.229 PF_CAPILLARY

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition applies an “embedded” surface tension source term when
solving capillary hydrodynamics problems with phase function level set interface
tracking. Note that its counterpart for the base level set field is LS_CAPILLARY, and
this boundary condition is applied the same way to other level-set fields defined by the
Phase Function cards. It can be used with only subgrid integration. The surface
tension value used in this boundary condition is obtained from the Surface Tension
material parameter defined in the mat file. Note that each phase-function field requires
a separate PF_CAPILLARY boundary condition.

A description of the input parameters follows:

PF_CAPILLARY

the name of the boundary condition

PF This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter that is used to specify to which phase
function field that the boundary condition is to be applied.

<float1> Not currently used.

<float2> Not currently used.

<float3> Not currently used

Examples

An example:

BC = PF_CAPILLARY PF 1

Technical Discussion

Surface tension forces at a level set (phase function) representation of an interfacial
boundary are applied solely via this boundary condition. An additional divergence of
stress tensor term is added to the fluid momentum equation. The form of this
tensor is

BC = PF_CAPILLARY LS <integer> <float1> <float2> <float3>

∇ Tcap⋅

Revised: 6/12/13 537

4.10.229 PF_CAPILLARY

(4-165)

where s is the (isotropic) surface tension, I is the identity tensor, n is the vector normal
to the interface and is the smoothed Dirac delta function. The surface tension
value used in this expression is obtained from the Surface Tension card found in the
material file.

The actual implementation in Goma integrates the divergence term by parts so the
expression that is added to the weak form of the momentum equation is:

(4-166)

This fact introduces the issue of integration error into the problem. As obvious above,
this source term involves the non-linear Dirac delta function factor. Conventional
numerical integration methods often do not offer adequate accuracy in evaluating this
integral, especially if if the interface width is a fraction of the average element size.
This has led to introduction the level-set-specific integration methods: subelement
integration and subgrid integration. In the latter case, more integration points are
clustered around the interface (in essence) to improve accuracy. The integer parameter
on the card should be set to zero to signify that the surface tension forces are distributed
in equal measure on both sides of the interfacial curve.

In the subelement integration case, however, an actual subelement mesh is place on
each of the interface-containing elements which is made to conform to the interface
curve. That is, the interface curve itself is covered by these subelement boundaries.
This allows the volume integral to be collapsed into a line integral and the line integral
evaluated along the subelement boundaries. This, however, introduces the problem of
identifying which side of the element the surface tension forces should actually be
applied to. Applying them to both simultaneously while either result in a cancellation
or a doubling of the surface tension effect. For these cases, the integer parameter on
this card is set to a -1 or a +1 to signify that the surface tension forces are applied to the
negative or positive side of the interface curve, respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Tcap σ I nn–()δα φ() φ∇⁄=

δα φ()

Nj∇ Tcap⋅() Ωd

538 Revised: 6/12/13

4.10.230

4.10.230

Category 15: Boundary Conditions applied on Level Set Interfaces

These boundary conditions are designed to apply conditions in materials along surfaces whose
position is monitored using Level Set Interface Tracking.

4.10.231 LS_ADC

Description/Usage (Special/LEVEL SET)

This boundary condition is used exclusively with level set interface tracking. It is used
to simulate contact and dewetting events. It employs a probabilistic model applied to
elements on a boundary that contain an interface to determine whether contact or
dewetting occurs there. It then uses a direct, brute force algortihm to manipulate the
level set field to enforce contact or dewetting.

A description of the input parameters follows:

LS_ADC the name of the boundary condition

SS This string indicates that this boundary is applied to a
sideset.

<bc_id> This is a sideset id where contact or dewetting processes are
anticipated. Only elements that border this sideset will be
considered as possibilities for ADC events

<float1> θc, the capture angle in degrees.

<float2> αc, the capture distance (L)

<float3> Nc, the capture rate (1/L2-T)

Examples

An example:

BC = LS_ADC SS 10 15.0 0.2 100.0

BC = LS_ADC SS <bc_id> <float1> <float2> <float3>

Revised: 6/12/13 539

4.10.231 LS_ADC

Technical Discussion

It has been found that level set interface tracking problems that involve contact or
dewetting of the interfacial representation pose special problems for our numerical
method. To a certain extent, we can model this type of event by making special
modifications to the slipping properties of the boundary in question, however, this does
not always work, especially in the case of dewetting events.

What seems to be the trouble is that we are attempting to use continuum-based models
to simulate phenomena that essentially are due to molecular forces being expressed
over non-molecular length scales. These length scales, while big with respect to
molecules, are small with respect to our problem size. Hence, they are difficult to
include in the context of reasonable mesh spacing.

The approach this boundary condition takes to inclusion of contact and dewetting
phenomena is not attempt to model the finer details, but to simply note that they are due
to “molecular weirdness” and thus take place outside of ordinary continuum
mechanics. Therefore, there is some justification for, very briefly and in a localized
area, dispensing with continuum mechanics assumption and simply imposing a contact
or dewetting event. We refer to these as ADC events and will describe them in more
detail later.

The parameters supplied with the card are used to determine where and when such an
ADC event occurs. We have chosen to introduce a probabalistic model for this
purpose. The reasoning for this comes from reflecting on the dewetting problem. If
one imagines a thin sheet of fluid on a wetting substrate, it is clear that dewetting will
occur eventually at some point on that sheet. Where that event occurs is somewhat
random for a detached perspective. Introduction of a probability model for ADC
events attempts to capture this.

Whether an ADC event occurs at an element on the sideset is determined by the
following requirements:

• The interface surface passes through the element

• There isn’t a contact line in the element.

• The angle between the interface normal and the sideset surface normal is less than
or equal to the capture angle, θc.

• A random number in the range (0,1) determined by the standard C rand()
function is less than a probability, P, given by

P
Nch

2
Δt 1

d
αc

 2

–

 , d αc>exp

Nch
2

Δt , d αc≤

=

540 Revised: 6/12/13

4.10.231 LS_ADC

where d is the average distance of the interface to the sideset in that element, Dt is the
time step size, and h is the side length of the element (Note for 2D problems h2 is
replaced by h where the other dimension is assumed unity in the z direction).

Interpretation of this probability relation might take the following course. Given that
the fluid interface lies within αc of the surface, the length of time necessary before and
ADC event is certain to occur is given by . Hence, the bigger the capture rate
parameter the faster this is likely to occur. The functional form for the case of d > αc is
included merely to ensure that the probability drops smoothly to zero as quickly as
possible. One might point out that the probability at a specific element tends towards
zero as the element size decreases. Of course, in that context, the number of elements
should increase in number so that the overall probability of an ADC event should not
be a function of the degree of mesh refinement. A second point is that this boundary
condition can be made to function as means to initiate contact without delay by simply
choosing a capture rate that is large enought with respect to the current time step.

Application of an ADC event in a element that meets the preceding criteria is illustrated
in the cartoon below:

It is a simple manipulation of the level set values in that element so that the interface
will follow the path indicated by the dashed curve in the lower figure. No effort is
made in preservation of volume when this is done. The assumption is that these events
will occur infrequently enough that this is not a significant problem. However, the user
should be aware of this assumption and be careful that these events do not occur on a
regular basis as then the mass loss might be more significant.

Theory

No Theory.

FAQs

No FAQs.

1 Nch
2

()⁄

Revised: 6/12/13 541

4.10.232

References

No References.

4.10.232

4.10.233 LS_CA_H

Description/Usage (WIC/SCALAR CURVATURE)

This boundary condition is used only in conjunction with level set interface tracking
and the LS_CAP_CURVE embedded surface tension source term. Its function is
impose a contact angle condition on that boundary.

A description of the input parameters follows:

LS_CA_H the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> A float value that is the imposed contact angle in degrees.

Examples

An example:

BC = LS_CA_H SS 10 45.0

Technical Discussion

The projection equation operator for solving for the curvature degree of freedom from a
level set field is a Laplacian. It is standard to integrate these operators by parts but in
the process one always generates a boundary integral. In this case the integral takes the
form:

BC = LS_CA_H SS <bc_id> <float>

nw nfs⋅ Γd

542 Revised: 6/12/13

4.10.234

where nw is the wall surface normal and nfs is the normal to free surface (zero contour
of the level set function). This is a convenient event because it allows us to impose a
contact angle condition on a sideset using this boundary integral by making the
assignment

where θ is the contact angle specified on the card.

The effect of this boundary condition is impose a disturbance in the curvature field
near the boundary that has the effect of accelerating or decelerating the fluid near the
wall in response to whether the actual contact angle is greater or less than the imposed
value. Thus, over time, given no other outside influences, the contact angle should
evolve from its initial value (that presumably is different than the imposed value) to the
value imposed on this card. The user should expect that the contact angle will
instantaneously jumped to the imposed value.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.234

4.10.235 LS_CAPILLARY

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition applies an “embedded” surface tension source term when
solving capillary hydrodynamics problems with level set interface tracking. It can be
used both when subgrid or subelement integration is being used. The surface tension
value used in this boundary condition is obtained from the Surface Tension material
parameter defined in the mat file.

BC = LS_CAPILLARY LS <integer>

nw nfs⋅ θ()cos=

Revised: 6/12/13 543

4.10.235 LS_CAPILLARY

A description of the input parameters follows:

LS_CAPILLARY

the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the surface tension forces are applied to the
negative phase, both phase, or the positive phase,
respectively. Details are given below.

Examples

An example:

BC = LS_CAPILLARY LS 0

Technical Discussion

First, a warning: If subelement integration is off, make sure there is a nonzero level-

set length scale or no surface forces term will be applied.

Surface tension forces at a level set representation of an interfacial boundary are
applied solely via this boundary condition. An additional divergence of stress tensor
term is added to the fluid momentum equation. Following Jacqmin the form of
this tensor is

(4-167)

where s is the (isotropic) surface tension, I is the identity tensor, n is the vector normal
to the interface and is the smoothed Dirac delta function. The surface tension
value used in this expression is obtained from the Surface Tension card found in the
material file.

The actual implementation in Goma integrates the divergence term by parts so the
expression that is added to the weak form of the momentum equation is:

(4-168)

This fact introduces the issue of integration error into the problem. As obvious above,
this source term involves the non-linear Dirac delta function factor. Conventional

∇ Tcap⋅

Tcap σ I nn–()δα φ() φ∇⁄=

δα φ()

Nj∇ Tcap⋅() Ωd

544 Revised: 6/12/13

4.10.236

numerical integration methods often do not offer adequate accuracy in evaluating this
integral, especially if if the interface width is a fraction of the average element size.
This has led to introduction the level-set-specific integration methods: subelement
integration and subgrid integration. In the latter case, more integration points are
clustered around the interface (in essence) to improve accuracy. The integer parameter
on the card should be set to zero to signify that the surface tension forces are distributed
in equal measure on both sides of the interfacial curve.

In the subelement integration case, however, an actual subelement mesh is place on
each of the interface-containing elements which is made to conform to the interface
curve. That is, the interface curve itself is covered by these subelement boundaries.
This allows the volume integral to be collapsed into a line integral and the line integral
evaluated along the subelement boundaries. This, however, introduces the problem of
identifying which side of the element the surface tension forces should actually be
applied to. Applying them to both simultaneously while either result in a cancellation
or a doubling of the surface tension effect. For these cases, the integer parameter on
this card is set to a -1 or a +1 to signify that the surface tension forces are applied to the
negative or positive side of the interface curve, respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.236

4.10.237 LS_FLOW_PRESSURE

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition applies a scalar pressure value as an “embedded” source term
on the fluid momentum equation at the zero level set contour. It can be used both when
subgrid or subelement integration is being used.

BC = LS_FLOW_PRESSURE LS <integer> <float1>

Revised: 6/12/13 545

4.10.237 LS_FLOW_PRESSURE

A description of the input parameters follows:

LS_FLOW_PRESSURE

the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the pressure value is applied to the negative
phase, both phase, or the positive phase, respectively.
Details are given below

<float1> P, The constant value of pressure to be applied at the zero
level set contour.

Examples

An example:

BC = LS_FLOW_PRESSURE LS 0 1013250.0

Technical Discussion

This boundary condition is somewhat analogous to the FLOW_PRESSURE boundary
condition used quite often in ALE problems. It applies a scalar pressure at the
interfacial curve as an embedded boundary condtion. It can be used in by subgrid and
subelement methods. In the case of the former, a distributed volume integral of the
form:

where is the normal to the level set contour and is the familiar smoothed
Dirac delta function with width parameter α. When subelement integration is used this
width parameter goes to zero and the volume integral becomes a surface integral along
the zero level set contour (Note: as of Oct 2005 subelement integration is not
supported for three dimensional problems).

When using this boundary condition concurrent with subgrid integration, the integer
parameter that appears on the card should be consistently set to zero. This ensures the
volume source will be applied symmetrically. However, when using subelement
integration this integer parameter must be entire a +1 or a -1 so that the pressure force
will be applied to only on side of the interface and not both which would result in

NinfsPδα φ() Vd

V

nfs δα φ()

546 Revised: 6/12/13

4.10.238

cancellation. This is much the same as was seen for the LS_CAPILLARY boundary
condition and the reader is referred to that card for a more detailed discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.238

4.10.239 LS_FLUID_SOLID_CONTACT

Description/Usage (EMB/MOMENTUM)

This boundary condition applies a fluid-solid stress balance at a level set interface that
is slaved to an overset mesh (see GT-026.3). It is applied as an “embedded” source
term on the fluid momentum equations at the zero level set contour. NOTE: This

boundary condition has been deprecated in favor of the BAAIJENS_SOLID_FLUID

and BAAIJENS_FLUID_SOLID boundary conditions, as described in the memo.

A description of the input parameters follows:

LS_FLUID_SOLID_CONTACT

the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the mass flux value is applied to the negative

BC = LS_FLUID_SOLID_CONTACT LS <integer> <integer1>

Revised: 6/12/13 547

4.10.240

phase, both phase, or the positive phase, respectively.
Details are given below

<integer1> Not used. Set to zero. .

Technical Discussion

We discourage use of this experimental boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.240

4.10.241 LS_INLET

Description/Usage (PCC/LEVEL SET)

This boundary condition is used to set the values of the level set function on a sideset.
Most of this is done on an inlet or outlet boundary to elminate the potential for
oscillations in the level set field at those points from introducing spurious interfacial
(zero contours) .

A description of the input parameters follows:

LS_INLET

the name of the boundary condition

SS This string indicates that this boundary is applied to

BC = LS_INLET SS <bc_id>

548 Revised: 6/12/13

4.10.241 LS_INLET

<bc_id> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the surface tension forces are applied to the
negative phase, both phase, or the positive phase,
respectively. Details are given below.

Examples

An example:

BC = LS_INLET SS 10

Technical Discussion

Surface tension forces at a level set representation of an interfacial boundary are
applied solely via this boundary condition. An additional divergence of stress tensor
term is added to the fluid momentum equation. Following Jacqmin the form of
this tensor is

(4-169)

where s is the (isotropic) surface tension, I is the identity tensor, n is the vector normal
to the interface and is the smoothed Dirac delta function. The surface tension
value used in this expression is obtained from the Surface Tension card found in the
material file.

The actual implementation in Goma integrates the divergence term by parts so the
expression that is added to the weak form of the momentum equation is:

(4-170)

This fact introduces the issue of integration error into the problem. As obvious above,
this source term involves the non-linear Dirac delta function factor. Conventional
numerical integration methods often do not offer adequate accuracy in evaluating this
integral, especially if if the interface width is a fraction of the average element size.
This has led to introduction the level-set-specific integration methods: subelement
integration and subgrid integration. In the latter case, more integration points are
clustered around the interface (in essence) to improve accuracy. The integer parameter
on the card should be set to zero to signify that the surface tension forces are distributed
in equal measure on both sides of the interfacial curve.

In the subelement integration case, however, an actual subelement mesh is place on
each of the interface-containing elements which is made to conform to the interface
curve. That is, the interface curve itself is covered by these subelement boundaries.
This allows the volume integral to be collapsed into a line integral and the line integral

∇ Tcap⋅

Tcap σ I nn–()δα φ() φ∇⁄=

δα φ()

Nj∇ Tcap⋅() Ωd

Revised: 6/12/13 549

4.10.242

evaluated along the subelement boundaries. This, however, introduces the problem of
identifying which side of the element the surface tension forces should actually be
applied to. Applying them to both simultaneously while either result in a cancellation
or a doubling of the surface tension effect. For these cases, the integer parameter on
this card is set to a -1 or a +1 to signify that the surface tension forces are applied to the
negative or positive side of the interface curve, respectively.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.242

4.10.243 LS_NO_SLIP

Description/Usage (EMB/VECTOR MOMENTUM)

 This boundary condition is used to enforce the fluid/solid kinematic constraint for 1)
overset grid applications in which 2) the solid material is assumed rigid and therefore
has no internal stresses. It requires 3) a slaved phase function be defined along with 4)
a vector field of Lagrange multipliers.

A description of the input parameters follows:

LS_NO_SLIP the name of the boundary condition

PF This string indicates that this boundary condition is going to
be applied along the zero contour of an embedded phase
function (PF) field.

<integer> This integer identifies the specific phase function field that
is defining the contour. At the present time this integer
should always be one.

BC = LS_NO_SLIP PF <integer>

550 Revised: 6/12/13

4.10.243 LS_NO_SLIP

Examples

An example:

BC = LS_NO_SLIP PF 1

Technical Discussion

This boundary condition is used in the context of Goma’s overset grid capability. A
thorough treatment of this method is provided in the Goma document (GT-026.3) and
the user is directed there. However, a brief discussion of the nature of this boundary
condition is in order at this point.

The overset grid capability is used in problems in which a solid material is passing
through a fluid material. The solid and fluid materials both have there own meshes. In
the general problem, stresses and velocities must be transferred between each phase
and therefore there is two-coupling of the respective momentum and continuity
equations. This boundary condition, however, is used in the restricted case in which
the solid material is assumed to be rigid and having a prescribed motion. Therefore, the
coupling only proceeds in one direction : solid to fluid.

This boundary condition concerns itself with enforcing the kinematic constraint:

between the solid material with prescribed motion, , and the fluid whose velocity is,
. This kinematic constraint represents a new set of equations in the model for which

unknowns must be associated. In this case, we introduce a Lagrange multiplier vector
field, , at each node in the mesh. For fluid elements that do not intersect the fluid/
solid interface, these Lagrange multipliers are identically zero. They are non zero only
for those fluid elements that are crossed by the fluid/solid boundary. These Lagrange
multiplier fields couple the influence of the solid material on the fluid through body
force terms in the fluid momentum equations of the form:

When applying this boundary condition it is necessary to include Lagrange multiplier
equations equal to the number of dimensions in the problem. These are specified in the
equation section of the input deck. The shape and weight functions for these fields are
generally simple P0 functions. If one were to vector plot the components of the
Lagrange multiplier components, you get a general picture of the force interaction field
between the liquid and solid. This is sometimes informative.

A slaved phase function field is used to imprint the contour of the solid material on the
liquid mesh. The zero contour of this function is then used to evaluate the above line
integral. This phase function field is slaved to the solid material and is not evolved in

φγ
i

x· v
˜

–[] Γd

Γ
 0=

x·

v

γ

φv
i
γ Γd

Γ

Revised: 6/12/13 551

4.10.244

the conventional sense. Nonetheless, a single phase function field equation must be
included with the set of equations solved. In the phase function parameters section of
the input deck, the user must indicate that this phase function is slaved and also must
identify the sideset number of the boundary on the solid material which is the fluid/
solid interface.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.244

4.10.245 LS_Q

Description/Usage (EMB/ENERGY)

This boundary condition applies a scalar heat flux value as an “embedded” source term
on the heat conservation equation at the zero level set contour. It can be used both
when subgrid or subelement integration is being used.

A description of the input parameters follows:

LS_Q

the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the heat flux value is applied to the negative

BC = LS_Q LS <integer> <float1>

552 Revised: 6/12/13

4.10.245 LS_Q

phase, both phase, or the positive phase, respectively.
Details are given below

<float1> q, The constant value of heat flux to be applied at the zero
level set contour.

Examples

An example:

BC = LS_Q LS 0 -1.1e-3

Technical Discussion

This boundary condition is somewhat analogous to the QSIDE boundary condition
used quite often in non-level set problems. It applies a scalar heat flux at the interfacial
curve as an embedded boundary condtion. It can be used in by subgrid and subelement
methods. In the case of the former, a distributed volume integral of the form:

where is the familiar smoothed Dirac delta function with width parameter α.
When subelement integration is used this width parameter goes to zero and the volume
integral becomes a surface integral along the zero level set contour (Note: as of Oct
2005 subelement integration is not supported for three dimensional problems).

When using this boundary condition concurrent with subgrid integration, the integer
parameter that appears on the card should be consistently set to zero. This ensures the
volume source will be applied symmetrically. However, when using subelement
integration this integer parameter must be entire a +1 or a -1 so that the heat flux will be
applied only on side of the interface and not both which would result in cancellation.
This is much the same as was seen for the LS_CAPILLARY boundary condition and
the reader is referred to that card for a more detailed discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Niqδα φ() Vd

V

δα φ()

Revised: 6/12/13 553

4.10.246

4.10.246

4.10.247 LS_QRAD

Description/Usage (EMB/ENERGY)

This boundary condition card specifies heat flux using both convective and radiative
terms. This heat flux value is applied as an “embedded” source term on the heat
conservation equation at the zero level set contour (cf. BC = QRAD for ALE surfaces).
It can be used both when subgrid or subelement integration is being used. The
<float_list> has four parameters; definitions of the input parameters are as follows:

A description of the input parameters follows:

LS_QRAD the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the heat flux value is applied to the negative
phase, both phase, or the positive phase, respectively.
Details are given below

.<float1> h, convective heat transfer coefficient.

<float2> Ts, sink temperature.

<float3> ε, total hemispherical emissivity.

<float4> σ, Stefan-Boltzmann constant.

Examples

An example:

BC = LS_QRAD LS 0 10.0 273.0 0.3 5.6697e-8

BC = LS_QRAD LS <integer> <float1> <float2> <float3> <float4>

554 Revised: 6/12/13

4.10.248

Technical Discussion

This is the level-set counterpart to BC = QRAD which is the same boundary condition
applied to a parameterized mesh surface. Please see the discussion of that input record
for the functional form of this boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.248

4.10.249 LS_QLASER

Description/Usage (EMB/ENERGY)

This boundary condition card specifies heat flux model derived from a laser welding
application. This heat flux value is applied as an “embedded” source term on the heat
conservation equation at the zero level set contour (cf. BC = Q_LASER_WELD for
ALE surfaces). It can be used both when subgrid or subelement integration is being
used. The <float_list> has twenty-seven parameters; definitions of the input parameters
are as follows:

A description of the input parameters follows:

LS_QLASER the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this

BC = LS_QLASER LS <integer> <float1> <float2> <float3> <float4>

Revised: 6/12/13 555

4.10.249 LS_QLASER

parameter the heat flux value is applied to the negative
phase, both phase, or the positive phase, respectively.
Details are given below

<float1> Nominal power of laser.

<float2> Power of laser at base state (simmer).

<float3> Base value of surface absorptivity.

<float4> Switch to allow tracking of normal component of liquid
surface relative to laser beam axis for surface absorption
(0 = OFF, 1 = ON)

<float5> Cutoff time for laser power.

<float6> Time at which laser power drops to 1/e.

<float7> For pulse weld, the laser power overshoot (%) of peak
power at time to reach peak laser power.

<float8> Radius of laser beam.

<float9> For pulse weld, the time for laser pulse to reach peak
power.

<float10> For pulse weld, the time for laser pulse to reach steady
state in power.

<float11> Switch to either activate laser power distribution from
beam center based on absolute distance (0) or based on
radial distance in 2D plane (1).

<float 12> Location of laser beam center (x-coordinate).

<float 13> Location of laser beam center (y-coordinate).

<float 14> Location of laser beam center (z-coordinate).

<float 15> Laser beam orientation, normal to x-coordinate of body.

<float 16> Laser beam orientation, normal to y-coordinate of body.

<float 17> Laser beam orientation, normal to z-coordinate of body.

<float 18> For pulse weld, spot frequency.

<float 19> For pulse weld, total number of spots to simulate.

556 Revised: 6/12/13

4.10.249 LS_QLASER

<float 20> Switch to set type of weld simulation. (0=pulse weld,
1=linear continuous weld, -1=pseudo pulse weld,
2=sinusoidal continous weld)

<float 21> For pulse weld, spacing of spots.

<float 22> For radial traverse continuous weld, radius of beam
travel.

<float 23> Switch to activate beam shadowing for lap weld
(0=OFF, 1=ON). Currently only active for ALE
simulations.

<float 24> Not active, should be set to zero.

<float 25> For continuous weld, laser beam travel speed in x-
direction (u velocity).

<float 26> For continuous weld, laser beam travel speed in y-
direction (v velocity).

<float 27> For continuous weld, laser beam travel speed in z-
direction (w velocity).

Examples

An example:

BC = LS_QLASER LS -1 4.774648293 0 0.4 1 1 1.01 4.774648293 0.2
0.01 0.01 1 0.005 0 -0.198 -1 0 0 0.025 1 1 0.2032 -1000 0 0 0 0
0.0254

Technical Discussion

This is the level-set counterpart to BC = Q_LASER which is the same boundary
condition applied to a parameterized mesh surface. Please see the discussion of that
input record for the functional form of this boundary condition.

Theory

No Theory.

FAQs

No FAQs.

Revised: 6/12/13 557

4.10.250

References

No References.

4.10.250

4.10.251 LS_RECOIL_PRESSURE

Description/Usage (EMB/VECTOR MOMENTUM)

This boundary condition card specifies heat flux model derived from a laser welding
application.. This heat flux value is applied as an “embedded” source term on the heat
conservation equation at the zero level set contour (cf. BC = CAP_RECOIL_PRESS for
ALE surfaces). It can be used both when subgrid or subelement integration is being
used. The <float_list> has seven parameters; definitions of the input parameters are as
follows:

A description of the input parameters follows:

LS_RECOIL_PRESSURE

the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the heat flux value is applied to the negative
phase, both phase, or the positive phase, respectively.
Details are given below

<float1> This float is currently disabled.

<float2> This float is currently disabled.

<float3> This float is currently disabled.

<float4> Disabled. The boiling temperature is set to the melting
point of the solidus. Use the material property “Solidus
Temperature” card for this.

BC = LS_RECOIL_PRESSURE LS <integer> <float1> <float2> <float3> <float4>

558 Revised: 6/12/13

4.10.252

<float5> This float is currently disabled.

<float6> Conversion scale for pressure.

<float7> Conversion scale for temperature

Examples

Technical Discussion

Currently this boundary condition has coefficients for only iron and water. Several
required pieces of information to use this boundary condition are not in final form, and
the user can expect future changes and improvements. This boundary condition is
designed for use with LS_QLASER.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.252

4.10.253 LS_VAPOR/LS_QVAPOR

Description/Usage (EMB/ENERGY)

This boundary condition card specifies heat flux model derived from a laser welding
application. This particular contribution accounts for the energy lost by vapor flux.
This heat flux value is applied as an “embedded” source term on the heat conservation
equation at the zero level set contour (cf. BC = Q_LASER_WELD for ALE surfaces).
It can be used both when subgrid or subelement integration is being used. The
<float_list> has four parameters; definitions of the input parameters are as follows:

A description of the input parameters follows:

BC = LS_VAPOR LS <integer> <float1> <float2> <float3> <float4>

Revised: 6/12/13 559

4.10.253 LS_VAPOR/LS_QVAPOR

LS_VAPOR the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the heat flux value is applied to the negative
phase, both phase, or the positive phase, respectively.
Details are given below

<float1> T_scale. Temperature scaling.

<float2> q_scale. Heat flux scaling.

Examples

An example:

BC = LS_VAPOR LS 0 273. 1.

Technical Discussion

Currently this BC is hardwired to parameters (viz. heat capacitance, etc.) for iron. The
melting point temperature is taken from the material property “Liquidus Temperature”.
This boundary condition is still in the developmental stage. In using it is advisable to
be working with the Sandia Goma code team.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

560 Revised: 6/12/13

4.10.254

4.10.254

4.10.255 LS_YFLUX

Description/Usage (EMB/ENERGY)

This boundary condition applies a scalar mass flux value as an “embedded” source
term on a species conservation equation at the zero level set contour. It can be used
both when subgrid or subelement integration is being used.

A description of the input parameters follows:

LS_YFLUX the name of the boundary condition

LS This string is used to indicated that this is a “boundary”
condition is applied at an internal phase boundary defined
by the zero contour of the level set function.

<integer> An integer parameter than is permitted to take one of three
values -1, 0, or 1. Depending upon the choice of this
parameter the mass flux value is applied to the negative
phase, both phase, or the positive phase, respectively.
Details are given below

<integer1> w, This the species equation index to which this boundary
condition is applied.

<float1> hc, a constant value for the mass transfer coefficient at the
interface.

<float2> Yc, the “bulk” concentration of species used in conjunction
with the mass transfer coefficient to compute the mass flux.

Examples

An example:

BC = LS_YFLUX LS 0 0 1.e-2 0.75

Technical Discussion

This boundary condition is somewhat analogous to the YFLUX boundary condition
used quite often in non-level set problems to apply a scalar species flux at a at boundary

BC = LS_YFLUX LS <integer> <integer1> <float1> <float2>

Revised: 6/12/13 561

4.10.255 LS_YFLUX

defined by a side set. It applies a scalar mass transfer flux at the interfacial curve as an
embedded boundary condtion. It can be used in by subgrid and subelement methods.
In the case of the former, a distributed volume integral of the form:

where is the familiar smoothed Dirac delta function with width parameter α and
the mass flux , J, is given by the typical relation:

When subelement integration is used this width parameter goes to zero and the volume
integral becomes a surface integral along the zero level set contour (Note: as of Oct
2005 subelement integration is not supported for three dimensional problems).

When using this boundary condition concurrent with subgrid integration, the integer
parameter that appears on the card should be consistently set to zero. This ensures the
volume source will be applied symmetrically. However, when using subelement
integration this integer parameter must be entire a +1 or a -1 so that the mass flux will
be applied only on side of the interface and not both which would result in cancellation.
This is much the same as was seen for the LS_CAPILLARY boundary condition and
the reader is referred to that card for a more detailed discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

NiJδα φ() Vd

V

δα φ()

J hc Yw Yc–()=

562 Revised: 6/12/13

4.10.256

4.10.256

4.10.257 SHARP_BLAKE_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. Its formulation is identical to the
WETTING_SPEED_BLAKE boundary condition, but it is applied as a single point
source on the boundary instead of a distributed stress.

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_BLAKE_VELOCITY

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> V_0 is a pre-exponential velocity factor (see functional
form below).

<float3> g is a thermally scaled surface tension, i.e. σ/2nkT.

<float4> β, slip coefficient.

<float5> trelax is a relaxation time which can be used to smooth the
imposed contact point velocity for transient problems. Set
to zero for no smoothing.

<float6> Vold is an initial velocity used in velocity smoothing for
transient problems. Set to zero when smoothing is not used.

BC = SHARP_BLAKE_VELOCITY SS <bc_id> <floatlist

Revised: 6/12/13 563

4.10.257 SHARP_BLAKE_VELOCITY

Examples

An example:

BC = SHARP_BLAKE_VELOCITY SS 10 30.0 0.1 8. 0.001 0 0

Technical Discussion

The implementation for this wetting condition is identical to that of
SHARP_WETLIN_VELOCITY, but the wetting velocity dependence is different.
Because the wetting stress is not applied at a point, it is most appropriate for use when
using subelement integration which similarly collapses the surface tension sources
associated with the interface onto the interfacial curve.

Note also that this boundary condition is strictly for use with two-dimensional
problems. Attempting to apply it to a three dimensional problem will result in an error
message.

Theory

Derivation of the force condition for this boundary condition starts with a simple
relation for wetting line velocity

(4-171)

(4-172)

Note that the convention for contact angles in this relation is that values of θ near to
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.
This is mapped to a stress value by analogy with Navier’s slip relation and has the
following form when the velocity smoothing is not used,

(4-173)

FAQs

No FAQs.

References

No References.

Vwet Vold VBlake Vold–() 1
t

trelax

-----------–
 exp–+=

VBlake v0 g θs θcos–cos()[]sinh=

τw

Vwet

β

v0

β
----- g θs θcos–cos()[]sinh= =

564 Revised: 6/12/13

4.10.258

4.10.258

4.10.259 SHARP_CA_2D

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to impose a contact angle on a boundary when using
Level Set Interface Tracking. It can only be used for two-dimensional problems.

A description of the input parameters follows:

FILL_CA the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> θ, the contact angle imposed, in degrees.

Examples

An example:

BC = SHARP_CA_2D SS 10 30.0

Technical Discussion

This boundary condition must be used in conjunction with the VELO_SLIP_FILL or
VELO_SLIP_LS boundary condition. These latter conditions permits the fluid to slip in
the vicinity of the contact line. The SHARP_CA_2D acts by imposing a force on the
momentum equation. The size of this force is more or less in proportion between the
actual contact angle on the boundary and the value specified on the card and scales
directly with the applied surface tension material parameter. In this manner, it is very
similar to the FILL_CA boundary condition.

The manner in which is applied differs. In this case, the applied force is not distributed
around the contact line using a smooth delta function weighting in a weak integrated
context, but instead the delta function is used to resolve the line integral and the force is
applied directly at a point on the sideset set. Hence, this boundary condition is most

BC = SHARP_CA_2D SS <bc_id> <float>

Revised: 6/12/13 565

4.10.260

appropriate for use in conjunction with subelement integration which performs a
similar transformation of the volumetric surface tension source terms. Further, the
logic use to identify the point of application on the boundary functions only in two-
dimensions. Hence, this boundary condition is stricly limited to two-dimensional
problems.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.260

4.10.261 SHARP_COX_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. Its formulation is identical to the
WETTING_SPEED_COX boundary condition, but it is applied as a single point source
on the boundary instead of a distributed stress.

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_COX_VELOCITY

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

BC = SHARP_COX_VELOCITY SS <bc_id> <floatlist

566 Revised: 6/12/13

4.10.261 SHARP_COX_VELOCITY

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> σ is the surface tension.

<float3> εsis the dimensionless slip length, i.e. the ratio of the slip
length to the characteristic length scale of the macroscopic
flow.

<float4> β, slip coefficient.

<float5> trelax is a relaxation time which can be used to smooth the
imposed contact point velocity for transient problems. Set
to zero for no smoothing.

<float6> Vold is an initial velocity used in velocity smoothing for
transient problems. Set to zero when smoothing is not used.

Examples

An example:

BC = SHARP_COX_VELOCITY SS 10 30.0 72.0 0.01 0.1 0 0

Technical Discussion

The implementation for this wetting condition is identical to that of
SHARP_WETLIN_VELOCITY, but the wetting velocity dependence is different.
Because the wetting stress is not applied at a point, it is most appropriate for use when
using subelement integration which similarly collapses the surface tension sources
associated with the interface onto the interfacial curve.

Note also that this boundary condition is strictly for use with two-dimensional
problems. Attempting to apply it to a three dimensional problem will result in an error
message.

Theory

Derivation of the force condition for this boundary condition starts with a relation for
wetting line velocity

(4-174)Vwet Vold VCox Vold–() 1
t

trelax

-----------–
 exp–+=

Revised: 6/12/13 567

4.10.261 SHARP_COX_VELOCITY

where VCox is computed from the Cox hydrodynamic wetting theory;

(4-175)

See VELO_THETA_COX for details of the Cox functions f and g. Note that the
parameters λ, qinner, and qouter are currently not accessible from the input card and are
hard-set to zero. λ is the ratio of gas viscosity to liquid viscosity whereas qinner and
qouter represent influences from the inner and outer flow regions.

Note that the convention for contact angles in this relation is that values of θ near to
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.
This is mapped to a stress value by analogy with Navier’s slip relation and has the
following form when the velocity smoothing is not used,

(4-176)

The Cox wetting velocity requires evaluation of integrals for the function g(θ, λ) which
is currently done numerically using 10-point Gaussian quadrature. As such the
evaluation of the integrals is expected to become inaccurate as either θs tends toward
zero or θ tends toward 180 degrees. Note that the integrand becomes singular as θ
tends toward 0 or 180 degrees.

FAQs

No FAQs.

References

No References.

Ca
µVCox

σ
---------------≡

g θ λ,() g θs λ,()–

εs
1–

()ln
qinner

f θs λ,()

qouter

f θ λ,()
----------------–+

--=

τw

VCox

β
-------------=

568 Revised: 6/12/13

4.10.262

4.10.262

4.10.263 SHARP_HOFFMAN_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. Its formulation is identical to the
WETTING_SPEED_HOFFMAN boundary condition, but it is applied as a single point
source on the boundary instead of a distributed stress.

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_HOFFMAN_VELOCITY

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> σ is the surface tension.

<float3> β, slip coefficient.

<float4> trelax is a relaxation time which can be used to smooth the
imposed contact point velocity for transient problems. Set
to zero for no smoothing.

<float5> Vold is an initial velocity used in velocity smoothing for
transient problems. Set to zero when smoothing is not used.

Examples

An example:

BC = SHARP_HOFFMAN_VELOCITY SS 10 30.0 72.0 0.1 0 0

BC = SHARP_HOFFMAN_VELOCITY SS <bc_id> <floatlist

Revised: 6/12/13 569

4.10.263 SHARP_HOFFMAN_VELOCITY

Technical Discussion

The implementation for this wetting condition is identical to that of
SHARP_WETLIN_VELOCITY, but the wetting velocity dependence is different.
Because the wetting stress is not applied at a point, it is most appropriate for use when
using subelement integration which similarly collapses the surface tension sources
associated with the interface onto the interfacial curve.

Note also that this boundary condition is strictly for use with two-dimensional
problems. Attempting to apply it to a three dimensional problem will result in an error
message.

Theory

Derivation of the force condition for this boundary condition starts with a relation for
wetting line velocity

(4-177)

where VHoffman is computed from the Hoffman correlation;

(4-178)

See VELO_THETA_HOFFMAN for details of the Hoffman function g. Note that the
convention for contact angles in this relation is that values of θ near to zero indicate a
high degree of wetting and values of θ near 180 ° indicate the opposite. This is mapped
to a stress value by analogy with Navier’s slip relation and has the following form
when the velocity smoothing is not used,

(4-179)

Because the Hoffman functions are implicit, iteration is required in the determination
of the wetting velocity. As a result, for very high Capillary numbers, i.e. > 106, the
iteration procedure in Goma may need to be modified.

FAQs

No FAQs.

References

No References.

Vwet Vold VHoffman Vold–() 1
t

trelax

-----------–
 exp–+=

Ca
µVHoffman

σ
------------------------≡ gHoff θ() gHoff θs()–=

τw

VHoffman

β
------------------------=

570 Revised: 6/12/13

4.10.264

4.10.264

4.10.265 SHARP_WETLIN_VELOCITY

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. Its formulation is identical to the
WETTING_SPEED_LINEAR boundary condition, but it is applied as a single point
source on the boundary instead of a distributed stress.

This boundary condition can only be used for two-dimensional problems.

A description of the input parameters follows:

SHARP_WETLIN_VELOCITY

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> cT, proportionality constant as defined below

<float3> currently not used.

<float4> β, slip coefficient.

Examples

An example:

BC = SHARP_WETLIN_VELOCITY SS 10 30.0 0.1 0. 0.001

BC = SHARP_WETLIN_VELOCITY SS <bc_id> <floatlist

Revised: 6/12/13 571

4.10.265 SHARP_WETLIN_VELOCITY

Technical Discussion

As noted above, this boundary condition imposes the same wetting stress dependence
as the WETTING_SPEED_LINEAR boundary condition. However, its application in
the FEM context is different. Instead of the wetting stress, τw, being applied according
to the formula:

, (4-180)

as is the case for the WETTING_SPEED_LINEAR condition, the Dirac function is
used to remove the integral and replace it with a point stress at the location where φ = 0
on the boundary. Designating this point as , the vector applied to the momentum
equation is given by

(4-181)

Because the wetting stress is not applied at a point, it is most appropriate for use when
using subelement integration which similarly collapses the surface tension sources
associated with the interface onto the interfacial curve. Note that this method of
application is identical to the SHARP_CA_2D boundary condition discussed
elsewhere.

Note also that this boundary condition is strictly for use with two-dimensional
problems. Attempting to apply it to a three dimensional problem will result in an error
message.

Theory

Derivation of the force condition for this boundary condition starts with a simple
relation for wetting line velocity

(4-182)

Note that the convention for contact angles in this relation is that values of θ near to
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.
This is mapped to a stress value by analogy with Navier’s slip relation,

(4-183)

It should be noted that there is no distinction for this model in the function of β or cT.
The two parameters are interchangeable. In non-linear models, (see
WETTING_SPEED_BLAKE) this is no longer true.

Njτwtδw φ() Γd

Xcl

Nj Xcl()τw Xcl()t Xcl()

Vwet
1
cT

----- θ() θs()cos–()cos()=

τw

Vwet

β

1
βcT

--------- θ() θs()cos–()cos()= =

572 Revised: 6/12/13

4.10.266

FAQs

No FAQs.

References

No References.

4.10.266

4.10.267 WETTING_SPEED_BLAKE

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It implements a version of the Blake-DeConinck
molecular-kinetic theory wetting model.

A description of the input parameters follows:

WETTING_SPEED_BLAKE

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle, degrees .

<float2> V_0 is a pre-exponential velocity factor (see functional
form below).

<float3> g is a thermally scaled surface tension, i.e. σ/2nkT.

<float4> w,width of interfacial region near contact line. Defaults to
level set length scale if zero or less.

<float5> β, slip coefficient.

BC = WETTING_SPEED_BLAKE SS <bc_id> <floatlist>

Revised: 6/12/13 573

4.10.267 WETTING_SPEED_BLAKE

<float6> currently not used.

<float7> currently not used.

<float8> currently not used.

Examples

An example:

BC = WETTING_SPEED_BLAKE SS 10 30.0 20.1 7.0 0. 0.001 0. 0. 0.

Technical Discussion

The implementation for this wetting condition is identical to that of
WETTING_SPEED_LINEAR, but the wetting velocity dependence is different.

Note that it is a requirement that when using this boundary condition that slip to some
extent be allowed on this boundary. This is most often done by applying a
VELO_SLIP_LS boundary condition in conjunction with this boundary condition. In
addition, a no penetration condition on the velocity is need in either the form of a
Dirichlet condition or a VELO_NORMAL condition. It is important to note that the
slipping condition need not relax the no slip requirement completely. In fact, its
parameters should be set so that no slip is for the most part satisfied on the boundary in
regions away from the contact line. Near the contact line however the parameters in
the slip condition and the WETTING_SPEED_BLAKE condition need to be fixed so
that appreciable fluid velocity is induced. This is a trial and error process at the current
time.

Theory

Derivation of this boundary condition starts with a relation propose by Blake and
DeConinck for wetting line motion

(4-184)

This is mapped to a stress value by analogy with Navier’s slip relation,

(4-185)

This relation contrasts with the “linear” relation applied by the
WETTING_SPEED_LINEAR relation in that the rate of change of the wetting velocity

Vwet V0 g θ θscos–cos()()sinh=

τw

Vwet

β

v0

β
----- g θs θcos–cos()[]sinh= =

574 Revised: 6/12/13

4.10.268

with the contact angle decreases as the wetting angle deviates more and more from its
static value. This is more consisten with physical behaviors that the linear model.

In point of fact this condition is a vector condition so this scalar stress value multiplies
the unit vector tangent to the surface and normal to the contact line, . This stress is
then weighted by smooth Dirac function to restrict its location to being near the
interface, weighted by a FEM shape function, integrated over the boundary sideset and
added to the fluid momentum equation for the corresponding node j, vis:

(4-186)

FAQs

No FAQs.

References

No References.

4.10.268

4.10.269 WETTING_SPEED_COX

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It implements a version of the Cox hydrodynamic model
of wetting.

A description of the input parameters follows:

WETTING_SPEED_COX

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

BC = WETTING_SPEED_COX SS <bc_id> <floatlist

t

Njτwtδw φ() Γd

Revised: 6/12/13 575

4.10.269 WETTING_SPEED_COX

<float1> θs, the static contact angle, degrees.

<float2> εsis the dimensionless slip length, i.e. the ratio of the slip
length to the characteristic length scale of the macroscopic
flow.

<float3> σ is the surface tension.

<float4> w,width of interfacial region near contact line. Defaults to
level set length scale if zero or less.

<float5> β, slip coefficient.

<float6> currently not used.

<float7> currently not used.

<float8> currently not used.

Examples

An example:

BC = WETTING_SPEED_COX SS 10 30.0 0.01 72.0 0. 0.001 0. 0. 0.

Technical Discussion

The implementation for this wetting condition is identical to that of
WETTING_SPEED_LINEAR, but the wetting velocity dependence is different.

Note that it is a requirement that when using this boundary condition that slip to some
extent be allowed on this boundary. This is most often done by applying a
VELO_SLIP_LS boundary condition in conjunction with this boundary condition. In
addition, a no penetration condition on the velocity is need in either the form of a
Dirichlet condition or a VELO_NORMAL condition. It is important to note that the
slipping condition need not relax the no slip requirement completely. In fact, its
parameters should be set so that no slip is for the most part satisfied on the boundary in
regions away from the contact line. Near the contact line however the parameters in
the slip condition and the WETTING_SPEED_BLAKE condition need to be fixed so
that appreciable fluid velocity is induced. This is a trial and error process at the current
time.

Theory

Derivation of this boundary condition starts with a relation that represents the Cox
hydrodynamic wetting model

576 Revised: 6/12/13

4.10.269 WETTING_SPEED_COX

(4-187)

See VELO_THETA_COX for details of the Cox functions f and g. Note that the
parameters λ, qinner, and qouter are currently not accessible from the input card and are
hard-set to zero. λ is the ratio of gas viscosity to liquid viscosity whereas qinner and
qouter represent influences from the inner and outer flow regions.

 Note that the convention for contact angles in this relation is that values of θ near to
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.
This is mapped to a stress value by analogy with Navier’s slip relation,

(4-188)

This relation contrasts with the “linear” relation applied by the
WETTING_SPEED_LINEAR relation in that more consistent physical behavior
should result.

In point of fact this condition is a vector condition so this scalar stress value multiplies
the unit vector tangent to the surface and normal to the contact line, . This stress is
then weighted by smooth Dirac function to restrict its location to being near the
interface, weighted by a FEM shape function, integrated over the boundary sideset and
added to the fluid momentum equation for the corresponding node j, vis:

(4-189)

FAQs

No FAQs.

References

Stephan F. Kistler 1993. “Hydrodynamics of Wetting” in Wettability, edited by John
Berg, Surfactant Science Series, 49, Marcel Dekker, NewYork, NY, pp. 311-429.

Ca
µVCox

σ
---------------≡

g θ λ,() g θs λ,()–

εs
1–

()ln
qinner

f θs λ,()

qouter

f θ λ,()
----------------–+

--=

τw

VCox

β
-------------=

t

Njτwtδw φ() Γd

Revised: 6/12/13 577

4.10.270 WETTING_SPEED_HOFFMAN

4.10.270 WETTING_SPEED_HOFFMAN

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It implements a version of the Hoffman wetting
correlation.

A description of the input parameters follows:

WETTING_SPEED_HOFFMAN

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle, degrees .

<float2> currently not used.

<float3> σ is the surface tension.

<float4> w,width of interfacial region near contact line. Defaults to
level set length scale if zero or less.

<float5> β, slip coefficient.

<float6> currently not used.

<float7> currently not used.

<float8> currently not used.

Examples

An example:

BC = WETTING_SPEED_HOFFMAN SS 10 30.0 0 72.0 0. 0.001 0. 0. 0.

BC = WETTING_SPEED_HOFFMAN SS <bc_id> <floatlist

578 Revised: 6/12/13

4.10.270 WETTING_SPEED_HOFFMAN

Technical Discussion

The implementation for this wetting condition is identical to that of
WETTING_SPEED_LINEAR, but the wetting velocity dependence is different.

Note that it is a requirement that when using this boundary condition that slip to some
extent be allowed on this boundary. This is most often done by applying a
VELO_SLIP_LS boundary condition in conjunction with this boundary condition. In
addition, a no penetration condition on the velocity is need in either the form of a
Dirichlet condition or a VELO_NORMAL condition. It is important to note that the
slipping condition need not relax the no slip requirement completely. In fact, its
parameters should be set so that no slip is for the most part satisfied on the boundary in
regions away from the contact line. Near the contact line however the parameters in
the slip condition and the WETTING_SPEED_BLAKE condition need to be fixed so
that appreciable fluid velocity is induced. This is a trial and error process at the current
time.

Theory

Derivation of this boundary condition starts with a relation that represents the Hoffman
wetting correlation

(4-190)

See VELO_THETA_HOFFMAN for details of the Hoffman function g. Note that the
convention for contact angles in this relation is that values of θ near to zero indicate a
high degree of wetting and values of θ near 180 ° indicate the opposite. This is mapped
to a stress value by analogy with Navier’s slip relation,

(4-191)

This relation contrasts with the “linear” relation applied by the
WETTING_SPEED_LINEAR relation in that more consistent physical behavior
should result.

In point of fact this condition is a vector condition so this scalar stress value multiplies
the unit vector tangent to the surface and normal to the contact line, . This stress is
then weighted by smooth Dirac function to restrict its location to being near the
interface, weighted by a FEM shape function, integrated over the boundary sideset and
added to the fluid momentum equation for the corresponding node j, vis:

Ca
µVHoffman

σ
------------------------≡ gHoff θ() gHoff θs()–=

τw

VHoffman

β
------------------------=

t

Revised: 6/12/13 579

4.10.271 WETTING_SPEED_LINEAR

(4-192)

FAQs

No FAQs.

References

Stephan F. Kistler 1993. “Hydrodynamics of Wetting” in Wettability, edited by John
Berg, Surfactant Science Series, 49, Marcel Dekker, NewYork, NY, pp. 311-429.

4.10.271 WETTING_SPEED_LINEAR

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking.

A description of the input parameters follows:

WETTING_SPEED_LINEAR

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degrees.

<float2> cT, proportionality constant as defined below

<float3> w,width of interfacial region near contact line. Defaults to
level set length scale if zero or less (L).

<float4> β, slip coefficient.

<float5> currently not used.

<float6> currently not used.

BC = WETTING_SPEED_LINEAR SS <bc_id> <floatlist

Njτwtδw φ() Γd

580 Revised: 6/12/13

4.10.271 WETTING_SPEED_LINEAR

<float7> currently not used.

Examples

An example:

BC = WETTING_SPEED_LINEAR SS 10 30.0 0.1 0. 0.001 0. 0. 0.

Technical Discussion

The prescence of wetting or contact lines in problems using level set interface tracking
introduces the problem of modeling the motion of the wetting line. This boundary
condition presents one potential means for doing this. It adds a wall stress value at the
boundary in a region near to the wetting line (this is set with the Level Set Length Scale
discussed previously). This wall stress value depends upon the deviation of the
apparent contact angle determined from the level set function and a set static contact
angle. The bigger the deviation in principle the bigger the induced stress. The stress is
modeled by analogy with Navier’s slip relation (with slip coefficient β). The stress will
induce a fluid velocity at the boundary which it is hoped will move the contact line at a
velocity that is consistent with the rest of the flow.

An important note is that it is a requirement that when using this boundary condition
that slip to some extent be allowed on this boundary. This is most often done by
applying a VELO_SLIP_LS boundary condition in conjunction with this boundary
condition. In addition, a no penetration condition on the velocity is need in either the
form of a Dirichlet condition or a VELO_NORMAL condition. It is important to note
that the slipping condition need not relax the no slip requirement completely. In fact,
its parameters should be set so that no slip is for the most part satisfied on the boundary
in regions away from the contact line. Near the contact line however the parameters in
the slip condition and the WETTING_SPEED_LINEAR condition need to be fixed so
that appreciable fluid velocity is induced. This is a trial and error process at the current
time.

Theory

Derivation of this boundary condition starts with a simple relation for wetting line
velocity

(4-193)Vwet
1
cT

----- θ() θs()cos–()cos()=

Revised: 6/12/13 581

4.10.272

Note that the convention for contact angles in this relation is that values of θ near to
zero indicate a high degree of wetting and values of θ near 180 ° indicate the opposite.
This is mapped to a stress value by analogy with Navier’s slip relation

(4-194)

It should be noted that there is no distinction for this model in the function of β or cT.
The two parameters are interchangeable. In non-linear models, (see
WETTING_SPEED_BLAKE) this is no longer true.

In point of fact this condition is a vector condition so this scalar stress value multiplies
the unit vector tangent to the surface and normal to the contact line, . This stress is
then weighted by smooth Dirac function to restrict its location to being near the
interface, weighted by a FEM shape function, integrated over the boundary sideset and
added to the fluid momentum equation for the corresponding node j, vis:

(4-195)

FAQs

No FAQs.

References

No References.

4.10.272

4.10.273 LINEAR_WETTING_SIC

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It is an alternative to the WETTING_SPEED_LINEAR
BC which does not require the VELO_SLIP_LS or VELO_SLIP_FILL BC's on the
wetting boundary.

A description of the input parameters follows:

BC = LINEAR_WETTING_SIC SS <bc_id> <floatlist>

τw

Vwet

β

1
βcT

--------- θ() θs()cos–()cos()= =

t

Njτwtδw φ() Γd

582 Revised: 6/12/13

4.10.273 LINEAR_WETTING_SIC

LINEAR_WETTING_SIC

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> cT, proportionality constant as defined below

<float3> w,width of interfacial region near contact line. Defaults to
level set length scale if zero or less (L).

<float4> β, slip coefficient.

<float5> vsx, x-component of substrate velocity.

<float6> vsy, y-component of substrate velocity.

<float7> vsz, z-component of substrate velocity.

<float8> τ, stability parameter.

Examples

Here is an example card:

BC = LINEAR_WETTING_SIC SS 10 30.0 0.1 0. 0.001 0. 0. 0. 0.

Technical Discussion

This boundary condition is an additional means to impose a wetting line velocity at the
contact line for level set interface tracking problems. The boundary condition uses a
form of the Navier-Stokes slip condition to impose a boundary shear stress term to the
momentum equation:

(4-196)

where and are the normal and tangent boundary vectors, respectively, β is the
“slipping” parameter which in this context is used actually as a penalty parameter, is

nt:T
1
β
--- τ

v∂
t∂

-----– vs v– f F()Vwett+ +
 t⋅–=

n t

vs

Revised: 6/12/13 583

4.10.273 LINEAR_WETTING_SIC

the substrate velocity, τ is a stabilization parameter, Vwet is the wetting velocity given
by the following relation

(4-197)

The masking function f(F) is given by the following relation as well:

 (4-198)

where α is the width of the interfacial region near the contact line itself. It has the
effect of “turning off” the wetting velocity at points on the boundary away from the
interface.

This constraint is then introduced into the fluid momentum equation via the weak
natural boundary condition term:

(4-199)

When applying this boundary condition, the user should choose a value for β which is
relatively small. Its size is dictated by the requirement that away from the interface this
boundary condition should be imposing a no-slip condition on the fluid velocity.
Conversely, in the vicinity of the wetting line this boundary condition will impose the
wetting velocity as computed from the preceding equation.

This boundary condition probably should be used in conjunction with a no penetration
boundary condition, for example, a VELO_NORMAL condition on the same sideset or
potentially a Dirichlet condition on velocity if the geometry permits this. In theory, this
boundary condition can be used to impose no penetration as well, but this will require a
very small value for β. The user should experiment with this.

The stability parameter, τ, as requires commentary. It is helpful to imagine that this
parameter introduces a certain amount of inertia to motion of the contact line. With this
term active (non-zero value for τ), large changes of the contact line velocity with time
are restricted. This can be quite helpful during startup when the intial contact angle is
often very different from its equilibrium value and there can be very large velocities
generated as a result. These may in turn lead to low time step size and other numerical
problems.

Although every situation is different, one should choose values for τ which are on the
order of 1 to 10 times the starting time step size of the simulation. One should also
recognize that this term is not consistent from a physical standpoint and therefore one
should endeavor to keep τ as small as possible if not in fact equal to zero.

Vwet
1
cT

----- θ() θs()cos–cos()=

f F() δα F()
1
2
--- 1

πF
α

 cos+

 = =

Njnt:T Γd

584 Revised: 6/12/13

4.10.274

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.274

4.10.275 BLAKE_DIRICHLET

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It is an alternative to the WETTING_SPEED_BLAKE
BC which does not require the VELO_SLIP_LS or VELO_SLIP_FILL BC's on the
wetting boundary. It uses a Blake-DeConninck relationship between apparent contact
angle and wetting velocity. As the name implies, this boundary condition differs from
WETTING_SPEED_BLAKE in that wetting velocity is in a strong fashion on the
wetting boundary.

A description of the input parameters follows:

BLAKE_DIRICHLET

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degrees.

BC = BLAKE_DIRICHLET SS <bc_id> <floatlist>

Revised: 6/12/13 585

4.10.275 BLAKE_DIRICHLET

<float2> V0 is a pre-exponential velocity factor (see functional form
below). (L/T)

<float3> g is a thermally scaled surface tension, i.e. σ/2nkT. Note
that this parameter will be multiplied by the surface tension
supplied in the material file when its used in the wetting
velocity relation.

<float4> w, is the width of the interface wetting region. It defaults to
the level set length scale if zero of less.

<float5> τ, stability parameter (T).

<float6> vsx, x-component of substrate velocity.

<float7> vsy, y-component of substrate velocity (L/T).

<float8> vsz, z-component of substrate velocity.

Examples

Here is an example card:

BC = BLAKE_DIRICHLET SS 10 30.0 20.1 7.0 0.0 0.001 0. 0. 0.

Technical Discussion

This boundary condition is an additional means to impose a wetting line velocity at the
contact line for level set interface tracking problems. It is related to the
WETTING_SPEED_BLAKE condition in that it uses the same Blake-DeConninck
relationship between contact angle and wetting speed, but it applies this relation to the
computational setting in a different way.

In this case, the following vector constraint is added to fluid momentum equation on
the sideset to which this boundary condition is applied:

(4-200)

The factor P is a large penalty parameter which swamps any contributions from the
volumetric momentum equations. Thus, the velocity, , on this boundary will be set
solely by the preceding constraint. In this sense, it is a Dirichlet condition (strictly
speaking, Dirichlet conditions involve direct substitution of nodal degrees-of-freedom
with corresponding elimination of its equation from the matrix which this boundary
condition does NOT do).

P τ–
v∂
t∂

----- Vwf φ w;()t v
s

v–+ +

v

586 Revised: 6/12/13

4.10.275 BLAKE_DIRICHLET

In the preceding, the vector , is a tangent vector to the surface and always points in the
same direction of the level set gradient on the boundary (that is, from negative to
positive). In three dimensions, will also be normal to the contact line curve as it
intersects the surface itself.

The masking function, , is used to limit the application of the wetting line
velocity to only that region of the boundary that is the in immediate vicinity of the
contact line. We use a simple “hat” function:

(4-201)

Needless to say, is identically zero for level set values outside the interval (-w,
w).

 The stabilization term, , is intended to introduce something like inertia to the
wetting line. That is to say, it’s primary effect is to limit the rate of change of the
wetting line velocity to “reasonable” values. The τ parameter should be chosen to be
on the order of the smallest anticipated time step size in the problem. Setting it at zero,
of course, will remove this term entirely.

In general, this boundary condition can be used to exclusively to set both the wetting
speed velocity and the no slip requirement on the indicated sideset set. This would also
include the no penetration requirement. The user may, however, find it advantageous
to apply this constraint directly with the VELO_NORMAL condition on the same side
set.

An additional note is that the “scaled viscosity” parameter g will be multiplied by the
surface tension value supplied with Surface Tension card in the material file.

Theory

The wetting speed model for this boundary condition is the same used by the
WETTING_SPEED_BLAKE card:

(4-202)

FAQs

No FAQs.

t

t

f φ w;()

f φ w;()
1

φ
w

 w– φ< 0≤();+

1
φ
w

 0 φ< w≤();–

=

f φ w;()

τ–
v∂
t∂

Vw V0 g θs θcos–cos()()sinh=

Revised: 6/12/13 587

4.10.276 COX_DIRICHLET

References

T. D. Blake and J. De Coninck 2002. “The Influence of Solid-Liquid Interactions on
Dynamic Wetting”, Advances in Colloid and Interface Science, 96, 21-36.

4.10.276 COX_DIRICHLET

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It is an alternative to the WETTING_SPEED_COX
which does not require the VELO_SLIP_LS or VELO_SLIP_FILL BC's on the wetting
boundary. It implements a version of the Cox hydrodynamic model of wetting (see
below). As the name implies, this boundary condition differs from
WETTING_SPEED_COX in that wetting velocity is applied in a strong fashion on the
wetting boundary.

A description of the input parameters follows:

COX_DIRICHLET

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> εs is the dimensionless slip length, i.e. the ratio of the slip
length to the characteristic length scale of the macroscopic
flow. (L)

<float3> σ is the surface tension. Note this value will be scaled by
the surface tension value supplied in the material file.(F/L)

<float4> w, is the width of the interface wetting region. It defaults to
the level set length scale if zero of less (L).

<float5> τ, stability parameter (T).

BC = COX_DIRICHLET SS <bc_id> <floatlist>

588 Revised: 6/12/13

4.10.276 COX_DIRICHLET

<float6> vsx, x-component of substrate velocity.

<float7> vsy, y-component of substrate velocity (L/T).

<float8> vsz, z-component of substrate velocity.

Examples

Here is an example card:

BC = COX_DIRICHLET SS 10 30.0 0.01 72.0 0. 0.001 0. 0. 0.

Technical Discussion

This boundary condition is applied in exactly the same manner as the
BLAKE_DIRICHLET boundary condition. The only substantial difference is the
model used to derive the wetting speeds relation to the local apparent contact angle.
The reader is referred to the BLAKE_DIRICHLET section of the manual for further
reference.

Theory

This boundary condition uses this relation that represents the Cox hydrodynamic
wetting model

(4-203)

See VELO_THETA_COX for details of the Cox functions f and g. Note that the
parameters λ, qinner, and qouter are currently not accessible from the input card and are
hard-set to zero. λ is the ratio of gas viscosity to liquid viscosity whereas qinner and
qouter represent influences from the inner and outer flow regions.

FAQs

No FAQs.

Ca
µVw

σ
----------≡

g θ λ,() g θs λ,()–

εs
1–

()ln
qinner

f θs λ,()

qouter

f θ λ,()
----------------–+

--=

Revised: 6/12/13 589

4.10.277

References

Stephan F. Kistler 1993. “Hydrodynamics of Wetting” in Wettability, edited by John
Berg, Surfactant Science Series, 49, Marcel Dekker, NewYork, NY, pp. 311-429.

4.10.277

4.10.278 HOFFMAN_DIRICHLET

Description/Usage (SIC/VECTOR MOMENTUM)

This boundary condition is used to induce fluid velocity at a wetting line when using
Level Set Interface Tracking. It is an alternative to the
WETTING_SPEED_HOFFMAN boundary condition which does not require the
VELO_SLIP_LS or VELO_SLIP_FILL BC's on the wetting boundary. As the name
implies, this boundary condition differs from WETTING_SPEED_HOFFMAN in that
wetting velocity is in a strong fashion on the wetting boundary.

A description of the input parameters follows:

HOFFMAN_DIRICHLET

the name of the boundary condition

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> θs, the static contact angle in degress.

<float2> not used.

<float3> σ, the surface tension. Note that this parameter will be
scaled by the surface tension value supplied in the material
file. (F/L)

<float4> w, is the width of the interface wetting region. It defaults to
the level set length scale if zero of less.

BC = HOFFMAN_DIRICHLET SS <bc_id> <floatlist>

590 Revised: 6/12/13

4.10.278 HOFFMAN_DIRICHLET

<float5> τ, stability parameter (T).

<float6> vsx, x-component of substrate velocity.

<float7> vsy, y-component of substrate velocity (L/T).

<float8> vsz, z-component of substrate velocity.

Examples

Here is an example card:

BC = HOFFMAN_DIRICHLET SS 10 30.0 0 72.0 0.0 0.001 0. 0. 0.

Technical Discussion

The technical details of the application of this boundary differ not at all from those
described for the BLAKE_DIRICHLET boundary condition. The user is referred to
that section for further details. This boundary condition differs only in the model used
to determine the wetting velocity. This is described below and in the
VELO_THETA_HOFFMAN card.

Theory

Derivation of this boundary condition starts with a relation that represents the Hoffman
wetting correlation

(4-204)

See VELO_THETA_HOFFMAN for details of the Hoffman function g. Note that the
convention for contact angles in this relation is that values of θ near to zero indicate a
high degree of wetting and values of θ near 180 ° indicate the opposite. This is mapped
to a stress value by analogy with Navier’s slip relation,

(4-205)

FAQs

No FAQs.

Ca
µVw

σ
----------≡ gHoff θ() gHoff θs()–=

τw

VHoffman

β
------------------------=

Revised: 6/12/13 591

4.10.279

References

Stephan F. Kistler 1993. “Hydrodynamics of Wetting” in Wettability, edited by John
Berg, Surfactant Science Series, 49, Marcel Dekker, NewYork, NY, pp. 311-429.

4.10.279

4.10.280 VELO_SLIP_LS

Description/Usage (WIC/VECTOR MOMENTUM)

This boundary condition is applied only in problems involving embedded interface
tracking, that is, level set or volume of fluid. The boundary condition serves two major
purposes: first to allow for slip in the vicinity of a moving contact line and second to
facilitate impact of a dense fluid on a substrate, displacing a less dense fluid (e.g. water
drop and air displacement). . Elsewhere, this boundary condition enforces a no-slip
condition between fluid and substrate. A more detailed description is given below.

This boundary condition is most often used in conjunction with the FILL_CA,
WETTING_SPEED_LINEAR, or WETTING_SPEED_BLAKE boundary conditions.
These apply forces to contact lines in order to simulate wetting line motion. These
forces are applied in a weak sense to the same regions near the interface so it is
necessary to use VELO_SLIP_LS with a large slipping coefficient so that effectively
no-slip is relaxed completely near the interface.

Definitions of the input parameters are as follows:

VELO_SLIP_LS Name of the boundary condition.

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain.

<float1> alpha, or slip_width, a characteristic length scale around
the contact line that will be used to apply Navier Slip
Condition with β0 coefficient. This length scale is also
used to detect the thickness of light-phase (gas) between
the substrate denoted by the sideset, and the zero-level-

BC = VELO_SLIP_LS SS <bc_id> <float_list>

592 Revised: 6/12/13

4.10.280 VELO_SLIP_LS

set contour (or the boundary between liquid and gas). If
this distance is less than 8*slip_width, then perfect slip
in the gas phase is allowed to help facilitate contact. See
discussion below.

<float2> β0, the slip coefficient near the contact line. The inverse
of β0 defines the scaling between stress and slip. The
parameter supplied on the input deck is used only within
a lengthscale slip_width setting around the contact line..
Elsewhere, the slip coefficient is uniformly set to β1.
Hence, this parameter is usually set to a large value to
allow for perfect slip.

<float3> vs,x, the x-component of surface velocity vector. This
would be the x-component of the fluid velocity if a no-
slip condition were applied.

<float4> vs,y, the y-component of surface velocity vector. This
would be the y-component of the fluid velocity if a no-
slip condition were applied.

<float5> vs,z, the z-component of surface velocity vector. This
would be the z-component of the fluid velocity if a no-
slip condition were applied.

<float6> β1, the slip coefficient away from the contact line. The
inverse of β1 defines the scaling between stress and slip.
Hence, this parameter is usually set to a small value
(like 1e-6) to allow for no-slip.

Examples

Following is a sample card without the optional parameters:

BC = VELO_SLIP_LS SS 10 0.05 100000.0 0.0 0.0 1.e-6

The large value of slip coefficient ensures nearly perfect slip in the region around the
interface, a region that has a half-width of 0.05 centered about the contact line. Away
from the contact line (outside the hat function of width 0.05), the slip coefficient is 1.e-
6, which corresponds to significantly less slip. Note also that if the substrate defined
by SS 10 is in contact with gas (light phase), and a liquid front (zero-level set) is
nearby, or within a distance 8 times 0.05, then the light phase is allowed to slip along
the wall with a coefficient of 100000.0. This is to help facilitate contact. .

Revised: 6/12/13 593

4.10.280 VELO_SLIP_LS

Technical Discussion

This boundary condition was originally developed to allow for fluid slip near a
dynamic contact line, a necessary condition for dynamic wetting line motion when the
contact angle is not 180 degrees (viz. rolling motion condition). The slippage
mechanism was deployed through the use of Navier’s slip condition, which basically
goes as

Here β is the slip coefficient, which is taken to be variable depending on its proximity
to the contact line (through the “slip_width” parameter). Note that the smaller the β, the
more no-slip is enforced. The left hand side of this condition is the fluid traction on the
substrate. vs is the velocity of the substrate, specified component-wise with {vx} {vy}
{vz}. This base functionality of applying the Navier slip condition still exists in this
condition, but in addition it was furbished to allow for complete slip on the boundary if
a gas film is being displaced by liquid. In this latter case, complete slip is a mechanism
(subgrid event) that allows for the otherwise infinite stress to be relieved so that the
liquid can make contact with the solid. The perfect slip condition at the substrate/gas
surface is activated by just setting the slip coefficient to the large value, as this
condition does anyway in the vicinity of a contact line. The “gas phase” is determined
by determining which phase is the lighter one based on the density specification. The
figure below details more on how this condition works for wetting/dewetting and for
incipient liquid/solid impact.

Some more usage notes as follows:

• The slip coefficient function is computed as , where the delta
function is a level-set hat function centered around the zero level set contour where
it intersects the boundary. It has a length sacale associated with it which is called
“alpha”, and that basically sets the length over which the β0 is applied as the slip
parameter and it is large, leading to a shear-stress-free or slippery region in both
the gas and liquid phases. βINF is taken as real small (typically 1.e-6 or less) and is
applied away from the contact line, and hence forces a true “no-slip” condition.

• The most recent addition to this condition is the functionality that adds perfect slip
to a wall in the gas phase as it is displaced during near contact state by a liquid
phase. This capability is of course applicable only to level-set capillary
hydrodynamics problems. Level-set methods have been plagued by the fact that it
is hard to break down the displaced phase (e.g. gas phase) as a liquid phase surface
flows towards a solid boundary. Theoretically this event requires an infinite stress,
in the continuum. To relieve this stress and promote a collapse and wetting, we add
perfect slip in the gas phase at near contact conditions, which reduces the
lubrication pressure in the gas film and promotes breakdown. This of course
introduces more length scales. First, the length scale over which slip is applied

n
˜

T
˜

⋅
v
˜

v
˜s–

β
-------------=

β β0δ φ() β∞+=

594 Revised: 6/12/13

4.10.280 VELO_SLIP_LS

(this is the alpha parameter described above) and seond is the length scale over
which “nearness” of the liquid phase to the substrate is considered to be “close
enough” to allow for perfect slip. Right now this “nearness” length scale is
arbitrarily set to 8*alpha. A third length scale is that which we use to declare
contact. We currently have that set to 1.e-6*alpha. After contact is declared,
VELO_SLIP_LS reverts to the form under the first bullet. The figure below
hopefully clarifies the condition a little better.

Liquid Gas

θ

distance

log β

β0 (“large value”

β1 (“small value”

plateau of perfect slip)

plateau no slip)

2*slip_width

substrate

d

if (d < 8*slip_width && Light_phase)
{
 β = β0
}
else
{
 β = delta function in other picture
}

VELO_SLIP_LS as applied to wetting and impact events

Delta_function slip
coefficient model

Impact Model

Revised: 6/12/13 595

4.10.281

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.281

Category 16: Boundary Conditions on Shell Equations

These boundary conditions are applied to shell equations, a special category of equations applied
on 1D boundaries of 2D surfaces in Goma.

4.10.282 SHELL_SURFACE_CHARGE

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to add to the potential equation the surface charge
term at a shell surface. Definitions of the input parameters are as follows:

SHELL_SURFACE_CHARGEName of the boundary condition
(<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This boundary
must coincide with the shell element block on which the
surface charge equation is applied.

BC = SHELL_SURFACE_CHARGE SS <bc_id> <integer>

596 Revised: 6/12/13

4.10.282 SHELL_SURFACE_CHARGE

<integer> Integer value indicating the bulk element block ID from
which to apply the boundary condition (not currently
implemented).

This boundary condition is currently inoperative..

Examples

For a system consisting of a solid material (element block ID 1) with a conducting shell
surface (element block ID 2) whose location coincides with side set 20, the following is
a sample usage:

BC = SHELL_SURFACE_CHARGE SS 20 1

Technical Discussion

This boundary condition applies a surface charge balance along the shell surface.. In its
most general form, this balance is written

(4-206)

where E is the electric field vector, the superscripts (o) and (i) denote the outer and
inner phases, n is a unit normal pointing into the outer phase, ε is the electrical
permittivity, is the electric field and V is the voltage or electric potential.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

εn E o() E i()–[]⋅() σ
2
---–=

E V∇–=

Revised: 6/12/13 597

4.10.283

4.10.283

4.10.284 SHELL_SURFACE_CHARGE_SIC

Description/Usage (WIC/POTENTIAL)

This boundary condition card is used to add to the potential equation the surface charge
term at a shell surface. Physically it is the same as the SHELL_SURFACE_CHARGE
boundary condition, but is applied as a strongly-integrated condition. Definitions of the
input parameters are as follows:

SHELL_SURFACE_CHARGE_SIC

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This boundary
must coincide with the shell element block on which the
surface charge equation is applied.

<integer> Integer value indicating the bulk element block ID from
which to apply the boundary condition (not currently
implemented).

This boundary condition is currently inoperative...

Examples

For a system consisting of a solid material (element block ID 1) with a conducting shell
surface (element block ID 2) whose location coincides with side set 20, the following is
a sample usage:

BC = SHELL_SURFACE_CHARGE_SIC SS 20 1

Technical Discussion

This boundary condition applies a surface charge balance along the shell surface.. In its
most general form, this balance is written

BC = SHELL_SURFACE_CHARGE_SIC SS <bc_id> <integer>

598 Revised: 6/12/13

4.10.285

(4-207)

where E is the electric field vector, the superscripts (o) and (i) denote the outer and
inner phases, n is a unit normal pointing into the outer phase, ε is the electrical
permittivity, is the electric field and V is the voltage or electric potential.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.285

4.10.286 SURFACE_ELECTRIC_FIELD

Description/Usage (WSG/SURFACE CHARGE)

This boundary condition card is used to apply a part of the shell surface charge
equation which includes the electric field, the negative gradient of the potential
variable which is applied on a neighboring bulk block. It is actually an integral part of
the surface charge equation. Definitions of the input parameters are as follows:

SURFACE_ELECTRIC_FIELD

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS
denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set
in EXODUS II) in the problem domain. This boundary

BC = SURFACE_ELECTRIC_FIELD SS <bc_id> <integer> <integer> <integer>

εn E o() E i()–[]⋅() σ
2
---–=

E V∇–=

Revised: 6/12/13 599

4.10.286 SURFACE_ELECTRIC_FIELD

must coincide with the shell element block on which the
surface charge equation is applied.

<integer> Bulk element block ID (from ExodusII database) for
neighboring bulk element block on which the potential
equation is applied.

<integer> Shell element block ID (from ExodusII database) for
shell block on which the surface charge equation is
applied.

This boundary condition is currently inoperative...

Examples

For a system consisting of a solid material (element block ID 1) with a conducting shell
surface (element block ID 2) whose location coincides with side set 20, the following is
a sample usage:

BC = SURFACE_ELECTRIC_FIELD SS 20 1 2

Technical Discussion

This is a special type of boundary condition, WEAK_SHELL_GRAD, which is a
portion of a shell equation which involves spatial gradients of bulk variables. Since the
values of bulk variable gradients depend on all of the degrees of freedom of that
variable in the bulk element, and sensitivities to the off-shell degrees of freedom must
be applied, a portion of the equation must be evaluated from the bulk side. This is done
in Goma by means of a WEAK_SHELL_GRAD boundary condition which evaluates
these terms and all bulk sensitivities from the bulk side, the saves these values for later
recall when the rest of the surface charge equation is assembled.

 In this case, the term and its potential sensitivities are evaluated within the bulk
element for inclusion in the surface charge balance along the shell surface.. I

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n V∇•

600 Revised: 6/12/13

4.10.287

4.10.287

4.10.288 SH_TENS

Description/Usage (DC/shell_tension)

This Dirichlet boundary condition specification is used to set a tension (in stress per
unit length) to the inextensible shell equations (see EQ = shell_tension and EQ =
shell_curvature) at an endpoint. This boundary condition can be applied in two
dimensions only, and only to the endpoint of a bar-type element. In put is as follows :

SH_TENS Boundary condition name (<bc_name>) that defines the
shell tension (compressive or expansion depending on the
sign). .

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database. Note that this must be
a single-node node set representing and endpoint to a bar
element type.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of tension

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the tension for a
shell equation:

BC = SH_TENS NS 100 10.

This condition sets a tension of 10.0 at Nodeset 100.

BC = SH_TENS NS <bc_id> <float1> [float2]

Revised: 6/12/13 601

4.10.289

Technical Discussion

No Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

GT-027.1: GOMA’s Shell Structure Capability: User Tutorial (GT-027.1)

4.10.289

4.10.290 SH_K

Description/Usage (DC/shell_curvature)

This Dirichlet boundary condition specification is used to set a curvature to the
inextensible shell equations (see EQ = shell_tension and EQ = shell_curvature) at an
endpoint. This boundary condition can be applied in two dimensions only, and only to
the endpoint of a bar-type element. :

SH_K Boundary condition name (<bc_name>) that defines the
shell curvature.

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database. Note that this must be
a single-node node set representing and endpoint to a bar
element type.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of curvature

BC = SH_K NS <bc_id> <float1> [float2]

602 Revised: 6/12/13

4.10.291

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a "hard set" condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample card for applying a Dirichlet condition on the curvature for a
shell equation:

BC = SH_K NS 100 0.

This condition sets a curvature of zero at Nodeset 100.

Technical Discussion

No Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

GT-027.1: GOMA’s Shell Structure Capability: User Tutorial (GT-027.1)

4.10.291

4.10.292 SH_FLUID_STRESS

Description/Usage (PCC/VECTOR MOMENTUM)

Used for fluid-structure interaction problems with structural shell elements, the
SH_FLUID_STRESS condition equates the normal traction (the tangential and normal

BC = SH_FLUID_STRESS SS <bc_id> <float>

Revised: 6/12/13 603

4.10.292 SH_FLUID_STRESS

force components, per unit area) between adjacent fluid and solid structure. This
condition is only to be used on boundaries between regions of ARBITRARY mesh
motion with fluid momentum equations: see Mesh Motion and EQ cards. With this
boundary condition, the local residual and Jacobian contributions from the fluid
mechanics momentum equations (on the ARBITRARY side of the boundary) are added
into weak form of the residual and Jacobian entries for the solid structural equations
(see EQ = shell_curvature and EQ = shell_tension). All elements on both sides of the
interface must have the same element type, i.e., the same order of interpolation and
basis functions, e.g., Q1 fluid and Q1 (bar element) for shell. Q2 fluid momentum and
Q2 (bar element) for the shell equations. Also, such interfaces must be defined as a
mesh side set attached to the bulk fluid elements (most mesh generators will not allow
for side sets in bar or sheet elements).

Definitions of the input parameters are as follows:

SH_FLUID_STRESS

Name of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float> Scale factor for stress balance for non-dimensionalization.
This parameter, which multiplies the liquid phase
contribution and should be set to 1.0 if there is no
nondimensional treatment. .

Examples

The following is a sample input card:

BC = SH_FLUID_STRESS SS 5 1.0

In this example, side set 5 is a boundary between a solid blade and a liquid; material 2
is the rubber blade, and material 1 is the fluid. Along that blade, a companion boundary
condition of the form

BC = NO_SLIP SS 5 2 1

should also be applied.

604 Revised: 6/12/13

4.10.292 SH_FLUID_STRESS

Technical Discussion

The functional form of the boundary condition is:

(4-208)

where is the fluid phase stress tensor given by any one of the specified fluid-phase
constitutive equations, and is the solid-phase stress tensor, also given by any one of
the solid-phase constitutive equation (see material file specifications). is a scaling
factor that defaults to unity (and is usually best taken as such unless some scaling is
invoked).

This balance is applied to the weak form of the solid-phase momentum residuals, from
the fluid phase, viz. in the fluid-phase, the fluid-stress at the interface is added to the
solid-phase momentum residuals. As mentioned above, this condition usually needs to
be supplemented by a statement of mass conservation across the interface, which will
depend on whether the solid phase is of CONTINUOUS or POROUS media (see Media
Type card).

Theory

No Theory.

FAQs

Troubleshooting 1: This boundary condition requires that the side set contain elements
from both the fluid and the solid side of the interface. For the FASTQ tool, this is the
default case; for CUBIT and possibly other related tools, this can be forced on the side
set definition options. Interestingly, the boundary condition does work if the side set is
attached to the fluid phase only, but just due to the way in which it is applied.

Troubleshooting 2: This boundary condition does not enforce mass conservation. A
combination of NO_SLIP or VELO_NORMAL/VELO_TANGENT must be invoked to
achieve a material surface. For the latter, care must be taken to maintain the application
of the VELO_NORMAL condition after a remesh. This condition is applied only to one
side of the interface and depends on the ss_to_blks connectivity structure; it may be
necessary to force its application, especially after remeshes. To be sure that the proper
set of conditions is being applied, look at the BC_dup.txt file for nodes along the
interface.

References

GT-003.1: Roll coating templates and tutorial for GOMA and SEAMS, February 29,
2000, P. R. Schunk and Matt Stay

λ n
˜

T
˜

⋅() n
˜

σ
˜

⋅=

T
˜

σ
˜ λ

Revised: 6/12/13 605

4.10.293

GT-006.3: Slot and Roll coating with remeshing templates and tutorial for GOMA and
CUBIT/MAPVAR, August 3, 1999, R. R. Lober and P. R. Schunk

4.10.293

4.10.294LUB_PRESS

Description/Usage
This boundary condition card applies a lubrication pressure to the boundary of a shell-

element sheet. The corresponding equation is EQ=lubp. The boundary condition is

applied to a node set.

LUB_PRESS Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> lub_p, the value of lubrication pressure at the boundary.

[float2] Optional floating point number set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix. The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences.

Examples

Following is a sample card:

BC = LUB_PRESS NS <bc_id> <float_list>

606 Revised: 6/12/13

4.10.295 GRAD_LUB_PRESS

BC = LUB_PRESS NS 100 100.

This condition applies a lubrication pressure of 100.0 at nodeset 100.

Technical Discussion

• The equation applied at the specified nodeset in place of Reynold’s lubrication
equation for confined flow. Note that it is not to be used for the film-flow
lubrication equations.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.295GRAD_LUB_PRESS

Description/Usage (WIC/R_LUBP)
This boundary condition card applies free boundary condition, akin to Papanastasiou et

al. (1992) for the fluid momentum, at the boundary of a shell-element sheet. The

boundary condition is applied to a sideset.

GRAD_LUB_PRESS Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

BC = GRAD_LUB_PRESS SS <bc_id> <float1>

Revised: 6/12/13 607

4.10.296

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> Flowrate in L^2/t. Usually set for NOBC effect.

Examples

Following is a sample card:

BC = GRAD_LUB_PRESS SS 100 0.

This condition applied at sideset 100.

Technical Discussion

• None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.296

4.10.297SHELL_FILMP

Description/Usage
This boundary condition card applies a film pressure to the boundary of a shell-element

sheet. The corresponding equation is EQ=shell_filmp. The boundary condition is

applied to a node set.

BC = SHELL_FILMP NS <bc_id> <float_list>

608 Revised: 6/12/13

4.10.297 SHELL_FILMP

SHELL_FILMP Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> shell_filmp, the value of lubrication pressure at the

boundary.

[float2] Optional floating point number set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix. The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences.

Examples

Following is a sample card:

BC = SHELL_FILMP NS 100 100.

This condition applies a film pressure of 100.0 at nodeset 100.

Technical Discussion

• The equation applied at the specified nodeset in place of the film-flow lubrication
equation.

Theory

NoTheory.

Revised: 6/12/13 609

4.10.298 SHELL_FILMH

FAQs

No FAQs.

References

No References.

4.10.298SHELL_FILMH

Description/Usage (DC/R_SHELL_FILMH)
This boundary condition card applies a film height to the boundary of a shell-element

sheet. The corresponding equation is EQ=shell_filmh. The boundary condition is

applied to a node set.

SHELL_FILMH Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> shell_filmh, the value of film thickness at the

boundary.

[float2] Optional floating point number set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix. The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences.

BC = SHELL_FILMH NS <bc_id> <float_list>

610 Revised: 6/12/13

4.10.299 SHELL_PARTC

Examples

Following is a sample card:

BC = SHELL_FILMH NS 100 1.

This condition applies a film height of 1.0 at nodeset 100.

Technical Discussion

• The equation applied at the specified nodeset in place of the film-flow height
equation.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.299SHELL_PARTC

Description/Usage (DC/R_SHELL_PARTC)
This boundary condition card applies a particle volume fraction to the boundary of a

shell-element sheet. The corresponding equation is EQ=shell_filmh. The boundary

condition is applied to a node set.

SHELL_PARTC Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

BC = SHELL_PARTC NS <bc_id> <float_list>

Revised: 6/12/13 611

4.10.299 SHELL_PARTC

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> shell_partc, the value of film thickness at the

boundary.

[float2] Optional floating point number set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminate

from the matrix. The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences.

Examples

Following is a sample card:

BC = SHELL_PARTC NS 100 0.

This condition applies a particles volume fractioin of 0.0 at nodeset 100.

Technical Discussion

• The equation applied at the specified nodeset in place of the particles conservation
equation.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

612 Revised: 6/12/13

4.10.300 SHELL_GRAD_FP

4.10.300SHELL_GRAD_FP

Description/Usage (SIC/R_SHELL_GRAD_FP)
This boundary condition card applies a volumetric flux of liquid film to the boundary of

a shell-element sheet. The corresponding equation is EQ=shell_filmp. The boundary

condition is applied to a node set.

SHELL_GRAD_FP Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> volumetric flux

Examples

Following is a sample card:

BC = SSHELL_GRAD_FP SS 100 0.0

This condition applies a particles volume flux of 0.0 at nodeset 100.

Technical Discussion

• The actual weighted residual equation that is applied to node on the surface is

BC = BC = SHELL_GRAD_FP SS <bc_id> <float_list>

()
3

d 0
3

i II B

h
p h qφ

µ

−∇ + − Γ =

 n U

Revised: 6/12/13 613

4.10.301 _SHELL_GRAD_FP_NOBC

where is the finite element trial function, is the outward-pointing normal to

the surface, and is the volumetric flux specified in the <float1>. Careful attention

should be given for the sign of . The sign convention is that is positive when the

flow is exiting the boundary and negative when entering the boundary.

The condition replaces the residual equation shell_filmp at the boundary.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.301_SHELL_GRAD_FP_NOBC

Description/Usage (WIC/R_SHELL_GRAD_FP_NOBC)
This boundary condition card applies free boundary condition, akin to Papanastasiou et

al. (1992) for the fluid momentum, at the boundary of a shell-element sheet. The

boundary condition is applied to a sideset.

SHELL_GRAD_FP_NOBC Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

BC = BC = SHELL_GRAD_FP_NOBC SS <bc_id>

iφ n

q

q q

614 Revised: 6/12/13

4.10.301 _SHELL_GRAD_FP_NOBC

Examples

Following is a sample card:

BC = SSHELL_GRAD_FP_NOBC SS 100

This condition applied at sideset 100.

Technical Discussion

• The finite element formulation of the first equation of the film profile equation
boundary integral in the form of

• This condition is similar to the SHELL_GRAD_FP boundary condition, except
that the condition is now a weak integrated condition that is added to the residual
equations, instead of replacing them and the flux is no longer specified.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

()
3

d 0
3

i II B

h
p hφ

µ

−∇ + Γ =

 n U

Revised: 6/12/13 615

4.10.302 SHELL_GRAD_FH

4.10.302SHELL_GRAD_FH

Description/Usage (SIC/R_SHELL_GRAD_FH)
This boundary condition card sets a slope to the liquid film at the boundary of a shell-

element sheet. The corresponding equation is EQ=shell_filmh. The boundary

condition is applied to a node set.

SHELL_GRAD_FH Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> slope

Examples

Following is a sample card:

BC = SSHELL_GRAD_FH SS 100 0.0

This condition applies a film slope of 0.0 at nodeset 100.

Technical Discussion

• he actual weighted residual equation that is applied to node on the surface is

where is the finite element trial function, is the outward-pointing normal to

the surface, and is the slope specified in the <float1>.

BC = BC = SHELL_GRAD_FH SS <bc_id> <float_list>

[] d 0i II hφ ∇ − Σ Γ = n

iφ n

Σ

616 Revised: 6/12/13

4.10.303 SHELL_GRAD_FH_NOBC

• The condition replaces the residual equation shell_filmh at the boundary.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.303SHELL_GRAD_FH_NOBC

Description/Usage (WIC/R_SHELL_GRAD_FH_NOBC)
This boundary condition card applies free boundary condition, akin to Papanastasiou et

al. (1992) for the fluid momentum, at the boundary of a shell-element sheet, in terms of

the slope of a thin Reynolds film. The boundary condition is applied to a sideset.

SHELL_GRAD_FH_NOBC Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

Examples

Following is a sample card:

BC = SSHELL_GRAD_FH_NOBC SS 100

BC = BC = SHELL_GRAD_FH_NOBC SS <bc_id>

Revised: 6/12/13 617

4.10.304 SHELL_GRAD_PC

This condition applied at sideset 100.

Technical Discussion

• The finite element formulation of the second equation of film profile equation
generates boundary integral in the form of

• This condition is similar to the SHELL_GRAD_FH boundary condition, except
that the condition is now a weak integrated condition that is added to the residual
equations, instead of replacing them and the flux is no longer specified.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.304SHELL_GRAD_PC

Description/Usage (WIC/R_SHELL_GRAD_PC)
This boundary condition card allows the user to set volumetric flux of particles inside

liquid film at the boundary of a shell-element sheet. The corresponding equation is

EQ=shell_partc. The boundary condition is applied to a side set.

SHELL_GRAD_PC Name of boundary condition

BC = BC = SHELL_GRAD_PC SS <bc_id> <float_list>

 d 0i II hφ ∇ Γ = n

618 Revised: 6/12/13

4.10.304 SHELL_GRAD_PC

SS Type of boundary condition (<bc_type>), where SS

denotes side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> particle flux

Examples

Following is a sample card:

BC = SHELL_GRAD_PC SS 100 1.

This condition applied at sideset 100. and sets a particle flux to 1.0

Technical Discussion

• The actual weighted residual equation that is applied to node on the surface is

where is the finite element trial function, is the outward-pointing normal to

the surface, and is the particles flux specified in the <float1>.

• The condition replaces the residual equation shell_partc at the boundary.

Theory

NoTheory.

FAQs

No FAQs.

{ } d 0i II pDh Jφ ϕ ∇ − Γ = n

iφ n

pJ

Revised: 6/12/13 619

4.10.305 SHELL_LUBP_SOLID

References

No References.

4.10.305SHELL_LUBP_SOLID

Description/Usage WIC/R_MESH1/R_MESH2/RMESH3)
This vector boundary condition card balances the stress in an abutting continuum

elastic solid with the lubrication forces (pressure and shear) in a surface shell. The

boundary condition is applied to a sideset. Please see notes below on the sideset

features which must be specified.

SH_LUBP_SOLID Name of boundary condition

SS Type of boundary condition (<bc_type>), where

SS denotes sideset in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (nodeset

in EXODUS II) in the problem domain.

<float1> Scaling factor. Normally set this to 1.0, unless a stress-

balance scale is required due to nondimensionalization.

Examples

Following is a sample card:

BC = SH_LUBP_SOLID SS 100 1.0

This boundary condition is applied at sideset 100.

Technical Discussion

• The mathematical form of the boundary condition is

BC = SH_LUBP_SOLID SS <bc_id> <float1>

620 Revised: 6/12/13

4.10.306 SHELL_TEMP

• This condition is similar to FLUID_SOLID and SOLID_FLUID boundary
conditions for the case of fluid-structure interaction between two continuum
regions, one fluid and one solid.

• Note that the sideset as generated in CUBIT or related software is actually attached
to the continuum domain and not the shell face, as those faces (top and bottom of
sheet and not the edges) are not true finite element sides. Most mesh generators
will not allow sidesets to be include shell element faces. GOMA figures out the
right thing to do.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.306SHELL_TEMP

Description/Usage (DC/R_SHELL_ENERGY)
This boundary condition card applies a shell temperature to the boundary of a shell-

element sheet. The corresponding equation is EQ=shell_energy. The boundary

condition is applied to a node set.

SHELL_TEMP Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

BC = SHELL_TEMP NS <bc_id> <float_list>

n⋅ σ = kPlub + i(
h

12

∂P

∂x
+

u µ

h
) + j(

h

12

∂P

∂x
+

v µ

h
)

Revised: 6/12/13 621

4.10.306 SHELL_TEMP

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> SHELL_TEMP, the value of temperature at the

boundary.

[float2] Optional floating point number set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminated

from the matrix. The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences.

Examples

Following is a sample card:

BC = SHELL_TEMP 100 1.0

This boundary condition is applied at nodeset 100.

Technical Discussion

• The equation applied at the specified nodeset in place of the shell-temperature
equation.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

622 Revised: 6/12/13

4.10.307

4.10.307

4.10.308SHELL_OPEN_PRESS, SHELL_OPEN_PRESS_2

Description/Usage (DC/R_SHELL_SAT_OPEN or

SHELL_SAT_OPEN_2)
This Dirichlet boundary condition card applies a shell liquid phase pressure to the

boundary of a shell-element sheet. The corresponding equation is EQ=shell_sat_open.

or correspondingly shell_sat_open_2, depending on which layer. The boundary

condition is applied to a node set.

SHELL_OPEN_PRESS Name of boundary condition

NS Type of boundary condition (<bc_type>), where NS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (node

set in EXODUS II) in the problem domain.

<float1> SHELL_OPEN_PRESSURE, the value of the liquid

phase pressure at the boundary.

[float2] Optional floating point number set between 0.0 and 1.0

which serves as a flag to the code for a Dirichlet

boundary condition. If this value is present, and is not

1.0, the condition is applied as a residual equation.

Otherwise, it is “hard-set” condition and is eliminated

from the matrix. The residual method must beused

when this Dirichlet boundary condition is used as a

parameter in automatic continuation sequences.

BC = SHELL_OPEN_PRESS NS <bc_id> <float_list>
BC = SHELL_OPEN_PRESS_2 NS <bc_id> <float_list>

Revised: 6/12/13 623

4.10.309 LUBP_SH_FP_FLUX

Examples

Following is a sample card:

BC = SHELL_OPEN_PRESS 100 1.0

This boundary condition is applied at nodeset 100.

Technical Discussion

• The equation applied at the specified nodeset in place of the shell-sat-open
equation.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.10.309LUBP_SH_FP_FLUX

Description/Usage (COLLOC/R_SHELL_FILMP)
This boundary condition card matches the mass flux in one region of confined flow

(lubp) to the mass flux from a second region of film flow (shell_filmp). The flux

matching is handled as a sideset between two shell regions. In this way both equations

can be coupled for exit or entrance flows. The boundary condition is applied in

collocated form, and replaces the R_SHELL_FILMP equation.

LUBP_SH_FP_FLUX Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

C = LUBP_SH_FP_FLUX SS <bc_id> <int1> <int2>

624 Revised: 6/12/13

4.10.309 LUBP_SH_FP_FLUX

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (side set

in EXODUS II) in the problem domain.

<int1> Block id of mesh material which invokes the lubp
equation.

<int2> Block id of mesh material which invokes the
shell_filmp equation

Examples

Following is a sample card:

BC = LUBP_SH_FP_FLUX SS 100 2 1

This condition applies the matching tie condition at a side set boundary between block

2 (which invokes the EQ = lubp equation) and block 1 (which invokes the

EQ=shell_filmp equation). .

Technical Discussion
The best example of the use of this equation is the exit of a metered coating flow.

It must be used together with a pressure-matching condition LUBP_SH_FP_MATCH.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 625

4.10.310 LUBP_SH_FP_MATCH

4.10.310LUBP_SH_FP_MATCH

Description/Usage (STRONG_INT_SURF/R_LUBP)
This boundary condition card matches the pressure in one region of confined flow

(lubp) to the pressure from a second region of film flow (shell_filmp). The

pressure matching is handled as a sideset between two shell regions. In this way both

equations can be coupled for exit or entrance flows. The boundary condition is applied

in collocated form, and replaces the R_LUBP equation.

LUBP_SH_FP_FLUX Name of boundary condition

SS Type of boundary condition (<bc_type>), where SS

denotes node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with

<bc_type> that identifies the boundary location (side set

in EXODUS II) in the problem domain.

<int1> Block id of mesh material which invokes the lubp
equation.

<int2> Block id of mesh material which invokes the
shell_filmp equation

Examples

Following is a sample card:

BC = LUBP_SH_FP_MATCH SS 100 2 1

This condition applies the matching tie condition at a side set boundary between block

2 (which invokes the EQ = lubp equation) and block 1 (which invokes the EQ=lubp

equation). .

Technical Discussion
The best example of the use of this equation is the exit of a metered coating flow.

It must be used together with a flux-matching condition LUBP_SH_FP_FLUX.

C = LUBP_SH_FP_MATCH SS <bc_id> <int1> <int2>

626 Revised: 6/12/13

4.10.311 APR

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Category 17: Boundary Conditions for the Acoustic Equations

These boundary conditions are applied to acoustic equations (Preal, Pimag, Reyn_stress).

4.10.311 APR

Description/Usage (DC/ACOUS_PREAL)

This Dirichlet boundary condition card is used to set constant amplitude of the real part
of the acoustic pressure. Definitions of the input parameters are as follows:

APR Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of the real part of the acoustic pressure amplitude.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.

BC = APR NS <bc_id> <float1> [float2]

Revised: 6/12/13 627

4.10.312

Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample input card:

BC = APR NS 100 1000.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.312

4.10.313 APR_PLANE_TRAN

Description/Usage (WIC/SCALAR ACOUS_PREAL)

This boundary condition card applies the plane wave transmission conditions to the
acoustic wave equations. This card concerns the real part while API_PLANE_TRAN
concerns the imaginary component. This condition is used to set reflection/
transmission conditions for a surrounded material that is not being meshed. Definitions
of the input parameters are as follows:

APR_PLANE_TRANName of the boundary condition (<bc_name>).

BC = APR_PLANE_TRAN SS <bc_id> <float1>

628 Revised: 6/12/13

4.10.313 APR_PLANE_TRAN

SS Type of boundary condition (<bc_type>), where SS
denotes side set.

<bc_id> The boundary flag identifier, or a side set number which
is an integer that identifies the boundary location (side
set in EXODUS II) in the problem domain.

<float1> R2, the acoustic impedance (i.e. product of density and
wave speed) in the surrounded material.

Examples

Following is a sample card:

BC = APR_PLANE_TRAN SS 10 0.1

Technical Discussion

This condition should be used to account for transmission/reflection conditions for the
external boundaries when the acoustic wave equation is used. It reflects characteristics
for an acoustic wave encountering a planar interface between two materials;

(4-209)

where k is the acoustic wavenumber and R is the acoustic impedance. The subscript 1
refers to the material inside the external boundary and is the material which is meshed.
Subscript 2 refers to the material outside of the external boundary. If R2 is set equal to
R1, then this condition mimics an infinite boundary condition, i.e. no reflection at the
external boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

n ∇P• i
k1R1

R2

------------P–=

Revised: 6/12/13 629

4.10.314

4.10.314

4.10.315 API

Description/Usage (DC/ACOUS_PIMAG)

This Dirichlet boundary condition card is used to set constant amplitude of the
imaginary part of the acoustic pressure. Definitions of the input parameters are as
follows:

API Name of the boundary condition (<bc_name>).

NS Type of boundary condition (<bc_type>), where NS denotes
node set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (node set in
EXODUS II) in the problem domain.

<float1> Value of the imaginary part of the acoustic pressure
amplitude.

[float2] An optional parameter (that serves as a flag to the code for a
Dirichlet boundary condition). If a value is present, and is
not -1.0, the condition is applied as a residual equation.
Otherwise, it is a “hard set” condition and is eliminated
from the matrix. The residual method must be used when
this Dirichlet boundary condition is used as a parameter in
automatic continuation sequences.

Examples

The following is a sample input card:

BC = API NS 100 1000.0

Technical Discussion

No discussion.

BC = API NS <bc_id> <float1> [float2]

630 Revised: 6/12/13

4.10.316

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.10.316

4.10.317 API_PLANE_TRAN

Description/Usage (WIC/SCALAR ACOUS_PIMAG)

This boundary condition card applies the plane wave transmission conditions to the
acoustic wave equations. This card concerns the imaginary part while
APR_PLANE_TRAN concerns the real component. This condition is used to set
reflection/transmission conditions for a surrounded material that is not being meshed.
Definitions of the input parameters are as follows:

API_PLANE_TRANName of the boundary condition (<bc_name>).

SS Type of boundary condition (<bc_type>), where SS denotes
side set in the EXODUS II database.

<bc_id> The boundary flag identifier, an integer associated with
<bc_type> that identifies the boundary location (side set in
EXODUS II) in the problem domain.

<float1> R2, the acoustic impedance (i.e. product of density and
wave speed) in the surrounded material.

Examples

Following is a sample card:
BC = API_PLANE_TRAN SS 10 0.1

BC = API_PLANE_TRAN SS <bc_id> <float1>

Revised: 6/12/13 631

4.10.318 END OF BC

Technical Discussion

This condition should be used to account for transmission/reflection conditions for the
external boundaries when the acoustic wave equation is used. It reflects characteristics
for an acoustic wave encountering a planar interface between two materials;

(4-210)

where k is the acoustic wavenumber and R is the acoustic impedance. The subscript 1
refers to the material inside the external boundary and is the material which is meshed.
Subscript 2 refers to the material outside of the external boundary. If R2 is set equal to
R1, then this condition mimics an infinite boundary condition, i.e. no reflection at the
external boundary.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

___________________________End of BC Categories_________________________________

4.10.318 END OF BC

Description/Usage

This card specifies the end of the list of boundary conditions (BCs), and is only used
when automatic BC counting is used, as described in the Number of BC card. If the
value of <integer> in that card is set to -1, all BC cards below the END of BC card are
ignored, and Goma counts the number of BC cards between the Number of BC card and
the END of BC card.

END OF BC

n ∇P• i
k1R1

R2

------------P–=

632 Revised: 6/12/13

4.11 Rotation Specifications

Examples

There are no input parameters for this card, which always appears as follows:

END OF BC

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.11 Rotation Specifications

This section descibes special input for controlling boundary condition implementation of vector
equations in 3D problems. For 2D problems, the information in this section of the Goma input file
is not read or used. It is also optional in 3D problems when none of the boundary conditions are
rotated (see discussion below). However, these specifications are mandatory in all 3D problems
which require equation rotation at the boundaries (e.g. PLANE, KINEMATIC, VELO_NORMAL),
a condition especially prevalent in free-surface problems. The goal of this input section is to
specify the exact implementation of the equations at any boundary with rotated conditions (called
rotated boundaries throughout this discussion). But first, consider the necessary background.

Rotation of Vector Equations The fluid momentum and psuedo-solid or
Lagrangian solid momentum equations are vector equations (i.e., they have x, y, and z
components). The boundary conditions applied to these equations can either be vector
conditions (applying in the x, y, and z directions) or scalar conditions (a single function of
the solution and x, y, and z). Scalar conditions applied to vector equations represent a spe-
cial challenge, because it is often unclear which of the vector equations should be replaced
by the scalar conditions. For many scalar conditions, e.g. Dirichlet conditions, the user
specifies which component of the momentum equation gets replaced by the scalar condi-
tion; however, not replacing all the components of the vector equation at a boundary re-
sults in applying a shear-stress-free or normal-stress-free condition there (because the
BOUNDARY term of the equations needs to be computed or else the normal traction is

Revised: 6/12/13 633

4.11 Rotation Specifications

implicitly zero).

In some cases, a better way to apply a scalar condition is to use it to replace the normal or
tangential contribution of the vector equations, while retaining the other portions of the
equation (e.g., a no penetration condition could constrain the normal component of veloc-
ity but still allow the stress along the boundary to be shear-free). In Goma, this is done by
rotating the vector equation into a normal-tangential form:

(4-211)

(4-212)

n and t are the unit normal and tangent vectors at the boundary (evaluated at the centroid
along the boundary of an element) and is the vector form of the weighted residual
equation. This rotation is performed after all weak boundary conditions have been applied,
but prior to application of strong boundary conditions. Thus any weak contributions to the
vector equation are retained throughout the rotation. is the normal component of the
vector equation and is the tangent component of the vector equation. Note that the
equations are rotated after they have been integrated rather than before; thus, the new
residual equations are only strictly in normal-tangential form along straight boundaries
(along curved boundaries there may be some error which becomes small as the element
size decreases).

In Goma, rotated boundary conditions cause rotation of the vector equation on an element
side if there are no Dirichlet conditions applied to that vector equation and if the total
number of independent rotated conditions is less than the number of dimensions of the
physical problem (i.e., in a 2D problem, the vector equation is rotated only when one
independent rotated condition exists at that node).

Thus along any rotated boundary, the three vector equations (e.g. x, y, and z mesh equations) are
replaced by three new equations as specified in this section. The user can decide to replace the
component equations by rotated forms of the equations (or even unrotated forms of the
equations), or to replace the component equations by boundary conditions. These specifications
also dictate how to calculate the tangent vectors which are sometimes ill-defined in 3D. This
section is designed to accommodate an arbitrary number of rotation specifications listed in the
Goma input between Rotation Specifications = and END OF ROT.

All of this behavior is implemented through the overloaded ROT input card. There are three types
of ROT cards depending on whether the condition applies on a surface, an edge or a vertex. Goma
makes no assumptions about the topology of the mesh surfaces; all the topology is defined
through the ROT card. In this implementation, a surface is defined as a side-set, an edge is defined
as the intersection of two side-sets, and a vertex is defined as the intersection of three side-sets at
a single node. Although all three types of input cards start with ROT =, we list them as three

Ri
f n,

n Ri
f

•=

Ri
f t,

t Ri
f

•=

Ri
f

Ri
f n,

Ri
f t,

634 Revised: 6/12/13

4.11.1 Rotation Specifications

independent cards to make the discussion more straightforward. As nodes that are contained on
edges must also be contained on the adjacent surfaces, these rotation specifications have a
hierarchy -- vertex, edge, surface -- such that vertex conditions override edge conditions which
override surface conditions.

Note: it is possible to solve a 3D problem with rotated boundaries by only creating rotation
specifications for those boundaries, and letting Goma determine the behavior at the remaining
boundaries. However, this is a dangerous practice; it is much better to explicitly tell Goma how to
treat all boundaries so that the behavior is well defined. An important example is the intersection
of a rotated boundary and an unrotated boundary, it is still a rotated boundary and requires an edge
ROT specification.

4.11.1 Rotation Specifications

Description/Usage

This card denotes the start of the rotation specification cards. All rotation specification
cards between this card and the END OF ROT card will read and processed. If this card
is not present, no rotation cards will be read.

Examples

There are no input parameters for this card. It should appear on its on line exactly as
follows:

Rotation Specifications =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Rotation Specifications =

Revised: 6/12/13 635

4.11.2 ROT SURFACE

4.11.2 ROT SURFACE

Description/Usage

This rotation specification card identifies a specific surface that requires rotation of
equations for proper application of boundary conditions in three dimensional problems.
It identifies the boundary conditions that are to be applied on that surface. It also
identifies which equation components are to be replaced by boundary conditions,
which are to be replaced by rotated equation components, and which are to be left
alone. Equation components refer, currently, to only rotation of mesh and momentum
equations. This card also identifies the manner in which two independent tangent
vectors are to be determined on the surface.

Definitions of the first three input parameters are as follows:

{MESH | MOM} Equation type (<eq_type>) to which this rotation
condition applies:

MESH - Applies to mesh equations
MOM - Applies to fluid momentum equations

SURFACE Type of rotation specification.

<bc_id> An integer identifying the side set designation of the
surface to which this rotation condition applies.

The next six parameters dictate how the x, y, and z components of the vector equation
are replaced by boundary conditions or rotated equations using pairs of specifiers, e.g.,
<string_x> and <int_x> for the x-component of the equation.

<string_x> A character string that specifies what will replace the x-
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 1 (Valid Equation Rotation
Strings).

<int_x> This is an integer parameter specified as follows:

ROT = {MESH | MOM} SURFACE <bc_id> <string_x> <int_x> <string_y>
<int_y> <string_z> <int_z> {seed_method} <float1> <float2> <float3>

636 Revised: 6/12/13

4.11.2 ROT SURFACE

• If <string_x> is a boundary condition name, then
<int_x> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_x> is a rotation string from Table 1, <int_x>
should be specified as 0.

<string_y> A character string that specifies what will replace the y -
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 1.

<int_y> This is an integer parameter specified as follows:

• If <string_y> is a boundary condition name, then
<int_y> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_y> is a rotation string from Table 1, <int_y>
should be specified as 0.

<string_z> A character string that specifies what will replace the z -
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 1.

<int_z> This is an integer parameter specified as follows:

• If <string_z> is a boundary condition name, then
<int_z> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

Revised: 6/12/13 637

4.11.2 ROT SURFACE

• If <string_z> is a rotation string from Table 1, <int_z>
should be specified as 0.

In most cases, only one of the three equations on a surface will be replaced by
boundary conditions, and the remaining two equations will be rotated in the two
tangent directions. Such a form constrains the normal motion of the solid or fluid while
allowing tangential motions to occur stress-free.

The last four parameters in the card specify how to calculate the tangent vectors on the
surface. In 3D, an infinite number of equally valid tangent pairs exist, so this card
enables specifying how to choose those pairs. More specifically it identifies how to
identify the first tangent vector (T1) since the second tangent vector is always be
obtained via the cross product of the normal vector with the first tangent vector (T1).

Table 1. Valid Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

NONE, NA, or NO No rotation is performed for this equation component.

N This equation component is replaced by normal
component of the residual

T This equation component is replaced by the tangential
component of the residual: (EDGE and
VERTEX only)

T1 This equation component is replaced by the first
tangential component of the residual:

T2 This equation component is replaced by the second
tangential component of the residual:

X This equation is replaced by the x-component of the
residual.

Y This equation is replaced by the y-component of the
residual.

Z This equation is replaced by the z-component of the
residual

S The equation component is replaced by the projection of
the equations in the direction of the seed vector:

B The equation component is replaced by the projection of
the equations in the direction of the binormal vector

tn R•

t R•

T1 R•

T2 R•

S R•

638 Revised: 6/12/13

4.11.2 ROT SURFACE

{seed_method} A character string that defines the method of tangent
calculation. Valid options are listed in the Surface
Tangent Calculation Method (Table 2).

<float1> x-component of the seed vector, s. This parameter is
only needed if {seed_method} is SEED.

<float2> y-component of the seed vector, s. This parameter is
only needed if {seed_method} is SEED.

<float3> z-component of the seed vector, s. This parameter is
only needed if {seed_method} is SEED.

Note that the seed vector specified does not have to be a unit vector.

Examples

The following are several examples of useful rotation specifications for surfaces:
ROT = MESH SURFACE 99 KINEMATIC 99 T2 0 T1 0 BASIS_RESEED
ROT = MESH SURFACE 16 T1 0 T2 0 PLANE 16 SEED 1. 0. 0.
ROT = MOM SURFACE 5 VELO_NORMAL 5 T1 0 T2 0 BASIS

 The first example applies to the mesh equations at side set 99, the second to mesh
equations at side set 16, and the third to the fluid momentum equations at side set 5. As
described previously, the <string_x>, <string_y> and <string_z> parameters can be any
boundary condition name or rotation string. Thus for the first example above, the x-

Table 2. Surface Tangent Calculation Method

{seed_method} Description of Tangent Calculation Methods

NONE Tangent vectors should not be calculated. This is the
usual choice for EDGE and VERTEX rotation types.

SEED The first tangent vector (T1) is calculated from a surface
projection of a seed vector, s:

BASIS The first tangent is the direction of the first basis vector in
the surface using a weighted average for adjacent
elements.

BASIS_FIRST The first tangent is the direction of the first finite element
basis vector in the first element containing a given node.

BASIS_RESEED The tangent resulting from BASIS_FIRST is used to
reseed tangent calculation in the adjacent elements. (This
method is the most reliable.)

T1 I nn–() s•=

Revised: 6/12/13 639

4.11.2 ROT SURFACE

component of the mesh equation is replaced by a KINEMATIC boundary condition on
side set 99, the y-component of the mesh equation is replaced by the second tangential
component (T2) of the mesh equation, and the z-component of the mesh equation is
replaced by the first tangential component (T1) of the mesh equation. Since the rotation
selections in the first example (T2 and T1) are rotated components instead of boundary
conditions, a value of zero for the <int_y> and <int_z> parameters is appropriate.
Finally, for the first example, BASIS_RESEED was chosen as the {seed_method}, and
thus no subsequent parameters were required. The second example, however, uses
SEED as the {seed_method} and thus is followed by the x, y, and z components of the
tangent vector, respectively, as <float1> of 1., <float2> of 0., and <float3> of 0.

Technical Discussion

The necessary background discussing the nature and need for rotation procedures and
rotation specifications is supplied in several of the references listed below. Briefly,
however, in order to apply certain boundary conditions accurately it is necessary that
the vector components of the solid mesh or fluid momentum equations be replaced by
components that are tangent and normal to the surface in question. This procedure is
referred to in this context as “rotation of equations.” It should be noted that explicitly
specifying rotation conditions is really only necessary for three dimensional problems.
Rotation also occurs in two-dimensional problems, but is sufficiently simpler that it can
be automated and is therefore transparent to the user.

Not every boundary condition needs an accompanying rotation specification card and
those that do are identified in the description of each boundary condition. Each rotated
boundary condition will require at least one SURFACE rotation card be included for
the boundary condition’s side set. Failure to do so is an error. The boundary conditions
most often encountered that will require rotation cards are the VELO_NORMAL card
applied to the fluid momentum equations and the KINEMATIC, PLANE, and SPLINE
cards applied to the solid mesh equations.

In almost every case the boundary condition constraint will replace the normal rotated
component so only the two tangential components of the rotated equation remain. All
three examples shown above are just this situation. This has the effect of constraining
the normal motion of the solid or fluid and imposing zero tangential forces due to the
natural boundary conditions present in both fluid and solid momentum equations.

Specification of a seed vector method is needed so that a unique pair of tangent vectors
may be determined at each point on the surface. The BASIS, BASIS_FIRST and
BASIS_RESEED use the finite element grid in the surface as a means of defining the
first tangent vector. They can employ averaging over elements that share a node. They
should be employed on surfaces for which it is difficult to find a single consistent seed
vector for every point on the surface. The SEED method finds the projection of the
vector supplied in the surface at the point of interest. This projection vector is

640 Revised: 6/12/13

4.11.3 ROT EDGE

normalized to obtain the first tangent vector. It should be clear that only vectors that are
never normal to any point on the surface will be suitable. In practice, this condition can
sometimes be hard to meet for some surfaces. In these cases, the other seeding methods
should be used.

Theory

No Theory.

FAQs

No FAQs.

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-012.0: 3D Roll coating template and tutorial for GOMA, February 21, 2000, P.R.
Schunk

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer

4.11.3 ROT EDGE

Description/Usage

This rotation specification card deals with rotation specification along edges. In this
context, an edge is the intersection of two side sets. It identifies the boundary
conditions that will be applied at nodes on that edge and which equation components
are to be associated with them. It also identifies which components of the rotated
equations will be used. Currently, only rotation of mesh and momentum equations is
allowed on edges. This card can also be used for specifying a seed vector if needed.

Definitions of the input parameters are as follows:

{MESH | MOM} Equation type to which this rotation condition applies:

MESH - Applies to mesh equations
MOM - Applies to fluid momentum equations

EDGE Type of rotation specification.

ROT = {MESH | MOM} EDGE <bc_id1> <bc_id2> <string_x> <int_x> <string_y>
<int_y> <string_z> <int_z> {seed_method} <float1> <float2> <float3>

Revised: 6/12/13 641

4.11.3 ROT EDGE

<bc_id1> Side set ID number of the primary side set.

<bc_id2> Side set ID number of the secondary side set.

The edge is defined as the intersection of the primary and secondary side sets.

The next six parameters dictate how the x, y, and z components of the vector equation
are replaced by boundary conditions or rotated components using pairs of specifiers,
e.g., <string_x> and <int_x> for the x-component of the equation.

<string_x> A character string that specifies what will replace the x-
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 3 (Valid EDGE Tangent Equation
Rotation Strings).

<int_x> This is an integer parameter specified as follows:

• If <string_x> is a boundary condition name, then
<int_x> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_x> is a rotation string from Table 3, <int_x>
should be specified as 0.

<string_y> A character string that specifies what will replace the y -
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 3.

<int_y> This is an integer parameter specified as follows:

• If <string_y> is a boundary condition name, then
<int_y> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_y> is a rotation string from Table 3, <int_y>
should be specified as 0.

642 Revised: 6/12/13

4.11.3 ROT EDGE

<string_z> A character string that specifies what will replace the z -
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 3.

<int_z> This is an integer parameter specified as follows:

• If <string_z> is a boundary condition name, then
<int_z> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_z> is a rotation string from Table 3, <int_z>
should be specified as 0.

.

Table 3. Valid EDGE Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

NONE, NA, or NO No rotation is performed for this equation component.

N This equation component is replaced by the normal
component of the residual: where n is the outward-
pointing normal to <bc_id1>

T This equation component is replaced by the tangential
component of the residual: where the tangent is a
line tangent along the edge defined by <bc_id1> and
<bc_id2>.

B This equation component is replaced by the outward-
pointing binormal component of the residual:
where the binormal is perpendicular to both the line
tangent T and the outward-pointing normal to <bc_id1>.

S The equation component is replaced by the projection of
the equations in the direction of the seed vector:

X This equation is replaced by the x-component of the
residual.

n R•

T R•

B R•

S R•

Revised: 6/12/13 643

4.11.3 ROT EDGE

In most cases, seeding of the tangent vectors is not needed along edges, although it is
possible to specify a seed method as defined in the ROT SURFACE card via the
parameters {seed_method}, <float1>, <float2>, and <float3>. Note also that a seed
vector must be specified to use the S rotation option.

Examples

The following is an example of an edge rotation specification:

ROT = MESH EDGE 4 5 PLANE 4 PLANE 5 T 0 NONE

This card specifies rotation of the mesh equations along the edge of intersection of side
sets 4 and 5. The x and y mesh equations are replaced by PLANE conditions on side
sets 4 and 5, respectively. The z mesh equation is replaced by the mesh residuals
rotated into the direction of the line tangent along the edge. This enables the mesh to
slide freely (i.e., stress-free) along the edge.

Technical Discussion

• The direction of the line tangent is chosen such that the binormal () with
n, the outward-pointing normal to the primary surface <bc_id1>, is outward-
pointing from the edge.

• Along edges, two of the equations are normally replaced by boundary conditions
and one equation is replaced by this tangential component. However several
options are available for replacing the mesh equations by other forms of the rotated
equations as listed in Table 3. (Valid EDGE Tangent Equation Rotation Strings)
above.

• It is very rare to require a seed vector be specified on an edge. The SEED vector
choice is almost always NONE.

• A precedence rule has been established for the case when more than one Rotation
Specification could be applied at a point. The rule is as follows:

The Rotation condition that will be applied is:

Y This equation is replaced by the y-component of the
residual.

Z This equation is replaced by the z-component of the
residual.

Table 3. Valid EDGE Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

b n t×=

644 Revised: 6/12/13

4.11.4 ROT VERTEX

A>The first VERTEX condition in the input deck that could
apply. If there is no contravening VERTEX condition then,

B>The first EDGE condition in the input deck that could
apply. If there is no contravening EDGE condition then,

C>The first SURFACE condition that could apply.

• A very important restriction exists for EDGE and VERTEX rotation conditions. It
is a necessary requirement that all elements that are present on an edge have only a
single segment present on the edge curve. An element may therefore never
contribute more than two corner vertex nodes to the set of nodes on an edge curve.
If there are more than two such nodes for a given element, Goma will terminate
with a “Side not connected to edge” error. If such a situation exists, the only
solution is to remesh the geometry to eliminate such elements.

Theory

No Theory.

FAQs

No FAQs.

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-012.0: 3D Roll coating template and tutorial for GOMA, February 21, 2000, P.R.
Schunk

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer

4.11.4 ROT VERTEX

Description/Usage

This rotation specification card deals with rotation specification at vertices. In this
context, a vertex is the intersection point of three side sets. It identifies the boundary

ROT = {MESH | MOM} VERTEX <bc_id1> <bc_id2> <bc_id3> <string_x>
<int_x> <string_y> <int_y> <string_z> <int_z> {seed_method} <float1> <float2>
<float3>

Revised: 6/12/13 645

4.11.4 ROT VERTEX

conditions that will be applied at the vertex node and which equation components are to
be associated with them. It also identifies which components of the rotated equations
will be used. Currently, only rotation of mesh and momentum equations is allowed at a
vertex. This card can also be used for specifying a seed vector if needed.

Definitions of the input parameters are as follows:

{MESH | MOM} Type of equation to which this specification applies,
where

MESH - Applies to mesh displacement equations
MOM - Applies to fluid momentum equations

VERTEX Type of rotation specification.

<bc_id1> Side set id number of the primary side set.

<bc_id2> Side set id number of the secondary side set.

<bc_id3> Side set id number of the tertiary side set.

The vertex is defined as the point at the intersection of the primary, secondary, tertiary
side set. Note that it is possible for these three side sets to intersect at more than one
discrete point. The VERTEX condition is applied to all such points.

The next six parameters dictate how the x, y, and z components of the vector equation
are replaced by boundary conditions or rotated components using pairs of specifiers,
e.g., <string_x> and <int_x> for the x-component of the equation.

<string_x> A character string that specifies what will replace the x-
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 4 (Valid VERTEX Tangent
Equation Rotation Strings).

<int_x> This is an integer parameter specified as follows:

• If <string_x> is a boundary condition name, then
<int_x> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_x> is a rotation string from Table 4, <int_x>
should be specified as 0.

646 Revised: 6/12/13

4.11.4 ROT VERTEX

<string_y> A character string that specifies what will replace the y -
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 4.

<int_y> This is an integer parameter specified as follows:

• If <string_y> is a boundary condition name, then
<int_y> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_y> is a rotation string from Table 4, <int_y>
should be specified as 0.

<string_z> A character string that specifies what will replace the z -
component of the vector equation (MESH or
MOMENTUM). This string may be the name of a
boundary condition already specified in the boundary
condition specification section or one of the rotation
strings listed in Table 4.

<int_z> This is an integer parameter specified as follows:

• If <string_z> is a boundary condition name, then
<int_z> is the side set or node set designation to which
the appropriate boundary condition applies. This
provides a means of distinguishing between boundary
conditions possessing the same string name but applied
to different side sets or node sets.

• If <string_z> is a rotation string from Table 4, <int_z>
should be specified as 0.

.

Table 4. Valid VERTEX Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

NONE, NA, or NO No rotation is performed for this equation component.

Revised: 6/12/13 647

4.11.4 ROT VERTEX

In most cases, seeding of the tangent vectors is not needed along vertices, although it is
possible to specify a seed method as defined in the ROT SURFACE card via the
parameters {seed_method}, <float1>, <float2>, and <float3>. Note also that a seed
vector must be specified to use the S rotation option.

Examples

The following is an example of a vertex rotation specification:
ROT = MESH VERTEX 3 4 6 PLANE 4 PLANE 3 PLANE 6 NONE
ROT = MESH VERTEX 5 4 6 PLANE 4 KINEMATIC 5 PLANE 6 NONE

In the first example, the vertex is at the intersection of side sets 3, 4 and 6, and the three
mesh equations at this vertex are replaced by PLANE conditions from side sets 4, 3, and
6, respectively. In the second example, the vertex is at the intersection of side sets 4, 5,
and 6, respectively. Since it is conceivable that side set 5 might represent a free surface
that curves in three dimensions, the last VERTEX card might apply to more than one
point.

N This equation component is replaced by the normal
component of the residual: where n is the
outward-pointing normal to <bc_id1>

T This equation component is replaced by the tangential
component of the residual: where the tangent is
a line tangent along the edge defined by <bc_id1> and
<bc_id2>.

B This equation component is replaced by the outward-
pointing binormal component of the residual:
where the binormal is perpendicular to both the line
tangent T and the outward-pointing normal to <bc_id1>.

S The equation component is replaced by the projection of
the equations in the direction of the seed vector:

X This equation is replaced by the x-component of the
residual.

Y This equation is replaced by the y-component of the
residual.

Z This equation is replaced by the z-component of the
residual.

Table 4. Valid VERTEX Tangent Equation Rotation Strings

{string_x|y|z} Description of Equation Rotation Selections

n R•

T R•

B R•

S R•

648 Revised: 6/12/13

4.11.4 ROT VERTEX

Technical Discussion

• Despite the fact that VERTEX cards apply only at single points, definitions of the
normal, tangent and binormal vectors are still operative. The normal vector, N, is
the outward-pointing normal to the primary side set, the tangent vector, T, is
defined to lie along the curve defined by the intersection of the primary and
secondary side set, and the binormal vector, B, is defined simply as the cross
product of the normal vector with the tangent vector. Note that the sense of the
tangent vector is chosen so that the binormal vector will always point outwards
from the domain.

• At a vertex, it is normally the case that all three rotated components will be
replaced by boundary conditions as suggested by the examples. However, it is not
a rarity that a rotated component, usually N or T, will also appear.

• The same hierarchy of precedence is used to determine which rotation
specification will be applied when more than one could apply to a node. The rule is
as follows:

The Rotation condition that will be applied is:

A>The first VERTEX condition in the input deck that could
apply. If there is no contravening VERTEX condition then,

B>The first EDGE condition in the input deck that could
apply. If there is no contravening EDGE condition then,

C>The first SURFACE condition that could apply

• Very often VERTEX cards are used to resolve ambiguities that arise at points where
multiple SURFACE or EDGE cards could apply.

Theory

No Theory.

FAQs

No FAQs.

References

GT-007.2: Tutorial on droplet on incline problem, July 30, 1999, T. A. Baer

GT-012.0: 3D Roll coating template and tutorial for GOMA, February 21, 2000, P.R.
Schunk

Revised: 6/12/13 649

4.11.5 END OF ROT

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer

4.11.5 END OF ROT

Description/Usage

This card is used to end the section of rotation specifications in the input deck. Any
ROT conditions listed after this card are ignored. It should always accompany the
“Rotation Specifications =” card.

Examples

There are no input parameters for this card, which always appears as follows:

END OF ROT

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12 Problem Description

This section directs all input specifications required for differential equations, material type, mesh
motion type, coordinate system, finite element basis function type, and several other input tasks.
This section of input records, with the exception of the Number of Materials card (the first one
below), must be repeated for each material region in the problem. Within that region of the
problem domain (and the corresponding section of the input file) there are no restrictions as to
which differential or constraint equations can be specified, which is a unique capability of Goma.

END OF ROT

650 Revised: 6/12/13

4.12.1 Number of Materials

However, some combinations or specifications do not make much sense, e.g., a cylindrical
coordinate region combined with a cartesian one. It is recommended that the user consult the
usage tutorials and example problems to get a feel for how this section is constructed.

4.12.1 Number of Materials

Description/Usage

This required card denotes how many material sections are contained in the Problem
Description File. Each material section will have its own problem description,
consisting of the following: MAT card, Coordinate System card, Mesh Motion card,
Number of bulk species card, Number of EQ card, and zero or more equation cards. The
input parameter is defined as

<integer> The number of MAT cards (i.e., material sections) that
follow; this number must be greater than zero.

If there are more MAT cards than specified by <integer>, Goma ignores all extras (i.e.,
the first Number of Materials material sections are read). If <integer> is set to -1, Goma
automatically counts the MAT cards between the Number of Materials card and the
END OF MAT card.

Examples

Following is a sample card, indicating that there are two materials:

Number of Materials = 2

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Number of Materials = <integer>

Revised: 6/12/13 651

4.12.2 MAT

References

No References.

4.12.2 MAT

Description/Usage

This card represents the start of each material section in the Problem Description File.
Thus, one MAT card is required for each material section. Definition of the input
parameters are as follows:

<char_string> Filename of the material file from which all material
properties for the current material will be read. The material
file’s name plus extension is char_string.mat, and if
the file is not present in the current working directory, the
code will exit with the error message “Not all Material Files
found in current directory.”

<integer_list> This is a list of space delimited integers that define the set of
element blocks for which this material file is applicable; the
integers are the element block ids defined when the domain
was meshed.

Examples

The following specifies material file “sample.mat” applies to element blocks 1, 2, 3, 7,
and 9:

MAT = sample 1 2 3 7 9

Note, the “.mat” extension is not specified explicitly, but appended to the character
string by the code.

Technical Discussion

No discussion.

Theory

No Theory.

MAT = <char_string> <integer_list>

652 Revised: 6/12/13

4.12.3 Coordinate System

FAQs

No FAQs.

References

No References.

4.12.3 Coordinate System

Description/Usage

This card is required for each material section in the Problem Description File. It is
used to specify formulation of the equations to be solved. Valid options for
{char_string} are as follows:

CARTESIAN For a two (x-y) or three (x-y-z) dimensional Cartesian
formulation.

CYLINDRICAL For an axisymmetric (z-r) or three-dimensional
cylindrical (z-r-θ) formulation; the three-dimensional
option has not been tested.

SPHERICAL For a spherical (r-θ-φ) formulation.

SWIRLING For a two-dimensional formulation (z-r-θ) with a
swirling velocity component that is independent of
azimuthal coordinate.

PROJECTED_CARTESIAN

For use in the analysis of the three-dimensional stability
of a two-dimensional flow field. The formulation (x-y-
z) has a z-velocity component that is independent of the
z-direction.

Examples

The following is a sample card that sets the coordinate system to Cartesian:

Coordinate System = CARTESIAN

Coordinate System = {char_string}

Revised: 6/12/13 653

4.12.4 Element Mapping

Technical Discussion

Note the coordinate ordering for the CYLINDRICAL and SWIRLING options where
the z-direction is first followed by the r-component (which in lay terms means the
modeled region/part will appear to be ”lying down.”) If the SWIRLING option is
activated, Goma expects a third momentum equation for the θ-direction, i.e. EQ =
momentum3, as explained in the equation section. The third component is basically the
azimuthal θ-velocity component, and the appropriate boundary conditions must be
applied, e.g., on the w-component as described in the Category 4 boundary conditions
for Fluid Momentum Equations.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.4 Element Mapping

Description/Usage

This card allows the user to set the order of the finite element shape mapping between
the canonical element and each physical element. Valid options for {char_string} are:

isoparametric This choice sets the element order mapping to the highest
order present in the problem. However, if a mesh
displacement field is present, the element mapping order is
the interpolation order of the mesh displacement field.

Q1 This choice sets the element mapping order to bilinear .

Q2 This choice sets the element mapping order to biquadratic.

SP This choice sets the element mapping to order to
subparametric.

Element Mapping = <char_string>

654 Revised: 6/12/13

4.12.5 Mesh Motion

Examples

Some text like this:

Element Mapping = isoparametric

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.5 Mesh Motion

Description/Usage

This card is required for each material section in the Problem Description File even if a
moving mesh problem is not being solved. It is used to specify the method which
prescribes the movement of nodes within the mesh. Valid options for {char_string} are:

ARBITRARY This option triggers the implicit pseudo-solid domain-
mapping technique using the constitutive equation
designated in the corresponding file.mat (see Material
File description); with this technique, the boundaries of the
domain are controlled by distinguishing conditions coupled
with the problem physics, and the interior nodes move
independently of the problem physics.

LAGRANGIAN This option triggers coupling the motion of nodes on the
interior of the domain to the deformation of an elastic solid.
If the solid is incompressible, this technique uses a pressure

Mesh Motion = {char_string}

Revised: 6/12/13 655

4.12.5 Mesh Motion

(Lagrange multiplier) to couple the solid deformation and
the local solvent concentration.

DYNAMIC_LAGRANGIAN

This option triggers coupling the motion of nodes on the
interior of the domain to the deformation of an elastic solid,
including solid inertia. If the solid is incompressible, this
technique uses a pressure (Lagrange multiplier) to couple
the solid deformation and the local solvent concentration.
Together with the equation term multiplier on the mass
matrix (see EQ card) and a “transient” specification on the
Time Integration Card, this option will invoke a Newmark-
Beta time integration scheme for the inertia term in the
R_MESH* equations.

TOTAL_ALE This option allows motion of nodes on the interior of the
domain of a solid region to be independent of the material
motion. TALE is an acronym for “Total Arbitrary
Lagrangian Eulerian” mesh motion. This is typically used in
elastic solids in which large scale deformation makes
motions under the LAGRANGIAN option unmanageable. If
the solid is incompressible, this technique uses a pressure
(Lagrange multiplier) to couple the solid deformation and
the local solvent concentration. Invoking this option
requires mesh equations and real solid equations, as
described on the EQ card. Other relevant cards that are often
used with this option are KINEMATIC_DISPLACEMENT
boundary condition, DX_RS, DY_RS, DZ_RS boundary
conditions, FORCE_RS, FLUID_SOLID_RS, and others.
See references for more detailed usage procedures.

Examples

The following is a sample card that sets the mesh motion scheme to be arbitrary:

Mesh Motion = ARBITRARY

Technical Discussion

For the TOTAL_ALE mesh motion option we must supply elastic properties and solid
constitutive equations for both the mesh and the real solid. It is best to consult the
example tutorials cited below for details.

656 Revised: 6/12/13

4.12.6 Number of bulk species

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

GT-006.3: Slot and Roll coating with remeshing templates and tutorial for GOMA and
CUBIT/MAPVAR, August 3, 1999, R. R. Lober and P. R. Schunk

4.12.6 Number of bulk species

Description/Usage

This card is required for each material section in the Problem Description File. It is
used to specify the number of species in a phase. The word, bulk, here, refers to its
being distributed throughout the domain, not just at a surface. All loops over property
evaluations use this value to specify the length of the loop. The single input parameter
is defined as:

<integer> The number of species. If the value of <integer> is 0, then
no species equations are solved for.

In the absence of any further cards specifying the number of species equations, the
number of species equations is set equal to the integer value supplied by this card, and
there is an implied additional species, i.e., the solute, which is not part of species loops,
but which fills out the specification of the phase.

Examples

Following is a sample card:

Number of bulk species = 1

Number of bulk species = <integer>

Revised: 6/12/13 657

4.12.7 Material is nondilute

Technical Discussion

Unfortunately, in the past, this card has specified the number of species equations
instead of the number of species, as its name would imply! Now, the preferred
treatment is to specify unequivocally both the number of bulk species and the number
of bulk species equations using two separate input cards. If the two values are the same,
then the system is semantically referred to as being “dilute” (even though it might not
be!), and there is an inferred solute which is not part of the loop over species unknowns
in property evaluations or even in the specification of properties in the .mat file. If the
number of species is one greater than the number of species equations, then the system
is deemed “nondilute” and the length of loops over property evaluations is one greater
than the number of species equations. For nondilute systems, an equation of state must
be implicitly used within Goma to solve for the value of the species unknown variable
for the last species.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.7 Material is nondilute

Description/Usage

This card is a optional for each material section in the Problem Description File. It is
used to specify the number of species equations in a phase. The single string parameter
is a boolean, yes or no.

yes the number of species equations is set equal to one less than
the number of species.

no the number of species equations is set equal to the number
of species.

Material is nondilute = {yes | no}

658 Revised: 6/12/13

4.12.8 Number of bulk species equations

When the number of species is equal to the number of species equations, there is an
implied additional species, i.e., the solute, which is not part of species loops, which fills
out the specification of the phase.

Examples

Following is a sample card:

Material is nondilute = yes

Technical Discussion

See the discussion for the “Number of bulk species” card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.8 Number of bulk species equations

Description/Usage

This card is optional but strongly recommended for each material section in the
Problem Description File. It is used to specify the number of species equations in a
phase. The word, bulk, here, refers to its being distributed throughout the domain, not
just at a surface. The single input parameter is defined as:

<integer> The number of species equations; if the value of <integer>
is 0, then no conservation equations for species are solved
for.

When the number of species is equal to the number of species equations, there is an
implied additional species, i.e., the solute, which is not part of species loops, which fills
out the specification of the phase.

Number of bulk species equations = <integer>

Revised: 6/12/13 659

4.12.9 Default Material Species Type

Examples

Following is a sample card:

Number of bulk species equations = 1

Technical Discussion

See the discussion for the “Number of bulk species” card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.9 Default Material Species Type

Description/Usage

This optional parameter sets the form of the species variable type within Goma. Valid
options for {species_type_string} are given below by the SPECIES_* names (along
with a description and variable (prefix) name:

SPECIES_MASS_FRACTION Mass Fractions Yk_

SPECIES_MOLE_FRACTION Mole Fractions Xk_

SPECIES_VOL_FRACTION Volume Fractions Vk_

SPECIES_DENSITY Species Densities Dk_

SPECIES_CONCENTRATION Species Concentration Ck_

SPECIES_UNDEFINED_FORM Undefined form Y

The default is to assume SPECIES_UNDEFINED_FORM. Please refer to the
Technical Discussion for important details.

Default Material Species Type = {species_type_string}

660 Revised: 6/12/13

4.12.9 Default Material Species Type

Examples

Following is a sample card:

Default Material Species type = SPECIES_MASS_FRACTION

Technical Discussion

For nondilute systems the SPECIES_* quantities above are not just simply
interchangeable via a multiplicative constant. Their values are distinct, and their
interrelationship evaluated via a potentially nontrivial equation of state. Prior to the
implementation of this card/capability, Goma hadn’t handled many nondilute cases,
and where it had, this issue was finessed by special casing property evaluations.

This card both sets the type of the species variables and establishes a convention for the
units of equations within Goma. For settings of SPECIES_MASS_FRACTION and
SPECIES_DENSITY_FRACTION, equations generally have a mass unit attached to
them. Equations have concentration units attached to them for settings of
SPECIES_MOLE_FRACTION, SPECIES_VOL_FRACTION, and
SPECIES_CONCENTRATION. For example, given a setting of
SPECIES_MASS_FRACTION, each volumetric term in the species conservation
equation has units of mass per time, i.e., the time derivative term is written as

. (4-213)

For a setting of SPECIES_MOLE_FRACTION, each volumetric term would have
units of moles per time, i.e., the time derivative term is written out as

 . (4-214)

All this is necessary in order to handle cases where the total density or total
concentration of a phase is spatially variable. In that case, it can’t just be divided out as
in earlier versions of Goma but must be included in the conservation equations, and
therefore the units of the conservation equation must reflect this.

The species variable type affects the units and thus values of quantities returned from
certain boundary conditions. For example, the IS_EQUIL_PSEUDORXN boundary
condition returns units of moles per time per length2 if the species variable type is
defined to be SPECIES_CONCENTRATION, but will multiply by molecular
weights and thus return units of mass per time per length2 if the species variable type is
defined to be SPECIES_MASS_FRACTION. This change conforms to the expected
units of the overall species conservation equation for the two values of the species
variable type variable used as examples above.

td
d ρYk()φi Ωd

td
d

cXk()φi Ωd

Revised: 6/12/13 661

4.12.10 Number of viscoelastic modes

The last column in the table above contains a three letter string. This string is used as a
prefix for the name of the species variable in the EXODUS output file. If no names are
specified in the material file and Chemkin is not used (which provides names for the
species variables itself), then integers are used for names. For example, the first species
unknown in Goma problem employing Mass Fractions as the independent species
variables will be called Yk_1. If Chemkin is used in the same problem and the first
chemkin species is named H2O, then the name in the EXODUS output file will be
Yk_H2O. If a Goma problem is solved with no specification of the type of the species
variable, then the first unknown in the EXODUS file will be named Y1.

Additionally, some boundary conditions and inputs from the material file section will
set the species variable type on their own without the benefit of this card, if the species
variable type is the default undefined form. Some internal checks are done; if an
inconsistency is caught, Goma will abort with an informative error message.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.10 Number of viscoelastic modes

Description/Usage

This card is required only if you are performing a viscoelastic simulation and have
included stress equations in the equation section and chosen a viscoelastic constitutive
equation in the material file. The integer value denotes how many viscoelastic tensor
stress equations are to be used. The number of modes can vary from a minimum of 1 to
a maximum of 8. The input parameter is defined as

<integer> The number of viscoelastic modes, which must be greater
than zero, but less than nine.

Number of viscoelastic modes = <integer>

662 Revised: 6/12/13

4.12.11 Number of EQ

Examples

The following is a sample card, indicating that a calculation with two viscoelastic stress
modes is being undertaken:

Number of viscoelastic modes = 2

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

Please see the viscoelastic tutorial memo for a discussion of multimode viscoelastic
equations:

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June
21, 2000, R. R. Rao

4.12.11 Number of EQ

Description/Usage

This card is required for each material section in the Problem Description File. It
specifies how many equations (i.e., equation cards, [EQ =]) follow for this material
section, including the mesh motion equations if appropriate. This number of equations
is only for the current material, since each material has its own equation section.

The single input parameter is defined as

<integer> The number of EQ cards following this card. Only the first
Number of EQ equations are read; if there are more EQ
cards than specified by <integer>, Goma ignores the extras.
If <integer> is set to -1, Goma will automatically count the

Number of EQ = <integer>

Revised: 6/12/13 663

4.12.11 Number of EQ

number of EQ cards between the Number of EQ card and
the END OF EQ card.

Examples

The following is a sample card that sets the number of equations to 5:

Number of EQ = 5

Technical Discussion

For equation specification in Goma, it is important to remember that a scalar equation
has a single equation entry (e.g. fill, species, voltage, shear rate, etc.), while a vector
equation (e.g. momentum, mesh, mom_solid, etc.) has an entry for each component of
the vector. Thus, if you were solving a two-dimension flow problem, you would need
to specify both U1 and U2 components of the momentum equation explicitly. The same
holds true for tensor equations (e.g. stress and velocity gradient); each term of the
tensor is specified explicitly. The one exception to this rule is for multimode
viscoelasticity where the first mode equations are specified through the equation card
and then the auxiliary modes are set by the Number of viscoelastic modes card. Please
see the viscoelastic tutorial memo (Rao, 2000) for a detailed discussion of multimode
viscoelasticity.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

Equation Cards

Following the Number of EQ card, the equation cards, or records, are racked as intended up to the
END OF EQ card or to the number specified, with one equation record per line. Each card begins
with the “EQ =” string, followed by the equation name, e.g., energy, some basis function and trial
function information, and finally a series of term multipliers. These multipliers are intended to
provide a means of activating or deactivating terms of an equation, and hence should be set to
zero or one. However, one can use these multipliers as a way of adjusting the scaling of individual
terms. Exercise caution in using these factors as expedients for transport coefficients; for instance

664 Revised: 6/12/13

4.12.12 energy

the equation term multiplier for the momentum diffusion term affects both the isotropic stress
term (pressure) and the deviatoric stress. It is recommended that you consult the example tutorial
menus and problems to get a feel for the structure of this section. A sample input file structure
including the EQ section is shown in the figure at the beginning of this chapter.

4.12.12 energy

Description/Usage

This card provides information for solving a conservation of energy differential
equation. Definitions of the input parameters are defined below. Note that <floatlist>
contains five constants for the Energy equation defining the constant multipliers for
each term in the equation. The Galerkin weight and the interpolation function must be
the same for the code to work properly. If upwinding is desired for advection
dominated problems, we can set this through a Petrov-Galerkin weight function in the
material file.

energy Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interface.

Q1_XVLinear interpolation with enrichment in elements
of material interfaces. This enrichment function
allows discontinuity in value and gradient along
interface but maintains continuity at element
edges/faces.Only used for level-set problems.

Q2_XVQuadratic interpolation with enrichment in
elements of material interfaces. This enrichment
function allows discontinuity in value and
gradient along interface but maintains continuity
at element edges/faces. Only used for level-set
problems.

EQ = energy {Galerkin_wt} T {Interpol_fnc} <floatlist>

Revised: 6/12/13 665

4.12.12 energy

Q1_GNLinear interpolation for capturing variables
defined on the negative side of the level-set
interface. Similar to Q1_XV

Q2_GNQuadratic interpolation for capturing variables
defined on the negative side of the level-set
interface. Similar to Q1_XV

T Name of the variable associated with this equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable T, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

Q1_XVLinear interpolation with enrichment in elements
of material interfaces. This enrichment function
allows discontinuity in value and gradient along
interface but maintains continuity at element
edges/faces.

Q2_XVQuadratic interpolation with enrichment in
elements of material interfaces. This enrichment
function allows discontinuity in value and
gradient along interface but maintains continuity
at element edges/faces.

Q1_GNLinear interpolation for capturing variables
defined on the negative side of the level-set
interface. Similar to Q1_XV

Q2_GNQuadratic interpolation for capturing variables
defined on the negative side of the level-set
interface. Similar to Q1_XV

Q1_GPLinear interpolation for capturing variables
defined on the positive side of the level-set
interface. Similar to Q1_XV

Q2_GNPQuadratic interpolation for capturing variables
defined on the positive side of the level-set
interface. Similar to Q1_XV

<float1> Multiplier on mass matrix term ().d dt⁄

666 Revised: 6/12/13

4.12.12 energy

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function and has all the term multipliers on except the mass matrix term for time
derivatives:

EQ = energy Q1 T Q1 0. 1. 1. 1. 1.

Technical Discussion

Some discussion on the XFEM-type enriched basis functions Q1_XV, Q1_GN, Q1_GP,
Q2_GN, Q2_GP and Q2_XV is in order. First of all, these basis functions are to be use
with the level-set front tracking capability only. First of all, these basis functions are
typically only used for the continuity equation to capture pressure jumps due to surface
tension. However, for phase change problems some experimentation has been pursued
with the energy equation.

XFEM Value Enrichment

Enrichment:

,

Related “Ghost” Enrichment:

,

,

Advantages:

This enrichment function allows discontinuity in value and gradient along

interface but maintains continuity at element edges/faces. Appears to be method

of choice for Pressure discontinuity. Produces interface integral for terms

integrated by parts that allows for specifying a weak integrated conditions. This is

needed in the laser welding heat transfer problem.

n
˜

flux•

() () () ()i i i i i
i i

T x N x T N x g x a= + () () ()i ig x H x H xφ φ= −

() () () ()i i i i i
i i

T x N x T N x g x a= + () () ()i ig x H x xφ φ= −

() () ()() () () ˆ1i i i i i i
i i

T x N x g x T N x g x T= − + () () ()i ig x H x xφ φ= −

Revised: 6/12/13 667

4.12.13 momentum

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.13 momentum

Description/Usage

This card provides information for solving a differential equation for one component of
a vector momentum equation. Definitions of the input parameters are defined below.
Note that <floatlist> contains six constants for the Momentum equation defining the
constant multipliers for each type of term in the equation. The Galerkin weight and the
interpolation function must be the same for the code to work properly.

momentum1 | momentum2 | momentum3

Name of the equation to be solved, where the 1, 2 and 3
components correspond to one of the principal coordinate
directions, e.g. X, Y and Z for Cartesian geometry.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

EQ = momentum{1|2|3} {Galerkin_wt} {U1|U2|U3} {Interpol_fnc} <floatlist>

668 Revised: 6/12/13

4.12.13 momentum

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

U1 | U2 | U3 Name of the variable associated with the 1, 2 or 3 principal
coordinate direction for this component equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable U1, U2 or U3 where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

<float6> Multiplier on porous term (linear source).

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous velocity interpolation
and weight function and turns on all equation term multipliers except for the mass
matrix and the porous term:

EQ = momentum1 Q2 U1 Q2 0. 1. 1. 1. 1. 0.

Technical Discussion

No discussion.

d td⁄

n
˜

flux•

Revised: 6/12/13 669

4.12.14 pmomentum

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.14 pmomentum

Description/Usage

This card provides information for solving a differential equation for one component of
a vector particle momentum equation. Definitions of the input parameters are defined
below. Note that <floatlist> contains six constants for the Pmomentum equation
defining the constant multipliers for each type of term in the equation. The Galerkin
weight and the interpolation function must be the same for the code to work properly.

pmomentum1 | pmomentum2 | pmomentum3

Name of the equation to be solved, where the 1, 2 and 3
components correspond to one of the principal coordinate
directions, e.g. X, Y and Z for Cartesian geometry

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

EQ = pmomentum{1|2|3} {Galerkin_wt} {PU1|PU2|PU3} {Interpol_fnc}<floatlist>

670 Revised: 6/12/13

4.12.14 pmomentum

PU1 | PU2 | PU3 Name of the variable associated with the 1, 2 or 3
principal coordinate direction for this component
equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable PU1, PU2 or PU3
where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

<float6> Multiplier on porous term (linear source).

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous velocity interpolation
and weight function and turns on all equation term multipliers except for the mass
matrix and the porous term:

EQ = momentum1 Q2 PU1 Q2 0. 1. 1. 1. 1. 0.

Technical Discussion

The particle momentum equations have been added to Goma as part of a research
project and are not currently in use for production computing.

d td⁄

n
˜

flux•

Revised: 6/12/13 671

4.12.15 stress

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.15 stress

Description/Usage

This card provides information for solving a differential equation. Definitions of the
input parameters are defined below. Note that <floatlist> contains five constants for the
Stress equation defining the constant multipliers for each type of term in the equation.
The Galerkin weight and the interpolation function must be the same for the code to
work properly. If upwinding is desired for advection dominated problems, we can set
this through a Petrov-Galerkin weight function in the material file.

{eqname} The name of the component of the stress equation to be
solved, one of the following: stress11, stress12, stress13,
stress22, stress23, stress33.

{Galerkin_wt} Two-character or three-character value that defines the type
of weighting function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

{varname} The name of the variable associated with the respective
components (11, 12, 13, 22, 23, and 33) of the symmetric
Stress tensor, which are S11, S12, S13, S22, S23, S33.

EQ = {eqname} {Galerkin_wt} {varname} {Interpol_fnc} <floatlist>

672 Revised: 6/12/13

4.12.15 stress

{Interpol_fnc} Two-character or three-character value that defines the
interpolation function used to represent the variable S11,
S12, S13, S22, S23 or S33, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation for stress and
turns on all the term multipliers:

EQ = stress11 Q1 S11 Q1 1. 1. 1. 1. 1.

Technical Discussion

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”,
invoke the discontinuous Galerkin method for solving the stress equations where the
interpolation is discontinuous and flux continuity is maintained by performing surface
integrals. For details of the implementation of the discontinuous Galerkin method in
Goma please see the viscoelastic tutorial memo (Rao, 2000).

Theory

No Theory.

FAQs

No FAQs.

d td⁄

n
˜

flux•

Revised: 6/12/13 673

4.12.16 species_bulk

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.12.16 species_bulk

Description/Usage

This card provides information for solving a differential equation. Definitions of the
input parameters are defined below. Note that <floatlist> contains five parameters to
define the constant multipliers in front of each type of term in the equation. The
Galerkin weight and the interpolation function must be the same for the code to work
properly. If upwinding is desired for advection dominated problems, we can set this
through a Petrov-Galerkin weight function in the material file.

species_bulk Name of the equation to be solved. This equation type
should only be listed once regardless of the number of
species (the Number of bulk species card specifies the
number of species_bulk equations to be solved).
Differences in diffusion coefficients between species should
be accounted for in the materials properties section of
Goma.

{Galerkin_wt} Two- to four-character value that defines the type of
weighting function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

EQ = species_bulk {Galerkin_wt} Y {Interpol_fnc} <floatlist>

674 Revised: 6/12/13

4.12.16 species_bulk

Q1_XV, Q1_GN, Q1_GP
Linear interpolation with enrichment in elements
of material interfaces. This enrichment function
allows discontinuity in value and gradient along
interface but maintains continuity at element
edges/faces.

Q2_XV, Q2_GN, Q1_GP
Quadratic interpolation with enrichment in
elements of material interfaces. This enrichment
function allows discontinuity in value and gradient
along interface but maintains continuity at element
edges/faces.

Y Name of the variable associated with this equation.

{Interpol_fnc} Two- to four-character value that defines the interpolation
function used to represent the variable Y, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous
Q1_XV, Q1_GN, Q1_GP

Linear interpolation with enrichment in
elements of material interfaces. This enrichment
function allows discontinuity in value and
gradient along interface but maintains continuity
at element edges/faces. See energy equation for
more discussion.

Q2_XV, Q2_GN, Q1_GP
Quadratic interpolation with enrichment in
elements of material interfaces. This enrichment
function allows discontinuity in value and
gradient along interface but maintains continuity

Revised: 6/12/13 675

4.12.16 species_bulk

at element edges/faces. See energy equation for
more discussion.

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the
species equation and turns on all the term multipliers:

EQ = species_bulk Q2 Y Q2 1. 1. 1. 1. 1.

Technical Discussion

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”,
invoke the discontinuous Galerkin (DG) method for solving the species equations
where the interpolation is discontinuous and flux continuity is maintained by
performing surface integrals. For details of the implementation of the DG method in
Goma please see the viscoelastic tutorial memo. Note, the DG implementation for the
species equation is only for advection dominated problems; DG methods have not yet
been completely developed for diffusion operators.

Also, please see EQ=energy input for more detailed description of the Q1_GN,
Q2_GN, Q1_GP, Q2_GP, Q1_XV and Q2_XV enriched basis functions.

Theory

No Theory.

FAQs

No FAQs.

d td⁄

n
˜

flux•

676 Revised: 6/12/13

4.12.17 mesh

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.12.17 mesh

Description/Usage

This card provides information for solving a differential equation for one component of
mesh motion. Definitions of the input parameters are defined below. Note that
<floatlist> contains five constants for the Mesh equation defining the constant
multipliers for each type of term in the equation. The Galerkin weight and the
interpolation function must be the same for the code to work properly.

mesh1 | mesh2 | mesh3

Name of the equation to be solved, where the 1, 2 and 3
components correspond to one of the principal coordinate
directions, e.g. X, Y and Z for Cartesian geometry.

{Galerkin_wt} Two-character value that defines the weighting function
type for this equation, where:

Q1 - Linear
Q2 - Quadratic

D1 | D2 | D3 Name of the variable associated with the 1, 2 or 3 principal
coordinate direction for this component equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable D1, D2 or D3 where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

EQ = mesh{1|2|3} {Galerkin_wt} {D1|D2|D3} {Interpol_fnc} <floatlist}

d dt⁄

n
˜

flux•

Revised: 6/12/13 677

4.12.18 mom_solid

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card for the first mesh equation that uses linear continuous
interpolation and turns on all term multipliers except for the mass matrix:

EQ = mesh1 Q1 D1 Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.18 mom_solid

Description/Usage

This card provides information for solving a differential equation for one component of
a solid momentum equation. Definitions of the input parameters are defined below.
Note that <floatlist> contains five constants for the Solid Momentum equation defining
the constant multipliers for each type of term in the equation. The Galerkin weight and
the interpolation function must be the same for the code to work properly.

mom_solid1 | mom_solid2 | mom_solid3

EQ = mom_solid{1|2|3} {Galerkin_wt} {D1|D2|D3}_RS {Interpol_fnc} <floatlist>

678 Revised: 6/12/13

4.12.18 mom_solid

Name of the equation to be solved, where the 1, 2 and 3
components correspond to one of the principal coordinate
directions, e.g. X, Y and Z for Cartesian geometry.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

D1_RS | D2_RS | D3_RS

Name of the variable associated with the 1, 2 or 3 principal
coordinate direction for this component equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable D1_RS, D2_RS or D3_RS
where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card for the first solid mesh equation that uses linear
continuous interpolation and turns on all term multipliers except for the mass matrix:

EQ = mom_solid1 Q1 D1_RS Q1 0. 1. 1. 1. 1.

Technical Discussion

The solid momentum equations are used as a second set of displacement equations
when the ALE (arbitrary-Lagrangian Eulerian) technique is used in the solid phase as
well as the liquid phase. We have termed this capability TALE for “total arbitrary-

d dt⁄

n
˜

flux•

Revised: 6/12/13 679

4.12.19 continuity

Lagrangian Eulerian” and details of implementation and usage for Goma can be found
in Schunk (2000).

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

4.12.19 continuity

Description/Usage

This card provides information for solving a differential equation. Definitions of the
input parameters are defined below. Note that <float1> and <float2> define the
constant multipliers for each type of term in the Continuity equation. The Galerkin
weight and the interpolation function must be the same for the code to work properly.

continuity Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous
P0_XV - Constant, discontinuous, enriched (level-set
only)
P1_XV- Linear, discontinuous, enriched (level-set only)
Q1_XV- Linear, continuous, enriched (level-set only)
Q2_XV- Linear, continuous, enriched (level-set only)

EQ = continuity {Galerkin_wt} P {Interpol_fnc} <float1> <float2>

680 Revised: 6/12/13

4.12.19 continuity

P Name of the variable (pressure) associated with this
equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable P, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous
P0_XV - Constant, discontinuous, enriched (level-set
only)
P1_XV- Linear, discontinuous, enriched (level-set only)
Q1_XV- Linear, continuous, enriched (level-set only)
Q2_XV- Linear, continuous, enriched (level-set only)

<float1> Multiplier on divergence term.

<float2> Multiplier on source term. This multiplier is equal to the
initial volume fraction of solvents for Lagrangian mesh
motion with swelling.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a constant discontinuous pressure interpolation
and weight function and turns on both the divergence and source terms.

EQ = continuity P0 P P0 1. 1.

Technical Discussion

Please see the EQ=energy equation card for a more detailed description of P0_XV,
P1_XV, Q1_XV, Q2_XV interpolations. These are MOST COMMONLY used for the
continuity equation for better accuracy of representing pressure across level-set
interfaces with surface tension.

Theory

No Theory.

Revised: 6/12/13 681

4.12.20 fill

FAQs

No FAQs.

References

No References.

4.12.20 fill

Description/Usage

This card provides information for solving a differential equation for the fill equation.
Definitions of the input parameters are defined below. Note that <float1> through
<float3> define the constant multipliers for each term in the equation. The Galerkin
weight and the interpolation function must be the same for the code to work properly.

fill Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

F Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable F, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous

EQ = fill {Galerkin_wt} F {Interpol_fnc} <float1> <float2> <float3>

682 Revised: 6/12/13

4.12.20 fill

Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses continuous linear interpolation for the fill
equation:

EQ = fill Q1 F Q1 1. 1. 1.

Technical Discussion

The fill equation is used in the calculation of volume of fluid interface tracking. It
solves an advection equation of a color function that takes on a different integer value
depending on which fluid phase you are in. For most applications this capability has
been superseded by the level set method of interface tracking.

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”
invoke the discontinuous Galerkin (DG) method for solving the fill equations where the
interpolation is discontinuous and flux continuity is maintained by evaluating surface
integrals. For details of the implementation of the DG method in Goma please see the
viscoelastic tutorial memo (Rao, 2000).

Theory

No Theory.

d td⁄

Revised: 6/12/13 683

4.12.21 lagr_mult_1, lagr_mult_2, lagr_mult_3

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.12.21 lagr_mult_1, lagr_mult_2, lagr_mult_3

Description/Usage

This card provides information for solving a Langrange multiplier vector equation for
imposition of the kinematic boundary condition at a fluid/solid interface. It is used
soley for the overset grid capability in Goma (cf. GT-026.2). Definitions of the input
parameters are defined below. The Galerkin weight and the interpolation function must
be the same for the code to work properly.

lagr_mult_1 | lagr_mult_2 | lagr_mult_3

Name of the equation to be solved. The appended number
indexes with the dimension of the problem, viz.
lagr_mult_1 and lagr_mult_2 equations are required for a
two dimensional problem.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous

LM1 | LM2 | LM3 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable P, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Linear Continuous
Q2 - Quadratic Continuous

EQ = lagr_mult_{1|2|3} {Galerkin_wt} LM{1|2|3} {Interpol_fnc}

684 Revised: 6/12/13

4.12.21 lagr_mult_1, lagr_mult_2, lagr_mult_3

Basically when the level-set field (actually phase field 1, cf. F1 equation) that
corresponds to solid/fluid boundary defined by an overset grid (using the Slave Level
Set Card) intersects an element, the equations associated with that element will get the
kinematic boundary condition for the fluid-structure interaction, which basically
equates the fluid velocity to the solid velocity. In elements that don’t contain the solid/
fluid boundary, the equations are trivialized so that they are condensed out of the
system to be solved.

Examples

The following is a sample cards are required for the overset grid capability for two-
dimensional problems. It is recommended that P0 (element constant) interpolation
functions be used. .

 EQ = lagr_mult_1 P0 LM1 P0 1

 EQ = lagr_mult_2 P0 LM2 P0 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-026.3 GOMA’s Overset Mesh Method: User Tutorial. November 19, 2003. P. R.
Schunk and E. D. Wilkes

Revised: 6/12/13 685

4.12.22 level set

4.12.22 level set

Description/Usage

This card provides information for solving a differential equation for the level set
equation. Definitions of the input parameters are defined below. Note that <float1>
through <float3> define the constant multipliers for each term in the equation. The
Galerkin weight and the interpolation function must be the same for the code to work
properly. If upwinding is desired, we can set this through a Petrov-Galerkin weight
function in the level set section of the input file (Time Integration Specifications).

level set Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

F Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable F, where:

P0 - Constant Discontinuous
P1 - Linear Discontinuous
Q1 - Bilinear/Trilinear Continuous
Q2 - Biquadratic/Triquadratic Continuous
Q1_D - Standard linear interpolation with special

allowance for discontinuous degrees of freedom
at interfaces

EQ = level set {Galerkin_wt} F {Interpol_fnc} <float1> <float2> <float3>

686 Revised: 6/12/13

4.12.23 voltage

Q2_D - Standard quadratic interpolation with special
allowance for discontinuous degrees of freedom
at interfaces

PQ1- Q1 Discontinuous
PQ2- Q2 Discontinuous

Examples

The following is a sample card that uses continuous linear interpolation for the level set
equation and turns on all term multipliers:

EQ = level_set Q1 F Q1 1. 1. 1.

Technical Discussion

The interpolation/weight functions that are discontinuous, e.g. have the prefix “P”,
invoke the discontinuous Galerkin (DG) method for solving the level set equations
where the interpolation is discontinuous and flux continuity is maintained by
evaluating surface integrals. For details of the implementation of the DG method in
Goma please see the viscoelastic tutorial memo (Rao, 2000). Note that DG methods are
not necessarily recommended for the level set equation since it is inherently smooth.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.12.23 voltage

Description/Usage

This card provides information for solving a differential equation for the voltage.
Definitions of the input parameters are defined below. Note that <floatlist> has five

EQ = voltage {Galerkin_wt} V {Interpol_fnc} <floatlist>

Revised: 6/12/13 687

4.12.23 voltage

parameters to define the constant multipliers in front of each type of term in the
equation. The Galerkin weight and the interpolation function must be the same for the
code to work properly.

voltage Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

V Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable V, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear interpolation function for voltage:

EQ = voltage Q1 V Q1 0. 1. 1. 1. 1.

Technical Discussion

The voltage equation has no mass term, viz. it is quasistatic. So it won’t matter
whether that multiplier is 1 or 0.

Theory

No Theory.

d td⁄

n
˜

flux•

688 Revised: 6/12/13

4.12.24

FAQs

No FAQs.

References

No References.

4.12.24

4.12.25 efield

Description/Usage

This card provides information for solving a definition equation for the vector electric
field, which is the gradient of the voltage or potential field (see voltage equation).
Hence, these equations (two components in two dimensions, and three components in
three dimensions) must be solved together with the voltage equation.

efield1 | efield2 | efield3 Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

E1 | E2 | E3 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable E1, E2, or E3, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on advective term.

<float2> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

EQ = efield{1 | 2 | 3} {Galerkin_wt} {E1 | E2 | E3} {Interpol_fnc} <floatlist>

Revised: 6/12/13 689

4.12.26 enorm

Examples

The following is an example of efield-equation specification using linear elements in
two dimensions. Notice the companion voltage equation.

EQ = efield1 Q1 E1 Q1 1. 1.

EQ = efield2 Q1 E1 Q1 1. 1.

EQ = voltage Q1 V Q1 1. 1. 1. 1. 1. 1.

This set of equations is required for applying an electrohydrodynamic force to the fluid
momentum equations (see Navier-Stokes Source card.)

Technical Discussion

The electric field is defined by . In some cases it may be more convenient to
solve equations for the potential field and the electric field.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.26 enorm

Description/Usage

This card provides information for solving a “dependency” equation for the norm of the
electric field. Definitions of the input parameters are defined below. Note that <float1>
and <float2> define the constant multipliers in front of each type of term in the
equation. The Galerkin weight and the interpolation function must be the same for the
code to work properly.

enorm Name of the equation to be solved.

EQ = enorm {Galerkin_wt} ENORM {Interpol_fnc} <float1> <float2>

E φ∇–=

690 Revised: 6/12/13

4.12.26 enorm

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

P0 - Piecewise constant
P1 - Piecewise linear
Q1 - Linear
Q2 - Quadratic

ENORM Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable ENORM, where:

P0 - Piecewise constant
P1 - Piecewise linear
Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on advection term.

<float2> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped. See below for
important information regarding this.

Examples

The following is a sample card that uses quadratic continuous interpolation for the
enorm equation and turns on all the term multipliers (the usual usage):

EQ = enorm Q2 ENORM Q2 1.0 1.0

Technical Discussion

This equation allows the user to use the variable ENORM, the norm of the electric
field, which is equal to , or , with being the voltage potential. As such, the
VOLTAGE equation must be present. We refer to this as a “dependent” equation or
“auxiliary” equation because, although it’s value can technically be derived from the
variable directly, we would lose derivative information by doing so. This equation is
introduced solely so one can access higher derivatives of than its interpolation would
normally allow. For example, if were interpolated with a linear basis, then would
have a constant interpolant. If we wanted access to , it would be zero! (In reality,
we would use bilinear or trilinear basis functions, so this isn’t precisely true but it
expresses the essential problem.) By introducing this primitive variable, we can
retrieve useful values for .

E ∇V V

V

V

V ∇V

∇ ∇V()

∇enorm

Revised: 6/12/13 691

4.12.27 shear_rate

The two term multipliers refer to the multiple on the assembled value of enorm (stored
in the “advection” term--it has nothing to do with advection), and the multiple on the
assembled value derived from the voltage equation (stored in the “source” term--again
the name of the term is somewhat artificial).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.27 shear_rate

Description/Usage

This card provides information for solving a differential equation for the scalar shear
rate invariant. Definitions of the input parameters are defined below. Note that <float1>
through <float3> define the constant multipliers in front of each type of term in the
equation. The Galerkin weight and the interpolation function must be the same for the
code to work properly.

shear_rate Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

EQ = shear_rate {Galerkin_wt} SH {Interpol_fnc} <float1> <float2> <float3>

692 Revised: 6/12/13

4.12.28 vort_dir

<float1> Multiplier on advective term.

<float2> Multiplier on diffusion term.

<float3> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the
species equation and turns on all the term multipliers:

EQ = shear_rate Q2 SH Q2 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.28 vort_dir

Description/Usage

This card provides information for solving a differential equation for one component of
the vorticity equation. Definitions of the input parameters are defined below; there is
no <float> input for this equation. The Galerkin weight and the interpolation function
must be the same for the code to work properly.

EQ = vort_dir{1|2|3} {Galerkin_wt} {VD1|VD2|VD3} {Interpol_fnc}

Revised: 6/12/13 693

4.12.28 vort_dir

vort_dir1 | vort_dir2 | vort_dir3

Name of the equation to be solved, where the 1, 2 and 3
components correspond to one of the principal
coordinate directions, e.g. X, Y and Z for Cartesian
geometry.

{Galerkin_wt} Two--character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

VD1 | VD2 | VD3 Name of the variable associated with the 1, 2 or 3
principal coordinate direction for this component
equation.

{Interpol_fnc} Two-character value that defines the interpolation
function used to represent the variable VD1, VD2 or
VD3, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function:

EQ = vort_dir1 Q1 VD1 Q1

Technical Discussion

This equation type is used for a research capability involving the flows of suspensions
in curvilinear coordinates and is not currently being used for production computations.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

694 Revised: 6/12/13

4.12.29 vort_lambda

4.12.29 vort_lambda

Description/Usage

This card provides information for solving a differential equation for the vorticity
direction. Definitions of the input parameters are defined below; there are no <float>
input parameters for this equation. The Galerkin weight and the interpolation function
must be the same for the code to work properly.

vort_lamda Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

VLAMBDA Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable VLAMBDA, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

Examples

No example.

Technical Discussion

This equation type is used for a research capability involving the flows of suspensions
in curvilinear coordinates and is not currently being used for production computations.

Theory

No Theory.

FAQs

No FAQs.

EQ = vort_lambda {Galerkin_wt} VLAMBDA {Interpol_fnc}

Revised: 6/12/13 695

4.12.30 porous_sat

References

No References.

4.12.30 porous_sat

Description/Usage

This card provides information for solving a differential equation for saturated porous
flow. Definitions of the input parameters are defined below. Note that <floatlist> has
five parameters to define the constant multipliers in front of each type of term in the
equation.The Galerkin weight and the interpolation function must be the same for the
code to work properly. If upwinding is desired for advection dominated problems, we
can set this through a Petrov-Galerkin weight function in the material file.

porous_sat Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_SAT Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable P_SAT, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

EQ = porous_sat {Galerkin_wt} P_liq {Interpol_fnc} <floatlist>

d td⁄

n
˜

flux•

696 Revised: 6/12/13

4.12.31 porous_unsat

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function for the saturated porous equation and has all the term multipliers on except for
the mass matrix for time derivatives:

EQ = porous_sat Q1 P_liq Q1 0. 1. 1. 1. 1.

Technical Discussion

This card is not yet in use.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.31 porous_unsat

Description/Usage

This equation cannot be invoked in an element block in which the media type is set to
POROUS_TWO_PHASE (cf. Microstructure Properties, Media Type card).
Otherwise, it is used exactly as the porous_liq equation card; please consult that section
for a detailed discussion.

See porous_liq card for description of input requirements.

Examples

See porous_liq card.

EQ = porous_unsat {Galerkin_wt} P_LIQ {Interpol_fnc} <floatlist>

Revised: 6/12/13 697

4.12.32 porous_liq

Technical Discussion

This card is used for single phase (viz. constant gas pressure) simulations of partially
saturated flow, as described by the Media Type material property card. The equation it
invokes is one of Darcy flow in a partially saturated medium in which the gas phase
pressure is taken as constant. The dependent variable here is the liquid phase pressure.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.12.32 porous_liq

Description/Usage

This card provides information for solving a differential equation for porous liquid
phase pressure. This equation is of the exact same form as porous_unsat, but is
required if two-phase simulations are to be made (cf. Miscrostructure Properties,
Media Type card). This equation can be used for media types
POROUS_UNSATURATED, POROUS_SATURATED, and POROUS_TWO_PHASE.
Definitions of the input parameters are defined below. Note that <floatlist> contains
five parameters to define the constant multipliers in front of each type of term in the
equation. The Galerkin weight and the interpolation function must be the same for the
code to work properly. If upwinding is desired for advection dominated problems, we
can set this through a Petrov-Galerkin weight function in the material file.

porous_liq Name of the equation to be solved.

EQ = porous_liq {Galerkin_wt} P_LIQ {Interpol_fnc} <floatlist>

698 Revised: 6/12/13

4.12.32 porous_liq

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_LIQ Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable P_LIQ, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function for the porous liquid phase pressure equation and has all the term multipliers
on except for the mass matrix for time derivatives:

EQ = porous_liq Q1 P_LIQ Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

d td⁄

n
˜

flux•

Revised: 6/12/13 699

4.12.33 porous_gas

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.12.33 porous_gas

Description/Usage

This card provides information for solving a differential equation for porous gas phase
pressure. Definitions of the input parameters are defined below. Note that <floatlist>
has five parameters to define the constant multipliers in front of each type of term in the
equation.The Galerkin weight and the interpolation function must be the same for the
code to work properly. If upwinding is desired for advection dominated problems, we
can set this through a Petrov-Galerkin weight function in the material file.

porous_gas Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_GAS Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable P_GAS, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

EQ = porous_gas {Galerkin_wt} P_GAS {Interpol_fnc} <floatlist>

d td⁄

n
˜

flux•

700 Revised: 6/12/13

4.12.34 porous_deform

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function for the porous gas phase pressure equation and has all the term multipliers on
except for the mass matrix for time derivatives:

EQ = porous_gas Q1 P_GAS Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.12.34 porous_deform

Description/Usage

This card provides information for solving a differential equation for porous solid
phase porosity. Definitions of the input parameters are defined below. Note that
<floatlist> has five parameters to define the constant multipliers in front of each type of
term in the equation. The Galerkin weight and the interpolation function must be the
same for the code to work properly. If upwinding is desired for advection dominated

EQ = porous_deform {Galerkin_wt} P_POR {Interpol_fnc} <floatlist>

Revised: 6/12/13 701

4.12.34 porous_deform

problems, we can set this through a Petrov-Galerkin weight function in the material
file.

porous_deform Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

P_POR Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable P_POR, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function for the deforming porous porosity equation and has all the term multipliers on
except for the mass matrix for time derivatives:

EQ = porous_deform Q1 P_POR Q1 0. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

d td⁄

n
˜

flux•

702 Revised: 6/12/13

4.12.35 porous_energy

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.12.35 porous_energy

Description/Usage

This card provides information for solving a conservation of energy differential
equation for porous media, deploying a multiphase formulation.. Definitions of the
input parameters are defined below. Note that <floatlist> contains six constants for the
porous energy equation defining the constant multipliers for each term in the equation.
The Galerkin weight and the interpolation function must be the same for the code to
work properly..

porous_energy Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

T Name of the variable associated with this equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable T, where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

EQ = porous_energy {Galerkin_wt} P_TEMP {Interpol_fnc} <floatlist>

d dt⁄

Revised: 6/12/13 703

4.12.36 surf_charge

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a linear continuous interpolation and weight
function and has all the term multipliers on:

 porous_energy Q1 P_TEMP Q1 1. 1. 1. 1. 1.

Technical Discussion

Usage of this equation is discussed extensively in GT-009.3 Output variables in the
ExodusII database are POR_TEMP

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3

4.12.36 surf_charge

Description/Usage

This card provides information for solving a conservation equation for the total surface
charge in a 2-dimensional bar (or shell) element.. Note that this equation is not yet

EQ =surf_charge {Galerkin_wt} QS {Interpol_fnc} <float1> <float2> <float3>
<float4> <float5>

n
˜

flux•

704 Revised: 6/12/13

4.12.36 surf_charge

available in three dimensions and is in fact untested at this time. The card entries are as
follows:

surf_charge Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

QS Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable QS where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier for mass terms. Set to 1.0.

<float2> Multiple for advection terms. Set to 1.0.

<float3> Multiplier for boundary terms. Set to 1.0.

<float4> Multiplier for diffusion terms - required but not currently
implemented.

<float5> Multiplier for source terms - required but not currently
implemented.

Examples

The following is a sample card that uses bilinear surface charge interpolation and
weight function:

EQ = surf_charge Q2 QS Q2 1.0 1.0 1.0 0.0 0.0

Technical Discussion

The surface charge conservation equation implemented is:

(4-215)
σ∂
t∂

------ Ds∇s
2

σ– εn E•+
 sd

s

 0=

Revised: 6/12/13 705

4.12.37 shell_tension

where σ is the surface charge unknown, Ds is the surface diffusion coefficient, e is the
electrical permittivity, n is the unit normal vector to the surface, and is the
electric field vector. Here, advection contributions are not considered.

This is a special type of shell equation which depends on the gradient of a bulk variable
(here, electric potential V). Since values of these variables away from the surface are
normally not accessible during assembly of shell equations, this term has to be applied
as a special type of boundary condition (WEAK_SHELL_GRAD) which is set up to
evaluate sensitivities to interior bulk variable degrees of freedom . This term, though
physically an integral part of the surface charge equation, is applied through the
SURFACE_ELECTRIC_FIELD_BC boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

Notz, Patrick K. Ph.D. thesis. Purdue University, 2000.

4.12.37 shell_tension

Description/Usage

This card provides information for solving an equation for tension using the structural
shell capability in Goma. The capability is based on inextensible cylindrical shells.
One material property is associated with this equation and that is the bending stiffness.
Note that <floatlist> contains one constant and it should always be set to one. The
Galerkin weight and the interpolation function must be the same for the code to work
properly.

shell_tens

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

EQ = shell_tension {Galerkin_wt} {TENS} {Interpol_fnc} <floatlist>

E V∇–=

706 Revised: 6/12/13

4.12.37 shell_tension

Q1 - Linear
Q2 - Quadratic

TENS Name of the variable associated with the shell tension
equation.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable TENS where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation. Set to 1.0.

Examples

The following is a sample card that uses linear continuous tension interpolation and
weight function:

EQ = momentum1 Q1 TENS Q1 1.0

Technical Discussion

Complete tutorial on the use of this equation exists. See GT-27.1.

Theory

The structural shell equation capability in Goma builds on the shell-element capability
built by Pat Notz and Ed Wilkes in FY03. Basically we are solving the following
equations for the shell tension (this card) and shell curvature (see shell_curvature
equation):

FAQs

No FAQs.

References

GT-27.1

D
S

2

d
d

K– KT n
˜

n
˜

σ
˜

⋅ ⋅+ + 0=
dT
dS
------ DK

dK
dS
-------– t

˜
n
˜

σ
˜

⋅ ⋅+ 0=

Revised: 6/12/13 707

4.12.38 shell_curvature

4.12.38 shell_curvature

Description/Usage

This card provides information for solving a definition equation for total curvature of a
two-dimensional shell element. Note that this equation is not yet available in three
dimensions. The curvature is required by the inextensible cylindrical shell capability in
Goma. See references cited below. Note that <floatlist> contains one constant and it
should always be set to one. The Galerkin weight and the interpolation function must
be the same for the code to work properly.

shell_curvature

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

K Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation. Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = momentum1 Q1 K Q1 1.0

Technical Discussion

Complete tutorial on the use of this equation exists. See GT-27.1.

EQ = shell_curvature {Galerkin_wt} {K} {Interpol_fnc} <floatlist>

708 Revised: 6/12/13

4.12.39 shell_angle

Theory

The structural shell equation capability in Goma builds on the shell-element capability
built by Pat Notz and Ed Wilkes in FY03. Basically we are solving the following
equations for the shell tension and shell curvature (this card):

FAQs

No FAQs.

References

GT-27.1

4.12.39 shell_angle

Description/Usage

This card provides information for solving a definition equation for the surface
orientation angle in a 2-dimensional bar element. It applies only to shell element
blocks. Note that this equation is available in three-dimensional problems but is in fact
untested at this time.. The shell angle equation(s) determine the components of the
normal vector to the shell surface; since its magnitude is 1 by definition, one less
degree of freedom is required tha the number of coordinates. The Galerkin weight and
the interpolation function must be the same for the code to work properly.

shell_angle{1|2} Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_ANG{1|2} Name of the variable associated with the shell angle
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable SH_ANG where:

Q1 - Linear Continuous

EQ =shell_angle{1 | 2} {Galerkin_wt} {SH_ANG1 | SH_ANG2} {Interpol_fnc}

D
S

2

d
d

K– KT n
˜

n
˜

σ
˜

⋅ ⋅+ + 0=
dT
dS
------ DK

dK
dS
-------– t

˜
n
˜

σ
˜

⋅ ⋅+ 0=

Revised: 6/12/13 709

4.12.40 shell_diff_flux

Q2 - Quadratic Continuous

This equation requires no equation term multiplier entries.

Examples

The following are sample cards that use linear continuous curvature interpolation and
weight function:

EQ = shell_angle1 Q1 SH_ANG1 Q1

EQ = shell_angle2 Q1 SH_ANG2 Q2

The second card applies only to 3D problems.

Technical Discussion

For 2D problems, the defining equation is: where Q is shell_angle1 and
nx and ny are the components of the normal vector to the shell surface. There is an
analogous definition for shell_angle2.

Theory

No Theory.

FAQs

No FAQs.

References

None.

4.12.40 shell_diff_flux

Description/Usage

This card provides information for solving a conservation equation for the total surface
diffusive flux in a 2-dimensional bar (or shell) element. Note that this equation is not
yet available in three dimensions and is in fact untested at this time. The card entries
are as follows:

shell_diff_flux Name of the equation to be solved.

EQ =shell_diff_flux {Galerkin_wt} SH_J {Interpol_fnc} <float1>

Θ nx ny[,]atan=

710 Revised: 6/12/13

4.12.40 shell_diff_flux

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_J Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable SH_J where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier for diffusion terms (in this case, the whole
equation).

Examples

The following is a sample card that uses bilinear shell diffusive flux interpolation and
weight function:

EQ = shell_diff_flux Q2 SH_J Q2 1.0

Technical Discussion

This is only a preliminary implementation of a shell quantity conservation equation. It
is not currently operational. When it is fully implemented, the number of required
equation term multiplier entries will be adjusted acordingly.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 711

4.12.41 shell_diff_curv

4.12.41 shell_diff_curv

Description/Usage

This card provides information for solving a definition equation for the total surface
curvature in a 2-dimensional bar element, intended for use with shell diffusive flux
problems. Note that this equation is not yet available in three dimensions and is in fact
untested at this time. Note that <floatlist> contains one constant and it should always be
set to one. The Galerkin weight and the interpolation function must be the same for the
code to work properly.

shell_diff_curv Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_KD Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable SH_KD where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on diffusion term (i.e. the whole equation). Set
to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = shell_diff_curv Q1 SH_KD Q1 1.0

Technical Discussion

The equation solved is the surface curvature definition . See
discussion for EQ = shell_surf_div_v.

EQ =shell_diff_curv {Galerkin_wt} SH_KD {Interpol_fnc} <float1>

κ ns∇ I nn–() n∇•= =

712 Revised: 6/12/13

4.12.42 shell_normal

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and
Rheology. Butterworth-Heinemann, Boston.

4.12.42 shell_normal

Description/Usage

This card specifies a vector of shell normal vector component unknowns in a 2-
dimensional bar element, intended for use with shell diffusive flux problems. Note that
this equation is not yet available in three dimensions and is in fact untested at this time.
Note that <floatlist> contains one constant and it should always be set to one. The
Galerkin weight and the interpolation function must be the same for the code to work
properly.

shell_normal1 | shell_normal2Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

SH_N1 | SH_N2 Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable SH_N1(2) where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on diffusion term (i.e. the whole equation). Set
to 1.0.

EQ =shell_normal{1|2} {Galerkin_wt} {SH_N1|SH_N2} {Interpol_fnc} <float1>

Revised: 6/12/13 713

4.12.43 shell_surf_curv

Examples

The following is a pair of sample cards that use linear continuous normal interpolation
and weight function:

EQ = shell_normal1 Q1 SH_N1 Q1 1.0

EQ = shell_normal2 Q1 SH_N2 Q1 1.0

Note that since this equation applies only to 2D problem domains at this time, two
cards are needed as shown above (one for each component).

Technical Discussion

This equation merely sets the components of the shell normal vector equal to those in
fv->snormal, which are calculated rigorously in surface_determinant_and_normal().
Consideration is being given to replacing these with a single unknown for shell normal
angle, which contains the same information in a single scalar unknown.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.43 shell_surf_curv

Description/Usage

This card provides information for solving a definition equation for the total surface
curvature in a 2-dimensional bar element. Note that this equation is not yet available in
three dimensions and is in fact untested at this time. These building blocks are required
by the non-Newtonian surface rheology capability in Goma. Note that <floatlist>
contains one constant and it should always be set to one. The Galerkin weight and the
interpolation function must be the same for the code to work properly.

EQ =shell_surf_curv {Galerkin_wt} gamma2 {Interpol_fnc} <float1>

714 Revised: 6/12/13

4.12.43 shell_surf_curv

shell_surf_curv

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma2 Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation. Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = shell_surf_curv Q1 gamma2 Q1 1.0

Technical Discussion

See discussion for EQ = shell_surf_div_v

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and
Rheology. Butterworth-Heinemann, Boston.

Revised: 6/12/13 715

4.12.44 shell_surf_div_v

4.12.44 shell_surf_div_v

Description/Usage

This card provides information for solving a definition equation for surface divergence
of the fluid velocity field on a 2-dimensional bar element. Note that this equation is not
yet available in three dimensions. This term is required by the non-Newtonian surface
rheology capability in Goma. Note that <floatlist> contains one constant and it should
always be set to one. The Galerkin weight and the interpolation function must be the
same for the code to work properly. Also note that this term is not currently active in
Goma, and the developers should be consulted.

shell_surf_div_v

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma1 Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation. Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = shell_surf_div_v Q1 gamma1 Q1 1.0

EQ = shell_surf_div_v {Galerkin_wt} gamma1 {Interpol_fnc} <float1>

716 Revised: 6/12/13

4.12.44 shell_surf_div_v

Technical Discussion

This shell equation is required for proper computation of the Boussinesq-Scriven
surface rheological constitutive equation (namely the surface divergence of the velocity
field in the 4th and 6th terms on the right of the following equation). The functional
form of this equation is as follows:

Here, is the surface gradient operator, and is the surface
unit tensor. µs and ks are the surface shear viscosity and surface extensional viscosity,
respectively. Note that the first three terms on the right are balance of the stress in the
standard Goma CAPILLARY condition, with surface tension gradients being
accommodated through variable surface tension. The boundary condition
CAPILLARY_SHEAR_VISC is used to set the additional terms of this constitutive
equation. As of January 2006 only the 7th term on the right hand side is implemented,
as it is the only nonzero term in a flat surface shear viscometer. The building blocks
for the other terms are available through additional shell equations. These remaining
terms actually represent additional dissipation caused by surface active species
microstructures flowing in the surface. The best source of discussion of this equation
is a book by Edwards et al. (1991. Interfacial Transport Processes and Rheology.
Butterworth-Heinemann, Boston).

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and
Rheology. Butterworth-Heinemann, Boston.

n
˜

T
˜

⋅()– F
w

2Hσn
˜

∇sσ k
s

µ
s

+() ∇s v
˜

⋅() 2µ
s
n
˜

b
˜

2HI
˜s–() ∇sv

˜
2µ

s
n
˜

k
s

µ
s

+()∇s v
˜

⋅+•+s∇+ + +=

µ
s

n
˜

× ∇s ∇s × v
˜

[] n
˜

⋅() 2 b
˜

2HI
˜s–() ∇sv

˜
() n

˜
⋅ ⋅–{ }+

∇s I
˜

n
˜
n
˜

–() ∇⋅≡ Is I
˜

n
˜
n
˜

–()≡

Revised: 6/12/13 717

4.12.45 grad_v_dot_n1, grad_v_dot_n2, grad_v_dot_n3

4.12.45 grad_v_dot_n1, grad_v_dot_n2, grad_v_dot_n3

Description/Usage

This card provides information for solving a definition equation for the normal
components of the velocity gradient tensor in a 2-dimensional bar element. Note that
this equation is not yet available in three dimensions and is in fact untested at this time..
These building blocks are required by the non-Newtonian surface rheology capability
in Goma. Note that <floatlist> contains one constant and it should always be set to one.
The Galerkin weight and the interpolation function must be the same for the code to
work properly.

grad_v_dot_n1, grad_v_dot_n2, grad_v_dot_n3

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma3_[1|2|3] Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable K where:

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation. Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = grad_v_dot_n1 Q1 gamma3_1 Q1 1.0

EQ = grad_v_dot_n[1|2|3] {Galerkin_wt} gamma3_[1|2|3] {Interpol_fnc} <float1>

718 Revised: 6/12/13

4.12.46 n_dot_curl_v

Technical Discussion

See discussion for EQ=shell_surf_div_v

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and
Rheology. Butterworth-Heinemann, Boston.

4.12.46 n_dot_curl_v

Description/Usage

This card provides information for solving a definition equation for the normal
component of the surface curl of the velocity field on a 2-dimensional bar element.
Note that this equation is not yet available in three dimensions. This term is required by
the non-Newtonian surface rheology capability in Goma. Note that <floatlist> contains
one constant and it should always be set to one. The Galerkin weight and the
interpolation function must be the same for the code to work properly.

n_dot_curl_v

Name of the equation to be solved.

{Galerkin_wt} Two- or four-character value that defines the type of
weighting function for this equation, where:

Q1 - Linear
Q2 - Quadratic

gamma4 Name of the variable associated with the shell curvature
equaton.

{Interpol_fnc} Two- or four-character value that defines the interpolation
function used to represent the variable K where:

EQ = n_dot_curl_v {Galerkin_wt} gamma4 {Interpol_fnc} <float1>

Revised: 6/12/13 719

4.12.46 n_dot_curl_v

Q1 - Linear Continuous
Q2 - Quadratic Continuous

<float1> Multiplier on whole equation. Set to 1.0.

Examples

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = n_dot_curl_v Q1 gamma4 Q1 1.0

Technical Discussion

The following is a sample card that uses linear continuous curvature interpolation and
weight function:

EQ = n_dot_curl_v Q1 gamma4 Q1 1.0

Technical Discussion

This shell equation is required for proper computation of the Boussinesq-Scriven
surface rheological constitutive equation elements (namely the surface curl of the
velocity field, normal component) in the 7th term on the right of the following
equation)::

Here, is the surface gradient operator, and is the surface
unit tensor. µs and ks are the surface shear viscosity and surface extensional viscosity,
respectively. Note that the first three terms on the right are balance of the stress in the
standard Goma CAPILLARY condition, with surface tension gradients being
accommodated through variable surface tension. The boundary condition
CAPILLARY_SHEAR_VISC is used to set the additional terms of this constitutive
equation. As of January 2006 only the 7th term on the right hand side is implemented,
as it is the only nonzero term in a flat surface shear viscometer. The building blocks
for the other terms are available through additional shell equations. These remaining
terms actually represent additional dissipation caused by surface active species
microstructures flowing in the surface. The best source of discussion of this equation
is a book by Edwards et al. (1991. Interfacial Transport Processes and Rheology.
Butterworth-Heinemann, Boston).

n
˜

T
˜

⋅()– F
w

2Hσn
˜

∇sσ k
s

µ
s

+() ∇s v
˜

⋅() 2µ
s
n
˜

b
˜

2HI
˜s–() ∇sv

˜
2µ

s
n
˜

k
s

µ
s

+()∇s v
˜

⋅+•+s∇+ + +=

µ
s

n
˜

× ∇s ∇s × v
˜

[] n
˜

⋅() 2 b
˜

2HI
˜s–() ∇sv

˜
() n

˜
⋅ ⋅–{ }+

∇s I
˜

n
˜
n
˜

–() ∇⋅≡ Is I
˜

n
˜
n
˜

–()≡

720 Revised: 6/12/13

4.12.47 acous_preal

Theory

No Theory.

FAQs

No FAQs.

References

Edwards, D. A., Brenner, H., Wasan, D. T., 1991. Interfacial Transport Processes and
Rheology. Butterworth-Heinemann, Boston.

4.12.47 acous_preal

Description/Usage

This card provides information for solving a differential equation for the real part of the
harmonic acoustic wave equation. Definitions of the input parameters are defined
below. Note that <float1> through <float5> define the constant multipliers in front of
each type of term in the equation. The Galerkin weight and the interpolation function
must be the same for the code to work properly.

acous_preal Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

APR Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

<float1> currently not used.

<float2> Multiplier on acoustic absorption term.

<float3> Multiplier on boundary terms.

EQ = acous_preal {Galerkin_wt} APR {Interpol_fnc} <float list>

Revised: 6/12/13 721

4.12.47 acous_preal

<float4> Multiplier on Laplacian term.

<float5> Multiplier on pressure term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the
species equation and turns on all the term multipliers:

EQ = acous_preal Q2 APR Q2 0. 1. 1. 1. 1.

Technical Discussion

Harmonic form of the wave equation with absorption (attenuation) included. P is the
amplitude of the acoustic pressure (complex), k is the wavenumber, α is the absorption
coefficient, and ω is the frequency (rad/sec).

(4-216)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

∇2P k2 1
2αi
ω

---------–
 P+ 0=

722 Revised: 6/12/13

4.12.48 acous_pimag

4.12.48 acous_pimag

Description/Usage

This card provides information for solving a differential equation for the imaginary part
of the harmonic acoustic wave equation. Definitions of the input parameters are
defined below. Note that <float1> through <float5> define the constant multipliers in
front of each type of term in the equation. The Galerkin weight and the interpolation
function must be the same for the code to work properly.

acous_pimag Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

API Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

<float1> currently not used.

<float2> Multiplier on acoustic absorption term.

<float3> Multiplier on boundary terms.

<float4> Multiplier on Laplacian term.

<float5> Multiplier on pressure term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

EQ = acous_pimag {Galerkin_wt} API {Interpol_fnc} <float list>

Revised: 6/12/13 723

4.12.49 acous_reyn_stress

Examples

The following is a sample card that uses quadratic continuous interpolation for the
species equation and turns on all the term multipliers:

EQ = acous_pimag Q2 API Q2 0. 1. 1. 1. 1.

Technical Discussion

Harmonic form of the wave equation with absorption (attenuation) included. P is the
amplitude of the acoustic pressure (complex), k is the wavenumber, α is the absorption
coefficient, and ω is the frequency (rad/sec).

(4-217)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.49 acous_reyn_stress

Description/Usage

This card provides information for solving a differential equation for the Reynolds
stress that results from time averaging of the acoustic pressure and velocity fields.
Interactions of the fluid momentum equations with the acoustic wave equations are
then afforded through gradients of the scalar acoustic Reynolds stress with the use of
the ACOUSTIC Navier-Stokes source. Definitions of the input parameters are defined
below. Note that <float1> through <float3> define the constant multipliers in front of
each type of term in the equation. The Galerkin weight and the interpolation function
must be the same for the code to work properly.

acous_reyn_stressName of the equation to be solved.

EQ = acous_reyn_stress {Galerkin_wt} ARS {Interpol_fnc} <float list>

∇2P k2 1
2αi
ω

---------–
 P+ 0=

724 Revised: 6/12/13

4.12.49 acous_reyn_stress

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

ARS Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable SH, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier for the Reynolds stress variable.

<float2> Multiplier for the kinetic energy term.

<float3> Multiplier for the compressional energy term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses quadratic continuous interpolation for the
acoustic Reynolds stress equation and turns on all the term multipliers:

EQ = acous_reyn_stress Q2 ARS Q2 . 1. 1. 1.

Technical Discussion

The Reynolds stress due to acoustic fields reduces to a combination of compressional
and kinetic energy terms which can be expressed in terms of the magnitude of the
acoustic pressure and its gradient. P is the amplitude of the acoustic pressure
(complex), k is the wavenumber, R is the acoustic impedance, and ω is the frequency
(rad/sec).

(4-218)

Theory

No Theory.

ARS ρu
˜
u
˜

 P
2

2ρ0c
2

ρ0

2
------u

˜
u
˜

• –
k

4Rω
-----------P

2 ∇P ∇P•
4kRω

----------------------+= = =

Revised: 6/12/13 725

4.12.50 potential1

FAQs

No FAQs.

References

No References.

4.12.50 potential1

Description/Usage

This card provides information for solving a differential equation for the solid-phase
electrode potential. This electrode-potential equation is solved together with the liquid-
phase electrolyte-potential equation (see the potential2 card) for simulating
electrochemical processes (such as thermal batteries and proton-exchange-membrane
fuel cells) involving simultaneous charge transport in both the liquid-electrolyte and
solid-electrode phases (as in the porous anode and cathode). Definitions of the input
parameters are defined below. Note that <floatlist> has five parameters to define the
constant multipliers in front of each type of term in the equation. The Galerkin weight
and the interpolation function must be the same for the code to work properly.

potential1 Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

PHI1 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable PHI1, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

EQ = potential1 {Galerkin_wt} PHI1 {Interpol_fnc} <floatlist>

d td⁄

n
˜

flux•

726 Revised: 6/12/13

4.12.51 potential2

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a quadratic interpolation and weight function
and turns off the mass (or transient) and advection terms but turns on the boundary,
diffusion, and source terms:

EQ = potential1 Q2 PHI1 Q2 0. 0. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.51 potential2

Description/Usage

This card provides information for solving a differential equation for the liquid-phase
electrolyte potential. This electrolyte-potential equation is solved together with the
solid-phase electrode-potential equation (see the potential1 card) for simulating
electrochemical processes (such as thermal batteries and proton-exchange-membrane
fuel cells) involving simultaneous charge transport in both the liquid-electrolyte and
solid-electrode phases (as in the porous anode and cathode). Definitions of the input

EQ = potential2 {Galerkin_wt} PHI2 {Interpol_fnc} <floatlist>

Revised: 6/12/13 727

4.12.51 potential2

parameters are defined below. Note that <floatlist> has five parameters to define the
constant multipliers in front of each type of term in the equation. The Galerkin weight
and the interpolation function must be the same for the code to work properly.

potential2 Name of the equation to be solved.

{Galerkin_wt} Two-character value that defines the type of weighting
function for this equation, where:

Q1 - Linear
Q2 - Quadratic

PHI2 Name of the variable associated with this equation.

{Interpol_fnc} Two-character value that defines the interpolation function
used to represent the variable PHI2, where:

Q1 - Linear
Q2 - Quadratic

<float1> Multiplier on mass matrix term ().

<float2> Multiplier on advective term.

<float3> Multiplier on boundary term ().

<float4> Multiplier on diffusion term.

<float5> Multiplier on source term.

Note: These multipliers are intended to provide a means of activating or deactivating
terms of an equation, and hence should be set to zero or one. If a multiplier is zero, the
section of code that evaluates the corresponding term will be skipped.

Examples

The following is a sample card that uses a quadratic interpolation and weight function
and turns off the mass (or transient) and advection terms but turns on the boundary,
diffusion, and source terms:

EQ = potential2 Q2 PHI2 Q2 0. 0. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

d td⁄

n
˜

flux•

728 Revised: 6/12/13

4.12.52 lubp

FAQs

No FAQs.

References

No References.

4.12.52 lubp

Description/Usage

This card provides information for solving the Reynold’s lubrication equation for
confined flow. Definitions of the input parameters are defined below. The Galerkin
weight and the interpolation function must be set the same for the code to work
properly. Counterparts to this equation for lubrication flow of capillary films (film-
equations) are shell_filmp and shell_filmh equations.

lubp Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of weighting

function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

LUBP Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable LUBP, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term

(not used yet as of 3/4/2010).

<float2> Multiplier for the diffusion term.

<float3> Multiplier for the source term.

EQ = lubp {Galerkin_wt} LUBP {Interpol_fnc} <floatlist>

Revised: 6/12/13 729

4.12.52 lubp

Examples

Following is a sample card:

EQ = lubp Q1 LUBP Q1 1. 1. 1.

This applies the confined flow lubrication equation with all terms activated.

Technical Discussion
The equation solved is as follows:

² The first term multiplier, activating the mass (time-derivative) term is not currently

activated as the gap-height is user-prescribed.

² The second term multiplier affects the third and fourth terms (grad_p and surface

tension terms).

The third term multiplier activates the Couette flow terms.

Theory

NoTheory.

<.>

FAQs

No FAQs.

<>

References

No References.

<>

() () () () () 0
12122

33

=+−

−−∇−+•∇+

∂

∂
BAIIBAII jj

h
p

h
UU

h

t

h
gn φρφσκδ

µ
ρ

µ
ρρρ

730 Revised: 6/12/13

4.12.53 lubp_2

4.12.53 lubp_2

Description/Usage

This card provides information for solving a second-layer Reynold’s lubrication
equation for confined flow. The second layer is solved on an adjacent shell as lubp
equation but shares the same nodes. Please consult tutorials for proper usuage. This
equation can be used to model transport between alternating stacks of porous materials.
Definitions of the input parameters are defined below. The Galerkin weight and the
interpolation function must be set the same for the code to work properly.
Counterparts to this equation for lubrication flow of capillary films (film-equations) are
shell_filmp and shell_filmh equations.

lubp_2 Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of weighting

function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

LUBP_2 Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable LUBP_2 where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term

(not used yet as of 3/4/2010).

<float2> Multiplier for the diffusion term.

<float3> Multiplier for the source term.

Examples

Following is a sample card:

EQ = lubp_2 {Galerkin_wt} LUBP {Interpol_fnc} <floatlist>

Revised: 6/12/13 731

4.12.53 lubp_2

EQ = lubp_2 Q1 LUBP_2 Q1 1. 1. 1.

This applies the confined flow lubrication equation with all terms activated.

Technical Discussion
The equation solved is as follows:

² The first term multiplier, activating the mass (time-derivative) term is not currently

activated as the gap-height is user-prescribed.

² The second term multiplier affects the third and fourth terms (grad_p and surface

tension terms).

The third term multiplier activates the Couette flow terms.

Theory

NoTheory.

<.>

FAQs

No FAQs.

<>

References

No References.

<>

() () () () () 0
12122

33

=+−

−−∇−+•∇+

∂

∂
BAIIBAII jj

h
p

h
UU

h

t

h
gn φρφσκδ

µ
ρ

µ
ρρρ

732 Revised: 6/12/13

4.12.54

4.12.54

4.12.55 shell_energy

Description/Usage
This card provides information for solving a shell thermal energy equation. Use of

this equation can be made for any shell, including those which involve Reynold’s film

or confined flow lubrication flow. Definitions of the input parameters are defined

below. The Galerkin weight and the interpolation function must be set the same for the

code to work properly.

shell_energy Name of equation to be solved.

{Galerkin_wt}Two-or four-character value that defines the type of weighting function

for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_T Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_T, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

<float2> Multiplier for the advection term.

<float3> Multiplier for the boundary term (not used)

<float4> Multiplier for the source term.

EQ = shell_energy {Galerkin_wt} SH_T {Interpol_fnc} <floatlist>

Revised: 6/12/13 733

4.12.55 shell_energy

Examples

Following is a sample card:

EQ = shell_energy Q1 SH_T Q1 1. 1. 1. 1. 1.

This applies the shell energy equation with all terms activated on a SHELL4 or BAR2

mesh.

Technical Discussion
The equation solved is as follows:

² Clearly this equation looks similar to the standard energy equation for continuum

formulations, but the presence of the gap/film thickness h indications that the

assumption of a constant shell temperature across the thickness is assumed, and

hence all the terms are constant in that integrated direction. The source terms are

all invoked in the material files, and there are many types and many submodels.

² Special NOTE: This equation can be up-winded for high Peclet number flows. If

the Energy Weight Function card in the companion material file is set to SUPG,

then the advection term is stabilized with standard streamwise-upwinding-Petrov-

Galerkin approach.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

hρCp

∂T

∂t
+ hρCp

%
uII ⋅∇ IIT − hKeff ∇ II ⋅∇ IIT + Qsurf + QVD + QJoule = 0

734 Revised: 6/12/13

4.12.56 shell_filmp

4.12.56 shell_filmp

Description/Usage
This card provides information for solving the film lubrication equation for free surface

flow. Definitions of the input parameters are defined below. The Galerkin weight and

the interpolation function must be set the same for the code to work properly.

Counterparts to this equation for lubrication flow of capillary films (film-equations) are

lup_p equation.

shell_filmp Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SHELL_FILMP Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SHELL_FILMP,

where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term

<float2> Multiplier for the advection term. It is not activated

<float3> Multiplier for the boundary term. It is not activated

<float4> Multiplier for the diffusion term.

<float5> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_filmp Q1 SHELL_FILMP Q1 1. 0. 0. 1. 1.

EQ = shell_filmp {Galerkin_wt} SHELL_FILMP {Interpol_fnc} <floatlist>

Revised: 6/12/13 735

4.12.57 shell_filmh

This applies the film flow equation with all terms activated.

Technical Discussion
The equation solved is as follows:

• The mass matrix multiplier activates the time-derivative term

• The diffusion multiplier activates the terms inside the divergence operator and
represents the flux or the flow rate of the liquid film

• The source (or sink, in this case,) activates the last term, rate of evaporation.

• This equation has to be used with the equation describing SHELL_FILMH.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.57 shell_filmh

Description/Usage
This card provides information for solving the film lubrication equation for free surface

flow. Definitions of the input parameters are defined below. The Galerkin weight and

the interpolation function must be set the same for the code to work properly.

EQ = shell_filmh {Galerkin_wt} SHELL_FILMH {Interpol_fnc} <floatlist>

3

() 0
3

II II II B

h h
p h E

t µ

 ∂
+ ∇ −∇ + ∇ Π + + + = ∂

f U

736 Revised: 6/12/13

4.12.57 shell_filmh

Counterparts to this equation for lubrication flow of capillary films (film-equations) are

lup_p equation.

shell_filmh Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SHELL_FILMH Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SHELL_FILMH,

where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term. It is not activated

<float2> Multiplier for the advection term. It is not activated

<float3> Multiplier for the boundary term. It is not activated

<float4> Multiplier for the diffusion term.

<float5> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_filmh Q1 SHELL_FILMH Q1 0. 0. 0. 1. 1.

This applies the film flow equation with all terms activated.

Technical Discussion
The equation solved is as follows:

2 0IIp hσ+ ∇ =

Revised: 6/12/13 737

4.12.58 shell_partc

• The diffusion multiplier activates the capillary pressure term

• The source activates the first term.

• This equation does not fit the general prototype of conservation equation where the
diffusion and source terms really apply. In all cases, both diffusion and source
terms need to be activated.

• This equation has to be used with the equation describing SHELL_FILMP.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.58 shell_partc

Description/Usage
This card provides information for solving the z-averaged concentration of particles

inside film flow. Definitions of the input parameters are defined below. The Galerkin

weight and the interpolation function must be set the same for the code to work

properly.

shell_partc Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

EQ = shell_partc {Galerkin_wt} SHELL_PARTC {Interpol_fnc} <floatlist>

738 Revised: 6/12/13

4.12.58 shell_partc

SHELL_PARTC Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable

SHELL_PARTC, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

<float2> Multiplier for the advection term.

<float3> Multiplier for the boundary term. It is not activated

<float4> Multiplier for the diffusion term.

<float5> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_partc Q1 SHELL_PARTC Q1 1. 0. 0. 1. 0.

This applies the film flow equation with all terms activated.

Technical Discussion
The equation solved is as follows:

• The mass matrix multiplier activates the time-derivative term.

• The advection multiplier activates the second term, where the flow rate is dotted
onto the gradient of particles concentration and it represents advection of particles
due to the liquid film flow.

• The diffusion multiplier activates the terms inside the divergence operator and
represents the Fickian diffusion of particles.

3

() [] 0
3

II B II II II

h
h p h Dh E

t

ϕ
ϕ ϕ ϕ

µ

 ∂
+ −∇ + •∇ − ∇ • ∇ − = ∂

U

Revised: 6/12/13 739

4.12.59 shell_sat_closed

• The source activates the last term, rate of evaporation of liquid that contributes to
the increase of the particles conentration.

• This equation has to be used with the film profile equation describing
SHELL_FILMP and SHELL_FILMH.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.59 shell_sat_closed

Description/Usage
This card provides the capability to solve the porous shell equations for closed (non-

interconnected) structured pores. The Galerkin weight and the interpolation function

must be set the same for the code to work properly. The counterpart to this equation is

porous_sat_open, which solves for interconnected pores.

shell_sat_closed Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_CLOSED Name of the variable associated with this equation.

EQ = shell_sat_closed {Galerkin_wt} SH_SAT_CLOSED {Interpol_fnc}
<floatlist>

740 Revised: 6/12/13

4.12.59 shell_sat_closed

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable

SH_SAT_CLOSED, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

<float2> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_sat_closed Q1 SH_SAT_CLOSED Q1 1.0 1.0

This applies the equation with all terms activated.

Technical Discussion
The equations solved are as follows:

• The mass matrix multiplier activates the time-derivative term.

• The source matrix multiplier activates the remaining term.

• This equation is required to couple with LUBP to solve for the lubrication forces.

Revised: 6/12/13 741

4.12.60

• Currently, this equation assumes that the porous shell is located in the +z direction
of the lubrication shell, and the coupling is set up to draw liquid from the
lubrication layer by adding a sink term into the lubrication equations.

Beyond the standard porous media material cards for continuum element regions, one
needs in the thin-shell material inputs in the following section:

Porous Shell Closed Porosity = CONSTANT 0.1

Porous Shell Height = CONSTANT 1.0

Porous Shell Radius = CONSTANT 0.01

Porous Shell Atmospheric Pressure = CONSTANT 1.e6

Porous Shell Reference Pressure = CONSTANT 0.

Porous Shell Cross Permeability = CONSTANT 0.2

Porous Shell Initial Pore Pressure = CONSTANT 0.

Please read the associated material property cards sections for details.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.60

4.12.61 shell_sat_gasn

Description/Usage
This card provides the capability to solve the porous shell equation for the inventory of

trapped gas in a closed pore shell simulation, viz. the EQ=shell_sat_closed. The

EQ = shell_sat_gasn {Galerkin_wt} SH_SAT_GASN {Interpol_fnc} <floatlist>

742 Revised: 6/12/13

4.12.61 shell_sat_gasn

equation tracks the inventory of trapped gas and accounts for the compression (ideal

gas law) and dissolution into the invading liquid. Two terms are required in this

equation:

shell_sat_gasn Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_GASN Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable

SH_SAT_GASN, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

<float2> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_sat_gasn Q1 SH_SAT_GASN Q1 1.0 1.0

This applies the equation with all terms activated.

Technical Discussion

Theory

NoTheory.

Revised: 6/12/13 743

4.12.62

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. In preparation.

4.12.62

4.12.63 shell_sat_open

Description/Usage
This card provides the capability to solve the porous shell equations for open

(interconnected) structured pores. The Galerkin weight and the interpolation function

must be set the same for the code to work properly. The counterpart to this equation is

shell_sat_closed, which solves for non-interconnected pores.

shell_sat_open Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_OPEN Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_P_OPEN,

where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

<float2> Multiplier for the source term.

EQ = shell_sat_open {Galerkin_wt} SH_P_OPEN {Interpol_fnc} <floatlist>

744 Revised: 6/12/13

4.12.63 shell_sat_open

Examples

Following is a sample card:

EQ = shell_sat_open Q1 SH_P_OPEN Q1 1.0 1.0

This applies the equation with all terms activated.

Technical Discussion
The equations solved are as follows:

• The mass matrix multiplier activates the time-derivative term.

• The source matrix multiplier activates the remaining term.

• This equation is required to couple with LUBP to solve for the lubrication forces.

• Currently, this equation assumes that the porous shell is located in the +z direction
of the lubrication shell, and the coupling is set up to draw liquid from the
lubrication layer by adding a sink term into the lubrication equations.

• NOT FULLY IMPLEMENTED.

Note that this equation requires the Media Type to be set to
POROUS_SHELL_UNSATURATED. With this media type the porous properties for
the most part are extracted from the regular (non-shell) porous media property cards,
e.g. Permeability, Porosity, Saturation, etc. There are a few exceptions, however.
Beyond the standard porous media material cards for continuum element regions, one
needs in the thin-shell material inputs the following section:

Porous Shell Closed Porosity = CONSTANT 0.1

Revised: 6/12/13 745

4.12.64 shell_sat_open_2

Porous Shell Height = CONSTANT 1.0

Porous Shell Radius = CONSTANT 0.01

Porous Shell Atmospheric Pressure = CONSTANT 1.e6

Porous Shell Reference Pressure = CONSTANT 0.

Porous Shell Cross Permeability = CONSTANT 0.2

Porous Shell Initial Pore Pressure = CONSTANT 0.

Please read the associated material property cards sections for details.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.64 shell_sat_open_2

Description/Usage
This card provides the capability to solve a second porous shell equation for open

(interconnected) structured pores. The use of this equation requires that the shell

material share the same nodes but be a distinct material from that which shell_sat_open

resides. Please see the associated tutorials. The Galerkin weight and the interpolation

function must be set the same for the code to work properly. The counterpart to this

equation is shell_sat_closed, which solves for non-interconnected pores.

shell_sat_open_2 Name of equation to be solved.

{Galerkin_wt} Two-or four-character value that defines the type of

EQ = shell_sat_open_2 {Galerkin_wt} SH_P_OPEN_2 {Interpol_fnc}

<floatlist>

746 Revised: 6/12/13

4.12.64 shell_sat_open_2

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_SAT_OPEN_2 Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_P_OPEN_2,

where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

<float2> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_sat_open_2 Q1 SH_P_OPEN_2 Q1 1.0 1.0

This applies the equation with all terms activated.

Technical Discussion
The equations solved are as follows:

• The mass matrix multiplier activates the time-derivative term.

Revised: 6/12/13 747

4.12.65

• The source matrix multiplier activates the remaining term.

• This equation is required to couple with LUBP to solve for the lubrication forces.

• Currently, this equation assumes that the porous shell is located in the +z direction
of the lubrication shell, and the coupling is set up to draw liquid from the
lubrication layer by adding a sink term into the lubrication equations.

• NOT FULLY IMPLEMENTED.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.65

4.12.66 shell_deltah

Description/Usage
This card provides the capability to solve an evolution equation for a changing

lubrication gap. The most common example of this would be a melting slider, as in the

substrate of a snow ski or during high-energy sliding contact. Melting would change

the lubrication gap. The Galerkin weight and the interpolation function must be set the

same for the code to work properly. This equation could be furbished or advanced to

handle other moving boundary problems which would lead to a changing gap. It

should be noted, that gap changes due to a bounding flexible solid structure are already

accommodated and fully compatible with this condition.

shell_deltah Name of equation to be solved.

EQ = shell_deltah {Galerkin_wt} SH_DH {Interpol_fnc} <floatlist>

748 Revised: 6/12/13

4.12.66 shell_deltah

{Galerkin_wt} Two-or four-character value that defines the type of

weighting function for this equation, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

SH_DH Name of the variable associated with this equation.

{Interpol_fnc} Two-or four-character value that defines the

interpolation function for the variable SH_DH, where:

Q1 – Linear

Q2 – Quadratic (not recommended at this time)

<float1> Multiplier for the mass matrix term.

 <float2> Multiplier for the source term.

Examples

Following is a sample card:

EQ = shell_deltah Q1 SH_DH Q1 1.0 1.0

This applies the equation with all terms activated.

Technical Discussion
The equations solved are as follows:

where E0 is the enthalpy, including the effect of phase change through the latent heat

material property specified in the material file. Htrans is a heat transfer coefficient and

is set in the material file as that due to melting/sliding contact (see material file section

on MELTING_CONTACT). dh is the unknown.

• The mass matrix multiplier activates the time-derivative term.

ρE0

dδh

dt
= H trans (T − T0)

Revised: 6/12/13 749

4.12.67

• The source matrix multiplier activates the remaining term.

• This equation is required to couple with SH_TEMP to solve for the local
temperature. f

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

4.12.67

4.12.68 END OF EQ

Description/Usage

This card specifies the end of the list of equations in a material section of the Problem
Description File. It is only used when automatic equation counting is used, as
described and activated in the Number of EQ card. If the value of <integer> in that card
is set to -1, all EQ cards below this card are ignored, and Goma counts the number of
EQ cards between the Number of EQ card and the END OF EQ card.

Note that the END of EQ card should appear in every material section for which
automatic equation counting is being used.

Examples

There are no input parameters for this card, which always appears as follows:

END OF EQ

750 Revised: 6/12/13

4.12.69 END OF MAT

END OF EQ

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.12.69 END OF MAT

Description/Usage

This card specifies the end of the list of materials. It is only used when automatic
material counting is used, as described and activated in the Number of Materials card.
If the value of <integer> in the Number of Materials card is set to -1, all MAT cards
below the END OF MAT card are ignored, and Goma counts the number of MAT cards
between these two cards.

Examples

There are no input parameters for this card, which always appears as follows:

END OF MAT

Technical Discussion

No discussion.

Theory

No Theory.

END OF MAT

Revised: 6/12/13 751

4.13 Post Processing Specifications

FAQs

No FAQs.

References

No References.

4.13 Post Processing Specifications

This section lists the post-processing options that are accessible within Goma. Each card below
triggers calculations of the nodal values of a given function, which are then written to the
EXODUS II output file. Normally these values are smoothed before writing them to the output
file. For most of these cards a keyword is the only input; if the keyword is yes, the post-processing
variable is calculated and written to the file; if the keyword is no, no output is generated for that
variable. All of these cards are optional and can appear in any order.

The sections below list the post-processing options and a brief description of each. Users are
cautioned - for large, time-dependent runs, the output of many post-processing variables may lead
to excessively large EXODUS II output files.

4.13.1 Stream Function

Description/Usage

The stream function provides a visual representation of the flow field in incompressible
fluids and is derived from the fluid velocity components identified in the Output
Exodus II file card.

This auxiliary field triggered by “yes” on this card results in a nodal variable that is
called STREAM in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the stream function.

no Do not calculate the stream function.

Stream Function = {yes | no}

752 Revised: 6/12/13

4.13.1 Stream Function

Examples

Following is a sample card:

Stream Function = no

Technical Discussion

This function is computed with an element-by-element volumetric flow calculation
routine. Poor element quality can result in “kinks” in the stream function field when
contoured.

It is important to construct a mesh whose elements are contiguously ordered in such a
way that there are no isolated clusters as the elements are swept, i.e., element n+1 must
be in contact with one of the previous n elements. NOTE: as of 4/2001 an automatic
element reordering scheme based on Reverse Cuthill-McKee algorithm has been
implemented in Goma. Automatic ordering can be assured by issuing the OPtimize
command to the FASTQ meshing module (cf. Blacker 1988). Most other mesh
generators do not provide this service, viz. they do not put out an element order-map
field in the EXODUS II file.

NOTE: THIS FUNCTION IS NOT AVAILABLE IN THREE DIMENSIONS, but
pathlines, which are equivalent to streamlines for steady flows can be computed in
many graphics packages, like Mustafa (Glass, 1995).

Theory

No Theory.

FAQs

No FAQs.

References

SAND88-1326: FASTQ Users Manual: Version 1.2, Sandia Technical Report, Blacker,
T. D. 1988.

Mustafa, Glass, M. W., Personal Communication, 1995

Revised: 6/12/13 753

4.13.2 Streamwise normal stress

4.13.2 Streamwise normal stress

Description/Usage

The stream-wise normal stress, Ttt, is defined as tt:τ, where t is the unit tangent vector
to the streamlines computed as and τ is the deviatoric part of the dissipative stress
tensor,

 (4-219)

associated with the Navier-Stokes equations. This variable is called SNS in the output
EXODUS II file.

The permissible values for this postprocessing option are

yes Calculate the stream-wise normal stress.

no Do not calculate the stream-wise normal stress.

Examples

Following is a sample card:

Streamwise normal stress = yes

Technical Discussion

As of 2/9/02 this function is computed with the based viscosity, and not the strain-rate
dependent viscosity as might be the case for viscosity models other than NEWTONIAN
(see Viscosity card).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Streamwise normal stress = {yes | no}

v v⁄

τ µ ∇v ∇v()
T

+[]≡

754 Revised: 6/12/13

4.13.3 Cross-stream shear rate

4.13.3 Cross-stream shear rate

Description/Usage

As of 2/9/02, it is recommended that this card not be used.

The quantity as computed in Goma is only applicable in two-dimensions and it is not
clear what this quantity is, as it is computed. (PRS)

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.4 Mean shear rate

Description/Usage

The mean shear rate is defined as

, (4-220)

where is the second invariant of D, the strain-rate tensor,

Cross-stream shear rate = {yes | no}

Mean shear rate = {yes | no}

4 IID

IID

Revised: 6/12/13 755

4.13.5 Pressure contours

(4-221)

associated with the Navier-Stokes equations. This variable is called SHEAR in the
output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the mean shear rate.

no Do not calculate the mean shear rate.

Examples

The following is a sample card:

Mean shear rate = yes

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.5 Pressure contours

Description/Usage

The hydrodynamic pressure is normally a field variable within Goma; however, it is
often interpolated in finite element space with discontinuous basis functions (in order
to satisfy the well-known LBB stability criterion, cf. Schunk, et al. 2002). This option
enables interpolating and smoothing the hydrodynamic pressure to nodal values that

Pressure contours = {yes | no}

D ∇v ∇v()
T

+[]≡

756 Revised: 6/12/13

4.13.6 Fill contours

most post-processors can deal with (e.g. BLOT, Mustafa). This variable is called
PRESSURE in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the pressure contours.

no Do not calculate the pressure contours.

Examples

Following is a sample card:

Pressure contours = no

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2001-3512J: Iterative Solvers and Preconditioners for Fully-coupled Finite
Element Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, P. R. Schunk, M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C.
Sun. (March 2002)

4.13.6 Fill contours

Description/Usage

This card triggers the inclusion of the level set or VOF fill function as a nodal variable
in the output EXODUS II file.

Fill contours = {yes | no}

Revised: 6/12/13 757

4.13.7 Concentration contours

The nodal variable appears as FILL in the output EXODUS II file. This function is
computed with the FILL equation (see EQ card).

The permissible values for this postprocessing option are:

yes Calculate the fill contours.

no Do not calculate the fill contours.

Examples

An example card requesting FILL contours be written to the EXODUS II file is:

Fill contours = yes

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-020.1: Tutorial on Level Set Interface Tracking in GOMA, February 27, 2001, T.A.
Baer

4.13.7 Concentration contours

Description/Usage

As of 2/9/02 this card is not necessary. If EQ = species_bulk card is active in any
material, than the concentration contours are including as post-processing nodal
variables in the output EXODUS II file.

Concentration contours = {yes | no}

758 Revised: 6/12/13

4.13.8 Stress contours

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.8 Stress contours

Description/Usage

This card allows the user to invoke the components of the stress tensor for all
viscoelastic modes be included as nodal post-processing variables. Often times this is
not desirable on long time-dependent runs because of the voluminous data that will
appear in the output EXODUS II file. This variable is called csij_mode in the output
EXODUS II file, where i and j indicate components of the stress tensor and mode
indicates the desired viscoelastic mode; for example, cs23_4 represents the stress
contour for the fifth mode of polymer stress component yz.

The permissible values for this postprocessing option are:

yes Calculate and include the stress-tensor components for all
modes of viscoelasticity.

no Do not calculate and include the stress-tensor components.

These stresses become dependent variables if the Polymer Constitutive Equation card
is given any model but the NOPOLYMER model.

Stress contours = {yes | no}

Revised: 6/12/13 759

4.13.9 First Invariant of Strain

Examples

An example card requesting viscoelastic stress components be written:

Stress contours = yes

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

4.13.9 First Invariant of Strain

Description/Usage

The strain tensor is associated with the deformation of the mesh. Its first invariant is its
trace and represents the volume change in the small strain limit. This variable is called
IE in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the first invariant.

no Do not calculate the first invariant

Examples

Following is a sample card:

First Invariant of strain = yes

First Invariant of Strain = {yes | no}

760 Revised: 6/12/13

4.13.10 Second Invariant of Strain

Technical Discussion

Computation of the strain tensor in Goma is discussed on the Solid Constitutive
Equation card. The trace is related to the divergence of the tensor, and hence related to
a measure of volume change in a material.

It should be noted that the mesh strain is equivalent to the material strain for
LAGRANGIAN mesh motion types. For ARBITRARY or TOTAL_ALE mesh motion
types (see Mesh Motion card), the strain is strictly related to mesh and not the material.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.10 Second Invariant of Strain

Description/Usage

The strain tensor is associated with the deformation of the mesh. Its second invariant
indicates the level of shear strain of the mesh. This variable is called IIE in the output
EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the second invariant.

no Do not calculate the second invariant

Examples

Following is a sample card:

Second Invariant of strain = yes

Second Invariant of Strain = {yes | no}

E
˜

Revised: 6/12/13 761

4.13.11 Third Invariant of Strain

Technical Discussion

The second invariant is computed in Goma as

. (4-222)

Here Einstein’s summation convention applies, viz.

. (4-223)

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.11 Third Invariant of Strain

Description/Usage

The strain tensor is associated with the deformation of the mesh. Its third invariant
indicates the volume change from the stress-free state (IIIE = 1.0 indicates no volume
change). This variable is called IIIE in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the third invariant.

no Do not calculate the third invariant

Examples

Following is a sample card:

Third Invariant of strain = {yes | no}

IIE
1
2
--- EijEij EiiEjj–()=

EijEij EijEij

j

i

=

762 Revised: 6/12/13

4.13.12 Velocity Divergence

Third Invariant of strain = yes

Technical Discussion

The mathematical definition of the third invariant is related to the determinant of the
strain tensor, which is defined for the various constitutive equations in the manual entry
for the Solid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.12 Velocity Divergence

Description/Usage

The divergence of velocity is associated with local mass conservation or how well the
solenoidal character of the velocity field in ARBITRARY mesh motion regions is being
maintained. (Fluid momentum equations are only applied for this Mesh Motion option.)
Here we calculate the L2 norm of the divergence of velocity so that it is always zero or
positive. This variable is called DIVV in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the velocity divergence.

no Do not calculate the velocity divergence.

Examples

A sample input specification for this card is:

Velocity Divergence = no

Velocity Divergence = {yes | no}

Revised: 6/12/13 763

4.13.13 Particle Velocity Divergence

Technical Discussion

The divergence of the fluid velocity field is defined as the scalar .

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.13 Particle Velocity Divergence

Description/Usage

This option is currently disabled. As of 2/16/2002, the multiphase particle momentum
equation is deactivated. It is not recommended that this option be selected.

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Particle Velocity Divergence = {yes | no}

∇ v
˜

•

764 Revised: 6/12/13

4.13.14 Total Velocity Divergence

References

No References.

4.13.14 Total Velocity Divergence

Description/Usage

Not currently activated. (2/16/02)

Examples

No example.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.15 Electric Field

Description/Usage

The electric field vector components are written to the output EXODUS II file. The
electric field is calculated as the negative gradient of the VOLTAGE field variable.

Not activated (PRS 2/16/02)

Electric Field = {yes | no}

Revised: 6/12/13 765

4.13.16 Electric Field Magnitude

The permissible values for this postprocessing option are

yes Calculate the electric field vectors.

no Do not calculate the electric field vectors.

The vector components are called EX, EY, and (for three dimensional problems) EZ in
the output EXODUS II file.

Examples

The following is a sample input card to calculate the Electric Field vector components:

Electric Field = yes

Technical Discussion

See also the Electric Field Magnitude post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.16 Electric Field Magnitude

Description/Usage

The magnitude of the electric field is written to the output EXODUS II file. The
electric field is calculated as the negative gradient of the VOLTAGE field variable.

The permissible values for this postprocessing option are:

yes Calculate the electric field magnitude.

no Do not calculate the electric field magnitude.

Electric Field Magnitude = {yes | no}

766 Revised: 6/12/13

4.13.17 Enormsq Field

The electric field magnitude is called EE in the output EXODUS II file.

Examples

The following is a sample input card to calculate the Electric Field Magnitude:

Electric Field Magnitude = yes

Technical Discussion

See also the Electric Field post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.17 Enormsq Field

Description/Usage

This norm is based on the ENORM field variable (which, in turn, is derived from the
VOLTAGE field variable).

The permissible values for this postprocessing option are:

yes Calculate the norm.

no Do not calculate the norm.

The field is stored in GENS0, GENS1, and GENS2 (if 3D) in the output EXODUS II
file.

Examples

The following is a sample input card to calculate the field:

Enormsq Field = {yes | no}

Revised: 6/12/13 767

4.13.18 Enormsq Field Norm

Enormsq Field = yes

Technical Discussion

This post-processing variable is equal to . This, in turn, should approximate
.

See also the Enormsq Field Norm post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.18 Enormsq Field Norm

Description/Usage

This norm is based on the ENORM field variable (which, in turn, is derived from the
VOLTAGE field variable).

The permissible values for this postprocessing option are:

yes Calculate the norm.

no Do not calculate the norm.

The norm is called GENSNORM in the output EXODUS II file.

Examples

The following is a sample input card to calculate the norm:

Enormsq Field Norm = yes

Enormsq Field Norm = {yes | no}

∇enorm
2

∇ ∇V
2

()

768 Revised: 6/12/13

4.13.19 Viscosity

Technical Discussion

This post-processing variable is equal to . This, in turn, should approximate
.

See also the Enormsq Field post processing option.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.19 Viscosity

Description/Usage

This option allows you to plot the viscosity, which is written to the Output EXODUS II
file as the variable MU. This is a useful feature for non-Newtonian fluids such as
Phillip’s model for suspensions, Bingham plastic models, polymerizing solutions and
other materials for which the viscosity may change orders of magnitude, greatly
affecting the velocity and pressure fields. Contouring this variable MU over the domain
can be useful in explaining some physical phenomena.

The permissible values for this postprocessing option are:

yes Calculate the viscosity and output as a nodal variable in the
Output EXODUS II file.

no Do not calculate the viscosity.

Examples

The following sample card requests MU be written to the EXODUS II file:

Viscosity = yes

Viscosity = {yes | no}

∇enorm
2

∇ ∇V
2

()

Revised: 6/12/13 769

4.13.20

Technical Discussion

See the material file Viscosity card for an explanation of the models for which the
viscosity is variable and dependent on the flow field and other variables.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.20

4.13.21 Density

Description/Usage

This card is used to trigger the thermophysical or mechanical property of density (see
Density card) to be computed and output as an EXODUS II nodal variable in the Ouput
EXODUS II file with the variable name RHO.

The permissible values for this postprocessing option are:

yes Calculate the density and store it as a nodal variable in the
output EXODUS II file.

no Do not calculate density.

Examples

This is an example of the input to request density be written to the EXODUS II file.

Density = yes

Density = {yes | no}

770 Revised: 6/12/13

4.13.22 Lame MU

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.22 Lame MU

Description/Usage

This option allows you to plot the Lame MU mechanical property, which is written to
the Output EXODUS II file as the variable LAME_MU. This is a useful feature for
temperature dependent mechanical properties and the like. Contouring this variable
LAME_MU over the domain can be useful in explaining some physical phenomena.

The permissible values for this postprocessing option are:

yes Calculate the Lame MU and output as a nodal variable in
the Output EXODUS II file.

no Do not calculate the the coefficient (default).

Examples

The following sample card requests LAME_MU be written to the EXODUS II file:

Lame MU = yes

Technical Discussion

None

Lame MU = {yes | no}

Revised: 6/12/13 771

4.13.23 Lame LAMBDA

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.23 Lame LAMBDA

Description/Usage

This option allows you to plot the Lame LAMDA mechanical property, which is
written to the Output EXODUS II file as the variable LAMBDA. This is a useful
feature for temperature dependent mechanical properties and the like. Contouring this
variable LAMBDA over the domain can be useful in explaining some physical
phenomena.

The permissible values for this postprocessing option are:

yes Calculate the Lame LAMBDA and output as a nodal
variable in the Output EXODUS II file.

no Do not calculate the the coefficient (default).

Examples

The following sample card requests LAMBDA be written to the EXODUS II file:

Lame LAMBDA = yes

Technical Discussion

None

Theory

No Theory.

Lame LAMBDA = {yes | no}

772 Revised: 6/12/13

4.13.24 Von Mises Strain

FAQs

No FAQs.

References

No References.

4.13.24 Von Mises Strain

Description/Usage

This option allows you to plot the Von Mises strain invarients of the strain tensor, for
use with the FAUX_PLASTICITY model of the modulus. These quantities are written
to the Output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the von Mises strain invariants and output as a
nodal variable in the Output EXODUS II file.

no Do not calculate the invariants (default).

Examples

The following sample card requests LAMBDA be written to the EXODUS II file:

Von Mises Strain = yes

Technical Discussion

None

Theory

No Theory.

FAQs

No FAQs.

Von Mises Strain = {yes | no}

Revised: 6/12/13 773

4.13.25 Von Mises Stress

References

No References.

4.13.25 Von Mises Stress

Description/Usage

This option allows you to plot the Von Mises stress tensor invarients, for use with the
FAUX_PLASTICITY model of the modulus. These quantities are written to the
Output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the von Mises stress invariants and output as a
nodal variable in the Output EXODUS II file.

no Do not calculate the invariants (default).

Examples

The following sample card requests LAMBDA be written to the EXODUS II file:

Von Mises Stress = yes

Technical Discussion

None

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Von Mises Stress = {yes | no}

774 Revised: 6/12/13

4.13.26

4.13.26

4.13.27 Navier Stokes Residuals

Description/Usage

These post-processing nodal variables are constructed from the corresponding
weighted residual function of the fluid (e.g. Navier-Stokes) momentum equations,
using a Galerkin finite-element formulation. When activated with this card, variables
named RMX, RMY, and RMZ appear in the output EXODUS II file, corresponding to
each of the independent components of the fluid momentum balance.

The permissible values for this postprocessing option are:

yes Calculate the Navier-Stokes residuals and store as nodal
variables in the output EXODUS II file.

no Do not calculate Navier-Stokes residuals.

Examples

Following is a sample input card:

Navier Stokes Residuals = no

Technical Discussion

This option can be used to help understand convergence behavior of a particular
problem, as it allows the user to visualize the pattern of residuals over the
computational domain during a Newton iteration process. The intermediate solutions of
a Newton iteration process can be activated with the Write Intermediate Results card.

Theory

No Theory.

FAQs

No FAQs.

Navier Stokes Residuals = {yes | no}

Revised: 6/12/13 775

4.13.28 Moving Mesh Residuals

References

No References.

4.13.28 Moving Mesh Residuals

Description/Usage

These nodal variables are constructed from the corresponding weighted residual
functions of the solid momentum equations (activated with the EQ = mesh* cards).
The weighted residuals are formed using a Galerkin finite-element formulation. In the
output EXODUS II file they appear as nodal variables RDX, RDY, and RDZ,
corresponding to each of the independent components of the solid momentum balance
(both pseudo and real).

The permissible values for this postprocessing option are:

yes Include the moving mesh residuals as nodal variables in the
ouput EXODUS II file.

no Do not include moving mesh residuals.

Examples

Following is a sample card which does not activate writing of mesh residuals:

Moving Mesh Residuals = no

Technical Discussion

This option can be used to help understand convergence behavior of a particular
problem, as it allows the user to visualize the pattern of residuals over the
computational domain during a Newton iteration process. The intermediate solutions
of a Newton iteration process can be activated with the Write Intermediate Results card.
Contouring these residuals can indicate where the convergence of a problem is being
delayed, and give the user/developer some clues as to the boundary condition or local
region of the mesh which is responsible.

Theory

No Theory.

Moving Mesh Residuals = {yes | no}

776 Revised: 6/12/13

4.13.29 Mass Diffusion Vectors

FAQs

No FAQs.

References

No References.

4.13.29 Mass Diffusion Vectors

Description/Usage

Activating this post-processing option allows the user to visualize the diffusive mass
flux directions of all species components in a problem. Species components result from
the EQ = species_bulk equation card. With this option selected, the output EXODUS II
file will contain nodal variables called Y0dif0 (diffusion of first species in x direction),
Y0dif1 (diffusion of first species in y direction), Y0dif2 (diffusion of first species in z
direction), Y1dif0 (diffusion of second species in x direction), Y2dif1 (diffusion of
second species in y direction), . . . and so on, depending on the number of species
components in the problem.

The permissible values for this postprocessing option are:

yes Calculate the mass diffusion vectors and include in the
output EXODUS II file.

no Do not calculate the mass diffusion vectors.

Examples

Following is a sample card:

Mass Diffusion Vectors = yes

Technical Discussion

Currently this option is available only for FICKIAN and HYDRODYNAMIC mass flux
types (see Diffusion Constitutive Equation card). In the FICKIAN case, the flux is
computed with the base, constant diffusivity.

Mass Diffusion Vectors = {yes | no}

Revised: 6/12/13 777

4.13.30 Diffusive Mass Flux Vectors

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.30 Diffusive Mass Flux Vectors

Description/Usage

Please see description for Mass Diffusion Vectors card; this card performs exactly the
same function.

Examples

This card turns on writing of diffusive mass flux vectors to the EXODUS II file:

Diffusive Mass Flux Vectors = yes

Technical Discussion

Please see description for Mass Diffusion Vectors card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Diffusive Mass Flux Vectors = {yes | no}

778 Revised: 6/12/13

4.13.31 Mass Fluxlines

4.13.31 Mass Fluxlines

Description/Usage

With this post-processing option mass-diffusion pathlines are calculated and stored as
post-processing nodal variables in the output EXODUS II file. This variables are called
Y0FLUX, Y1FLUX, . . .(by species number) in the file and can be contoured in the
visualization program. These flux lines are analogous to the stream function, viz.
contours of the flux function represent pathlines for each species in solution.

The permissible values for this postprocessing option are:

yes Calculate the mass fluxlines and include in the output
EXODUS II file.

no Do not calculate the mass fluxlines.

Examples

The following sample card requests that mass-diffusion pathlines be written to the
EXODUS II file:

Mass Fluxlines = yes

Technical Discussion

Currently this option is available only for FICKIAN and HYDRODYNAMIC mass flux
types (see Diffusion Constitutive Equation card). In the FICKIAN case, the flux is
computed with the base, constant diffusivity. Also, the Mass Diffusion Vectors post
processing option must also be activated for this option to work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Mass Fluxlines = {yes | no}

Revised: 6/12/13 779

4.13.32 Energy Conduction Vectors

4.13.32 Energy Conduction Vectors

Description/Usage

Activation of this option can be used to visualize the energy conduction paths in a
solution. The resulting nodal variables are called TCOND0 (conduction in x direction),
TCOND1 (conduction in y direction), and TCOND2 (conduction in z direction) in the
output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the energy conduction vectors and store in the
output EXODUS II file.

no Do not calculate the energy conduction vectors.

Examples

This example card requests that energy conduction vectors be written to the EXODUS
II file:

Energy Conduction Vectors = yes

Technical Discussion

These quantities can be employed in a hedge-hog or vector plot to visualize the energy
conduction pathways across a domain (cf. the vector option in BLOT, or the hedge-hog
option in Mustafa, for example).

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Energy Conduction Vectors = {yes | no}

780 Revised: 6/12/13

4.13.33 Energy Fluxlines

4.13.33 Energy Fluxlines

Description/Usage

This post-processing option triggers the energy fluxlines to be calculated. The energy
flux function is analogous to the stream function, its contours representing paths of
energy flow through the domain. This variable is called TFLUX in the output
EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate and write the energy fluxlines to the output
EXODUS II file.

no Do not calculate the energy fluxlines.

Examples

The energy fluxlines are calculated in this sample input card:

Energy Fluxlines = yes

Technical Discussion

The Energy Conduction Vectors must also be activated for this post processing option
to work.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Energy Fluxlines= {yes | no}

Revised: 6/12/13 781

4.13.34 Time Derivatives

4.13.34 Time Derivatives

Description/Usage

This option enables writing the time derivative of all the field variables as nodal
variables to the output EXODUS II file. These variables are labeled XDOT0 (mesh
velocity in x direction), XDOT1 (mesh velocity in y direction), XDOT2 (mesh
velocity in z direction), VDOT0 (fluid acceleration in x direction), VDOT1 (fluid
acceleration in y direction), VDOT2 (fluid acceleration in z direction), TDOT (rate of
temperature change), Y0DOT (rate of 1st species concentration change), Y1D0T (rate
of second species concentration change), and so on. The quantities can then be
contoured or displayed by some other means with a visualization or graphics package.

The permissible values for this postprocessing option are:

yes Calculate the time derivatives and write them as nodal
variables in the output EXODUS II file.

no Do not calculate the time derivatives.

Examples

The following sample card requests that time derivatives be written to the EXODUS II
file:

Time Derivatives = yes

Technical Discussion

Currently, this routine uses the values in the global vector xdot to report this data.
During the first time step, all the xdot values are zero; by the second time step, these
data should be realistic.

Theory

No Theory.

FAQs

No FAQs.

Time Derivatives = {yes | no}

782 Revised: 6/12/13

4.13.35 Mesh Stress Tensor

References

No References.

4.13.35 Mesh Stress Tensor

Description/Usage

The mesh stress tensor is associated with the equations of elasticity. The stress tensor
has six entries (in three dimensions, because it is symmetric) called T11, T22, T33,
T12, T13, and T23 in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the mesh stress tensor and write to output
EXODUS II file.

no Do not calculate the mesh stress tensor.

Examples

The following sample card turns on the writing of the stress tensor to the EXODUS II
file:

Mesh Stress Tensor = yes

Technical Discussion

The defining constitutive equations for these stresses can be found in the description
for the Solid Constitutive Equation card. This option applies to all solid-material types
(see Mesh Motion card), viz. TOTAL_ALE, LAGRANGIAN, ARBITRARY,
DYNAMIC_LAGRANGIAN. In the TOTAL_ALE and ARBITRARY mesh motion types,
the mesh stress is exactly that and not the true stress of the material. For TOTAL_ALE
mesh motion types, use Real Solid Stress Tensor option to get the true solid material
stresses.

Theory

No Theory.

Mesh Stress Tensor = {yes | no}

Revised: 6/12/13 783

4.13.36 Real Solid Stress Tensor

FAQs

No FAQs.

References

No References.

4.13.36 Real Solid Stress Tensor

Description/Usage

The real solid stress tensor is associated with the equations of elasticity. If the mesh
motion is of LAGRANGIAN type, then these quantities are not available; if is of
TOTAL_ALE type, they are available. The stress tensor has six entries (in three
dimensions because it is symmetric) called T11_RS, T22_RS, T33_RS, T12_RS,
T13_RS, and T23_RS in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the real solid stress tensor and write to the output
EXODUS II file.

no Do not calculate the real solid stress tensor.

Examples

No stress tensor is written for the following sample input card:

Real Solid Stress Tensor = no

Technical Discussion

This option is applicable only to TOTAL_ALE mesh motion types (see Mesh Motion
card). Compare this with Mesh Stress Tensor post processing option for other types of
mesh motion.

Theory

No Theory.

Real Solid Stress Tensor = {yes | no}

784 Revised: 6/12/13

4.13.37 Mesh Strain Tensor

FAQs

No FAQs.

References

No References.

4.13.37 Mesh Strain Tensor

Description/Usage

The mesh strain tensor is associated with the equations of elasticity. The strain tensor
has six entries (in three dimensions, because it is symmetric) called E11, E22, E33,
E12, E13, and E23 in the output EXODUS II file, corresponding to the six independent
components (the numbers 1, 2, and 3 indicate the basis direction, e.g. 1 means x-
direction for a Cartesian system).

The permissible values for this postprocessing option are:

yes Calculate the mesh strain tensor and write the components
as nodal variables to the output EXODUS II file.

no Do not calculate the mesh strain tensor.

Examples

The following example input card does not request output of the stain tensor:

Mesh Strain Tensor = no

Technical Discussion

Definitions of the strain tensor depend on the solid constitutive equation type (see
description for Solid Constitutive Equation card).

Theory

No Theory.

Mesh Strain Tensor = {yes | no}

Revised: 6/12/13 785

4.13.38 Viscoplastic Def_Grad Tensor

FAQs

No FAQs.

References

No References.

4.13.38 Viscoplastic Def_Grad Tensor

Description/Usage

The components of this tensor are associated with the elasto-viscoplasticity model,
(described in detail in Schunk, et. al., 2001). If the mesh motion is of LAGRANGIAN
type, then this card activates the components of this tensor to be available in the
postprocessing EXODUS II file (see Mesh Motion card). The components are called
FVP11, FVP12, FVP21, FVP22, and FVP33. This tensor is the identity tensor in
regions that have not yielded, and so the diagonal components are unity; in regions that
have yielded, these components deviate from the identity. Contouring them can reveal
regions of plastic flow.

The permissible values for this postprocessing option are:

yes Calculate the viscoplastic Def_Grad tensor and write
components in the output EXODUS II file.

no Do not calculate the viscoplastic Def_Grad tensor.

Examples

This sample input card does not activate Def_Grad output to the EXODUS II file:

Viscoplastic Def_Grad Tensor = no

Technical Discussion

Please see complete discussion in Schunk, et. el. (2001).

Theory

No Theory.

Viscoplastic Def_Grad Tensor = {yes | no}

786 Revised: 6/12/13

4.13.39 Lagrangian Convection

FAQs

No FAQs.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January
11, 2001

4.13.39 Lagrangian Convection

Description/Usage

In deformable solids with a Lagrangian mesh, convection in the stress-free state can be
mapped to the deformed configuration; this variable stores the velocity vectors of this
solid motion (see Convective Lagrangian Velocity card). This variable is called VL1,
VL2, VL3 in the output EXODUS II file; the integer values 1, 2 and 3 denote
coordinate directions.

The permissible values for this postprocessing option are:

yes Calculate the Lagrangian convection and store as nodal
variable velocity fields in the output EXODUS II file.

no Do not calculate the Lagrangian convection.

Examples

Following is a sample card:

Lagrangian Convection = no

Technical Discussion

This option only applies to Mesh Motion type of LAGRANGIAN.

Theory

No Theory.

Lagrangian Convection = {yes | no}

Revised: 6/12/13 787

4.13.40 Normal and Tangent Vectors

FAQs

No FAQs.

References

No References.

4.13.40 Normal and Tangent Vectors

Description/Usage

This option allows one to write the values of the normal and tangent vectors used in
rotating the mesh and momentum equations as nodal variables to the output EXODUS
II file. In two-dimensional problems, the normal and tangent vectors are saved as N1,
N2, N3 and T1, T2, T3 in the output EXODUS II file; in two dimensions these vectors
are calculated at all the nodes. In three-dimensional problems, the normal and tangent
vectors are saved as N1, N2, N3, TA1, TA2, TA3, and TB1, TB2, TB3; in three
dimensions, these vectors only exist at nodes with rotation specifications, and the
vectors correspond to the rotation vectors chosen by the ROT Specifications for the
given node (see description for ROT cards). Thus in three-dimensional problems,
vectors are not necessarily saved for every node, nor do the vectors necessarily
correspond to the normal, first tangent, and second tangent, respectively.

The permissible values for this postprocessing option are:

yes Calculate the vectors and store as nodal variables in the
output EXODUS II file.

no Do not calculate the vectors.

Examples

The following sample card produces no output to the EXODUS II file:

Normal and Tangent vectors = no

Technical Discussion

This option is mostly used to debug three-dimensional meshes for full three-
dimensional ALE mesh motion. The tangent fields in 3D should be smooth across the
surfaces, and Goma takes many steps

Normal and Tangent Vectors = {yes | no}

788 Revised: 6/12/13

4.13.41 Error ZZ velocity

to make them so. The surface normal crossed into any vector that is different will
produce one tangent vector. Then the normal crossed (viz. cross product of two vectors)
with the first tangent will produce a second tangent vector. Because the surface tangent
basis fields are not unique, they must be uniform over a surface when the rotated
Galerkin weighted residuals are formed (see description for ROT cards). Imperfections
or defects in the mesh can lead to nonsmooth fields.

Theory

No Theory.

FAQs

No FAQs.

References

GT-018.1: ROT card tutorial, January 22, 2001, T. A. Baer

4.13.41 Error ZZ velocity

Description/Usage

This option has been disabled for lack of use, but originally allowed the user to
compute a posteriori error estimates in the velocity field from the Zienkiewicz-Zhu
energy norm error measure.

Examples

Not applicable.

Technical Discussion

This option has been disabled.

Theory

No Theory.

Error ZZ velocity = {yes | no}

Revised: 6/12/13 789

4.13.42 Error ZZ heat flux

FAQs

No FAQs.

References

No References.

4.13.42 Error ZZ heat flux

Description/Usage

This option has been disabled for lack of use, but originally allowed the user to
compute a posteriori error estimates in the computed temperature/energy flux field
from the Zienkiewicz-Zhu energy norm error measure.

Examples

Not applicable.

Technical Discussion

This option has been disabled.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Error ZZ heat flux = {yes | no}

790 Revised: 6/12/13

4.13.43 Error ZZ pressure

4.13.43 Error ZZ pressure

Description/Usage

This option has been disabled for lack of use, but originally allowed the user to
compute a posteriori error estimates in the pressure field from the Zienkiewicz-Zhu
energy norm error measure.

Examples

Not applicable.

Technical Discussion

This option has been disabled.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.13.44 User-Defined Post Processing

Description/Usage

This option enables user-defined postprocessing options in Goma. An arbitrary number
of floating point constants can be loaded to use in the user-defined subroutine
user_post (user_post.c). This variable is called USER in the output EXODUS
II file and can be contoured or processed just like any other nodal variable in a post-
processing visualization package.

Error ZZ pressure = {yes | no}

User-Defined Post Processing = {yes | no} <float_list>

Revised: 6/12/13 791

4.13.44 User-Defined Post Processing

yes Calculate and write the user-defined postprocessing variable
to the output EXODUSII file.

no Do not calculate the user-defined postprocessing.

<float_list> An arbitrary number (including zero) of floating point
numbers, which can be accessed in file user_post

Examples

Consider the following sample input card:

User-Defined Post Processing = yes 100.

Suppose you would like to contour the speed of a fluid in a two-dimensional problem
using this card, with your intent being to multiply the calculated value by a factor of
100.0 for some unit conversion or something. You must add

post_value = param[0]*sqrt(fv->v[0]*fv->v[0] + fv->v[1]*fv->*v[1]) ;

to user_post.c. Note also that you have to comment out the error handler line just
above the location you enter the post_value code. The comments in the routine help
guide you through the process.

Technical Discussion

See the function user_post in user_post.c.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

792 Revised: 6/12/13

4.13.45 Porous Saturation

4.13.45 Porous Saturation

Description/Usage

In partially saturated porous media, the saturation represents the volume fraction of the
pore space that is filled with liquid. If this option is selected, then the saturation level
(an auxiliary variable) is included in the output EXODUS II file. This variable is called
SAT in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the porous saturation and write to the output
EXODUS II file.

no Do not calculate the porous saturation.

Examples

This sample input card turns off writing of saturation to the EXODUS II file:

Porous Saturation = no

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

Porous Saturation = {yes | no}

Revised: 6/12/13 793

4.13.46 Total density of solvents in porous media

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

4.13.46 Total density of solvents in porous media

Description/Usage

This post processing option can be used to trigger the computation and output of the
total density of solvents as a nodal field variable to the output EXODUS II file. Three
nodal variables are written, Rho_Total_Liq, Rho_Total_air and Rho_Total_solid.
The mathematical details are given below in the technical discussion. This option
applies to media types of POROUS_SATURATED, POROUS_UNSATURATED, and
POROUS_TWO_PHASE (see Media Type card). The options are:

yes Calculate and write the total solvent densities as a
postprocessing variable to the output EXODUSII file.

no Do not calculate the total solvent densities.

Examples

Total density of solvents in porous media = yes

This card will result in the calculation and output of the mixture density of solvent
(viz., phase mixture of liquid solvent in vapor form, liquid form, and the form adsorbed
in the solid skeleton for partially saturated porous flows). The form of that mixture
density is given in the technical discussion.

Technical Discussion

In saturated flow cases, viz. for Media Type selection POROUS_SATURATED, the total
solvent density is

(4-224)

where is the pure liquid density and is the porosity. Here we have assumed that no
liquid solvent is adsorbed into the solid struts (currently the assumption used
throughout Goma).

Total density of solvents in porous media = {yes | no}

ρT ρlφ=

ρl φ

794 Revised: 6/12/13

4.13.47 Density of solvents in gas phase in porous media

For partially saturated flows, viz. for Media Type selection POROUS_UNSATURATED
or POROUS_TWO_PHASE, the total density is given by

(4-225)

where is the density of solvent vapor in the total gas-solvent vapor mixture (see
Density of solvents in gas phase in porous media card), S is the saturation (see Porous
Saturation card), and is the volume fraction of solvent in liquid phase (including
any condensed species component). When calculating the total density of the liquid
(Rho_Total_liq), the liquid vapor density comes from a Kelvin vapor-liquid
equilibrium relation. The total density of the gas phase (Rho_Total_gas) will use a
vapor density fro air and a volume fraction of zero (0) since air is insoluble. The total
density of the solid in the gas (Rho_Total_solid) is zero (0).

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.13.47 Density of solvents in gas phase in porous media

Description/Usage

This post processing option can be used to trigger the computation and output of the
density of solvents in the gas phase only, including the volume occupied by the
assumed insoluble gas (e.g. air), as a nodal field variable to the output EXODUS II file.
The nodal variables are called RhoSolv_g_liq, RhoSolv_g_air and RhoSolv_g_solid.
The mathematical details are given below in the technical discussion. This option
applies to media types of POROUS_UNSATURATED, and POROUS_TWO_PHASE
(see Media Type card). The options are:

Density of solvents in gas phase in porous media = {yes | no}

ρT ρlφSXls ρgv 1 S–()φ+=

ρgv

Xls

Revised: 6/12/13 795

4.13.47 Density of solvents in gas phase in porous media

yes Calculate and write the gas phase solvent density as a
postprocessing variable to the output EXODUSII file.

no Do not calculate the total solvent density.

Examples

The following input card turns off writing solvent densities to the EXODUS II file:

Density of solvents in gas phase in porous media = no

Technical Discussion

The air and solid components are insoluble in the gas phase so the RhoSolv_g_air and
RhoSolv_g_solid variables will be zero. The gas-density of liquid solvents
(RhoSolv_g_liq) is determined from the vapor-liquid equilibrium relationship at a
liquid-vapor meniscus. Specifically,

(4-226)

where is the average molecular weight of solvents in the mixture, R is the ideal gas
constant, T is the temperature, and is the equilibrium vapor pressure. Note that this
vapor pressure can be affected by local meniscus curvature through the Kelvin equation
(cf. Schunk, 2002 and Porous Vapor Pressure card).

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

ρgv

Mwpv

RT
--------------=

Mw
pv

796 Revised: 6/12/13

4.13.48 Density of liquid phase in porous media

4.13.48 Density of liquid phase in porous media

Description/Usage

This post processing option can be used to trigger the computation and output of the
density of solvents in the liquid phase only, averaged over the mixture, as a nodal field
variable to the output EXODUS II file. The nodal variable is called Rho_Liq_Phase.
The mathematical details are given below in the technical discussion. This option
applies to media types of POROUS_SATURATED, POROUS_UNSATURATED, and
POROUS_TWO_PHASE (see Media Type card). The options are:

yes Calculate and write the density of solvent in the liquid phase
as a postprocessing variable to the output EXODUSII file.

no Do not calculate the liquid solvent density.

Examples

An example of an input card which activates writing of the density to the EXODUS II
file is:

Density of liquid phase in porous media = yes

Technical Discussion

In liquid-saturated flow cases, viz. for Media Type selection POROUS_SATURATED,
the total solvent density in the liquid phase is

(4-227)

where is the pure liquid density and is the porosity. Here we have assumed that no
liquid solvent is adsorbed into the solid struts (currently the assumption used
throughout Goma).

For partially saturated flows, viz. for Media Type selection POROUS_UNSATURATED
or POROUS_TWO_PHASE, the density of solvent in the liquid phase only is given by

(4-228)

where S is the saturation (see Porous Saturation card). Compare this with the quantity
computed with the Total density of solvents in porous media card.

Density of liquid phase in porous media = {yes | no}

ρT ρlφ=

ρl φ

ρT ρlφS=

Revised: 6/12/13 797

4.13.49 Gas phase Darcy velocity in porous media

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.13.49 Gas phase Darcy velocity in porous media

Description/Usage

This post-processing option will lead to the explicit calculation and storage of the
Darcy velocity components in the gas phase, viz. the velocity of the gas phase due to
gas-phase pressure gradients. This option is only available for
POROUS_TWO_PHASE media types (cf. Media Type card). The velocity components
appear in the output EXODUS II file as the nodal variables Darcy_Vel_g_0,
Darcy_Vel_g_1 and Darcy_Vel_g_2.

The permissible values for this postprocessing option are:

yes Calculate the gas-phase Darcy velocity components and
write to the output EXODUSII file.

no Do not calculate the gas phase velocity components.

Examples

This input example turns on calculation of the gas phase velocity components:

Gas phase Darcy velocity in porous media =yes

Technical Discussion

The gas-phase Darcy velocity is given by the extended Darcy law, which accounts for
the relative reduced flow due to the presence of another phase, viz.

Gas phase Darcy velocity in porous media = {yes | no}

798 Revised: 6/12/13

4.13.50 Liquid phase Darcy velocity in porous media

(4-229)

Here represents the Darcy flux, or Darcy velocity, in the gas phase, k is the
permeability of the porous medium, kg is the relative permeabilities for the gas and
liquid phases respectively, µg are the gas viscosity, pg is the pressure in the gas phase,
and g is the gravitational force vector. is the density of the gas phase and is equal to
the sum of the partial densities of air and solvent vapor,

. (4-230)

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.13.50 Liquid phase Darcy velocity in porous media

Description/Usage

This post-processing option will lead to the explicit calculation and storage of the
Darcy velocity components in the liquid phase, viz. the velocity of the liquid phase due
to liquid phase pressure gradients. This option is available for all porous media types
(cf. Media Type card). The velocity components appear in the output EXODUS II file
as the nodal variables Darcy_Vel_l_0, Darcy_Vel_l_1 and Darcy_Vel_l_2.

The permissible values for this postprocessing option are:

yes Calculate the liquid-phase Darcy velocity components and
write to the output EXODUSII file.

no Do not calculate the liquid phase velocity components.

Liquid phase Darcy velocity in porous media = {yes | no}

Fg ρgvg

ρgkkg

µg

--------------- pg∇ ρgg–()–= =

νg

ρg

ρg ρgv ρga+=

Revised: 6/12/13 799

4.13.51

Examples

This input example turns on calculation of the liquid phase velocity components:

Liquid phase Darcy velocity in porous media = yes

Technical Discussion

The liquid-phase Darcy velocity is given by the extended Darcy law, which accounts
for the relative reduced flow due to the presence of another phase, viz.

(4-231)

Here represents the Darcy flux, or Darcy velocity, in the gas phase, k is the
permeability of the porous medium, kl is the relative permeabilities for the liquid and
liquid phases respectively, µl are the liquid viscosity, pl is the pressure in the liquid
phase, and g is the gravitational force vector. is the density of the liquid phase.

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.13.51

4.13.52 Liquid phase Darcy velocity in porous media

Description/Usage

This post-processing option will lead to the explicit calculation and storage of the
Darcy velocity components in the liquid phase, viz. the velocity of the liquid phase due
to liquid phase pressure gradients. This option is available for all porous media types

Liquid phase Darcy velocity in porous media = {yes | no}

Fl ρlwvl

ρlkkl

µl

------------ pl∇ ρlg–()–= =

νl

ρl

800 Revised: 6/12/13

4.13.52 Liquid phase Darcy velocity in porous media

(cf. Media Type card). The velocity components appear in the output EXODUS II file
as the nodal variables Darcy_Vel_l_0, Darcy_Vel_l_1 and Darcy_Vel_l_2.

The permissible values for this postprocessing option are:

yes Calculate the liquid-phase Darcy velocity components and
write to the output EXODUSII file.

no Do not calculate the liquid phase velocity components.

Examples

This input example turns on calculation of the liquid phase velocity components:

Liquid phase Darcy velocity in porous media = yes

Technical Discussion

The liquid-phase Darcy velocity is given by the extended Darcy law, which accounts
for the relative reduced flow due to the presence of another phase, viz.

(4-232)

Here represents the Darcy flux, or Darcy velocity, in the gas phase, k is the
permeability of the porous medium, kl is the relative permeabilities for the liquid and
liquid phases respectively, µl are the liquid viscosity, pl is the pressure in the liquid
phase, and g is the gravitational force vector. is the density of the liquid phase.

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

Fl ρlwvl

ρlkkl

µl

------------ pl∇ ρlg–()–= =

νl

ρl

Revised: 6/12/13 801

4.13.53

4.13.53

4.13.54 Capillary pressure in porous media

Description/Usage

In partially saturated porous media, the capillary pressure is the difference between the
gas and liquid pressures. This option only takes affect for POROUS_TWO_PHASE and
POROUS_UNSATURATED media types (see Media Type card). This variable is called
PC in the output EXODUS II file.

The permissible values for this postprocessing option are:

yes Calculate the capillary pressure and write to output
EXODUS II file.

no Do not calculate the capillary pressure.

Examples

This is a sample input card to activate calculation of capillary pressure:

Capillary pressure in porous media = yes

Technical Discussion

The capillary pressure is a critical variable for partially saturated porous media, and is
in fact the dependent variable for unsaturated (not two-phase) flows for which the gas-
phase pressure is taken as constant. It is simply defined as

(4-233)

As such, positive capillary pressures imply liquid phase pressure being greater than gas
phase pressure. Because liquid phase saturation strongly correlates to capillary
pressure, this current quantity is a good indicator of the level of liquid inventory in
smaller pores in the skeleton relative to large pores. Contouring this quantity can give
some indication of the level of suction exerted on the porous-skeleton, which is
relevant when the skeleton is taken as deformable.

Theory

No Theory.

Capillary pressure in porous media = {yes | no}

pc pg pl–=

802 Revised: 6/12/13

4.13.55

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

4.13.55

4.13.56 Grid Peclet Number in porous media

Description/Usage

This option triggers the computation and output of the so-called grid-level Peclet
number as a nodal variable in the output EXODUS II file. It appears as a nodal variable
called Por_Grid_Peclet. This quantity gives the user a measure of advective transport
relative to diffusive transport in a porous medium, and is strongly correlated to the
steepness of a saturation front. This quantity is actually used to scale the formulation
which employs the streamline upwind Petrov-Galerkin method for stabilizing the
equations for partially saturated flow. This option only applies for unsaturated media
and only for the SUPG option on the Porous Weight Function card.

The permissible values for this postprocessing option are:

yes Compute the grid-level Peclet Number and write to output
EXODUS II file.

no Do not calculate the grid-level Peclet Number.

Examples

This is a sample input card to activate calculation of the Peclet Number:

Grid Peclet Number in porous media = yes

Technical Discussion

See discussion for the Porous Weight Function card.

Grid Peclet Number in porous media = {yes | no}

Revised: 6/12/13 803

4.13.57 SUPG Velocity in porous media

Theory

No Theory.

FAQs

No FAQs.

References

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K.
Moffat, August 2001 (DRAFT).

4.13.57 SUPG Velocity in porous media

Description/Usage

Used to specify use of effective velocities in SUPG formulations for porous media. It is
written to the output EXODUS II file as nodal variable U_supg_porous.

The permissible values for this postprocessing option are:

yes Calculate and write the effective velocity components as a
postprocessing variable to the output EXODUSII file.

no Do not calculate the effective velocity components.

Examples

This is a sample input card to activate calculation of SUPG Velocity:

SUPG Velocity in porous media = yes

Technical Discussion

No discussion.

Theory

No Theory.

SUPG Velocity in porous media = {yes | no}

804 Revised: 6/12/13

4.13.58 Vorticity Vector

FAQs

No FAQs.

References

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K.
Moffat, August 2001 (DRAFT).

4.13.58 Vorticity Vector

Description/Usage

This option allows the user to output the vorticity vector to the output EXODUS II file.
It applies to problems with the fluid momentum equations (see EQ = momentum*
cards). The output nodal variables are named VORTX, VORTY, VORTZ.

The permissible values for this postprocessing option are:

yes Calculate the vorticity vectors and store in the output
EXODUS II file.

no Do not calculate the vorticity vectors.

Examples

This example card requests that vorticity vectors be written to the EXODUS II file:

Vorticity Vector = yes

Technical Discussion

The vorticity vector function, , is defined in terms of the velocity as:

(4-234)

Theory

No Theory.

Vorticity Vector = {yes | no}

ω
˜

υ
˜

ω
˜

∇ v
˜

×=

Revised: 6/12/13 805

4.14 Post Processing Fluxes and Data

FAQs

No FAQs.

References

No References.

4.14 Post Processing Fluxes and Data

By Post-processing Fluxes we mean area-integrated fluxes that can be calculated for any flux
quantity across any surface demarcated by a side set. The area-integrated flux is in fact a total
flow rate across the boundary. Examples include heat-flow, total force of a liquid on a surface, and
species flow (both diffusive and convective). The integrated flux quantities are output to a
specified file at each time step, together with the time stamp and the convective and diffusive
components. This capability is useful for extracting engineering results from an analysis, and can
further be used to as an objective function evaluator for engineering optimization problems (cf.
Post Processing Flux Sensitivities card below).

Post Processing Data output can be used to produce spatial {value, x, y, z} sets on a specified side
set of any primitive variable in the problem, viz. pressure, x-component of velocity, etc. The
quantity value is the value of the variable at a node in the side set, and x, y, z are the coordinates of
the node.

4.14.1 Post Processing Fluxes

Description/Usage

This card indicates that the cards between this and an END OF FLUX card are to be
read and processed. If this card (Post Processing Fluxes) is not present, FLUX cards
will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Fluxes =

Post Processing Fluxes =

806 Revised: 6/12/13

4.14.2 FLUX

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.2 FLUX

Description/Usage

FLUX cards are used to calculate the integrated fluxes of momentum, mass, energy,
etc. on a specified side set during post processing. As many of these FLUX cards as
desired can be input to Goma to direct the calculations. For example, multiple cards
may be used to compute a particular flux, e.g. FORCE_NORMAL, on different side
sets or different fluxes on the same side set. Cards with identical fluxes and identical
side sets could be used to output the flux calculations to different files. Definitions of
the input parameters are:

{flux_type} A keyword that can have any one of the following values:

FORCE_NORMAL
FORCE_TANGENT1
FORCE_TANGENT2
FORCE_X
FORCE_Y
FORCE_Z
VOLUME_FLUX
SPECIES_FLUX
HEAT_FLUX
TORQUE
AVERAGE_CONC

FLUX = {flux_type} <bc_id> <blk_id> <species_id> <file_name> [profile]

Revised: 6/12/13 807

4.14.2 FLUX

SURF_DISSIP
AREA
VOL_REVOLUTION
PORE_LIQ_FLUX
CHARGED_SPECIES_FLUX
CURRENT_FICKIAN
CURRENT
ELEC_FORCE_NORMAL
ELEC_FORCE_TANGENT1
ELEC_FORCE_TANGENT2
ELEC_FORCE_X
ELEC_FORCE_Y
ELEC_FORCE_Z
NET_SURF_CHARGE
ACOUSTIC_FLUX_NORMAL
ACOUSTIC_FLUX_TANGENT1
ACOUSTIC_FLUX_TANGENT2
ACOUSTIC_FLUX_X
ACOUSTIC_FLUX_Y
ACOUSTIC_FLUX_Z

For every request, the integral of the diffusive portion
followed by that of the convective portion over the
requested boundary will be appended to the specified file. If
the convective flux is not applicable (i.e.for flux_types
VOLUME_FLUX, TORQUE, AVERAGE_CONC and
AREA), the second quantity will be zero. In all cases the
area of the face (covered by the entire side set) and the time
value are also output.

<bc_id> The boundary flag identifier, an integer associated with the
boundary location (side set in EXODUS II) in the problem
domain on which the integrated flux is desired.

<blk_id> An integer that designates the mesh block (material) from
which the flux integral should be performed. This has
implications on internal boundaries.

<species_id> An integer that identifies the species number if an integrated
species flux is requested.

<file_name> A character string corresponding to a file name into which
these fluxes should be printed.

808 Revised: 6/12/13

4.14.2 FLUX

[profile] Inclusion of the optional string “profile’ to this card will
cause the coordinates (x,y,z), the diffusive integrand, and
the convective integrand at each integration point to be
printed to the file designated above. You can, for example,
print out a pressure distribution used to compute a force.

Examples

The following example shows a sample input deck section that requests five such
integrated fluxes:

Post Processing Fluxes =

FLUX = FORCE_X 5 1 0 side5.out
FLUX = FORCE_Y 5 1 0 side5prof.out profile
FLUX = FORCE_NORMAL 8 1 0 side8.out
FLUX = FORCE_TANGENT1 8 1 0 side8.out
FLUX = VOLUME_FLUX 8 1 0 side8.out

END OF FLUX

Technical Discussion

The permissible flux types are those listed in file mm_post_def.h for struct
Post_Processing_Flux_Names, pp_flux_names being one variable of this struct type.

The flux integrations are carried out as follows;

FLUX DIFFUSIVE FLUX CONVECTIVE FLUX

FORCE_NORMAL

FORCE_TANGENT1

FORCE_TANGENT2

FORCE_X

FORCE_Y

FORCE_Z

VOLUME_FLUX for ARBITRARY mesh motion

 for LAGRANGIAN mesh motion

SPECIES_FLUX

HEAT_FLUX

n T
˜

n•• Ad ρn v vm–()• v n• Ad
t1 T

˜
n•• Ad ρt1 v vm–()• v n• Ad

t2 T
˜

n•• Ad ρt2 v vm–()• v n• Ad
i T

˜
n•• Ad ρi v vm–()• v n• Ad

j T
˜

n•• Ad ρj v vm–()• v n• Ad
k T

˜
n•• Ad ρk v vm–()• v n• Ad

n v vm–()• Ad
n d⋅ Ad
Djn ∇cj•–() Ad ρn v vm–()• cj Ad
kn ∇T•–() Ad ρCpTn v vm–()• Ad

Revised: 6/12/13 809

4.14.2 FLUX

TORQUE

AVERAGE_CONC

SURF_DISSIP

AREA

VOL_REVOLUTION

POR_LIQ_FLUX

CHARGED_SPECIES_FLUX

CURRENT_FICKIAN

PVELOCITY[1-3]

ELEC_FORCE_NORMAL

ELEC_FORCE_TANGENT1

ELEC_FORCE_TANGENT2

ELEC_FORCE_X

ELEC_FORCE_Y

ELEC_FORCE_Z

NET_SURF_CHARGE

ACOUSTIC_FLUX_NORMAL

ACOUSTIC_FLUX_TANGENT1

ACOUSTIC_FLUX_TANGENT2

ACOUSTIC_FLUX_X

ACOUSTIC_FLUX_Y

ACOUSTIC_FLUX_Z

The SURF_DISSIP card is used to compute the energy dissipated at a surface by
surface tension (Batchelor, 1970). The VOL_REVOLUTION card is used in axi-

re
r

T
˜

n•()× Ad
cj Ad
σ∇v δ nn–()• Ad
Ad

1
2

r

1 rd zd⁄()
2

+

------------------------------------ Ad

n ρlv ad rcy()• Ad
Djn ∇cj•–() Ad ρn v vm–()• cj Ad
Djn ∇cj•–() Ad ρn v vm–()• cj Ad

n pvj• Ad
n T

˜ e
˜

n•• Ad
t1 T

˜ e n•• Ad
t2 T

˜ e n•• Ad
i T

˜ e n•• Ad
j T

˜ e n•• Ad
k T

˜ e n•• Ad
εn

˜
E
˜

•–() Ad
1

kR
------n ∇P imag•–

 Ad 1
kR
------n ∇P real•
 Ad

1
kR
------t1 ∇P imag•–

 Ad 1
kR
------t1 ∇Preal•
 Ad

1
kR
------t2 ∇P imag•–

 Ad 1
kR
------t2 ∇Preal•
 Ad

1
kR
------i ∇P imag•–

 Ad 1
kR
------i ∇P real•
 Ad

1
kR
------j ∇P imag•–

 Ad 1
kR
------j ∇P real•
 Ad

1
kR
------k ∇P imag•–

 Ad 1
kR
------k ∇P real•
 Ad

810 Revised: 6/12/13

4.14.3 END OF FLUX

symmetric problems to compute the volume swept by revolving a surface around the
axis of symmetry (z-axis). Even though every flux card results in the area computation
of the side set, the AREA card is used when the area of a surface is part of an
augmenting condition. The POR_LIQ_FLUX term is valid only for saturated media
and the Darcy velocity is defined by . For the more general case,
refer to the POROUS_LIQ_FLUX_CONST boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

Batchelor, JFM, 1970. need to fill-in reference; get from RBS

For information on using flux calculations as part of augmenting conditions, see:

 SAND2000-2465: Advanced Capabilities in Goma 3.0 - Augmenting Conditions,
Automatic Continuation, and Linear Stability Analysis, I. D. Gates, I. D.,
Labreche, D. A. and Hopkins, M. M. (January 2001).

4.14.3 END OF FLUX

Description/Usage

This card is used to denote the end of a set of FLUX cards and is only used when the
Post Processing Fluxes card is present and one or more FLUX cards are specified.

Examples

A simple example of using this card in context is shown below.
Post Processing Fluxes =
FLUX = FORCE_X 5 1 0 side5.out
END OF FLUX

END OF FLUX

v arcyd κ µ⁄() pliq∇=

Revised: 6/12/13 811

4.14.4 Post Processing Data

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.4 Post Processing Data

Description/Usage

This card indicates that the cards between this and an END OF DATA card are to be
read and processed. If this card (Post Processing Data) is not present, DATA cards will
be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Data =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Post Processing Data =

812 Revised: 6/12/13

4.14.5 DATA

References

No References.

4.14.5 DATA

Description/Usage

A DATA card directs Goma to output the indicated primitive variable on a specified
node set. As many of these DATA cards as desired can be input to Goma. For example,
multiple cards may be used to output a particular variable, e.g. VELOCITY1, on
different node sets or different variables on the same node set. Cards with identical
variables and identical node sets could be used to output the variables to different files.
Definitions of the input parameters are as follows:

{data_type} A keyword that can have any one of the following primitive
values:

VELOCITY[1-3]
TEMPERATURE
MASS_FRACTION
MESH_DISPLACEMENT[1-3]
SURFACE
PRESSURE
POLYMER_STRESS[1-3][1-3]
SOLID_DISPLACEMENT[1-3]
VELOCITY_GRADIENT[1-3][1-3]
VOLTAGE
FILL
SHEAR_RATE
PVELOCITY[1-3]
POLYMER_STRESS[1-3][1-3]_[1-7}
SPECIES_UNK[0-29]
VolFracPh_[0-4]
POR_LIQ_PRES
POR_GAS_PRES
POR_PORSITY
POR_SATURATION
VORT_DIR[1-3]
VORT_LAMBDA

DATA = {data_type} <bc_id> <blk_id> <species_id> <file_name>

Revised: 6/12/13 813

4.14.5 DATA

Each request will result in the point coordinates and the
quantity value being printed to the specified file.

<bc_id> The boundary flag identifier, an integer associated with the
boundary location (node set in EXODUS II) in the problem
domain on which the quantity is desired.

<blk_id> An integer that designates the mesh block (material) from
which the variable value should be taken. This has
implications for discontinuous variables on internal
boundaries.

<species_id> An integer that identifies the species number if a species
variable is requested.

<file_name> A character string corresponding to a file name into which
the data should be printed.

Examples

The following example shows a sample input deck section with one data request:
Post Processing Data =
DATA = VELOCITY2 1 1 0 data.out
END OF DATA

Technical Discussion

If a fixed mesh or a subparametric mesh problem is being solved, the point coordinates
printed to the file will be the undeformed coordinates.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

814 Revised: 6/12/13

4.14.6 END OF DATA

4.14.6 END OF DATA

Description/Usage

 This card is used to denote the end of a set of DATA cards and is only used when the
Post Processing Data card is present and one or more DATA cards are specified.

Examples

A simple example of using this card in context is shown below.
Post Processing Data =
DATA = VELOCITY2 1 1 0 data.out
END OF DATA

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.7 Post Processing Flux Sensitivities

Description/Usage

This card indicates that the cards between this and an END OF FLUX_SENS card are to
be read and processed. If this card (Post Processing Flux Sensitivities) is not present,
FLUX_SENS cards will be ignored.

END OF DATA

Post Processing Flux Sensitivities =

Revised: 6/12/13 815

4.14.8 FLUX_SENS

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Flux Sensitivities =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.8 FLUX_SENS

Description/Usage

FLUX_SENS cards request the calculation of the sensitivity of an integrated flux with
respect to a boundary condition or material parameter. As many FLUX_SENS cards as
desired can be input to Goma. Definitions of the input parameters are as follows:

{flux_type} A keyword that can have any one of the following values:

FORCE_NORMAL
FORCE_TANGENT1
FORCE_TANGENT2
FORCE_X
FORCE_Y
FORCE_Z
VOLUME_FLUX
SPECIES_FLUX
HEAT_FLUX

FLUX_SENS = {flux_type} <bc_id> <blk_id> <species_id> {sens_type}
<sens_id> <sens_flt> <file_name>

816 Revised: 6/12/13

4.14.8 FLUX_SENS

TORQUE
AVERAGE_CONC
SURF_DISSIP
AREA
VOL_REVOLUTION
PORE_LIQ_FLUX
CHARGED_SPECIES_FLUX
CURRENT_FICKIAN
CURRENT

For every request, the specified sensitivity of the integrated
diffusive flux followed by that of the convective portion
over the requested boundary will be appended to the
specified file. If the convective flux is not applicable (cf.
FLUX card), the second quantity will be zero. In all cases
the area of the face (covered by the entire side set) and the
time value are also output.

<bc_id> The boundary flag identifier, an integer associated with the
boundary location (node set in EXODUS II) in the problem
domain on which the integrated flux sensitivity is desired.

<blk_id> An integer that designates the mesh block (material) from
which the flux sensitivity integral should be performed.
This has implications on internal boundaries.

<species_id> An integer that identifies the species number if an integrated
species flux sensitivity is requested.

{sens_type} A two-character entry that identifies the sensitivity type,
where:

BC denotes a sensitivity w.r.t. to a boundary condition
parameter.
MT denotes a sensitivity w.r.t. to a material property
parameter.

<sens_id> An integer that identifies the sensitivity. If BC is specified
for {sens_type}, then this value is the BC card number. If
MT is specified for {sens_type}, this value is the material
number.

<sens_flt> A floating point number whose meaning is also dependent
on the selection of {sens_type}. If BC is specified, this
value is the BC data float number. If MT is specified, this
value is the material property tag.

Revised: 6/12/13 817

4.14.9 END OF FLUX_SENS

<file_name> A character string corresponding to a file name into which
these fluxes should be printed.

Examples

Here is an example input deck:
Post Processing Flux Sensitivities =
FLUX_SENS = VOLUME_FLUX 1 1 0 BC 5 3 flux_sens.out
END OF FLUX_SENS

Technical Discussion

Currently, the flux sensitivities do not account for the implicit sensitivity of material
properties. That is, does not include a contribution from

, but should be done correctly. In addition,
sensitivities of integrated fluxes in solid materials have not been implemented yet.

NOTE: In order to compute flux sensitivities with respect to Dirichlet boundary
condition floats, the boundary conditions need to use the residual method in the input
file as described in the Boundary Condition Specification introduction, i.e. the optional
parameter should be set to 1.0.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.9 END OF FLUX_SENS

Description/Usage

This card is used to denote the end of a set of FLUX_SENS cards and is only used when
the Post Processing Flux Sensitivities card is present and one or more FLUX_SENS
cards are specified.

END OF FLUX_SENS

FORCEXd BCfloatd⁄

µd BCfloatd⁄ FORCEXd MTpropertyd⁄

818 Revised: 6/12/13

4.14.10 Post Processing Data Sensitivities

Examples

A simple example of using this card in context is shown below.
Post Processing Flux Sensitivities =
FLUX_SENS = VOLUME_FLUX 1 1 0 BC 5 3 flux_sens.out
END OF FLUX_SENS

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.10 Post Processing Data Sensitivities

Description/Usage

This card indicates that the cards between this and an END OF DATA_SENS card are to
be read and processed. If this card (Post Processing Data Sensitivities) is not present,
DATA_SENS cards will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Data Sensitivities =

Technical Discussion

No discussion.

Post Processing Data Sensitivities =

Revised: 6/12/13 819

4.14.11 DATA_SENS

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.11 DATA_SENS

Description/Usage

As many of these DATA_SENS cards as desired can be input to direct Goma to print the
sensitivity of a specified variable with respect to a boundary condition or material
parameter on a specified node set. Definitions of the input parameters are as follows:

{data_type} A keyword that can have any one of the following values:

VELOCITY[1-3]
TEMPERATURE
MASS_FRACTION
MESH_DISPLACEMENT[1-3]
SURFACE
PRESSURE
POLYMER_STRESS[1-3][1-3]
SOLID_DISPLACEMENT[1-3]
VELOCITY_GRADIENT[1-3][1-3]
VOLTAGE
FILL
SHEAR_RATE
PVELOCITY[1-3]
VolFracPh_[0-4]
POR_LIQ_PRES
POR_GAS_PRES
POR_PORSITY
POR_SATURATION

DATA = {data_type} <bc_id> <blk_id> <species_id> {sens_type} <sens_id>
<sens_flt> <file_name>

820 Revised: 6/12/13

4.14.11 DATA_SENS

VORT_DIR[1-3]
VORT_LAMBDA

Each request will result in the point coordinates and the
specified sensitivity value being printed to the specified file.

<bc_id> The boundary flag identifier, an integer associated with the
boundary location (node set in EXODUS II) in the problem
domain on which the variable sensitivity is desired.

<blk_id> An integer that designates the mesh block (material) from
which the variable sensitivity should be taken. This has
implications for discontinuous variables on internal
boundaries.

<species_id> An integer that identifies the species number if a species
sensitivity is requested.

{sens_type} A two-character entry that identifies the sensitivity type,
where:

BC denotes a sensitivity w.r.t. to a boundary condition
parameter.
MT denotes a sensitivity w.r.t. to a material property
parameter

<sens_id> An integer that identifies the sensitivity. If BC is specified
for {sens_type}, then this value is the BC card number. If
MT is specified for {sens_type}, this value is the material
number.

<sens_flt> A floating point number whose meaning is also dependent
on the selection of {sens_type}. If BC is specified, this
value is the BC data float number. If MT is specified, this
value is the material property tag.

<file_name> A character string corresponding to a file name into which
the data should be printed.

Examples

The following example shows a sample input deck section with three data requests:
Post Processing Data Sensitivities =
DATA_SENS = VELOCITY2 1 1 0 BC 5 3 data_sens.out
DATA_SENS = VELOCITY1 6 1 0 BC 5 3 data_sens.out
DATA_SENS = VELOCITY1 6 1 0 BC 4 0 data_sens.out
END OF DATA_SENS

Revised: 6/12/13 821

4.14.12 END OF DATA_SENS

Technical Discussion

NOTE: In order to compute data sensitivities with respect to dirichlet boundary
condition floats, the boundary conditions need to be "soft" set in the input file, i.e. the
optional parameter should be set to 1.0.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.14.12 END OF DATA_SENS

Description/Usage

This card is used to denote the end of a set of DATA_SENS cards and is only used when
the Post Processing Data Sensitivities card is present and one or more DATA_SENS
cards are specified.

Examples

A simple example of using this card in context is shown below.
Post Processing Data Sensitivities =
DATA_SENS = VELOCITY2 1 1 0 BC 5 3 data_sens.out
END OF DATA_SENS

Technical Discussion

No discussion.

Theory

No Theory.

END OF DATA_SENS

822 Revised: 6/12/13

4.15 Post Processing Particle Traces

FAQs

No FAQs.

References

No References.

4.15 Post Processing Particle Traces

This option enables the calculation of particle trajectories and computed quantities along the
trajectories. The coordinates of the trajectory starting point and time-stepping parameters are
input using the cards in this section. The computation of quantities along the trajectories and their
subsequent output is controlled through the usr_ptracking routine in user_post.c.

4.15.1 Post Processing Particle Traces

Description/Usage

This card indicates that the cards between this and an END OF PARTICLES card are to
be read and processed. If this card (Post Processing Particle Traces) is not present,
PARTICLE cards will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Particle Traces =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Post Processing Particle Traces =

Revised: 6/12/13 823

4.15.2 PARTICLE

References

No References.

4.15.2 PARTICLE

Description/Usage

Each PARTICLE card represents a separate particle trajectory. As many of these cards
as desired can be input to direct Goma to compute a particle trajectory.

There are eleven values to specify in the <float_list>; definitions of the input
parameters are as follows:

<float1> xpt, the X-coordinate of the origin of the trajectory.

<float2> ypt, the Y-coordinate of the origin of the trajectory.

<float3> zpt, the Z-coordinate of the origin of the trajectory.

<float4> initial_time, the start time for computing the trajectory (a
value in units consistent with rest of the problem, i.e. length
scale/velocity scale).

<float5> end_time, the end time for computing the trajectory. The
trajectory will be computed until the end time is reached or
until the particle trajectory leaves the computational
domain.

<float6> point_spacing, the desired distance between successive
points on the trajectory. The point spacing may be decreased
below this value if required by the trajectory calculation but
it will not exceed it.

<float7> mobility, the mobility of the particle when particles with
inertia are desired. Enter zero for inertia-less trajectories.

<float8> mass, the mass of the particle. If the trajectory of an inertia-
less particle is desired, a value of 0.0 should be entered.

<float9> force_x, the X-component of an external force (such as
gravity) which is to be applied to the particle (with mass).

PARTICLE = <float_list> <file_name>

824 Revised: 6/12/13

4.15.2 PARTICLE

<float10> force_y, the Y-component of an external force (such as
gravity) which is to be applied to the particle (with mass).

<float11> force_z, the Z-component of an external force (such as
gravity) which is to be applied to the particle (with mass).

<file_name> A character string corresponding to a file name into which
the output should be printed.

Thus, the particle trajectory starts at the coordinates defined by xpt, ypt, and zpt. The
trajectory of the particle is computed starting at a time value of initial_time and
continuing until end_time is reached or until the particle exits the computational
domain. The time step is adjusted so that the distance between successive points on the
trajectory is, at most, equal to the point_spacing (it may be less if the time-stepping
algorithm requires it). At each point along the trajectory, the usr_ptracking routine is
called which the user may modify to control the output to file_name.

Examples

Here is an example of an input deck with 6 trajectory cards.
Post Processing Particle Traces =
PARTICLE = -1.8 -0.1 3.0 0 10000 0.02 0 0 0 0 0 part1.out
PARTICLE = -1.8 -0.1 3.0 0 1000 0.02 {mob1} {mass1} 0 {-f1} 0 part1.out
PARTICLE = -1.8 -0.1 3.0 0 1000 0.02 {mob2} {mass2} 0 {-f2} 0 part1.out
PARTICLE = -1.8 -0.15 3.0 0 10000 0.02 0 0 0 0 0 part2.out
PARTICLE = -1.8 -0.15 3.0 0 1000 0.02 {mob1} {mass1} 0 {-f1} 0 part2.out
PARTICLE = -1.8 -0.15 3.0 0 1000 0.02 {mob2} {mass2} 0 {-f2} 0 part2.out

END OF PARTICLES

Technical Discussion

For inertia-less trajectories (i.e. when the product of the particle mass and mobility is
less than or equal to zero), the trajectory simply follows the velocity field;

(4-235)

(4-236)

Trapezoidal rule time integration is utilized with Euler prediction.

For trajectories with particle inertia (i.e. when the product of mass and mobility is
greater than zero), the following evolution equation is used:

td
dx

v x()=

x t t0=()
·

x0=

Revised: 6/12/13 825

4.15.2 PARTICLE

(4-237)

where is the particle mobility (e.g. for a sphere of radius r in a liquid of
viscosity), m is the particle mass, and f is the external force vector acting on the
particle.

The trajectory is computed using a coupled set of ordinary differential equations:

(4-238)

(4-239)

(4-240)

(4-241)

(4-242)

(4-243)

Theory

No Theory.

FAQs

No FAQs.

References

Russel, Saville, and Schowalter, Colloidal Dispersions, pp. 374-377.

td
dx

v ω m
t
2

2

d

d x
– f+

+=

ω 1 6πµr()⁄

µ

u1 x t()=

u2 td
dx

=

td

du1
u2=

mω
td

du2
v u2– ωf+=

u1 t 0=() x0=

u2 t 0=() v x0()=

826 Revised: 6/12/13

4.15.3 END OF PARTICLES

4.15.3 END OF PARTICLES

Description/Usage

 This card is used to denote the end of a set of PARTICLE cards and is only used when
the Post Processing Particle Traces card is present and one or more PARTICLE cards
are specified.

Examples

The PARTICLE card shows an example of using this card in context. Because the card
has no input parameters, it always appears as

END OF PARTICLES

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.16 Volumetric Integration

This option enables computation of overall integrated quantities for a specific volume. Several
standard options are available and the user is permitted to define his/her own integrand to be
evaluated in this section. However, the current implementation of these volumetric integrals is
limited to generalized Newtonian fluids. Output is to a specified file.

END OF PARTICLES

Revised: 6/12/13 827

4.16.1 Post Processing Volumetric Integration

4.16.1 Post Processing Volumetric Integration

Description/Usage

 This card indicates that the cards between this and an END OF VOLUME_INT card are
to be read and processed. If this card (Post Processing Volumetric Integration) is not
present, VOLUME_INT cards will be ignored.

Examples

There are no input parameters for this card, which always appears as follows:

Post Processing Volumetric Integration =

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.16.2 VOLUME_INT

Description/Usage

The VOLUME_INT card activates computation of specified volumetric integrals
during post processing. As many of these VOLUME_INT cards as desired can be input
to Goma. Definitions of the input parameters are as follows:

Post Processing Volumetric Integration =

VOLUME_INT = {volume_type} <blk_id> <species_no> <file_string> [float_list]

828 Revised: 6/12/13

4.16.2 VOLUME_INT

<volume_type> Several choices of volumetric integral are allowed and are
referenced through this parameter. The permissible values
and corresponding volume integral follow:

VOLUME - Volume of the element block specified by
<blk_id>.

DISSIPATION - Total viscous dissipation, , in the
element block specified by <blk_id>

JOULE - Total Joule or Ohmic heating, , in the
element block specified by <blk_id>.

SPECIES_MASS - Integral of concentration of the
component specified by <species_no> in the element
block specified by < blk_id>.

MOMENTUMX, MOMENTUMY, or
MOMENTUMZ - Integral of appropriate component
of the momentum flux over the element block
<blk_id>.

STRESS_TRACE - Integral of the trace of the complete
stress tensor over the element block blk_id.

HEAT_ENERGY - Integral of the sensible heat over
<blk_id> (not currently implemented).

POSITIVE_FILL, NEGATIVE_FILL - Volume
integral of region occupied by positive (negative)
values of the FILL variable in element block < blk_id>.
Note, for either of these cards, [float_list] is required.
NOTE for Level-Set users: There are numerous other
quantities (too-lengthy and esoteric to list here) that can
be integraded vis-a-vis level set fields. Please see code.

NEGATIVE_VX, NEGATIVE_VY, NEGATIVE_VZ -
Velocity integral in one of the three directions over just
the region occupied by negative values of the FILL
variable in level set problems. Note, for any of these
cards, the [float_list] is required.

POROUS_LIQ_INVENTORY - Volume integral of
bulk liquid component density (gas and liquid phase) in
a porous medium. Result is a total inventory of liquid
in the porous phase.

SPEED_SQUARED - Volume integral of the square of
the speed, viz. . Used to measure norm of fluid
kinetic energy level. Should tend to zero for a fluid at
rest.

USER - Volume integral is supplied by the user (not
currently implemented).

τ: v∇

1
σ
--- J

˜
J
˜

⋅()

ρv

pδ
˜

– τ
˜

+()

v
˜

v
˜

•

Revised: 6/12/13 829

4.16.2 VOLUME_INT

SURFACE_SPECIES - Generate locus of points which
correspond to a surface of constant species
concentration according to Ac1+Bc2+Cc3+D=0.
Currently only implemented for 3D linear elements.

LUB_LOAD - “Volume integral” of lubrication pressure
over entire mesh shell block, which is useful for
computing the overall lubrication load. This is
actually an area integral over the shell, thereby yielding
a force.

ELOADX; ELOADY; ELOADZ - Volume integral of
electric field or the gradient of the electric potential for
electrostatic problems.

RATE_OF_DEF_II - Volume integral of the second
invariant of the rate-of-deformation tensor.

<blk_id> The element block id for which the volume integral is
requested.

<species_no> The species number for SPECIES_MASS volume integral.

<file_string> A character string that corresponds to the name of the text
file that will receive the results of the integration at each
time step.

[float_list] A floating point value that specifies the length scale of the
smooth Heaviside function. This parameter is only used for
VOLUME_INT cards in which the {volume_type} is
{POSITIVE|NEGATIVE} _FILL or
NEGATIVE_V{X|Y|Z}. The float list is also used for the
constants A, B, C, etc in the SURFACE_SPECIES type

Examples

 Here is an example of an input deck with 3 VOLUME_INT cards.
Post Processing Volumetric Integration =

VOLUME_INT = VOLUME 1 0 volume.out

VOLUME_INT = SPECIES_MASS 2 3 species3.out

VOLUME_INT = NEGATIVE_FILL 1 0 fill.out 0.1

END OF VOLUME_INT

Technical Discussion

The volume integrations are carried out as follows;

volume_type volume integral

830 Revised: 6/12/13

4.16.3

VOLUME

DISSIPATION

JOULE

SPECIES_MASS

MOMENTUM_{X|Y|Z}

STRESS_TRACE

{POSITIVE|NEGATIVE}_FILL

NEGATIVE_V{X|Y|Z}

POROUS_LIQ_INVENTORY

Theory

No Theory.

FAQs

No FAQs.

References

No References.

4.16.3

4.16.4 END OF VOLUME_INT

Description/Usage

This card is used to denote the end of a set of VOLUME_INT cards and is only used
when the Post Processing Volumetric Integration card is present and one or more
VOLUME_INT cards are specified.

END OF VOLUME_INT

Vd
pδ

˜
– τ+() v∇• Vd

1
σ
---J J Vd⋅

cj Vd
ρ i j k | v• Vd
tr pδ

˜
– τ

˜
+() Vd

H φ() Vd
H φ() i j k{ } v• Vd
ρgasφ 1 S–() ρliqφS+[] Vd

Revised: 6/12/13 831

4.16.4 END OF VOLUME_INT

Examples

The VOLUME_INT card shows an example of using this card in context. Because the
card has no input parameters, it always appears as

END OF VOLUME_INT

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

832 Revised: 6/12/13

5 Data Input-- Material Files

5 Data Input-- Material Files

The material (“mat”) file for Goma contains a description or specification of all the properties
required for the multi-physics capabilities of Goma. A separate *.mat file must be developed for
each material present in each simulation. The mat file (see Figure 5) is split into seven sections:
(1) Physical Properties (Section 5.1), (2) Mechanical Properties and Constitutive Equations
(Section 5.2), (3) Thermal Properties (Section 5.3), (4) Electrical Properties (Section 5.4), (5)
Microstructure Properties (Section 5.5), (6) Species Properties (Section 5.6), and (7) Source
Terms (Section 5.7).

Each section in this chapter discusses a separate part of the material file specification and it
indicates the data cards or input records that may be used, followed by the options available for
each individual record (or line in the file) and the necessary input data/parameters. All input data
are specified in a free field format with successive data items separated by blanks or tabs. In this
version of the user’s manual, a new format has been instituted in which each record is presented in
a template structure. This template has eight parts: 1) a title, which is also the card name, 2) a
syntax, which is enclosed in a framed box and shows the proper contents of the card, 3) a
Description/Usage section, which presents the user options and descriptions of proper input
records, 4) an Example, 5) a Technical Discussion to provide relevant information to help the user
understand how to select from among various options or how to properly determine the desired
parameters, 6) a Theory to provide an understanding of the physics and mechanics that have been
implemented or are being exercised, 7) a FAQs section to present important user experience, and
8) a Reference section to identify citations and/or provide background information to the user.
This is a more lengthly but a more complete form for documenting and instructing users of Goma.

The syntax entry denotes a unique string for each input record which Goma parses in the input
file. All words in these unique strings are separated by a single white space and because the code
parses for these exact strings, the parser becomes case sensitive. The identifying string for a
particular specification is followed by an ‘=’ character. Following this character will be all
additional data for that record, if any. In the syntax box, this additional data is symbolically
represented by one or more variables with some appropriate delimiters. Typically, the user will
find a variable called model_name enclosed in curly braces ‘{}’; this would then be followed by
a description of specific options for model_name in the Description/Usage section. The curly
braces indicate a required input and that the user must select one of the offered options for
model_name. Required parameters, if any, for the model option are enclosed in angle brackets ‘<
>’, while optional parameters for model_name are enclosed in square brackets ‘[]’. Following
the ‘=’ character, the user may use white space freely between and among the remaining
parameters on the command line.

Figure 4 illustrates a typical material file. The section headers, e.g., “--- Physical Properties”, are
user comments that are not processed by the input parser. In all sections of this chapter,
model_name is a character string and floating_point_const_list is a list of floating point numbers

Revised: 6/12/13 833

5 Data Input-- Material Files

---Physical Properties
Density = CONSTANT 1000.

---Mechanical Properties and Constitutive Equations
Solid Constitutive Equation = LINEAR

Convective Lagrangian Velocity = NONE

Lame MU = CONSTANT 1.

Lame LAMBDA = CONSTANT 1.

Stress Free Solvent Vol Frac = CONSTANT 0.

Liquid Constitutive Equation = NEWTONIAN

Viscosity = USER 1. 1. 1. 1. 1.

Low Rate Viscosity = CONSTANT 0.
Power Law Exponent = CONSTANT 0.
High Rate Viscosity = CONSTANT 0.
Time Constant = CONSTANT 0.
Aexp = CONSTANT 0.
Thermal Exponent = CONSTANT 0.
Yield Stress = CONSTANT 100.
Yield Exponent = CONSTANT 10.0
Suspension Maximum Packing = CONSTANT 0.68
Suspension Species Number = 0
Cure Gel Point = CONSTANT.75
Cure A Exponent = CONSTANT1.0
Cure B Exponent = CONSTANT.01
Cure Species Number = 1
Polymer Constitutive Equation= NOPOLYMER

---Thermal Properties
Conductivity = USER 1. 1. 1. 1. 1. 1.

Heat Capacity = CONSTANT 1.

Volume Expansion = CONSTANT 1.

Reference Temperature = CONSTANT 1.

Liquidus Temperature = CONSTANT 1.

Solidus Temperature = CONSTANT 1.

---Electrical Properties

Electrical Conductivity = CONSTANT 1.

---Microstructure Properties
Media Type = CONTINUOUS

Porosity = DEFORM 0.5
Permeability = CONSTANT1.
Permeability = CONSTANT 0.001
Rel Gas Permeability = SUM_TO_ONE 0.0001
Rel Liq Permeability = VAN_GENUCHTEN 0.01 0.01 0.667 0.01
Saturation = VAN_GENUCHTEN 0.01 0.01 3.0 1.

---Species Properties
Diffusion Constitutive Equation= FICKIAN

Diffusivity = CONSTANT 0 1.

Latent Heat Vaporization = CONSTANT 0 0.

Latent Heat Fusion = CONSTANT 0 0.

Vapor Pressure = CONSTANT 0 0.

Species Volume Expansion = CONSTANT 0 0.

Species Volume Expansion = CONSTANT 0 0.

Reference Concentration = CONSTANT 0 0.

*************Species Number****************|

----Source Terms
Navier-Stokes Source = USER 1. 1. 1. 1. 1.

Solid Body Source = CONSTANT 0. 0. 0.

Mass Source = CONSTANT 0.

Heat Source = CONSTANT 1.

Species Source = CONSTANT 0 2.

*************Species Number***********|
Current Source = CONSTANT 0.

Figure 4. Sample material-description file format. Lines

highlighted in bold-face type are required.

Line is repeated
for each species

Lines are repeated
for each species

834 Revised: 6/12/13

5 Data Input-- Material Files

of arbitrary length separated by a comma or one or more white spaces. The remainder of this
chapter covers each card (line) of the material-description file in detail. For each parameter that is
not dimensionless, base units are indicated in square brackets ([]) at the end of the syntax line;
the base units are those indicated in the Nomenclature section of this document. Empty brackets (
[]) denote dimensionless parameters, while those without units or brackets are simply model
names, other strings, or integers. Several model parameters, e.g., Diffusivity, where the model
options include other than the CONSTANT type with a single input value, identify the units as
[varied]. In these cases, the parameter units will be listed for the CONSTANT model option and
the units for individual input parameters will be identified in the parameter description.

All property models will eventually have a USER and a USER_GEN option. When the former is
selected, the user must add the user model to the appropriate routine in the file user_mp.c. This
file contains a template to simplify the implementation of a model in a full-Newton context, but
has the restriction that none of the models can contain a dependence on gradients of variables. For
more complex models, which contain such dependencies, the user must resort to the more
sophisticated mechanism that comprise the routines in user_mp_gen.c

A relatively new capability/model available on many of the properties is a table-lookup feature.
That is, if the model is of type TABLE, then a linear or bilinear interpolation is used to extract the
material property value from a table of numbers representing the dependence. The best way to
explain this is with an example. Often times a property is dependent on temperature, or related
dependent variable. If discrete data is available of the property value at various temperatures, as
from a spreadsheet, then such a table can be read and with appropriate interpolation operations the
property value is determined. Throughout the material property options, the reader might see aat
TABLE option. The syntax for the input of that option is as follows:

<Property name> = TABLE <integer1> <character_string1> [character_string2] {LINEAR |
BILINEAR} [integer2] [FILE = filenm]

Here, the integers, character strings and floats are defined as follows:

<integer1> - the number N of columns in the table. The first N-1 columns are the values of the
independent variables (e.g. temperature, concentration, etc.) and the final Nth column is the
property value. This number is usually 2.

<character_string1> - Required variable name for first column. Valid variable names are
TEMPERATURE, MASS_FRACTION, SPECIES, CAP_PRES, FAUX_PLASTIC, and
LOWER_DISTANCE. The last three are specific to the Saturation model of porous flow,
the LAME Mu model, and the Lubrication Height function model, respectively.
Temperature and mass fraction dependence are available in all properties with a TABLE option
which make sense.

[character_string2] - Optional second variable name for bi-linear lookup dependence. This is
exploratory.

Revised: 6/12/13 835

5.0.1 Default Database

{LINEAR | BILINEAR} - type of interpolation

[integer2] - species number required only for MASS_FRACTION, SPECIES, and
FAUX_PLASTICITY variables.

[FILE = <filenm>] - The optional keyword ‘FILE=’ indicates that the table data is to be read
from a separate file identified by <filenm>. Each row of the table corresponds to one variable
value, and is input in free form CSV or space separated values. Note that if this ‘FILE=’ option is
not present then the data will be read from the input material file itself following the TABLE
model card. The end of the table is signaled by the keyword “END TABLE” (see example below).

Some examples are in order:

Lame MU = TABLE 2 FAUX_PLASTIC 0 LINEAR FILE=stress_strain_comp.txt

...

Lame MU = TABLE 2 TEMPERATURE LINEAR

1. 293

2. 300

3. 425.

END TABLE

Finally, before we get started, the following is an option added to allow existing Chemkin
material property databases to be read in, basically obviating the need to even read the material
(mat) file. The detailed description of input records provided in this chapter thus applies to the
case when the Default Database is set to GOMA_MAT.

5.0.1 Default Database

Description/Usage

This card sets the default material database type. The default for this card is
GOMA_MAT. In that case, all material properties for the current material are obtained
from the current material file being read. If the default database is Chemkin, then the
Chemkin 3 linking files are read in, and initialization of most of the methods and data
for thermodynamic function evaluation, the stoichiometry and names of species and
elements, the homogeneous and heterogeneous source terms for chemical reactions and

Default Database = {GOMA_MAT | CHEMKIN_MAT}

836 Revised: 6/12/13

5.1 Physical Properties

their coupling into the energy equation, and transport property evaluations occurs.
Many fields in the materials database file that were required now are optional. After
Chemkin initialization, the rest of the materials database file is then read in. At that
time, some fields containing methods and data that were initialized with Chemkin
methods and data may be overwritten with methods and data specified by the material
file. Other fields not initialized or even handled by Chemkin (such as surface tension)
must be initialized for the first time by the materials file. Thus, the use of Chemkin
materials database doesn’t mitigate the need for a Goma materials file.

Examples

Following is a sample card:

Default Database = CHEMKIN_MAT

Technical Discussion

Chemkin includes its own rigorous treatment of ideal gas thermodynamics and
transport property evaluations, providing it with a solid foundation on which to build
kinetics mechanisms and a rigorous treatment of gas phase transport property
evaluation. In order to maintain internal consistency, the new treatment must be used in
its entirety.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.1 Physical Properties

The intrinsic property of materials essential to Goma is the density. As Goma presumes that all
materials are incompressible, density is a constant in the governing differential equations.
However, several options for models of density are present in the code because numerous
processes lead to density changes, though during any analysis cycle, the density is constant.

Revised: 6/12/13 837

5.1.1 Density

5.1.1 Density

Description/Usage

This required card is used to specify the model, and all associated parameters, for
density. Definitions of the input parameters are as follows:

{model_name} Name of the density model. This parameter can have
one of the following values: CONSTANT, USER,
FILL, SUSPENSION, IDEAL_GAS,
THERMAL_BATTERY, LEVEL_SET,
CONST_PHASE_FUNCTION, FOAM,
REACTIVE_FOAM, or SOLVENT_POLYMER.
Boussinesq models can be selected through the Navier-
Stokes Source card.

{float_list} One or more floating point numbers (<float1> through
<floatn> whose interpretation is determined by the
selection for {model_name}.

Thus, choices for {model_name} and the accompanying parameter list are given
below; additional guidance to the user can be found in the Technical Discussion section
following the Examples.

CONSTANT <float1>

For the CONSTANT density model, {float_list} is a
single value:

<float1> - Density [M/L3]

USER <float1> ... <floatn>

For a user-defined model, the set of parameters
specified as <float1> through <floatn> are defined in the
function usr_density.

FILL <float1> <float2>

The model is used with the fill equation when the
location of the free surface between two fluids is tracked
with a volume-of-fluid method. The {float_list}
contains two values for this model, where:

<float1> - Density of the fluid in phase 1, denoted
by F=1

Density = {model_name} {float_list} [M/L3]

838 Revised: 6/12/13

5.1.1 Density

<float2> - Density of the fluid in phase 2, denoted
by F=0

This card is required when using the FILL momentum
source model (Navier-Stokes Source in Source Terms
section of manual) since it makes use of this model to
compute the value of the density

SUSPENSION <float1> <float2> <float3>

The option is used to model a suspension where the
solid particle phase and the carrier fluid have different
densities. The {float_list} contains three values for this
model, where:

<float1> - Species number associated with the
solid particulate phase (the parser
reads this as a float but it is cast as
an integer when assigned).

<float2> - Density of the fluid in the carrier
fluid,

<float3> - Density of the solid particulate
phase, .

THERMAL_BATTERY <float1> <float2>

This model is used to relate electrolyte density to field
variables such as mole fraction. A simple empirical
form is used, with two constants in the {float_list}:

<float1> - Base Electrolyte Density, .
<float2> - Constant, .

(See Technical Discussion.)

SOLVENT_POLYMER <float1>

This density model is used primarily in problems
involving drying of polymeric solutions. The single float
parameter on this card is specific volume of the solvent
material. Note that the numerical value for this parameter
must be chosen to be consistent with the specific volumes
for each species in the solution set with the Specific
Volumes card in the material file (discussed below).

LEVEL_SET <float1> <float2> <float3>

This model is used to vary the density in the flow
regime when following an interface between two fluids
using level set interface tracking. This choice assures a

ρf

ρs

ρ0
a

Revised: 6/12/13 839

5.1.1 Density

smooth transition in density across the zero level set
contour. The {float_list} contains three values for this
model, where:

<float1> - Fluid density in the negative regions of
the level set function,

<float2> - Fluid density in the positive regions of the
level set function,

<float3> - Length scale over which the transition
occurs, . If this parameter is set to zero,
it will default to one-half the Level Set
Length Scale value already specified.

This card is required when using the LEVEL_SET
momentum source model (Navier-Stokes Source in
Source Terms section of manual) since it makes use of
this model to compute the value of the density.

CONST_PHASE_FUNCTION <floatlist> <float1> <float2>

This model is used to vary the density in the flow
regime when using phase function tracking of muliple
phases. This choice assures a smooth transition in
density across the phase boundaries. The {float_list}
contains a variable number of values that depend on the
number phase functions being tracked, where:

<floatlist> list of float variables equal to the number
of phase functions. These are the
constant densities of each phase in order
from 1 to number of phase functions that
are represented by each phase function.

<float1> Length scale over which the transition
between one phases density to the other
occurs, . If this parameter is set to zero,
it will default to one-half the Level Set
Length Scale value already specified.

<float3> The “null” value for density. This is the
value for density which will be assigned
to those regions of the flow where all the
phase functions are less than or equal to
zero.

This card is required when using the
PHASE_FUNCTION momentum source model
(Navier-Stokes Source in Source Terms section of

ρ–

ρ +

α

α

840 Revised: 6/12/13

5.1.1 Density

manual) since it makes use of this model to compute the
value of the density.

REACTIVE_FOAM <float1>

This model is used when a constant density assumption
does not apply in the model of interest, as with reactive
mixtures. While this model was implemented for foam
applications, the form of the density equation is quite
universal. One important assumption in this model is
that the volume change upon mixing is zero. The single
float input is the specific volume of the N+1 species (not
modeled in the problem.

This model choice requires the use of the FOAM
species source model - Goma will fail if it is not
specified. Please see the Species Source section for
instructions on specifying the FOAM model.

Examples

Following are some sample input cards:
Density = CONSTANT 1000.
Density = LEVEL_SET 0.05 0.0001 0.25
DENSITY = CONST_PHASE_FUNCTION 0.9 0.001 12.0 0.0 0.00001

Technical Discussion

• The CONSTANT density model prescribes an unchanging value for an
incompressible fluid; only a single value need be specified by the user.

• The USER model provides a means for the user to create a custom density model
for his/her problem. This user-defined model must be incorporated by modifying
the usr_density function in the file user_mp.c. The parameters needed by this
model are entered in the {float_list} and are passed to the usr_density routine
as an array.

• The FILL model is used when the location of the interface between two fluids is
tracked with an explicit volume-of-fluid method. The value of density is defined
from the following:

(5-1)

where and are the phase densities obtained from the FILL density card,
F is the value of the fill color function. As can be seen, is the density value

ρ F() ρ1F ρ0 1 F–()+=

ρ1 ρ0
ρ1

Revised: 6/12/13 841

5.1.1 Density

when F = 1 while is the density value when F = 0. In the transition zone
between these to extremes of F, the density will simply be a weighted average
of the two values.

• The SUSPENSION model is used to model a suspension where the solid particle
phase and the carrier fluid have different densities. The concentration of the
continuum mixture is defined by the following relationship:

(5-2)

where is the volume fraction of the solid particulate phase, , is the density
of the fluid in the carrier fluid and , is the density of the solid particulate
phase. The solid particulate phase has an associated species number as this is
designates the species equation being solved for this component.

• The THERMAL_BATTERY model is used to relate electrolyte density to field
variables such as mole fraction. A simple empirical form is used with the density
of the system being specified by the following equation,:

(5-3)

where is the mole fraction of ionic species i, is the base electrolyte
density and is a constant.

• The LEVEL_SET density model is used to vary the density in the flow regime
from one phase to the other when the interface between two fluids is being
followed by level set interface tracking. The model assures a smooth transition in
density across the zero level set contour. The density as a function of the level set
function value, φ, is as follows:

(5-4)

(5-5)

(5-6)

where

(5-7)

is a smooth Heaviside function, φ is the value of the level set function, ρ+ and
ρ- are density values of the fluids assigned positive or negative values of the
level set function, respectively, and α is the density transition length scale, that

ρ0

ρ ρf ρs ρf–()φ+=

φ ρf

ρs

ρi ρ0 axi+=

xi ρ0
a

ρ φ() ρ-, φ α–<=

ρ φ() ρ- ρ+ ρ-–()Hα φ()+[], α φ α< <–=

ρ φ() ρ+, φ α>=

Hα φ() 1 φ α⁄ πφ α⁄()sin π⁄++() 2⁄=

842 Revised: 6/12/13

5.2 Mechanical Properties and Constitutive Equations

is, half the width of the transition zone between density values. Note that this
value may differ from the level set length scale parameter set elsewhere.

• The CONST_PHASE_FUNCTION model computes the density at a given point
with the following relation:

(5-8)

where are the individual phase function () densities, , is the
smoothed Heaviside function using the length scale specified on the card.
The parameter is the null density and will only come into play at points
were all phase function values are less than zero. In theory, this shouldn’t
happen for well posed problems, but in practice it is not uncommon.

• The SPECIES_SOURCE and REACTIVE_FOAM models both employ the
following density formula:

 (5-9)

where wj is the mass fraction of component j and Vj is the specific volume of
species j; these two parameters are set by the Specific Volume cards in the
material file. The variable N is the total number of bulk species. The variable
Vn+1 is the specific volume specified in the density card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2 Mechanical Properties and Constitutive Equations

This section of the material property input specifies the type of model, for both solids and fluids,
that relates stress and strain (or strain-rate) as well as the various parameters for these models.
Models for solids are relatively simple compared to solid mechanics codes but cover the primary

ρ ρiHα φi() ρ∅+

Nf

=

ρi φi Hα φi()

α

ρ∅

ρmix VN 1+ Wj Vj VN 1+–()

j 1=

N

+

1–

=

Revised: 6/12/13 843

5.2.1 Solid Constitutive Equation

needs in fluid-solid problems. The models for fluids are quite extensive, covering Newtonian,
generalized-Newtonian, rate-dependent models, thermally-dependent models, curing and particle-
laden models and combinations of these. These properties are used in the solid and fluid
momentum conservation equations.

5.2.1 Solid Constitutive Equation

Description/Usage

This required card specifies the constitutive equation used to control mesh motion and/
or the constitutive model describing solid material stress response to deformation. The
single input parameter is defined as

{model_name} The name of the constitutive equation. The permissible
values for {model_name} are dependent on the selection for
the Mesh Motion type, that being one of ARBITRARY,
LAGRANGIAN/DYNAMIC_LAGRANGIAN, or
TOTAL_ALE.

For an ARBITRARY Mesh Motion, {model_name} can be
one of the following:

LINEAR - a linear elastic model for which the
deformations are assumed to be small, thus simplifying
the analysis of strain and stress.

NONLINEAR - a nonlinear neo-Hookean elastic model
for which the deformations can be large without loss of
frame invariance. This is the recommended model (and
all materials currently default to NONLINEAR if the
mesh is arbitrary).

For a LAGRANGIAN, DYNAMIC_LAGRANGIAN, or
TOTAL_ALE Mesh Motion, {model_name} can be one of
the following:

LINEAR - a linear elastic model for which the
deformations are assumed to be small, thus simplifying
the analysis of strain and stress.

NONLINEAR - a nonlinear neo-Hookean model
applicable for 2D, 3D, and CYLINDRICAL
coordinates.

Solid Constitutive Equation = {model_name}

844 Revised: 6/12/13

5.2.1 Solid Constitutive Equation

HOOKEAN_PSTRAIN - a nonlinear neo-Hookean
model with plane strain for which the deformations can
be large without loss of frame invariance (2D only).

HOOKEAN_PSTRESS - a nonlinear neo-Hookean
model with plane stress (not activated in Goma 4.0).

INCOMP_PSTRAIN - An incompressible nonlinear
neo-Hookean model with plane strain and a Lagrangian
pressure constraint on the volume.

INCOMP_PSTRESS - An incompressible nonlinear
neo-Hookean model with plane stress and a Lagrangian
pressure constraint on the volume (not activated in
Goma 4.0).

INCOMP_3D - Incompressible version of the neo-
Hookean solid in a special Segalman formulation that
removes the volume-change from the strain tensor (like
the INCOMP_PSTRAIN model above), and is
specifically designed for 3D applications (not widely
used).

The functional form of each of these equations is provided in the Technical Discussion
with some important details.

Examples

The following is a sample input card:

Solid Constitutive Equation = LINEAR

This equation type requires two elastic constants be specified, Lame Lambda and Lame
Mu. This constitutive equation can be used for all Mesh Motion types. It is not
recommended for large mesh deformations, even for ALE problems, because of
spurious stresses generated by solid body translation or rotation.

Technical Discussion

The general compressible form of Hooke’s Law, which applies to the LINEAR,
NONLINEAR and HOOKEAN_PSTRAIN options, can be written as

(5-10)

Here is the Lame coefficient for volume expansion, is the volume strain measure
whose definition depends on the model chosen, is another elastic Lame coefficient
for shear deformation, and is the chosen strain tensor, the form of which also
depends on the constitutive model chosen.

σ
˜

λεI
˜

2µE
˜

+=

λ ε

µ

E
˜

Revised: 6/12/13 845

5.2.1 Solid Constitutive Equation

The general incompressible form of Hooke’s Law, which applies to all INCOMP*
options, can be written as:

(5-11)

with p being the solid phase pressure. An additional continuity equation is required in
this case to account for the pressure (see Continuity equation card). Note, for these
model options one must set the Lame LAMBDA coefficient to zero, or the pressure term
and the expansion term are added together.

The volume change and strain tensors depend on the chosen solid constitutive equation
and are as follows:

For the LINEAR option:

(5-12)

and

 (5-13)

where is the displacement field vector, tr is the tensor trace operator, and the
gradient operator () is with respect to the deformed coordinates.

For all NONLINEAR models, we use the deformation gradient tensor as a building
block:

(5-14)

The “material coordinates” are and describe the original locations of all parcels of
material in the domain; and the “current configuration/spatial coordinates” are the
deformed mesh coordinates. Of course we have

(5-15)

for all LAGRANGIAN mesh motion cases. We define a Cauchy-Green tensor as:

(5-16)

and invoke the linearized small strain theory (viz. that), and write

σ
˜

pI
˜

2µE
˜

+=

ε
˜

tr ∇d
˜

∇d
˜

()
T

+()=

E
˜

∇d
˜

∇d
˜

()
T

+()=

d
˜

∇

F
˜ m

∂x
˜m

∂X
˜

----------≡ I
˜

d
˜

∇–()
1–

=

X
˜ x

˜

d
˜

x
˜

X
˜

–≡

C
˜

1
2
--- F

˜
F
˜

T
I
˜

–[]≡

∇xd
˜

∇Xd
˜

≅

846 Revised: 6/12/13

5.2.1 Solid Constitutive Equation

(5-17)

With these quantities, we form the volume strain and strain tensor for the various
models:

For NONLINEAR, INCOMP_PSTRAIN, INCOMP_3D, and HOOKEAN_PSTRAIN:

 (5-18)

For INCOMP_PSTRAIN and INCOMP_3D we use:

(5-19)

For all other models we use . It is noteworthy that we use the linearized small
strain theory for parts of the strain tensor, but the real Lagrangian deformation gradient
for the volumetric strain. For elastoviscoplastic models and TOTAL_ALE solid
mechanics, we do not invoke the linearized small strain theory.

Also noteworthy is that the elastic constants and are related to the more well
known bulk and Young’s moduli and the Poisson’s ratio by simple expressions (see
Lame Mu and Lame Lambda cards).

Theory

The incompressible options (i.e., INCOMP_PSTRAIN and INCOMP_PSTRESS
and INCOMP_3D) use the theory of Segalman, et. al. (1992) to control mesh motion
and couple the volume dilation to changes in solvent content. Plane strain implies that
there is no deformation in the z-direction; plane stress implies there is no stress change
in the z-direction.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

C
˜

∇d
˜

∇d
˜

()
T

∇d
˜

T
∇d

˜
+ +()=

ε 3 det F
˜

()

1
3

1–

=

E
˜

1
2
--- 1 det F

˜
()

2
3

–

I det F
˜

()

2
3

C
˜

+=

E
˜

C
˜

=

λ µ

Revised: 6/12/13 847

5.2.2 Plasticity Equation

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

Segalman, D., W. Witkowski, D. Adolf, M. Shahinpoor, “Theory and Application of
Electrically Controlled Polymeric Gels”, Smart Mater. Struct. 1:95-100 (1992).

5.2.2 Plasticity Equation

Description/Usage

This optional card specifies the formulation for the potential yielding/plastic flow
regime during solid deformation. This card is not to be used in place of the Solid
Constitutive Equation card, but rather supplements that card to describe the constitutive
behavior during plastic deformation. Elastic deformation still proceeds according to the
model specified on the Solid Constitutive Equation card (i.e., for regimes that have not
yielded). The single input parameter is defined as

{model_name} Name of the plasticity model. This parameter can have one
of the following values:

EVP_HYPER a constitutive equation that uses the elasticity portion
specified on the Solid Constitutive Equation card for
unyielding material and a complex hyperelastic plasticity
equation for the yielding/flowing material as determined by
the Von Mises yield criterion.

NO_MODEL this, or any value other than EVP_HYPER, will result in no
plastic deformation.

Requirements for the use of this model are

• Transient problems only

• LAGRANGIAN mesh motion only; no TALE

• Continuous media only; no porous media (as specified on the Media Type card)

Plasticity Equation = {model_name} []

848 Revised: 6/12/13

5.2.2 Plasticity Equation

• Elastic Plane Strain models only (i.e., INCOMP_PSTRAIN in the Solid
Constitutive Equation card)

• a Plastic Viscosity card and an EVP Yield Stress card must also be supplied.

Examples

Following is a sample card:

Plasticity Equation = EVP_HYPER

which specifies hyperelastic elastoviscoplastic model is to be used for a solid phase
constitutive equation. In addition to the Lame coefficients that are still required as the
mechanical properties of the unyielded material, this model also requires a plastic
viscosity and a yield stress, viz.

Plastic Viscosity = LINEAR 1.0 2.0
EVP Yield Stress = CONSTANT 50.0

Technical Discussion

Detailed theoretical discussion, usage tutorials and troubleshooting tips for this model
are covered in the EVP tutorial (GT-019.1). Usage examples for four different strain
scenarios are given, including a solid yielding from an applied mechanical load and a
solid yielding from high shrinkage stress during drying.

Theory

No Theory.

FAQs

Problem – Trouble in continuing the first few time steps.

Solution – You may have a fast drying case with slow diffusion in the coating. Instead
of decreasing the time step size according to the normal procedure and intuition,
increase the time step size. With fast drying and slow diffusion, the initial
concentration gradient is very steep at the drying surface. This is a very difficult
numerical problem to solve. So when you increase the time step size, in effect, you are
relaxing the concentration gradient the program is solving, that will get you past the
initial numerical difficulty. However, even if the code can handle such a condition, the
concentration and stress profile may appear very wavy. This waviness only reflects the
degree of difficulty the code encountered and is not part of the real solution. In this
case, refining the mesh towards the drying surface will only increase the waviness of
the solution. Drawing from this observation, coarsening the mesh will also get you past
this initial numerical difficulty. Although this condition may pose numerical stability

Revised: 6/12/13 849

5.2.3 Convective Lagrangian Velocity

problems initially, it does not affect subsequent solution. And most of the time, one is
not interested in the solution from the initial time steps.

Problem – Trouble in converging in the plastic region.

Solution – Reduce the time step size because viscoplasticity is in itself a time
dependent problem and elasticity in itself is not. Before the material yields, time
dependency is induced only through the drying process. The reduction in time step size
depends on the value of the plastic viscosity. The lower the viscosity, the small time
step should be used. Also, it takes more iterations to converge a time step in the
viscoplastic region than the elastic region, so increasing the maximum allowable
iterations per time step will help.

Other Cautions:

Always set the MASS_FRACTION in the input file to be the same as the Stress
Free Solvent Vol Frac in the material file.

The code has been tested for a wide range of initial solvent volume fractions
(up to 0.85). When using very high initial solvent volume fractions
(approaching 0.85 or beyond), use with caution.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January
11, 2001

S.Y. Tam’s thesis: “Stress Effects in Drying Coatings,” Ph.D Dissertation, University of
Minnesota, 1997

5.2.3 Convective Lagrangian Velocity

Description/Usage

In solid mechanics, when the deformation of the mesh is Lagrangian, i.e., motion of the
solid can be described by a mapping from the stress-free state (undeformed state) to the
deformed state, it is often desirable to prescribe a convective velocity of the stress-free
state that can lead to inertial forces through deformation (see Technical Discussion
below). This required card allows for the specification of solid-body translation or

Convective Lagrangian Velocity = {model_name} {float_list} [L/t]

850 Revised: 6/12/13

5.2.3 Convective Lagrangian Velocity

rotation of the stress-free state, and results in an inertial term on the otherwise quasi
static solid momentum equation.

Definitions of the input parameters are as follows:

{model_name} Name of the prescribed velocity model. This parameter
can have one of the following values: NONE,
CONSTANT, or ROTATIONAL.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model below. Note that not all
models employ a {float_list}.

Thus,

NONE the stress-free state is assumed to be unmoving. No
floating point input values are required with this model.

CONSTANT <float1> <float2> <float3>

the stress-free state is one of solid-body translation, viz.
it moves uniformly with a velocity specified by three
orthogonal components:

<float1> - X-component of velocity
<float2> - Y-component of velocity
<float3> - Z-component of velocity (for 3-D)

ROTATIONAL <float1> <float2> <float3> <float4>

the stress-free state is one of solid-body rotation at a
specified rotation rate.

<float1> - Rotation rate, in radians/sec.
<float2> - X-position of axis of rotation (must be

constant in 3D).
<float3> - Y-position of axis of rotation (must be

constant in 3D, viz. the axis must be
perpendicular to both the X and Y axes,
viz. the axis must be the Z axis.

<float4> - Set to zero. Parameter is not used for now.

Note that this model is applicable in 2-D and certain 3-D
problems in which the rotation axis is the Z-axis. To
generalize this model to three-dimensions, the proper
input will require a point and a direction of the rotation

Revised: 6/12/13 851

5.2.3 Convective Lagrangian Velocity

axis. In two-dimensions, the axis of rotation is the Z-
direction.

Examples

The following is a sample input card:

Convective Lagrangian Velocity = ROTATIONAL 25.0 1. 1. 0.

This card is associated with a material file, and hence a material that is of
LAGRANGIAN or TOTAL_ALE type (see Mesh Motion card). That material’s stress-
free state, as specified by this model, will rotate about an axis that is located at [1.0,
1.0, 0] at 25 radians/sec (assuming seconds are the time scale of the problem).

Technical Discussion

This capability is often used when problems require a force or a boundary condition to
be applied to a solid material that is moving relative to the source, or the desired frame
of reference. Such constraints arise mainly in fluid-structure interaction problems
where one solid material is moving relative to another, with a fluid material in between,
e.g. deformable blade or knife metering/pushing liquid over a flat or round substrate.
These models have also been used in porous-material translation relative to a drying
source (see references below).

Specification of any model but NONE on this card produces the left-hand-side term in
the equation for quasi static equilibrium:

(5-20)

 is the Cauchy stress tensor of the solid material, and is the body force per unit
volume. The first term is a result of the specified advection of the stress-free state. ,
which depends solely on the user-prescribed velocity and the current state of
deformation, is by definition

. (5-21)

where is the material deformation gradient tensor (computed somewhat differently
depending on the formulation, as described in the references below), and is the
stress-free state velocity field specified by this card.

Theory

No Theory.

ρv
˜m
0 v

˜
0
m∇• σ

˜
∇•=

σ
˜

f
˜ vm

0

v
˜m
0 ∂xm

∂X

∂X
∂t
------⋅ F

˜ m v
˜sfs

⋅= =

F
˜ m

v
˜sfs

852 Revised: 6/12/13

5.2.4 Lame MU

FAQs

No FAQs.

References

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

5.2.4 Lame MU

Description/Usage

This required card is used to specify the model for the Lame coefficient µ for the solid
constitutive equation (see Sackinger, et. al. 1995, and Solid Constitutive Equation
card); this coefficient is equivalent to the shear modulus in most cases, as described
below.

Definitions of the input parameters are as follows:

{model_name} Name of the Lame Mu coefficient model. This
parameter can have one of the following values:
CONSTANT, POWER_LAW, CONTACT_LINE,
SHEAR_HARDEN, EXPONENTIAL,
DENSE_POWER_LAW, or USER.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model.

The details of each model option are given below:

CONSTANT <float1>

Lame MU = {model_name} {float_list} [M/Lt2]

G

Revised: 6/12/13 853

5.2.4 Lame MU

For the CONSTANT model, {float_list} is a single
value:

<float1> - Standard value of the coefficient µ.

(See Technical Discussion.)

POWER_LAW <float1> <float2> <float3>

The POWER_LAW model is only to be used for
deformable porous media where the shear modulus is
allowed to vary as a power of the porosity, (see
Scherer, 1992):

(5-22)

The {float_list} contains three values for this model,
where:

<float1> - is the base shear modulus at the initial
porosity (or µ0)

<float2> - is the porosity in the stress free state
<float3> - m is the powerlaw exponent.

CONTACT_LINE <float1> <float2> <float3> <float4>

The CONTACT_LINE model is a convenient way to
control mesh deformation near a fixed point and is
normally used ONLY for ARBITRARY Mesh Motion
types. This model enables the user to make the shear
modulus much larger near the contact line (fixed point)
than far away from the contact line, so that elements
near the contact line are forced to retain their shape. The
shear modulus in this model varies inversely with
distance from the contact line:

(5-23)

r is the distance from the fixed point, is a decay
length, is the modulus far from the contact line, and

 is the modulus at the contact line.

The {float_list} contains four values for this model,
where:

φ

G G0
1 φ–
1 φ0–

 m

=

G0

φ0

G G0
0.1

r r0⁄()
3

0.1 G1⁄+()
---+=

r0

G0

G0 G1+

854 Revised: 6/12/13

5.2.4 Lame MU

<float1> - Node set number of the fixed point
(converted to an integer by Goma)

<float2> - (or µ0)
<float3> -
<float4> -

SHEAR_HARDEN <float1> <float2>

The SHEAR_HARDEN model is:

(5-24)

where is the coefficient of variation, IIE is the second
invariant of the strain tensor (see Solid Constitutive
Equation card), is the modulus at zero shear.

The {float_list} contains two values for this model,
where:

<float1> - (or µ0)
<float2> -

EXPONENTIAL <float1> <float2> <float3>

The EXPONENTIAL model is used exclusively for
poroelastic problems, and allows for an exponential
dependence of the shear modulus µ (or G) on porosity:

(5-25)

where is the rate of decay, is the porosity in the
stress-free state, is the modulus at zero shear.

The {float_list} contains three values for this model,
where:

<float1> -
<float2> -
<float3> -

DENSE_POWER_LAW <float1> <float2>

The DENSE_POWER_LAW model is used mostly for
drying/consolidation problems for which it is desired to
have a plateau max-pack modulus behavior. This option
requires input from the Stress Free Solvent Vol Frac
card (y0 in equation below), and is used for solvent

G0

G1

r0

G G0 χ IIE()
2

+=

χ

G0

G0

χ

G G0e
λ φ0 φ–()

=

λ φ0

G0

G0

λ

φ0

Revised: 6/12/13 855

5.2.4 Lame MU

drying from a condensed, gelled phase. The functional
form for the shear modulus is

(5-26)

where is the power law exponent, is deformation
gradient tensor (see Solid Constitutive Equation card), and

 is the modulus at zero shear. This function is truncated
or clipped at the low end value at G=10-12.

The {float_list} contains three values for this model,
where:

<float1> -
<float2> -
<float3> -

TABLE <integer1> <character_string1> {LINEAR | BILINEAR} [integer2]
[FILE = filenm]

Please see discussion at the beginning of the material
properties chapter 5 for input description and options.

USER <float1>,..., <floatn>

For the USER model, {float_list} is of arbitrary length,
and the values are used through the param[] array in
usr_lame_mu function to parameterize a user-defined
model. See examples in user_mp.c.

All modulus values in these equations have the same units as Lame Mu, i.e., M/Lt2.

Examples

Following is a sample card:

Lame MU = CONSTANT 1.

Technical Discussion

Note that µ and λ, (see the Lame LAMBDA card) are related to the more often used
Young’s Modulus and Poisson’s Ratio by the following standard expressions:

G G0
1 det F()–

1 y0–

 m

=

m F

G0

G0

λ

φ0

856 Revised: 6/12/13

5.2.4 Lame MU

(5-27)

where E is the Young’s modulus and υ is Poisson’s ratio. A significant limiting case is
approached as υ approaches 0.5, in which case the solid becomes incompressible.

The POWER_LAW option could easily be adapted to a concentration measure, viz.
made dependent on the concentration of some species (see EQ = species_bulk card).
This can be done through the user option, and in fact in usr_lame_mu function of
file user_mp.c in the Goma distribution has an example that is appropriate. Also
note that all of these models are available for the elastoviscoplastic option on the
Plasticity card, and for the real-solid in TOTAL_ALE mesh motion.

Theory

No Theory.

FAQs

Important note that when one desires an incompressible solid through the use of
INCOMP_PSTRAIN type models, by using an incompressible continuity equation in a
LAGRANGIAN mesh region (see EQ = continuity), then the bulk modulus, or Lame
Lambda expansion term is also added on. So to get a truly incompressible response,
one must set the Lame LAMBDA coefficient to zero.

References

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

Scherer, G.W., 1992, “Recent Progress in Drying of Gels”, J. of Non-Crystalline Solids,
147&148, 363-374

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January
11, 2001

GTM-027: Probing Plastic Deformation in Gelatin Films during Drying, M. Lu, S. Y.
Tam, A. Sun, P. R. Schunk and C. J. Brinker, 2000

E
µ 3λ 2µ+()

λ µ+
----------------------------= υ λ

2 λ µ+()
---------------------=

Revised: 6/12/13 857

5.2.5 Lame LAMBDA

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.2.5 Lame LAMBDA

Description/Usage

This required card is used to specify the model for the Lame coefficient λ for the solid
constitutive equation (see Sackinger, et. al., 1995). When using a nonlinear constitutive
equation for ALE mesh motion, this coefficient is related to the bulk modulus:

(5-28)

Definitions of the input parameters are as follows:

{model_name} Name of the Lame LAMBDA model. This parameter can
have one of the following values: CONSTANT,
POWER_LAW, EXPONENTIAL or USER.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model below.

The models are described here.

CONSTANT <float1>

For the CONSTANT model, {float_list} is a single
value (see Lame MU card for relationship to other more
common elastic constants):

<float1> - Standard value of the elastic constant λ

POISSON_RATIO <float1>

For any Lame MU model (see Lame MU card) this
option uses the following formula to compute Lame
Lame LAMBDA:

Lame LAMBDA = {model_name} {float_list} [M/Lt2]

K λ
2
3
---µ+=

λ 2µν
1 2ν–()

--------------------=

858 Revised: 6/12/13

5.2.5 Lame LAMBDA

<float1> - Poisson’s ratio nu.

POWER_LAW <float1> <float2> <float3>

The POWER_LAW model can be used in deformable
porous media where the Lame coefficient varies as a
power of the porosity, (Scherer, 1992):

(5-29)

 The {float_list} contains three values for this model,
where:

<float1> - is the base Lame LAMBDA modulus at
the initial porosity.

<float2> - is the porosity in the stress-free state
<float3> - m is the powerlaw exponent, as shown

USER <float1>,..., <floatn>

For the USER model, {float_list} is of arbitrary length,
and the values are used through the param[] array in
usr_lame_lambda function to parameterize a user-
defined model. See examples in user_mp.c.

Examples

Following is a sample card:

Lame LAMBDA = CONSTANT 1.

Technical Discussion

Please see the Solid Constitutive Equation card for details on the use of this parameter.
Special consideration is required for INCOMP* type constitutive equations. The
isotropic stress term, or pressure, in that case is added onto the constitutive equation,
and so this parameter must be set to zero so as to prevent any compressibility.

Important note that when one desires an incompressible solid through the use of
INCOMP_PSTRAIN type models, by using an incompressible continuity equation in a
LAGRANGIAN mesh region (see EQ = continuity), then the bulk modulus, or Lame
Lambda expansion term is also added on. So to get a truly incompressible response,
one must set the Lame LAMBDA coefficient to zero.

φ

λ λ0
1 φ–
1 φ0–

 m

=

λ0

φ0

Revised: 6/12/13 859

5.2.6 Stress Free Solvent Vol Frac

Theory

No Theory.

FAQs

No FAQs.

Reference

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

Scherer, G.W., 1992, “Recent Progress in Drying of Gels”, J. of Non-Crystalline Solids,
147&148, 363-374

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.2.6 Stress Free Solvent Vol Frac

Description/Usage

This required card is used to specify the model for the stress-free solvent volume
fraction, which is the volume fraction of solvents in the solid material in its stress-free
state. This card is used exclusively in materials of LAGRANGIAN or TOTAL_ALE
Mesh Motion types (see Mesh Motion card) which are being modeled as gelled solids
laden with solvent. At the gel-point, the solid is considered to be stress free, after which
a reduction of solvent leads to volume shrinkage and hence a rising stress state.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the stress-free solvent volume
fraction.

<float> the value of the stress-free solvent volume fraction; this
value is unitless.

Stress Free Solvent Vol Frac = CONSTANT <float> []

860 Revised: 6/12/13

5.2.6 Stress Free Solvent Vol Frac

Examples

The following is a sample card:

Stress Free Solvent Vol Frac = CONSTANT 0.5

This specification sets the volume fraction of solvent in the material to 50 per cent.
That volume fraction is tantamount to the gel point of the material.

Technical Discussion

The stress free state volume fraction of solvent is basically the solvent fraction at which
a material gels, viz., the state at which the material solidifies from a liquid state. This
quantity is used in the continuity equation for incompressible solid materials, through
which is transported by a variety of diffusion models (see Diffusivity card). The
continuity equation, viz., EQ = continuity, is applied as follows:

(5-30)

where the dependent variable is the solid phase pressure (see Solid Constitutive
Equation card). Here detF is the determinant of the deformation gradient tensor, yi is
the volume fraction of component i (specified by the EQ = species_bulk card), and y0 is
the volume fraction of total solvents at the stress free state. Clearly, as the solvent
concentration decreases the local volume of solid decreases, creating a rising stress.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January
11, 2001

detF
˜

1 y0–

1 yi

i

–

---------------------=

Revised: 6/12/13 861

5.2.7 Solid Thermal Expansion

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.2.7 Solid Thermal Expansion

Description/Usage

This card is used to specify the model for thermal expansion of solid materials.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the thermal expansion coefficient.

SHRINKAGE Model for adding solidification shrinkage stress effects for
enthalpy models. Experimental only (1/25/2013).

<float> the value of the thermal expansion coefficient. For the
SRINKAGE model this float is not used.

Examples

The following is a sample card:

Solid Thermal Expansion = CONSTANT 0.001

Technical Discussion

When solid materials expand due to temperature changes, the strain field is composed
of two components, the strain due to the stress field and the strain due to thermal
expansion:

(5-31)

The strain due to thermal expansion is given by

(5-32)

where is the linear thermal expansion coefficient and is the reference temperature
(see Solid Reference Temperature card). As a result, the solid constitutive relation
contains an extra term:

Solid Thermal Expansion = {CONSTANT | SHRINKAGE} <float> [1/T]

ε
˜

ε
˜

S()
ε
˜

T()
+=

ε
˜

T()
α T T0–()δ

˜
=

α T0

862 Revised: 6/12/13

5.2.8 Solid Reference Temperature

. (5-33)

Note, the linear thermal expansion coefficient is presumed to be independent of strain
and the Lame constants are presumed to be independent of temperature. (Model is
hardwired right now in GOMA source, PRS 1/23/2013).

In the case of the SHRINKAGE model, an additional term is added on to the deviatoric
stress:

Theory

No Theory.

FAQs

No FAQs.

References

For a discussion of linear thermoelasticity, see (Section 6.2)

Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium,
Prentice-Hall

5.2.8 Solid Reference Temperature

Description/Usage

This card is used to specify the model for the solid reference temperature used in the
thermal expansion of solid materials. Definitions of the input parameters are as
follows:

CONSTANT Name of the model for the reference temperature.

<float> A floating point number that is the value of the solid
reference temperature, .

Solid Reference Temperature = CONSTANT <float> [T]

σ
˜

2µε
˜

λtr ε
˜

()δ
˜

2µα T T0–()δ
˜

–+=

Tref

Revised: 6/12/13 863

5.2.9 Plastic Viscosity

Examples

The following is a sample card:

Solid Reference Temperature = CONSTANT 90.0

Technical Discussion

See the Solid Thermal Expansion card for a discussion of the use of this property in the
linear thermoelasticity of solids.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.9 Plastic Viscosity

Description/Usage

This card is used to specify the characteristic viscosity of plastic deformation and is
required when the Plasticity Equation card is present. Definitions of the input model
options are as follows:

CONSTANT Name of the model for a constant plastic viscosity.

<float1> - the value of the viscosity.

LINEAR Name of the model for a linear variation in plastic viscosity;
this model requires two floating point values as parameters.

<float1> - y1, the lower limit of plastic viscosity
<float2> - y2, the upper limit of plastic viscosity

Examples

Following is a sample card:

Plastic Viscosity = {CONSTANT | LINEAR} <float1> [float2] [M/L-t]

864 Revised: 6/12/13

5.2.9 Plastic Viscosity

Plastic Viscosity = LINEAR 1.0 100.

This specification results in a linear variation of plastic viscosity of the
elastoviscoplasticity constitutive equation with concentration of solvent species
according to the equation above.

Technical Discussion

Using the concentration of solvent species as the independent variable in the LINEAR
model, the viscosity y at a certain concentration c is:

(5-34)

where Vsf is the stress-free solvent volume fraction and the solvent volume fraction at
solidification, which is set by the Stress Free Solvent Vol Fraction card in the
material file. The input parameters for the LINEAR model are the plastic viscosity
limits y1 and y2. NOTE: this model activates a linear dependence on concentration and
hence can only be used for cases in which there is solvent transport.

So for a typical drying/solidification problem, the material file input deck requirements
are shown as follows:

Stress Free Solvent Vol Frac = CONSTANT 0.6
Plasticity Equation = EVP_HYPER
Plastic Viscosity = LINEAR 1.0 2.0
EVP Yield Stress = CONSTANT 50.0

Together with these properties one must specify the elastic constants Lame Mu and
Lame Lambda.

Theory

See Schunk, et. al., 2001 (GT-019.1).

FAQs

No FAQs.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January
11, 2001

y y1

Vsf c–

Vsf

y2 y1–()+=

Revised: 6/12/13 865

5.2.10 EVP Yield Stress

GTM-020.0: In-Situ Characterization of Stress Development in Gelatin Film During
Controlled Drying, M. Lu, S-Y Tam, P. R. Schunk and C. J. Brinker, March 2000.

GTM-027.0: Probing Plastic Deformation in Gelatin Films during Drying, M. Lu, S. Y.
Tam, A. Sun, P. R. Schunk and C. J. Brinker, 2000.

S.Y. Tam’s thesis: “Stress Effects in Drying Coatings,” Ph.D Dissertation, University of
Minnesota, 1997

5.2.10 EVP Yield Stress

Description/Usage

This card is used to specify the characteristic yield stress for Von Mises yield criterion
of plastic deformation and is required when the Plasticity Equation card is present.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for a constant yield stress.

<float1> - the value of the yield stress.

LINEAR Name of the model for a linear variation in yield stress; this
model requires two floating point values as parameters.

<float1> - y1, the lower limit of yield stress
<float2> - y2, the upper limit of yield stress

Examples

Following is a sample card:

EVP Yield Stress = LINEAR 1.0 100.

This specification results in a linear variation of yield stress of the elastoviscoplasticity
constitutive equation with concentration of solvent species according to the equation
above.

Technical Discussion

Using the concentration of solvent species as the independent variable, the yield stress
y at a certain concentration c is:

EVP Yield Stress = {CONSTANT | LINEAR} <float1> [<float2>] [M/L-t2]

866 Revised: 6/12/13

5.2.10 EVP Yield Stress

(5-35)

where Vsf is the stress-free solvent volume fraction and the solvent volume fraction at
solidification, which is set by the Stress Free Solvent Vol Fraction card in the
material file. The input parameters for the LINEAR model are the plastic viscosity
limits y1 and y2. NOTE: this model activates a linear dependence on concentration and
hence can only be used for cases in which there is solvent transport.

So for a typical drying/solidification problem, the material file input deck requirements
are shown as follows:

Stress Free Solvent Vol Frac = CONSTANT 0.6
Plasticity Equation = EVP_HYPER
Plastic Viscosity = LINEAR 1.0 2.0
EVP Yield Stress = CONSTANT 50.0

Together with these properties one must specify the elastic constants Lame Mu and
Lame Lambda.

Theory

See Schunk, et. al., 2001 reference.

FAQs

No FAQs.

References

GT-019.1: Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing,
and Tutorial, P. R. Schunk, A. Sun, S. Y. Tam (Imation Corp.) and K. S. Chen, January
11, 2001

GTM-020.0: In-Situ Characterization of Stress Development in Gelatin Film During
Controlled Drying, M. Lu, S-Y Tam, P. R. Schunk and C. J. Brinker, March 2000.

GTM-027.0: Probing Plastic Deformation in Gelatin Films during Drying, M. Lu, S. Y.
Tam, A. Sun, P. R. Schunk and C. J. Brinker, 2000.

S.Y. Tam’s thesis: “Stress Effects in Drying Coatings,” Ph.D Dissertation, University of
Minnesota, 1997

y y1

Vsf c–

Vsf

y2 y1–()+=

Revised: 6/12/13 867

5.2.11 Pseudo-Solid Constitutive Equation

5.2.11 Pseudo-Solid Constitutive Equation

Description/Usage

This card specifies the constitutive equation used to control mesh motion for arbitrary
Lagrangian Eulerian solid mechanics and is required for use with the TOTAL_ALE
mesh motion type (see Mesh Motion card). Details are discussed in references provided
below.

The single input parameter is the type of model for the constitutive equation:

{model_name} The name of the constitutive equation; {model_name} can
be one of the following:

LINEAR - the mesh deformations are assumed to be
small and thus simplifies the analysis of strain and
stress.

NONLINEAR - a nonlinear neo-Hookean elastic model
for which the deformations can be large without loss of
frame invariance. This is the recommended model (and
all materials currently default to NONLINEAR if the
mesh is arbitrary).

The following models are allowed but not recommended.

HOOKEAN_PSTRAIN - a nonlinear neo-Hookean
model with plane strain assumption (2D only).

INCOMP_PSTRAIN - an incompressible nonlinear neo-
Hookean model with plane strain and a Lagrangian
pressure constraint on the volume.

INCOMP_3D - Incompressible version of the neo-
Hookean solid in a special Segalman formulation that
removes the volume-change from the strain tensor (like
the INCOMP_PSTRAIN model above), and is
specifically designed for 3D applications (not a widely
used option).

Note again the requirement that the Mesh Motion type for the material in which this
constitutive equation applies must be TOTAL_ALE.

Examples

Pseudo-Solid Constitutive Equation = NONLINEAR

Pseudo-Solid Constitutive Equation = {model_name}

868 Revised: 6/12/13

5.2.11 Pseudo-Solid Constitutive Equation

This card specifies the mesh motion in the ALE solid region is to conform to the
nonlinear elastic model, as described on the Solid Constitutive Equation card. This card
is required together with Pseudo-Solid Lame Mu and Pseudo-Solid Lame Lambda
cards.

Technical Discussion

The Pseudo-Solid mesh motion, like the ARBITRARY mesh motion, is governed by the
equations of elasticity. These cards, together with the other cards required by the real
solid constitutive behavior, are required for ALE solid mechanics. The theory is
explained in detail in the provided references. Throughout the boundary condition
options, the user will notice an appended _RS. This signifies that the boundary
conditions apply to the real-solid elasticity in TOTAL_ALE problems. All other
boundary conditions on force and displacement, viz. those without the _RS, are applied
to the mesh motion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

SAND2000-0807: TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-
Structure Interaction Problems, P. R. Schunk (May 2000)

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

Revised: 6/12/13 869

5.2.12 Pseudo-Solid Lame MU

5.2.12 Pseudo-Solid Lame MU

Description/Usage

This card is required only for TOTAL_ALE mesh motion types (see Mesh Motion card)
and is used to specify the model for the Lame coefficient µ for the mesh motion solid
constitutive equation (see Sackinger et al. 1995, and Solid Constitutive Equation card);
this coefficient is equivalent to the shear modulus . The model list here is
abbreviated as compared to the Lame MU card as these properties are just used to aid in
the elastic mesh motion, independent of the material.

Definitions of the input parameters are as follows:

{model_name} Name of the Lame’ Mu coefficient model. This
parameter can have one of the following values:
CONSTANT or CONTACT_LINE.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model below.

The details of each model option are:

CONSTANT <float1>

For the CONSTANT model, {float_list} is a single
value:

<float1> - Standard value of the µ (or the shear
modulus G for the mesh). See Pseudo
Solid Constitutive Equation card.

CONTACT_LINE <float1> <float2> <float3> <float4>

The CONTACT_LINE model is a convenient way to
control mesh deformation near a fixed point and is
normally used ONLY for TOTAL_ALE or ARBITRARY
Mesh Motion types. This model enables the user to
make the shear modulus much larger near the contact
line (fixed point) than far away from the contact line, so
that elements near the contact line are forced to retain
their shape. The shear modulus in this model varies
inversely with distance from the contact line:

Pseudo-Solid Lame MU = {model_name} {float_list} [M/Lt2]

G

870 Revised: 6/12/13

5.2.12 Pseudo-Solid Lame MU

(5-36)

r is the distance from the fixed point, is a decay
length, is the modulus far from the contact line, and

 is the modulus at the contact line.

The {float_list} contains four values for this model,
where:

<float1> - Node set number of the fixed point
(converted to an integer by Goma)

<float2> - (or µ0)
<float3> -
<float4> -

Examples

Pseudo-Solid Lame MU = CONSTANT 0.5

This card specifies that the current material have a constant shear modulus of 0.5 for
the mesh elasticity. Note that the real-solid mesh Lame MU is set with the Lame MU
card.

Technical Discussion

It is best to consult the TALE tutorial (Schunk, 1999) for details of this card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

G G0
0.1

r r0⁄()
3

0.1 G1⁄+()
---+=

r0

G0

G0 G1+

G0

G1

r0

Revised: 6/12/13 871

5.2.13 Pseudo-Solid Lame LAMBDA

5.2.13 Pseudo-Solid Lame LAMBDA

Description/Usage

This card is required only for TOTAL_ALE mesh motion types (see Mesh Motion card)
and is used to specify the model for the Lame coefficient λ for the mesh motion
elasticity (see Sackinger et al., 1995).

This material parameter currently has only one possible model type (CONSTANT)
with only a single required input value, as follows:

CONSTANT Name of the Lame LAMBDA coefficient model.

<float1> - Standard value of µ (or the shear modulus G
for the mesh). See Pseudo-Solid Constitutive
Equation card.

Examples

The following is a sample input card:

Pseudo-Solid Lame LAMBDA = CONSTANT 1.

Technical Discussion

See discussion on Lame LAMBDA card and Solid Constitutive Equation card for more
details. The main difference here is that this modulus is applied only to the moving
mesh, and not the real solid as in an ALE solid mechanics simulation.

Theory

No Theory.

FAQs

No FAQs.

References

GT-005.3: THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media, August 6,
1999, P. R. Schunk

Pseudo-Solid Lame LAMBDA = CONSTANT <float> [M/Lt2]

872 Revised: 6/12/13

5.2.14 Liquid Constitutive Equation

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

5.2.14 Liquid Constitutive Equation

Description/Usage

This required card is used to specify the stress, strain-rate/strain constitutive equation
associated with the momentum equations (e.g. Navier-Stokes equations) and contains
Newtonian and generalized Newtonian models. The single input parameter is the
{model_name} with the options listed below:

{model_name} Name of the constitutive equation, being one of the
following values: NEWTONIAN, POWER_LAW,
CARREAU, BINGHAM, CARREAU_WLF, CURE,
THERMAL, EPOXY, SUSPENSION,
FILLED_EPOXY, POWERLAW_SUSPENSION,
CARREAU_SUSPENSION, or
HERSCHEL_BULKLEY. Each of these constitutive
models require additional parameters that are entered
via additional cards, as described below.

Thus,

NEWTONIAN For a simple constant viscosity Newtonian fluid. This
model requires one floating point value, µ, where µ is
the viscosity in the chosen units for the problem and is
entered with the Viscosity card.

POWER_LAW For a power law model. This model requires two
parameters. The first, µ0, is the zero strain-rate limit of
the viscosity and is entered with the Low Rate Viscosity
card. The second, n, is the exponent on the strain rate
which can take on any value between 1 (Newtonian) and
0 (infinitely shear thinning). n is entered with the Power
Law Exponent card. The form of the equation is

(5-37)

Liquid Constitutive Equation = {model_name}

µ µ0γ·
n 1–

=

Revised: 6/12/13 873

5.2.14 Liquid Constitutive Equation

where is the second invariant of the shear-rate tensor.
To obtain solutions with the power law model, it is best
to start with a Newtonian initial guess since the
viscosity becomes infinite at zero shear-rate.

CARREAU For a Carreau-Yasuda strain-rate thinning or thickening
relation. This option requires five floating point values.
The first, µ0, is the zero strain-rate limit of the viscosity
and is entered with the Low Rate Viscosity card. The
second, n, is the exponent on the strain rate which can
take on any value between 1 (Newtonian) and 0
(infinitely shear thinning). n is entered with the Power
Law Exponent card. The third, µinf, is the high-strain-
rate limit to the viscosity and is entered with the High
Rate Viscosity card. The fourth, λ, is the time constant
reflecting the strain-rate at which the transition between
µ0 and µinf takes place. λ is entered with the Time
Constant card. The fifth, a, is a dimensionless parameter
that describes the transition between the low-rate and
the power-law region and is entered with the Aexp card.
The form of the equation is

(5-38)

where is the second invariant of the shear-rate tensor.

BINGHAM For a Bingham-Carreau-Yasuda fluid. This option
requires eight floating point values. It uses the same
parameters as the CARREAU model with the addition
of coefficients to describe the yield and temperature
dependent behavior. The first, µ0, is the zero strain-rate
limit of the viscosity and is entered with the Low Rate
Viscosity card. The second, n, is the exponent on the
strain rate which can take on any value between 1
(Newtonian) and 0 (infinitely shear thinning). n is
entered with the Power Law Exponent card. The third,
µinf, is the high-strain-rate limit to the viscosity and is
entered with the High Rate Viscosity card. The fourth, λ,
is the time constant reflecting the strain-rate at which
the transition between µ0 and µinf takes place. λ is
entered with the Time Constant card. The fifth, a, is a
dimensionless parameter that describes the transition

γ·

µ µinf µ0 µinf–()+ 1 λγ·()
a

+()

n 1–()
a

=

γ·

874 Revised: 6/12/13

5.2.14 Liquid Constitutive Equation

between the low-rate and the power-law region and is
entered with the Aexp card. The form of the equation is

(5-39)

where is a simplified temperature dependent shift
factor that is expressed as an Arrhenius type
temperature dependence of the following form:

(5-40)

The exponent for the temperature dependence, Eµ/R, is
input using the Thermal Exponent card. Tref is input
using the Reference Temperature card in the thermal
properties section of the material file. The stress at
which the material yields is input with the Yield Stress
card. The sharpness of the transition from the solid to
fluid state, F, is indicated with the Yield Exponent card.

CARREAU_WLF An extension of the Carreau-Yasuda model to
incorporate a temperature-dependent shift in shear-rate
according to the Williams-Landel-Ferry equation
(Hudson and Jones, 1993). The form of the equation is

(5-41)

where is another form of the temperature-dependent
shift factor:

(5-42)

Here is a thermal exponential factor (can be
Arrhenius) and is input by the Thermal Exponent card;

 is the WLF constant 2 and is input by the Thermal
WLF Constant2 card. µ0, is the zero strain-rate limit of
the viscosity and is entered with the Low Rate Viscosity

µ aT µinf µ0 µinf– τy

1 e
aTγ· F–

–

aTγ·
-------------------------------+

+ 1 aTλγ·()
a

+

n 1–()
a

=

aT

aT e

Eµ

R
------ 1

T

1
Tref

---------–

=

µ aT µinf µ0 µinf–()+ 1 aTλγ·()
a

+

n 1–()
a

=

aT

αT

c1 Tref T–()

c2 T Tref–+
-------------------------------exp=

c1

c2

Revised: 6/12/13 875

5.2.14 Liquid Constitutive Equation

card. n, is the exponent on the strain rate which can take
on any value between 1 (Newtonian) and 0 (infinitely
shear thinning) and is entered with the Power Law
Exponent card. µinf, is the high-strain-rate limit to the
viscosity and is entered with the High Rate Viscosity
card. λ, is the time constant reflecting the strain-rate at
which the transition between µ0 and µinf takes place and
is entered with the Time Constant card. a, is a
dimensionless parameter that describes the transition
between the low-rate and the power-law region and is
entered with the Aexp card.

CURE For a model to increase the viscosity with the extent of
reaction. The Cure model can be used to represent
polymerizing systems whose viscosity depends on the
extent of reaction. The form of the equation is

(5-43)

This option requires four floating point values. The first,
µ0, is the reference state viscosity and is entered with
the Low Rate Viscosity card. The constant, αg, is entered
with the Cure Gel Point card and marks the extent of
reaction at the transition from the liquid to the solid
state. The exponents A and B are entered with the Cure
A Exponent and Cure B Exponent cards.

THERMAL For a temperature-dependent viscosity. This option,
which requires two floating point values, can be used to
represent fluids that change viscosity with temperature.
The form of the equation is

(5-44)

where the reference state viscosity, µ0, is entered with
the Low Rate Viscosity card. The exponent, Eµ/R, is
specified using the Thermal Exponent card.

EPOXY For a thermal and curing component. The Epoxy model
combines the temperature dependence of the
THERMAL option with the extent of reaction

µ µ0

αg

αg α–

 A Bα+

=

µ µ0e

Eµ

RT

=

876 Revised: 6/12/13

5.2.14 Liquid Constitutive Equation

dependence of the CURE option. The functional form
of the equation is:

(5-45)

Five cards must be used to specify all the parameters for
this model. The first, µ0, is the reference state viscosity
and is entered with the Low Rate Viscosity card. The
thermal exponent, Eµ/R, is specified using the Thermal
Exponent card. The constant, αg, is entered with the
Cure Gel Point card and marks the extent of reaction at
the transition from the liquid to the solid state. The
exponents A and B are entered with the Cure A Exponent
and Cure B Exponent cards.

SUSPENSION For simulating a carrier fluid with high-volume fraction
particles. This option invokes a concentration-
dependent viscosity model useful in modeling solid
suspensions. The functional form associated with this
option is,

(5-46)

where µ0 is effectively the viscosity of the suspending
fluid specified with the Low Rate Viscosity card, n is an
exponent specified by the Power Law Exponent card
and is typically less than zero. Cmax is the “binding”
solid concentration and is specified with the Suspension
Maximum Packing card. Ci is the solid concentration
and is tied to a convective-diffusion equation specified
in the equation section of the Problem Description. The
correct species number “i” is specified with the
Suspension Species Number card. Note that for Ci >
Cmax and n < 0, the model as written above is physically
undefined. For concentrations in this range, a very large
value for viscosity will be used, effectively solidifying
the material.

FILLED_EPOXY This option combines the cure and thermal dependence
of the EPOXY model with the solid volume fraction

µ µ0e

Eµ

RT
------- αg

αg α–

A Bα+

=

µ µ0 1
Ci

Cmax

-------------–

 n

=

Revised: 6/12/13 877

5.2.14 Liquid Constitutive Equation

dependence of the SUSPENSION model. The
functional form of this equation is

(5-47)

with the temperature Tg being calculated from

(5-48)

Here the viscosity now depends on extent of reaction,
temperature and solid volume fraction. Nine cards must
be specified to define the parameters for this option and
are entered in the following manner. The first, µ0, is the
reference state viscosity and is entered with the Low
Rate Viscosity card. n is the exponent for suspension
behavior and is specified by the Power Law Exponent
card; it is typically less than zero. Cmax is the “binding”
solid concentration and is specified with the Suspension
Maximum Packing card. Ci is the solid concentration
and is tied to a convective-diffusion equation specified
in the equation section of the previous chapter. The
correct species number “i” is identified with the
Suspension Species Number card. Here is a thermal
exponential factor and is input by the Thermal Exponent
card; is a second thermal exponent and is entered via
the Cure B Exponent card. The constant for the curing
model, αg, is entered with the Cure Gel Point card and
marks the extent of reaction at the transition from the
liquid to the solid state. The cure exponent used in the
EPOXY model is here assumed to be constant (-4/3)
and is fixed in the model. The constant A in the gel
temperature equation is entered with the Cure A
Exponent card and the temperature is entered with
the Unreacted Gel Temperature card. Although it does
not appear directly in the model equations, the Cure
Species Number must also be specified.

POWERLAW_SUSPENSION

µ µ0 1
Ci

Cmax

-------------–

 n

10

C1– T Tg–()

C2 T Tg–+

1
α
αg

 2

–

1.333–

=

Tg
T

0
g

1 Aα–
----------------=

c1

c2

T
0
g

878 Revised: 6/12/13

5.2.14 Liquid Constitutive Equation

This is a specialized research model that incorporates
the power law model with the suspension model to try
and simulate particles suspending in shear-thinning
fluid. This option requires five input values. The first,
µ0, is the zero strain-rate limit of the viscosity of the
solvent and is entered with the Low Rate Viscosity card.
The second, n, is the exponent on the strain rate which
can take on any value between 1 (Newtonian) and 0
(infinitely shear thinning). n is entered with the Power
Law Exponent card. The third value is the exponent for
the suspension Krieger model, which is input through
the Thermal Exponent, m. The fourth term is the
suspension maximum packing, Cmax, which is entered
through the Suspension Maximum Packing card. Ci is
the solid concentration and is tied to a convective-
diffusion equation specified in the equation section of
the previous chapter. The correct species number “i” is
identified with the Suspension Species Number card.
The form of the equation is

(5-49)

where is the second invariant of the shear-rate tensor.
It is best to start with a Newtonian initial guess for the
power law suspension model, since the viscosity for the
power law model will become infinite at zero shear-rate.

CARREAU_SUSPENSION

This model is a hybrid for the flow of particle-laden
suspensions in shear-thinning fluids. It uses a Carreau-
Yasuda strain-rate thinning or thickening relation for the
suspending fluid and a Krieger model for the
suspension. This option requires eight input values. The
first, µ0, is the zero strain- rate limit of the viscosity and
is entered with the Low Rate Viscosity card. The second,
n, is the exponent on the strain rate which can take on
any value between 1 (Newtonian) and 0 (infinitely shear
thinning). n is entered with the Power Law Exponent
card. The third, µinf, is the high-strain-rate limit to the
viscosity and is entered with the High Rate Viscosity
card. The fourth, λ, is the time constant reflecting the
strain-rate at which the transition between µ0 and µinf

µ µ0γ·
n 1–

1
Ci

Cmax

-------------–

 m

=

γ·

Revised: 6/12/13 879

5.2.14 Liquid Constitutive Equation

takes place. λ is entered with the Time Constant card.
The fifth, a, is a dimensionless parameter that describes
the transition between the low-rate and the power-law
region and is entered with the Aexp card. The sixth value
is the exponent for the suspension Krieger model, which
is input through the Thermal Exponent, m. The seventh
term is the suspension maximum packing, Cmax, which
is entered through the Suspension Maximum Packing
card. Ci is the solid concentration and is tied to a
convective-diffusion equation specified in the equation
section of the previous chapter. The correct species
number “i” is identified with the Suspension Species
Number card.The form of the equation is

(5-50)

where is the second invariant of the shear-rate tensor.

HERSCHEL_BULKLEY

This is a variant on the power law model that includes a
yield stress. It requires three input values to operate: a
reference viscosity value, µ0, a power-law exponent, n.
and a yield shear stress value, τy. The model for this
constitutive relations is as follows:

(5-51)

The nature of this relation is best seen by multiplying
the entire relation by the shear rate to produce a relation
between shear stress and shear rate. In this manner it can
be seen that the shear stress does not go to zero for zero
shear rate. Instead it approaches the yield shear stress
value. Put another way, only for imposed shear stresses
greater than the yield stress will the fluid exhibit a non-
zero shear rate. This is effective yielding behavior.

A caveat needs stating at this point. This model is
essentially a superposition of two power-law models.
One with the supplied exponent and the other with an
implicit exponent of n = 0. It has long been observed

µ µinf µ0 µinf–()+ 1 λγ·()
a

+()

n 1–()
a

1
Ci

Cmax

-------------–

 m

=

γ·

µ
τy

γ·
----- µ0 γ·()

n 1–
+=

880 Revised: 6/12/13

5.2.14 Liquid Constitutive Equation

that power-law models with exponents approaching zero
exhibit very poor convergence properties. The
Herschel_Bulkley model is no exception. To alleviate
these convergence problems somewhat, the sensitivities
of the yield stress term with respect to shear rate has not
been included in the Jacobian entries for this viscosity
model. This helps in that it allows for convergence at
most yield stress values, but also means that the iteration
scheme no longer uses an exact Jacobian. The difference
is seen in that this model will take relatively more
iterations to converge to an answer. The user should
expect this and not be too troubled (it’s alright to be
troubled a little).

Examples

The following is a sample card setting the liquid constitutive equation type to
NEWTONIAN and demonstrates the required cards:

Liquid Constitutive Equation = NEWTONIAN
Viscosity = CONSTANT 1.00

The following is a sample card setting the liquid constitutive equation type to
POWER_LAW and demonstrates the required cards:

Liquid Constitutive Equation = POWER_LAW
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.

The following is a sample card setting the liquid constitutive equation type to
CARREAU and demonstrates the required cards:

Liquid Constitutive Equation = CARREAU
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.
High Rate Viscosity= CONSTANT 0.001
Time Constant = CONSTANT 1.
Aexp = CONSTANT 1.

The following is a sample card setting the liquid constitutive equation type to
BINGHAM and demonstrates the required cards:

Liquid Constitutive Equation = BINGHAM
Low Rate Viscosity= CONSTANT 10.00
Power Law Exponent= CONSTANT .70
High Rate Viscosity= CONSTANT 0.01
Time Constant = CONSTANT 100.
Aexp = CONSTANT 2.5
Thermal Exponent = CONSTANT 1.

Revised: 6/12/13 881

5.2.14 Liquid Constitutive Equation

Yield Stress = CONSTANT 5.
Yield Exponent = CONSTANT 1.0
Reference Temperature= CONSTANT 273.

The following is a sample card setting the liquid constitutive equation type to
CARREAU_WLF and demonstrates the required cards:

Liquid Constitutive Equation = CARREAU_WLF
Low Rate Viscosity= CONSTANT 10.00
Power Law Exponent= CONSTANT .70
High Rate Viscosity= CONSTANT 0.01
Time Constant = CONSTANT 100.
Aexp = CONSTANT 2.5
Thermal Exponent = CONSTANT 1.
Thermal WLF Constant2 = CONSTANT 0.5
Reference Temperature= CONSTANT 273.

The following is a sample card setting the liquid constitutive equation type to CURE
and demonstrates the required cards:

Liquid Constitutive Equation = CURE
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.

The following is a sample card setting the liquid constitutive equation type to
THERMAL and demonstrates the required cards:

Liquid Constitutive Equation = THERMAL
Low Rate Viscosity= CONSTANT 1.
Thermal Exponent= CONSTANT 9.

The following is a sample card setting the liquid constitutive equation type to EPOXY
and demonstrates the required cards:

Liquid Constitutive Equation = EPOXY

Liquid Constitutive Equation = FILLED_EPOXY
Low Rate Viscosity= CONSTANT 1.e5
Thermal Exponent= CONSTANT 9.
Cure Gel Point = CONSTANT 0.8
Cure A Exponent= CONSTANT 0.3
Cure B Exponent= CONSTANT 43.8

The following is a sample card setting the liquid constitutive equation type to
SUSPENSION and demonstrates the required cards:

Liquid Constitutive Equation = SUSPENSION
Low Rate Viscosity= CONSTANT 1.e5
Power Law Exponent = CONSTANT -3.0
Suspension Maximum Packing= CONSTANT 0.49
Suspension Species Number = 0

882 Revised: 6/12/13

5.2.14 Liquid Constitutive Equation

The following is a sample card setting the liquid constitutive equation type to
FILLED_EPOXY and demonstrates the required cards:

Liquid Constitutive Equation = FILLED_EPOXY
Low Rate Viscosity = CONSTANT 1.e5
Power Law Exponent = CONSTANT -3.0
Thermal Exponent = CONSTANT 9.
Suspension Maximum Packing = CONSTANT 0.49
Suspension Species Number = 0
Cure Gel Point = CONSTANT 0.8
Cure A Exponent = CONSTANT 0.3
Cure B Exponent = CONSTANT 43.8
Cure Species Number = 2
Unreacted Gel Temperature = CONSTANT 243

The following is a sample card setting the liquid constitutive equation type to
POWERLAW_SUSPENSION and demonstrates the required cards:

Liquid Constitutive Equation = POWERLAW_SUSPENSION
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.
Thermal Exponent = CONSTANT -1.82
Suspension Maximum Packing= CONSTANT 0.68
Suspension Species Number= 0

The following is a sample card setting the liquid constitutive equation type to
CARREAU_SUSPENSION and demonstrates the required cards:

Liquid Constitutive Equation = CARREAU_SUSPENSION
Low Rate Viscosity= CONSTANT 1.
Power Law Exponent= CONSTANT 1.
High Rate Viscosity= CONSTANT 0.001
Time Constant = CONSTANT 1.
Aexp = CONSTANT 1.
Thermal Exponent = CONSTANT -1.82
Suspension Maximum Packing= CONSTANT 0.68
Suspension Species Number= 0

The following card gives an example of the HERSCHEL_BULKLEY model
Liquid Constitutive Equation = HERSCHEL_BULKLEY
Low Rate Viscosity = CONSTANT 0.337
Power Law Exponent = CONSTANT 0.817
Yield Stress = CONSTANT 1.39

Technical Discussion

See Description/Usage section for this card.

Revised: 6/12/13 883

5.2.15 Viscosity

Theory

The NEWTONIAN, POWER_LAW, and CARREAU models are described in detail
in Bird, et al. (1987). Details of the continuous yield stress model used in the Bingham-
Carreau-Yasuda (BINGHAM) model, which is a Carreau model combined with a
continuous yield stress model, can be found in Papanastasiou (1987).

FAQs

No FAQs.

Reference

Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids,
2nd ed., Wiley, New York, Vol. 1.

Hudson, N. E. and Jones, T. E. R., 1993. “The A1 project - an overview”, Journal of
Non-Newtonian Fluid Mechanics, 46, 69-88.

Papanastasiou, T. C., 1987. "Flows of Materials with Yield," Journal of Rheology, 31
(5), 385-404.

Papananstasiou, T. C., and Boudouvis, A. G., 1997. "Flows of Viscoplastic Materials:
Models and Computation," Computers & Structures, Vol 64, No 1-4, pp 677-694.

5.2.15 Viscosity

Description/Usage

This card is used to specify the viscosity model for the liquid constitutive equation (see
Sackinger et al., 1995). Definitions of the input parameters are as follows:

{model_name} The name of the viscosity model, which can be one of
the following: CONSTANT, USER, USER_GEN, or
FILL, LEVEL_SET, CONST_PHASE_FUNCTION.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model below. Note that not all
models employ a {float_list}.

Viscosity = {model_name} {float_list} [M/Lt]

884 Revised: 6/12/13

5.2.15 Viscosity

Thus,

CONSTANT <float1>

This option specifies a constant viscosity for a
Newtonian fluid. The {float_list} has a single value:

<float1> - value of viscosity

USER <float1>... <floatn>

This option specifies that the viscosity will be given by
a user-defined model; the model must be incorporated
into Goma by modifying function “usr_viscosity”
in file user_mp.c. The model parameters are entered in
the {float_list} as <float1> through <floatn> and passed
to the routine as an array.

USER_GEN <float1>... <floatn>

This option specifies that the viscosity will be given by
a generalized user-defined model. This user-defined
model must be incorporated by modifying the routine
“usr_viscosity_gen” in the file user_mp_gen.c.
Any number of parameters can be passed (via <float1>
through <floatn>) in here.

FILL <float1> <float2>

The {float_list} for this option requires two values. It
invokes a FILL dependent viscosity that is set to the
value of float1 if the FILL variable is 1 and float2 if the
FILL variable is 0.

LEVEL_SET <float1> <float2> <float3>

This model is used to vary the viscosity in the flow
region when a level set function is used to track the
boundary between two fluids using level set interface
tracking. This choice assures a smooth transition in
density across the zero level set contour. The {float_list}
contains three values for this model, where:

<float1> Fluid viscosity in the negative regions of
the level set function,

<float2> Fluid viscosity in the positive regions of
the level set function,

µ-

µ+

Revised: 6/12/13 885

5.2.15 Viscosity

<float3> Length scale over which the transition
occurs, . If this parameter is set to zero,
it will default to one-half the Level Set
Length Scale value specified elsewhere in
the input deck.

Note: a better way to specify the identical viscosity
model is to make use of the 2nd Level Set Viscosity
card documented also in this manual.

CONST_PHASE_FUNCTION <floatlist> <float1> <float2>

This model is used to vary the viscosity in the flow
regime when phase functions are used to track the
motion of muliple phases. This choice assures a smooth
transition in viscosity across the phase boundaries. The
{float_list} contains a variable number of values that
depend on the number phase functions being tracked,
where:

<floatlist> list of float variables equal to the number
of phase functions. These are the
constant viscosities associated with each
phase in order from 1 to number of phase
functions.

<float1> Length scale over which the transition
between one phases viscosity value to the
other occurs, . If this parameter is set to
zero, it will default to one-half the Level
Set Length Scale value already specified.

<float3> The “null” value for viscosity. This is the
value for viscosity which will be assigned
to those regions of the flow where all the
phase functions are less than or equal to
zero.

The user should examine the
CONST_PHASE_FUNCTION density model for a
detailed description of the relations used to compute
viscosity with this model. That model refers to densities
but the same equations apply if viscosities are
exchanged for densities.

TABLE <integer1> <character_string1> {LINEAR | BILINEAR} [integer2]
[FILE = filenm]

α

α

886 Revised: 6/12/13

5.2.16 Low Rate Viscosity

Please see discussion at the beginning of the material
properties chapter 5 for input description and options.
Currently the only valid options for character_string1 is
TEMPERATURE and MASS_FRACTION.

Examples

The following is a sample card that sets the viscosity to USER:

Viscosity = USER 1. 1. 1. 1. 1.

Viscosity = LEVEL_SET 0.083 0.0001 0.1

Technical Discussion

The viscosity specified by this input card is used with the NEWTONIAN Liquid
Constitutive Equation.

Theory

No Theory.

FAQs

No FAQs.

References

Sackinger, P. A., Schunk, P. R. and Rao, R. R. 1995. "A Newton-Raphson Pseudo-Solid
Domain Mapping Technique for Free and Moving Boundary Problems: A Finite
Element Implementation", J. Comp. Phys., 125 (1996) 83-103.

5.2.16 Low Rate Viscosity

Description/Usage

This card is used to specify the model for the low-rate viscosity parameter for the
POWER_LAW, CARREAU, CARREAU_WLF, BINGHAM, SUSPENSION,
THERMAL, CURE, EPOXY, FILLED_EPOXY, POWERLAW_SUSPENSION

Low Rate Viscosity = CONSTANT <float> [M/Lt]

Revised: 6/12/13 887

5.2.16 Low Rate Viscosity

and CARREAU_SUSPENSION model options of the Liquid Constitutive Equation
card. This is also the reference viscosity value in the HERSCHEL_BULKLEY
constitutive equation.

Definitions of the input parameters are as follows:

CONSTANT Name of the model for the low-rate viscosity.

<float> - the value of the low-rate viscosity. This value is
also called the zero strain-rate limit of the
viscosity and in models is normally called µ0.

LEVEL_SET Name of the model for level-set dependent low-rate
viscosity. Allows for this viscosity level to be a function
of the level-set field. Specifically used for changing the
low-rate viscosity from one constant value on the negative
side of the interface to another constant value on the
positive side. The model requires three floats:

<float1> - the value of viscosity in the negative regions of
the level set function.

<float2> - the value of viscosity in the positive regioons
of the level-set function.

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets the low rate viscosity to 10:

Low Rate Viscosity = CONSTANT 10.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

888 Revised: 6/12/13

5.2.17 Power Law Exponent

References

No References.

5.2.17 Power Law Exponent

Description/Usage

This card is used to specify the model for the power-law exponent parameter of the
POWER_LAW, CARREAU, BINGHAM, CARREAU_WLF, CURE,
SUSPENSION, FILLED_EPOXY, POWERLAW_SUSPENSION,
CARREAU_SUSPENSION, and HERSCHEL_BULKLEY fluid options of the
Liquid Constitutive Equation card.

Definitions of the input parameters are as follows:

CONSTANT Name of the model for the power-law exponent.

<float> - the value of the power-law exponent. This
variable is normally n in the constitutive laws.

LEVEL_SET Name of the model for level-set dependent power law
exponent. Specifically used for changing the exponent
from one constant value on the negative side of the
interface to another constant value on the positive side.
The model requires three floats:

<float1> - the value of power-law exponent in the
negative regions of the level set function.

<float2> - the value of power-law exponent in the
positive regioons of the level-set function.

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets the power law exponent to 0.2:

Power Law Exponent = CONSTANT 0.2

Power Law Exponent = CONSTANT <float> []

Revised: 6/12/13 889

5.2.18 High Rate Viscosity

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.18 High Rate Viscosity

Description/Usage

This card is used to specify the model for the high-rate viscosity parameter of the
CARREAU, BINGHAM, CARREAU_WLF and CARREAU_SUSPENSION fluid
options of the Liquid Constitutive Equation card. Definitions of the input parameters
are as follows:

CONSTANT Name of the model for the high-rate viscosity.

<float> - the value of the high-rate viscosity. This value is
normally called µinf in models.

LEVEL_SET Name of the model for level-set dependent high-rate
viscosity. Allows for this viscosity level to be a function
of the level-set field. Specifically used for changing the
high-rate viscosity from one constant value on the
negative side of the interface to another constant value on
the positive side. The model requires three floats:

<float1> - the value of viscosity in the negative regions of
the level set function.

<float2> - the value of viscosity in the positive regioons
of the level-set function.

High Rate Viscosity = CONSTANT <float> [M/Lt]

890 Revised: 6/12/13

5.2.19 Time Constant

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets the high rate viscosity to 10.:

High Rate Viscosity = CONSTANT 10.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.19 Time Constant

Description/Usage

This card is used to specify the model for the time constant parameter of the
CARREAU, BINGHAM, CARREAU_WLF and CARREAU_SUSPENSION fluid
options of the Liquid Constitutive Equation card. Definitions of the input parameters
are as follows:

CONSTANT Name of the model for the time constant.

<float> - the value of the time constant, λ.

Time Constant = CONSTANT <float> [t]

Revised: 6/12/13 891

5.2.19 Time Constant

LEVEL_SET Name of the model for level-set dependent time constant.
Allows for this time constant level to be a function of the
level-set field. Specifically used for changing the time
constant from one constant value on the negative side of
the interface to another constant value on the positive
side. The model requires three floats:

<float1> - the value of time constant in the negative
regions of the level set function.

<float2> - the value of time constant in the positive
regioons of the level-set function.

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets the time constant to 0.2.

Time Constant = CONSTANT 0.2

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

892 Revised: 6/12/13

5.2.20 Aexp

5.2.20 Aexp

Description/Usage

This card is used to specify the model for the Aexp parameter of the CARREAU,
BINGHAM, CARREAU_WLF and CARREAU_SUSPENSION model options of
the Liquid Constitutive Equation card. Definitions of the input parameters are as
follows:

CONSTANT Name of the model for Aexp.

<float> - the value of the a exponent in the liquid
constitutive models; also, a dimensionless
parameter that describes the transition between
the low-rate and the power-law region for the
Carreau model (see Bird, et. al., 1987).

LEVEL_SET Name of the model for level-set dependent Aexp
parameter. Allows for this parameter level to be a function
of the level-set field. Specifically used for changing the
Aexp parameter from one constant value on the negative
side of the interface to another constant value on the
positive side. The model requires three floats:

<float1> - the value of Aexp parameter in the negative
regions of the level set function.

<float2> - the value of Aexp parramete in the positive
regioons of the level-set function.

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets Aexp to 3.0:

Aexp = CONSTANT 3.0

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Aexp = CONSTANT <float> []

Revised: 6/12/13 893

5.2.21 Thermal Exponent

Theory

No Theory.

FAQs

No FAQs.

References

Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids,
2nd ed., Wiley, New York, Vol. 1.

5.2.21 Thermal Exponent

Description/Usage

This card is used to specify a thermal exponential factor for CARREAU_WLF,
BINGHAM, THERMAL, EPOXY, FILLED_EPOXY,
POWERLAW_SUSPENSION and CARREAU_SUSPENSION viscosity models, as
selected in the Liquid Constitutive Equation card. The value represented by the thermal
exponent varies between these liquid constitutive models; the appropriate values for
each model is indicated below.

Definitions of the input parameters are as follows:

CONSTANT Name of the model for the thermal exponent.

<float> - the value of the thermal exponent for the
viscosity model specified in the Liquid Constitutive
Equation card.

• for the BINGHAM, THERMAL, EPOXY, or
FILLED_EPOXY model,

<float> - the Eµ/R parameter. This has the dimensions
of temperature in whatever units are
consistent with the problem and describes
the thinning of viscosity with temperature.

• for the CARREAU_WLF model,

<float> - the c1 constant of the equation for the
temperature-dependent shift factor.

Thermal Exponent = CONSTANT <float> [T]

894 Revised: 6/12/13

5.2.21 Thermal Exponent

• for the POWERLAW_SUSPENSION or
CARREAU_SUSPENSION model,

<float> - the exponent for the Krieger viscosity
model, m.

LEVEL_SET Name of the model for level-set dependent thermal
exponent factor. Allows for this exponent level to be a
function of the level-set field. Specifically used for
changing the thermal exponent from one constant value
on the negative side of the interface to another constant
value on the positive side. The model requires three
floats:

<float1> - the value of thermal exponent in the negative
regions of the level set function.

<float2> - the value of thermal exponent in the positive
regioons of the level-set function.

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets the thermal exponent to 0.5.

Thermal Exponent = CONSTANT 0.5

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 895

5.2.22 Thermal WLF Constant2

5.2.22 Thermal WLF Constant2

Description/Usage

This card is used to specify the thermal constant 2 of the CARREAU_WLF viscosity
model in the Liquid Constitutive Equation card. Definitions of the input parameters are
as follows:

CONSTANT Name of the model for Thermal Constant2.

<float> - the value of c2, in the equation representing the
temperature-dependent shift factor for the
CARREAU_WLF constitutive model.

LEVEL_SET Name of the model for level-set dependent WLF thermal
constant 2. Allows for this thermal constant 2 level to be a
function of the level-set field. Specifically used for
changing the thermal constant 2 from one constant value
on the negative side of the interface to another constant
value on the positive side. The model requires three
floats:

<float1> - the value of thermal constant 2 in the negative
regions of the level set function.

<float2> - the value of thermal constant 2 in the positive
regioons of the level-set function.

<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to
one-half the Level-Set Length Scale value
specified.

Examples

The following is a sample card that sets the Thermal WLF Constant2 to 0.1.

Thermal WLF Constant2 = CONSTANT 0.1

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Thermal WLF Constant2 = CONSTANT <float> [T]

896 Revised: 6/12/13

5.2.23 Yield Stress

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.23 Yield Stress

Description/Usage

This card is used to specify the model for the yield stress parameter, τy, of the
BINGHAM and HERSCHEL_BULKLEY model options of the Liquid Constitutive
Equation card. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the yield stress.

<float> - the value of the yield stress, τy, which has the
dimensions of stress, in whatever units are
consistent with the problem and marks the
transition from solid-like to fluid-like behavior
for the Bingham-Carreau-Yasuda model.

Examples

The following is a sample card that sets the yield stress to 100:

Yield Stress = CONSTANT 100.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

Yield Stress = CONSTANT <float> [M/Lt2]

Revised: 6/12/13 897

5.2.24 Yield Exponent

FAQs

No FAQs.

References

No References.

5.2.24 Yield Exponent

Description/Usage

This card is used to specify the model for the yield exponent parameter, F, for the
BINGHAM model option of the Liquid Constitutive Equation card. Definitions of the
input parameters are as follows:

CONSTANT Name of the model for the yield exponent parameter.

<float> - the value of the yield exponent, F, which has the
dimensions of inverse shear-rate in whatever
units are consistent with the problem of interest
and which connotes the steepness of the
transition from solid to fluid behavior for the
Bingham-Carreau-Yasuda model.

If F is large, the material has an abrupt transition from solid-like to fluid-like behavior,
whereas for a small F, the transition is more gradual.

Examples

The following is a sample card that sets the yield exponent to 10.0

Yield Exponent = CONSTANT 10.0.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

Yield Exponent = CONSTANT <float> [t]

898 Revised: 6/12/13

5.2.25 Suspension Maximum Packing

FAQs

No FAQs.

References

No References.

5.2.25 Suspension Maximum Packing

Description/Usage

This card is used to specify the model for the Cmax parameter of the SUSPENSION
and FILLED_EPOXY model options of the Liquid Constitutive Equation card.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for suspension maximum packing.

<float> - the value of Cmax, which is the mass fraction at
which the suspension begins to act as a solid.

Examples

The following is a sample card that sets the suspension maximum packing:

Suspension Maximum Packing = CONSTANT 0.68.

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Suspension Maximum Packing = CONSTANT <float> []

Revised: 6/12/13 899

5.2.26 Suspension Species Number

5.2.26 Suspension Species Number

Description/Usage

This card is used to specify the value of the species number “i” of the SUSPENSION
and FILLED_EPOXY model options of the Liquid Constitutive Equation card.
Definitions of the input parameters are as follows:

<integer> - the species number “i”.

Examples

The following is a sample card that sets the suspension species number to 1:

Suspension Species Number = 1

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.27 Cure Gel Point

Description/Usage

This card is used to specify the model for the αg parameter for the CURE, EPOXY,
and FILLED_EPOXY model options of the Liquid Constitutive Equation card.
Definitions of the input parameters are as follows:

Suspension Species Number = <integer>

Cure Gel Point = CONSTANT <float> []

900 Revised: 6/12/13

5.2.28 Cure A Exponent

CONSTANT Name of the model for the αg parameter.

<float> - the value of αg, which is the extent of reaction at
the gel point of a polymerizing system.

Examples

The following is a sample card that sets the cure gel point to 0.75:

Cure Gel Point = CONSTANT 0.75

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.28 Cure A Exponent

Description/Usage

This card is used to specify the model for the A exponent of the CURE, EPOXY, and
FILLED_EPOXY model options of the Liquid Constitutive Equation card.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the A exponent.

<float> - the value of A.

Examples

The following is a sample card that sets the cure A exponent to 1.0:

Cure A Exponent = CONSTANT 1.0

Cure A Exponent = CONSTANT <float> []

Revised: 6/12/13 901

5.2.29 Cure B Exponent

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.29 Cure B Exponent

Description/Usage

This card is used to specify the model for the B exponent of the CURE, EPOXY, and
FILLED_EPOXY model options of the Liquid Constitutive Equation card.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for the B exponent.

<float> - the value of B.

Examples

The following is a sample card that set the cure B exponent to 0.1:

Cure B Exponent = CONSTANT 0.1

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

Cure B Exponent = CONSTANT <float> []

902 Revised: 6/12/13

5.2.30 Cure Species Number

FAQs

No FAQs.

References

No References.

5.2.30 Cure Species Number

Description/Usage

This card is used to specify the species number, e.g., the i in Ci, for the
FILLED_EPOXY model options of the Liquid Constitutive Equation card.
Definitions of the input parameters are as follows:

<integer> - the value of the species equation, i, associated
with tracking the curing species.

Examples

The following is a sample card that sets the cure species number to 0.

Cure Species Number = 0

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Cure Species Number = <integer>

Revised: 6/12/13 903

5.2.31 Unreacted Gel Temperature

5.2.31 Unreacted Gel Temperature

Description/Usage

This card is used to specify the model for the unreacted gel temperature parameter for
the FILLED_EPOXY fluid option of the Liquid Constitutive Equation card.

Definitions of the input parameters are as follows:

CONSTANT Name of the model for the unreacted gel temperature.

<float> - the value of the unreacted gel temperature, Tg0.

Examples

The following is a sample card that sets the unreacted gel temperature to 273.0:

Power Law Exponent = CONSTANT 273.0

Technical Discussion

See Description/Usage for Liquid Constitutive Equation card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Unreacted Gel Temperature = CONSTANT <float>

904 Revised: 6/12/13

5.2.32 Polymer Constitutive Equation

5.2.32 Polymer Constitutive Equation

Description/Usage

This required card is used to specify the polymer constitutive equation. A single input
parameter must be defined, that being the {model_name}.

{model_name} Name of the constitutive equation model, being one of
the following values: NOPOLYMER, OLDROYDB,
GIESEKUS, PTT, WHITE-METZNER. Several of
these polymer constitutive models require additional
parameters for the polymer properties that are entered
via additional cards, as described below. Please see the
Example section and the tutorial referenced below.

Thus,

NOPOLYMER For Newtonian and generalized Newtonian models. No
floating point values are required.

OLDROYDB For the Oldroyd-B constitutive model. This option
requires four floating point values, which are described
below.

GIESEKUS For the Giesekus model. This option requires five
floating point values, which are described below.

PTT For the Phan-Thien Tanner model. This option requires
six floating point values, which are described below.

WHITE_METZNER

For the White-Metzner model. This option is not
currently working.

Examples

The following is a sample card that sets the polymer constitutive equation to
NOPOLYMER. This option does not require any additional cards since it indicates
that there is no polymer constitutive equation present.

Polymer Constitutive Equation = NOPOLYMER

Polymer Constitutive Equation = {model_name}

Revised: 6/12/13 905

5.2.32 Polymer Constitutive Equation

The following is a sample card that sets the polymer constitutive equation to
OLDROYDB. This option requires four cards describing the polymer stress
formulation, weight function, viscosity and time constant.

Polymer Constitutive Equation = OLDROYDB
Polymer Stress Formulation = EVSS_F
Polymer Weight Function = GALERKIN
Polymer Viscosity = CONSTANT 1.
Polymer Time Constant = CONSTANT 0.02

The following is a sample card that sets the polymer constitutive equation to
GIESEKUS. This option requires five cards describing the polymer stress formulation,
weight function, viscosity, time constant and mobility parameter.

Polymer Constitutive Equation = GIESEKUS
Polymer Stress Formulation = EVSS_F
Polymer Weight Function = GALERKIN
Polymer Viscosity = CONSTANT 1.
Polymer Time Constant = CONSTANT 0.2
Mobility Parameter = CONSTANT 0.1

The following is a sample card that sets the polymer constitutive equation to PHAN-
THIEN TANNER (or PTT). This option requires six additional cards that set the
polymer stress formulation, weight function for the stress equation, viscosity, time
constant and nonlinear PTT parameters.:

Polymer Consitutive Equation = PTT
Polymer Stress Formulation = EVSS_F
Polymer Weight Function = GALERKIN
Polymer Viscosity = CONSTANT 8000.
Polymer Time Constant = CONSTANT 0.01
PTT Xi parameter = CONSTANT 0.10
PTT Epsilon parameter = CONSTANT 0.05

The following is a sample card that sets the polymer constitutive equation to
WHITE_METZNER. This option is not currently functional for multimode
viscoelasticity. If needed it could be resurrected with only minimal changes to the input
parser.

Polymer Consitutive Equation = WHITE_METZNER

Technical Discussion

The viscoelastic tutorial is helpful for usage issues such as extensions from single mode
to multimodes.

Theory

No Theory.

906 Revised: 6/12/13

5.2.33 Polymer Stress Formulation

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

5.2.33 Polymer Stress Formulation

Description/Usage

This card specifies which formulation of the polymer constitutive equation should be
used. Valid options are

EVSS_G Uses the classic elastic-viscous stress splitting of
Rajagopalan (1990) where the stress is the elastic stress
only without a Newtonian component. This option is the
default if this Polymer Stress Formulation card is not
supplied. This formulation is almost never used.

EVSS_F Uses the EVSS formulation of Guenette and Fortin (1995)
that solves the standard stress equation with the addition of
a new term to the momentum equation. This formulation is
used most often.

EVSS_L Uses a research formulation for viscoelasticity that includes
a level set discretization that switches the equations from
solid to fluid. This option is not currently in production
usage.

Examples

The following is a sample card that sets the polymer stress formulation to EVSS_F:

Polymer Stress Formulation = EVSS_F

Technical Discussion

No Discussion.

Polymer Stress Formulation = {EVSS_G | EVSS_F | EVSS_L}

Revised: 6/12/13 907

5.2.34 Polymer Weight Function

Theory

No Theory.

FAQs

No FAQs.

References

Guenette, R. and M. Fortin, “A New Mixed Finite Element Method for Computing
Viscoelastic Flow,” J. Non-Newtonian Fluid Mech., 60 (1995) 27-52.

Rajagopalan, D., R. C. Armstrong and R. A. Brown, “Finite Element Methods for
Calculation of Viscoelastic Fluids with a Newtonian Viscosity”, J. Non-Newtonian
Fluid Mech., 36 (1990) 159-192.

5.2.34 Polymer Weight Function

Description/Usage

This optional card is used to specify the weight function for the polymer stress
equation. Valid options are

GALERKIN Uses a Galerkin weight-function for the stress equation.
This option is the default if this card is not present.

SUPG Uses a streamline upwind Petrov-Galerkin weight-function
for the stress equation. If this option is chosen, a weight
must be specified via the Polymer Weighting card.

Examples

The following is a sample card that set the polymer weight function to SUPG and
demonstrates the required cards.

Polymer Weight Function = SUPG
Polymer Weighting = CONSTANT 0.1

The following is a sample card that set the polymer weight function to GALERKIN.

Polymer Weight Function = GALERKIN

Polymer Weight Function = {GALERKIN | SUPG}

908 Revised: 6/12/13

5.2.35 Polymer Shift Function

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.35 Polymer Shift Function

Description/Usage

This optional card is used to specify the temperature shift function for the polymer
relaxation times and viscosities in the polymer stress equation(s);

(5-52)

(5-53)

Valid options are

CONSTANT Applies a constant temperature shift factor to the
polymer relaxation time(s) and the polymer viscosities.

<float1> - the temperature shift factor. If this card is
not present, this option is the default and a
shift factor of 1.0 is applied.

This option may be useful for continuation in elasticity level since continuation in this
parameter will uniformly increase or decrease the relaxation time(s) and viscosities of
all viscoelastic modes.

Polymer Shift Function = {CONSTANT | MODIFIED_WLF} <float1> [float2]

λk T() a T()λk'=

ηk T() a T()ηk'=

Revised: 6/12/13 909

5.2.35 Polymer Shift Function

MODIFIED_WLF Applies a temperature shift factor which is a modified
version of the Williams-Landel-Ferry shift model (cf.
Bird, Armstrong, and Hassager 1987, pp.139-143);

(5-54)

<float1> - constant C1
<float2> - constant C2

The reference temperature, Tref, is taken from the
Reference Temperature card. Note that if C2 is chosen
equal to Tref, this model reduces to an Arrhenius form
where C1 = Eµ/RTref. Also note that this form is based
on the exponential function whereas the WLF model is
based on 10x.

Examples

The following is a sample card that sets a constant temperature shift.

Polymer Shift Function = CONSTANT 1.0

The following is a sample card that utilizes the modified WLF shift function.

Polymer Shift Function = MODIFIED_WLF 2.5 95.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

Bird, R. B., Armstrong, R. C., and Hassager, O. Dynamics of Polymeric Liquids,
Volume 1. John Wiley & Sons, Inc. 1987.

a T()
C1 Tref T–()
C2 T Tref–+
----------------------------------exp=

910 Revised: 6/12/13

5.2.36 Discontinuous Jacobian Formulation

5.2.36 Discontinuous Jacobian Formulation

Description/Usage

This optional card is used to specify the off element Jacobian contributions for the
discontinuous Galerkin (DG) discretization of the polymer stress equation. These terms
are important because the DG method uses stress information from upstream elements
to determine the flux in the current element. If the off element Jacobians are not
included, convergence is poor, but including these terms greatly increases the
complexity of the code, the matrix bandwidth and the matrix solution time.

The default sets this option to false, implying that no off element Jacobians are
included. Valid options for {model_name} are:

FULL adds in the full complement of off-element Jacobians; no
floating point data required. This option does not always
work in parallel computations.

EXPLICIT approximates the off-element Jacobians by adding terms to
the residual equation based on the previous iteration.

<float> - scales the lagged term.

SEGREGATED approximates the off-element Jacobians by adding terms to
the residual equation based on a mass lumping at the current
iteration.

<float> - scales the lumped term.

Examples

The following is a sample card that set the discontinuous Jacobian formulation to full.

Discontinuous Jacobian Formulation = FULL

The following is a sample card that set the discontinuous Jacobian formulation to
explicit. Note this is more of a research option than a production one and the choice of
scaling requires tuning for each problem.

Discontinuous Jacobian Formulation = EXPLICIT 0.1

The following is a sample card that set the discontinuous Jacobian formulation to
segregated. Note this is more of a research option than a production one and the choice
of scaling requires tuning for each problem.

Discontinuous Jacobian Formulation = SEGREGATED 0.2

Discontinuous Jacobian Formulation = {model_name} <float>

Revised: 6/12/13 911

5.2.37

Technical Discussion

For a discussion of the discontinuous Galerkin method see Fortin and Fortin (1989),
Baaijens (1994) or Baaijens (1998). Internal (Sandia) users may find T. A. Baer’s
Gordon Conference presentation (1997) helpful.

Theory

No Theory.

FAQs

No FAQs.

References

Baaijens, F. P. T. , “Application of Low-Order Discontinuous Galerkin Method to the
Analysis of Viscoelastic Flows,” J. Non-Newtonian Fluid Mech., 52, 37-57 (1994).

Baaijens, F. P. T., “An Iterative Solver for the DEVSS/DG Method with Application to
Smooth and Non-smooth Flows of the Upper Convected Maxwell Fluid,” J. Non-
Newtonian Fluid Mech., 75, 119-138 (1998).

Fortin, M. and A. Fortin, “A New Approach for the FEM Simulations of Viscoelastic
Flow, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989).

5.2.37

5.2.38 Polymer Weighting

Description/Usage

This card is only used if the value of the Polymer Weight Function card is SUPG. The
single input parameter is defined as

<float> - scale factor for the upwind term in the Petrov-Galerkin
formulation. If this is set to zero, a Galerkin weight
function is used. The correct scaling for this term is
the inverse of the average inflow velocity.

Polymer Weighting = <float> [t/L]

912 Revised: 6/12/13

5.2.39 Adaptive Viscosity Scaling

Examples

The following is a companion pair of sample input cards that includes setting the
polymer weighting to 0.1:

Polymer Weight Function = SUPG
Polymer Weighting = 0.1

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.39 Adaptive Viscosity Scaling

This optional card is used to specify the adaptive viscosity scaling and the ε parameter
associated with its usage (see theory section below). It requires one floating point
number that scales the term. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the adaptive viscosity scaling.

<float> - value of ε scaling parameter.

Examples

The following is a sample card that sets the adaptive viscosity scaling to 0.5:

Adaptive Viscosity Scaling = CONSTANT 0.5

Adaptive Viscosity Scaling = CONSTANT <float>

Revised: 6/12/13 913

5.2.39 Adaptive Viscosity Scaling

Technical Discussion

The momentum equation is modified with the addition of a numerical adaptive
viscosity to help maintain the elliptic character of the equation set as stress and velocity
gradient increase

(5-55)

where ηs is the solvent viscosity and ηp is the polymer viscosity. If we set the adaptive
viscosity to zero (ηa= 0), we obtain the Standard EVSS Formulation of Guenette and
Fortin (1995). For adaptive viscosity, we use the following definition

 (5-56)

with 0<ε<1.

The equations are unchanged in the limit of h, the element size, going to zero.

Please see the viscoelastic tutorial for a discussion of usage for the adaptive viscosity
scaling. The papers by Sun, et. al. (1996) and Sun, et. al (1999) provide a good
discussion of the theory behind its usage. CRMPC presentations by R.R. Rao
demonstrates its usefulness for Goma calculations.

Theory

No Theory.

FAQs

No FAQs.

References

GT-014.1: Tutorial for Running Viscoelastic Flow Problems with GOMA, June 21,
2000, R. R. Rao

Guenette, R. and M. Fortin, “A New Mixed Finite Element Method for Computing
Viscoelastic Flows,” J. Non-Newtonian Fluid Mech., 60, 27-52 (1995).

Sun, J., N. Phan-Thien, R. I. Tanner, “An Adaptive Viscoelastic Stress Splitting
Scheme and Its Applications: AVSS/SI and AVSS/SUPG,” J. Non-Newtonian Fluid
Mech., 65, 75-91 (1996).

ηs ηp+()ηaγ∇• τ∇• p ηs ηp+()ηa G G
t

+()∇•–∇–+ 0=

ηa

1
ε
2
---τ τ•+

1
ε
2
--- G G

t
+() G G

t
+()•+

--=

914 Revised: 6/12/13

5.2.40 Polymer Viscosity

Sun, J., M. D. Smith, R. C. Armstrong, R. A. Brown, “Finite Element Method for
Viscoelastic Flows Bases on the Discrete Adaptive Viscoelastic Stress Splitting and the
Discontinuous Galerkin Method: DAVSS-G/DG,” J. Non-Newtonian Fluid Mech., 86,
281-307 (1999).

5.2.40 Polymer Viscosity

Description/Usage

This card is used to specify the polymer viscosity associated with the model set in the
Polymer Constitutive Equation card. This is a required card for the OLDROYDB,
GIESEKUS and PTT models.

Definitions of the input parameters are as follows:

{model_name} Permissible names for the viscosity model are
CONSTANT, POWER_LAW and CARREAU.

CONSTANT a simple constant viscosity, Newtonian fluid.

<float> - the value of the zero-rate viscosity.

POWER_LAW a power-law model

CARREAU a Carreau strain-rate thinning or thickening relation

Input parameters are not identified for the latter two models as they have not worked
since the multimode port. They could be made to work again if the proper tweaking is
done to the input parser, but are not currently functional.

Examples

The following is a sample card that sets the polymer viscosity to 8000.0:

Polymer Viscosity = CONSTANT 8000.0

Technical Discussion

No discussion.

Theory

No Theory.

Polymer Viscosity = {model_name} <float> [M/Lt]

Revised: 6/12/13 915

5.2.41 Polymer Time Constant

FAQs

No FAQs.

References

No References.

5.2.41 Polymer Time Constant

Description/Usage

This card is used to specify the polymer time constant associated with the Polymer
Constitutive Equation card. It is a required card for the OLDROYDB, GIESEKUS
and PTT options. Definitions of the input parameters are as follows:

{model_name} Permissible names for the time constant model are
CONSTANT, POWER_LAW and CARREAU.

CONSTANT a simple constant time constant.

<float> - the value of the zero-rate time constant.

POWER_LAW a power-law model

CARREAU a Carreau strain-rate thinning or thickening relation

Input parameters are not identified for the latter two models as they have not worked
since the multimode port. They could be made to work again if the proper tweaking is
done to the input parser, but are not currently functional.

If the polymer time constant varies with properties, it must do so in the same way as the
polymer viscosity; thus, the model on this card must be the same as the model selected
on the Polymer Viscosity card.

All three models are described in detail in Bird, et. al. (1987).

Examples

The following is a sample card that sets the polymer time constant to 1.0:

Polymer Time Constant = CONSTANT 1.0

Polymer Time Constant = {model_name} <float> [t]

916 Revised: 6/12/13

5.2.42 Mobility Parameter

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

Bird, R. B., Armstrong, R. C., and Hassager, O. 1987. Dynamics of Polymeric Liquids,
2nd ed., Wiley, New York, Vol. 1.

5.2.42 Mobility Parameter

Description/Usage

This card is used in the Giesekus model in the nonlinear stress terms. The card should
be included in the input when the option selected for the Polymer Constitutive Equation
card is GIESEKUS. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the mobility parameter.

<float> - the value of the mobility parameter.

This card does not have to be present for constitutive equations other than
GIESEKUS.

Examples

The following is a sample card that sets the mobility parameter to 0.2:

Mobility Parameter = CONSTANT 0.2

Technical Discussion

No discussion.

Mobility Parameter = CONSTANT <float> []

Revised: 6/12/13 917

5.2.43 PTT Xi parameter

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.2.43 PTT Xi parameter

Description/Usage

This card is used in the Phan-Thien Tanner model in the nonlinear stress terms. The
card should be included in the input when the option selected for the Polymer
Constitutive Equation card is PTT. Definitions of the input parameters are as follows:

CONSTANT Name of the model for PTT Xi parameter.

<float> - the value of the PTT Xi parameter.

This card does not have to be present for constitutive equations other than PTT.

Examples

The following is a sample card that sets the PTT Xi parameter to 0.1:

PTT Xi parameter = CONSTANT 0.10

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

PTT Xi parameter = {model_name} <float>

918 Revised: 6/12/13

5.2.44 PTT Epsilon parameter

References

No References.

5.2.44 PTT Epsilon parameter

Description/Usage

This card is used in the Phan-Thien Tanner model in the nonlinear stress terms. The
card should be included in the input when the option selected for the Polymer
Constitutive Equation card is PTT. Definitions of the input parameters are as follows:

CONSTANT Name of the model for PTT Epsilon parameter.

<float> - the value of the PTT Epsilon parameter.

This card does not have to be present for constitutive equations other than PTT.

Examples

The following is a sample card that sets the PTT Epsilon parameter to 0.1:

PTT Xi parameter = CONSTANT 0.10

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

PTT Epsilon parameter = {model_name} <float>

Revised: 6/12/13 919

5.2.45 Surface Tension

5.2.45 Surface Tension

Description/Usage

 This card is used to specify the interfacial surface tension of the fluid which enters into
the CAPILLARY boundary condition and CAP_ENDFORCE boundary condition cards.
The surface tension, albeit a property of an interface and not of a bulk material, is
sometimes influenced by thermophysical phenomena associated with a material, hence
the inclusion of this card in the material file. It should be mentioned that this card is
optional, and if it does not appear the surface tension is taken off the aforementioned
boundary condition cards. PLEASE see the important technical discussion below if you
plan on using this card. Definitions of the input parameters are as follows:

CONSTANT Name of the model for a constant value of interfacial
surface tension of the fluid:

<float1> - constant value of surface tension

DILATION Name of a surface tension model that depends on mesh
dilation (only useful if the free surface is constrained to be a
material surface both normally and tangentially, see
Schwartz ,et. al. 1996). The model mathematically is

(5-57)

where F is the deformation gradient tensor and σ0 and σ1
are coefficients. The model has two float inputs:

<float1> - value of constant
<float2> - value of constant

USER A user-defined surface tension model that is defined in the
user-supplied routine usr_surface_tension in the
file user_mp.c. This model will have an arbitrary number
of user-defined parameters (<float1> to floatn>).

WARNING: When specifying surface tension on this card, be sure the surface

tension (multiplier) on the boundary condition CAPILLARY card is set to 1. In other

words, the value of surface tension on the boundary condition cards is multiplied

with the value on this card before the calculation is carried out.

Surface Tension = {CONSTANT | DILATION | USER} <float_list> [M/t2]

σ σ0 σ1 1
1

t
˜

F
˜

t
˜

⋅ ⋅
-----------------–

 +=

σ0
σ1

920 Revised: 6/12/13

5.2.46 Second Level Set Conductivity

Examples

Following is a sample card:

Surface Tension = DILATION 70.0 1.

Technical Discussion

Please read and understand the warning issued above regarding the proper place to
specify surface tension. Basically, for constant surface tension models, it is a good idea
to leave this card out and simply enter the proper surface tension value for the current
surface on the boundary condition cards CAPILLARY and CAP_ENDFORCE. For
variable models, please set the surface tension values on these BC cards to 1.0, and
then handle your model through this card. The surface tension is a thermodynamic
property of the interface and actually depends on the chemical composition of the
fluids (or fluid/solids) of the bounding phases. The property controls the importance of
the capillary stress jump on a curved interface on the hydrodynamics of the flow and
the meniscus position and motion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-001.4: GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk
and D. A. Labreche

5.2.46 Second Level Set Conductivity

Description/Usage

This card allows to the user to specify a second thermal conductivity model that will be
applied to one side of a level set interfacial curve:

{model_name} The name of the conductivity model can only be
CONSTANT at the current time.

Second Level Set Conductivity = {model_name} {float_list} {char_string} [M/Lt]

Revised: 6/12/13 921

5.2.46 Second Level Set Conductivity

{float1} This is a single float parameter which is the value of
Fourier thermal conducticity applied to the second level
set phase fluid.

{char_string} This string may take the values POSITIVE or
NEGATIVE. It identifies which side of the interface the
preceding conductivity model is applied to.

This card allows the user to apply a CONSTANT or USER model to one side of the
interface while the other side recieves the constant conductivity value listed on this
card. The side of the interface that corresponds to char_string appearing on this card
receives the constant conductivity value. The opposite side’s conductibity is
determined from the other, (possibly) more complex model. Transition between them
is accomplished using smooth Heaviside functions whose width is given on the Level
Set Length Scale card. Note that it is the prescence of the this card in the material file
that actually activates this selection process.

Examples

The following is a usage example for this card:

Conductivity = USER 1.e4 0.1 3.0

Second Level Set Conductivity = CONSTANT. 1.0e-4 POSITIVE

This setup will cause the negattive side of the interface to receive conductivity values
obtained from the USER model with the parameters listed above . The positive side of
the interface will show a constant conductivity of 1.0e-4.

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

922 Revised: 6/12/13

5.2.47

5.2.47

5.2.48 Second Level Set Density

Description/Usage

This card allows to the user to specify a second density model that will be applied to
one side of a level set interfacial curve:

{model_name} The name of the density model can only be
CONSTANT at the current time.

{float1} This is a single float parameter which is the value of
density applied to the second level set phase fluid.

{char_string} This string may take the values POSITIVE or
NEGATIVE. It identifies which side of the interface the
preceding density model is applied to.

This card allows the user to apply one of the several complex density models currently
available in Goma to one side of the interface while the other side recieves the constant
density value listed on this card. The side of the interface that corresponds to
char_string appearing on this card recieves the constant density value. The opposite
sides density is determined from the other, more complex model. Transition between
them is accomplished using smooth Heaviside functions whose width is given on the
Level Set Length Scale card. Note that it is the prescence of the this card in the
material file that actually activates this selection process.

Examples

The following is a usage example for this card:

Density = SUSPENSION 1.0 1.0 1.0

Second Level Set Density = CONSTANT. 1.0 POSITIVE

This setup will cause the negattive side of the interface to receive density values
obtained from the SUSPENSION model with the parameters listed above . The
positive side of the interface will show a constant density of 1.0.

Second Level Set Density = {model_name} {float_list} {char_string} [M/Lt]

Revised: 6/12/13 923

5.2.49

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

5.2.49

5.2.50 Second Level Set Heat Capacity

Description/Usage

This card allows to the user to specify a second thermal heat capacity model that will be
applied to one side of a level set interfacial curve:

{model_name} The name of the heat capacity model can only be
CONSTANT at the current time.

{float1} This is a single float parameter which is the value of
heat capacity applied to the second level set phase fluid.

{char_string} This string may take the values POSITIVE or
NEGATIVE. It identifies which side of the interface the
preceding heat capacity model is applied to.

This card allows the user to apply a CONSTANT or USER model to one side of the
interface while the other side recieves the constant heat capacity value listed on this
card. The side of the interface that corresponds to char_string appearing on this card
receives the constant heat capacity value. The opposite side’s heat capacity is
determined from the other, (possibly) more complex model. Transition between them
is accomplished using smooth Heaviside functions whose width is given on the Level
Set Length Scale card. Note that it is the prescence of the this card in the material file
that actually activates this selection process.

Second Level Set Heat Capacity = {model_name} {float_list} {char_string} [M/Lt]

924 Revised: 6/12/13

5.2.51

Examples

The following is a usage example for this card:

Heat Capacity = ENTHALPY 1.e4 0.1

Second Level Set Heat Capacity = CONSTANT. 1.0 POSITIVE

This setup will cause the negattive side of the interface to receive heat capacity values
obtained from the USER model with the parameters listed above . The positive side of
the interface will show a constant heat capacity of 1.0e-4.

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

5.2.51

5.2.52 Second Level Set Momentum Source

Description/Usage

This card allows to the user to specify a second thermal Navier-Stokes volumetric
momentum source model that will be applied to one side of a level set interfacial curve:

{model_name} The name of the momentum source model can only be
CONSTANT at the current time.

Second Level Set Momentum Source = {model_name} {float_list} {char_string}
[M/Lt]

Revised: 6/12/13 925

5.2.52 Second Level Set Momentum Source

{float1} This is a single float parameter which is the value of
volumetric momentum source term applied to the
second level set phase fluid.[F/L3]

{char_string} This string may take the values POSITIVE or
NEGATIVE. It identifies which side of the interface the
preceding momentum source model is applied to.

This card allows the user to apply one of the several momentum source models
implement in Goma to one side of the interface while the other side recieves the
constant momentum source value listed on this card. The side of the interface that
corresponds to char_string appearing on this card receives the constant momentum
source value. The opposite side’s momentum source is determined from the other,
(possibly) more complex model. Transition between them is accomplished using
smooth Heaviside functions whose width is given on the Level Set Length Scale card.
Note that it is the prescence of the this card in the material file that actually activates
this selection process.

Examples

The following is a usage example for this card:

Navier-Stokes Source = SUSPEND 0. 0. -980.0 1.34e3

Second Level Set Momentum Source = CONSTANT. 1.0e-4 POSITIVE

This setup will cause the negattive side of the interface to receive momentum source
values obtained from the USER model with the parameters listed above . The positive
side of the interface will show a constant momentum source of 1.0e-4.

Technical Discussion

An important thing to note is that the units of the quantity specified on this card are
units of force per volume in exact correspondence to the units used with the preceding
momentum source model. Note also that this card should not be used when using the
LEVEL_SET momentum source model. For one thing, it makes no sense and for
another thing the values specified on the latter model are simply the gravitational
acceleration and therefore are inconsistent with this card.

Theory

No Theory.

FAQs

No FAQs.

926 Revised: 6/12/13

5.2.53

References

No references

5.2.53

5.2.54 Second Level Set Viscosity

Description/Usage

This card allows to the user to specify a second viscosity model that will be applied to
one side of a level set interfacial curve:

{model_name} The name of the viscosity model can only be
CONSTANT at the current time.

{float1} This is a single float parameter which is the value of
Newtonian viscosity applied to the second level set
phase fluid.

{char_string} This string may take the values POSITIVE or
NEGATIVE. It identifies which side of the interface the
preceding viscosity model is applied to.

This card allows the user to apply one of the several complex viscosity models
currently available in Goma to one side of the interface while the other side recieves the
constant viscosity value listed on this card. The side of the interface that corresponds
to char_string appearing on this card recieves the constant viscosity value. The
opposite sides viscosity is determined from the other, more complex model. Transition
between them is accomplished using smooth Heaviside functions whose width is given
on the Level Set Length Scale card. Note that it is the prescence of the this card in the
material file that actually activates this selection process.

Examples

The following is a usage example for this card:

Liquid Constitutive Equation = HERSCHEL_BULKLEY

Low Rate Viscosity = CONSTANT 10000

Second Level Set Viscosity = {model_name} {float_list} {char_string} [M/Lt]

Revised: 6/12/13 927

5.2.55

Power Law Exponent = CONSTANT 0.6

Yield Stress = CONSTANT 1.e6

Second Level Set Viscosity = CONSTANT. 1.0 POSITIVE

This setup will cause the negattive side of the interface to receive viscosity values
obtained from the HERSCHEL_BULKLEY model with the parameters listed above .
The positive side of the interface will show a constant viscosity of 1.0.

Technical Discussion

Theory

No Theory.

FAQs

No FAQs.

References

No references

5.2.55

5.2.56 Shell bending stiffness

Description/Usage

This required card is used to specify the model for the Shell bending stiffness property
D which is defined as D=Et3/12(1-ν2), where E is the elastic modulus, ν Poisson’s
ratio, and t the shell thickness. The units are M-L2/t2 (or F-L). The elastic modulus is
set through the Lame MU and Lame Lambda cards. This property is needed for the
inextensible cylindrical shell equations (see EQ = Shell Tension).

Definitions of the input parameters are as follows:

{model_name} Name of the Shell bending stiffness coefficient model.
This parameter can have one of the following values:
CONSTANT..

Shell bending stiffness = {model_name} {float_list} [M/Lt2]

928 Revised: 6/12/13

5.3 Thermal Properties

{float1} The value of the shell bending stiffness.

The details of each model option are given below:

CONSTANT <float1>

For the CONSTANT model, {float_list} is a single
value:

<float1> - Standard value of the coefficient D.

Theory

No Theory.

FAQs.

No FAQ’s.

References

GT-027.1: GOMA’s Shell Structure Capability: User Tutorial (GT-027.0). P. R.
Schunk and E. D. Wilkes.

GT-033.0: Structural shell application example: tensioned-web slot coater (GT-033.0).
P. R. Schunk and E. D. Wilkes.

5.3 Thermal Properties

In this section of material properties, the user specifies the parameters of models for Fourier heat
conduction and thermally-induced density changes (by volume expansion) and parameters
controlling the onset of phase changes. Properties governing energy transport by convection,
radiation and diffusion are specified elsewhere.

5.3.1 Heat Flux Model

Description/Usage

NOT TESTED. Use this optional card to specify a user-defined model for the
conductive heat flux. The routine “usr_heat_flux” in file user_mp.c must
appropriately define the heat flux/temperature gradient model. The single input
parameter has only one possible value:

Heat Flux Model = USER

Revised: 6/12/13 929

5.3.2 Conductivity

USER the user-defined model for the conductive heat flux.

If this card is missing or has a different keyword, the Fourier conductive heat flux
model will be used.

Examples

Following is the only permissible specification for the card:

Heat Flux Model = USER

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.3.2 Conductivity

Description/Usage

This card is used to specify the model for thermal conductivity. Definitions of the input
parameters are as follows:

{model_name} Name of the model for thermal conductivity; this
parameter can have the value CONSTANT or USER.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model below.

Conductivity = {model_name} {float_list} [E/LtT]

930 Revised: 6/12/13

5.3.2 Conductivity

Thus,

CONSTANT <float> a constant thermal conductivity model, {float_list} is a
single value:

<float1> - Standard value of k

USER <float1>... <floatn>

a user-defined model. With the USER option the
appropriate modifications to the routine
“usr_thermal_conductivity” in the user_mp.c
file must be undertaken. The {float_list} can be of
arbitrary length and is used to parameterize the model.
These parameters are made available in the subroutine
via <float1> through <floatn>.

TABLE <integer1> <character_string1> {LINEAR | BILINEAR} [integer2]
[FILE = filenm]

Please see discussion at the beginning of the material
properties chapter 5 for input description and options.
Most often character_string1 will be
TEMPERATURE or maybe MASS_FRACTION.

Examples

Following is a sample card:

Conductivity = USER 1. 1. 1. 1. 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 931

5.3.3 Heat Capacity

5.3.3 Heat Capacity

Description/Usage

This required card is used to specify the model for the heat capacity. Definitions of the
input parameters are as follows:

{model_name} Name of the model for the heat capacity. This parameter
can have one of the following values: CONSTANT,
USER, or ENTHALPY.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}. These are identified in the
discussion of each model below.

Thus,

CONSTANT <float1>

This option specifies a constant heat capacity. The
{float_list} has a single value:

<float1> - Heat capacity

USER <float1>... <floatn>

the heat capacity will be a user-defined model. This
user-defined model must be incorporated by modifying
the routine “usr_heat_capacity” in the file
user_mp.c. The model parameters are entered in the
{float_list} as <float1> through <floatn> and passed to
the routine as an array.

ENTHALPY <float1> <float2>

a model of heat capacity that uses the latent heat of
fusion parameter. The model goes as follows:

(5-58)

Heat Capacity = {model_name} {float_list} [E/MT]

H T() cp T Tref–()= T TS<

932 Revised: 6/12/13

5.3.3 Heat Capacity

(5-59)

(5-60)

Here the {float_list} requires two values, where:

<float1> - Base heat capacity in the solid state,
<float2> - Latent heat of fusion .

The liquidus temperature Tl and the solidus temperature
Ts are taken from the material file. This model is
currently available for single species only, and is used
for rapid melting problems in alloys.

TABLE <integer1> <character_string1> {LINEAR | BILINEAR} [integer2]
[FILE = filenm]

Please see discussion at the beginning of the material
properties chapter 5 for input description and options.
Most likely character_string1 will be
TEMPERATURE or maybe MASS_FRACTION.

Examples

Following is a sample card:

Heat Capacity = CONSTANT 1.

Technical Discussion

When the ENTHALPY option is used, the liquidus (Tl) and solidus (Ts) temperatures
must be added through the Liquidus Temperature and Solidus Temperature cards.

Theory

No Theory.

FAQs

No FAQs.

H T() cp TS Tref–() ΔHf

T TS–

Tl TS–

+= TS T Tl< <

H T() cp Tl Tref–() ΔHf c+ +
p

T Tl–()= T Tl>

cp
ΔHf

Revised: 6/12/13 933

5.3.4 Volume Expansion

References

No References.

5.3.4 Volume Expansion

Description/Usage

This card is used to specify the model for the coefficient of volume expansion in the
energy equation. This property is required for the BOUSS option on the Navier-Stokes
Source card. Definitions of the input parameters are as follows:

CONSTANT Name of the model for a constant volume-expansion
coefficient.

<float> - the value of the volume expansion coefficient.

Examples

The following is a sample input card:

Volume Expansion = CONSTANT 1.

Technical Discussion

Warning: Please be careful that the Species Volume Expansion card is set
appropriately. If the BOUSS or BOUSSINESQ model is turned on on the Navier-
Stokes Source card, then both thermal and species volume expansion effects are
included if the coefficients are nonzero. .

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Volume Expansion = CONSTANT <float> [1/T]

934 Revised: 6/12/13

5.3.5 Reference Temperature

5.3.5 Reference Temperature

Description/Usage

This card is used to specify the model for the reference temperature, which is required
by the BOUSS option on the Navier-Stokes Source card and by the BINGHAM option
on the Liquid Constitutive Equation card. Definitions of the input parameters are as
follows:

CONSTANT Name of the model for a constant reference temperature.

<float> - the value of the reference temperature.

Examples

The following is a sample input card:

Reference Temperature = CONSTANT 1.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Reference Temperature = CONSTANT <float> [T]

Revised: 6/12/13 935

5.3.6 Liquidus Temperature

5.3.6 Liquidus Temperature

Description/Usage

This card is used to specify the model for the liquidus temperature. Definitions of the
input parameters are as follows:

CONSTANT Name of the model for the liquidus temperature.

<float> - the value of the liquidus, Tl .

Examples

Following is a sample card:

Liquidus Temperature = CONSTANT 1.

Technical Discussion

This card is required when using the ENTHALPY option on the Heat Capacity card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.3.7 Solidus Temperature

Description/Usage

This card is used to specify the model for the solidus temperature. Definitions of the
input parameters are as follows:

Liquidus Temperature = CONSTANT <float> [T]

Solidus Temperature = CONSTANT <float> [T]

936 Revised: 6/12/13

5.3.8 Energy Weight Function

CONSTANT Name of the model for the solidus temperature.

<float> - the value of the solidus, Ts .

Examples

The following is a sample card:

Solidus Temperature = CONSTANT 1.

Technical Discussion

This card is required when using the ENTHALPY option on the Heat Capacity card.

Theory

No Theory.

FAQs

No FAQs.

References

No Refrences.

5.3.8 Energy Weight Function

Description/Usage

This card specifies the weight function to be used on the weighted residual of the
energy equations. For high Peclet number cases, you may want to use a Petrov-
Galerkin formulation rather than a Galerkin formulation. Definitions of the input
parameters are as follows:

GALERKIN Name of the model for the weight functions for a full
Galerkin formulation. This is the default when this card is
absent.

<float> - the value of the weight function, a number
between 0. and 1.; a value of 0. corresponds to
GALERKIN.

Energy Weight Function = {GALERKIN | SUPG} <float>

Revised: 6/12/13 937

5.4 Electrical Properties

SUPG Name of the model for the weight functions for a
streamwise upwinded Petrov-Galerkin formulation.

<float> - the value of the weight function, a number
between 0. and 1.; a value of 1. corresponds to a full
SUPG.

Examples

The following is a sample input card:

Energy Weight Function = GALERKIN 0.0

Technical Discussion

The SUPG weighting is applied only to the advective term in the Energy conservation
equation and Jacobian assembly.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.4 Electrical Properties

Models for material electrical properties are simple or specialized, being very application-
oriented. The primary need for modeling electrical potential effects are to activate mass transport
mechanisms that are charge-dependent.

938 Revised: 6/12/13

5.4.1 Electrical Conductivity

5.4.1 Electrical Conductivity

Description/Usage

This required card is used to specify the model for electrical conductivity. There are
currently three options, so {model_name} can be either CONSTANT,
ELECTRONEUTRALITY_FICKIAN or ELECTRONEUTRALITY_SM.
Definitions of the input parameters are as follows:

CONSTANT Name of the model for constant electrical conductivity.

<float> - the value of electrical conductivity

LEVEL_SET Name of the model for constant electrical
conductivity.Allows for the conductivity as a function of
the level-set field. Specifically used for changing the
conductivity from one constant value on the negative side
of the interface to another constant value on the positive
side. The model requires three floats:

<float1> - the value of electrical conductivity in the
negative regions of the level set function.
<float2> - the value of electrical conductivity in the
positive regioons of the level-set function.
<float3> Length scale over which the transition occurs. If
this parameter is set to zero, it will default to one-half the
Level-Set Length Scale value specified.

ELECTRONEUTRALITY_FICKIAN

Name of the model for the electrical conductivity. This
model requires no parameter specification, i.e. no floats.

ELECTRONEUTRALITY_SM

Name of the model for the electrical conductivity. This
model requires no parameter specification, i.e. no floats.

In earlier versions of Goma, this model was referred to by
the name ELECTRODE_KINETICS and it remains to
be active so that Goma can be backward compatible. In
other words, ELECTRONEUTRALITY_SM and
ELECTRODE_KINETICS are interchangeable.

Electrical Conductivity = {model_name} {float} []

Revised: 6/12/13 939

5.4.1 Electrical Conductivity

See Technical Discussion for information on the electrical conductivity for the two
models of ELECTRONEUTRALITY.

Examples

Following are sample cards:
Electrical Conductivity = CONSTANT 1.
Electrical Conductivity = ELECTRONEUTRALITY_FICKIAN
Electrical Conductivity = ELECTRONEUTRALITY_SM
Electrical Conductivity = ELECTRODE_KINETICS

Technical Discussion

For concentrated electrolyte solutions in which Stefan-Maxwell flux equations are
employed to relate species fluxes to concentrations and their gradients, the electrical
conductivity is given by (Chen et al. 2000, Schunk et al. 2000):

(5-61)

where and , m is dimension of the problem (m = 2
for a 2-D problem), and is species mole fraction. The tedious definition of can
be found in Chapter 2 of Chen et al. (Chen et al. 2000) and in Chapter 7 of the Goma
Developer’s Guide (Schunk, et. al., 2000).

For dilute electrolyte solutions in which Fick’s first law is used to relate the flux of a
species to its concentration gradient, the electrical conductivity is given by (Chen,
2000; Schunk, et. al., 2000):

(5-62)

where ci is the molar concentration and zi is the charge number of species i,
respectively; and n is the total number of species present in the electrolyte solution.
Note that the nth species is taken to be the neutral solvent species, which has no
contribution to the electrical conductivity since its charge number is zero.

Lastly, Goma calculates the conductivity in function assemble_potential as material
properties are being loaded.

Theory

No theory.

κ
F

2

RT
------- zi'zk' b

1–
ik–() xk'

k' 2=

n

i' 1=

n

=

i m i' 1–() 1+= k m k' 1–() 1+=

xk' bik
1–

κ
F

2

RT
-------z

2
i Di ci

i 1=

n 1–

=

940 Revised: 6/12/13

5.4.2 Electrical Permittivity

FAQs

No FAQs.

References

GTM-025.0: Chen, K. S., “Modeling diffusion and migration transport of charged
species in dilute electrolyte solutions: GOMA implementation and sample computed
predictions from a case study of electroplating”, Sandia technical memorandum,
September 21, 2000.

SAND2000-0207: Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R., and Houf, W.
G., “Final Report on LDRD Project: A Phenomenological Model for Multicomponent
Transport with Simultaneous Electrochemical Reactions in Concentrated Solutions”,
Sandia Technical Report, 2000.

GDM-1.3: Schunk, P. R., Sackinger, P. A., Rao, R. R., Subia, S. R., Baer, T. A.,
Labreche, D. A., Moffat, H. K., Chen, K. S., Hopkins, M. M., and Roach, R. A.,
“GOMA 3.0 - A Full-Newton Finite Element Program for Free and Moving Boundary
Problems with Coupled Fluid/Solid Momentum, Energy, Mass, and Chemical Species
Transport: Developer’s Guide, 2000.

5.4.2 Electrical Permittivity

Description/Usage

This required card is used to specify the model for electrical permittivity. There is
currently one option, so {model_name} must be either CONSTANT. Definitions of the
input parameters are as follows:

CONSTANT Name of the model for constant electrical permittivity.

<float> - the value of electrical permittivity

Examples

Following are sample cards:
Electrical Permittivity = CONSTANT 1.

Technical Discussion

This card is utilized to set the electrical permittivity for electrostatic problems.

Electrical Permittivity = {model_name} {float} []

Revised: 6/12/13 941

5.4.3 Microstructure Properties

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.4.3 Microstructure Properties
Microstructure property models address material parameters and constitutive equations required
for multiphase continuum approaches to flow in porous media, viz. fluid flow in partially or fully
saturated porous media. Actually, only a few of these model/property cards pertain directly to
media structure or microstructure, but all are affected by intrinsic material properties of all
involved phases. Cards or records typically appearing in this section fall into one of three
categories: microstructural or flow-property specification, numerical treatment specification, and
species transport property specifications. These “sections” appear in this order in most of the
sample input files.

5.4.4 Media Type

Description/Usage

This card is used to designate the characteristic medium type for solid materials so that
the proper microstructural features/models may be imposed. Basically, the choices are
dictated by whether the medium is to be modeled as porous (viz. a medium in which
flow will be determined relative to the motion of a porous solid skeleton) or as
continuous (viz., in which the mechanics equations apply to all parts of the medium and
not weighted by a solid fraction). If porous flow through Darcy or Brinkman
formulations are desired in the material, then the phase is designated as continuous.

The input parameter is a {model_name} and has the following possible values:

{model_name} Name of the media model; the choices are

CONTINUOUS
POROUS_SATURATED
POROUS_UNSATURATED

Media Type = {model_name}

942 Revised: 6/12/13

5.4.4 Media Type

POROUS_TWO_PHASE
POROUS_BRINKMAN
POROUS_SHELL_UNSATURATED

Specific characteristics of these types are identified below, including other cards that
must be present.

• If the type chosen is CONTINUOUS, then the material is assumed to be
amorphous and no further microstructure properties need to be specified (next
required card is the Diffusion Constitutive Equation).

• In a porous medium with one phase in the pores (i.e. a saturated medium), use
POROUS_SATURATED then only the Porosity and Permeability cards are
required. A POROUS_SATURATED medium model enables the user to solve the
simplest porous flow equation for the liquid phase pressure only for rigid porous
media (see the porous_sat or porous_liq equation cards). For deformable porous
saturated media, one can employ a stress balance and porosity equation for
deformable porous media (see mesh* equation cards and porous_deform equation
card).

• In a porous medium with two phases in the pores (such as air-water, i.e., an
unsaturated medium), two options exist - POROUS_UNSATURATED, a
formulation of the porous flow problem using the capillary pressure as the field
variable (gas pressure assumed to be uniform), and POROUS_TWO_PHASE, a
formulation of the porous flow problem using the liquid pressure and gas pressure
as field variables. All the cards in this Microstructure porous flow section, except
the Brinkman cards (FlowingLiquid Viscosity and Inertia Coefficient), are needed
for the unsaturated or two-phase models. As in the saturated case above, these
options can also be chosen for deformable porous media, for which the Lagrangian
mesh stress equations and the porosity equation are used to complete the effective
stress principle formulation.

• The POROUS_BRINKMAN model is an extension of the Navier-Stokes
equation for porous media. In addition, it has an inertia term intended to account
for boundary and interface deficiencies at Reynold’s numbers greater than one
(), a deficiency in all Darcy flow models (see, e.g., Gartling, et. al., 1996). It
is a vector formulation (the momentum equations) of saturated flow in a porous
medium which reduces to the Navier-Stokes equations as the porosity increases to
one (). For Brinkman flow, the input parameters (i.e., cards) that must be
specified from this section are Porosity, Permeability, FlowingLiquid Viscosity,
and Inertia Coefficient. Please note the use of two viscosities; for the Brinkman
media type, the viscosity entered via the (Mechanical Properties and Constitutive
Equations) Viscosity card is interpreted to be the Brinkman viscosity () and is
used to calculate the viscous stresses (see Gartling, et. al., 1996) while the

Re 1>

φ 1→

µB

Revised: 6/12/13 943

5.4.4 Media Type

FlowingLiquid Viscosity () is used in the correction term for nonlinear drag
forces in porous media. Brinkman viscosity is an effective value and can be taken
as the porosity weighted average of the matrix and fluid. It is generally not correct
to set it equal to the liquid viscosity (Martys, et. al., 1994; Givler and Altobelli,
1994).

• The POROUS_SHELL_UNSATURATED model is used for thin shell, open
pore, porous media, viz. the shell_sat_open equation. This media type
instructs GOMA to obtain most of the media properties from the bulk continuum
specifications just like POROUS_UNSATURATED. Exceptions are the
Porous Shell Cross Permeability model and the Porous Shell
Height material models. Please see the porous shell tutorial

Examples

Following is a sample card:

Media Type = POROUS_TWO_PHASE

This card will require a plethora of material models for Darcy flow of liquid and gas in
a porous medium. It also will require the use of two Darcy flow mass balances in the
Problem Description EQ specification section, specifically porous_liq and porous_gas
equations. See references below for details.

Technical Discussion

In solving porous medium problems, it is important to understand that each
conservation equation represents a component, or species balance. The porous_liq
equation is actually a species balance for the liquid phase primary component (e.g.
water) for all phases in the medium, viz. liquid, gas, and solid. This is the case even
though the dependent variable is the liquid phase pressure. This is the only required
equation for rigid POROUS_SATURATED media. The same holds true for rigid
POROUS_UNSATURATED media, as the liquid solvent is present in liquid and gas
vapor form (it is actually taken as insoluble in the solid). For deformable media, one
must add a stress balance through the mesh* equations (in LAGRANGIAN form, as
described on the Mesh Motion card) and a solid phase “solvent” balance which is used
to solve for the porosity, viz. the porous_deform equation. In these cases, the gas is
taken to be at constant pressure. If pressure driven Darcy flow is important in the gas,
an additional species balance for the primary gas component is required through the
porous_gas equation. This last case is the so-called POROUS_TWO_PHASE media
type.

Options for representing the solid medium as rigid or deformable are discussed under
the Saturation, Permeability and Porosity cards. When rigid porous media are
modeled, both porosity and permeability are constant. In Goma 4.0, these concepts

µ

944 Revised: 6/12/13

5.4.5

were being researched and improved, with much of the usage documentation residing
in technical memos.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media,
September 1, 2002, P. R. Schunk

Gartling D. K., C. E. Hickox and R. C. Givler 1996. "Simulations of Coupled Viscous
and Porous Flow Problems", Comp. Fluid Dynamics, 7, 23-48.

Givler, R. C. and S. A. Altobelli 1994. “A Determination of the Effective Viscosity for
the Brinkman-Forchheimer Flow Model.” J. Fluid Mechanics, 258, 355-370.

Martys, N., D. P. Bantz and E. J. Barboczi 1994. “Computer Simulation Study of the
Effective Viscosity in Brinkman’s Equation.” Phys. Fluids, 6, 1434-1439

5.4.5

5.4.6 Porosity

Description/Usage

This card is used to specify the model for the porosity, which is required for the
Brinkman or Darcy formulations for flow through porous media, viz. for
POROUS_BRINKMAN, POROUS_TWO_PHASE, POROUS_SATURATED,
and POROUS_UNSATURATED media types (see Media Type card).

Definitions of the {model_name} and <float> parameters are as follows:

Porosity = {model_name} <float> []

Revised: 6/12/13 945

5.4.6 Porosity

CONSTANT Name {model_name} of the constant porosity model.

<float> - Value of porosity.

DEFORM Name {model_name} of the model for a porosity that varies
with deformation of the porous medium. A conservation
balance is required for the solid material skeleton and is
invoked in the equation specification section (see EQ
section).

<float> - Value of porosity (in the stress-free-state, i.e.,
undeformed state).

Examples

The following is a sample input card:

Porosity = DEFORM 0.5

This model will result in a porosity of 0.5 (volume fraction of the interstitial space of a
porous skeleton) in the undeformed or stress-free state, but will allow the porosity to
vary affinely with the volume change invariant of the deformation gradient tensor (see
technical discussion). As mentioned above, the DEFORM model requires a field
equation for the mass-conservation of the solid matrix through the porous_deform
equation.

Technical Discussion

Porosity is a microstructural attribute of a porous medium which describes the fraction
of volume not occupied by the solid skeleton. For rigid porous media, it is a parameter
that weights the capacitance term (time-derivative term) of the Darcy flow equations
for liquid solvent and gas “solvent” concentrations. It often affects the Saturation
function (see Saturation card) and the permeability function (see Permeability card).
The references cited below elucidate the role of the porosity parameter in these
equations.

For deformable porous media, Goma uses the porosity as a measure of fraction solid
concentration, as a part of a mass balance for the solid skeleton. The reason this
equation is required is a result of the lack of an overall conservation law for the
mixture. Instead, we close the system by individual conservation equations for all
species components in the medium, including the solid; the liquid and gas phase
components are accounted for with individual Darcy flow equations. The conservation
law which governs the porosity assumes there is an affine deformation of the pores
with the overall deformation of the solid, and hence can be written as:

946 Revised: 6/12/13

5.4.7 Permeability

(5-63)

where is the deformation gradient tensor, is the initial porosity, and is the
porosity. This equation is invoked with the porous_deform option on the EQ
specifications.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.4.7 Permeability

Description/Usage

This card is used to specify the model for permeability, which is required for the
Brinkman and Darcy formulations for flow through porous media. Definitions of the
input parameters are as follows:

{model_name} Name of the permissible models for permeability:
CONSTANT, TENSOR, KOZENY_CARMEN,
SOLIDIFICATION and PSD_VOL, PSD_WEXP, or
PSD_SEXP. (No USER model as of 6/13/2002; contact
Developers for this addition).

Permeability = {model_name} {float_list} [L2]

det F
˜

() V
V0

1 φ0–

1 φ–
---------------= =

F
˜

φ0 φ

Revised: 6/12/13 947

5.4.7 Permeability

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}.

Permeability model choices and their parameters are discussed below.

CONSTANT <float1>

Model for constant permeability with a single
parameter. This model is allowed for all Media Types
(cf. Media Type card).

<float1> - k, Permeability [L2]

TENSOR <float1> <float2> <float3> <float4>

Model for a two dimensional, constant anisotropic
permeability; it has not been implemented in three
dimensions. All media types (cf. Media Type card)
except POROUS_BRINKMAN may use this model.

<float1> - kxx permeability [L2]
<float2> - kyy permeability [L2]
<float3> - kxy permeability [L2]
<float4> - kyx permeability [L2]

PSD_VOL <float1> <float2> <float3> <float4>

This is a model of a deformable medium with a
probabilistic distribution of pore sizes; see Technical
Discussion section. Four parameters are required for the
PSD_VOL model:

<float1> - , porosity in undeformed state
<float2> - , maximum pore radius in

undeformed state
<float3> - , ratio of smallest pore size to largest

pore size
<float4> - , a geometric tortuosity factor

All media types (cf. Media Type card) except
POROUS_BRINKMAN may use this model.

PSD_WEXP <float1> <float2> <float3> <float4>

Same <float> specifications as PSD_VOL model.

This model is allowed for all media types except
POROUS_BRINKMAN (cf. Media Type card).

PSD_SEXP <float1> <float2> <float3> <float4>

φ0

rmax φ0()

α

1 τ
2

⁄

948 Revised: 6/12/13

5.4.7 Permeability

Same <float> specifications as PSD_VOL model.

This model is allowed for all media types except
POROUS_BRINKMAN (cf. Media Type card).

SOLIDIFICATION <float1>

Used to phase in a porous flow term in the liquid
momentum equations for low volume fraction packing
of particles in the Brinkman porous flow formulation
(see discussion below). Used for Phillip’s model of
suspensions for the Liquid Constitutive Equation, viz.
CARREAU_SUSPENSION, SUSPENSION,
FILLED_EPOXY or
POWER_LAW_SUSPENSION.

<float1> - the species number of the suspension flow
model; it is used to indicate that maximum
packing, or solidification has occurred.
(The float is converted to an integer).

This model is ONLY allowed for media type
POROUS_BRINKMAN (cf. Media Type card). The
functional form is:

(5-64)

where is the clear fluid viscosity, is the
volume fraction of particles, or concentration divided by
the maximum packing (0.68 for monodisperse spheres),
and is the average element size.

KOZENY_CARMAN <float1> <float2>

 The Kozeny-Carman equation relates the permeability
to the porosity for a porous medium and has been shown
to fit well the experimental results in many cases. This
equation is easily derivable from the PSD_* models for
the case of uniform pore-size distribution, viz. a delta
distribution (cf. Cairncross, et. al., 1996 for derivation).
The model is currently implemented in the isotropic
media case and is useful for deformable problems in
which the porosity changes with deformation (cf.

k
µ

1
2
---havg

2

1 φpart–()
2

φpart 1.43 φpart–()
--

µ0

--=

µ0 φpart

havg

Revised: 6/12/13 949

5.4.7 Permeability

Porosity card DEFORM model). The functional form
for this model is as follows:

(5-65)

Here is the porosity, c0 is a constant consisting of
tortuosity and shape factor of the pores, and Sv is the
surface area per solid volume. The float parameters are:

<float1> - , tortuosity and shape factor
<float2> - , surface area per solid volume

EXTERNAL_FIELD<float1>

This model reads in an array of values for the porosity from

an initial exodus file. This allows for spatial variations in the

parameter value.
<float1> - Scale factor for converting/scaling

exodusII field.

The ExodusII field variable name should be “PERM”, viz.

External Field = PERM Q1
name.exoII (see this card)

Examples

Following is a sample card:

Permeability = CONSTANT 0.001

This specification leads to a constant permeability of 0.001.

Technical Discussion

For all models, this card provides the permeability, in units of [L2]. For saturated
porous materials (viz. POROUS_BRINKMAN or POROUS_SATURATED media
types), the viscosity from the Viscosity card is used to compute the porous conductivity,
viz., permeability divided by viscosity. For unsaturated media types, the viscosity
factor comes through the relative permeability cards (see Rel Gas Permeability and Rel
Liq Permeability cards). Please consult the references below for the proper form of the
equations.

The PSD_VOL (Probability Size Distribution, PSD) model treats the medium as a
bundle of capillary tubes with a distribution of pores such that over a range of pore-

k
φ

3

c0Sv
2

1 φ–()
2

--------------------------------=

φ

c0
Sv

950 Revised: 6/12/13

5.4.7 Permeability

sizes the volume of pores is evenly distributed. For such a model, the maximum pore-
size varies with the porosity:

(5-66)

Then, the permeability is a function of the maximum pore-size and the pore-size
distribution:

(5-67)

The input parameters for the PSD models are , , , and . More
detail on the deformable porous medium models is given in Cairncross, et. al., 1996.
The PSD_WEXP and PSD_SEXP are similar pore-size distribution models to
PSD_VOL. The references below should be consulted for details on how to use these
models.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

rmax φ() rmax φ0()
φ
φ0

 1 2⁄ 1 φ0–

1 φ–

1 3⁄
=

k φ
1

60τ
2

1 α

3
–()

1 α–()
--------------------rmax

2
=

φ0
rmax φ0() α 1 τ

2
⁄

Revised: 6/12/13 951

5.4.8 Liquid phase compressibility

5.4.8 Liquid phase compressibility

Description/Usage

This card specifies the model and model parameters for liquid-phase compressibility,
and was specifically designed for use in porous-media flow problems that are partially
saturated (viz. Media Type card values of POROUS_UNSATURATED or
POROUS_TWO_PHASE). This feature was added partially for numerical
convenience in rigid porous media to accommodate regimes where the saturation level
is at or near unity; at these saturation levels the capacitance term (see Technical
Discussion below) all but vanishes, viz. there is no sensitivity of the saturation level to
liquid phase pressure, and the mathematical behavior can change type. This occurs in
situations of low permeability, narrow pore-size distribution, and sudden pressure
spikes during simulation startup.

CONSTANT Name of the model for the compressibility coefficient,
currently the only option. It requires a single parameter:

<float> - Compressibility coefficient, in units of inverse
pressure.

This card requires a companion card Liquid phase reference pressure.

Examples

The cards (using APREPRO variables)
Liquid phase compressibility = CONSTANT {beta_liquid}
Liquid phase reference pressure = CONSTANT {p_not}

leads to the application of a linearized compressibility model for the density of liquid in
the time-derivative capacitance term. This is useful for rigid porous media when the
conditions are such that the saturation front is sharp.

Technical Discussion

For the most part, we have needed the Liquid Phase Compressibility capability to ease
the startup of impregnation problems, in which an external pressure load is impulsively
applied to a liquid layer being forced into a rigid porous matrix. The capacitance term
as the saturation level approaches 1.0 (S->1) in the porous Darcy flow equation appears
in Goma as

Liquid phase compressibility = {model_name} <float> [L-t/M] or [L2/N]

952 Revised: 6/12/13

5.4.8 Liquid phase compressibility

(5-68)

Here is the liquid solvent concentration (in both gas and liquid phases), is the
porosity, and is the liquid phase density. Here we employ the linearized density
model:

(5-69)

where is the coefficient of compressibility entered on this card, viz.
defined above, is the reference liquid pressure (see Liquid phase reference
pressure card)

Theory

No Theory.

FAQs

The following troubleshooting tips regarding startup of partially saturated porous
media problems are part of the authors experience presented in Schunk, 2002 (GT-
009.3):

-Linear elements, viz. Q1 elements, are better for saturation front startup at an external
boundary if the difference between the boundary specified liquid-phase pressure and
the medium-initialized liquid phase pressure are drastically different. Quadratic
elements in this case can lead to zero or low Saturation values at all computational
Gaussian integration points and the front may never penetrate.

-Time stepping is all important. There are three relevant parameters: time-step scheme,
initial time step size, and time-step error factor. The rules of thumb that can be
established are as follows:

If you are using Porous Mass Lumping, you must set the Time Step Parameter to 0.0, or
your performance will suffer. In fact, it is always a good idea in steep penetration front
problems to use backward Euler techniques.

With mass lumping and first order time integration, you must control your step size
with the tolerance setting. Too big of time step early on can propagate to large errors at
later times when time stepping. You may need to experiment with the error tolerance on
the Time step error card. Constantly scrutinize your results for correctness and suspect
an error growth here.

dCls

dt

d φρls()

dt
------------------- φ

td

dρls

φ
dρls

dPliq

td

dPliq
≅=

Cls φ

ρls

ρls ρ
0

ls 1 βls() pliq p
0

liq–()+()=

βls dρls dPliq⁄

p
0

liq

Revised: 6/12/13 953

5.4.8 Liquid phase compressibility

You must have a significant capacitance term on the first time step. If your capacitance
term is small, then the problem is elliptic and will try to satisfy all boundary conditions,
and this can mess up your penetration front.You can use Liquid phase compressibility
property to help this for steep front startup.

Are you getting stagnant calculations with time-step decreases but not change in
iteration history? Problem is that you have lost your capacitance term. Compressibility
of the liquid is sometimes a remedy, but also a more accurate predictor. Mass lumping
can help too and accomplishes the same thing. Sometimes your initial time step can be
too small for a good start. Try increasing it ...

-Another startup issue: Steep discontinuities at boundaries and internally for initial
conditions are bad, obviously. If your time step is such that the front cannot penetrate
beyond one element in one time step, then with linear elements the capacitance term is
ineffective (small) upon reduced time steps. Somehow you have got to get the front
beyond one or two elements before things work properly. I find that ramping up the
initial boundary conditions helps. Sometimes a large first time step to kick it is good
too.

-On startup of a pressurized column of liquid penetrating into a porous substrate, I
noticed that at zero-based p_liq, there was no problem elevating the applied pressure on
the penetration, but at Atm-based p_liq we couldn’t start the problem without severe
compressibility. However, compressibility affects the solution, and in fact allows you
to push all of your column of liquid into a compressed layer in the substrate, with no
Sat from propagation. So beware of poorly defined compressibility of liquid. Also,
refinement in the porous layer helped the startup. But the most significant thing for the
problem I was solving, don’t be surprised if just a little perturbation on externally
applied pressure greatly affects the penetration rate. In fact, in one problem simply
changing from p_ext of 1.01325e+6 to 1.11325+6 increases the penetration rate 2-fold
initially. The steeper curves are harder to handle.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media,
September 1, 2002, P. R. Schunk

954 Revised: 6/12/13

5.4.9 Liquid phase reference pressure

5.4.9 Liquid phase reference pressure

Description/Usage

This card is used to specify the model and model parameters for the liquid-phase
compressibility reference pressure. See Liquid phase compressibility card for
discussion and theory.

CONSTANT model for the reference pressure, currently the only
available option. It requires a single floating point value:

<float> - The reference pressure, in units of pressure.

Examples

The cards
Liquid phase compressibility = CONSTANT {beta_liquid}
Liquid phase reference pressure = CONSTANT {p_not}

leads to the application of a linearized compressibility model for the density of liquid in
the time-derivative capacitance term. This is useful for rigid porous media when the
conditions are such that the saturation front is sharp.

Technical Discussion

See discussion on Liquid phase compressibility card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media,
September 1, 2002, P. R. Schunk

Liquid phase reference pressure = CONSTANT <float> [M/L-t2] or [N/L2]

Revised: 6/12/13 955

5.4.10 FlowingLiquid Viscosity

5.4.10 FlowingLiquid Viscosity

Description/Usage

This card is used to specify the model for the viscosity of liquid flowing through pores
with the Brinkman model of flow through porous media, viz. see Media Type card with
POROUS_BRINKMAN option. In the Brinkman model, the viscosity input through
the Viscosity card is used as the Brinkman viscosity, and the viscosity input through this
card is used in determining the hydraulic resistance. Detailed discussion of these two
viscosities can be found by consulting the references below.

Definitions of the input parameters are as follows:

CONSTANT Name for the constant viscosity model.

<float> - The value of the viscosity.

Examples

Following is a sample card:

FlowingLiquid Viscosity = CONSTANT 101.0

This card is only applicable to the POROUS_BRINKMAN media type and results in a
hydraulic resistance viscosity of 101.0.

Technical Discussion

See references below for discussion on use of this card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

FlowingLiquid Viscosity = CONSTANT <float> [M/Lt]

956 Revised: 6/12/13

5.4.11 Inertia Coefficient

Gartling, D. K., C. E. Hickox and R. C. Givler 1996. "Simulations of Coupled Viscous
and Porous Flow Problems", Comp. Fluid Dynamics, 7, 23-48.

5.4.11 Inertia Coefficient

Description/Usage

This card is used to specify the model for the inertia coefficient in the Brinkman
formulation for flow through porous media, viz. see POROUS_BRINKMAN option
on Media Type card. Detailed discussion of this coefficient can be found by consulting
the references below. Definitions of the input parameters are as follows:

CONSTANT Name of the model for the inertia coefficient.

<float> - The value of the inertia coefficient.

Examples

Following is a sample input card that produces a weighting coefficient of 1.0 on the
inertial term in the POROUS_BRINKMAN equations.

Inertia Coefficient= CONSTANT 1.0

Technical Discussion

See references below for discussion on use of this card.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

Gartling, D. K., C. E. Hickox and R. C. Givler 1996. "Simulations of Coupled Viscous
and Porous Flow Problems", Comp. Fluid Dynamics, 7, 23-48.

Inertia Coefficient = CONSTANT <float> []

ĉ

Revised: 6/12/13 957

5.4.12 Capillary Network Stress

5.4.12 Capillary Network Stress

Description/Usage

This card specifies the mechanism by which capillary stress and capillary pressure in
the liquid phase of a partially saturated porous medium is transferred to the solid
network. This model is active only when the porous_deform equation (see EQ card) is
active, and the drained network is deformable under liquid phase pressure. The
principles of this card rest in the theory of the effective stress principle. In effect, the
model specified here can be used to change the affinity of the pore liquid to the solid
network (more discussion below). The input parameter is the model for capillary
network stress.

The options for {model_name} are the names of transfer mechanisms:

WETTING specifies that the porous skeleton has the same
hydrostatic pressure as the liquid. This model has not
been tested recently. See discussion below.

PARTIALLY_WETTING

specifies that the porous skeleton has a hydrostatic
pressure that is the average of the liquid and gas phase
pressures, weighted by their saturations (see related
report on drying of deformable porous media by
Cairncross, et. al., 1996).

COMPRESSIBLE functions the same as the PARTIALLY_WETTING
option but includes a factor that accounts for the
compressibility of the solid material, viz. the actual
struts of the solid material, not the network (see
Cairncross, et. al., 1996).

Examples

The following is a sample input card:

Capillary Network Stress = PARTIALLY_WETTING

Technical Discussion

Basically, this card sets the functional form of the capillary stress contribution to the
composite effective stress in a porous medium. The constitutive equation is as follows:

Capillary Network Stress = {model_name}

958 Revised: 6/12/13

5.4.12 Capillary Network Stress

(5-70)

where is the drained network stress that would result in the absence of any
pore fluid (gas or liquid). The function F depends on the model type specified on this
card. For POROUS_SATURATED media types, this card is not used and .
For POROUS_UNSATURATED and POROUS_TWO_PHASE media types, F is as
follows for different transfer mechanisms:

• WETTING: The assumption here is that a thin liquid layer covers all surfaces.

(5-71)

• PARTIALLY_WETTING: The most commonly used model.

(5-72)

• COMPRESSIBLE: If the solid struts are also significantly compressible, viz. the
solid bulk modulus Ks is of the same order of magnitude as the network skeleton
bulk modulus, Kn, this model should be used. Not recently tested; please consult
with Developers before using this option. PRS (6/13/2002)

Theory

No Theory.

FAQs

No FAQs.

References

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

σ
˜

I
˜
F pliq pgas S φ Ksolid, , , ,()– σ

˜ network
+=

σ
˜ network

F pliq=

F 1 1 S–()φ–()pliq 1 S–()φpgas+=

F Spliq 1 S–()pgas+=

Revised: 6/12/13 959

5.4.13 Rel Gas Permeability

5.4.13 Rel Gas Permeability

Description/Usage

This card specifies the model for the relative gas phase permeability for flow in a
partially saturated porous media, such that the gas flow is the pressure gradient in the
gas times the permeability times the relative gas phase permeability divided by the gas
viscosity. This card rests on a consistency in the specification of the relative liquid
permeability (see models on the Rel Liq Permeability card) and this, the relative gas
permeability. Definitions of the input parameters are as follows:

CONSTANT {model_name} for constant relative gas phase
permeability with a single input value:

<float> - the gas phase viscosity. For this model, one
must account for the gas viscosity in the
specification of this value.

The CONSTANT model is rarely used, as it is dependent on the saturation
level and the relative liquid permeability value. Please see the Rel Liq
Permeability card.

SUM_TO_ONE {model_name} for the relative gas phase permeability.
This model assumes that the relative liquid permeability
and relative gas permeability add to one.

<float> - the value of the gas phase viscosity.

Examples

Following is a sample card:

Rel Gas Permeability = SUM_TO_ONE 0.0001

This card specifies that the relative gas permeability in Darcy’s law for the gas flux is to
depend on the liquid phase relative permeability such that the two sum-to-one. The
gas viscosity here is specified to be 0.0001, in the appropriate viscosity units of M/L/t.

Technical Discussion

This card is only required for Media Type POROUS_TWO_PHASE. Darcy’s law for
gas flow is, in its simplest form:

Rel Gas Permeability = {model_name} <float> []

960 Revised: 6/12/13

5.4.14 Rel Liq Permeability

(5-73)

where, the Darcy velocity is proportional to the gradient in gas pressure, with k being
the permeability, krel

g being the relative gas permeability and µgas the viscosity of the
gas. For the SUM_TO_ONE option above, the floating point constant is the gas phase
viscosity, and the gas-phase relative permeability is calculated using

(5-74)

For the CONSTANT option the floating point constant must include the effect of
viscosity, viz. the constant represents krel

g/µgas

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.4.14 Rel Liq Permeability

Description/Usage

This card is required for Media Type POROUS_TWO_PHASE. This card specifies
the model for the relative liquid phase permeability for flow in a partially saturated
porous media, such that the liquid flow is the pressure gradient in the liquid times the
permeability times the relative liquid phase permeability divided by the liquid
viscosity. Definitions of the input parameters are as follows:

Rel Liq Permeability = {model_name} {float_list} []

v
˜g

k
krel

g

µgas

-----------∇pgas=

µgask
rel

gas
µliqkliq

rel
+ 1=

Revised: 6/12/13 961

5.4.14 Rel Liq Permeability

{model_name} Name of the model for the relative gas phase
permeability; the permissible values are CONSTANT,
VAN_GENUCHTEN, PSD_VOL, PSD_WEXP, and
PSD_SEXP.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}.

Permeability model choices and their parameters are discussed below.

CONSTANT <float1>

a constant relative liquid permeability; this is a rarely-
used option.

<float1> - relative liquid permeability, obtained by
dividing the relative permeability desired
by the liquid-phase viscosity

VAN_GENUCHTEN <float1> <float2> <float3> <float4>

assumes that the relative liquid permeability is a
function of the saturation (as specified in the Saturation
card). The {float_list} contains four values for this
model, where:

<float1> - Irreducible water saturation
<float2> - Irreducible air saturation
<float3> - Exponent () in model
<float4> - Liquid viscosity

PSD_VOL <float1> This model can only be used in conjunction with the
same model for permeability and saturation; a single
input value is required:

<float1> - Liquid phase viscosity

All other parameters are loaded up from the Saturation
and Permeability cards.

PSD_WEXP <float1>

This model can only be used in conjunction with the
same model for permeability and saturation; a single
input value is required:

<float1> - Liquid phase viscosity

PSD_SEXP <float1>

λ 1 1 β⁄–= krel

962 Revised: 6/12/13

5.4.14 Rel Liq Permeability

This model can only be used in conjunction with the
same model for permeability and saturation; a single
input value is required:

<float1> -Liquid phase viscosity

Examples

Following is a sample card:

Rel Liq Permeability = VAN_GENUCHTEN 0.01 0.01 0.667 0.01

Technical Discussion

The most often used model is that of VAN_GENUCHTEN. The functional form of
this model is as follows:

(5-75)

where

(5-76)

 , (5-77)

and is the viscosity. This function is clipped to zero as and clipped to one
as .

PSD_* model theory details can be found in the references cited below. These models
bring in more explicit dependence on pore size and size distribution, as well as other
microstructural features. In the VAN_GENUCHTEN model, such parameter effects
are embodied in the Saturation dependence, which is empirically fit through the
saturation function.

Theory

No Theory.

krel

S Smin–()

Smax Smin–()

1
2
--- 1 1 Seff

1
λ

–

λ

–

2

µ
--=

Seff

S Smin–()

Smax Smin–()
-----------------------------------=

λ 1
1
β
---–=

µ Seff 0→

Seff 1→

Revised: 6/12/13 963

5.4.15 Saturation

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s capabilities for partially saturated flow in porous media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.4.15 Saturation

Description/Usage

This card specifies the model for the liquid saturation in a partially saturated porous
media, which is frequently observed experimentally to be a function of the capillary
pressure (gas pressure minus liquid pressure). This card is required for Media Type
specifications of POROUS_PART_SAT, POROUS_UNSAT, and
POROUS_TWO_PHASE. Definitions of the input parameters are as follows:

{model_name} Name of the model for the liquid in a partially saturated
porous media. The permissible values are CONSTANT,
VAN_GENUCHTEN, TANH, PSD_VOL, PSD_WEXP,
and PSD_SEXP.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection for
{model_name}.

Saturation model choices and their parameters are discussed below.

CONSTANT <float1>

For the constant value of saturation model. This model is
rarely used, unless one wanted to study the flow of gas and
liquid at some constant, pre-specified saturation as a
function of gas and liquid phase pressure.

Saturation = {model_name} {float_list} []

964 Revised: 6/12/13

5.4.15 Saturation

VAN_GENUCHTEN <float_list>

The VAN_GENUCHTEN model assumes that saturation is
a function of the capillary pressure. The {float_list}
contains four values, where:

<float1> - Irreducible water saturation
<float2> - Irreducible air saturation
<float3> - An exponent β
<float4> - A scaling to convert from capillary pressure

to suction()

TANH <float_list>

The first version of the TANH model assumes that
saturation is only a function of capillary pressure. The
{float_list} contains four values, where:

<float1> - Irreducible water saturation, θw
<float2> - Irreducible air saturation, θair
<float3> - A constant c
<float4> - A constant d

PSD_VOL <float1> <float2>

This model can only be used in conjunction with the same
model for permeability and relative liquid permeability; two
input values are required:

<float1> - Surface tension of the liquid
<float2> - Contact angle the liquid-vapor menisci makes

with the solid surfaces

PSD_WEXP <float1> <float2>

This model can only be used in conjunction with the same
model for permeability and relative liquid permeability; two
input values are required:

<float1> - Surface tension of the liquid
<float2> - Contact angle the liquid-vapor menisci makes

with the solid surfaces

PSD_SEXP <float1> <float2>

This model can only be used in conjunction with the same
model for permeability and relative liquid permeability; two
input values are required:

<float1> - Surface tension of the liquid
<float2> - Contact angle the liquid-vapor menisci makes

with the solid surfaces

α ρl g⁄⁄

Revised: 6/12/13 965

5.4.15 Saturation

Examples

Following is a sample card:

Saturation = VAN_GENUCHTEN 0.01 0.01 3.9 1.

The parameters on this VAN_GENUCHTEN specification are basically curve fit
parameters to experimental measured saturation values versus capillary pressure. They
do have some physical meaning, as is described below, and in the references.

Technical Discussion

The saturation function specification is perhaps the most critical and most influential
function for capturing accurate behavior of flow through partially saturated porous
media. The basic cap of this function versus capillary pressure is depicted in the figure
below: Notice the plateau of saturation at unity at low capillary pressures (high positive
liquid pressures) and the dip to the irreducible water saturation at high capillary
pressures. In most real operations, this dependence will be highly sensitive to many
factors: viz. whether you are filling or vacating the pore space, whether network stress
in poroelastic problems is leading to liquid tension, etc.

The Van Genuchten model has the following functional form:

(5-78)

Here the irreducible water saturation is , the irreducible air saturation , the
suction factor is α, and the exponents β and m, the latter of which is .

The TANH model has the following functional form:

(5-79)

where a and b are automatically calculated from

 and (5-80)

and c and d are two fitted coefficients provided as input parameters. Here the
irreducible water saturation is , the irreducible air saturation , and are also
provided by the user as input parameters. Pc is the capillary pressure which has a lower
limit of 1.E-5.

S θw 1 θ– w θair–()
1

1 αPc()
β

+

 m

+=

θw θair
1 1 β⁄–

S a b c
d

Pc

------–
 tanh–=

a 0.5
θw

2

θair

2
----------–+= b 0.5

θw

2

θair

2
----------––=

θw θair

966 Revised: 6/12/13

5.4.16 Porous Weight Function

Theory

No Theory.

FAQs

No FAQs.

References

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk.

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K.
Moffat, August 2001 (DRAFT).

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996).

5.4.16 Porous Weight Function

Description/Usage

This required card is used to specify the weight function form on the capacitance term
of the Darcy flow equations for partially saturated flow (viz. for Media Type
specifications of POROUS_PART_SAT and POROUS_UNSAT, and
POROUS_TWO_PHASE.) The standard approach is to use a Galerkin formulation,
but often times the SUPG option allows for a more stable time integration algorithm
using the classic Streamwise Upwinding Petrov Galerkin weight function (see
references below). The model options for this card are as follows:

GALERKIN Name of the weight function formulation. This option
requests a standard Galerkin finite element weighted
residual treatment. A parameter is required, viz. <float>, but
it is not used by Goma; it should be set to zero.

<float> - 0.0

SUPG Name of the weight function formulation. This option
requests a streamwise upwinding Petrov-Galerkin
formulation. A floating point parameter is required as a

Porous Weight Function = {GALERKIN | SUPG} <float>

Revised: 6/12/13 967

5.4.16 Porous Weight Function

SUPG weighting parameter and it should be set between 0.0
(for no upwinding) and 1.0 (for full upwinding).

<float> - a SUPG weighting parameter

The default model if this card is missing is GALERKIN.

Examples

An example card

Porous Weight Function = SUPG 1.0

Technical Discussion

As mentioned above, this card is used to invoke a streamwise upwinding scheme for
purposes of stabilizing the solution around steep saturation fronts. Galerkin finite
element treatment is often an extremely inaccurate discretization for propagating a
discontinuity, such as is the case around these fronts, and often has to be supplemented
with streamwise diffusion and/or mass lumping so that the saturation variable remains
monotonic and well behaved, viz. to keep it from going below zero. Another expedient
to aid in keeping the front smooth and monotonic is to use mass lumping (cf. Mass
Lumping card).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K.
Moffat, August 2001 (DRAFT).

Bradford, S. F. and N. D. Katopodes, “The anti-dissipative, non-monotone behavior of
Petrov-Galerkin Upwinding,” International J. for Numerical Methods in Fluids, v. 33,
583-608 (2000).

Brooks, A. N. and T. J. R. Hughes, “Streamline Upwind/Petrov-Galerkin Formulations
for Convection Dominated Flows with Particular Emphasis on the Incompressible
Navier-Stokes Equations,” Comp. Math. In Appl. Mechanics and Eng., 32, 199 - 259
(1992).

968 Revised: 6/12/13

5.4.17 Porous Mass Lumping

Gundersen, E. and H. P. Langtangen, “Finite Element Methods for Two-Phase Flow in
Heterogeneous Porous Media,” in Numerical Methods and Software Tools in Industrial
Mathematics, Morten Daehlen, Aslak Tveito, Eds., Birkhauser, Boston, 1997.

Helmig, R. and R. Huber, “Comparison of Galerkin-type discretization techniques for
two-phase flow in heterogeneous porous media,” Advances in Water Resources, 21,
697-711 (1998).

Unger, A. J. A., P. A. Forsyth and E. A. Sudicky, “Variable spatial and temporal
weighting schemes for use in multi-phase compositional problems,” Advances in Water
Resources, 19, 1 - 27 (1996).

5.4.17 Porous Mass Lumping

Description/Usage

Mass lumping is a technique for handling stiff problems with propagation of
discontinuities. By “Mass” we mean the so-called mass matrix, or the submatrix
generated by the time-derivative term in the physical equations. Discretization of this
term with the standard Galerkin finite element method produces a symmetric, but non-
diagonal matrix, also known as the consistent mass matrix as it adheres to the proper
weak form. This required card specifies the mode in which the mass matrix is
computed. If mass lumping is turned on, then the matrix is formed on a nodal,
collocated basis and the mass matrix becomes diagonal. This technique expedites time-
integration during the propagation of steep fronts.

The mass lumping here applies ONLY to the time-derivative term in the
EQ=porous_liq or EQ=porous_gas equations in Goma, and only when the Media Type
is either POROUS_UNSATURATED or POROUS_TWO_PHASE. Mass lumping is
not enabled for saturated porous flow. Please see technical discussion below for other
usage tips. The card options are as follows:

yes | true Compute mass matrix with the lumped approach.

no | false Compute mass matrix with the standard Galerkin approach.
This is the default.

Examples

Porous Mass Lumping = true

Porous Mass Lumping = {yes | true | no | false}

Revised: 6/12/13 969

5.4.17 Porous Mass Lumping

Technical Discussion

Mass lumping is almost essential for unsaturated porous flow problems, especially at
low permeabilities and in conditions for which the saturation front is sharp. It is
recommended that mass lumping always be used for all unsaturated porous flow
problems. However, with such use it is also recommended to use ONLY 1st order time
integration (see Time step parameter card and choose Backward-Euler, 0.0). For
second order time integration on the porous flow equations, mass lumping does not
provide any benefit as the increased accuracy in time tends to lead to insufficient
accuracy in space, and wiggles form.

Mass lumping is not currently available for saturated deformable porous flow.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

GTM-029.0: SUPG Formulation for the Porous Flow Equations in Goma, H. K.
Moffat, August 2001 (DRAFT).

Bradford, S. F. and N. D. Katopodes, “The anti-dissipative, non-monotone behavior of
Petrov-Galerkin Upwinding,” International J. for Numerical Methods in Fluids, v. 33,
583-608 (2000).

Gundersen, E. and H. P. Langtangen, “Finite Element Methods for Two-Phase Flow in
Heterogeneous Porous Media,” in Numerical Methods and Software Tools in Industrial
Mathematics, Morten Daehlen, Aslak Tveito, Eds., Birkhauser, Boston, 1997.

Helmig, R. and R. Huber, “Comparison of Galerkin-type discretization techniques for
two-phase flow in heterogeneous porous media,” Advances in Water Resources, 21,
697-711 (1998).

970 Revised: 6/12/13

5.4.18

Unger, A. J. A., P. A. Forsyth and E. A. Sudicky, “Variable spatial and temporal
weighting schemes for use in multi-phase compositional problems,” Advances in Water
Resources, 19, 1 - 27 (1996).

5.4.18

5.4.19 Porous Diffusion Constitutive Equation

Description/Usage

This required card is used to specify the species diffusion model for the gas phase in a
porous medium. Just now there is only one option, but plans are to expand the options
to include multicomponent diffusion models (cf. Diffusion Constitutive Equation card).
It is important to note that this model specification only applies to the gas phase of each
component. Liquid phase species diffusive transport has not been implemented as of
12/19/01.

Definitions of the input parameters are as follows, with only a single permissible value:

DARCY_FICKIAN Name of the model for the diffusion constitutive
equation in the porous gas phase.

This model simply implies that gas species can be transported relative to the solid
skeleton phase not only by a pressure gradient, as in Darcy’s law, but also by Fickian
diffusion.

Examples

The following sample input card uses the APREPRO variable model_name (which is
set to DARCY_FICKIAN.

Porous Diffusion Constitutive Equation = {model_name}

Technical Discussion

Currently, the DARCY_FICKIAN model is the only option for the porous diffusion
equation and it only applies to one phase. When this card is parsed, it is contained in a
solvent species loop. When we allow more than one volatile species, we will eventually
allow for other diffusion constitutive equation models, e.g. of the Stefan-Maxwell type.
Also, we will have to build a phase dependence into this card, as the diffusion law may

Porous Diffusion Constitutive Equation = {model_name}

Revised: 6/12/13 971

5.4.20 Porous Gas Diffusivity

be different in the liquid and in the gas. Right now, we do not allow for diffusion
transport (viz. by a chemical potential or concentration gradient) in the liquid phase of
a porous medium. Please consult references below for theoretical discussion.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.4.20 Porous Gas Diffusivity

Description/Usage

This card sets the model for the porous gas diffusivity, or the diffusion coefficient for
diffusive species flux in the gas phase of a porous medium. It is applicable to media
types POROUS_UNSATURATED and POROUS_TWO_PHASE (see Media Type
card).

Definitions of the input options for {model_name} and the <integer> and <float>
parameters fro each model are as follows:

CONSTANT <integer> <float1>

the name for the constant diffusivity model.

<integer> - phase/component; always set to zero
until a multicomponent capability exists

<float1> - D, Diffusivity [L2/t]

Porous Gas Diffusivity = {model_name} <integer> <float_list> [L2/t]

972 Revised: 6/12/13

5.4.20 Porous Gas Diffusivity

POROUS <integer> <float1> <float2> <float3> <float4> <float5>

the name for a microstructure dependent porous
medium model.

<integer> - phase/component; always set to zero
until a multicomponent capability exists

<float1> - Dv
o, binary diffusion coefficient in free

space [L2/t]
<float2> - τ, tortuosity of the matrix skeleton
<float3> - P*

gas, reference gas phase pressure
<float4> - T0, reference temperature.
<float5> - n, exponent on the temperature

dependence (see below).

For two-phase or unsaturated flow in a porous medium, the diffusivity calculated by
this model is the diffusivity of solvent vapor through the gas phase in the pore-space
(see Martinez, 1995).

Examples

Porous Gas Diffusivity = POROUS 0 1.e-5 0.5 1.e+6 25.0 3

See the equation below for the diffusivity model that this card represents.

Technical Discussion

The generalized flux of liquid phase solvent, in both gas and liquid phases, contains a
term that accounts for diffusion of the liquid solvent species as gas vapor (see
references below). That flux is as follows:

(5-81)

If the media type is POROUS_TWO_PHASE, this expression is divided by

(5-82)

and if in addition it is temperature dependent, this expression is multiplied by

(5-83)

Theory

No Theory.

Dgv Dv
0 φ 1 S–()

τ

 =

pgas P∗
gas⁄

T

T
0

 n

Revised: 6/12/13 973

5.4.21 Porous Latent Heat Vaporization

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

SAND94-0379: “Formulation and Numerical Analysis of Nonisothermal Multiphase
Flow in Porous Media”, Sandia Technical Report, Martinez, M. J., 1995

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.4.21 Porous Latent Heat Vaporization

Description/Usage

This required card is used to specify the model for the latent heat of vaporization for
each liquid solvent species in a partially saturated porous media flow problem, viz.
Media Type card set to POROUS_UNSATURATED or POROUS_TWO_PHASE.
As of 6/13/2002, we only allow single liquid phase solvent, and the porous enthalpy
equation is being tested. Definitions of the input parameters are as follows:

CONSTANT Name of the constant latent heat of vaporization model.

<integer> - the species equation of liquid phase solvent;
MUST BE SET TO ZERO for now.

<float> - the value of the latent heat of vaporization.

Examples

The following is a sample input card:

Porous Latent Heat Vaporization = CONSTANT 0 1000.2

Porous Latent Heat Vaporization = CONSTANT <integer> <float> [E/M]

974 Revised: 6/12/13

5.4.22 Porous Latent Heat Fusion

Technical Discussion

First order phase change involves the adsorption or expulsion of heat. This thermal
effect is modeled through the porous energy equation (see EQ cards; this equation was
under development and testing as this manual was being assembled) with a source term
that depends on the evaporation/condensation rate.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.4.22 Porous Latent Heat Fusion

Description/Usage

This required card is used to specify the model for the latent heat of fusion (or freezing)
for each liquid solvent species in a partially saturated porous media flow problem, viz.
Media Type card set to POROUS_UNSATURATED or POROUS_TWO_PHASE.
As of 6/13/2002, we only allow single liquid phase solvent and the porous enthalpy
equation is being tested. Definitions of the input parameters are as follows:

CONSTANT Name of the constant latent heat of fusion model.

<integer> - the species equation of liquid phase solvent;
MUST BE SET TO ZERO for now.

<float> - the value of the latent heat of fusion.

Examples

The following is a sample input card:

Porous Latent Heat Fusion = CONSTANT 0 1000.2

Porous Latent Heat Fusion = CONSTANT <integer> <float> [E/M]

Revised: 6/12/13 975

5.4.23 Porous Vapor Pressure

Technical Discussion

First order phase change involves the adsorption or expulsion of heat. This thermal
effect is modeled through the porous energy equation (see EQ cards; this equation was
under development and testing as this manual was being assembled) with a source term
that depends on the evaporation/condensation rate. Fusion implies a liquid to solid
transition. It is envisioned that this card will someday be used for porous flow in mushy
zones of solidifying metals, or the freezing of water in a porous solid.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.4.23 Porous Vapor Pressure

Description/Usage

Used to specify the model for the vapor pressure for each multiphase flow component
in the porous medium that is activated for Media Type POROUS_UNSATURATED or
POROUS_TWO_PHASE.

Definitions of the input parameters are as follows:

{model_name} The permissible values for the model in this class are
KELVIN and FLAT for a volatile liquid, and
NON_VOLATILE for a non-volatile liquid.

{integer} All models require an integer field after the model name
which is the species_number; always set to zero until a
multicomponent capability exists.

Porous Vapor Pressure = {model_name} {integer} {float_list} [M/L-t2]

976 Revised: 6/12/13

5.4.23 Porous Vapor Pressure

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}.

Porous vapor pressure model choices and their parameters are presented below; consult
the Technical Discussion for relevant details.

 KELVIN <integer> <float1> <float2>... <float5>

For the KELVIN porous vapor pressure model, the
{float_list} has a five values:

<float1> - p*v, vapor pressure on a flat interface
<float2> - ρl, the liquid density
<float3> - Mw , molecular weight of liquid
<float4> - R, the gas law constant
<float5> - T, the operating temperature

FLAT <integer> <float1> <float2>... <float5>

For the FLAT porous vapor pressure model, the
{float_list} has a five values (same as KELVIN above):

<float1> - p*v, vapor pressure on a flat interface
<float2> - ρl, the liquid density
<float3> - Mw , molecular weight of liquid
<float4> - R, the gas law constant
<float5> - T, the operating temperature

The FLAT option requires the same parameters as the
KELVIN model but leaves out the exponential function.

NON_VOLATILE <integer>

The NON_VOLATILE model requires no additional
input.

Examples

The sample input card:

Porous Vapor Pressure = FLAT 0 {Vap_Pres} {density} {30.} {Rgas}
{T}

applies the FLAT model as described above to vapor-liquid equilibrium (assumed to be
single component for now) using all APREPRO-defined parameters.

Revised: 6/12/13 977

5.4.23 Porous Vapor Pressure

Technical Discussion

The KELVIN option is used to include the effect of vapor-pressure lowering that
results in equilibrium over high curvature menisci, i.e., small pores. The equation form
of this is:

(5-84)

The FLAT option requires the same parameters but leaves out the exponential function.
The constants are still needed so that the gas-phase concentration can be calculated
with the ideal gas law. The functional form is

(5-85)

where S is the local saturation, and ρgv is the gas phase density of vapor. This model is
ad-hoc but nonetheless leads to some interesting results. It basically says that as
saturation increases, the gas-liquid menisci, and correspondingly the interfacial area
available for evaporation, become more concentrated and hence the gas-phase vapor
concentration increases.

The NON_VOLATILE option should be set if no gas-phase transport of vapor of the
liquid phase component is desired, as if the liquid phase were non-volatile. Goma, with
this choice, sets the gas phase concentration of liquid vapor to zero.

For nonvolatile pore liquids, the vapor pressure on a flat interface, viz. the first required
floating point on this card, should be set to zero. As of 6/13/02 this card has only been
implemented for pure liquid solvents, so that no equilibrium solvent partitioning across
the interface is present.

Theory

No Theory.

FAQs

Sometimes system aborts can happen with the Kelvin model because of real large,
negative capillary pressures. In this case, the exponential term can exceed the machine
limit. This can happen well into a transient run. The user should be aware of this;
consult GT-009.3 for tips related to dealing with this problem.

pv p∗
v

pcMw

ρlRT
--------------–exp=

ρgv

Mwpv

RT
--------------S=

978 Revised: 6/12/13

5.4.24 Porous Liquid Volume Expansion

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.4.24 Porous Liquid Volume Expansion

Description/Usage

This card is not currently activated.

Examples

No examples.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Not currently enabled (12/21/2001)

Revised: 6/12/13 979

5.4.25 Porous Gas Constants

5.4.25 Porous Gas Constants

Description/Usage

This required card is used for Media Types of POROUS_UNSATURATED and
POROUS_TWO_PHASE, and is used to input some standard thermodynamic gas
constants needed for vapor-liquid equilibrium calculations (see Media Type card).
Eventually more than one model may be allowed for nonideal gas situations.

The IDEAL_GAS model is the only model currently requiring standard constants; they
are defined as follows:

IDEAL_GAS - the model name requiring constants for the thermodynamic
ideal gas law.

<float1> - MWair, the molecular weight of the insoluble
gas in the gas phase [g/mole].

<float2> - R, the universal gas law constant [M-L2/t2/K]
<float3> - T, the temperature [deg K]
<float4> - pamb, the ambient gas pressure.

Examples

The sample input card follows:

Porous Gas Constants = IDEAL_GAS 28.0 8. 315 275 1.06e+5

Technical Discussion

For POROUS_UNSATURATED media types the ambient pressure dictates the
equilibrium pressure for the calculation of the gas-phase density of solvent (viz. the
total ambient pressure minus the vapor pressure will be the gas partial pressure, from
which the concentration of gas can be computed based on the other gas constants). In
POROUS_TWO_PHASE media types, the gas partial pressure is a dependent
variable and computed as a part of the Darcy law mass balance. In this case the
dynamic pressure is used instead of <float4> here for the calculation of the gas-phase
concentrations.

It is important to realize that setting the ambient pressure on this card for Media Types
of POROUS_UNSATURATED will potentially affect your saturation curve and the
appropriate values of your liquid phase pressure boundary conditions. If possible, you
should set this value to zero, and base your Saturation versus vapor pressure curve
accordingly. Also, in that case your liquid pressure boundary conditions can all be

Porous Gas Constants = IDEAL_GAS <float_list> [varies]

980 Revised: 6/12/13

5.5 Species Properties

referenced to zero. However, if you choose a gauge pressure, or thermodynamic
pressure, you Saturation/capillary pressure curve must be shifted accordingly, as do
your boundary conditions. Also, remember these pressures will affect your solid
pressure state in poroelastic problems.

Theory

No Theory.

FAQs

No FAQs.

References

GT-008.2: Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems, August 11, 1999, P. R. Schunk

GT-009.3: GOMA’s Capabilities for Partially Saturated Flow in Porous Media,
September 1, 2002, P. R. Schunk

SAND96-2149: Drying in Deformable Partially-Saturated Porous Media: Sol-Gel
Coatings, Cairncross, R. A., P. R. Schunk, K. S. Chen, S. S. Prakash, J. Samuel, A. J.
Hurd and C. Brinker (September 1996)

5.5 Species Properties

The section of material properties defines the models and parameters governing diffusive mass
transport, whether it be ordinary, forced or thermal diffusion of species. Included in those
generalizations are electrical potential-driven species movements. Models include those for single
species, especially particle-laden suspensions, binary species and multi-component systems.
Models for various equations of mass transport are included, various models of diffusion
properties, different representations of species by means of molar, mass or volume concentrations,
various models of vapor pressure for multiphase flow and on material boundaries for lumped
parameter analyses, and properties for charged species.

Revised: 6/12/13 981

5.5.1 Number of Species

5.5.1 Number of Species

Description/Usage

This card is no longer used. It may be removed from the Material file.

Examples

No example.

Technical Discussion

The Number of Species is now determined by Goma from the Problem Specification for
each material in the Goma input file.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.2 Diffusion Constitutive Equation

Description/Usage

This card is used to specify the constitutive equation governing mass transport.
Definitions of the input parameters are as follows:

{model_name} Name of the model for the diffusion constitutive equation.
The currently supported options are:

NONE
FICKIAN

Number of Species =

Diffusion Constitutive Equation = {model_name}

982 Revised: 6/12/13

5.5.2 Diffusion Constitutive Equation

DARCY
DARCY_FICKIAN
HYDRODYNAMIC
GENERALIZED_FICKIAN
FICKIAN_CHARGED
STEFAN_MAXWELL
STEFAN_MAXWELL_CHARGED

This card requires only the specification of a {model_name}. The Technical Discussion
subsection below presents each of these models.

Examples

The following is a sample input card:

Diffusion Constitutive Equation = DARCY

Technical Discussion

NONE indicates that the material block to which this material file applies is a non-
diffusing material. FICKIAN implies that the rate of diffusion is proportional to the
gradient in volume fraction and the diffusion coefficient of each species. DARCY
implies that mass transport occurs by pressure-driven flow through a porous medium.
DARCY_FICKIAN implies that mass transport occurs by both diffusion and pressure-
driven flow in a porous medium.

HYDRODYNAMIC implies that mass transport of at least one species is driven by
gradients in the second invariant of the rate of deformation tensor (shear rate) and
gradients in viscosity (Phillips, et.al. 1992). This model also includes a sedimentation
flux term to account for the motion of non-neutrally buoyant particles resulting from
gravitation (Zhang and Acrivos, 1994) and a curvature-driven flux term from the
normal component of the acceleration vector (Krishnan et al., 1996). This model is
used in predicting the particle distributions of particulate suspensions undergoing flow.
For this model, the mass flux vector J is given by the following:

(5-86)

where

, (5-87)

, (5-88)

, and (5-89)

J Jc Jµ+= Jr Jg+ +

Jc CiDc γ· Ci()∇–=

Jµ Ci
2γ· Dµ µln()∇=

Jr Ciγ
· 2

Dr
n
r
---=

Revised: 6/12/13 983

5.5.2 Diffusion Constitutive Equation

(5-90)

where Ci is the particulate phase volume fraction, i is the species number designation of
the particulate phase, the shear rate, µ the viscosity, the normal unit acceleration
vector, r the curvature of streamlines, Dc, Dµ, Dr and Dg the “diffusivity” parameters,
ρs and ρf the particle and fluid phase densities, respectively, and , the gravitational
acceleration vector.

GENERALIZED_FICKIAN is based on the generalized-Fick’s law (Taylor and
Krishna, 1993). The mass transport of each species is influenced by all of the species in
the mixture.

(5-91)

(5-92)

ρ is the mass-concentration of species. The elements along the diagonal, Dii, are self-
diffusivities, while Dij are mutual-diffusivities between species i and j. Note that
mutual diffusivities in generalized formulation can be both positive and negative.

FICKIAN_CHARGED indicates a model for multicomponent transport (diffusion
and migration) of charged species in dilute electrolyte solutions will be used. The
Fickian diffusivity of species i, Di, as defined in the following Fickian flux model (cf.
Newman 1991; Chen 2000)

(5-93)

is taken to be constant. Here, ci is molar concentration of species i, Φ is electrical
potential in electrolyte solution, zi is charge number of species i, F is the Faraday
constant (96487 C/mole), R is the universal gas constant (8.314 J/mole-K), and T the
electrolyte solution temperature.

STEFAN-MAXWELL activates a model for multicomponent diffusion of neutral
species in concentrated solutions. The Stefan-Maxwell diffusivities, Dij, as defined in
the following Stefan-Maxwell flux model (cf. Chen et al. 2000, Chen et al. 1998):

(5-94)

are taken to be constant. Here, xi is mole fraction of species i, Ji the molar flux of
species i, and c the total molar concentration. Since Dij = Dji and Dii are not defined,
only n(n-1)/2 Stefan-Maxwell diffusivities are required (here, n is the total number of

Jg Dg

ρs ρf–()

µ
---------------------Ci 1 Ci–()g=

γ· n

g

J ρD w∇()=

J D ρ∇()=

Ji Di ci∇–
F

RT
-------ziDici Φ∇–=

xi∇
xiJj xjJi–

cDij

j i≠
=

984 Revised: 6/12/13

5.5.2 Diffusion Constitutive Equation

diffusing species). For example, for n = 3 (i.e., a solution having three species), three
Stefan-Maxwell diffusivities are needed: D12, D13, and D23.

STEFAN-MAXWELL_CHARGED For multicomponent transport (diffusion and
migration) of charged species in concentrated electrolyte solutions. The Stefan-
Maxwell diffusivities, Dij, as defined in the following Stefan-Maxwell flux model (cf.
Chen et al. 2000, Chen et al. 1998)

(5-95)

are taken to be constant, as in the case of multicomponent diffusion of neutral species
in concentrated solutions. Here, the charged species definitions are the same as for the
FICKIAN_CHARGED model.

Theory

No Theory.

FAQs

No FAQs.

References

GTM-025.0: Chen, K. S., “Modeling diffusion and migration transport of charged
species in dilute electrolyte solutions: GOMA implementation and sample computed
predictions from a case study of electroplating”, Sandia memorandum, September 21,
2000.

Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R., and Houf, W. G. “Final Report
on LDRD Project: A Phenomenological Model for Multicomponent Transport with
Simultaneous Electrochemical Reactions in Concentrated Solutions”, SAND2000-
0207, Sandia National Laboratories Technical Report (2000).

Chen, K. S., Evans, G. H., Larson, R. S., Coltrin, M. E., and Newman, J. “Multi-
dimensional modeling of thermal batteries using the Stefan-Maxwell formulation and
the finite-element method”, in Electrochemical Society Proceedings, Volume 98-15, p.
138-149 (1998).

Krishnan, G. P., S. Beimfohr, and D. Leighton, 1996. “Shear-induced radial segregation
in bidisperse suspensions,” J. Fluid Mech. 321, 371

Newman, J. S., Electrochemical Systems, Prentice Hall, Inc., Englewood Cliffs, New
Jersey (1991).

xi∇
F

RT
-------zixi Φ∇+

xiJj xjJi–

cDij

j i≠
=

Revised: 6/12/13 985

5.5.3 Species Weight Function

Phillips, R.J., R.C. Armstrong, and R.A. Brown, 1992, “A constitutive equation for
concentrated suspensions that accounts for shear-induced particle migration,” Physics
of Fluids A, 4(1), 30-40.

Taylor, R. and R. Krishna. 1993. Multicomponent Mass Transfer. John Wiley & Sons,
New York.

Zhang K., and A. Acrivos, 1994, “Viscous resuspension in fully-developed laminar
pipe flows,” Int. J. Multiphase Flow, (20)3, 579-591.

5.5.3 Species Weight Function

Description/Usage

This optional card is used to specify the weight functions to be used on the weighted
residual of the species convective diffusion equations. For high Peclet number cases,
you may want to use a Petrov-Galerkin formulation rather than a Galerkin formulation.

{model_name} Name of the formulation model. Valid entries are
GALERKIN, for a full Galerkin formulation, SUPG, for a
streamwise upwinded Petrov-Galerkin formulation.

<float> - the weight function parameter, chosen between
0. and 1.. The value 0. corresponds to
GALERKIN weighting and 1. corresponds to a
full SUPG.

 When this card is absent, the default {model_name} is GALERKIN.

Examples

The following is a sample input card:

Species Weight Function = SUPG 0.5

Technical Discussion

No discussion.

Theory

No Theory.

Species Weight Function = {model_name} <float>

986 Revised: 6/12/13

5.5.4 Number of chemical reactions

FAQs

No FAQs.

References

No References.

5.5.4 Number of chemical reactions

Description/Usage

This card is used to specify the number of electrochemical reactions being modeled in
an electrode (anode or cathode), as in a thermal-battery cell.

Example

Following is a sample card:

Number of chemical reactions = 1

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Number of chemical reactions = <integer>

Revised: 6/12/13 987

5.5.5 Reaction Rate

5.5.5 Reaction Rate

Description/Usage

This card is used to specify rates of species electrochemical reactions in the anode and
cathode regions in a LiSi/LiCl-KCl/FeS2 thermal battery cell using Butler-Volmer
kinetics.

This property currently allows for a single {model_name} which has two parameters:

ELECTRODE_KINETICS the name of reaction rate model

<float1> - Anodic direction transfer coefficient
<float2> - Cathodic direction transfer coefficient

Two companion cards, THERMODYNAMIC POTENTIAL and INTERFACIAL AREA
are required to complete the specification of parameters present in the Butler-Volmer
kinetic model of current density.

Examples

The following are two sample cards:
Reaction Rate = ELECTRODE_KINETICS 0.5 0.5
Reaction Rate = ELECTRODE_KINETICS 1.0 1.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Reaction Rate = <model_name> <float1> <float2>

988 Revised: 6/12/13

5.5.6 Thermodynamic Potential

5.5.6 Thermodynamic Potential

Description/Usage

This card is used to specify the anodic or cathodic thermodynamic potential in a
thermal battery cell.

{model_name} Name of thermodynamic potential model. Currently, two
thermodynamic potential models are available, namely LiSi
and FeS2. Each of these and their accompanying input
parameters (the <float_list>) is given below:

LiSi This model requires seven floating-point parameters:

<float1> - Limit of electrode utilization for the first anode
reaction.

<float2> - Limit of electrode utilization for the second
anode reaction.

<float3> - Anode thickness.
<float4> - Anode porosity.
<float5> - Molar volume of active anode material.
<float6> - Current density output by the thermal battery

cell.
<float7> - Number of electrons involved in anode

reactions.

FeS2 This model requires eight floating-point parameters:

<float1> - Limit of electrode utilization for the first
cathode reaction.

<float2> - Limit of electrode utilization for the second
cathode reaction.

<float3> - Limit of electrode utilization for the third
cathode reaction.

<float4> - Cathode thickness.
<float5> - Cathode porosity.
<float6> - Molar volume of active cathode material.
<float7> - Current density output by the thermal battery

cell.
<float8> - Number of electrons involved in cathode

reactions.

Thermodynamic Potential = {model_name} {float_list}

Revised: 6/12/13 989

5.5.7 Interfacial Area

Examples

The following are two sample input cards:
Thermodynamic Potential = LiSi 0.283 0.474 0.088 0.275 54.61 0.0246 3.25
Thermodynamic Potential = FeS2 0.375 0.434 0.5 0.046 0.244 23.93 0.0246 4.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.7 Interfacial Area

Description/Usage

This card is used to specify the product of interfacial area per unit volume by exchange
current density (i.e., ai0) in the Butler-Volmer kinetic model of current density.

{model_name} Name of the model for interfacial area, of which there are
currently two available, namely CONSTANT and
THERMAL_BATTERY.

CONSTANT constant value of Interfacial Area

<float1> - the value of the product of interfacial area per
unit volume and exchange current density.

THERMAL_BATTERY

this option requires the following nine parameters:

<float1> - Initial value of the product of interfacial area
per unit volume by exchange current density.

Interfacial Area = {model_name} {float_list}

990 Revised: 6/12/13

5.5.8 Butler_Volmer_j

<float2> - Limit of electrode utilization beyond which
ai0 = 0.

<float3> - Activation energy for the Arrhenius
dependency of ai0 on temperature.

<float4> - Initial electrode/electrolyte temperature.
<float5> - Cathode thickness.
<float6> - Cathode porosity.
<float7> - Molar volume of active cathode material.
<float8> - Current density output by the thermal battery

cell.
<float9> - Number of electrons involved in cathode

reactions.

Examples

The following are two sample input cards:
Interfacial Area = CONSTANT 1.0
Interfacial Area = THERMAL_BATTERY 20.0 0.375 20000.0 846.0 0.046

0.244 23.93 0.0246 4.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.8 Butler_Volmer_j

Unused; has been removed from Goma as of 12/20/2001

None

Revised: 6/12/13 991

5.5.9 Butler_Volmer_ij

5.5.9 Butler_Volmer_ij

 Unused; has been removed from Goma as of 12/20/2001.

5.5.10 Solution Temperature

Description/Usage

This card is used to specify the temperature of an electrolyte solution (i.e., when
diffusion and migration transport of charged species is involved).

{model_name} Name of the electrolyte-solution model, for which there are
currently two options: CONSTANT and
THERMAL_BATTERY; the former model has a single
parameter in the <float_list> while the latter has six.

CONSTANT A constant model of the solution temperature.

<float1> - the value of electrolyte-solution temperature.

THERMAL_BATTERY

A specialized model of electrolyte solutions for Thermal
Batteries (Chen, et. al., 2000).

<float1> - Initial electrolyte solution temperature (K)
<float2> - Ambient temperature (K)
<float3> - Cross-sectional area from which heat is lost to

ambient (m2)
<float4> - Heat transfer coefficient (W/m2/K)
<float5> - Mass of battery cell (kg)
<float6> - Heat capacity of electrolyte solution (J/kg/K)

Examples

The following are two sample input cards:
Solution Temperature = CONSTANT 313.0
Solution Temperature = THERMAL_BATTERY 846. 298. 0.0316 7.7 0.6
1030.

None

Solution Temperature = {model_name} <float_list>

992 Revised: 6/12/13

5.5.11 Porosity

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0207: Final Report on LDRD Project: A Phenomenological Model for
Multicomponent Transport with Simultaneous Electrochemical Reactions in
Concentrated Solutions, Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R., and
Houf, W. G., January 2000.

5.5.11 Porosity

Description/Usage

This card is used to specify the porosity model for the anode or separator or cathode
region in a thermal battery cell.

Definitions of the {model_name} and the associated input parameters (<float>) are as
follows:

CONSTANT the name of the porosity model.

{float1} - the porosity value.

THERMAL_BATTERY

the name of the porosity model.

{float1} - the initial value of porosity
{float2} - specifies the change of molar volume in

the anode or cathode electrode material per
electron transferred, as stated in

Porosity = {model_name} <float1> [float2]

Revised: 6/12/13 993

5.5.11 Porosity

 (5-96)

where si is stoichiometric coefficient of
species or phase i, is molar volume of
species or phase i, n is the number of
electrons transfer in the anodic or cathodic
electrochemical reaction, and the
summation is over the number of solid
phases.

Examples

A sample input card for this material property might look like this:

Porosity = THERMAL_BATTERY 0.244 8.1185

Technical Discussion

• This is a porosity model for a special application in which the model for the
diffusion constitutive equation is STEFAN_MAXWELL_CHARGED, which
enables modeling the transport of multiple charged species with simultaneous
electrochemical reaction(s) in a concentrated solution, as in a thermal-battery cell.

• See the reference below for a discussion of Thermal Battery modeling with Goma.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0207: Final Report on LDRD Project: A Phenomenological Model for
Multicomponent Transport with Simultaneous Electrochemical Reactions in
Concentrated Solutions, K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble and W. G.
Houf, January 2000.

siṼi

n

solid phases i

Ṽi

994 Revised: 6/12/13

5.5.12 Diffusivity

5.5.12 Diffusivity

Description/Usage

This required card is used to specify the model for the diffusivity for each species.
Definitions of the input parameters are as follows:

{model_name} Name of the diffusivity model. This parameter can have one
of the following values:

CONSTANT
USER
POROUS
GENERALIZED
FREE_VOL
GENERALIZED_FREE_VOL
HYDRO
ARRHENIUS
TABLE

<species> An integer designating the species equation.

{float_list} One or more floating point numbers (<float1> through
<floatn> whose value is determined by the selection for
{model_name}. Note that not all the models employ a
{float_list}.

Thus, choices for {model_name} and the accompanying input parameter list are
dependent on the {model_name} selected for the Diffusion Constitutive Equation. In
some cases, the above model choices have special definitions, while for others some of
the above choices do not exist. Thus, the presentation below is keyed to the value
chosen for the Diffusion Constitutive Equation model.

When the Diffusion Constitutive Equation model is set to NONE, meaning the material
block to which this material file applies is a non-diffusing material, this Diffusivity card
should be present in the Material file specification but the model and its parameters will
not be used.

For the FICKIAN, GENERALIZED_FICKIAN, DARCY and DARCY_FICKIAN
flux models, the following options are valid choices for the Diffusivity {model_name}
and accompanying parameter lists.

CONSTANT <species> <float1>

Diffusivity = {model_name} <species> <float_list> [varies]

Revised: 6/12/13 995

5.5.12 Diffusivity

a constant diffusivity model

<species> - an integer designating species i
<float1> - Diffusivity of species i, in units [L2/t]

USER <species> <float_list>

a user-defined model, the <species> is specified and the
set of parameters <float1> through <floatn> is defined
by the function usr_diffusivity in the file
user_mp.c.

POROUS <species> <float_list>

a diffusivity that depends on the saturation and porosity
in a porous medium. For two-phase or unsaturated flow
in a porous medium, the diffusivity calculated by this
model is the diffusivity of solvent vapor through the gas
phase in the pore-space.

This model has been deprecated as the porous equation
rewrite has proceeded; it is not recommended for use!

GENERALIZED <species> <float1> <float2>

For constant diffusivities used by generalized Fick’s
law. The {float_list} consists of two values for each
species i or i-j species pair:

<species> - an integer designating species i
<float1> - Dii, the self-diffusivity
<float2> - Dij; the mutual diffusivities

FREE_VOL <species> <floatlist>

For a diffusivity determined by free volume theory. The
{float_list} for this model contains twelve values:

<species> - an integer designating species i
<float1> - V*

1, solvent specific critical-hole volume
<float2> - V*

2, polymer specific critical-hole volume
<float3> - K11/γ, solvent free volume parameter
<float4> - K12/γ, solvent free volume parameter
<float5> - K21 - Tg1, free volume/transition parameter
<float6> - K22 - Tg2, free volume/transition parameter
<float7> - χ, Flory-Huggins polymer/solvent

interaction parameter
<float8> - ξ, ratio of solvent and polymer jumping units
<float9> - D01, binary diffusivity for 0-1 system [L2/t]

996 Revised: 6/12/13

5.5.12 Diffusivity

<float10> - E/R, ratio of activation energy to gas
constant

<float11> - V0
1, solvent specific volume

<float12> - V0
2, polymer specific volume

Note, this model can be run only with a single species
equation, i.e., two components.

GENERALIZED_FREE_VOL <species> <floatlist>

a diffusivity model based on free volume theory and the
generalized Fick’s law. This is similar to the FREE_VOL
model except it is for a ternary mixture of solvent (1),
solvent (2), and polymer (3). A concentration-dependent
self-diffusivity is specified. The <species> is defined and
the {float_list}, consisting of 12 parameters is identical to
and can be specified in the exact same order as in the binary
case; see FREE_VOL model above for input parameter list.

TABLE <integer1> <character_string1> {LINEAR | BILINEAR} [integer2]
[FILE = filenm]

Please see discussion at the beginning of the material
properties Chapter 5 for input description and options.
Most likely character_string1 will be
MASS_FRACTION or TEMPERATURE.

For the HYDRODYNAMIC flux model (Diffusion Constitutive Equation), there is
only one valid choice for the Diffusivity {model_name}, i.e., HYDRO. There are no
accompanying parameters but several additional cards are required to define different
portions of the model; these cards are identified below. The user is referred to each
individual card (identified by italic typeset) definition for the associated model choices
and parameter lists.

HYDRO For mass transport driven by the hydrodynamic field. No
<species> or {float_list} is required, although five additional
input cards are required with this diffusivity model. The first
specifies Dc in the Shear Rate Diffusivity card. The second
specifies Dµ in the Viscosity Diffusivity card. The third specifies
Dr in the Curvature Diffusivity card. The fourth specifies the
diffusivity of a purely Fickian diffusion mode in the Fickian
Diffusivity card; it is usually set to zero. The last card specifies
Dg, in the Gravity-based Diffusivity card for the flotation term
in variable density transport problems.

Revised: 6/12/13 997

5.5.12 Diffusivity

ARRHENIUS <integer 1> <integer 2> <float1> <float2> <float3>

This is a model for describing effect of temperature on
Stefan-Maxwell diffusivities for application in modeling
thermal batteries and thus it is used in conjunction with the
STEFAN_MAXWELL_CHARGED or
STEFAN_MAXWELL flux model (Diffusion Constitutive
Equation). Two integers and three floats are required for
this diffusivity model:

 <integer 1> index for species i.

<integer 2> index for species j.

<float 1> Stefan-Maxwell diffusivity, dij in units [L2/t].

<float 2> activation energy, ED .

<float 3> reference temperature, T0 .

Note: the units of ED and T0 are such that is
 dimensionless with R being the universal gas constant.

For the FICKIAN_CHARGED flux model (Diffusion Constitutive Equation), only
constant diffusivities are allowed. So the Diffusivity model option is:

CONSTANT <species> <float1>

a constant diffusivity model

<species> - an integer designating species i
<float1> - Diffusivity of species i, in units [L2/t]

In addition, the Charge Number and Solution Temperature cards must also be specified
in the material file so that the migration flux may be calculated.

The STEFAN_MAXWELL and STEFAN_MAXWELL_CHARGED flux models
(Diffusion Constitutive Equation) should be used to model the transport of two or more
species only. The diffusivity model for species in these transport problems is currently
limited to being CONSTANT and ARRHENIUS. In the CONSTANT Stefan-
Maxwell diffusivity model, a set (only n(n-1)/2 values since Dij = Dji and Dii are not
defined) of diffusivities, Dij, is required:

CONSTANT <species> <float1>

a constant diffusivity model

<species> - an integer designating species i
<species> - an integer designating species j

–

–

–

–

–

ED RT()⁄

998 Revised: 6/12/13

5.5.12 Diffusivity

 <float1> - Dij, mutual diffusivity of species i and j,
in units [L2/t]

In addition, the Charge Number, Molecular Weight and Solution Temperature cards
must also be specified in the material file so that the migration flux may be calculated.

Examples

Sections of material input files are shown below for several of the Diffusivity model
options presented above.

Following is a sample input card for the CONSTANT Diffusivity model:

Diffusivity = CONSTANT 0 1.

Following is a sample section of the material file for the HYDRO Diffusivity model:
Diffusion Constitutive Equation = HYDRODYNAMIC
Diffusivity = HYDRO 0
Shear Rate Diffusivity = LINEAR 0 6.0313e-5
Viscosity Diffusivity = LINEAR 0 6.0313e-5
Curvature Diffusivity = CONSTANT 0 -48.02e-6
Fickian Diffusivity = ANISOTROPIC 0 0. 0.1e-5 0.
Gravity-based Diffusivity = RZBISECTION 0 2.14e-5 5.1 0.5 0.5

Following is a sample section of the material file for the
GENERALIZED_FREE_VOL Diffusivity model:
Diffusion Constitutive Equation = GENERALIZED_FICKIAN
Diffusivity = GENERALIZED_FREE_VOL 1 0.943 1.004 0.000983 0.000239
-12.12 -96.4 0.395 0.266 0.00143 0 1.265983036 0.9233610342

Sample section of the material file for the STEFAN_MAXWELL_CHARGED
Diffusion Constitutive Equation with the CONSTANT Diffusivity model:

Diffusion Constitutive Equation = STEFAN_MAXWELL_CHARGED
Diffusivity = CONSTANT
 0 1 2.0e-05
 0 2 2.0e-05
 1 2 2.0e-05

Solution Temperature = THERMAL_BATTERY 846. 298. .03 7.7 0.6 1030.
Molecular Weight = CONSTANT 0 6.939
Charge Number = CONSTANT 0 1.0
Molecular Weight = CONSTANT 1 39.098
Charge Number = CONSTANT 1 1.0
Molecular Weight = CONSTANT 2 35.4
Charge Number = CONSTANT 2 -1.0

Sample section of the material file for the STEFAN_MAXWELL_CHARGED
Diffusion Constitutive Equation with the ARRHENIUS Diffusivity model:

Revised: 6/12/13 999

5.5.12 Diffusivity

Diffusion Constitutive Equation = STEFAN_MAXWELL_CHARGED
Diffusivity = ARRHENIUS
 0 1 1.5e-05 80000.0 846.0
 0 2 1.5e-05 80000.0 846.0
 1 2 1.5e-05 80000.0 846.0

(the Charge Number, Molecular Weight and Solution Temperature cards are
similarly specified as above in the CONSANT Diffusivity case)

Technical Discussion
Following are brief comments on the various Diffusivity models.

POROUS For this model, diffusivity depends on the saturation and porosity in a
porous medium. For two-phase or unsaturated flow in a porous medium, the diffusivity
calculated by this model is the diffusivity of solvent vapor through the gas phase in the
pore-space (see Martinez, 1995). However as indicated above, this model is not
recommended for use at his time.

GENERALIZED This model generalizes Fick’s Law for multicomponent diffusion.
The elements along the diagonal, Dii, are self-diffusivities, while Dij are mutual
diffusivities between species i and j. Note that mutual diffusivities in generalized
formulation can be both positive and negative, and are constant values.

FREE_VOL For a diffusivity determined by free volume theory (cf. Duda et al. 1982).
In mathematical form, the binary mutual diffusion coefficient (solvent diffusion in a
polymeric solution), using the free volume theory, is given by:

(5-97)

where

(5-98)

(5-99)

Here, ω1 is the solvent weight fraction, ω2 polymer weight fraction; V0
1 and V0

2 are,
respectively, solvent and polymer specific volumes; φ1 solvent volume fraction, φ2
polymer volume fraction; γ overlap factor to account for shared free volume; Tg1 and
Tg2 respectively solvent and polymer glass transition temperature, T absolute
temperature; K11, K12, K21 and K22 solvent free-volume parameters; V*

1 and V*
2

D D01 1 φ1–()
2

1 2χφ1–()
ω1V1

∗ ω2ξV2
∗+()

VFH γ⁄
--–exp=

VFH

γ

K11

γ
---------ω1 K21 T Tg1–+()

K12

γ
---------ω2 K22 T Tg2–+()+=

φ1

ω1V1
0

ω1V1
0

ω2V2
0

+

----------------------------------=

1000 Revised: 6/12/13

5.5.12 Diffusivity

respectively, solvent and polymer specific critical-hole volumes; D01 constant pre-
exponential factor when E is presumed to be zero (E is energy required to overcome
attractive forces from neighboring molecules); ξ ratio of solvent and polymer jumping
units; and χ Flory-Huggins polymer/solvent interaction parameter. In general, D01
should be expressed as D01 e

- E/RT with R being the universal gas constant. Dependence
of diffusivity, D, on temperature and mass fraction can be determined once the above
twelve parameters are specified.

Note: This model (FREE_VOL) can be run ONLY with 1 species equation, i.e., with two
components.

GENERALIZED_FREE_VOL This is a diffusivity model based on free volume
theory and the generalized Fick’s law. For a ternary mixture of solvent (1), solvent (2),
and polymer (3), the concentration-dependent self-diffusivity is given by (Vrentas, et.
al., 1984):

(5-100)

where

(5-101)

The parameters for this model are the same twelve parameters as for the binary
FREE_VOL model and so can be specified in the exact same order. The mutual
diffusivities required to fill the cross-terms are also concentration-dependent. In
addition, the gradient in chemical potential is also accounted for (Alsoy and Duda,
1999; Zielinski and Hanley, 1999).

(5-102)

(5-103)

ai is the activity of species i, which can be written in terms of the activity coefficient,
γi, and volume fraction, φi. The current implementation of species activity is based on
the Flory-Huggins model for multicomponent polymer-solvent mixtures (Flory, 1953).

HYDRO implies that mass transport of at least one species is driven by gradients in the
second invariant of the rate of deformation tensor (shear rate) and gradients in viscosity

D11 D01

ω1V1
∗ ω2V2

∗
ξ13

ξ23

-------- ω3V3
∗ξ13+ +

VFH γ⁄
---–exp=

VFH

γ

K11

γ
---------ω1 K21 T Tg1–+()

K12

γ
---------ω2 K22 T Tg2–+()

K13

γ
---------ω2 K23 T Tg3–+()+ +=

Dij Diiρi

aln i∂

ρj∂
-------------=

ailn γiφiln=

Revised: 6/12/13 1001

5.5.12 Diffusivity

(Phillips, et.al. 1992). This model also includes a sedimentation flux term to account
for the motion of non-neutrally buoyant particles resulting from gravitation (Zhang and
Acrivos, 1994) and a curvature-driven flux term from normal component of the
acceleration vector (Krishnan, et. al., 1996). This model is used in predicting the
particle distributions of particulate suspensions undergoing flow. For this model, the
mass flux vector J is given by the following:

(5-104)

where

, (5-105)

, (5-106)

, and (5-107)

(5-108)

where Ci is the particulate phase volume fraction, i is the species number designation of
the particulate phase, the shear rate, µ the viscosity, the normal unit acceleration
vector, r the curvature of streamlines, Dc, Dµ, Dr and Dg the “diffusivity” parameters,
ρs and ρf the particle and fluid phase densities, respectively, and , the gravitational
acceleration vector.

ARRHENIUS Diffusivities can be strongly dependent on temperature as in processes
such as thermal batteries. Such temperature dependency can be described using the
following constitutive model that makes use of Arrhenius temperature dependency:

where Dij are the Stefan-Maxwell diffusivities as defined in Equations 13 and 14.
are the reference Stefan-Maxwell diffusivities at reference temperature T0; ED is the
activation energy that controls the temperature dependency and R is the universal gas
constant; and T is temperature. The units of ED, R and T are such that is
dimensionless.

J Jc Jµ+= Jr Jg+ +

Jc CiDc γ· Ci()∇–=

Jµ Ci
2γ· Dµ µln()∇=

Jr Ciγ
· 2

Dr
n
r
---=

Jg Dg

ρs ρf–()

µ
---------------------Ci 1 Ci–()g=

γ· n

g

Dij Dij
0

e

ED

R
------ 1

T

1
T0

-----–
 –

=

Dij
0

ED RT()⁄

1002 Revised: 6/12/13

5.5.12 Diffusivity

STEFAN-MAXWELL For multicomponent diffusion of neutral species in
concentrated solutions. The Stefan-Maxwell diffusivities, Dij, as defined in the
following Stefan-Maxwell flux model (cf. Chen, et. al., 2000, Chen, et. al., 1998):

(5-109)

are taken to be constant. Here, xi is mole fraction of species i, Ji the molar flux of
species i, and c the total molar concentration. Since Dij = Dji and Dii are not defined,
only n(n-1)/2 Stefan-Maxwell diffusivities are required (here, n is the total number of
diffusing species). For example, for n = 3 (i.e., a solution having three species), three
Stefan-Maxwell diffusivities are needed: D12, D13, and D23.

STEFAN-MAXWELL_CHARGED For multicomponent transport (diffusion and
migration) of charged species in concentrated electrolyte solutions. The Stefan-
Maxwell diffusivities, Dij, as defined in the following Stefan-Maxwell flux model (cf.
Chen et al. 2002, Chen, et. al., 2000, Chen, et. al., 1998):

(5-110)

are taken to be constant, as in the case of multicomponent diffusion of neutral species
in concentrated solutions. Here, Φ is electrical potential in electrolyte solution, zi
charge number of species i, F Faraday constant (96487 C/mole), R universal gas
constant (8.314 J/mole-K), and T electrolyte solution temperature.

FICKIAN_CHARGED For multicomponent transport (diffusion and migration) of
charged species in dilute electrolyte solutions. The Fickian diffusivity of species i, Di,
as defined in the following Fickian flux model (cf. Newman, 1991; Chen, et. al., 2000):

(5-111)

is taken to be constant. Here, ci is molar concentration of species i.

Theory

No Theory.

FAQs

The following is a discussion of Units in Goma but covers several important Diffusion-
related items. It comes from some emails exchanged at Sandia during January 1998;

xi∇
xiJj xjJi–

cDij

j i≠
=

xi∇
F

RT
-------zixi Φ∇+

xiJj xjJi–

cDij

j i≠
=

Ji Di ci∇–
F

RT
-------ziDici Φ∇–=

Revised: 6/12/13 1003

5.5.12 Diffusivity

while the discussions are relevant for each user of the code, the deficiencies or lack of
clarity have been since been remedied prior to Goma 4.0.

Unit Consistency in Goma (Jan 98)

Question:... I know what you are calling volume flux is mass flux divided by density.
The point I am trying to make is that the conservation equations in the books I am
familiar with talk about mass, energy, momentum, and heat fluxes. Why do you not
write your conservation equations in their naturally occurring form? If density just so
happens to be common in all of the terms, then it will be obvious to the user that the
problem does not depend on density. You get the same answer no matter whether you
input rho=1.0 or rho=6.9834, provided of course this does not impact iterative
convergence. This way, you write fluxes in terms of gradients with the transport
properties (viscosity, thermal conductivity, diffusion coefficient, etc.) being in familiar
units.

Answer: First let me state the only error in the manual that exists with regard to
the convection-diffusion equation (CDE) is the following:

 in the nomenclature table should be described as a volume flux with units of
, i.e., , where is in units.

Now, this is actually stated correctly elsewhere, as it states the is a diffusion flux
(without being specific); to be more specific here, we should say it is a "volume flux of
species i." So, in this case is in units, is dimensionless and it is immaterial
that the CDE is multiplied by density or not, as long as density is constant.

Now, in Goma we actually code it with no densities anywhere for the FICKIAN
diffusion model. For the HYDRO diffusion model, we actually compute a in the
code, and handle variable density changes through that . In that case as computed
in Goma is a mass flux vector, not a volume flux vector, but by dividing it by and
sending it back up to the CDE it changes back into a volume flux. i. e., everything is the
same.

Concerning the units of the mass transfer coefficient on the YFLUX boundary
condition, the above discussion now sets those. Goma clearly needs the flux in the
following form:

 (5-112)

and dimensionally for the left hand side

(5-113)

Ji

L t⁄ D yi∇⋅ D L
2

t⁄

Ji

D L L t⁄⋅ yi

Ji ρ⁄

ρ Ji

ρ

n
˜

D Y∇⋅ K yi yi
∞

–()⋅=

L
2

t⁄() 1 L⁄()⋅ L t⁄=

1004 Revised: 6/12/13

5.5.12 Diffusivity

where is in units , the gradient operator has units of so K has to be in units
of (period!) because is a fraction.

So, if you want a formulation as follows:

(5-114)

then ’s units will have to accommodate for the relationship between and in the
liquid, hopefully a linear one as in Raoult’s law, i.e. if where is the vapor
pressure, then

(5-115)

and so K on the YFLUX command has to be and so on.

Finally, you will note, since we do not multiply through by density, you will have to
take care of that, i. e., in the Price paper (viz., Price, et. al., 1997) he gives K in units of

. So, that must be converted as follows:

: (5-116)

This checks out!

References

Alsoy, S. and Duda, J. L., 1999. “Modeling of Multicomponent Drying of Polymer
Films.” AIChE Journal, (45)4, 896-905.

Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R. and Houf, W. G. “Final Report on
LDRD Project: A Phenomenological Model for Multicomponent Transport with
Simultaneous Electrochemical Reactions in Concentrated Solutions”, SAND2000-
0207, Sandia National Laboratories Technical Report (2000).

Chen, K. S., Evans, G. H., Larson, R. S., Coltrin, M. E. and Newman, J. “Multi-
dimensional modeling of thermal batteries using the Stefan-Maxwell formulation and
the finite-element method”, in Electrochemical Society Proceedings, Volume 98-15, p.
138-149 (1998).

Chen, K. S., “Modeling diffusion and migration transport of charged species in dilute
electrolyte solutions: GOMA implementation and sample computed predictions from a
case study of electroplating”, Sandia memorandum, September 21, 2000.

D L
2

t⁄ 1 L⁄

L t⁄ yi

n
˜

D Y∇⋅ K̂ pi p
∞
i–()=

K̂ pi yi

pi PVyi= PV

n
˜

D Y∇⋅ KPV yi y
∞
i–()=

KPV

t L⁄

Kprice PV ρ⁄() Kgoma=
t L⁄() M Lt

2
⁄() L

3
M⁄() L t⁄=

Revised: 6/12/13 1005

5.5.12 Diffusivity

Chen, K. S., Evans, G. H., and Larson, R. S., “First-principle-based finite-element
modeling of a Li(Si)/LiCl-KCl/FeS2 thermal battery cell”, in Electrochem. Soc. Proc.
Vol. 2002-30, p. 100 (2002).

Duda, J. L., Vrentas, J. S., Ju, S. T. and Liu, H. T. 1982. “Prediction of Diffusion
Coefficients for Polymer-Solvent Systems”, AIChE Journal, 28(2), 279-284.

P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, 1953.

Krishnan, G. P., S. Beimfohr and D. Leighton, 1996. “Shear-induced radial segregation
in bidisperse suspensions,” J. Fluid Mech. 321, 371.

Martinez, M. M., Mathematical and Numerical Formulation of Nonisothermal
Multicomponent Three-Phase Flow in Porous Media, SAND95-1247, Sandia National
Laboratories Technical Report, 1995.

Newman, J. S., Electrochemical Systems, Prentice Hall, Inc., Englewood Cliffs, New
Jersey (1991).

Phillips, R.J., R.C. Armstrong and R.A. Brown, 1992, “A constitutive equation for
concentrated suspensions that accounts for shear-induced particle migration,” Physics
of Fluids A, 4(1), 30-40.

Price, P. E., Jr., S. Wang, I. H. Romdhane, “Extracting Effective Diffusion Parameters
from Drying Experiments,” AIChE Journal, 43, 8, 1925-1934 (1997)

Vrentas, J.S., J.L. Duda and H.-C. Ling, 1984. “Self-Diffusion in Polymer-Solvent-
Solvent Systems” Journal of Polymer Sciences: Polymer Physics edition, (22), 459-
469.

Zhang K. and A. Acrivos, 1994, “Viscous resuspension in fully-developed laminar pipe
flows,” Int. J. Multiphase Flow, (20)3, 579-591.

Zielinski, J.M. and B.F. Hanley, 1999. “Practical Friction-Based Approach to Modeling
Multicomponent Diffusion.” AIChE Journal, (45)1, 1-12.

1006 Revised: 6/12/13

5.5.13 Shear Rate Diffusivity

5.5.13 Shear Rate Diffusivity

Description/Usage

This card is used to specify the coefficient for the shear-rate gradient term when
HYDRO is specified in the Diffusivity card. Definitions of the input parameters follow
for the {model_name} options CONSTANT and LINEAR based on the model:

(5-117)

CONSTANT Name of the model for constant shear rate diffusivity.

<species> - an integer designating the species equation.
<float> - Dc when there is no concentration

dependency.

LINEAR Name of the model in which shear rate diffusivity is a linear
function of concentration.

<species> - an integer designating the species equation.
<float> - when the diffusivity is a linear function of

concentration.

Examples

The following is a sample input card:

Shear Rate Diffusivity = CONSTANT 0 0.

Technical Discussion

Please refer to the technical discussion given under the HYDRO section of the
Diffusivity card.

Theory

No Theory.

FAQs

No FAQs.

Shear Rate Diffusivity = {model_name} <species> <float>

Dc 1.4kcCi=

kc

Revised: 6/12/13 1007

5.5.14 Viscosity Diffusivity

References

No References.

5.5.14 Viscosity Diffusivity

Description/Usage

This card is used to specify the coefficient for the viscosity gradient term when
HYDRO is specified in the Diffusivity card. Definitions of the input parameters follow
for the {model_name} options CONSTANT and LINEAR based on the model:

(5-118)

CONSTANT Name of the model for constant viscous diffusivity.

<species> - an integer designating the species equation.
<float> - Dµ when there is no concentration

dependency.

LINEAR Name of the model in which viscosity diffusivity is a linear
function of concentration.

<species> - an integer designating the species equation.
<float> - when the diffusivity is a linear function of

concentration.

Examples

The following is a sample input card:

Viscosity Diffusivity = CONSTANT 0 0.

Technical Discussion

Please refer to the technical discussion given under HYDRO section of the Diffusivity
card.

Theory

No Theory.

Viscosity Diffusivity = {model_name} <species> <float>

Dµ 1.4kµCi=

kµ

1008 Revised: 6/12/13

5.5.15 Curvature Diffusivity

FAQs

No FAQs.

References

No References.

5.5.15 Curvature Diffusivity

This card is used to specify Dr when the model in the Diffusivity card is HYDRO.
Definitions of the input parameters follow for the {model_name} options CONSTANT
and LINEAR based on the model:

(5-119)

CONSTANT Name of the model for a constant curvature diffusivity.

<species> - An integer designating the species equation.
<float> - Dr when there is no concentration

dependency.

LINEAR Name of the model in which the diffusivity is a linear
function of concentration.

<species> - An integer designating the species equation.
<float> - when the diffusivity is a linear function of

concentration.

Examples

The following is a sample input card:

Curvature Diffusivity = CONSTANT 0 0.

Technical Discussion

It was proposed that adding a curvature contribution of the diffusive flux for
suspension particles would correct suspension migration behavior in parallel-plate and
cone-and-plate. However, this correction term is not frame-invariant; hence, it cannot
be used in generalized flow geometry. It is therefore not recommended.

Curvature Diffusivity = {model_name} <species> <float>

Dr 1.4krCi=

kr

Revised: 6/12/13 1009

5.5.16 Fickian Diffusivity

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.16 Fickian Diffusivity

Description/Usage

This card allows the user to select a Fickian diffusion mode when the model in the
Diffusivity card is HYDRO. There are two {model_name} options for this mode;
definitions of the input parameters are as follows:

ANISOTROPIC an anisotropic Fickian diffusion.

<species> - an integer designating the species
equation.

<float1> - the value of the diffusivity for the X
direction, Dx.

<float2> - the value of the diffusivity for the Y
direction, Dy.

<float3> - the value of the diffusivity for the Z
direction, Dz

EXP_DECAY an exponential decay of flux.

<species> - an integer designating the species
equation.

<float1> - the coefficient to the exponential decay, Do
<float2> - the exponent value for exponential decay,

D1

Examples

Following are two sample cards:

Fickian Diffusivity = {model_name} <species> {float_list}

1010 Revised: 6/12/13

5.5.17 Gravity-based Diffusivity

Fickian Diffusivity = ANISOTROPIC 0 2.e-6 2.e-6 0.
Fickian Diffusivity = EXP_DECAY 0 0.01 1.e-3

Technical Discussion

In modeling suspension flow, often a sharp concentration gradient is encountered, and
the numerical convergence becomes very poor. This card should be used for numerical
stability (smooth out the wiggles) and should only be introduced as a last resort. The
magnitudes should remain small relative to shear rate and viscosity diffusivities.

As the name implied, anisotropic Fickian diffusivity defines an additional flux
contribution much like a classic Fickian diffusion term; i.e.,

(5-120)

If the exponential decay option is used, the flux vector has the form,

(5-121)

where C and Cmax are volume fractions of suspension locally and at maximum packing.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.17 Gravity-based Diffusivity

Description/Usage

This card is used to specify Dg when the model in the Diffusivity card is HYDRO.
There are two {model_name} options for this mode; definitions of the input parameters
are as follows:

Gravity-based Diffusivity = {model_name} <species> {float_list}

Jx Dx x∂
∂C

 Jy Dy y∂
∂C

 Jz Dz z∂
∂C

 =,=,=

Ji Do D1– C() D1– Cmax C–()()exp+exp()=

Revised: 6/12/13 1011

5.5.17 Gravity-based Diffusivity

CONSTANT constant gravity-based diffusivity.

<species> - an integer designating the species
equation.

<float>- the value of Dg.

RICHARDSON_ZAKI constant gravity-based diffusivity.

<species> - an integer designating the species
equation.

<float1> - the value of Dg.
<float2> - the exponent in the Richardson-Zaki

hindered settling function.

Examples

The following is a sample input card:
Gravity-based Diffusivity = CONSTANT 0 8.88e-7
Gravity-based Diffusivity = RICHARDSON_ZAKI 0 8.88e-7 5.1

Technical Discussion

When a suspension of particles settles or floats in a fluid, particle-particle interactions
serve to slow the terminal velocity of all the particles relative to the Stokes velocity.
The terminal velocity is then corrected by what is known as the hindered settling
function. If a CONSTANT model is chosen, the form of this function is

(5-122)

where φ is the volume fraction of suspension, η(φ) is the relative viscosity of the
mixture, µ0 is the viscosity of the pure fluid.

On the other hand if RICHARDSON_ZAKI is chosen for the function,

(5-123)

where n is the exponent specified by the user. n=5.1 has been found to fit well for
suspensions of monodisperse spherical particles at low Reynolds number by Garside
and Al-Dibouni (1977). Richardson-Zaki approach will not yield a zero f(φ) if φ
approaches maximum packing, so it is recommended that CONSTANT is used.

Theory

No Theory.

f φ()
1 φ–()
η φ()

---------------- η φ() µ φ()
µ0

-----------= =

f φ() 1 φ–()
n

=

1012 Revised: 6/12/13

5.5.18 Q Tensor Diffusivity

FAQs

No FAQs.

References

GTM-010.0: The Hindered Settling Function for a Glass Microballoon Suspension,
March 3, 1999, C. A. Romero.

Garside, J. and M.R. Al-Dibouni, “Velocity-voidage relationship for fluidization and
sedimentation in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., 16, 206
(1977).

5.5.18 Q Tensor Diffusivity

Description/Usage

This card specifies the coefficients for use in the Q-tensor suspension rheology model.
The <float_list> has three values, one for each direction, so the input parameters are
defined as follows:

<integer> Species number for suspension volume fraction.

<float1> Coefficient of eigenvectors in the flow direction.

<float2> Coefficient of eigenvectors in the gradient direction.

<float3> Coefficient of eigenvector in the vorticity direction.

Examples

The current best selection of coefficients is given by:

Q Tensor Diffusivity = 0 1.0 1.0 0.5

Technical Discussion

The three directions (1, 2, 3) are often called the (flow, gradient, vorticity) directions.
Here, vorticity is not curl(u), but defined (along with the other three) for a particular set
of circumstances: steady simple shear flow. Their analogous definitions in other
regimes, as well as the selection of the coefficients, is an active area of research. The
interested reader should review the references listed below.

Q Tensor Diffusivity = <integer> <float_list>

Revised: 6/12/13 1013

5.5.19 Species Time Integration

Theory

No Theory.

FAQs

No FAQs.

References

Brady, J. F. and Morris J. F., “Microstructure of strongly sheared suspensions and its
impact on rheology and diffusion,” J. of Fluid Mechanics, v. 348 pp.103-139, Oct 10,
1997.

Fang, Z. W., Mammoli, A. A., Brady, J.F., Ingber, M.S., Mondy, L.A. and Graham,
A.L., “Flow-aligned tensor models for suspension flows,” Int. J. of Multiphase Flow, v.
28(#1) pp. 137-166, January 2002.

Hopkins, M. M., Mondy, L. A., Rao, R. R., Altobelli, S. A., Fang, Z., Mammoli, A. A.
and Ingber, M. S., 2001. “Three-Dimensional Modeling of Suspension Flows with a
Flow-Aligned Tensor Model”, The 3rd Pacific Rim Conference on Rheology, July 8-
13, 2001, Vancouver, B.C., Canada.

Morris, J. F. and Boulay, F., “Curvilinear flows of noncolloidal suspensions: The role of
normal stresses,” J. of Rheology, v. 43(#5) pp. 1213-1237 Sep-Oct 1999.

5.5.19 Species Time Integration

Description/Usage

Sharp gradients are often a feature of convective-diffusive computations involving
species. Traditional Galerkin time integration is not optimal under these circumstances.
This optional card is used to change the species time integration scheme to be different
from the global time integration. Each species equation can use a different time
integration. The new time integration schemes are based upon a Taylor-Galerkin
formulation which has better behavior when sharp fronts are present.

Following are the {model_name} options for species time integration, each of which
requires only a species designation to which the model should be applied:

Species Time Integration= {model_name} <species>

1014 Revised: 6/12/13

5.5.19 Species Time Integration

STANDARD the input deck formulation, i.e., the global time integration
scheme; this is the default.

<species> - the index of the species equation.

TAYLOR_GALERKIN

an implicit or semi-implicit Taylor-Galerkin time
integration scheme

<species> - the index of the species equation.

TAYLOR_GALERKIN_EXP

An explicit Taylor-Galerkin time integration scheme

<species> - the index of the species equation.

Examples

The following sample input card invokes the explicit Taylor-Galerkin time integration
of the species equation.

Species Time Integration = TAYLOR_GALERKIN_EXP 0

Technical Discussion

The Taylor-Galerkin schemes are designed for advection dominated problems with
sharp fronts where rigorous mass conservation is important.

• TAYLOR_GALERKIN uses an implicit or semi-implicit form of the Taylor-
Galerkin time integrals depending on what is chosen in the input deck.

• TAYLOR_GALERKIN_EXP uses an explicit form of the equations and is
favored for volume-of-fluid simulations where the diffusive character of the
implicit solver creates mass balance errors. The drawback of explicit time
integration methods is that the time step used is governed by the Courant limit and
must be quite small for stability.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 1015

5.5.20 Advective Scaling

5.5.20 Advective Scaling

Description/Usage

This material property card permits the user to scale only the advective terms in one or
more of the species transport equations by a fixed constant. This may be useful when
solving problems with non-standard concentrations or for stability reasons.

A single {model_name} is available; it and its parameters are described below:

CONSTANT Model used to specify the advective scaling.

<species> - the index of the species equation to which
the advective scaling will occur.

<float> - scaling, the actual value for the
multiplicative scaling factor.

Examples

Here is an example of the card:

Advective Scaling = CONSTANT 0 0.0

In this case, the card is being used to eliminate the advective terms in the conservation
equation for species 0.

Technical Discussion

The advective terms in the species conservation equations take the form, where
c is the species concentration and u the fluid velocity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Advective Scaling = {model_name} <species> <float>

u c∇⋅

1016 Revised: 6/12/13

5.5.21 Latent Heat Vaporization

5.5.21 Latent Heat Vaporization

Description/Usage

This required card is used to specify the model for the latent heat of vaporization for
each species. Definitions of the input parameters are as follows:

CONSTANT Name of the constant latent heat of vaporization model.

<species> - an integer designating the species equation.
<float> - the value of the latent heat of vaporization.

Examples

The following is a sample input card:

Latent Heat Vaporization = CONSTANT 0 0.0

Technical Discussion

See the discussion for the Latent Heat Fusion model.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Latent Heat Vaporization = CONSTANT <species> <float> [E/M]

Revised: 6/12/13 1017

5.5.22 Latent Heat Fusion

5.5.22 Latent Heat Fusion

Description/Usage

This card is used to specify the model for the latent heat of fusion for each species.
Thus an input deck may include several of these cards. Definitions of the input
parameters are as follows:

CONSTANT Name of the latent heat of fusion model, the only one
available.

<species> - an integer designating the species equation.
<float> - the value of the latent heat of fusion.

Examples

The following is a sample input card:

Latent Heat Fusion = CONSTANT 0 0.0

Technical Discussion

This card is used on a species-basis and is unrelated to the latent heat of fusion
specification for the ENTHALPY model of heat capacity. It is used to calculate the
standard state heat of formation for the species. A related important card is the Latent
Heat Vaporization.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Latent Heat Fusion = CONSTANT <species> <float> [E/M]

1018 Revised: 6/12/13

5.5.23 Vapor Pressure

5.5.23 Vapor Pressure

Description/Usage

This required card is used to specify the model for the vapor pressure for each species;
it has two main classes of use. The first class regards multiphase flow in porous media,
which is activated when the media type is set to POROUS_UNSATURATED or
TWO_PHASE (cf. the Media Type card). The second class of use of this data card is
for specification of vapor pressure at the external boundary of a liquid domain, for
which the bounding gas phase is modeled with a lumped parameter approach, or at an
internal interface between a liquid and a gas. No curvature effects are included here.
Eventually the models in this class will be supported in the porous-media cases.
Definitions of the input parameters are as follows:

{model_name} Name of the model for the vapor pressure, based on the
class of use.

For the first class of multiphase flows in porous media,
{model_name} can be one of the following:

KELVIN - for a volatile liquid
IDEAL_GAS - for a non-condensable gas
FLAT - for a volatile liquid

For the second class regarding specification of vapor
pressure at the external boundary of a liquid domain or the
interface between a gas and a liquid, {model_name} can be
one of the following:

CONSTANT - for a constant vapor pressure model
ANTOINE - for temperature-dependent, nonideal gases.
RIEDEL -for temperature-dependent, nonideal gases

<species> An integer designating the species equation. Typically
this value is zero if the problem is one of a single
solvent in a partially saturated medium.

{float_list} One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection
for {model_name}.

Vapor pressure model choices and their parameters are discussed below.

Models in the first class...

Vapor Pressure = {model_name} <species> {float_list} [varies]

Revised: 6/12/13 1019

5.5.23 Vapor Pressure

KELVIN <species> <float_list>

The <float_list> for the KELVIN option specifies input
values for seven parameters:

<float1> - Equilibrium vapor pressure across a flat
interface

<float2> - Liquid density
<float3> - Molecular weight of the liquid
<float4> - Gas law constant,
<float5> - Operating temperature
<float6> - Molecular weight of air or gas phase
<float7> - Ambient pressure of that gas phase

The KELVIN option is used to include the effect of
vapor-pressure lowering that results in equilibrium over
high curvature menisci, i.e., small pores. The equation
form of this is

(5-124)

FLAT <species> <float_list>

The FLAT option requires the same seven parameters as
the KELVIN model but leaves off the exponential
function, i.e., the vapor pressure is independent of the
level of capillary pressure. The constants are still needed
so that the gas-phase concentration can be calculated
with the ideal gas law. See the KELVIN option above
for definition of the <float_list> values.

IDEAL_GAS <species> <float_list>

The <float_list> for this model has three values, where:

<float1> - Molecular weight of the gas
<float2> - Gas law constant
<float3> - Operating temperature

Models in the second class...

CONSTANT <species> <float1>

This model is used for a constant species source such as
a homogeneous reaction term. The <float_list> has a
single value:

<float1> - Vapor pressure

pv p∗
v

pcMw

ρlRT
--------------–exp=

1020 Revised: 6/12/13

5.5.23 Vapor Pressure

ANTOINE <species> <float_list>

The ANTOINE model for vapor pressure is used in
conjunction with the VL_EQUIL boundary condition. If
specified, a temperature-dependent vapor pressure for
species i is calculated.

(5-125)

The model requires six values in the <float_list>, where:

<float1> - A, the unit conversion factor for pressure
based on the units in the material file

<float2> - Bi, Antoine coefficient for species i
<float3> - Ci, Antoine coefficient for species i
<float4> - Di, Antoine coefficient for species i
<float5> - Tmin, Minimum temperature of the range

over which the Antoine relation will hold
<float6> - Tmax, Maximum temperature of the range

over which the Antoine relation will hold

RIEDEL <species> <float_list>

The RIEDEL model for vapor pressure is used in
conjunction with the VL_EQUIL boundary condition
card. If specified, a temperature-dependent vapor
pressure for species i is calculated.

(5-126)

The model requires eight values in the <float_list>, where:

<float1> - A, the unit conversion factor for pressure
based on the units in the material file

<float2> - Bi, Riedel constant for species i
<float3> - Ci, Riedel constant for species i
<float4> - Di, Riedel constant for species i
<float5> - Ei, Riedel constant for species i
<float6> - Fi, Riedel constant for species i
<float7> - Tmin, Minimum temperature of the range

over which the relation will hold
<float8> - Tmax, Maximum temperature of the range

over which the relation will hold

 Pi
vap

A Bi

Ci

T Di+()
--------------------+

exp= Tmin T Tmax< <

 Pi
vap

A Bi

Ci

T
----- Di T EiT

Fi
+ln+ +

 exp= Tmin T Tmax< <

Revised: 6/12/13 1021

5.5.24 Species Volume Expansion

Examples

An example use of the Antoine model for vapor pressure follows:

Vapor Pressure = ANTOINE 0 1 9.380340229 3096.516433 -53.668 0.1 1000

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.24 Species Volume Expansion

Description/Usage

This card is used to specify the model for the coefficient of volume expansion
associated with the concentration of a particular species. This property is optional for
the BOUSS and BOUSSINESQ option on the Navier-Stokes Source card and, if
nonzero, will result in a buoyancy term to be added to the Navier-Stokes equation that
is apportioned to the species volume expansion coefficient, defined as the logarithmic
sensitivity of density to concentration, or .

Definitions of the input parameters are as follows:

CONSTANT Name of the constant volume expansion coefficient model.

<species> - an integer designating the species equation.
<float> - the value of the constant expansion

coefficient.

Species Volume Expansion = CONSTANT <species> <float> [1/T]

rlnd() Cd()⁄

1022 Revised: 6/12/13

5.5.25 Standard State Chemical Potential

Examples

The following is a sample input card:

Species Volume Expansion = CONSTANT 0 0.

Technical Discussion

WARNING: Please be aware that if the thermal volume expansion coefficient is also
nonzero, the buoyancy force will be augmented.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.25 Standard State Chemical Potential

Description/Usage

This card sets the standard state chemical potential of a species, <integer>, in the
current material to a specified value, <float>. Currently, only the generic CONSTANT
model is implemented. However, extensions to polynomial expressions in the
temperature are easily implemented and forthcoming.

CONSTANT Model name for the standard chemical state chemical
potential model.

<species> - an integer designating the species equation.
<float> - the value of the chemical potential

The standard state chemical potential, , which is defined to be only a function
of the temperature, is used in the evaluation of the definition of the pure species
chemical potential of species k, , which in turn is used in the evaluation of
the mixture chemical potential of species k, .

Standard State Chemical Potential = CONSTANT <integer> <float>

µk o, T()

µk
*

T P,()

µk T P Xi, ,()

Revised: 6/12/13 1023

5.5.26 Pure Species Chemical Potential

Examples

The following is a sample input card:

Standard State Chemical Potential = CONSTANT 0 1.0

Technical Discussion

The values in this card are currently only applicable to the IS_EQUIL_PSEUDORXN
boundary condition.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.26 Pure Species Chemical Potential

Description/Usage

This card takes the specification of the standard state chemical potential, which is
defined as a function of temperature only, and completes the definition of the pure
species chemical potential by possibly adding in a pressure dependence. Two model
values are permissible:

PRESSURE_INDEPENDENCE

No pressure dependence to the pure species state when
this value of {model_name} is specified. The standard
state chemical potential is equal to the pure species
chemical potential. The <integer> argument specifies
the species subindex, k

PRESSURE_IDEALGAS

Pure Species Chemical Potential = {model_name} <integer>

1024 Revised: 6/12/13

5.5.26 Pure Species Chemical Potential

The following expression holds for the pressure
dependence:

(5-127)

The <integer> argument specifies the species subindex,
k.

The standard state chemical potential, , which
is defined to be only a function of the temperature, is
used in the evaluation of the definition of the pure
species chemical potential of species k, ,
which in turn is used in the evaluation of the mixture
chemical potential of species k, .

Examples

Following is a sample card:

Pure Species Chemical Potential = PRESSURE INDEPENDENT 0

Technical Discussion

The values in this card are only applicable to the IS_EQUIL_PSEUDORXN boundary
condition currently.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

µk
*

T P,() µk o, T() RT P 1 atm ⁄()ln+=

µk o, T()

µk
*

T P,()

µk T P Xi, ,()

Revised: 6/12/13 1025

5.5.27 Chemical Potential

5.5.27 Chemical Potential

Description/Usage

This card is used to specify the formulation of the chemical potential for the phase. It is
currently unconnected to Goma’s functionality. Two values are permissible:

IDEAL_SOLUTION Ideal solution thermodynamics

STOICHIOMETRIC_PHASE Phase consists of fixed set of molecular
composition

Examples

Following is a sample card:

Chemical Potential = IDEAL_SOLUTION

Technical Discussion

The chemical potential of species k in an ideal solution is given by the expression,
[Denbigh, p. 249],

(5-128)

where is defined as the chemical potential of species k in its pure state (or a
hypothetical pure state if a real pure state doesn’t exist) at temperature T and pressure
P. is related to the standard state of species k in the phase, , which
is independent of pressure, through specification of the pressure dependence of the
pure species k. is the mole fraction of species k in the phase.

The chemical potential of species k (actually there is only one species!) in a
stoichiometric phase is equal to

(5-129)

Theory

No Theory.

Chemical Potential = {IDEAL_SOLUTION | STOICHIOMETRIC_PHASE}

µk RT ln Xk() µ∗
k

T P(,)+=

µk
*

T P,()

µk
*

T P,() µk o, T()

Xk

µk µ∗
k

T P(,)=

1026 Revised: 6/12/13

5.5.28 Reference Concentration

FAQs

No FAQs.

References

Denbigh, K., The Principles of Chemical Equilibrium, 4th Ed., Cambridge University
Press, 1981

5.5.28 Reference Concentration

Description/Usage

This required card is used to specify the model for the reference concentration, which is
required by the BOUSS option on the Navier-Stokes Source card. Definitions of the
input parameters are as follows:

CONSTANT Model for a constant reference concentration.

<species> - the species equation to which this
specification applies.

<float> - the value of the reference concentration.

Examples

The following is a sample input card:

Reference Concentration = CONSTANT 0 0.

Technical Discussion

The Boussinesq model subtracts out the pressure head in its final equations. Thus, to
zeroth order, hydrodynamic pressure field doesn’t include a static variation in the
gravity direction due to the pressure head. But, the source term in the momentum
equations then becomes instead of simply . The reference
concentration values entered via this card are used to evaluate for use in calculating
the natural convective force due to concentration differences.

The card is also used in various places where a value for a species concentration is
needed. However, the species unknown variable is not included in the solution vector.

Reference Concentration = CONSTANT <species> <float> []

g ρ ρo–()– gρ–

ρo

Revised: 6/12/13 1027

5.5.29 Molecular Weight

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.29 Molecular Weight

Description/Usage

This card specifies the molecular weight of a species. It is required when the Stefan-
Maxwell flux model is used in modeling multicomponent transport of neutral or
charged species. It is also required when vapor-liquid phase equilibrium is considered
at the material boundaries. Molecular weight is used to convert units of mass fraction to
mole fraction in a species material balance.

CONSTANT Molecular weight model type.

<integer> - species number
<float> - molecular weight of the species

Examples

The following is a sample input card:

Molecular Weight = CONSTANT 0 6.939

Technical Discussion

This card originated from the development of a multicomponent diffusion model based
on the Stefan-Maxwell equation. However, it has been generalized to include problems
where mole fractions are necessary for the consideration of phase equilibria. For
example, when YFLUX_EQUIL is invoked in the input deck, an equilibrium problem is
solved rigorously which requires gas and liquid mole fractions. The conversion from
mass fraction to mole fraction requires molecular weight information.

Molecular Weight = CONSTANT <integer> <float>

1028 Revised: 6/12/13

5.5.30 Specific Volume

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.30 Specific Volume

Description/Usage

This card specifies the specific volume of a species. It is required when polymer-
solvent vapor-liquid phase equilibrium is considered at the material boundaries.
Specific volume is used to convert units of mass fraction to volume fraction in species
material balance.

CONSTANT Specific volume model type.

<integer> - species number
<float> - pure component specific volume.

Examples

Following is a sample card:

Specific Volume = CONSTANT 0 1.154734411

Technical Discussion

This is the place where pure component density (inverse of specific volume)
information is entered in the material property. When Flory-Huggins vapor-liquid
equilibrium model was first developed in Goma, the equations were based on volume
fractions, not mass fractions. In order to convert these units, the specific volume
parameter is required for each component in the mixture.

This card is used only in conjunction with Flory-Huggins nonideal liquid activity
model for polymer-solvent mixtures. This occurs when two types of BCs are specified:

Specific Volume = CONSTANT <integer> <float>

Revised: 6/12/13 1029

5.5.31 Molar Volume

1) when VL_POLY is specified at an discontinuous internal boundary and 2) when
FLORY model under YFLUX_EQUIL boundary card is specified.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.31 Molar Volume

Description/Usage

This card is referred when molar based equilibrium models are used on the boundaries,
such as VL_POLY. The float value specified is necessary for converting mass fractions
to mole fractions.

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - molar volume of the species. [L3/mole]

Examples

An example usage for this card:

Molar Volume = CONSTANT 0 1.

Technical Discussion

The same conversion from mass fraction to mole fraction can be obtained through
specification of the Molecular Weight and Specific Volume. The redundancy, which will
be allowed to remain, arose through simultaneous additions to the code by developers
working on different projects.

Molar Volume = CONSTANT <integer> <float> [L3/mole]

1030 Revised: 6/12/13

5.5.32 Charge Number

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.32 Charge Number

Description/Usage

This card is required when charged species are involved, e.g. when using the
FICKIAN_CHARGED or the STEFAN_MAXWELL_CHARGED Diffusion
Constitutive Equation card. It specifies the charge number (e.g., the charge number for
Ni2+ is 2, and that for SO2-is -2) of a species.

CONSTANT Model for specifying constant charge on species.

<integer>- species number.
<float> - charge number of the species

Examples

Sample usage for this card is shown below:

Charge Number = CONSTANT 0 1.0

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

Charge Number = CONSTANT <integer> <float>

Revised: 6/12/13 1031

5.5.33 Non-condensable Molecular Weight

References

No References.

5.5.33 Non-condensable Molecular Weight

Description/Usage

This card specifies the molecular weight of a species when the species is implicit in the
mixture. This means that in most problems involving n+1 species, only n species are
independent; i.e.,

(5-130)

It is required when Flory-Huggins vapor-liquid phase equilibrium is considered at the
material boundaries, as used in VL_POLY and in FLORY under YFLUX_EQUIL. This
is used to convert units of mass fraction to mole fraction in species material balance.

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - molecular weight of the non-condensable

species, usually the n+1 component in Goma
convention.

Examples

The following is an example card:

Non-condensable Molecular Weight = CONSTANT 2 36.

This example shows that two species are solved in the Goma problem explicitly:
species 0 and species 1.

Technical Discussion

In the current set up, species balance in Goma considers the species to be independent
of each other. However, the mass or volume fractions of all species must add up to
unity in any mixtures. This means that some properties of the last species must be
entered in the material file although that component is not solved explicitly in the

Non-condensable Molecular Weight = CONSTANT <integer> <float>

yn 1+ 1 yi

i 1=

n

–=

1032 Revised: 6/12/13

5.5.34 Non-volatile Molar Volume

problem. This is the case for molecular weight, molar volume, and specific volume
specifications, which are required for calculating Flory-Huggins liquid activity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.34 Non-volatile Molar Volume

Description/Usage

This card specifies the molar volume of a species when the species is implicit in the
mixture. This means that in most problems involving n+1 species, only n species are
independent; i.e.,

(5-131)

It is required when Flory-Huggins vapor-liquid phase equilibrium is considered at the
material boundaries, as used in VL_POLY and in FLORY under YFLUX_EQUIL. This
is used to convert units of mass fraction to mole fraction in species material balance.

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - molar volume of the non-volatile species,

usually the n+1 component in Goma
convention.

Examples

The following is an example card:

Non-volatile Molar Volume = CONSTANT <integer> <float>

yn 1+ 1 yi

i 1=

n

–=

Revised: 6/12/13 1033

5.5.35 Non-volatile Specific Volume

Non-volatile Molar Volume = CONSTANT 2 1.5e-3

This example shows that two species are solved in the Goma problem explicitly:
species 0 and species 1.

Technical Discussion

In the current set up, species balance in Goma considers the species to be independent
of each other. However, the mass or volume fractions of all species must add up to
unity in any mixtures. This means that some properties of the last species must be
entered in the material file although that component is not solved explicitly in the
problem. This is the case for molecular weight, molar volume, and specific volume
specifications, which are required to calculate Flory-Huggins liquid activity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.5.35 Non-volatile Specific Volume

Description/Usage

This card specifies the specific volume of a species when the species is implicit in the
mixture. This means that in most problems involving n+1 species, only n species are
independent; i.e.,

(5-132)

It is required when Flory-Huggins vapor-liquid phase equilibrium is considered at the
material boundaries, as used in VL_POLY and in FLORY under YFLUX_EQUIL. This
is used to convert units of mass fraction to mole fraction in species material balance.

Non-volatile Specific Volume = CONSTANT <integer> <float>

yn 1+ 1 yi

i 1=

n

–=

1034 Revised: 6/12/13

5.5.35 Non-volatile Specific Volume

CONSTANT Model for converting mass to mole fractions.

<integer>- species number.
<float> - specific volume of the non-volatile species,

usually the n+1 component in Goma
convention.

Examples

The following is an example card:

Non-volatile Specific Volume = CONSTANT 2 0.855e-3

This example shows that two species are solved in the Goma problem explicitly:
species 0 and species 1.

Technical Discussion

In the current set up, species balance in Goma considers the species to be independent
of each other. However, the mass or volume fractions of all species must add up to
unity in any mixtures. This means that some properties of the last species must be
entered in the material file although that component is not solved explicitly in the
problem. This is the case for molecular weight, molar volume, and specific volume
specifications, which are required for calculating Flory-Huggins liquid activity.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 1035

5.5.36 Flory-Huggins parameters

5.5.36 Flory-Huggins parameters

Description/Usage

This card specifies the Flory-Huggins binary interaction parameters. It is assumed that
the binary parameters are symmetric; i.e.,

. (5-133)

Therefore, one set of i-j coefficients is sufficient to describe the binary interaction
coefficients.

CONSTANT Model for constant Flory-Huggins parameters.

<integer1> - first species number.
<integer2> - second species number.
<float> - Flory-Huggins binary interaction coefficient.

Examples

Following is an example set of cards for a three-species mixture:
Flory-Huggins parameters = CONSTANT 0 1 0.3
Flory-Huggins parameters = CONSTANT 0 2 0.3
Flory-Huggins parameters = CONSTANT 1 2 0.3

Technical Discussion

No discussion; see Sun (1998).

Theory

No Theory.

FAQs

No FAQs.

References

GTM-007.1: New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA,
December 10, 1998, A. C. Sun

Flory-Huggins parameters = CONSTANT <integer1> <integer2> <float>

γ12 γ21=

1036 Revised: 6/12/13

5.6 Source Terms

5.6 Source Terms

Source term models cover the internal generation of pressure (in fluids and solids), energy,
species component mass and electrical potential for each of the main differential equations.
Several representations are available for fluids, and the user should be aware of some
consistencies required with density models (see details below). For all of the source models, the
user must heed the following warning:

Make sure the equation term multipliers for the
source terms being used are set to unity

(Section 4.12 - Problem Description and Equation specification in Volume 1).

5.6.1 Navier-Stokes Source

Description/Usage

This required card is used to specify the model for the fluid momentum source term
vector in the Navier-Stokes equations. Gravitational and buoyancy effects often enter
through this card.

Definitions of the input parameters are as follows:

{model_name} Name of the fluid momentum source term model for the
Navier-Stokes equations. The model name will be one of the
following strings:

CONSTANT
USER
BOUSS
BOUSS_JXB
BOUSSINESQ
FILL
LEVEL_SET
PHASE_FUNCTION
SUSPEND
SUSPENSION
VARIABLE_DENSITY
EHD_POLARIZATION
ACOUSTIC

Navier-Stokes Source = {model_name} {float_list} [varies]

Revised: 6/12/13 1037

5.6.1 Navier-Stokes Source

{float_list} One or more floating point numbers (<float1> through
<floatn>); the specific number is determined by the
selection for {model _name}.

Choices for {model_name} and the accompanying parameter list are given below;
additional user guidance can be found in the Technical Discussion section following
the Examples.

CONSTANT <float1> <float2> <float3>

For a constant source model where the body force [M/
L2t2] for this material does not vary. The {float_list}
contains three values to specify the three components of
the body force vector, where:

<float1> - a0, x-component of body force
<float2> - a1, y-component of body force
<float3> - a2, z-component of body force

Note this source term has units of force/volume or,
equivalently, density times acceleration. This is not true
of all source term models.

USER <float1>... <floatn>

For a user-defined model; the set of {float_list}
parameters are those required by specifications in the
function usr_momentum_source.

BOUSS <float1> <float2> <float3>

This option specifies a generalized Boussinesq source
where the density is linearly dependent upon temperature
and concentration (species). The individual components
of the constant acceleration vector a0 are read from the
three entries in the {float_list}:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

Unlike the CONSTANT model the units for these vector
components are (L/t2), that is, they are true acceleration
values. See the technical discussion below for the other
parameters needed for this model.

BOUSSINESQ <float1> <float2> <float3>

This model prescribes a body force source term that is
very similar to the BOUSS option except that the
hydrostatic component is eliminated. The individual

1038 Revised: 6/12/13

5.6.1 Navier-Stokes Source

components of the constant acceleration vector a0 are
read from the three entries in the {float_list}:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

BOUSS_JXB <float1> <float2> <float3> <float4>

This source model option specifies a generalized
Boussinesq source term, as above, but also including
Lorentz (electromagnetic) forces. The constant
acceleration vector a0 is again specified using the first
three constants that appear in the {float_list}. The fourth
constant of the list is a Lorentz scaling factor (lsf). It may
be used to scale the Lorentz term; see the Technical
Discussion for more information.

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration
<float4> - lsf, Lorentz scaling factor

EHD_POLARIZATION <float1>

This source model option can be used to add on a
dielectrophoretic force to the Navier-Stokes equations
of the form ., where E is the electric field vector
and ρ is a user-supplied constant with dimensions [q2T2/
L3]. This term requires the vector efield equation and
the voltage equation to be solved simultaneously with
the fluid-phase momentum equation. cf. EQ card
definitions.

<float1> is the constant ρ as described above

FILL <float1> <float2> <float3>

This model prescribes the body force momentum source
term for problems making use of volume-of-fluid
interface tracking. The card prescribes a constant
acceleration vector, usually the gravitational acceleration
[L/T2]. It can only be employed when using the FILL
density model.

The individual components of the constant acceleration
vector a0 are read from the three entries after the FILL
string in the {float_list}, where:

ρE E∇•

Revised: 6/12/13 1039

5.6.1 Navier-Stokes Source

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

LEVEL_SET <float1> <float2> <float3>

This model prescribes the body force momentum source
term for problems making use of level set interface
tracking. The card prescribes a constant acceleration
vector, usually the gravitational acceleration [L/T2]. It can
only be used when also using the LEVEL_SET density
model.

The individual components of the constant acceleration
vector a0 are read from the three entries after the
LEVEL_SET string in the {float_list}, where:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

PHASE_FUNCTION <float1> <float2> <float3>

This model prescribes the body force momentum source
term for problems making use of phase function interface
tracking (a generalization of the level set method for more
than two phases). The card prescribes a constant
acceleration vector, usually the gravitational acceleration
[L/T2]. It can only be used when also using the
CONST_PHASE_FUNCTION density model.

The individual components of the constant acceleration
vector a0 are read from the three entries after the
PHASE_FUNCTION string in the {float_list}, where:

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

VARIABLE_DENSITY <float1> <float2> <float3>

This model sets the momentum body force source term
for problems that employed the SOLVENT_POLYMER
density model. The three parameters on the card are the
individual components of a constant acceleration vector
(usually due to gravity):

1040 Revised: 6/12/13

5.6.1 Navier-Stokes Source

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration

The actual body force applied is the local density
computed from the SOLVENT_POLYMER model
multiplied by this vector.

SUSPEND <float1> <float2> <float3> <float4>

This model prescribes a body force source term for
suspensions where the carrier fluid and the particle phase
have different densities. Four parameters must be set for
this card using the {float_list}. The first three parameters
(<float1>. <float2>, and <float3>) are the three
components of the gravity vector. The fourth parameter
(<float4>) is a reference concentration, Cref.

<float1> - a0, x-component of acceleration
<float2> - a1, y-component of acceleration
<float3> - a2, z-component of acceleration
<float4> - Cref, reference concentration

This source model requires a SUSPENSION density
model be specified for the Density model. The density
parameters on this card are used in this source model. If
this momentum source term is used in conjunction with
the HYDRODYNAMIC mass flux option, only one
species can use the HYDRO diffusivity model.

SUSPENSION<float1> <float2> <float3> <float4>

This model is identical to the SUSPEND momentum
source model (above), with the addition of mass source
terms in the continuity equation due to transport of
species with different densities.

<float1> - a0, X-component of acceleration
<float2> - a1, Y-component of acceleration
<float3> - a2, Z-component of acceleration
<float4> - Cref, reference concentration

This source model requires a SUSPENSION density
model be specified for the Density model. The density
parameters in this card are used in this source model. If
this momentum source term is used in conjunction with
the HYDRODYNAMIC mass flux option, only one
species can use the HYDRO diffusivity model.

Revised: 6/12/13 1041

5.6.1 Navier-Stokes Source

ACOUSTIC <float1> <float2> <float3> <float4>

This model includes the gradient of the acoustic Reynolds
stress as a momentum source in addition to the usual
gravitational source terms. The {float_list} contains four
values to specify the three components of the body force
vector plus a Reynolds stress gradient multiplier, where:

<float1> - a0, x-component of body force
<float2> - a1, y-component of body force
<float3> - a2, z-component of body force
<float4> - acoustic term multiplier.

WARNING: Make sure the equation term multipliers for the source terms are set to
unity.

Examples

Following are some sample input cards:
Navier-Stokes Source = BOUSS 0. -980. 0.
Navier-Stokes Source = LEVEL_SET 0. -980. 0.

Technical Discussion

This section contains user guidance, and theoretical background when appropriate, for
each of the options for Navier-Stokes Source models.

CONSTANT A constant source model has a body force [M/L2t2] for the
material which does not vary. A common usage of this
model is for an incompressible fluid in a uniform
gravitational field. Note that the source term has units of
force/volume or, equivalently, density times acceleration.
Thus, the values in the {float_list} would need to be
specified as the product of the fluid density and the
acceleration of gravity.

USER This model option provides a means for the user to create a
custom Navier-Stokes Source model for his/her special
problem. The parameters of the model will be used by the
the source term model defined in the
usr_momentum_source function. The {float_list}
parameters are passed to this function as a one dimensional
array named param in the order in which they appear on
the card. The model must return a body force (force/

1042 Revised: 6/12/13

5.6.1 Navier-Stokes Source

volume) vector. An example use of this specification might
be to construct a Coriolis acceleration term for a fluid in a
rotating reference frame.

BOUSS A generalized Boussinesq source term has the form

(5-134)

where the linear dependence of the density upon
temperature and concentration is used for this source term
only. Density is assumed constant wherever else it happens
to appear in the governing conservation equations. The
density has been expanded in a Taylor series to first order
about a reference state that is chosen so that, at the reference
temperature T0 and concentration C0 the density is ρ0. The
reference density is taken from the CONSTANT density
model specified earlier in the material file on the Density
card. The coefficient of thermal expansion of the fluid, β, is
taken from the Volume Expansion card specified under
Thermal Properties for this material. βc, is taken from the
Species Volume Expansion card specified under species
Properties for this material. The individual components of
the constant acceleration vector a0 are the three entries of
the {float_list} after the BOUSS string.

Note that this BOUSS form includes the body force of the
reference state so that a motionless fluid at a uniform
temperature of T0 must be sustained by a linearly varying
pressure field. Below, an alternative means for solving
Boussinesq problems is presented that eliminates the
constant hydrostatic feature of the BOUSS formulation. T0
is set on the Reference Temperature card.

BOUSSINESQ This model prescribes a body force source term that is very
similar to the BOUSS option except that the hydrostatic
component is eliminated. Thus the form

(5-135)

so that a no-flow solution with uniform temperature and
concentration may be maintained by a constant pressure
field. This form for the Boussinesq equations can
sometimes provide a more well-conditioned equation
system for weakly buoyant flows. Note again the implied

g T() ρ0 1 β T T0–[]– βc C C0–[]–()a0=

g T() ρ0 β T T0–[] βc C C0–[]+{ }– a0=

Revised: 6/12/13 1043

5.6.1 Navier-Stokes Source

convention that the coefficient of thermal expansion is
positive when the density decreases with increasing
temperature. That is,

(5-136)

The same convention holds for the coefficient of solutal
expansion. A source of confusion with buoyancy problems
is that many sign conventions are applied. In addition to the
convention for β, another possible source of confusion
arises from a negative sign on the gravitational acceleration
vector in many coordinate systems. That is,

(5-137)

is a frequent choice for the constant acceleration for a two-
dimensional problem posed in Cartesian coordinates.T0 is
set on the Reference Temperature card.

BOUSS_JXB This model is a generalized Boussinesq source term, as
above, but also includes Lorentz forces. That is, the source
term has the form

(5-138)

where, in addition to the term defined for the BOUSS
option, there is an added term due to electromagnetic forces
acting upon a conducting fluid. The constant acceleration
vector a0 is again specified using the first three constants
that appear in the {float_list}. The fourth constant, lsf, may
be used to scale the Lorentz term as desired (for example, lsf
= 1 using a Gaussian system of units, or lsf = 1/c using a
rationalized MKSA system of units).

The two vector fields J, the current flux, and B, the
magnetic induction, must be supplied to Goma in order to
activate this option. At present, these fields must be
supplied with the External Field cards, which provide the
specific names of nodal variable fields in the EXODUS II
files from which the fields are read. The three components
of the J field must be called JX_REAL, JY_REAL, and
JZ_REAL. Likewise the B field components must be called
BX_REAL, BY_REAL, and BZ_REAL. These names are

β
ρ∂
T∂

T T0=
–=

a0 g– ey=

g T() ρ0 1 β T T0–[]–()a0 lsfJ B×+=

1044 Revised: 6/12/13

5.6.1 Navier-Stokes Source

the default names coming from the electromagnetics code
TORO II (Gartling, 1996). Because of the different
coordinate convention when using cylindrical components,
the fields have been made compatible with those arising
from TORO II. It is the interface with TORO that also
makes the Lorentz scaling (lsf) necessary so that the fixed
set of units in TORO (MKS) can be adjusted to the user-
selected units in Goma. T0 is set on the Reference
Temperature card.

FILL The body force applied when using this momentum source
model is as follows:

(5-139)

where and are the phase densities obtained from the
FILL density card, F is the value of the fill color function
and the constant acceleration vector a0 is read from the
three entries in the {float_list} of the FILL momentum
source card.

LEVEL_SET The body force applied when this model is used is given by
the following function of the level set function value, φ:

(5-140)

(5-141)

(5-142)

where

(5-143)

is a smooth Heaviside function, φ is the value of the level
set function, ρ+ and ρ- are the positive and negative phase
densities, and α is the density transition length scale. The
latter three parameters are obtained from the LEVEL_SET
density card. The individual components of the constant
acceleration vector a0 are three float parameters appearing
in the {float_list} following the LEVEL_SET model name.

PHASE_FUNCTION

g F() ρ1F ρ0 1 F–()+[]a0=

ρ1 ρ0

g φ() ρ-a0, φ α–<=

g φ() ρ- ρ+ ρ-–()Hα φ()+[]a0, α φ α< <–=

g φ() ρ+a0, φ α>=

Hα φ() 1 φ α⁄ πφ α⁄()sin π⁄++() 2⁄=

Revised: 6/12/13 1045

5.6.1 Navier-Stokes Source

The body force applied when this model is specified is
identical in concept to that applied with the above
LEVEL_SET model. The parameters on this card are
simply the components of a constant acceleration vector
(gravity in most applications). This card must be used in
conjunction with the CONST_PHASE_FUNCTION
density model because the actual body force vector is
obtained by multiplying the acceleration vector specified
with this card by the density computed by that latter model.
Again this is identical in concept to the LEVEL_SET body
force source model.

SUSPEND This model prescribes a body force source term that is for
simulating suspensions when the suspending fluid and
particle phase have different densities. The difference in
density can lead to buoyancy driven flow. The form of the
source term is given below:

(5-144)

where Ci is the solid particle volume fraction tracked using
a species equation with a HYDRO diffusion model. Four
parameters must be set for this card using the {float_list}.

The first three parameters are the three components of the
gravity vector. The fourth parameter is a reference
concentration, Cref. The density values are those entered by
a SUSPENSION density model on the Density card.

NOTE: If this momentum source term is used in
conjunction with the HYDRODYNAMIC mass flux
option, only one species can use the HYDRO diffusivity
model.

SUSPENSION This model is identical to the SUSPEND momentum source
model in terms of the assembly of the momentum equation.
However, this model creates a source term that gets applied
during the assembly of the continuity equation due to
transport of species with different densities. The suspension
density models meet the definition of a locally variable
density model, so the Lagrangian derivative of their
densities can be represented as a divergence of mass flux.
This term is integrated by parts and this particle phase flux
is included separately as a source term for the continuity
equation.

g Ci() Ci Cref–()– ρf ρs–[]a0=

1046 Revised: 6/12/13

5.6.2 Solid Body Source

ACOUSTIC This model contains the usual gravitational source terms in
the CONSTANT model plus the gradient of the acoustic
Reynolds stress as an additional momentum source. The
acous_reyn_stress equation must be present to use this
source model.

The user should take special note of the distinction between the different use of the
{float_list} for CONSTANT body force problems and for the various buoyant options.
For the CONSTANT model, the three components are the force per unit volume, and
the user must remember to include density specifically if it is desired. For the buoyancy
options, the three components are acceleration, and the density value specified on a
previous card is automatically used by Goma to construct the overall body force source
term. This is also true for the FILL, LEVEL_SET, SUSPENSION and SUSPEND
momentum source models.

The user must also take special care that the source term multipliers for the momentum
equation are set to unity.

Theory

No Theory.

FAQs

No FAQs.

References

Gartling, D. K., TORO II - A Finite Element Computer Program for Nonlinear Quasi-
Static Problems in Electromagnetics, Part I - Theoretical Background, SAND95-2472,
Sandia National Laboratories, Albuquerque, NM, May 1996.

5.6.2 Solid Body Source

Description/Usage

This card is used to specify the model for the body force source term on the solid
mechanics momentum equations. This card is used most to impose gravitational forces

Solid Body Source = CONSTANT <species_number> <float1> <float2> <float3>

Revised: 6/12/13 1047

5.6.2 Solid Body Source

on solid phase material elements in the problem. It can be also used to impose body
forces on the pseudo-solid mesh material if that is desirable.

Definitions of the input parameters are as follows:

CONSTANT A string identifying the constant force model. Currently, this
is the only body force model for solid materials.

<float1> - the x-component of the body force vector in
(F/L3).

<float2> - the y-component of the body force vector in
(F/L3).

<float3> - the z-component of the body force vector in
(F/L3).

JXB A string identifying a body force model based on external
current density fields J and external magnetic fields B. See
Technical discussion.

<float1> - a scale factor, usually set to 1.

Example

The following is a sample input card:

Solid Body Source = CONSTANT 0.0 0.0 -2000.0

Technical Discussion

Just as there is a body force vector that can be applied to fluid material regions, there is
a capability to apply a similar body force term to solid material regions. Most often this
is used to apply gravitational forces in which case the values of the components
supplied on this card would be the solid density multiplied by the gravitational
acceleration vector.

The JXB model requires external nodal fields loaded through External Field capability.
These fields must be named JE_N_1, JE_N_2, and JE_N_3 for the three components of
the current density and BE_N_1, BE_N_2, and BE_N_3 for the three components of
the magnetic field.

Theory

No Theory.

FAQs

No FAQs.

1048 Revised: 6/12/13

5.6.3 Mass Source

References

No References.

5.6.3 Mass Source

Description/Usage

This source term is inactive in Goma but the card must be present in the input at this
time. Definitions of the input parameters are as follows.

CONSTANT Name of the model (to prevent heartburn for Goma).

0. A floating point number (the value zero).

Examples

Following is the only allowable card specification:

Mass Source = CONSTANT 0.

Technical Discussion

No discussion.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

Mass Source = CONSTANT 0.

Revised: 6/12/13 1049

5.6.4 Heat Source

5.6.4 Heat Source

Description/Usage

This required card is used to specify the model for the source term on the energy
equation. Definitions of the input parameters are as follows:

{model_name} Name of the model for the source term on the energy
equation. The permissible values are

CONSTANT
USER
USER_GEN
JOULE
EPOXY
VISC_DISS
BUTLER_VOLMER
ELECTRODE_KINETICS

<float_list> One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection for
{model_name}. Note that not all models have a
<float_list>.

Source-term model choices and their parameters are discussed below. WARNING:
make sure the equation term multipliers for the source terms are set to unity (see the
Equation Cards segment in the previous chapter).

CONSTANT <float1>

The constant source model adds a constant homogenous
source term [E/L3t] to the heat equations. The <float_list>
has a single value: <float1> - Heat source.

USER <float1>... <floatn>

The USER option indicates that a user-defined model has
been introduced into the usr_heat_source routine in the
user_mp.c file. The <float_list> is of arbitrary length
subject to the user’s requirements to parameterize the
model.

USER_GEN <float1>... <floatn>

Heat Source = {model_name} <float_list> [varies]

1050 Revised: 6/12/13

5.6.4 Heat Source

The USER_GEN option provides a user-defined model
with low-level, general capabilities. For this option one
must make the appropriate modifications to the routine
usr_heat_source_gen in the user_mp_gen.c file.
The difference between the USER and USER_GEN
capabilities is described at the beginning of this chapter.

JOULE The JOULE model is used to specify a Joule heating source
term. No input is required for this model as the sole
independent parameter of the model for the voltage
equation is the “Electrical Conductivity”, which is specified
in the material file.

EPOXY <float1> The EPOXY model is used to specify the heat generated
by an epoxy curing reaction. The single input value is the:

<float1> - heat of reaction due to curing

VISC_DISS <float> The VISC_DISS model is used to specify the heat
generated by viscous dissipation. The <float_list> has a
single value:

<float1> - A multiplier to facilitate different unit
combinations. Selection of this option
activates its use.

BUTLER_VOLMER <integer> <float1> <float2> <float3> <float4>
<float5> <float6> <float7> <float8>

The BUTLER_VOLMER model is used to specify the current
source or sink due to a homogeneuous electrochemical reaction
involving a single species (e.g., the hydrogen oxidation and
oxygen reduction reactions in a hydrogen-feuled polymer-
electrolyte-membrane fuel cell), which is computed using the
Butler-Volmer kinetic model (as described in the Theory section
of the BUTLER_VOLMER current source card). This is due
to that the voltage equation is used to solve for the electrical
potential in the liquid electrolyte phase whereas the energy
equation is utilized to solve for the electrical potential in the
solid-electrode phase such that the electrode potential
unknowns is represented by the temperature unknown.
Parameters required for this BUTLER_VOLMER heat source
model are the same as those for the BUTLER_VOLMER
current source model; accordingly, detailed description of the
model parameters can be found in the Current Source section
of this manual.

Revised: 6/12/13 1051

5.6.4 Heat Source

ELECTRODE_KINETICS

The ELECTRODE_KINETICS model is used to specify the
current generated or consumed in the solid electrode phase in
electrochemical processes involving concentrated electrolyte
solution and multiple species as in thermal batteries. As in the
case of the BUTLER_VOLMER model, this is due to that the
voltage equation is used to solve for the electrical potential in
the liquid electrolyte phase whereas the energy equation is
utilized to solve for the electrical potential in the solid-electrode
phase such that the electrode potential unknowns is represented
by the temperature unknown. The {model_name}
ELECTRODE_KINETICS toggles on the option in the
equation assembly; no parameters are required.

Examples

The following is a sample input card:

Heat Source = CONSTANT 1.

Technical Discussion

The energy equation solved by Goma, which can be found elsewhere, is a convection-
conduction equation given by

(5-145)

The heat source-term model represented by H is specified by this input record. The
CONSTANT, USER and USER_GEN options provide the standard means of
specifying model input and will not be discussed.

JOULE Model: The JOULE model is used to specify a Joule heating term. It is based
on heat generation in a medium of specified electrical resistance subjected to an
electrical voltage potential. It computes the heat source as:

(5-146)

where J is the current flux density which is represented as and is represented
using the voltage equation. No input is required for this model since the Electrical
Conductivity is specified in the material file for the voltage equation.

ρCpT()d

td
---------------------- v vm–() ρCpT()∇•– q∇•– H+=

h φ()
1
σ
---J J⋅ φ∇ σ ϕ∇⋅= =

σ∇φ– φ

1052 Revised: 6/12/13

5.6.4 Heat Source

EPOXY Model: The EPOXY model is used to specify the heat generated by a
condensation reaction, which is the heat of reaction, ΔHrxn, multiplied by the reaction
rate as measured by the extent of reaction. The form of the equation is:

(5-147)

This card is used in conjunction with the EPOXY Species Source so that the reaction
rate Rα can be determined.

(5-148)

VISC_DISS Model: In heat transfer problems that are accompanied by fluid flow, the
energy balance equation contains a term which represents the (rate of) work done on
the fluid by viscous forces. These forces have the potential to raise the fluid
temperature and therefore it may be necessary to include these forces in your analysis.
Typically, problems in which this term is significant may be characterized as high-
speed flows with large velocity gradients, rapid extrusion and lubrication problems.
The Brinkman number () is an indicator of the importance of
viscous heating relative to the heat flow caused by temperature gradients.

Mathematically, the Heat Source term, , in the energy equation is given by

(5-149)

where (indicates a double dot product. This mechanism is an irreversible
process whereby mechanical energy is degraded into thermal energy, as the right hand
side expands to the sum of quadratic terms which will always be positive, at least for
Newtonian fluids. In Goma, the VISC_DISS model computes the source term in
function visc_diss_heat_source in mm_std_models.c; the expression looks like

(5-150)

where is the viscosity and is the shear rate.

The multiplier allows the user the flexibility to choose appropriate units for the
momentum and energy equations. For example, for many problems the momentum
equations are scaled appropriately using viscosity units of psi-sec. But in the absence of
this multiplier, this would force the energy equation to be in units of psi/sec; in other
words, (density*heat capacity) would need to be in units of psi/(deg C) and thermal
conductivity would need to be in units of psi-in2/(sec-deg C) - these aren’t exactly
common units! Instead, we can set the multiplier to 6891 (i.e., 6891 Pa = 1 psi) in order
to have the energy equation in units of J/sec - i.e. leaving (density*heat capacity) in
units of J/(m3 deg C) and thermal conductivity in terms of J/(m-sec deg C). Another use

h α() ΔHrxn Rα⋅=

Rα k1 k2α
m

+() 1 α–()
n

=

Br µV
2

() k TΔ()⁄=

H

H τ v∇•()=

•()

multiplier µ× γ·
2

µ γ·

Revised: 6/12/13 1053

5.6.4 Heat Source

of the multiplier is to allow appropriate scales when the momentum equation is
diffusion-dominated and the thermal equation is convection-dominated. Suppose we
keep all quantities in MKS units. The convection terms in the thermal equation can
then be scaled to roughly order unity by dividing through by (density*heat capacity) -
i.e. set heat capacity=1/density, thermal conductivity = thermal diffusivity, and set the
dissipation multiplier to 1/(density*heat capacity).

So, in essence, this multiplier allows flexibility in the choice of mechanical and thermal
units in a convenient manner - i.e. it’s on the term that couples the energy and
momentum equations.

BUTLER_VOLMER and ELECTRODE_KINETIC Models: As mentioned above,
these two models are used to specify the current generated or consumed in the solid
electrode phase in electrochemical processes such as polymer-electrolyte-membrane
fuel cells and thermal batteries. This is due to that the voltage equation is used to solve
for the electrical potential in the liquid electrolyte phase whereas the energy equation is
utilized to solve for the electrical potential in the solid-electrode phase such that the
electrode potential unknown is actually represented by the temperature unknown.
Further details for the BUTLER_VOLMER model are presented in the current source
model section of this manual and that for the ELECTRODE_KINETIC model can be
found in the reference provided below (Chen et al. 2000).

VARIABLE_DENSITY Model: Work was begun on a VARIABLE_DENSITY
model for drying problems but has not been completed. The roots for this may be found
in the source code but the model is not yet functional; it was not listed above as a valid
Heat Source option.

Theory

No Theory.

FAQs

No FAQs.

References

SAND2000-0207: Final Report on LDRD Project: A Phenomenological Model for
Multicomponent Transport with Simultaneous Electrochemical Reactions in
Concentrated Solutions, K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble and W. G.
Houf, January 2000.

1054 Revised: 6/12/13

5.6.5 Species Source

5.6.5 Species Source

Description/Usage

This required card is used to specify the model for the source term on the species
convection diffusion equations. Definitions of the input parameters are as follows:

{model_name} Name of the model for the source term on the species
convection diffusion equations. The permissible values are

CONSTANT
BUTLER_VOLMER
ELECTRODE_KINETICS
ELECTROOSMOTIC
EPOXY
EPOXY_DEA
FOAM
USER

<species> An integer designating the species equation.

<float_list> One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection for
{model_name}.

Source-term model choices and their parameters are discussed below. Details are
contained in the Technical Discussion section below. The <species> definition given
above applies to all the following choices for which it is specified; its definition will
not be repeated.

CONSTANT <species> <float1>

This model of a constant species source has a single input
value: <float1>-Constant species source

BUTLER_VOLMER <species> <float1> <float2> <float3> <float4>
<float5> <float6> <float7> <float8> <float9>

This is the homogeneous species source or sink term (in units
of moles per unit volume, e.g. moles/cm3-s) as described by
the Butler-Volmer kinetic model (see the Theory section
below). One integer and 9 flotas are required:

Species Source = {model_name} <species> <float_list> [varies]

Revised: 6/12/13 1055

5.6.5 Species Source

<species> - Index of the species involved in the electrochemical
reaction (here, we assume that only a single species is
involved).

<float1> - Stoichiometric coefficient, s.

<float2> - Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float3> - Reaction order, β.

<float4> - Reference species concentration, cref, in units of moles/cm3.

<float5> - Anodic transfer coefficient, αa.

<float6> - Cathodic transfer coefficient, αc.

<float7> - Temperature, T, in unit of K.

<float8> - Open-circuit potential, U0, in unit of V.

<float9> - Number of electrons involved in the reaction, n.

ELECTRODE_KINETICS

The ELECTRODE_KINETICS model is used to specify the
species generation or consumption in electrochemical processes
involving concentrated electrolyte solutions and multiple
species such as thermal batteries. The {model_name}
ELECTRODE_KINETICS toggles on the option in the
equation assembly; no parameters are required.

ELECTROOSMOTIC <int1> <int2> <float1> <float2> <float3> <float4>
<float5> <float6> <float7> <float8> <float9> <float10>

This is the source or sink term (in units of moles per unit
volume, e.g. moles/cm3-s) for thw water species due to
electro-osmotic drag by the protons (H+). Two integers and 10
flotas are required:

<int1> - Water species index.

<int2> - Index of the species involved in the electrochemical
reaction that generates the electrical current (here, we
assume that only a single species is involved).

<float1> - Stoichiometric coefficient, s.

<float2> - Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float3> - Reaction order, β.

<float4> - Reference species concentration, cref, in units of moles/cm3.

<float5> - Anodic transfer coefficient, αa.

<float6> - Cathodic transfer coefficient, αc.

1056 Revised: 6/12/13

5.6.5 Species Source

<float7> - Temperature, T, in unit of K.

<float8> - Open-circuit potential, U0, in unit of V.

<float9> - Number of electrons involved in the reaction, n.

<float10> - Electro-osmotic drag coefficient, nd.

EPOXY <species> <floatlist>

The EPOXY model adds a reaction source term for a
condensation polymerization reaction based on an extent of
reaction variable. Six model parameters make up the
<float_list> for the EPOXY species source model, as follows:

<float1> - A1 (prefactor)
<float2> - E1/R (activation energy/gas constant)
<float3> - A2 (prefactor)
<float4> - E2/R (activation energy/gas constant)
<float5> - m (exponent)
<float6> - n (exponent)

This model will be used with the EPOXY Heat Source
model to compute the reaction rate.

EPOXY_DEA <species> <floatlist>

The EPOXY_DEA model was created specifically for a
diethanolamine-epoxy curing reaction, a different model of
the reaction kinetics from the EPOXY source model. The
<float_list> for EPOXY_DEA species source model has
five values, where

<float1> - A1
<float2> - E1/R,
<float3> - A2 for the low-temperature regime
<float4> - E2/R for the low-temperature regime
<float5> - A2 for the mid-temperature regime

FOAM

The FOAM model was created specifically for the
removable epoxy foam decomposition kinetics. However,
the basis for evolving the density change can be applied to
other reactive material models. There are eight float inputs
in <float_list> which are used to specify two Arrhenius-type
reaction rates r1 and r2 and two reference temperatures T1
and T2:

<float1> - A1
<float2> - E1
<float3> - sig_1 (not currently used)

Revised: 6/12/13 1057

5.6.5 Species Source

<float4> - A2
<float5> - E2
<float6> - sig_2 (not currently used)
<float7> - T1
<float8> - T2

where Aj and Ej are the Arrhenius pre-exponential factor
and activation energy, respectively, for reaction rate rj,
and T1 and T2 are used to define a dimensionless problem
temperature .

USER <species> <floatlist>

The USER option indicates that a user-defined model has
been introduced into the usr_species_source routine in
the user_mp.c file. The <float_list> is of arbitrary length
subject to the user’s requirements to parameterize the model.

Examples

Sample card for the CONSTANT model:

Species Source = CONSTANT 0 2.

Sample card for the BUTLER_VOLMER model:

Species Source = BUTLER_VOLMER 1 -1. .02 1. 4.e-5 1. 1. 353. 1.18 4.

Sample card for the ELECTROOSMOTIC model:

Species Source = ELECTROOSMOTIC 2 1 1. .02 1. 4.e-5 1. 1. 353. 1.18 4.0 1.4

Technical Discussion

A discussion of units for species flux terms can be found under FAQs on the Diffusivity
card.

The CONSTANT option offers the simplest way for prescribing a constant
homogeneous rate of species generation or consumption involving in a species-
transport process.

In the BUTLER_VOLMER model, the current source or sink due to a homogeneuous
electrochemical reaction involving a single species (e.g., the hydrogen oxidation and
oxygen reduction reactions in a hydrogen-feuled polymer-electrolyte-membrane fuel
cell) is computed using the Butler-Volmer kinetic model as described below in the
Theory section.

The ELECTRODE_KINETIC model computes the molar rate of electrolyte-species
generation or consumption in electrochemical processes involving concentrated

T∗ T T1–() T2 T–()⁄=

1058 Revised: 6/12/13

5.6.5 Species Source

electrolyte solutions and multiple species as in thermal batteries. The molar rate of
electrolyte-species consumption is evaluated using Butler-Volmer kinetics along with
Faraday’s law. Further details can be found in the reference listed below in the
References sub-section (Chen et al. 2000).

The ELECTROOSMOTIC model computes the water-species flux due to the electro-
osmotic drag of protons (H+), which is proportional to the average current density with
the proportionality constant being the electro-osmotic drag coefficient, nd.

The EPOXY model adds a reaction source term for a condensation polymerization
reaction based on an extent of reaction variable. The extent of reaction is tracked as a
convection equation with a reaction source term. The form of the EPOXY species
source term is

(5-151)

where α is the extent of reaction, the rate constants, k1 and k2, can depend on
temperature in the Arrhenius manner, and m and n are exponents.

(5-152)

where R is the gas constant in the appropriate units, Ai is the prefactor, and Ei is the
activation energy for reaction. Six parameters are required to define the model: A1 and
A2 (prefactors), E1 and E2 (activation energies), and m and n (exponents), with R
being the universal gas constant.

The EPOXY_DEA model was created specifically for diethanolamine-epoxy curing
reaction. While the expression for the source term is identical to the EPOXY model
(with n=1.6),

(5-153)

the reaction kinetics differs, having three reaction regimes for exponent m and rate
constant k2. For T< 65 C, m = 2 and

; (5-154)

for 65 C < T< 90C, m = 74*k2 and

 where T in C; (5-155)

Rα k1 k2α
m

+() 1 α–()
n

=

ki Aie

Ei

RT

=

Rα k1 k2α
m

+() 1 α–()
1.6

=

k2 A2e

E2

RT

=

k2 A2
90 T–

T
6

 =

Revised: 6/12/13 1059

5.6.5 Species Source

and for T > 90C, m = k2 = 0. Rate constant is fixed for all these regimes and is
determined from the prefactor and activation energy .

The FOAM model computes the mixture volume change rate as:

(5-156)

where ρmix is the mixture density as defined in the REACTIVE_FOAM density model
(which is required for this model) and Vi is the specific volume of component i.

The USER option indicates that a user-defined model has been introduced into the
usr_species_source routine in the user_mp.c file. The <float_list> is of arbitrary
length subject to the user’s requirements to parameterize the model.

Theory

The rate of species generation or consumption in electrochemical processes involving a
single species such as polymer-electrolyte-membrane fuel cells can be computed using
the Butler-Volmer kinetic model and the Faraday’s law (cf. Newman 1991, Chen et al.
2000, Chen and Hickner 2006):

 (0-7)

where r is the homogeneous species source or sink in units of moles/cm3-s; s is the
stoichiometric coefficient with a sign comvention such that r represents a source when
s > 0 and sink when s < 0; n is the number of electrons involved in the electrochemical
reaction; denotes the product of interfacial area per unit volume by exchange
current density, which has units of A/cm3; c and are, respectively, species and
reference molar concentrations in units of moles/cm3; β is reaction order; αa and αc are,
respetively, the anodic and cathodic transfer coefficients; F is the Faraday’s constant
(96487 C/mole) and R is the universal gasl constant (8.314 J/mole-K); and

 are, respectively, the electrode and electrolyte potentials in unit of V; is the
open-circuit potential in unit of V; and T is temperature in unit of K.

FAQs

No FAQs.

k1

A1 E1

ρ∂
t∂

------ ρmix Vi VN 1+–()ri

i 0=

N

=

r
sai0
nF

c

cref

 β

e

αaF Φ1 Φ2– U0–()

RT

e

α– cF Φ1 Φ2– U0–()

RT
--

–
=

ai0

cref

≡ ≡ Φ1

Φ2 U0

1060 Revised: 6/12/13

5.6.6 Current Source

References

for EPOXY_DEA Model

GTM-011.0: Validation of 828/DEA/GMB Encapsulant using GOMA, August 20,
1999, A. C. Sun

for BUTLER_VOLMER and ELECTRODE_KINETIC Models:

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, Englewood Cliff, NJ
(1991).

K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble, and W. G. Houf, “Final Report on
LDRD Project: A Phenomenological Model for Multicomponent Transport with
Simultaneous Electrochemical Reactions in Concentrated Solutions”, Sandia Report
SAND2000-0207 (2000).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”,
in ASME Proceedings of FUELCELL2006-97032 (2006).

5.6.6 Current Source

Description/Usage

This card is used to specify the model for the source term on the voltage potential
equation. Values for the permissible {model_names} and the associated <optional
integer> and <floatlist> parameters are given below.

{model_name} Name of the model for the source term on the voltage
equation having permissible values

CONSTANT
USER
BUTLER_VOLMER
ELECTRODE_KINETICS
FICKIAN_CHARGED
NET_CHARGE
STEFAN_MAXWELL_CHARGED

<optional integer> This is required for the BUTLER_VOLMER model only.

Current Source = {model_name} <optional integer> <float_list> [E/M]

Revised: 6/12/13 1061

5.6.6 Current Source

<float_list> One or more floating point numbers (<float1> through
<floatn>) whose values are determined by the selection for
{model_name}. Note that not all models have a
<float_list>.

Source-term model choices and their parameters are discussed below. WARNING:
make sure the equation term multipliers for the source terms are set to unity (see the
Equation Cards segment in the previous chapter).

CONSTANT <float1>

For the CONSTANT current source term, there is a single
input parameter corresponding to the current density.

<float1> - Current density [E/M]

USER <float_list>

For a user-defined model, the set of parameters specified in
the <floatlist> are defined in file user_mp.c in the function
usr_current_source.

BUTLER_VOLMER <integer> <float1> <float2> <float3> <float4>
<float5> <float6> <float7> <float8>

This is the homogeneous current source or sink term (in units
of amphere per unit volume, e.g. A/cm3) as described by the
Butler-Volmer kinetic model (see the Theory section below).
One integer and 8 flotas are required:

<integer> - Index of the species involved in the electrochemical
reaction (here, we assume that only a single species is
involved).

<float1> - Stoichiometric coefficient, s.

<float2> - Product of interfacial area per unit volume by exchange
current density, ai0, in units of A/cm3.

<float3> - Reaction order, β.

<float4> - Reference species concentration, cref, in units of moles/cm3.

<float5> - Anodic transfer coefficient, αa.

<float6> - Cathodic transfer coefficient, αc.

<float7> - Temperature, T, in unit of K.

<float8> - Open-circuit potential, U0, in unit of V.

1062 Revised: 6/12/13

5.6.6 Current Source

ELECTRODE_KINETICS

This is a toggle, turning the model on; no parameters are
required.

FICKIAN_CHARGED

This is a toggle, turning the model on; no parameters are
required.

NET_CHARGE

This is a toggle, turning the model on; no parameters are
required.

STEFAN_MAXWELL_CHARGED

This is a toggle, turning the model on; no parameters are
required.

Examples

Sample card for the CONSTANT model:

Current Source = CONSTANT 0.50

Sample card for the BUTLER_VOLMER model:

Current Source = BUTLER_VOLMER 0 1. 1000. 0.5 4.e-5 1. 1. 353. 0.

Technical Discussion

The CONSTANT and USER models are those standardly available in Goma.

In the BUTLER_VOLMER model the current source or sink due to a homogeneuous
electrochemical reaction involving a single species (e.g., the hydrogen oxidation and
oxygen reduction reactions in a hydrogen-feuled polymer-electrolyte-membrane fuel
cell) is computed using the Butler-Volmer kinetic model as described below in the
Theory section.

In the FICKIAN_CHARGED model, current source or sink for electrochemical
processes involving dilute electrolyte solution and multiple species as in LIGA
electrodeposition is computed.

The NET_CHARGE model is used to compute the net charge or current source in a
region where the concentrations of positively and negatively charged species differ as
in the space layer of a atmospheric copper sulfidation process, in which the copper hole

Revised: 6/12/13 1063

5.6.6 Current Source

and vacancy concentrations differ such that charge separation occur (see the reference
listed below in the Reference sub-section, Chen 2004, for further details).

In the STEFAN_MAXWELL_CHARGED and ELECTRODE_KINETICS
models, current sources or sinks for electrochemical processes involving concentrated
electrolyte solutions and multiple species as in thermal batteries are computed.

Further details of these models can be found in the SAND Reports and proceeding
paper referenced below in the Theory sub-section.

Theory

BUTLER_VOLMER model: for the Butler-Volmer kinetic model with the exchange
current density being dependent on a single species is given by (cf. Newman 1991,
Chen et al. 2000, Chen and Hickner 2006):

where j is the homogeneous current source or sink in units of A/cm3; s is the
stoichiometric coefficient with a sign convention such that j represents a source when s
> 0 and sink when s < 0; denotes the product of interfacial area per unit volume by
exchange current density, which has units of A/cm3; c and are, respectively, species
and reference molar concentrations in units of moles/cm3; β is reaction order; αa and αc
are, respetively, the anodic and cathodic transfer coefficients; F is the Faraday’s
constant (96487 C/mole) and R is the universal gasl constant (8.314 J/mole-
K); and are, respectively, the electrode and electrolyte potentials in unit of V;
is the open-circuit potential in unit of V; and T is temperature in unit of K.

NET_CHARGE model: The net charge or current source in a region with charge
separation (e.g., in a space charge layer in which hole and vacancy concentrations
differ as in the atmospheric copper sulfidation corrosion process) is given by

where j is the net charge or current source in units of A/cm3; zi is the charge number and
ci is the molar concentration in units of moles/cm3, respectively, of species i; F is the
Faraday’s constant (96487 C/mole); and n is the number of charge species present.

j sai0
c

cref

 β

e

αaF Φ1 Φ2– U0–()

RT

e

α– cF Φ1 Φ2– U0–()

RT
--

–
=

ai0

cref

≡ ≡

Φ1 Φ2 U0

j F zici

i 1=

n

=

≡

1064 Revised: 6/12/13

5.6.7 Initialize

FAQs

No FAQs.

References

J. Newman, Electrochemical Systems, 2nd Edition, Prentice-Hall, NJ (1991).

K. S. Chen, G. H. Evans, R. S. Larson, D. R. Noble, and W. G. Houf, “Final Report on
LDRD Project: A Phenomenological Model for Multicomponent Transport with
Simultaneous Electrochemical Reactions in Concentrated Solutions”, Sandia Report
SAND2000-0207 (2000).

K. S. Chen and G. H. Evans, “Multi-dimensional Multi-species Modeling of Transient
Electrodeposition in LIGA Microfabrication”, Sandia Report SAND2004-2864 (2004).

K. S. Chen, “Multi-dimensional Modeling of Atmospheric Copper-Sulfidation
Corrosion on non-Planar Substrates”, Sandia Report SAND2004-5878 (2004).

K. S. Chen and M. A. Hickner, “Modeling PEM fuel cell performance using the finite-
element method and a fully-coupled implicit solution scheme via Newton’s technique”,
in ASME Proceedings of FUELCELL2006-97032 (2006).

5.6.7 Initialize

Description/Usage

This optional card provides a mechanism to set one of the field variables to a constant
value within the current material block. Definitions of the input parameters are as
follows:

<char_string> Permissible values for this input string are any variable
names identified in source file rf_fem_const.h
beginning at the section labeled Variable Names of
unknowns, though they should be active in this material
block. Examples include, but are not limited to, the
following:

VELOCITY1, VELOCITY2, VELOCITY3 (V123),
MESH_DISPLACEMENT (MD123),
SOLID_DISPLACEMENT (SD123),
MASS_FRACTION, TEMPERATURE, PRESSURE,

Initialize = {char_string} <integer> <float> [varies]

Revised: 6/12/13 1065

5.6.7 Initialize

VOLTAGE, FILL, LS, POLYMER_STRESS (6
components, 8 modes), VELOCITY_GRADIENT (9
components), SHEAR_RATE, VOLF_PHASE (6
phases), POR_LIQ_PRES, POR_GAS_PRES,
POR_POROSITY, POR_SATURATION, POR_LAST,
LAGR_MULT (LM123), SURF_CHARGE,
EXT_VELOCITY, EFIELD(123), SHELL (4 variables),
SPECIES (7 variables).

Note: for a comprehensive list of initializable variables,

consult Volume 1 “Initialize” card.

<integer> Species number to be initialized if the value of
{char_string} is one of the SPECIES variables (see
Technical Discussion); otherwise, set <integer> to zero.

<float> Value to which the variable should be initialized.

Multiple applications of this card are valid; Goma automatically counts the number of
Initialize cards.

Examples

Following is a sample card:

INITIALIZE = POLYMER_STRESS11 0 1.25E4

Technical Discussion

This card provides the means to set initial values for any of the field variables in the
element block for a particular material. Since the setting of variables initialized on this
card takes place after reading the initial guess (see function init_vec in file rf_util.c), it
can be used to override the value in the initial guess file.

In order to set a field to a specific value over the entire problem domain, a similar
Initialize capability is provided as a global variable in the General Specifications
section of the Goma input file. Please check in the Problem Description section of this
manual.

Note, the SPECIES_UNK variables are NOT used to initialize any of the species
variables. Rather, the special definitions called SPECIES_MASS_FRACTION,

SPECIES_MOLE_FRACTION, SPECIES_VOL_FRACTION, SPECIES_DENSITY,

SPECIES_CONCENTRATION, SPECIES_CAP_PRESSURE and
SPECIES_UNDEFINED_FORM, having integer representations of 2170 to 2176, and
representing the various Species Types, are the variables used in Goma input or mat
files for this input record. Multiple species are initialized by combining one of these

1066 Revised: 6/12/13

5.7 Shell Equation Properties and Models

variable types with the second parameter (<integer>) on this card. These cards are
particularly handy for mass transfer problems, where the initial conditions need to
specify different concentrations of the same species in different materials.

Note: for a comprehensive list of initializable variables, consult Volume 1 “Initialize”
card.

Theory

No Theory.

FAQs

No FAQs.

References

No References.

5.7 Shell Equation Properties and Models

In this section we list all “material-region” specific models and properties associated with
GOMA’s extensive shell equation capability. Currently we have specialized shell equations for
Reynolds lubrication flow (lubp), open Reynolds film flow (shell_film_H), energy (shell_energy,
convection and diffusion, coupled with lubrication), thin porous media (closed cell and open cell),
melting and phase change and more. While many of these cards are actual material properties,
most are geometry and kinematic related. The most appropriate place for these cards are region/
material files because they are actually boundary conditions and related parameters which arise
from the reduction of order (integration through the thin film). For more information, please see
the shell-equation tutorial (GT-036).

5.7.1 Upper Height Function Constants

Description/Usage

This card takes the specification of the upper-height function for the confined channel
lubrication capability, or the lub_p equation. This function specifies the height of the

Upper Height Function Constants = {model_name} <floatlist>

Revised: 6/12/13 1067

5.7.1 Upper Height Function Constants

channel versus distance and time. Currently three models for {model_name} are
permissible:

CONSTANT_SPEED This model invokes a squeeze/separation velocity uniformly

across the entire material region, viz. the two walls are brought

together/apart at a constant rate. This option requires two

floating point values

<float1> the separation velocity (rate) in units of length/time

<float2> the initial wall separation in units of length

<float3> An OPTIONAL parameter which scales the addition

of an external field called “HEIGHT” which is read in using

the External Field or External Pixel Field capabilities. If this

field is present, the value of it is added to the height calculated

with this model.

ROLL_ON This model invokes a squeeze/separation velocity in a

hinging-motion along one boundary. The model is best

explained with the figure in the technical discussion section.

The equation for the gap h as a function of time and the input

parameters (floats) is as follows:

<float1> is x0 in units of length

<float2> is hlow in units of length

 <float3> is h Δ, in units of length

<float4> is the verticle separation velocity (if negative then

squeeze velocity) in units of length/time

<float5> is the length of the plate, L.

ROLL This model is used for a roll coating geometry. This option

requires 8 floats:

h(t, x) = (vsqt + hA)
x − x0

L

+ hlow

1068 Revised: 6/12/13

5.7.1 Upper Height Function Constants

<float1> x-coordinate of origin, L.

<float2> y-coordinate of orgin, L.

<float3> z-coordinate of origin, L.

<float4> Direction angle 1 of rotation axis

<float5> Direction angle 2of rotation axis

<float6> Direction angle 3of rotation axis

<float7> rotation speed L/t.

FLAT_GRAD_FLATThis model used two arctan functions to mimic a flat region,

then a region of constant slope, then another flat region. The

transitions between the two regions are curved by the arctan

function. This currently on works for changes in the x

direction. This option requires five floating point values

<float1> x location of the first transition (flat to grad)

<float2> height of the first flat region

<float3> x location of the second transition (grad to flat)

<float4> height of the second flat region

<float5> parameter controlling the curvature of the transitions

POLY_TIMEThis time applies a time-dependent lubrication height in the

form of a polynomial. It can take as many arguments as

GOMA can handle, and the resulting height function is

<floati> value of Ci

JOURNAL This model simulates a journal bearing. It is intended to be

run on a cylindrical shell mesh aligned along the z axis and

centered at (0,0). It could be extended to be more flexible, but

()
N

i
i

i

h t C t=

Revised: 6/12/13 1069

5.7.1 Upper Height Function Constants

this is all it is currently capable of. The height is defined by

Where C is the mean lubrication height and is the

eccentricity

of the two cylinders, with the smallest gap in the –y direction.

<float1> C

<float2>

EXTERNAL_FIELD Not recognized. Oddly, this model is invoked with the extra
optional float on the CONSTANT_SPEED option.

External Field = HEIGHT Q1 name.exoII (see this card)

Examples

Following is a sample card:

Upper Height Function Constants = CONSTANT_SPEED {v_sq = -0.001} {h_i=0.001}

This results in an upper wall speed of 0.001 in a direction which reduces the gap, which
is initial 0.001.

Technical Discussion

The material function model ROLL_ON prescribes the squeezing/separation motion of
two non-parallel flate plates about a hinge point, as shown in the figure below.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

) (1 cos())(h Cθ ε θ= +

ε

ε

1070 Revised: 6/12/13

5.7.2 Lower Height Function Constants

5.7.2 Lower Height Function Constants

Description/Usage

This card takes the specification of the lower-height function for the confined channel
lubrication capability, or the lub_p equation. This function specifies the height of the
channel versus distance and time. Currently three models for {model_name} are
permissible:

CONSTANT_SPEED This model invokes a squeeze/separation velocity uniformly

across the entire material region, viz. the two walls are brought

together/apart at a constant rate. This option requires two

floating point values

<float1> the separation velocity (rate) in units of length/time

<float2> the initial wall separation in units of length

<float3> An OPTIONAL parameter which scales the addition

of an external field called “HEIGHT” which is read in using

the External Field or External Pixel Field capabilities. If this

field is present, the value of it is added to the height calculated

with this model.

ROLL_ON This model invokes a squeeze/separation velocity in a

hinging-motion along one boundary. The model is best

explained with the figure in the technical discussion section.

The equation for the gap h as a function of time and the input

parameters (floats) is as follows:

<float1> is x0 in units of length

<float2> is hlow in units of length

Lower Height Function Constants = {model_name} <floatlist>

h(t, x) = (vsqt + hA)
x − x0

L

+ hlow

Revised: 6/12/13 1071

5.7.2 Lower Height Function Constants

 <float3> is h Δ, in units of length

<float4> is the verticle separation velocity (if negative then

squeeze velocity) in units of length/time

<float5> is the length of the plate, L.

ROLL This model is used for a roll coating geometry. This option

requires 8 floats:

<float1> x-coordinate of origin, L.

<float2> y-coordinate of orgin, L.

<float3> z-coordinate of origin, L.

<float4> Direction angle 1 of rotation axis

<float5> Direction angle 2of rotation axis

<float6> Direction angle 3of rotation axis

<float7> rotation speed L/t.

TABLE <integer1> <character_string1> {LINEAR | BILINEAR} [integer2]
[FILE = filenm]

Please see discussion at the beginning of the material
properties Chapter 5 for input description and options.
Most likely character_string1 will be
LOWER_DISTANCE. This option is good for
inputing table geometry versus distance. Specifically, an
arbitrary lower height function model is input as a
function of the x-direction coordinate of the Lower
Velocity Function model. This option in turn
requires the use of SLIDER_POLY_TIME lower
velocity function model. See example below.

Examples

Following is a sample card:

Lower Height Function Constants = CONSTANT_SPEED {v_sq = -0.001} {h_i=0.001}

1072 Revised: 6/12/13

5.7.3 Upper Velocity Function Constants

This results in an lower wall speed of 0.001 in a direction which reduces the gap, which
is initial 0.001.

In another example:

Lower Height Function Constants = TABLE 2 LOWER_DISTANCE 0
LINEAR FILE=shell.dat

where shell.dat is a table with 2 columns, the first the position, the second the height.

Technical Discussion

The material function model ROLL_ON prescribes the squeezing/separation motion of
two non-parallel flate plates about a hinge point, as shown in the figure below.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.3 Upper Velocity Function Constants

Description/Usage

This card takes the specification of the upper-wall velocity function for the confined
channel lubrication capability, or the lub_p equation. This function specifies the
velocity of the upper channel wall as a function of time. Currently two models for
{model_name} are permissible:

CONSTANT This model invokes a squeeze/separation velocity uniformly

across the entire material region, viz. the two walls are brought

Upper Velocity Function Constants = {model_name} <floatlist>

Revised: 6/12/13 1073

5.7.3 Upper Velocity Function Constants

together/apart at a constant rate. This option requires two

floating point values

<float1> is the velocity component in the x-direction. L/t

<float2> is the velocity component in the y-direction. L/t

<float3> is the velocity component in the z-direction. L/t

(NOTE: this is usually taken as zero as it is set in the Upper

Wall Height Function model)

ROLL This model invokes a wall velocity which corresponds to a

rolling-motion. This model takes nine constants ???? :

<float1> Roll radius, L.

<float2> x-coordinate of axis origin, L.

<float3> y-coordinate of axis orgin, L.

<float4> z-coordinate of axis origin, L.

<float5> Direction angle 1 of rotation axis

<float6> Direction angle 2of rotation axis

<float7> Direction angle 3of rotation axis

<float8> Squeeze rate.

<float9> rotation rate

TANGENTIAL_ROTATE his model allows a velocity that is always tangential to a shell

surface, not necessarily aligned along the coordinate

directions. It requires three specifications. First, a vector (v)

that is always non-colinear to the normal vector of the shell

must be specified. This is used to make unique tangent

vectors. The last two specifications are the two tangential

components to the velocity. The first velocity is applied in the

direction of . The second velocity is then applied in

the direction.

<float1> vx

<float2> vy

1t nv= ×

2 1t t n= ×

1074 Revised: 6/12/13

5.7.3 Upper Velocity Function Constants

<float3> vz

<float4> velocity in the t1 direction

<float5> velocity in the t2 direction

CIRCLE_MELT Model which allows a converging or diverging height that is like a

circle. Also works for melting.

<float1> - x-location of the circle center (circle is in x-y plane)

<float2> - radius of circle

<float3>- minimum height of circle

Examples

Following is a sample card:

Upper Velocity Function Constants = CONSTANT {v_x= -0.001} {vy=0.00} {vz=0}

This card results in an upper wall speed of -0.001 in the x-direction which is tangential

to the substrate, thus generating a Couette component to the flow field.

Technical Discussion

For non-curved shell meshes, most of the time they are oriented with the x-, y-, or z-
plane. This card is aimed at applying a tangential motion to that plane, and so one of
the three components is usually zero.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 1075

5.7.4 Lower Velocity Function Constants

5.7.4 Lower Velocity Function Constants

Description/Usage

This card takes the specification of the Lower-wall velocity function for the confined
channel lubrication capability, or the lub_p equation. This function specifies the
velocity of the Lower channel wall as a function of time. Currently two models for
{model_name} are permissible:

CONSTANT This model invokes a squeeze/separation velocity uniformly

across the entire material region, viz. the two walls are brought

together/apart at a constant rate. This option requires two

floating point values

<float1> is the velocity component in the x-direction. L/t

<float2> is the velocity component in the y-direction. L/t

<float3> is the velocity component in the z-direction. L/t

(NOTE: this is usually taken as zero as it is set in the Lower

Wall Height Function model)

SLIDER_POLY_TIMEThis model implements a spatially-uniform velocity in the

x-direction that is specified as a polynomial in time. The value

of time may be scaled by a given scaling factor and the

polynomial may have an unlimited number of terms.

<float1> is the time scaling factor

<float2-N> are the coefficients in front of the t^(i-2) term

Lower Velocity Function Constants = {model_name} <floatlist>

2

2

1

float

float

floati N

i
x i s

i

s

v t

tt

=
−

=

=

= ×

1076 Revised: 6/12/13

5.7.4 Lower Velocity Function Constants

ROLL This model invokes a wall velocity which corresponds to a

rolling-motion. This model takes nine constants ???? :

<float1> Roll radius, L.

<float2> x-coordinate of axis origin, L.

<float3> y-coordinate of axis orgin, L.

<float4> z-coordinate of axis origin, L.

<float5> Direction angle 1 of rotation axis

<float6> Direction angle 2of rotation axis

<float7> Direction angle 3of rotation axis

<float8> Squeeze rate.

<float9> rotation rate

TANGENTIAL_ROTATE

This model allows a unique specification of tangential motion in a

lubrication shell element. Previous implementations allowed specification only in terms

of coordinate direction, but this option can be used to rotate a cylinder. Five floats are

required:

<float1> x-comnponent of a vector tangential to the shell.

This vector must never be normal to the shell. It is then

projected onto the shell.

<float2> y-comnponent of a vector tangential to the shell.

<float3> z-comnponent of a vector tangential to the shell.

<float4> U1, or scalar speed of wall velocity in a direction

determined by the cross product ot the tangent vector and the

normal vector to the shell. (L/t)

<float5> U2 scalar speed component in direction normal

to U1. (L/t)

Examples

Following is a sample card:

Lower Velocity Function Constants = CONSTANT {v_x= -0.001} {vy=0.00} {vz=0}

This card results in an Lower wall speed of -0.001 in the x-direction which is tangential

to the substrate, thus generating a Couette component to the flow field.

Revised: 6/12/13 1077

5.7.5 Upper Contact Angle

Technical Discussion

For non-curved shell meshes, most of the time they are oriented with the x-, y-, or z-
plane. This card is aimed at applying a tangential motion to that plane, and so one of
the three components is usually zero.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.5 Upper Contact Angle

Description/Usage

This card sets contact angle of the liquid phase on the upper-wall for the two-phase
capability in the lub_p equation (viz. when using the level-set equation to model the
motion of a meniscus in a thin gap, where the in-plan curvature is neglected. Currently
one model {model_name} is permissible:

CONSTANT This model is used to set a constant contact able of the the free

surface at the upper wall. Contact angle of less than 90 degrees is considered as non-

wetting with respect to the heavier level-set phase. Only one floating point value is

required.

<float1> is the contact angle in degrees.

Examples

Following is a sample card:

Upper Contact Angle = CONSTANT 180.

Upper Contact Angle = {model_name} <floatlist>

1078 Revised: 6/12/13

5.7.6 Lower Contact Angle

This card results in an upper wall contact able to 180 degrees, which is perfectly

wetting. If the lower wall is given the same angle, then the capillary pressure jump will

go as 2/h, where h is the gap.

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.6 Lower Contact Angle

Description/Usage

This card sets contact angle of the liquid phase on the lower-wall for the two-phase
capability in the lub_p equation (viz. when using the level-set equation to model the
motion of a meniscus in a thin gap, where the in-plan curvature is neglected. Currently
one model {model_name} is permissible:

CONSTANT This model is used to set a constant contact able of the the free

surface at the lower wall. Contact angle of less than 90 degrees is considered as non-

wetting with respect to the heavier level-set phase. Only one floating point value is

required.

<float1> is the contact angle in degrees.

Lower Contact Angle = {model_name} <floatlist>

Revised: 6/12/13 1079

5.7.7 Lubrication Fluid Source

Examples

Following is a sample card:

Lower Contact Angle = CONSTANT 180.

This card results in an lower wall contact able to 180 degrees, which is perfectly

wetting. If the lower wall is given the same angle, then the capillary pressure jump will

go as 2/h, where h is the gap.

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.7 Lubrication Fluid Source

Description/Usage

This card sets a fluid mass source term in the lub_p equation. Can be used to specify
inflow mass fluxes over the entire portion of the lubrication gap in which the lub_p
equation is active (over the shell material). This flux might be the result of an injection
of fluid, or even melting. Currently two models {model_name} are permissible:

CONSTANT This model is used to set a constant fluid source in units of

velocity. Only one floating point value is required.

<float1> is the velocity of the fluid source.

Lubrication Fluid Source = {model_name} <floatlist>

1080 Revised: 6/12/13

5.7.7 Lubrication Fluid Source

 MELT This model is used to set fluid source in units of

Velocity which results from an analytical model of lubricated

melt bearing flow due to Stiffler (1959). Three

floating point values are required.

<float1> is load on the slider in units of pressure

<float2> is the Stiffler delta factor. Unitless but depends on

the aspect ratio.

<float3> is the length of the slider in the direction of the

motion.

Examples

Following is a sample card:

Lubrication Fluid Source = CONSTANT 180.

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Revised: 6/12/13 1081

5.7.8 Lubrication Momentum Source

5.7.8 Lubrication Momentum Source

Description/Usage

This card sets a fluid “body force per unit volume” source term in the lub_p
equation. This capability can be used to specify a force field over the entire shell area
(over the shell material).. Currently two models {model_name} are permissible:

CONSTANT THIS MODEL NOT IMPLEMENTED AS OF 11/11/2010. This

model is used to set a constant fluid momentum source in units of

force per unit volume. Only one floating point value is required.

<float1> is the fluid momentum source in F/L^3.

 JXB This model is used to set fluid momentum source in units of

force per unit volume which comes from externally supplied current

density J field and magnetic B fields. These fields are suppled with

the external field capability in Goma in a component wise fashion.

Please consult the technical discussion below.

<float1> is scale factor which may be used for non-

dimensionalization. Typically this is set to 1.0.

Examples

Following is a sample card:

Lubrication Momentum Source = JXB 1.

Technical Discussion
The two vector fields J, the current flux, and B, the magnetic induction, must be

supplied to Goma in order to activate this option. At present, these fields must be

supplied with the External Field cards, which provide the specific names of nodal

variable fields in the EXODUS II files from which the fields are read. The three

components of the J field must be called JX_REAL, JY_REAL, and JZ_REAL.

Likewise the B field components must be called BX_REAL, BY_REAL, and

BZ_REAL. These names are the default names coming from the electromagnetics code

like Alegra. Because of the different coordinate convention when using cylindrical

Lubrication Momentum Source = {model_name} <floatlist>

1082 Revised: 6/12/13

5.7.9 Turbulent Lubrication Model

components, the fields have been made compatible with those arising from TORO II. It

is the interface with TORO that also makes the Lorentz scaling (lsf) necessary so that

the fixed set of units in TORO (MKS) can be adjusted to the user-selected units in

Goma.

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.9 Turbulent Lubrication Model

Description/Usage
This card activates a turbulent model for viscosity in the lub_p equation. Currently

one model {model_name} is permissible:

PRANDTL_MIXING This model is used to determine the pre-multiplier

on the molecular viscosity in the Reynolds

lubrication equation. For confined, laminar flow,

this multiplier is 12. For turbulent flow it is taken

as K(Re), where Re is the local Reynolds number.

Specifically, invoking a analytical approximation

for K from Hirs (1973), we set k0 according to the

Reynolds number Re= :

For 0 < Re < 2000 K0=12 (Laminar case),

Turbulent Lubrication Model = {model_name}

ρh |U |

µ

Revised: 6/12/13 1083

5.7.10 Shell Energy Source QCONV

Else 2000 < Re < 100000 K0 = 0.05Re ¾

Here the wall velocity is used to compute

The Reynolds number, as this turbulence model is

specific to turbulent Couette flow.

Examples

Following is a sample card:

Turbulent Lubrication Model = PRANDTL_MIXING

Technical Discussion
Several other models can be implemented in this instance. We chose this simple

model which derives from Prandtl mixing length theory.

Theory

NoTheory.

FAQs

No FAQs.

References

G.G. Hirs, “Bulk flow theory for turbulence in lubricant films”, Trans. ASME, ser. F,
95, pp 137-146, 1973.

5.7.10 Shell Energy Source QCONV

Description/Usage
This card activates a heat source (or sink, as it were) in the shell_energy

equation. The functional form of this source/sink is a lumped heat-transfer coefficient

model, hence the QCONV in its name (see BC = QCONV card in main user manual).

Currently two models {model_name} are permissible:

Shell Energy Source QCONV = {model_name} <float_list>

1084 Revised: 6/12/13

5.7.10 Shell Energy Source QCONV

CONSTANT This model invokes a simple constant heat-transfer

coefficient and reference temperature, viz.

. Commensurately there are two

floats required:

<float1> - Heat transfer coefficient in units of

Energy/time/L2/deg T E.g. W/m2-K in MKS units.

<float2> - Reference temperature.

MELT_TURB This model also invokes a lumped parameter model,

but the heat-transfer coefficient depends on the flow

strength (Reynolds number), viz.

. Three floats are required:

<float1> - Thermal conductivity in units of Energy

time/L/deg (e.g. W/m/k).

<float2> - Reference temperature.

<float3> - Latent heat of melting (Energy/M, e.g. J

/Kg). This quantity is required due to the cross use

of this in the shell_deltah equation (viz. EQ =

shell_deltah).

Examples

Following is a sample card:

Shell Energy Source QCONV = MELT_TURB {thermal_conductivity} {Tref}

{latent_heat}

Technical Discussion
The MELT_TURB model warrants further discussion. The functional form of the heat

transfer coefficient H is

.

Here cf is the coefficient of friction, which for now is taken as 8./Re.

q = H (T − Tref)

q = H (T − Tref)

H = 0.0735ρCpc f
1/2uwall (

µCp

K
)

Revised: 6/12/13 1085

5.7.11 Shell Energy Source Sliding Contact

Theory

NoTheory.

FAQs

No FAQs.

References

None

5.7.11 Shell Energy Source Sliding Contact

Description/Usage
This card activates a heat source (or sink, as it were) in the shell_energy

equation. The functional form of this source/sink is a sliding contact model derived in

the frame-of-reference of the slider on a stationary surface, so that the surface is

moving in the simulation. In this case, the conditions for the flux vary from the leading

edge to the trailing edge of the slider as a thermal boundary layer builds up. Think of

this as a hot slider moving over a cold stationary wall, so that the flux at the leading

edge of the slider into the cold wall will be larger, due to a steeper thermal boundary

layer. Clearly the contact time will play a role. Currently two models {model_name}

are permissible:

LOCAL_CONTACT This model invokes the following functional form:

 Commensurately there are seven floats required:

<float1> - length l of slider.

Shell Energy Source Sliding_Contact = {model_name} <float_list>

K
dT

dz 0

=
2K (T − T0)

πκ (
1

uslider

)

L2 − L1

L2 − L1

1086 Revised: 6/12/13

5.7.11 Shell Energy Source Sliding Contact

<float2> - Sink temperature of substrate.

<float3> - Thermal conductivity of substrate.

<float4> - Density of substrate

<float5> - Heat capacity of substrate.

<float6> - Delta L, or L1 – L2. This parameter sets

the segment size (less than the total

slider length) over which the heat

flux is resolved.

<float7> - Leading edge coordinate of slider.

AVERAGE_CONTACT This model invokes the following functional

form:

 Commensurately there are seven floats required:

<float1> - length L of slider.

<float2> - Sink temperature of substrate.

<float3> - Thermal conductivity of substrate.

<float4> - Density of substrate

<float5> - Heat capacity of substrate.

Examples

Following is a sample card:

Shell Energy Source Sliding_Contact = LOCAL_CONTACT {L= 2.5}
{t_r=20} {t_cond_cu_cgs} {density_cu_cgs} {heat_capacity_cu_cgs}

K
dT

dz 0

=
2K(T − T0)

πκ (
L

uslider

)

Revised: 6/12/13 1087

5.7.12 Shell Energy Source Viscous Dissipation

{delta_L = 0.1} {leading_edge_coordx = 2.5}

Technical Discussion
This boundary condition was derived using the analytical solution for heat conduction

into an infinite slab, as derived by Carslaw and Jaeger. The modification here is that

the temperature source accommodates a motion relative to the substrate, which is what

leads to the need to segment the slider into bins over which a local heat flux solution is

derived.

NOTE: If this card is used and there is no upper-wall or lower wall sliding motion, and

error is thrown.

Theory

NoTheory.

FAQs

No FAQs.

References

None

5.7.12 Shell Energy Source Viscous Dissipation

Description/Usage
This card activates a heat source (or sink, as it were) in the shell_energy

equation resulting from viscous dissipation due to shear combined Couette and

pressure-driven flow in the Reynolds lubrication equation (lubp equation).

LUBRICATION This model invokes a viscous dissipation model

simplified for the lubrication approximation.

<float1> - Scale factor for the term, typically taken

Shell Energy Source Viscous Dissipation = {model_name} <float_list>

1088 Revised: 6/12/13

5.7.12 Shell Energy Source Viscous Dissipation

as 1.0

LUBRICATION_FRICTION This model invokes the same viscous dissipation

source term as in the LUBRICATION model, but

adds on an additional linear friction model of the

form µ*Pload*vslider.

<float1> - coefficient of friction, µ.

<float2> - Applied external load Pload

Examples

Following is a sample card:

Shell Energy Source Viscous Dissipation=
LUBRICATION_FRICTION {load=5e8} {coeff=0.9}

Technical Discussion
None

Theory

NoTheory.

FAQs

No FAQs.

References

None

Revised: 6/12/13 1089

5.7.13 Shell Energy Source External

5.7.13 Shell Energy Source External

Description/Usage
This card activates a heat source (or sink, as it were) in the shell_energy equation

which corresponds to a user-supplied or constant value. Two models are available.

CONSTANT This model invokes a constant heat source term

(heat sink if negative) in units of energy per area per

time.

<float1> - Value of heat source.

JOULE This model invokes a constant energy source

which is determined by an external current density

field of the form

. Here J is the current density, h is

the gap, and is the electrical resistivity, or the

inverse conductivity. Both h and are

determined from other models in the material file.

J is brought in as an external field variable from

another exodusII file (see discussion below).

<float1> - Scale factor, usually set to 1.0.

JOULE_LS This model differs from JOULE only in that the

electrical conductivity is pulled out and must be

specified with a LEVEL_SET model. This model

is not well tested (PRS 12/14/2012)

<float1> - Scale factor, usually set to 1.0.

Examples

Following is a sample card:

Shell Energy Source External = JOULE {scale=1.0}

Shell Energy Source Viscous External = {model_name} <float_list>

Q joule = hξ J ⋅ J

ξ

ξ

1090 Revised: 6/12/13

5.7.14 FSI Deformation Model

Technical Discussion
To bring in an external field of the appropriate form, see the main Goma user’s manual

and refer to the External Field card. As an example, you might consider solving

a simple electrostatic problem using the EQ = V (voltage) equation and output the

magnitude of the current density vector. In Goma, this is done with the post

processing
Electric Field Magnitude = yes
Card. This card outputs this J-magnitude as the exodusII variable EE. You then bring

it in as follows in the input script:

External Field = EE Q1
current_dens_out.exoII

With the JOULE model, this field is used to compute the Joule heating term.

Theory

NoTheory.

FAQs

No FAQs.

References

None

5.7.14 FSI Deformation Model

Description/Usage

This card specifies the type of interaction the lubrication shell elements will have with

any surrounding continuum element friends. When not coupling the lubrication

equations to a continuum element, this card should be set to the default value,

FSI_SHELL_ONLY. All models are described below:

FSI Deformation Model = {model_name}

Revised: 6/12/13 1091

5.7.14 FSI Deformation Model

FSI_MESH_BOTH This model should be used when both the shell

and neighboring continuum elements use deformable meshes and the user wishes to

full couple these behaviors. This model is not currently implemented and should not be

used.

FSI_MESH_CONTINUUM In this model, the neighboring continuum

elements use mesh equations, but the lubrication shell does not. This model features a

two-way coupling, where the lubrication pressure can deform the neighboring solid

(through the appropriate boundary condition) and deformations to the mesh in turn

affect the height of the lubrication gap. This is equivalent to the old “toggle = 1”.

FSI_MESH_SHELL This model accounts for mesh equations present

in the lubrication shell, but not in the adjoining continuum elements. This model is not

currently implemented and should not be used.

FSI_SHELL_ONLY This model can be thought of as the default

behavior, where there is no coupling between the lubrication shell elements and any

neighboring continuum elements. This should also be used if only shells are present.

FSI_MESH_UNDEF This model is similar to

FSI_MESH_CONTINUUM, but the normal vectors in the shell are calculated using

the original undeformed configuration, rather than the current deformed state.

Implementation of this model is currently in progress and needs to be fully tested.

FSI_MESH_ONEWAY This model is similar to

FSI_MESH_CONTINUUM, but only utilizes a one way coupling. Deformations in the

neighboring continuum element do not affect the lubrication height, but do affect the

calculated normal vectors. This is equivalent to the old “toggle = 0”.

Examples

Technical Discussion

Theory

NoTheory.

1092 Revised: 6/12/13

5.7.15 Film Evaporation Model

FAQs

No FAQs.

References

None

5.7.15 Film Evaporation Model

Description/Usage
This card takes the specification of the evaporation rate for the film-flow equation

capability, specifically the shell_filmp equation. This function specifies the rate

of evaporation in the unit of length per time. Currently two models for

{model_name} are permissible:

CONSTANT This model specifies a constant evaporation rate. This option

requires one floating point values

<float1> is the evaporation rate in the unit of length/time

CONC_POWER This model specifies evaporation rate function of particles

volume fraction and the input parameters (floats). This model

is proposed by Schwartz et al (2001). The functional form is:

<float1> is the pure liquid evaporation rate in units of

length per time

<float2> is exponent and it should satisfy

 <float3> is the maximum packing volume fraction

Film Evaporation Model = {model_name} <floatlist>

0

max

1E E

ν
ϕ

ϕ

= −

0E

ν 0 1ν< <

maxϕ

Revised: 6/12/13 1093

5.7.16 Disjoining Pressure Model

Examples

Following is a sample card:

Film Evaporation Model = CONC_POWER 1.0e-3 0.5 0.64

This results in film evaporation with the pure liquid evaporation rate of 1.0e-3, exponent

of 0.5, and maximum packing volume fraction of 0.64.

Technical Discussion

Theory

NoTheory.

FAQs

No FAQs.

References

Leonard W. Schwartz, R. Valery Roy, Richard R. Eley, and Stanislaw Petrash,
“Dewetting Patterns in a Drying Liquid Film”, Journal of Colloid and Interface
Science 234, 363–374 (2001)

5.7.16 Disjoining Pressure Model

Description/Usage
This card takes the specification of the disjoining pressure model for the film-flow

equation capability, specifically the shell_filmh equation. This function

specifies the disjoining pressure in the unit of force per area. Currently four models for

{model_name} are permissible:

CONSTANT This model specifies a constant disjoining pressure. This option

requires one floating point values

<float1> is the evaporation rate in the unit of length/time

Disjoining Pressure Model = {model_name} <floatlist>

1094 Revised: 6/12/13

5.7.16 Disjoining Pressure Model

ONE_TERMThis model specifies disjoining pressure and the input parameters

(floats). This model only employs the repulsion part of the van der Waals force. The

functional form is:

where

<float1> is the equilibrium liquid-solid contact angle

<float2> is exponent and it should satisfy

 <float3> is the precursor film thickness

TWO_TERMThis model specifies disjoining pressure and the input parameters

(floats). Here, the model only employs both repulsion and attraction part of the van der

Waals force. The functional form is:

where

<float1> is the equilibrium liquid-solid contact angle

*

n

h
B

h

Π =

()()
*

1 cos 1e n
B

h

σ θ− −
=

eθ

n 1n >

*h

* *

n m

h h
B

h h
α

Π = −

() () ()
() ()
1 1 1 cos

1 1
en m

B
n m

σ θ

α

− − −
=

− − −

eθ

Revised: 6/12/13 1095

5.7.16 Disjoining Pressure Model

<float2> is exponent corresponding to the repulsive part of the

van der Waals force. It should satisfy

<float3> is exponent corresponding to the attractive part of the

van der Waals force. It should satisfy since

the attractive part acts in longer range than the repulsive

one.

 <float4> is the precursor film thickness

<float5> is the parameter describing relative importance of the

attractive part to the repulsive part. Typically, is

chosen to be in order to achieve

more numerical stability.

TWO_TERM_EXT_CAThis model is identical with TWO_TERM except that it

uses contact angle from an external field identifies as THETA.

Examples

Following is a sample card:

Disjoining Pressure Model = TWO_TERM 120.3 2 1.0e-4 0.1

This results in disjoining pressure with contact angle of 120, repulsive exponent of 3,

attractive repulsion of 2, precursor film thickness of 1.0e-4, and relative importance of

attractive part of 0.1.

Technical Discussion
A thorough discussion of disjoining pressure can be found in Teletzke et al (1987). The

premultiplying constant is related to contact angle and surface tension by

balancing capillary and disjoining force where the wetting line meets the precursor film.

See Schwartz (1998) for further detail

n

1n >

m

m n>

*h

α
α

0 1α< <

eθ

1096 Revised: 6/12/13

5.7.17 Diffusion Coefficient Model

Theory

NoTheory.

FAQs

No FAQs.

References

Leonard W. Schwartz, R. Valery Roy, Richard R. Eley, and Stanislaw Petrash,
“Dewetting Patterns in a Drying Liquid Film”, Journal of Colloid and Interface
Science 234, 363–374 (2001)

Teletzke, G. F., Davis, H. T., and Scriven, L. E., “How liquids spread on solids”, Chem.

Eng. Comm., 55, pp 41-81 (1987).

5.7.17 Diffusion Coefficient Model

Description/Usage
This card takes the specification of the diffusion coefficient model for the conservation

of particles inside film-flow capability, i.e. equation describing shell_partc.

Currently two models for {model_name} are permissible:

CONSTANTThis model specifies a constant diffusion coefficient. This option

requires one floating point values

<float1> is the diffusion coefficient

STOKES_EINSTEINThis model specifies diffusion coefficient that depends on

particles

radius and the film viscosity. The functional form is:

Diffusion Coefficient Model = {model_name} <floatlist>

6
Bk T

D
Rπµ

=

Revised: 6/12/13 1097

5.7.17 Diffusion Coefficient Model

<float1> is the Boltzmann constant where the magnitude

depends on the units chosen by the user.

<float2> is temperature in unit of Kelvin.

 <float3> is the particles radii .

Examples

The Following is a sample card:

Diffusion Coefficient Model = STOKES_EINSTEIN 1.3807e-16 298 1.0e-6

This results in diffusion coefficient calculated with Stokes Einstein model with

Bolztmann constant of 1.3807e-16 in CGS units, 298 K temperature, and 1.0e-6 cm

radius particles.

Technical Discussion
Viscosity dependence of diffusion coefficient can be exploited to relate particles

concentration (or volume fraction in this case) to diffusion coefficient by employing

SUSPENSION viscosity model in the material file. See SUSPENSION viscosity model for

further detail

Theory

NoTheory.

FAQs

No FAQs.

References

None

Bk

T

R

1098 Revised: 6/12/13

5.7.18 Porous Shell Radius

5.7.18 Porous Shell Radius

Description/Usage
This card specifies the radius of the pores used in porous_shell_closed and
porous_shell_open equations. Currently two models for {model_name} are

permissible:

CONSTANT This model applies a constant pore radius for the entire model.

It requires a single floating point value.

<float1> is the pore radius. L

EXTERNAL_FIELDThis model reads in an array of values for the radius from an

initial exodus file. This allows for spatial variations in the

parameter value.

Examples

Following is a sample card:
Porous Shell Radius = CONSTANT 0.00001

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

None

Porous Shell Closed Radius = {model_name} <floatlist>

Revised: 6/12/13 1099

5.7.19 Porous Shell Height

5.7.19 Porous Shell Height

Description/Usage
This card specifies height of the pores used in porous_shell_closed and
porous_shell_open equations. Currently two models for {model_name} are

permissible:

CONSTANT This model applies a constant pore height for the entire model.

It requires a single floating point value.

<float1> is the pore height. L

EXTERNAL_FIELDThis model reads in an array of values for the height from an

initial exodus file. This allows for spatial variations in the

parameter value.

Examples

Following is a sample card:
Porous Shell Height = CONSTANT 0.00001

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

References

None

Porous Shell Height = {model_name} <floatlist>

1100 Revised: 6/12/13

5.7.20

5.7.20

5.7.21 Porous Shell Closed Porosity

Description/Usage
This card specifies the porosity used in porous_shell_closed equations.

Currently two models for {model_name} are permissible:

CONSTANT This model applies a constant porosity for the entire model.

It requires a single floating point value.

<float1> is the porosity

EXTERNAL_FIELDThis model reads in an array of values for the porosity from an

initial exodus file. This allows for spatial variations in the

parameter value.

<float1> scale factor for scaling field value

The ExodusII field variable name should be
“SH_SAT_CL_POROSITY”, viz.

External Field = SH_SAT_CLOSED_POROSITY Q1 name.exoII (see
this card)

Examples

Following is a sample card:
Porous Shell Closed Porosity= CONSTANT 0.5

Technical Discussion

None

Theory

NoTheory.

Porous Shell Closed Porosity = {model_name} <floatlist>

Revised: 6/12/13 1101

5.7.22 Porous Shell Closed Gas Pressure

FAQs

No FAQs.

References

None

5.7.22 Porous Shell Closed Gas Pressure

Description/Usage
This card specifies the gas pressure used in porous_shell_closed equations.

Currently one model for {model_name} are permissible:

CONSTANT This model applies a constant gas pressure for the entire model.

It requires a single floating point value.

<float1> is the gas pressure

Examples

Following is a sample card:
Porous Shell Closed Gas Pressure = CONSTANT 0.5

Technical Discussion

None

Theory

NoTheory.

FAQs

No FAQs.

Porous Shell Closed Gas Pressure = {model_name} <floatlist>

1102 Revised: 6/12/13

5.7.23 Porous Shell Atmospheric Pressure

References

None

5.7.23 Porous Shell Atmospheric Pressure

Description/Usage

This card is used to set the atmospheric pressure level in a open-cell shell porous
equation (for partially saturated flow). As of 11/27/2012 this card is NOT used.

Examples

N/A

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

Porous Shell Atmospheric Pressure = {model_name} <floatlist>

Revised: 6/12/13 1103

5.7.24 Porous Shell Reference Pressure

5.7.24 Porous Shell Reference Pressure

Description/Usage

This card is used to set the reference pressure level in a open-cell shell porous equation
(for partially saturated flow). This pressure is used to shift the saturation-capillary
pressure curve appropriately. As of 11/27/2012 this card is NOT used as all saturation
curve information is handled in the main porous flow property input framework, even
for shell formulations.

Examples

N/A

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

No References.

5.7.25 Porous Shell Cross Permeability

Description/Usage

This card is used to set the permeability in the thin direction of a shell porous region.
The property is used for the porous_sat_open equation. The in-shell (in-plane for

Porous Shell Atmospheric Pressure = {model_name} <floatlist>

Porous Shell Cross Permeability = {model_name} <floatlist>

1104 Revised: 6/12/13

5.7.25 Porous Shell Cross Permeability

a flat shell) permeabilities are set on the Permeability card. Please consult the
references for the equation form. The property can take on one of two models:

CONSTANT This model applies a constant cross-region

permeability. It requires a single floating point input:

<float1> is the cross region permeability

EXTERNAL_FIELD This model is used to read a finite element mesh
field representing the cross-term permeability.
Please consult tutorials listed below for proper
usage. This model requires one float:

<float1> scale factor for incoming exodusII
field and desired level.

The ExodusII field variable name should be
“CROSS_PERM”, viz.

External Field = CROSS_PERM Q1
name.exoII (see this card)

Examples

N/A

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation.

Randy Schunk 2011. GT-038 “Pixel-to-Mesh-Map Tool Tutorial for GOMA”. Memo to
distribution.

Revised: 6/12/13 1105

5.7.26 Porous Shell Gas Diffusivity

5.7.26 Porous Shell Gas Diffusivity

Description/Usageb

This card is used to set the gas diffusivity for the trapped gas in the
porous_sat_closed equation. Basically, the gas trapped in closed pores during
the imbibition process is allowed to diffuse into the liquid, and this property is a part of
that model gas inventory equation R_SHELL_SAT_GASN. Only one model is
available for this property:

CONSTANT This model applies a constant gas diffusivity. It
requires a single floating point input:

<float1> is the gas diffusivity (L2/t)

Examples

Porous Shell Gas Diffusivity = CONSTANT 1.e-5

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation.

Porous Shell Gas Diffusivity = {model_name} <floatlist>

1106 Revised: 6/12/13

5.7.27 Porous Shell Gas Temperature Constant

5.7.27 Porous Shell Gas Temperature Constant

Description/Usage

This card is used to set the temperature constant in Henry’s law for the trapped gas in
the porous_sat_closed equation. Basically, the gas trapped in closed pores
during the imbibition process is allowed to diffuse into the liquid, and this property is a
part of that model for the dissolution constant of gas in pressurized liquid. It is only
needed if the equation R_SHELL_SAT_GASN is used. Only one model is available for
this property:

CONSTANT This model sets the Henry’s law temperature
constant. It requires a single floating point input:

<float1> is the gas temperature constant

Examples

Porous Shell Gas Temperature Constant= CONSTANT 1.e10

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation.

Porous Shell Gas Temperature Constant = {model_name} <floatlist>

Revised: 6/12/13 1107

5.7.28 Porous Shell Henrys Law Constant

5.7.28 Porous Shell Henrys Law Constant

Description/Usage

This card is used to set the partitionconstant in Henry’s law for the trapped gas in the
porous_sat_closed equation. Basically, the gas trapped in closed pores during
the imbibition process is allowed to diffuse into the liquid, and this property is a part of
that model for the dissolution constant of gas in pressurized liquid. It is only needed if
the equation R_SHELL_SAT_GASN is used. Please consult the references for a
detailed explanation. Only one model is available for this property:

CONSTANT This model sets the Henry’s law constant. It requires
a single floating point input:

<float1> is the Henry’s law constant

Examples

Porous Shell Gas Temperature Constant= CONSTANT 1.e10

Technical Discussion

N/A

Theory

NoTheory.

FAQs

No FAQs.

References

S. A. Roberts and P. R. Schunk 2012. in preparation.

5.7.29

5.7.30

Porous Shell Henrys Law Constant = {model_name} <floatlist>

1108 Revised: 6/12/13

5.7.30

Revised: 6/12/13 1109

References

[1] Alsoy, S. and J. L. Duda, 1999. “Modeling of Multicomponent Drying of Polymer Films.” AIChE Jour-
nal, (45) 4, 896-905.

[2] Baaijens, F. P. T., 1994. “Application of Low-Order Discontinuous Galerkin Method to the Analysis of
Viscoelastic Flows,” J. Non-Newtonian Fluid Mech., 52, 37-57.

[3] Baaijens, F. P. T., 1998. “An Iterative Solver for the DEVSS/DG Method with Application to Smooth
and Non-smooth Flows of the Upper Convected Maxwell Fluid,” J. Non-Newtonian Fluid Mech., 75,
119-138.

[4] Baer, T. A., Schunk P. R., Cairncross, R. A., Rao, R. R., and Sackinger, P. A., 2000. “A finite element
method for free surface flows of incompressible fluids in three dimensions. Part II. Dynamic Wetting
Lines”, Int. J. Numer. Meth. Fluids, 33, 405-427.

[5] Bertram, L. A., Schunk P. R., Kempka, S. N., Spadafora, F., Minisandram, R., 1998. “The Macroscale
Simulation of Remelting Processes”, J. of Metals, Minerals, Metals, and Materials Society, 50, 18-21.

[6] Bird, R. B., Armstrong, R. C., and Hassager, O., 1987. Dynamics of Polymeric Liquids, 2nd ed., Wiley,
New York, Vol. 1.

[7] Blacker, T. D., 1988. “FASTQ Users Manual: Version 1.2”, Sandia Technical Report SAND88-1326.

[8] Bradford, S. F. and N. D. Katopodes, 2000. “The anti-dissipative, non-monotone behavior of Petrov-
Galerkin Upwinding,” Int. J. Numer. Meth. Fluids, v. 33, 583-608.

[9] Brady, J. F. and Morris J. F., “Microstructure of strongly sheared suspensions and its impact on rheology
and diffusion,”, J. of Fluid Mechanics, v. 348 pp.103-139, Oct 10, 1997.

[10] Brooks, A. N. and T. J. R. Hughes, 1992. “Streamline Upwind/Petrov-Galerkin Formulations for Con-
vection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations,”
Comp. Math. In Appl. Mechanics and Eng., 32, 199 - 259.

[11] Brown, R. A., M. J. Szady, P. J. Northey, and R. C. Armstrong, 1993. “On the Numerical Stability of
Mixed Finite-Element methods for Viscoelastic Flows Governed by Differential Constitutive Equa-
tions”, Theoretical and Computational Fluid Mechanics, 5, 77-106.

[12] Cairncross, R. A., Chen, K. S., Schunk, P. R., Brinker, C. J., and Hurd, A. J., 1995. “Recent advances in
theoretical modeling of deposition, drying, and shrinkage in sol-gel coating processes,” Proceedings on
Computational Modeling of Materials and Processing Symposium at the American Ceramic Society Na-
tional Meeting, Cincinnati, OH, 30 April - 3 May.

[13] Cairncross, R. A., P.R. Schunk, K.S. Chen, S. Prakash, J. Samuel, A.J. Hurd, and C. J. Brinker, 1996.
“Drying in Deformable Partially Saturated Porous Media: Sol-Gel Coatings”, Sandia Technical Report,
SAND96-2149.

[14] Cairncross, R. A., Schunk, P. R., Baer, T. A., Rao, R. R., and Sackinger, P. A., 2000. “A finite element
method for free surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh
motion.” Int. J. Numer. Meth. Fluids, 33, 375-403.

[15] Chen, K. S., Schunk, P. R., and Sackinger, P. A., 1995. “Finite element analyses of blade and slot coating
flows using a Newton-Raphson pseudo-solid domain mapping technique and unstructured grids”, Pro-
ceedings of the 1995 TAPPI conference.

1110 Revised: 6/12/13

[16] Chen, K. S., Evans, G. H., Larson, R. S., Coltrin, M. E., and Newman, J., 1998. “Multi-dimensional mod-
eling of thermal batteries using the Stefan-Maxwell formulation and the finite-element method”, in Elec-
trochemical Society Proceedings, Volume 98-15, p. 138-149.

[17] Chen, K. S., Evans, G. H., Larson, R. S., Noble, D. R., and Houf, W. G., 2000. “Final Report on LDRD
Project: A Phenomenological Model for Multicomponent Transport with Simultaneous Electrochemical
Reactions in Concentrated Solutions”, Sandia Technical Report, SAND2000-0207.

[18] Davis, T.A. and I. S. Duff, 1997. “An unsymmetric-pattern multifrontal method for sparse LU factoriza-
tion”, SIAM J. Matrix Analysis and Applications, January.

[19] Denbigh, K., 1981. The Principles of Chemical Equilibrium, Cambridge University Press, Cambridge.

[20] Dohrmann, C. R. and Bochev, P. B. 2004. “A stabilized finite element method for the Stokes problem
based on polynomial pressure projections”, Int. J. Numer. Meth. Fluids, 46, pp183-201.

[21] Droux, J. J. and T. J. R. Hughes, 1994. “A Boundary Integral Modification of the Galerkin Least Squares
Formulation for the Stokes Problem,” Comput. Methods Appl. Mech. Engrg., 113 (1994) 173-182.

[22] Duda, J. L., Vrentas, J. S., Ju, S. T., and Liu, H. T., 1982. “Prediction of Diffusion Coefficients for Poly-
mer-Solvent Systems”, AIChE Journal, 28(2), 279-284.

[23] Fang, Z. W., Mammoli, A. A., Brady, J.F., Ingber, M.S., Mondy, L.A. and Graham, A.L., “Flow-aligned
tensor models for suspension flows,” Int. J. of Multiphase Flow, v. 28(#1) pp. 137-166, January 2002.

[24] Flory, P.,1953. Principles of Polymer Chemistry, Cornell University Press, New York.

[25] Fortin, M. and A. Fortin, 1989. “A New Approach for the FEM Simulations of Viscoelastic Flow”, J.
Non-Newtonian Fluid Mech., 32, 295-310.

[26] Garside, J. and M.R. Al-Dibouni, 1977. “Velocity-voidage relationship for fluidization and sedimenta-
tion in solid-liquid systems,” Ind. Eng. Chem. Process Des. Dev., 16, 206.

[27] Gartling, D. K., 1987. “NACHOS 2: A Finite Element Computer Program for Incompressible Flow
Problems - Part 2 - User’s Manual”, Sandia Technical Report, SAND86-1816.

[28] Gartling, D. K., 1996. “TORO II - A Finite Element Computer Program for Nonlinear Quasi-Static Prob-
lems in Electromagnetics, Part I - Theoretical Background”, Sandia Technical Report, SAND95-2472.

[29] Gartling, D. K., C. E. Hickox and R. C. Givler, 1996. “Simulations of Coupled Viscous and Porous Flow
Problems”, Comp. Fluid Dynamics, 7, 23-48.

[30] Gates, I. D., Labreche, D. A., and Hopkins, M. M., 2000. “Advanced Capabilities in GOMA 3.0 - Aug-
menting Conditions, Automatic Continuation and Linear Stability Analysis”, Sandia Technical Report,
SAND2000-2465.

[31] Gilkey, A. P. and Glick, J. H., 1989. “BLOT - A Mesh and Curve Plot Program for the Output of a Finite
Element Analysis”, Sandia Technical Report, SAND88-1432.

[32] Givler, R. C. and S. A. Altobelli, 1994. “A Determination of the Effective Viscosity for the Brinkman-
Forchheimer Flow Model”, J. Fluid Mechanics, 258, 355-370.

[33] Glass, M. W., 1995. Personal communication.

[34] Golub, G. H. and C. F. V. Loan, 1996. Matrix Computations, Johns Hopkins University Press, Baltimore,
MD 3rd ed.

Revised: 6/12/13 1111

[35] Gooray, A., Roller, G., Galambos, P., Zavadil, K., Givler, R., Peter, F. and Crowley, J., A MEMS Ejector
for Printing Applications, Proceedings of the Society of Imaging Science & Technology, Ft. Lauderdale
FL, September 2001.

[36] Griffiths, D.F., 1997. “The ‘no boundary condition’ outflow boundary condition,” Int. J. Numer. Meth.
Fluids, 24, 393-411.

[37] Guenette, R. and M. Fortin, 1995. “A New Mixed Finite Element Method for Computing Viscoelastic
Flow,” J. Non-Newtonian Fluid Mech., 60 27-52.

[38] Gundersen, E. and H. P. Langtangen, 1997. “Finite Element Methods for Two-Phase Flow in Heteroge-
neous Porous Media,” in Numerical Methods and Software Tools in Industrial Mathematics, Morten
Daehlen, Aslak Tveito, Eds., Birkhauser, Boston.

[39] Helmig, R. and R. Huber, 1988. “Comparison of Galerkin-type discretization techniques for two-phase
flow in heterogeneous porous media,” Advances in Water Resources, 21, 697-711.

[40] Heroux, M. A., 1992. “A proposal for a sparse BLAS toolkit.” Technical Report, TR/PA/92/90, CER-
FACS, December.

[41] Hood, P., 1976. “Frontal Solution Program for Unsymmetric Matrices”, Int. J. Numer. Meth. Engr., 10,
379-399.

[42] Hopkins, M. M., Mondy, L. A., Rao, R. R., Altobelli, S. A., Fang, Z., Mammoli, A. A. and Ingber, M. S.,
2001. “Three-Dimensional Modeling of Suspension Flows with a Flow-Aligned Tensor Model”, The 3rd
Pacific Rim Conference on Rheology, July 8-13, 2001, Vancouver, B.C., Canada.

[43] Hudson, N. E. and Jones, T. E. R., 1993. “The A1 project - an overview”, J. Non-Newtonian Fluid Mech,
46, 69-88.

[44] Hughes, T. J. R. and L. P. Franca, 1987. “A New Finite Element Formulation for Computational Fluid
Dynamics: VII The Stokes Problem with Various Well-Posed Boundary Conditions: Symmetric Formu-
lations that Converge For All Velocity/Pressure Spaces,” Comput. Methods Appl. Mech. Engrg., 65, 85-
96.

[45] Hughes, T. J. R., L. P. Franca and M. Balestra, 1986. “A New Finite Element Formulation for Computa-
tional Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin For-
mulation of the Stokes Problem Accommodating Equal-Order Interpolations,” Comput. Methods Appl.
Mech. Engrg., 59, 85-99.

[46] Hutchinson, S. A., Shadid, J. N. and Tuminaro, R. S., 1995. “Aztec User’s Guide Version 1.0”, Sandia
Internal Report, SAND95-1559.

[47] Irons, B. M., 1970. “A frontal solution program for finite element analysis,” Int. J. Numer. Meth. Eng.,
2:5-12.

[48] Kernighan, B. W. and Ritchie, D. M., 1988. The C Programming Language, 2nd Ed., PTR Prentice Hall,
New Jersey.

[49] Kistler, S. F. and Scriven, L. E., 1983. Coating Flows. In Computational Analysis of Polymer Processing.
Eds. J. A. Pearson and S. M. Richardson, Applied Science Publishers, London.

[50] Kool, J. B. and Parker, J. B., 1987. “Development and Evaluation of Closed-Form Expressions for Hys-
teretic Soil Hydraulic Properties”, Water Resources Research, Vol. 23, pp 105-114.

1112 Revised: 6/12/13

[51] Krishnan, G. P., S. Beimfohr, and D. Leighton, 1996. “Shear-induced radial segregation in bidisperse sus-
pensions,” J. Fluid Mech. 321, 371

[52] Kundert, K. S. and Sangiovanni-Vincentelli, A., 1988. “Sparse User’s Guide: Version 1.3a” Dept. of
Electrical Engineering and Computer Sciences, University of California, Berkeley.

[53] Labreche, D. A., Wilkes, E. D., Hopkins, M. M. and Sun, A. C., 2006. “Advanced Capabilities in GOMA
5.0 - Augmenting Conditions, Automatic Continuation and Linear Stability Analysis”, Sandia Technical
Report (in preparation).

[54] Malvern, L. E., 1969, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall

[55] Martinez, M. J., 1995. “Formulation and Numerical Analysis of Nonisothermal Multiphase Flow in Po-
rous Media”, Sandia Technical Report, SAND94-0379.

[56] Martinez, M. J. 1995, “Mathematical and Numerical Formulation of Nonisothermal Multicomponent
Three-Phase Flow in Porous Media”, Sandia Technical Report, SAND95-1247.

[57] Martys, N., D. P. Bantz and E. J. Barboczi, 1994. “Computer Simulation Study of the Effective Viscosity
in Brinkman’s Equation.” Phys. Fluids, 6, 1434-1439

[58] Morris, J. F. and Boulay, F., “Curvilinear flows of noncolloidal suspensions: The role of normal stress-
es,” J. of Rheology, v. 43(#5) pp. 1213-1237 Sep-Oct 1999.

[59] Newman, J. S., Electrochemical Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1991).

[60] Papanastasiou, T. C., 1987. “Flows of Materials with Yield”, Journal of Rheology, 31 (5), 385-404.

[61] Papanastasiou, T. C., N. Malamataris, and K. Ellwood, 1992. “A New Outflow Boundary Condition”,
Int. J. for Numerical Methods in Fluids, 14, 587-608.

[62] Papananstasiou, T. C., and Boudouvis, A. G., 1997. "Flows of Viscoplastic Materials: Models and Com-
putation," Computers & Structures, Vol 64, No 1-4, pp 677-694.

[63] Patterson, D., Y.B. Tewari, H.P. Schreiber, and J.E. Guillet, 1971. “Application of Gas-Liquid Chroma-
tography to the Thermodynamics of Polymer Solutions”, Macromolecules, 4, 3, 356-358.

[64] PDA Engineering, 1990. “PATRAN Plus User Manual”, Publication No. 2191024, Costa Mesa, Califor-
nia, January.

[65] Phillips, R.J., R.C. Armstrong, and R.A. Brown, 1992. “A constitutive equation for concentrated suspen-
sions that accounts for shear-induced particle migration”, Physics of Fluids A, 4(1), 30-40.

[66] Price, P. E., Jr., S. Wang, I. H. Romdhane, 1997. “Extracting Effective Diffusion Parameters from Drying
Experiments”, AIChE Journal, 43, 8, 1925-1934.

[67] Rajagopalan, D., R. C. Armstrong and R. A. Brown, 1990. “Finite Element Methods for Calculation of
Viscoelastic Fluids with a Newtonian Viscosity”, J. Non-Newtonian Fluid Mech., 36 159-192.

[68] Rao, R. R., Mondy, L. A., Schunk, P. R., Sackinger P. A., and Adolf, D. B., 2001. “Verification and Vali-
dation of Encapsulation Flow Models in GOMA, Version 1.1”, Sandia Technical Report, SAND2001-
2947.

[69] Renardy, M., 1997. “Imposing ‘NO’ boundary conditions at outflow: Why does this work?” Int. J. for
Numerical Methods in Fluids, 24, 413-417.

Revised: 6/12/13 1113

[70] Rew, R. K., Davis, G. P., and Emmerson, S., 1993. “NetCDF User’s Guide: An Interface for Data Ac-
cess”, Version 2.3, University Corporation for Atmospheric Research, Boulder, Colorado, April.

[71] Saad, Y., 1994. “ILUT: a dual threshold incomplete ILU factorization”, Numerical Linear Algebra with
Applications, 1:387-402.

[72] Sackinger, P. A., Schunk, P. R. and Rao, R. R., 1996. “A Newton-Raphson Pseudo-Solid Domain Map-
ping Technique for Free and Moving Boundary Problems: A Finite Element Implementation”, J. Comp.
Phys., 125, 83-103.

[73] Salinger, A. G., N.M. Bou-Rabee, E.A. Burroughs, R.B. Lehoucq, R.P. Pawlowski, L.A. Romero, and
E.D. Wilkes, 2002. “LOCA 1.0: Theory and Implementation Manual”, Sandia Technical Report,
SAND2002-0396.

[74] Sani, R. L., and P. M. Gresho, 1994. “Resume and remarks on the open boundary condition minisympo-
sium,” Int. J. for Numerical Methods in Fluids, 18, 983-1008.

[75] Scherer, G.W., 1992. “Recent Progress in Drying of Gels”, J. of Non-Crystalline Solids, 147 & 148, 363-
374.

[76] Schoof, L. A. and Yarberry, V. R., 1994. “EXODUS II: A Finite Element Data Model”, Sandia Technical
Report, SAND92-2137.

[77] Schunk, P. R., 1999. “TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-Structure Interaction
Problems”, Sandia Technical Report, SAND2000-0807.

[78] Schunk, P. R., Sackinger, P. A., Rao, R. R., Chen, K. S., Cairncross, R. A., Baer, T. A., and Labreche, D.
A., 1997. “GOMA 2.0- A Full-Newton Finite Element Program for free and Moving boundary Problems
with Coupled Fluid/Solid Momentum, Energy, Mass, and chemical Species Transport: User’s Guide”,
SAND97-2404.

[79] Schunk, P. R. and Shadid, J. N., 1992. “Iterative Solvers in Implicit Finite Element Codes” Sandia Tech-
nical Report, SAND92-1158.

[80] Schunk, P. R. and Rao, R. R., 1994. “Finite element analysis of multicomponent two-phase flows with
interphase mass and momentum transport”, Int. J. Numer. Meth. Fluids, 18, 821-842.

[81] Schunk, P. R., M. A. Heroux, R. R. Rao, T. A. Baer, S. R. Subia and A. C. Sun., 2002. “Iterative Solvers
and Preconditioners for Fully-coupled Finite Element Formulations of Incompressible Fluid Mechanics
and Related Transport Problems”, Sandia Technical Report, SAND2001-3512J.

[82] Schwartz, L.W., R.A. Cairncross and D.E. Weidner, 1996. “Anomalous Behavior During Leveling of
Thin Coating Layers with Surfactant”, Phys. Fluids, 8, (7), 1693-1695.

[83] Segalman, D., Witkowski, W., Adolf, D. and Shahinpoor, M., 1992. “Theory and Application of Electri-
cally Controlled Polymeric Gels”, Smart Mater. Struct., 1, 95-100.

[84] Shadid, J. N., Moffat, H. K., Hutchinson, S. A., Hennigan, G. L., Devine, K. D. and Salinger, A. G., 1995.
“MPSalsa: A finite element computer program for reacting flow problems, Part 1 - Theoretical develop-
ment.” Sandia Technical Report, SAND95-2752.

[85] Sjaardema, G. D., 1992. “APREPRO: An Algebraic Preprocessor for Parameterizing Finite Element
Analyses”, Sandia Technical Report, SAND92-2291.

[86] Sjaardema, G. D., 1993. “Overview of the Sandia National Laboratories Engineering Analysis Code Ac-

1114 Revised: 6/12/13

cess System”, Sandia Technical Report, SAND92-2292.

[87] Sun, J., N. Phan-Thien, R. I. Tanner, 1996. “An Adaptive Viscoelastic Stress Splitting Scheme and Its
Applications: AVSS/SI and AVSS/SUPG,” J. Non-Newtonian Fluid Mech., 65, 75-91.

[88] Sun, J., M. D. Smith, R. C. Armstrong, R. A. Brown, 1999. “Finite Element Method for Viscoelastic
Flow Bases on the Discrete Adaptive Viscoelastic Stress Splitting and the Discontinuous Galerkin Meth-
od: DAVSS-G/DG,” J. Non-Newtonian Fluid Mech., 86, 281-307.

[89] Tam, S. Y., 1997. “Stress Effects in Drying Coatings”, Ph. D. Thesis, University of Minnesota,. Available
on from University Microfilms, Ann Arbor, MI.

[90] Taylor, R. and R. Krishna, 1993. Multicomponent Mass Transfer. John Wiley & Sons, New York.

[91] Tuminaro, R. S., Heroux, M. A., Hutchinson, S. A. and Shadid, J. N., 1999. “Official Aztec User’s Guide
Version 2.1”, Sandia Technical Report, SAND99-8801J.

[92] Unger, A. J. A., P. A. Forsyth and E. A. Sudicky, 1996. “Variable spatial and temporal weighting
schemes for use in multi-phase compositional problems,” Advances in Water Resources, 19, 1 - 27.

[93] Vrentas, J.S., J.L. Duda and H.-C. Ling, 1984. “Self-Diffusion in Polymer-Solvent-Solvent Systems”,
Journal of Polymer Sciences: Polymer Physics edition, (22), 459-469.

[94] Zhang K. and A. Acrivos, 1994, “Viscous resuspension in fully-developed laminar pipe flows,” Int. J.
Multiphase Flow, (20)3, 579-591.

[95] Zielinski, J.M. and B.F. Hanley, 1999. “Practical Friction-Based Approach to Modeling Multicomponent
Diffusion.” AIChE Journal, (45)1, 1-12.

[96] Zlatev, Z., Wasniewski, J., and Schaumburg, K., 1981. “Y12M. Solution of large and sparse systems of
linear algebraic equations.” Lecture notes in computer science, 121, Springer-Verlag, New York.

Revised: 6/12/13 1115

Appendix 1: Goma Documentation Lists

The documents identified in this appendix constitute a current list of instructional, technical and
reference material for Goma and the CRMPC Consortium of Companies.

Reference Manuals

GDM-1.3 GOMA 3.0 - A Full-Newton Finite Element Program for Free and Moving
Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass,
and Chemical Species Transport: Developer’s Guide, Schunk, P. R.,
Sackinger, P. A., Rao, R. R., Subia, S. R., Baer, T. A., Labreche, D. A.,
Moffat, H. K., Chen, K. S., Hopkins, M. M. and Roach, R. A., October 2000.
(no link here; see printed document)

GSR-01.3 Advanced Capabilities in GOMA 4.0 - Augmenting Conditions, Automatic
Continuation, and Linear Stability Analysis, SAND Report, Labreche, D. A.,
Wilkes, E. D., Hopkins, M. M. and Sun, A. C., (In Prep).

SAND95-1559 Aztec User’s Guide Version 1.0, SAND95-1559, Hutchinson, S. A., Shadid,
J. N. and Tuminaro, R. S., October 1995.

SAND96-2149 Drying in Deformable Partially-Saturated Porous Media: Sol-Gel Coatings,
SAND96-2149, Cairncross, R. A., Schunk, P. R., Chen, K. S., Prakash, S. S.,
Samuel, J., Hurd, A. J. and Brinker, C. J., September 1996.

SAND97-2404 GOMA 2.0 - A Full-Newton Finite Element Program for Free and Moving
Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass,
and Chemical Species Transport: User’s Guide, SAND97-2404, Schunk, P.
R., Sackinger, P. A., Rao, R. R., Chen, K. S., Cairncross, R. A., Baer, T. A.
and Labreche, D. A.

SAND2000-0207 Final Report on LDRD Project: A Phenomenological Model for
Multicomponent Transport with Simultaneous Electrochemical Reactions in
Concentrated Solutions, SAND2000-0207, Chen, K. S., Evans, G. H.,
Larson, R. S., Noble, D. R., and Houf, W. G., January 2000.

SAND2000-0807 TALE: An Arbitrary Lagrangian-Eulerian Approach to Fluid-Structure
Interaction Problems, SAND2000-0807, Schunk, P. R., May 2000.

SAND2000-2465 Advanced Capabilities in GOMA 3.0 - Augmenting Conditions, Automatic
Continuation, and Linear Stability Analysis, SAND2000-2465, Gates, I. D.,
Labreche, D. A. and Hopkins, M. M., January, 2001.

SAND2001-2947 Verification and Validation of Encapsulation Flow Models in GOMA,
Version 1.1, SAND2001-2947, Rao, R. R., Mondy, L. A., Schunk, P. R.,
Sackinger, P. A., Adolf, D. B., October 2001.

SAND2001-3512J Iterative Solvers and Preconditioners for Fully-coupled Finite Element
Formulations of Incompressible Fluid Mechanics and Related Transport
Problems, SAND2001-3512J, Schunk, P. R., Heroux, M. A., Rao, R. R.,
Baer, T. A., Subia, S. R. and Sun., A. C., March 2002.

1116 Revised: 6/12/13

SAND2002-0396 LOCA 1.0: Library of Continuation Algorithms: Theory and Implementation
Manual, SAND2002-0396, Salinger, A. G., Bou-Rabee, N. M., Pawlowski,
R. P., Wilkes, E. D., Burroughs, E. A., Lehoucq, R. B. and Romero, L. A.,
March 2002.

SAND2002-3204 GOMA 4.0 - A Full-Newton Finite Element Program for Free and Moving
Boundary Problems with Coupled Fluid/Solid Momentum, Energy, Mass,
and Chemical Species Transport: User’s Guide, SAND2002-3204, Schunk,
P. R., Sackinger, P. A., Rao, R. R., Chen, K. S., Baer, T. A., Labreche, D. A,
Sun., A. C., Hopkins, M. M., Subia, S. R., Moffat, H. K., Secor, R. B., Roach,
R. A.,Wilkes, E. D., Noble, D. R., Hopkins, P. L. and Notz, P. K., November
2002 (link elsewhere)

Technical Memoranda

GTM-001.0 Pressure Stabilization in Goma using Galerkin Least Squares, July 17, 1996, R. R.
Rao

GTM-002.0 Suspension flow in a concentric Couette device, a benchmark of the GOMA code,
November 24, 1997, S. R. Subia, T. A. Baer and R. R. Rao

GTM-003.0 Reactive LDRD Task 1 Report: Governing Equations for Liquid-Phase
Multicomponent Transport of Ionic or Charged Species, March 16, 1998, K. S.
Chen, G. H. Evans and R. S. Larson

GTM-004.1 Corners and Outflow Boundary Conditions in GOMA, April 24, 2001, P. R. Schunk

GTM-005.2 GOMA Simulation of Monodisperse Suspensions in Torsional Flow Viscometers,
April 27, 2000, A. C. Sun

GTM-006.0 Demonstration of GOMA/DAKOTA Interface for Parameter Estimation
September 28, 1998, B. F. Blackwell

GTM-007.1 New Multicomponent Vapor-Liquid Equilibrium Capabilities in GOMA,
December 10, 1998, A. C. Sun

GTM-008.0 Finite Element Modeling of Suspensioned Particle Migration in Non-Newtonian
Fluids, R. R. Rao, L. A. Mondy, T. A. Baer, S. Altobelli and T. Stephens

GTM-009.0 NMR Measurements and Finite Element Modeling of Non-Neutrally Buoyant
Suspensions, L. A. Mondy, R. R. Rao, A. C. Sun, S. Altobelli and J. Seymour

GTM-010.0 The Hindered Settling Function for a Glass Microballoon Suspension, March 3,
1999, C. A. Romero

GTM-011.0 Validation of 828/DEA/GMB Encapsulant using GOMA, August 20, 1999, A. C.
Sun

GTM-012.0 Parameter Estimation of Drying Models using GOMA and DAKOTA, September
28, 1999, A. C. Sun

Revised: 6/12/13 1117

GTM-013.0 On the Verification and Validation of the Stefan-Maxwell Flux Model in GOMA:
Ternary Gaseous Diffusion in a Stefan Tube, December 23, 1999, K. S. Chen

GTM-014.0 Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems,
January, 2000, T. A. Baer, S. R. Subia and P. A. Sackinger

GTM-015.1 Implementation Plan for Upgrading Boundary Conditions at Discontinuous-
Variable Interfaces, January 8, 2001, H. K. Moffat

GTM-016.0 Laser Spot Weld Modeling using an ALE Finite Element Method, D. R. Noble, P.
R. Schunk, A. Kassinos and M. P. Kanouff (Unpublished DRAFT)

GTM-017.0 Parallel Plate Viscometer Verification of GOMA, March 8, 2000, E. R. Lindgren

GTM-018.0 Cone-and-Plate Viscometer Verification of GOMA, March 8, 2000, E. R. Lindgren

GTM-019.1 Assessment and Plan to Implement a VGI in GOMA, February 15, 2001, P.R.
Schunk

GTM-020.0 In-Situ Characterization of Stress Development in Gelatin Film During Controlled
Drying, M. Lu, S.-Y. Tam, P. R. Schunk and C. J. Brinker, March 2000.

GTM-021.0 Multiparameter continuation and linear stability analysis on highly deformable
meshes in Goma, M. M. Hopkins, June 22, 2000

GTM-022.0 On the Verification of GOMA’s Capability for Modeling Transient Diffusion
Processes Involving Dilute Solute Species and Slow Surface Chemical Reaction, K.
S. Chen, March 31, 2000.

GTM-023.0 On the Verification of GOMA Baseline Model for Atmospheric Copper Sulfidation
in the Gas-phase Diffusion Regime -- Fixed Sulfidation-Front Approximation, K.
S. Chen, May 5, 2000.

GTM-024.0 Simulations with the Pressure-Stabilized Petrov-Galerkin (PSPG) Finite-Element
Method, J. R. Torczynski, September 13, 2000

GTM-025.0 Modeling diffusion and migration transport of charged species in dilute electrolyte
solutions: GOMA implementation and sample computed predictions from a case
study of electroplating, K. S. Chen, September 21, 2000

GTM-026.0 A Generic GOMA Model for Drying of Two-Layer, Ternary, Polymeric Film-
Coatings Involving Two Solvents and a Non-Porous/Impermeable Substrate, K. S.
Chen, November 9, 2000.

GTM-027.0 Probing Plastic Deformation in Gelatin Film during Drying, M. Lu, S. Y. Tam, A.
Sun, P. R. Schunk and C. J. Brinker, 2000.

GTM-028.0 Modeling Drying of Dip-Coated Films with Strongly-Coupled Gas Phase Natural
Convection, R. A. Cairncross, August 1999.

GTM-029.0 SUPG Formulation for the Porous Flow Equations in Goma, H. K. Moffat, August
2001 (DRAFT).

GTM-030.0 A Baseline Multi-Dimensional Mathematical Model of Copper Sulfidation for the
Initial Implementation in GOMA, K. S. Chen, January 22, 1999.

1118 Revised: 6/12/13

GTM-031.0 On Implementing and Verifying in Goma the Poisson Equation Governing Electric
Potential in Electrochemical Processes Involving Charge Separation such as in
Copper Sulfidation, K. S. Chen, May 15, 2002

Tutorials

GT-001.4 GOMA and SEAMS tutorial for new users, February 18, 2002, P. R. Schunk and D.
A. Labreche

GT-002.1 Slot coating templates and tutorial for GOMA and SEAMS, (GT-002.1), July 29,
1999, P. R. Schunk

GT-003.1 Roll coating templates and tutorial for GOMA and SEAMS (GT-003.1), February
29, 2000, P. R. Schunk and M. Stay

GT-004.1 REVISED: DAKOTA tutorial for new users, October 24, 1997, T. Simmermacher
and M. Eldred

GT-005.3 THE NEW TOTAL-ARBITRARY-LAGRANGIAN-EULERIAN (TALE)
CAPABILITY and its applicability to coating with/on deformable media (GT-
005.3), August 6, 1999, P. R. Schunk

GT-006.3 Slot and Roll coating with remeshing templates and tutorial for GOMA and
CUBIT/MAPVAR (GT-006.3), August 3, 1999, R. R. Lober and P. R. Schunk

GT-007.2 Tutorial on droplet on incline problem (GT-007.2), July 30, 1999, T. A. Baer

GT-008.2 Porous Media Capabilities/Tutorial for GOMA. User Guidance for Saturated
Porous Penetration Problems (GT-008.2), August 11, 1999, P. R. Schunk

GT-009.3 GOMA’s Capabilities for Partially Saturated Flow in Porous Media (GT-009.3),
September 1, 2002, P. R. Schunk

GT-010.1 Slot Coating Optimization, March 16, 1999, T. Simmermacher

GT-011.1 Slide Coating Templates and Tutorial for GOMA (GT-011.1), March 17, 1999, P.
R. Schunk and D. A. Labreche

GT-012.0 3D Roll coating template and tutorial for GOMA (GT-012.0), February 21, 2000,
P.R. Schunk

GT-013.2 Computations for slot coater edge section (GT-013.2), October 10, 2002, T.A. Baer

GT-014.1 Tutorial for Running Viscoelastic Flow Problems in GOMA (GT-014.1), June 21,
2000, R. R. Rao

GT-015.0 Template for parameter continuation and operability window estimation using Perl
scripts and Goma for a slot coater (GT-015.0), June 22, 2000, M. M. Hopkins

GT-016.1 Software Developer’s Tutorial for GOMA (GT-016.1), January 9, 2001, P. R.
Schunk

Revised: 6/12/13 1119

GT-017.1 Parallel GOMA Tutorial (GT-017.1), S. R. Subia and P. A. Sackinger, January 22,
2001

GT-018.1 ROT card tutorial (GT-018.1), January 22, 2001, T. A. Baer

GT-019.2 Elastoviscoplastic (EVP) Constitutive Model in GOMA: Theory, Testing, and
Tutorial (GT-019.1), P. R. Schunk, A. Sun, S.Y. Tam and K. S. Chen, March 13,
2003

GT-020.3 Tutorial on Level Set Interface Tracking in GOMA (GT-020.3), July 31, 2005, T.A.
Baer

GT-021.2 Common Geometry Model (CGM) Usage for GOMA (GT-021.2), August 20,
2002, M. M. Hopkins

GT-022.0 Library of Continuation Algorithms (LOCA) Usage for GOMA (GT-022.0),
August 15, 2002, E. D. Wilkes

GT-023.1 Usage of ARPACK eigensolver for linear stability analysis in GOMA (GT-023.1),
April 2, 2004, E. D. Wilkes

GT-024.0 Solution Procedure for Three Dimensional Free Surface Flow and 3D Remeshing
(GT-024.0), August 23, 2002, T.A. Baer

GT-025.0 Using Element Quality Metrics in GOMA (GT-025.0), September 15, 2003, E. D.
Wilkes

GT-026.4 GOMA’s Overset Mesh Method: User Tutorial (GT-026.4), January 11, 2006, P. R.
Schunk and E. D. Wilkes

GT-027.1 GOMA’s Shell Structure Capability: User Tutorial (GT-027.1), March 1, 2004, P.
R. Schunk and E. D. Wilkes

GT-028.0 Liquid Drop Impact on a Porous Substrate: a level-set tutorial (GT-028.0), July 31,
2005, P. R. Schunk

GT-029.1 Modeling wetting contact and dewetting Phenomena with Goma level-set
capability (GT-029.1), August 10, 2005, T. A. Baer and P. R. Schunk

GT-030.0 Tutorial memo on 2D overflow problem from Corning Inc. (GT-030.0), July 12,
2005, T. A. Baer

GT-031.0 Tutorial on solving microfilling problem using level set method implemented in
GOMA (GT-031.0), June 13, 2005, T. A. Baer

GT-032.0 Tutorial on solution of 3D microfilling problem using level set method
implemented in GOMA (GT-32.0), June 13, 2005, T. A. Baer

GT-033.0 Structural shell application example: tensioned-web slot coater (GT-033.0), April
1, 2006, E. D. Wilkes and P. R. Schunk

1120 Revised: 6/12/13

Goma Collections

GC-001 Goma Tutorials, Documents and Related Memos -- March 1997 to October
1, 1998 (Distributed: October 1998 CRMPC Meeting)

SAND96-2149
GDM-1.0 GT-001.2 GTM-001.0

GT-002.0 GTM-002.0
GT-003.0 GTM-003.0
GT-004.0 GTM-004.0
GT-005.1 GTM-005.0
GT-006.1
GT-007.1

GC-002 Goma Tutorials, Documents and Related Memos -- October 1, 1998 to
March 31, 1999 (Distributed: March 1999 CRMPC Meeting)

GSR-01.0 GT-008.1 GTM-006.0
GT-009.0 GTM-007.1
GT-010.1 GTM-008.0
GT-011.0 GTM-009.0

GTM-010.0

GC-003 Goma Tutorials, Documents and Related Memos -- April 1, 1999 to March
31, 2000 (Distributed: March 2000 CRMPC Meeting)

GT-003.1 GTM-011.0
GT-005.3 GTM-012.0
GT-006.3 GTM-013.0
GT-012.0 GTM-014.0
GT-013.0 GTM-015.0

GTM-016.0
GTM-017.0
GTM-018.0
GTM-019.0
GTM-020.0

GC-004 Goma Tutorials, Documents and Related Memos -- April 1, 2000 to January
31, 2001 (Distributed: January 2001 CRMPC Meeting)

GT-015.0 GTM-015.1
GT-016.1 GTM-021.0
GT-017.1 GTM-022.0
GT-018.1 GTM-023.0
GT-019.1 GTM-024.0

GTM-025.0
GTM-026.0
GTM-027.0

GOMA Document List - 01/29/01]

Revised: 6/12/13 1121

Appendix 2: Using Goma in Library Mode

A new capability has been added to Goma which allows it to be linked with another finite element
program. This mode allows Goma to be compiled as a set of subroutines, which can be called
from another program. This will allow an external driver to use Goma and another code to solve a
problem which can be suitably decoupled - so that Goma solves some of the governing equations
and the other code solves the others. In this mode, there are pre-defined sets of variables or fields
which each code is responsible for assembling and passing on to the other code through a
common driver. This was designed so that Goma can be coupled with JAS3D; however, an
attempt has been made to develop a general capability which can be used with other codes as well.
This may minimize the need to implement new physics equations in Goma when other codes with
the desired routines are available.

A major component of this implementation within the Goma source is the addition of an alternate
version of the main program which is called “jas_main.c.” This version divides all tasks into three
subroutines:

goma_init: Initializes code, parses input and broadcasts, do global array allocations

goma_solve: Calls Goma transient solver

goma_close: Cleans up

There is no "main" function, so there is no Goma executable as such. Instead, the source files are
compiled and assembled into the standard libraries libgoma.a and libgomau.a. These libraries,
along with those of the other program, are then used for linking the common driver, which may be
in a language other than C.

Communication between the codes is handled through four 1D arrays which are passed into and
out of Goma:

xnv_in: Values of nodal variables imported into Goma.

xev_in: Values of element variables imported into Goma.

xsoln: Values of Goma solution variables exported from Goma.

xpost: Values of Goma post processing variables exported from Goma.

These arrays can accommodate multiple variables, one right after the other: First x1[0..N], then
x2[0..N], and so forth. where N is the number of dofs of that variable in the problem, which is the
number of nodes except for xev_in where it is the number of elements. For Goma’s purposes,
these are considered external fields. For this reason, the MAX_EXTERNAL_FIELD in the Goma
makefile must be set high enough for the number of imported variables. The values passed in are

1122 Revised: 6/12/13

loaded into the efv->ext_fld_ndl_val[] arrays, and used within Goma just as if the values were
read from an external file. Note that when mesh displacements are imported this way, Goma uses
a flag efv->ev_porous_decouple which must be set to TRUE - this signals Goma to anneal its
undisplaced mesh with the external displacements, so that the displaced nodal coordinates are
used for Jacobians, etc. without having to turn on Goma’s mesh equations.

For the time being, it is assumed that all external fields are used as nodal variables within Goma,
but may be element variables in the code that calculates them. Therefore, a routine has been added
to interpolate imported element variables to the nodes. This is a very naive linear interpolation,
but if this appears to be insufficient, a higher-order interpolation scheme can be easily
implemented later. The interpolated values still end up in the efv->ext_fld_ndl_val[] array(s).

The fields Goma will be importing must be specified in the input deck. To do this, use the same
"External Field" card as before, but instead of specifying a file name, place the string "IMPORT"
for nodal values or "IMPORT_EV" for element variables which must be interpolated. PLEASE
NOTE that the order of the External Field input cards will determine the order in which the values
must be loaded into the import arrays. Also, all nodal field cards must be placed before any
element field cards (otherwise, an EH will result).

There are two types of fields which can be exported from Goma: variables direct from the Goma
solution vector x[], and scalar post-processing variables. The convention for these is similar.

To specify a solution variable for export, add the following card below the last External Field
card:

Export Field = <N>

where <N> is the integer value assigned to the variable in the file rf_fem_const.h. There can be up
to MAX_EXTERNAL_FIELD of these variables to be exported, and they will be loaded into the
xsoln array in the order of the cards.

Exporting post-processing variables is a little more tricky. Initially, onlyscalar post-processing
fields have been enabled to be specified for export, in order to simplify the allocation process. The
export of vector fields (such as electric field) or tensor fields (such as stress) can be enabled in the
future as the need arises. To do this, go to the relevant card in the Post Processing Specifications
input section, and change the "yes" to "exp" to enable space for it to be allocated in the xpost
array. Note, however, that the order in which these fields will be stored in that array (when there
are two or more) is determined by the order in which they are processed in the function
load_nodal_tkn(), which may differ from the order of the cards in the input deck.

The way the post-processing export scheme works is as follows: There is a new array "x_pp" of
type double in solve_problem, which is allocated to size (NNODES *
MAX_EXTERNAL_FIELD) when the LIBRARY_MODE flag is defined or left NULL
otherwise. This array is passed into write_solution(), and in turn passed into

Revised: 6/12/13 1123

post_process_nodal(), so that once the post-processing fields are calculated, the requested values
can be saved there - otherwise they would simply be dumped into the Exodus file and erased from
memory. This is why there is now an extra argument to each of these functions. These saved
values are then loaded into xpost before x_pp itself is deallocated.

The four import/export arrays are intended to be allocated within the driver code, using
information obtained from parsing the Goma input deck and passed back to the driver upon
exiting goma_init(). This information consists of the number of fields to be stored in each array,
the number of elements, and the number of nodes. These are pointer arguments to the function
goma_init().

It is anticipated that Goma will be used in library mode to solve transient problems. Therefore, a
provision has been made for Goma to be called as a subroutine several times during a run, with a
start and end time passed in on each step. Goma may take one or several steps to reach the
requested end time on any given call. In any case, the actual end time is passed back to the driver,
with a warning if the requested time was not reached (e.g. due to Goma step failure), so that the
other code will know exactly how far to proceed to remain in sync with Goma. It is also possible
to have the other code precede Goma at each step. This is handled in the driver code, which passes
an argument to Goma indicating which code is called first.

To build the Goma libraries (libgoma.a and libgomau.a) in library mode, the makefile must be
modified as follows: Replace main.c and main.o with jas_main.c and jas_main.o in the
MAIN_SRC and MAIN_OBJ lists, and add the flag -DLIBRARY_MODE to the list of
DEFINES. This compiler flag activates many sections of code which were added in developing
this capability, and also invokes expanded argument lists for some functions which handle
communication data and arrays. Note that since there is no program “main” in jas_main.c, it will
not be possible to generate a stand-alone Goma executable in this way. This may cause an error
message on some platforms (even though the libraries are created successfully); to remedy this, it
is possible to create a new target in the makefile (e.g. “goma_jas”) in which the final command to
create the Goma executable is omitted.

Once the libraries for both Goma and the other program are built, then the driver code can be
compiled and linked with these libraries included to create a global executable. The driver
currently available for Goma is ANIMAS, which links to Goma and JAS3D. To obtain this driver
and specific build instructions, please contact Edward Wilkes (edwilke@sandia.gov).

1124 Revised: 6/12/13

Revised: 6/12/13 1125

Index

Symbols
“auxiliary” equation 690
“dependent” equation 690

Numerics
2nd Level Set Viscosity 885
3D stability 163

A
absolute permittivity 345, 346
absolute residual tolerance 157
absolute size 157
absorption coefficient 721, 723
ACIS .sat file 167
ACIS file 94, 167
ACIS format 176
ACIS geometry 167
acous_pimag 722
acous_preal 720
acous_reyn_stress 723
ACOUSTIC 1036
acoustic impedance 628, 631, 724
acoustic pressure 626, 721, 723, 724
acoustic wave equation 627, 720, 722
acoustic wave equations 630
acoustic wavenumber 628, 631
Activation energy 444
activity coefficient 461, 1000
Adaptive Viscosity Scaling 912
adsorption or expulsion of heat 974, 975
advance/recession 282
advancing or receding 257
advection dominated problems 664, 671, 673,
695, 697, 699, 700
advection equation 682
Advective Scaling 1015
advective terms 1015
advective transport 802
Aexp 892
affine deformation 945

ALE 18, 228, 229, 305, 407, 545, 678, 787,
844, 857, 868, 871
ambient pressure 979
analytical Jacobian 43
ANISOTROPIC 1009
anisotropic model 947
Anneal Mesh on Output 63
ANNIHILATION 446
ANNIHILATION_ELECTRONEUTRALITY
446
anodic 988
Anorm 129
ANTOINE 1018
API 629
API_PLANE_TRAN 630
applied isotropic pressure 371
applied pressure 355
applied shear stress 339
approximate factorization 132, 141, 142
APR 626
APR_PLANE_TRAN 627, 630
APREPRO 27, 32
ARBITRARY 236, 237, 249, 251, 252, 259,
261, 263, 287, 296, 302, 392, 396, 603, 654,
760, 762, 782, 843, 853, 869
arbitrary functional form 365
arbitrary grid motion 233
AREA 807
area of the face 816
ARRHENIUS 994
Arrhenius form 909
ASCII file 37
ASCII results 38
attach 267
attraction condition 261, 298
augmenting condition 21, 364, 810
Augmenting Conditions Initial Guess 364
Augmenting Conditions Specifications 117
automated parameter continuation 21
automatic BC counting 631
automatic continuation 223, 294
automatic continuation sequences 309, 414,
434, 437, 474, 477, 488, 517, 521, 535, 627,

1126 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

629
automatic equation counting 749
automatic material counting 750
automatic time step control 73
automatically count 183
average absolute magnitude 98, 113
average gradient 101
AVERAGE_CONC 806
axisymmetric 652
azimuthal coordinate 652
Aztec 130, 131, 136, 137, 139, 141, 142, 149

B
BAAIJENS_FLUID_SOLID 546
BAAIJENS_SOLID_FLUID 533, 546
Babuska-Brezzi condition 160
Backward Euler 72
Backward-Euler 969
balances mass loss 322
bar element 711, 713, 715, 718
BASIS 639
BASIS_FIRST 639
BASIS_RESEED 639
bending stiffness 412
bicgstab 120
bilinear 653
BILU 132
bilu 127
binary interaction parameters 1035
BINGHAM 165, 872, 888, 889, 890, 892, 893,
896, 897, 934
Bingham-Carreau-Yasuda 873, 896, 897
binormal 384, 643
binormal tangent 245
BIQUADRATIC 208, 212
biquadratic 653
BJacobi 128
BLAKE_DIRICHLET 584, 588, 590
Blake-DeConinck 409, 572
block ILU preconditioner 143
BODY 175
body force 1037, 1047
boundary 291

boundary condition 35, 190, 192, 194, 196,
198, 200, 213, 236, 237, 819
Boundary Condition Specifications 177
boundary conditions 228, 304, 635, 640, 644
boundary conditions on geometry 235
boundary integral 470
boundary position 233, 234
bounding gas phase 1018
bounds on the concentration 164
BOUSS 933, 934, 1021, 1026, 1036
BOUSS_JXB 1036
BOUSSINESQ 1036
Boussinesq 837, 1026
Boussinesq-Scriven 716, 719
Brinkman 941, 948, 955, 1052
building block 190, 192, 194, 198, 200
bulk 656, 658
bulk element 596, 599
bulk modulus 857
buoyancy 1043
buoyancy effects 1036
buoyancy term 1021
buoyant flows 1042
BUTLER_VOLMER 1060
Butler_Volmer_i 991
Butler_Volmer_j 990
Butler-Volmer 453, 524, 527, 528, 989
Butler-Volmer kinetics 448, 450, 522, 987

C
CA 265, 269, 270
CA_EDGE 266, 270, 273, 274, 279, 281, 284,
324, 326
CA_EDGE_CURVE 272, 274, 278, 281
CA_EDGE_CURVE_INT 272, 274, 279, 280
CA_EDGE_INT 272, 273, 279, 281
CA_EDGE_OR_FIX 268, 275
CA_OR_FIX 266, 267, 275
calc 131
canonical element 653
CAP_ENDFORCE 378, 380, 382, 383, 919
CAP_ENDFORCE_SCALAR 379, 382
CAP_RECOIL_PRES 376, 596, 597, 599

Revised: 6/12/13 1127

CAP_RECOIL_PRESS 375, 557
CAP_REPULSE 372, 376, 596, 597, 599
capacitance term 951
CAPILLARY 332, 370, 372, 376, 379, 383,
596, 597, 599, 716, 719, 919
capillary forces 370, 381, 385, 399
capillary hydrodynamics 536, 542
Capillary Network Stress 957
capillary number 283, 406
capillary pressure 474, 478, 486, 942, 957, 963,
977, 980, 1019
Capillary pressure in porous media 801
capillary stress 371, 377, 379, 383, 957
capillary stress jump 381, 920
capillary surface 272, 407
capillary term multiplier 371
CAPILLARY_SHEAR_VISC 399, 716, 719
capture 538
CARREAU 165, 872, 888, 889, 890, 892, 914,
915
CARREAU_SUSPENSION 872, 888, 889,
890, 892, 893
CARREAU_WLF 872, 888, 889, 890, 892,
893, 895
Carreau-Yasuda 873, 874
carrier fluid 1040
CARTESIAN 363, 652
cartesian coordinates 168
cathodic 988
Cauchy stress tensor 851
Cauchy-Green tensor 845
cg 119
cgs 120
Charge Number 997, 1030
charged solid wall 345, 346
charged species 523, 983, 993, 1027
CHARGED_SPECIES_FLUX 807
checkGomaJac 45
Chemical Potential 1025
chemical potential 466, 1000, 1022
Chemkin 291, 389, 661, 835
CIRCLE 91, 111, 275
circles 200

circular arcs 171
class of problems 19
classical Gram-Schmidt 147
closed curve 275
closed flow problems 469
coefficient for slip velocity 330
Coefficient of repulsion 262
coefficient of volume expansion 933, 1021
colinear 236, 237
collocated 243
collocated boundary condition 191, 193, 195
color function 517, 535, 682
Command-line Arguments 150, 154
command-line arguments 26
command-line options 25, 27
component of velocity tangential 329
components 774, 775
components of the stress tensor 758
COMPOSITE 171
compressibility coefficient 951
COMPRESSIBLE 957
concentrated electrolyte solutions 939
concentrated solutions 983, 1002
concentration 433, 1006, 1007
Concentration contours 757
concentration dependency 1008
concentration gradient 1010
concentration in the external phase 253
concentration units 660
concentration-dependent 996
condensation 1056
condensation reaction 1052
condition number 143
condition of the matrix 160
conductive heat flux 928
Conductivity 929
cone-and-plate 1008
conf 44
confidence measure 44
conjugate materials 486
conjugate problems 318, 320, 402, 405, 408
conservation equations 945
conservation of mass 323, 395

1128 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

consistent mass matrix 968
CONST_PHASE_FUNCTION 837
constant contact angle 270, 273, 278, 280
constant heat flux 418
constant pressure 469
constant velocity 308
constitutive equation 303, 356, 393, 604, 843,
847, 852, 857, 867, 872, 883, 906, 917, 918
Constitutive Equations 842
CONT_NORM_VEL 368
CONT_TANG_VEL 367
contact 539
contact angle 267, 275, 278, 282, 332, 386,
387, 401, 404, 407, 541, 562, 564, 566, 568,
570, 572, 575, 579, 584, 587, 589
contact angle convention 279
contact angles 265
contact line 267, 275, 282, 285, 326, 330, 342,
387, 572, 575, 580, 591, 853, 869
contact line to release 275
contact line will advance or recede 267
contact lines 343, 351, 591
CONTACT_LINE 852, 869
contact-angle 265
CONTINOUS 396
continuation 77
continuation run 37
Continuation Specifications 117
continuation step 63
continuation/restart file 25
continue 37
continuity 367, 368, 679
continuity equation 160, 161, 352, 469, 470,
845, 858
continuity of mass flux 395
CONTINUOUS 398, 485, 941
continuous 941
continuous fluid-phase pressure 485
continuous gas phase 397
continuous medium 395
convected frame of reference 315
convective 417, 553
convective flux 482, 816

convective heat flux 416
convective heat transfer coefficient 417, 553
Convective Lagrangian Velocity 476, 481, 484,
786, 849
convective portion 807
convention for the units of equations 660
convergence 65, 106, 118, 124, 139, 140, 148,
149, 154, 156, 229, 305, 910
convergence behavior 774, 775
convergence criterion 158
convergence rate 151, 166
convergence tolerance 149
conversion 1029
Coordinate System 650, 652
coordinates 311
copper-sulfidation kinetics 443
Correction 99
Coulombic coefficient of friction 287, 307
Courant limit 1014
Courant-like limit 69
COX_DIRICHLET 587
created vertex 168
criterion 98
Cross-stream shear rate 754
CURE 872, 888, 899, 900, 901
Cure A Exponent 875, 900
Cure B Exponent 875, 901
Cure Gel Point 875, 899
Cure model 875
Cure Species Number 877, 902
CURRENT 519, 807
current density 451, 453, 524, 526, 989, 1061,
1063
Current Source 1060
current source 1050, 1063
current step size 74
CURRENT_BV 522
CURRENT_FICKIAN 807
CURRENT_HOR 524
CURRENT_ORR 526
CURRENT_USER 520
Curvature Diffusivity 996, 1008
curvature field 542

Revised: 6/12/13 1129

curvature-driven flux term 982, 1001
curving surface 278
Cutoff time 424, 555
CYLINDRICAL 363, 652
cylindrical coordinates 168

D
damp oscillations 72
damping 154
DARCY 982, 994
Darcy 941
Darcy flow 482, 484
Darcy flow equations 966
Darcy flux 397
Darcy liquid phase pressure 486, 489
Darcy pressure 398
Darcy velocity 395, 960
Darcy velocity components 797, 798, 799
DARCY_CONTINUOUS 289, 395, 397
DARCY_FICKIAN 970, 982, 994
Darcy_Vel_g_0 797
Darcy_Vel_g_1 797
Darcy_Vel_g_2 797
Darcy_Vel_l_0 798, 800
Darcy_Vel_l_1 798, 800
Darcy_Vel_l_2 798, 800
Darcy’s law 959
DATA 811, 812, 814
DATA_SENS 818, 819, 821
database file 26
Debug 42, 48
debug 787
Default Database 835
Default Material Species Type 659
deformable porous media 478, 853, 858
deformable porous saturated media 942
deformable solids 786
deformation gradient tensor 349, 351, 845, 855,
860, 919, 945
deformed configuration 786
deformed mesh coordinates 845
deformed state 315
degree of freedom 41

delta_t 65, 67, 69, 70, 76, 77, 264, 301
DENSE_POWER_LAW 852
Density 769, 837
density 254, 291, 362, 390, 396, 439, 476, 481,
795, 884, 954, 976, 1037, 1040, 1047
density models 448
Density of liquid phase in porous media 796
Density of solvents in gas phase in porous me-
dia 794
density of solvents in the liquid phase 796
dependence on temperature 456
derivative 228, 229, 304, 305
derivative information 690
derivative of the velocity component 311
determinant of the strain tensor 762
dewetting 538
diagnostic information 41, 42
diagnostic output 130
diagonal entry 145
diagonal term 160
diagonal value 144
dielectric 377, 596, 597, 599
dielectrophoretic force 1038
diethanolamine-epoxy curing reaction 1056
different density 243
differentiable field 500, 502, 504, 505, 507,
509, 510, 512, 514
differential equation 194, 664, 667, 669, 671,
673, 676, 677, 679, 681, 685, 686, 691, 692,
694, 695, 697, 699, 700, 702, 720, 722, 725,
726
diffusing species 443
diffusion coefficient 971, 982
Diffusion Constitutive Equation 776, 778, 942,
970, 981, 994, 1030
diffusion velocity 244, 247, 367, 368, 458
diffusive flux 352, 482, 484, 709, 711, 712, 816
diffusive mass flux 441
diffusive mass flux directions 776
Diffusive Mass Flux Vectors 777
diffusive portion 807
diffusive transport 802
Diffusivity 860, 994, 1006, 1007, 1008, 1009,

1130 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

1010
diffusivity model 448
dilute electrolyte solutions 939, 983
direct factorization 118
direct solver 123
directional derivative 241
Dirichlet 293, 515
Dirichlet boundary condition 223, 308, 414,
433, 436, 469, 473, 477, 488, 490, 491, 493,
495, 496, 498, 500, 501, 503, 505, 506, 508,
510, 511, 513, 516, 521, 600, 601, 626, 629
Dirichlet condition 187
Disable Viscosity Sensitivities 165
discontinuities 274
discontinuous 244, 293, 351, 368, 391, 458,
460
discontinuous basis functions 755
discontinuous concentration 247
discontinuous degrees of freedom 664, 667,
669, 674
discontinuous Galerkin 672, 675, 682, 686, 910
discontinuous interpolation 517
Discontinuous Jacobian Formulation 910
discontinuous velocity 243, 367
DISCONTINUOUS_VELO 351
displacement equations 678
DISSIPATION 828
dissipative stress tensor 753
DISSOLUTION 352
distance function 90, 98, 105, 110, 114
distinguishing condition 219, 226, 239, 240,
242, 243, 245, 251, 253, 305, 306
distinguishing conditions 18, 229, 305, 654
DISTNG 219, 226, 230, 255
distributed memory 118
divergence of the tensor 760
DIVV 762
dom_decomp 125
drained network 957
driving force 370, 483
DX_RS 293, 655
DXDISTNG 226
DXDYDZ 223

DXDYDZ_RS 293
DXDYDZ_USER 224
DXYZDISTNG 226
DY_RS 293, 655
DYDISTNG 226
dynamic 285
dynamic contact angle 268
dynamic contact line 324, 327
dynamic contact lines 333, 339
dynamic wetting 331
DYNAMIC_LAGRANGIAN 259, 261, 263,
287, 392, 655, 782, 843
DZ_RS 293, 655
DZDISTNG 226

E
E11 784
E12 784
E13 784
E22 784
E23 784
E33 784
EDGE 170, 172
edge 270, 273, 275
edge boundary 380
edge curve 278, 280
edges 640
EE 766
effective radius of convergence 155
effective stress principle 942, 957
effective velocities 803
efield 688, 1038
EHD_POLARIZATION 1036
Eigen Matrix Output 163
Eigen Wave Numbers 163
Eigensolver Specifications 163, 166
eigenvalue 163
eigenvector 163, 1012
Elapsed time 75
elastic solid 654
elasticity equations 295
elastic-viscous stress splitting 906
elastoviscoplastic model 846, 848

Revised: 6/12/13 1131

elastoviscoplasticity 864, 865
elasto-viscoplasticity model 785
elec_surf_stress 378
Electric Field 764
electric field 345, 377, 596, 598, 689, 1038
Electric Field Magnitude 765
electric stress 376, 377, 596, 597, 599
Electrical Conductivity 377, 596, 597, 599,
938, 1050
electrical current density 519, 520
Electrical Permittivity 940
electrical permittivity 377, 596, 597, 598, 599,
940
electrical potential 983, 1002
Electrical Properties 937
electrical resistance 1051
electrically neutral 467
electrochemical 451, 453, 725, 726, 993, 1051,
1053, 1057, 1061
electrochemical reactions 986
electrode 986
electrode surface 448, 452, 522, 524, 526
ELECTRODE_KINETICS 938, 987, 1049,
1054, 1060
electrokinetic effects 345, 346
electrolyte solution 523, 991, 1063
electrolyte-species consumption 1057
electromagnetic 1043
ELECTRONEUTRALITY_FICKIAN 938
ELECTRONEUTRALITY_SM 938
ELECTROOSMOTIC 1054
electrostatic nature of a surface 467
element block number 318, 320, 402, 405, 408
Element Mapping 653
element order-map 752
element reordering scheme 752
element type 302, 392, 603
element variable 57, 1121
ELLIPSE 170
elliptical functions 200
embedded interface method 88
embedded interface tracking 80, 116, 343, 591
END OF BC 631

End of BC 183
END OF BODY 175
END OF DATA 811, 814
END OF DATA_SENS 818, 821
END OF EDGE 171, 172
END OF EQ 663, 749
END OF FACE 173, 175
END OF FLUX 805, 810
END OF FLUX_SENS 814, 817
END OF MAT 650, 750
END OF PARTICLES 822, 826
END OF ROT 634, 649
END OF VERTEX 168, 169
END OF VOLUME_INT 827, 830
END TABLE 213
endpoint 378, 382
energy 664
energy conduction paths 779
Energy Conduction Vectors 779, 780
Energy Fluxlines 780
Energy Weight Function 936
ENORM 690
enorm 689
ENORM field variable 766, 767
Enormsq Field 766, 768
Enormsq Field Norm 767
ENTHALPY 931, 935, 936, 1017
enthalpy 489
EPOXY 872, 893, 899, 900, 901, 1049, 1052,
1054
epoxy curing reaction 1050
Epoxy model 875
EPOXY_DEA 1054
equal-order interpolation 160, 470
equates stresses 316
equation components 635, 645
equations 662
equations of elasticity 782, 783, 784
equations of state 62
equilibrium 464
equilibrium-based mass transfer 442
error norm 73
Error ZZ heat flux 789

1132 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

Error ZZ pressure 790
Error ZZ velocity 788
Eulerian 18
evaporating metal alloy 375
EVAPORATION 352
evaporation energy loss 426
evaporation rate of molten metal 455
evaporation/condensation rate 974, 975
evel set interface tracking 79
EVP Yield Stress 848, 864, 865
EVP_HYPER 847
EVSS_F 906
EVSS_G 906
EVSS_L 906
EX 765
Exodus 91, 111
EXODUS II 24, 25, 34, 67
EXP_DECAY 1009
EXPLICIT 910
explicit 1014
EXPONENTIAL 198, 852
exponential distribution 426
export file 176
Exported geometry file 176
extent of reaction 900, 1052, 1056
external boundary 1018
External Field 56, 59, 60, 1122
external fields 1121
external gas 478
external gas phase 428
external interface 429
EY 765
EZ 765

F
F 516
F1F2 F3 F4 F5 534
FACE 173, 175
FACETS 103
fapply_ST 380
fapply_ST_scalar 383
Faraday’s law 522
FEM file 34, 35, 91, 111

FeS2 988
Fick’s first law 939
Fick’s law 995, 996
FICKIAN 256, 439, 776, 778, 981, 994
Fickian diffusion 970
Fickian diffusive flux 397
Fickian Diffusivity 996, 1009
FICKIAN_CHARGED 982, 997, 1030, 1060
field variables 48, 49, 781, 1064, 1065
File Specifications 34
FILL 757, 828, 837, 1036
fill 516, 681, 837
Fill contours 756
FILL dependent viscosity 884
Fill Subcycle 78
Fill Weight Function 79, 106
FILL_CA 343, 386, 564, 591
FILL_INLET 517
FILLED_EPOXY 872, 888, 893, 898, 899,
900, 901, 902, 903
Filter Concentration 164
finite element discretization 34
finite-rate kinetics 462, 464
First Invariant of Strain 759
first tangent vector 637
FIX 187
fixed time step size 65
fixed-width strip 96
FLAT 975, 1018
flat surfaces 337
FLORY 442, 1029, 1031, 1032, 1033
Flory-Huggins 995, 1028, 1032, 1033
Flory-Huggins model 461
Flory-Huggins parameters 1035
flow field 751
flow through porous media 956
FLOW_GRADV 358
FLOW_HYDROSTATIC 357, 361, 365
FLOW_PRESS_USER 360
FLOW_PRESSURE 354, 357, 361, 364, 365,
545
FLOW_STRESSNOBC 356, 359
FlowingLiquid Viscosity 942, 955

Revised: 6/12/13 1133

FLOWRATE 363
flows of suspensions 693, 694
fluid acceleration 781
fluid and solid materials 392, 603
fluid and solid substrate 343
fluid material 349
fluid momentum balance 530, 774
fluid momentum equation 316, 318, 322, 355,
407, 412, 536, 543, 544, 548, 574, 576, 581,
585
fluid momentum equations 313, 392, 546, 603,
640, 645, 689, 723, 804
fluid momentum source term 1036
fluid phase 349
fluid phase stress tensor 303
fluid velocity 315
fluid velocity components 751
fluid/solid contact 372
fluid/solid interface 348, 683
fluid/solid interfaces 316
FLUID_SOLID 288, 315, 392
FLUID_SOLID_RS 394, 655
fluid-flow time steps 78
fluid-like 896, 897
fluid-solid stress balance 546
fluid-structure interaction 302, 392, 529, 602,
851
FLUX 806, 810
flux 257, 447
flux continuity 672, 675
flux of gas-phase solvent 480
flux of liquid-phase solvent 475
flux of solvent 478
flux quantity 369
FLUX_SENS 814, 815, 817
FOAM 837, 840, 1054, 1059
foci 171
focus 171
FORCE 258, 261, 264, 296
Force Initial Level Set Renormalization 107
force per unit area 258, 260, 261, 263, 287, 295,
297, 298, 300, 307
FORCE_NORMAL 806

FORCE_RS 259, 295, 298, 301, 655
FORCE_TANGENT1 806
FORCE_TANGENT2 806
FORCE_USER 261, 263, 300
FORCE_USER_RS 264, 298, 300
force_user_surf 263, 300
FORCE_X 806
FORCE_Y 806
FORCE_Z 806
FORWARD 170
Forward Euler 72
Fourier conductive heat flux 929
frame of reference 19, 851
free boundary 18
free outflow boundary condition 356
free volume theory 995, 999
FREE_VOL 994, 999
free-surface 245, 270, 274, 280, 284, 324, 327,
370, 376, 378, 380, 382, 399, 595, 597, 598
free-surface boundary 265
free-surfaces 372
freezing of water 975
frequency 721, 723, 724
FRICTION 287, 307
FRICTION_RS 287, 307
front 119, 123
front tracking 18
Frontal Solver Jacobians 46
fuel cell 528, 1050, 1062
fuel cells 452, 524, 526
fugacity 461
FULL 446, 910
fully-developed inflow/outflow 354
FVP11 785
FVP12 785
FVP21 785
FVP22 785
FVP33 785

G
G11 500
G12 501
G13 503

1134 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

G21 505
G22 506
G23 508
G31 510
G32 511
G33 513
gain 322
GALERKIN 907, 966, 985
Galerkin 79, 907, 936, 985
Galerkin continuity equation 160
Galerkin integration 243
Galerkin Least square 159
Galerkin time integration 1013
Galerkin weight 664, 667, 669, 671, 673, 676,
677, 679, 681, 683, 685, 687, 689, 691, 692,
694, 695, 697, 699, 700, 702, 705, 707, 708,
711, 712, 713, 715, 717, 718, 720, 722, 723,
725, 727
Galerkin weight function 160
gas and liquid phase 483
gas and liquid phases 475, 480
gas phase 458, 460, 462, 970
Gas phase Darcy velocity in porous media 797
gas phase density 977
gas phase pressure 801
gas phase velocity 397
gas phase viscosity 960
gas pressure 942
gas vapor 484, 972
gas velocity 397
GAS_DIFFUSION 446
gas-phase concentration 977, 979
gas-phase density 979
gas-phase pore pressure 477
gas-phase pressure 801
gas-phase pressure gradients 797
gas-phase relative permeability 960
gauge pressure 980
Gaussian elimination 119
Gauss-Seidel preconditioner 125
GD_CIRC 200
GD_CONST 190
GD_LINEAR 192, 197

GD_PARAB 194, 197
GD_POLYN 196
GD_TABLE 202, 213, 266
GD_TIME 198
General Specifications 36, 40
GENERALIZED 994
generalized Newtonian 356
GENERALIZED_FICKIAN 982, 994
GENERALIZED_FREE_VOL 994, 1000
generalized-Fick’s law 983
GEOM 229
geometric boundary condition 228, 304
geometric features 275
geometrical solid 245
geometry 167, 168, 176, 233, 265
geometry normal components 266
Geometry Specifications 94, 166, 169, 171,
172, 173, 175
GEOMXYZ 228
Gibb’s inequality condition 267
GIESEKUS 904, 914, 915, 916
glass transition 999
global coordinates 228, 229, 304, 305
global matrix formats 123
global nonlinear residual vector 156
global time integration 1013
gmres 119, 146, 147
Goma 15
GOMA_MAT 835
grad_v_dot_n1, grad_v_dot_n2,
grad_v_dot_n3 717
gradient 98, 114, 688, 764, 765
gradients of velocity 470
Gravitational 1036
gravitational acceleration 925, 1038, 1039
gravitational forces 361, 1046
Gravity-based Diffusivity 996, 1010
Grid Peclet Number in porous media 802
GUESS file 36, 37, 38, 364

H
hard set 223, 309, 414, 434, 437, 474, 477, 488,
517, 521, 535, 627, 629

Revised: 6/12/13 1135

Heat Capacity 931, 935, 936
heat capacity 923, 1017
heat flux 417, 551, 553, 554, 557, 558, 559
Heat Flux Model 928
heat flux model 421
heat of vaporization 430
Heat Source 1049
heat transfer coefficient 416, 417, 418, 553
HEAT_FLUX 806
heat-transfer coefficient 430
Helmholtz-Smulkowski relation 346
hemispherical emissivity 418
HERSCHEL_BULKLEY 872, 888, 896, 927
Herschel_Bulkley 880
hierarchy of precedence 648
high capillary numbers 241
high curvature menisci 1019
High Rate Viscosity 873, 889
high-capillary number 243
highly shear-thinning models 165
hindered settling function 1011
Hoffman correlation 405
HOFFMAN_DIRICHLET 589
HOOKEAN_PSTRAIN 844, 867
HOOKEAN_PSTRESS 844
Hunting Specifications 117
Huygens 99, 103, 115
Huygens_Constrained 99, 103, 104, 115
hydraulic resistance 955
HYDRO 256, 439, 994, 1000, 1006, 1007,
1008, 1009, 1010, 1040
HYDRODYNAMIC 448, 776, 778, 982, 1040
hydrodynamic pressure 472, 486, 755, 1026
hydrogen-oxidation reaction 524, 528
hydrostatic pressure 361, 957
HYDROSTATIC_SYMM 353
hyperelastic 847

I
I/O structure 25
ICC 132
icc 127
ideal solution phases 464

IDEAL_GAS 837, 1018
IDEAL_SOLUTION 1025
IE 759
Ignore Level Set Dependencies 106
IIE 760
IIIE 761
ill-conditioned matrix 161
ILU 132
ilu 127
ILUT 137, 141
ilut 126
impenetrability constraint 318, 321
implementation 249, 250
implicit 1014
implicit in the mixture 1032, 1033
IMPORT 57, 1122
IMPORT_EV 57, 1122
impregnation problems 951
inactive 1048
include 32
INCOMP_3D 844, 867
INCOMP_PSTRAIN 844, 858, 867
INCOMP_PSTRESS 844
incompressible 654, 844, 856, 858, 867
incompressible flow simulations 470
incompressible fluid 1041
incompressible fluids 751
Inertia Coefficient 942, 956
inertial term 956
inflow 379, 383
inflow and outflow boundaries 471
initial condition 144
Initial Guess 36, 47, 50, 91, 111, 187, 364
initial guess 37
initial guess file 1065
initial residual vector 136
initial solution time 77
initial solution vector 39
initial surfaces 105
Initial Time 77
initial time step 65
initial values 1065
initialization 47

1136 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

Initialize 1064
inlet boundary 517
inner iteration 158
input 25
input files 26
input mesh 35
input parser 32
integrated condition 313
integrated constraint 274
integrated flux 815
integrated flux sensitivity 816
integrated fluxes 806
integration points 274
interface 247, 302, 315, 322, 349, 351, 389,
392, 395, 397, 436, 447, 603
interface between two fluids 243
interface tracking 517, 518, 682
interfaces 664, 667, 669, 674
Interfacial Area 987, 989
interfacial mass flux 462, 465
interfacial surface tension 919
interfacial velocity 389
intermediate results 38
Intermediate solutions 164
internal discontinuous boundary 323
internal interface 432, 1018
internal interfaces 462, 464
interphase 436, 458
interphase mass, heat, and momentum transfer
322, 351
interphase species flux continuity 247
interpolation 56, 61, 208, 211
interpolation function 664, 667, 669, 671, 673,
676, 677, 679, 681, 683, 685, 687, 688, 689,
691, 692, 694, 695, 697, 699, 700, 702, 705,
707, 708, 711, 712, 713, 715, 717, 718, 720,
722, 723, 725, 727
interpolation functions 323, 352, 436, 462, 465
intersection 245, 270, 273, 280
interstitial space 945
Interval in time steps 75
intervals of time 75
inverse of the fourth power 261

Irreducible air saturation 961
irreducible air saturation 965
Irreducible water saturation 961
irreducible water saturation 965
IS_EQUIL_PSEUDORXN 292, 390, 464, 660,
1023, 1024
isoparametric 653
isosurface 106
isotherm 219, 226
iterative linear matrix solution 136
iterative linear solver algorithms 148
iterative solution 139, 140, 158
iterative solver 118, 123
Iterative techniques 124

J
Jacobi 124, 128
Jacobian 45, 165
Jacobian entries 313
Jacobian formation 151
Jacobian matrix 106, 149
jacobian matrix 163
Jacobian Reform Time Stride 150, 151, 152
Jacobian reformation 150, 152
JOULE 1049
Joule heating 1051

K
KELVIN 975, 1018
KIN_CHEM 257
KIN_DISPLACEMENT 249, 250, 251, 303
KIN_DISPLACEMENT_COLLOC 250, 252
KIN_DISPLACEMENT_PETROV 249, 252
KIN_LEAK 253, 258, 370, 430, 438, 443, 448
kind of matrix overlap 135
KINEMATIC 239, 241, 243, 251, 252, 318,
326, 332, 372, 377, 389, 639
kinematic 253, 529, 549, 683
kinematic condition 409
KINEMATIC_COLLOC 239, 242, 243, 250
KINEMATIC_DISC 243, 322, 353
KINEMATIC_DISPLACEMENT 655
KINEMATIC_EDGE 245

Revised: 6/12/13 1137

KINEMATIC_PETROV 239, 240, 243, 249,
319
KINEMATIC_SPECIES 247, 352, 437
kinetic model of current density 989
kinetic models 444
KOZENY_CARMEN 946

L
L1 norm 151
L2 convergence tolerance 156
L2 norm 156, 762
lagr_mult_1, lagr_mult_2, lagr_mult_3 683
Lagrange multiplier 100, 115, 364, 529, 534,
549, 655
LAGRANGE_NO_SLIP 529, 534
LAGRANGIAN 228, 229, 236, 237, 259, 261,
263, 264, 287, 315, 349, 392, 396, 654, 760,
782, 783, 785, 786, 843, 847, 851, 858, 859
Lagrangian 18, 942
Lagrangian Convection 786
Lagrangian mesh 786
Lagrangian mesh region 258, 260, 287
Lame coefficient 844, 852
Lame LAMBDA 855, 857
Lame Lambda 844, 864, 866, 927
Lame MU 852, 857, 927
Lame Mu 844, 864, 866
Langrange multiplier 683
large scale deformation 655
large, chain-like polymers 461
laser flux distribution 426
laser welding 424, 557, 558
latent heat 429, 432
Latent Heat Fusion 1016, 1017
Latent heat of fusion 932
Latent Heat Vaporization 1016, 1017
LATENT_HEAT 429, 432
LATENT_HEAT_INTERNAL 430, 432
LBB stability criterion 755
length scale 329
level of shear strain 760
level set 97, 106, 109, 116, 343, 395, 516, 530,
535, 544, 546, 547, 551, 553, 557, 558, 560,

572, 575, 579, 591, 682, 685, 756, 839, 884,
906, 920, 923, 924, 926, 1039
Level Set Adaptive Integration 84
Level Set Adaptive Order 85, 86
Level Set Contact Extension 104
Level Set Control Width 96, 98
level set distance function 79
level set function 99, 102
level set gradient 96
Level Set Initialization Method 89, 90, 105,
110
level set interface 98, 114, 536, 538, 541, 542,
838
Level Set Interface Tracking 80, 108, 386, 562,
564, 565, 568, 570, 572, 574, 577, 579, 581,
584, 587, 589
level set interface tracking 582, 585
Level Set Length Scale 88, 96, 580, 839, 885,
921, 923, 925, 926
level set length scale 582
Level Set Periodic Planes 81, 82, 83, 84, 85, 86,
94
Level Set PSPP Filtering 87, 97
level set PSPP filtering 87
Level Set Reconstruction Method 103
Level Set Renormalization Frequency 101
Level Set Renormalization Method 99, 103,
104
Level Set Renormalization Tolerance 96, 98,
100, 101, 114
Level Set Semi_Lagrange 81, 82, 83, 84, 85, 86
Level Set Slave Surface 105
Level Set Subgrid Integration Depth 82
Level Set Timestep Control 87, 97
LEVEL_SET 837, 925, 1036
level-set 406, 407
LIBRARY_MODE 57, 1122
line tangent 643
LINEAR 198, 208, 211
linear function 192
linear iteration status 149
linear matrix system 118, 124, 128, 129, 158
linear solver iteration 130

1138 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

linear solvers 123
linear spatial dependencies 365
Linear Stability 162
linear stability analysis 21, 162
linear system 144
LINEAR_WETTING_SIC 581
liquid activity 1032, 1033, 1034
Liquid Constitutive Equation 165, 872, 887,
888, 890, 892, 893, 895, 896, 897, 898, 899,
900, 901, 902, 903, 934, 948
liquid constitutive models 448
liquid phase 315, 458, 460, 462, 957
Liquid phase compressibility 951, 954
Liquid phase Darcy velocity in porous media
798, 799
liquid phase densities 395
liquid phase pore pressure 473
liquid phase pressure 801, 942
liquid phase pressure gradients 798, 799
Liquid phase reference pressure 951, 952, 954
liquid phase solvent 481, 483, 972
Liquid phase viscosity 961
liquid pressure 484, 942
liquid saturation 963
liquid solvent 484
liquid viscosity 960
liquidus 220, 935
Liquidus Temperature 559, 935
liquidus temperature 932
LIS 149, 158
LiSi 988
list of equations 749
list of materials 750
LOCA 21
local capillary number 285
local contact angle 285
local mass conservation 762
local solvent concentration 655
local velocity field 105
Lorentz 1038, 1043
Lorentz scaling factor 1038
Low Rate Viscosity 872, 873, 886
lower bound 145

ls 125
LS_ADC 538
LS_CA_H 541
LS_CAP_CURVE 541
LS_CAPILLARY 536, 542, 546, 552, 561
LS_FLOW_PRESSURE 544
LS_FLUID_SOLID_CONTACT 546
LS_INLET 547
LS_NO_SLIP 549
LS_Q 551
LS_Q_RAD 553
LS_QLASER 554
LS_RECOIL_PRESSURE 557
LS_VAPOR/LS_QVAPOR 558
LS_YFLUX 560
LU 137
lu 119, 125, 126
lumped parameter 1018

M
MASS 460
mass average velocity 244, 323
mass averaged velocity 351, 464
mass balance errors 1014
mass balance on boundaries 257
mass concentration 435
mass conservation 393, 604
Mass conservation problems 469
Mass Diffusion Vectors 776, 777, 778
mass exchange 244, 247
mass flux 438, 454, 476, 480, 546, 560, 1001,
1040
mass flux transfer model 455
mass flux vector 982
Mass Fluxlines 778
mass fraction 459, 898, 1027, 1028, 1029,
1031, 1032, 1033
mass loss/gain rate 239, 240, 242, 245
mass lumping 967
mass matrix 163, 655, 678, 968
mass matrix term 666
Mass Source 1048
mass transfer 253, 369

Revised: 6/12/13 1139

mass transfer balance 370
mass transfer coefficient 253, 369, 429, 438,
483, 560
mass transport 981, 1000
mass unit 660
mass_flux_user_surf 454
mass-diffusion pathlines 778
MAT 650, 651
material block 1064
material coordinates 845
material database 835
material deformation gradient tensor 851
material file 372, 671, 673, 695, 697, 699, 701
material files 25
Material is nondilute 657
material parameter 819
material property 26
material section 651, 662
material surface 243
Matrix Absolute Threshold 143, 144, 145
Matrix auxiliary vector 136
Matrix BILU Threshold 143
Matrix drop tolerance 125, 126, 137, 141
Matrix factorization overlap 125, 133
Matrix factorization reuse 131
Matrix factorization save 132, 140
Matrix graph fillin 127, 132, 142
Matrix ILUT fill factor 126, 137, 141
Matrix output type 130
Matrix overlap type 135
Matrix polynomial order 124, 138
Matrix Relative Threshold 143, 144, 145
Matrix reorder 139
Matrix residual norm type 129, 158
Matrix RILU relax factor 127, 142
Matrix scaling 128
matrix solver packages 118
Matrix storage format 123
Matrix subdomain solver 125, 126, 143
MAX_EXTERNAL_FIELD 58
Maximum Linear Solve Iterations 148, 158
maximum number of iterations 148, 149
Maximum number of time steps 66

maximum packing 1010
Maximum time 67
Maximum time step 69, 70, 71
Mean shear rate 754
Mechanical Properties 842
mechanical property 769
Media Type 393, 396, 473, 475, 477, 480, 481,
604, 696, 697, 793, 796, 797, 798, 800, 801,
847, 941, 944, 947, 951, 955, 959, 960, 963,
966, 968, 971, 975, 979, 1018
meniscus 268
meniscus position 920
mesh 265, 676
mesh displacements 63, 223, 1122
mesh equations 231, 233, 234, 1122
mesh file 34
Mesh Motion 228, 229, 234, 235, 236, 237,
259, 261, 263, 287, 295, 297, 299, 300, 302,
304, 305, 392, 396, 603, 650, 654, 760, 782,
783, 785, 786, 843, 851, 853, 859, 867, 869,
871, 943
mesh motion 219, 226, 243, 251, 676, 762, 787,
847, 857, 867
mesh motion equations 239, 240, 245, 295
mesh residual momentum equations 237, 238
Mesh Strain Tensor 784
Mesh Stress Tensor 782, 783
mesh velocity 781
microstructural 941
Microstructure Properties 477, 696, 941
Minimum time step 68
Miscrostructure Properties 697
mixed measure 157
Mobility Parameter 916
modified Gram-Schmidt 147
modified Newton iteration 150
Modified Newton Tolerance 151, 152
modified sparse row 118, 123
MODIFIED_WLF 909
molar concentration of species 983
molar flux 443, 448, 450, 452, 983
Molar Volume 1029
molar volume 992

1140 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

mole fraction 459, 1027, 1029, 1031, 1032,
1033
molecular forces 539
Molecular Weight 998, 999, 1027, 1029
Molecular weight 444, 458
molecular weight 291, 390, 459, 461, 464, 467,
660, 795, 976, 979, 1032
moles 660
mom_solid 677
MOMENTUM 333
momentum 667, 924
momentum equation 309, 340, 371, 376, 378,
387, 389, 653, 774, 787, 906, 913, 1026
momentum residual 161
motion of the stress-free state 349
movement of nodes 654
moving boundary 18
moving contact lines 329
Moving Mesh Residuals 775
moving web 282
MOVING_CA 387
MOVING_PLANE 234
MSR 46, 118, 128, 133
MU 768, 771
multicomponent 244, 367, 368
multicomponent diffusion 970, 984, 999
multicomponent transport 984, 1027
multicomponent two-phase flows 247, 323
multimode viscoelastic equations 662
multiphase flow 1018
multiplicative time modulation 198
multipliers 664, 667, 669, 671, 673, 676, 677,
679, 681, 685, 687, 689, 691, 695, 697, 699,
700, 702, 720, 722, 723, 725, 727
multivalued 247, 351
mushy zones 975
mutual-diffusivities 983

N
n+1 species 1031, 1032, 1033
n_dot_curl_v 718
N1 787
N2 787

N3 787
natural convective force 1026
Navier slip relation 339
Navier Stokes Residuals 774
Navier’s slip condition 593
Navier’s slip relation 563, 567, 571, 573, 576,
580, 590
Navier-Stokes equation 753, 755, 872, 942,
1036
Navier-Stokes slip condition 582
Navier-Stokes Source 689, 837, 933, 934,
1021, 1026, 1036
negative force 261, 298
negatively charged 467
neo-Hookean 843, 867
network stress 965
Neumann 124
neutral species 983, 1002
Newmark-Beta time integration 655
Newton correction factor 150, 154
Newton iteration 38, 118, 158, 164, 305, 774,
775
Newton nonlinear iteration loop 149
Newton’s method 155, 156
NEWTONIAN 753, 872
Newtonian models 364, 872
NO_SLIP 315, 393, 604
NO_SLIP_RS 315
nodal field variables 56, 60
nodal variable 57, 187, 190, 192, 194, 196,
1121
Nodeset 91, 111
NON_VOLATILE 975
non-condensable 459
non-condensable gas 1018
Non-condensable Molecular Weight 1031
nondilute cases 660
nondilute mixture 351
nonideal gases 1018
nonlinear residual 157
nonlinear stress terms 916, 917, 918
non-neutrally buoyant particles 982, 1001
non-Newtonian fluids 768

Revised: 6/12/13 1141

non-physical values 164
non-volatile 459
Non-volatile Molar Volume 1032
Non-volatile Specific Volume 1033
NOPOLYMER 904
norm 766, 767
norm of the electric field 689
NORM_FORCE 260, 264
NORM_FORCE_RS 261, 297, 301
Normal and Tangent Vectors 787
normal component 237, 238, 242, 243, 351,
389
normal component of the mesh velocity 291
normal contact condition 261, 298
normal direction 261, 298
normal mode expansion 162
normal to a surface 317
normal traction 302, 392, 602
normal vector 237, 260, 346, 411, 413
normal velocity 369
normal velocity component 324, 327
normal velocity gradient 358
Normalized Correction Tolerance 157
Normalized Residual Tolerance 156, 157
normal-tangent vector 260, 287, 297, 307
normal-tangential 233, 235, 239, 242, 243, 251
normal-tangential form 220, 229, 305
noscaled 129
no-slip condition 315
Number of BC 183, 631
Number of bulk species 650, 656, 658, 659,
673
Number of bulk species equations 658
Number of chemical reactions 986
Number of EQ 650, 662, 749
number of equations 662
Number of Jacobian File Dumps 45
Number of Materials 650, 750
Number of Newton Iterations 149, 151, 152,
156
Number of processors 40
Number of Species 981
number of species 656, 658

number of species equations 656, 657, 658
Number of viscoelastic modes 661, 663
numerical Jacobian 43
Numerical Methods 22

O
off element Jacobian 910
off-processor unknowns 134
OLDROYDB 904, 914, 915
one 47
one phase 942
Orthogonalization 147
orthogonalization directions 146
outflow 379, 383
outflow boundaries 380
outflow edge boundary 384
Output EXODUS II 768, 770, 771, 772, 773
Output EXODUS II file 35, 38, 75
Output Level 41
outward facing normal 384
outward facing surface normal vector 237, 238
outward pointing normal 260, 262
outward velocity component 317, 321
outward-pointing normal 270, 282
Overlap Quadrature Points 86
overlapping subdomain solver results 135
override 50, 1065
overset grid 109, 529, 533, 549, 683
overset mesh 546
OVERSET_FLUID_SOLID/
BAAIJENS_FLUID_SOLID 531
OVERSET_SOLID_FLUID/
BAAIJENS_SOLID_FLUID 533
oxygen-reduction reaction 453, 526

P
P 469
P_LIQ_USER 487
packing of particles 948
paired float values 213
PARABOLA 170
parallel computations 133
parallel-plate 1008

1142 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

partial factorization 137
partial pressure 979
partially saturated 396, 697, 951, 959
partially saturated flow 697, 802, 966
partially saturated media 474, 478
partially saturated porous media 792, 801, 960,
963, 973, 974
partially saturated porous medium 957
PARTIALLY_WETTING 957
PARTICLE 822, 823, 826
particle phase 1040
particle trajectory 823
Particle Velocity Divergence 763
particle-particle interactions 1011
particulate phase volume fraction 983
paths of energy flow 780
Peclet 936
Peclet number 802, 985
PENETRATION 289
per mass basis 441, 454, 456
per mole basis 441, 456
Permeability 942, 945, 946, 961
permeability 798, 799, 800, 943, 959, 964
permeability function 945
permittivity 345, 346
perturbed 44
Petrov-Galerkin 911, 936, 985
Petrov-Galerkin weight function 664, 671, 673,
685, 695, 697, 699, 701
PF_CAPILLARY 536
Phan-Thien Tanner model 917, 918
phase change 247
phase equilibrium relation 461
phase field 684
phase function 109, 113, 115, 534, 536, 549,
839, 1039
Phase Function Renormalization Method 115
Phase Function Renormalization Tolerance
113
Phase Function Slave Surface 109
phase transition 243
PHASE_FUNCTION 839, 1036
Phillip’s model 768, 948

Phillips diffusive-flux model 448
Physical Properties 836
physics capabilities 19
planar surface 231, 233, 234, 261, 298
PLANE 91, 111, 173, 230, 231, 233, 234, 238,
266, 295, 639
plane stress 844
PLANEX 231, 238
PLANEXYZ 231
PLANEY 231
PLANEZ 231
plastic deformation 847, 863, 865
plastic flow 847
Plastic Viscosity 848, 863
plastic viscosity 848, 866
Plasticity 856
Plasticity Equation 847, 863, 865
plasticity model 847
pmomentum 669
point collocated condition 219, 321
point collocated constraint 325
POINTS 103
POLY 173
POLY_VERT 173
Polymer Constitutive Equation 758, 904, 914,
915, 916, 917, 918
polymer relaxation times 908
Polymer Shift Function 908
polymer stress equation 907, 908, 910
Polymer Stress Formulation 905, 906
Polymer Time Constant 905, 915
Polymer Viscosity 905, 914, 915
polymer viscosity 913
Polymer Weight Function 905, 907, 911
Polymer Weighting 907, 911
polymerizing system 900
polymer-solvent 1028
polymer-solvent mixtures 460
polynomial function 196
polynomial preconditioning 138
POR_ENERGY 489
Por_Grid_Peclet 802
pore liquid 957

Revised: 6/12/13 1143

pore radius 947
pore sizes 947
PORE_LIQ_FLUX 807
pores 942
pore-size distribution 948
poroelastic problems 854
Porosity 942, 944, 992
porosity 476, 481, 853, 858, 943, 947, 952, 995
POROUS 994
porous 941
Porous Diffusion Constitutive Equation 970
porous energy equation 975
porous enthalpy equation 973
porous flow equation 942
Porous Gas Constants 477, 979
Porous Gas Diffusivity 971
porous gas phase pressure 699
porous impregnation 486
Porous Latent Heat Fusion 974
Porous Latent Heat Vaporization 973
porous liquid phase pressure 697
porous liquid pressure 474, 477
Porous Liquid Volume Expansion 978
Porous Mass Lumping 968
porous media 488, 798, 799, 803, 946, 951,
955, 959, 1018
porous medium 395, 397, 427, 428, 478, 485,
798, 802, 828, 942, 945, 970, 971, 982, 995
porous phase 397
Porous Saturation 792, 794, 796
porous skeleton 945
Porous Vapor Pressure 795, 975
Porous Weight Function 802, 966
POROUS_BRINKMAN 942, 944, 955, 956
POROUS_CONV 481
porous_deform 700, 942, 945, 946, 957
porous_energy 702
POROUS_GAS 478
porous_gas 699
POROUS_GAS_FLUX_CONST 480
POROUS_GAS_PRES 477
POROUS_KIN 290
porous_liq 696, 697, 942

POROUS_LIQ_FLUX_CONST 475
POROUS_LIQ_PRES 473
POROUS_PART_SAT 398, 963, 966
POROUS_PRESSURE 485
porous_sat 695, 942
POROUS_SATURATED 396, 473, 475, 485,
487, 488, 697, 793, 796, 941, 944
POROUS_TEMPERATURE 488
POROUS_TWO_PHASE 396, 398, 473, 475,
477, 480, 481, 483, 485, 487, 488, 696, 697,
793, 796, 797, 801, 942, 944, 951, 959, 960,
963, 966, 968, 971, 973, 974, 975, 979
POROUS_UNSAT 963, 966
porous_unsat 696, 697
POROUS_UNSATURATED 396, 473, 474,
475, 481, 483, 485, 487, 488, 697, 793, 796,
801, 941, 944, 951, 968, 971, 973, 974, 975,
979, 1018
porous-media flow 951
Portability 23
positively charged 467
post processing 806, 827, 1121
Post Processing Data 811, 814
Post Processing Data Sensitivities 818, 821
Post Processing Flux Sensitivities 814, 817
Post Processing Fluxes 805, 810
Post Processing Fluxes and Data 805
Post Processing Particle Traces 822, 826
Post Processing Specifications 751, 1122
Post Processing Volumetric Integration 827,
830
Post-processing 24
potential 528, 595, 598
potential field 688
potential1 725, 726
potential2 725, 726
Power 888
Power Law Exponent 872, 873, 888
power law model 872
power of laser 424, 555
POWER_LAW 165, 852, 872, 888, 914, 915
POWERLAW_SUSPENSION 872, 888, 893
precedence rule 643

1144 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

Preconditioner 124, 126
preconditioner 119, 137, 138, 141, 142, 143,
144, 145
preconditioner construction 131, 132
preconditioner factorization information 140
preconditioner option 123
preconditioning matrix 140
Pre-processing 24
PRESSURE 756
pressure 261, 298, 354, 356, 358, 371, 473,
484, 544, 654, 768, 797, 798, 799, 942, 951,
954, 957, 959, 963, 979, 1026, 1042
pressure and velocity fields 363
Pressure contours 755
PRESSURE DATUM 472
Pressure Datum 62
pressure datum 469
pressure dependence 1023
pressure field 365
pressure force 361
pressure gradient 960
Pressure Stabilization 159, 470
Pressure Stabilization Scaling 159, 161
PRESSURE_IDEALGAS 1023
PRESSURE_INDEPENDENCE 1023
PRESSURE_USER 365
pressure-driven flow 982
pressure-stabilized 470
previous factorization 140
primary and secondary sidesets 380
primitive variable 812
principal coordinate 667
principal coordinate directions 669, 676, 678
Printing Frequency 75, 76
probabilistic distribution 947
Problem Description 649
Problem Description File 183, 650, 651, 652,
654, 656, 657, 662, 749
problem description file 25
problem domain 34
product 257
PROJECTED_CARTESIAN 652
Projection 90, 111

propagating a discontinuity 967
propagation of discontinuities 968
property of an interface 919
PSD_SEXP 946, 961, 963
PSD_VOL 946, 961, 963
PSD_WEXP 946, 961, 963
Pseudo Solid Constitutive Equation 867, 869
Pseudo Solid mesh motion 868
Pseudo-Solid Constitutive Equation 871
pseudo-solid domain-mapping technique 654
Pseudo-Solid Lame LAMBDA 871
Pseudo-Solid Lame Lambda 868
Pseudo-Solid Lame MU 869
Pseudo-Solid Lame Mu 868
pseudo-solid mesh 1047
PSPG 470
PTT 904, 914, 915, 917, 918
PTT Epsilon parameter 905, 918
PTT Xi parameter 905, 917
pure component density 1028
pure liquid 253
Pure Species Chemical Potential 467, 1023
pure state 1025
PUVW 310

Q
Q Tensor Diffusivity 1012
Q_LASER_WELD 376, 424, 426, 558
Q_VELO_SLIP 423
QCONV 416, 418
QRAD 417, 553
QSIDE 418, 420, 552
QUAD_GP 208, 211
QUADRATIC 208, 211
quadratic function 194, 200
QUSER 421

R
r0 129
radiative 417, 553
radius of curvature 337
rand 136
random 47

Revised: 6/12/13 1145

random numbers 136
RAOULT 442
Raoult’s law 256, 440, 458, 461, 462
Rate constant 444
rate of 1st species concentration change 781
rate of advance or recession 387
rate of deformation tensor 515, 982, 1000
rate of diffusion 982
rate of temperature change 781
rates 987
RCM 139
RDX 775
RDY 775
RDZ 775
reactant 257
Reaction Rate 987
REACTIVE_FOAM 837, 1059
read 48
read_exoII 48
read_exoII_file 48
real solid 304, 306
real solid displacement 252
Real Solid Stress Tensor 782, 783
real-solid 297, 305
real-solid displacement 293
real-solid elasticity equations 295
real-solid material region 295
real-solid mesh motion 293
recalc 132
recession 275
redistancing 98, 113
Reference Concentration 1026
reference concentration 430, 1040
Reference Temperature 874, 909, 934
References 1109
reformation stride 149
regions of plastic flow 785
Rel Gas Permeability 959
Rel Liq Permeability 959, 960
relative change 44
relative lower bound 144
relative permeability 949
relative size 157

relaxation 154
relaxation factor 142
relaxation scheme 154
relaxed Newton iteration 150
release/adsorption 429, 432
renormalization 102, 107, 113, 115
REP_FORCE 261, 298
REP_FORCE_RS 263, 298
repulsion 261, 298
repulsive force 372
reserved names 58
resid 136
residual 160, 474, 488
residual equation 223, 243, 309, 414, 434, 437,
477, 517, 521, 535, 626, 629
residual function form 190, 192, 194, 196
residual norm 151
Residual Ratio Tolerance 149, 158
residuals 148
restart 37
restart files 26
Restart Time Integration After Renormaliza-
tion 102
reuse 132
Reverse Cuthill-McKee 139
Reverse Cuthill-McKee algorithm 752
REVERSED 170
Reynolds number 161, 1011
Reynolds stress 723, 1041
rf_fem_const.h 58, 1064
rheology 713, 715, 717, 718
RHO 769
Rho_Liq_Phase 796
Rho_Total_air 793
Rho_Total_Liq 793
Rho_Total_solid 793
rhs 129
RICHARDSON_ZAKI 1011
RIEDEL 1018
rigid porous media 945
rigorous mass conservation 1014
RILU 142
rilu 127

1146 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

RMX 774
RMY 774
RMZ 774
rolling motion 330
ROT 220, 229, 230, 232, 238, 239, 240, 242,
243, 246, 251, 271, 305, 306, 322, 787
ROT EDGE 640
ROT Specifications 787
ROT SURFACE 635, 643
ROT VERTEX 644
rotated 220, 229, 238, 239, 305
rotated condition 233, 234, 351
rotated equation components 635
rotated equations 640, 645
rotating cylindrical surface 341
rotation of equations 635, 639
rotation specification 635, 640, 644
Rotation Specifications 232, 239, 242, 243,
632, 634, 649
roundoff error 44
row_sum 128

S
S11 490
S12 491
S13 493
S22 495
S23 496
S33 498
SAT 792
satfile 167, 176
saturated medium 942
saturated or partially saturated 395
saturated porous flow 695, 968
Saturation 945, 961, 963, 979
saturation 474, 477, 957, 959, 977
saturation front 802, 951, 954
Saturation function 945
saturation level 792, 951
scalar 691, 723
scalar constraint 279, 281
scalar equation 663
scalar shear rate 515

scalar weak integrated boundary conditions
210
scale 208, 211
scale factor 911
scaling 342, 344, 592
SDC_KIN_SF 291
SDC_STEFANFLOW 389
Second frequency time 76
second invariant 515, 754
Second Invariant of Strain 760
Second Level Set Conductivity 920
Second Level Set Density 922
Second Level Set Heat Capacity 923
Second Level Set Momentum Source 924
Second Level Set Viscosity 926
second tangent vector 637
sedimentation flux term 982, 1001
SEED 639
seed vector 638, 640, 645
seed_method 638
Segalman 844, 867
SEGREGATED 910
self-diffusivities 983
self-diffusivity 996
semi-implicit 1014
sensitivities 313
sensitivity 44, 819
sensitivity type 816
SH 515
SH_FLUID_STRESS 602
SH_K 601
SH_TENS 600
shape mapping 653
SHARP_BLAKE_VELOCITY 562
SHARP_CA_2D 564
SHARP_COX_VELOCITY 403, 565
SHARP_HOFFMAN_VELOCITY 406, 568
SHARP_WETLIN_VELOCITY 563, 570
SHEAR 755
shear modulus 852, 869, 871
shear rate 165, 515, 982, 983
Shear Rate Diffusivity 996, 1006
shear rate invariant 691, 723

Revised: 6/12/13 1147

shear stress 349, 582, 879
shear stresses 342
SHEAR_HARDEN 852
shear_rate 691
shear-rate gradient 1006
shear-thinning viscosity model 165
SHEET_ENDSLOPE 410, 413
Shell bending stiffness 927
shell element 595, 599, 707, 708
shell equations 600, 601, 603
shell surface charge 598
Shell Tension 927
shell_angle 708
shell_curvature 413, 600, 601, 603, 707
shell_diff_curv 711
shell_diff_flux 709
SHELL_GRA 613
SHELL_GRAD_FP_NOBC 613
shell_normal 712
shell_surf_curv 713
shell_surf_div_v 714, 715, 718
SHELL_SURFACE_CHARGE 595
shell_tension 413, 600, 601, 603, 705
short arc 171
sign 257
single node 265
single phase 697
singular value 144, 145
sink temperature 416, 417, 553
SINUSOIDAL 198
Size of Krylov subspace 146
size of the region 88, 96
size of the residuals 129
size of the update vector 157
skeleton bulk modulus 958
slip 341, 343, 402
slip coefficient 339, 344, 349, 562, 566, 568,
572, 575, 579, 592
slip length 575, 587
slip velocity 345, 346, 423
slipping parameters 329
SLOPE 237
slope at the boundary 236, 237

SLOPEX 236
SLOPEXYZ 236
SLOPEY 236
SLOPEZ 236
small strain theory 845
SNS 753
software libraries 23
sol 129
solenoidal character 762
Solid Body Source 1046
solid bulk modulus 958
Solid Constitutive Equation 760, 762, 782, 784,
843, 847, 860, 868, 869, 871
solid inertia 655
solid material 251, 349
solid material skeleton 945
solid mechanics 307, 849, 867, 871, 1046
solid model geometry 167
solid momentum balance 530, 775
solid momentum equation 392, 677, 775, 850
solid momentum equations 678
solid network 957
solid phase 315
solid phase stress tensor 303
Solid Reference Temperature 861, 862
solid substrate boundary 341
solid suspensions 876
Solid Thermal Expansion 863
solid velocity 315
solid/liquid 318, 320, 402, 405, 408
SOLID_DIFFUSION 445
SOLID_DIFFUSION_ELECTRONEUTRALI
TY 445
SOLID_DIFFUSION_ELECTRONEUTRALI
TY_LINEAR 446
SOLID_DIFFUSION_SIMPLIFIED 445
SOLID_FLUID 288, 302, 315
SOLID_FLUID_RS 302, 394
solid-body rotation 850
solid-body translation 349, 850
SOLIDIFICATION 946
solid-like 896, 897
solid-liquid interface 478

1148 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

solidus 220, 935
Solidus Temperature 426, 557, 935
solidus temperature 932
SOLN 36
SOLN file 37, 38, 75
solute 656, 658
Solution Algorithm 118, 146, 147, 158
solution field 35
Solution Temperature 991, 997
solution update vector 155
solution variable 41
solution vector 36
solvent drying 854
solvent partial pressure 427
solvent viscosity 913
SOLVENT_POLYMER 837, 1039
Solver Specifications 117, 119
species 257
species balance 943
species component 247, 464, 776
species concentration 456, 1026
species conservation equation 247, 1015
species convective diffusion equations 985
species electrochemical reactions 987
species loops 656, 658
species mass flux 438
species material balance 1031, 1032, 1033
Species number 458
species number 983
Species Properties 980
Species Source 1052, 1054
species source 840
Species Time Integration 1013
species transport equations 1015
species variable type 659
Species Volume Expansion 1021
Species Weight Function 985
species_bulk 673, 757, 776
SPECIES_CONCENTRATION 659
SPECIES_DENSITY 659
SPECIES_FLUX 806
SPECIES_MASS_FRACTION 659
SPECIES_MOLE_FRACTION 659

SPECIES_UNDEFINED_FORM 659
SPECIES_VOL_FRACTION 659
Specific Volume 842, 1028, 1029
specific volume 1032
SPHERE 91, 111
SPHERICAL 652
SPLINE 229, 266, 287, 639
SPLINE_RS 304, 305, 307
SPLINEXYZ_RS 304
SS 91, 111
stabilization 471
stabilizing the solution 967
standard 135
Standard State Chemical Potential 467, 1022
standard state chemical potential 1023
standard thermodynamic gas constants 979
starting interface shape 90, 110
static contact lines 270
static or dynamic contact lines 265
stderr 41, 42
stdout 42
steady 64
steady simple shear flow 1012
steady-state solution 163
steep saturation fronts 967
Stefan flow 291, 389
STEFAN_MAXWELL 982, 997
STEFAN_MAXWELL_CHARGED 982, 993,
997, 1030, 1060
Stefan-Boltzmann constant 417, 418, 553
Stefan-Maxwell 939, 983, 1027
stiff problems 968
Stoichiometric coefficient 444, 1061
stoichiometric coefficients 257
STOICHIOMETRIC_PHASE 1025
Stokes velocity 1011
STRAIGHT 170
strain tensor 759, 760, 761, 844, 854
strain-rate tensor 754
STREAM 751
Stream Function 751
stream function 778, 780
streamline upwind Petrov-Galerkin 802, 907

Revised: 6/12/13 1149

streamwise diffusion 967
Streamwise normal stress 753
stress 671
stress and slip 342
stress balance 288, 943
Stress contours 758
stress equations 661
Stress Free Solvent Vol Frac 854, 859, 864
Stress Free Solvent Vol Fraction 864, 866
stress tensor 340, 355, 362, 371, 377, 393, 490,
491, 493, 495, 496, 498, 530, 536, 543, 548,
604, 758, 828
stress-free state 252, 315, 348, 351, 476, 481,
761, 786, 851, 854, 858, 945
stride length 152
stride specification 151
strong integrated constraint 284
strong residual replacement 192, 194, 200
strongly enforced point collocated condition
279
strongly integrated constraint 280
structural shell 705
subcycle-fill time steps 78
subcycling frequency 78
subcycling rate 78
subelement integration 395, 537, 542, 544,
548, 551, 553, 557, 558, 560, 563, 565, 566,
569, 571
subgrid 536, 542, 544, 548, 551, 553, 557, 558,
560, 593
subparametric 653
substrate vector 280
suction factor 965
sulfidation 1062
SUM_TO_ONE 959
SUPG 79, 802, 907, 911, 937, 966, 985
SUPG Velocity in porous media 803
SURF 91, 111
surf_charge 703
SURF_DISSIP 807
surface absorptivity 424, 555
surface charge 595, 597, 598
surface normal 268

surface potential 345, 346
surface reaction 257, 451, 453
surface recoil 375
Surface Tangent Calculation Method 638
surface tangent forces 378, 382
surface tangent vector 382
Surface Tension 919
surface tension 332, 370, 377, 383, 402, 405,
408, 412, 536, 541, 542, 548, 562, 566, 568,
571, 572, 575, 585, 589, 716, 719, 809
surface tension forces 372, 380, 384
surface tension model 372
surface velocity vector 344, 592
SURFACE_CHARGE 467
SURFACE_ELECTRIC_FIELD 598
Surfaces 91, 111
SURFTANG 380
SURFTANG_EDGE 380, 384
SURFTANG_SCALAR 383
SURFTANG_SCALAR_EDGE 384
SUSPEND 1036
SUSPENSION 448, 837, 872, 888, 898, 899,
1036
suspension flow 1010
Suspension Maximum Packing 876, 898
suspension migration 1008
suspension particles 447
suspension rheology model 1012
Suspension Species Number 876, 899
SUSPENSION_PM 448
SWIRLING 363, 652
sym_diag 128
sym_GS 125
sym_row_sum 128
symmetric 135, 782, 783, 784

T
T 414
T_USER 415
T1 787
T11 782
T11_RS 783
T12 782

1150 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

T12_RS 783
T13 782
T13_RS 783
T2 787
T22 782
T22_RS 783
T23 782
T23_RS 783
T3 787
T33 782
T33_RS 783
TA1 787
TA2 787
TA3 787
TABLE 213
table lookup files 25
TABLE_WICS 207, 210
TABLE_WICV 207, 210
tabular data 208, 211, 213
Tafel kinetics 452, 526
TALE 18, 236, 237, 249, 251, 252, 298, 315,
349, 655, 678
tangent to the contact line 333, 335
tangent vector 379, 635
tangent velocity component 330
tangential 234, 235
tangential direction 340
tangential fluid velocity 348
tangential velocity 348, 349, 367
tangential velocity component 337, 423
TANH 963
Taylor-Galerkin 79
Taylor-Galerkin formulation 1013
TB1 787
TB2 787
TB3 787
TCOND0 779
TCOND1 779
TCOND2 779
TDOT 781
temperature 220, 375, 414, 451, 453, 488, 626,
629, 1037, 1052, 1063
temperature shift function 908

temperature-dependent 1018
temperature-dependent shift factor 895
temperature-dependent viscosity 875
TENSION_SHEET 411, 412
TENSOR 946
tensor equations 663
tensor stress equations 661
terminal velocity 1011
ternary mixture 996
TFLUX 780
tfqmr 120
THERMAL 872, 893
thermal battery cell 988, 992
thermal boundary conditions 424
thermal conductivity 920, 929
thermal contact resistance 247
thermal expansion 862
thermal expansion coefficient 861
Thermal Exponent 874, 893
Thermal Properties 928
Thermal WLF Constant2 874, 895
THERMAL_BATTERY 837, 989, 991, 992
thermal-battery cell 986
Thermodynamic Potential 987, 988
thermodynamic pressure datum 62
thermodynamic property 920
thermoelasticity 863
thermophysical 769, 919
Third Invariant of Strain 761
three-dimensional 245, 270, 275, 282, 285,
337, 380, 384
three-dimensional cylindrical 652
three-dimensional stability 652
three-dimensions 278, 280, 324, 327, 333
tie condition 247
time 311, 365
Time Constant 873, 890
Time Derivatives 781
Time Integration 64, 655
time integration 72, 102
time integration method 72
Time Integration Specifications 64, 685
time step 73, 102, 107

Revised: 6/12/13 1151

Time step error 73
Time step parameter 72, 969
time-dependent boundary conditions 199
tmp.i.d 38
TORQUE 806
tortuosity factor 947
Total Arbitrary Lagrangian Eulerian 655
Total density of solvents in porous media 793,
796
total flux 481, 483
total hemispherical emissivity 417, 553
total mass flux 456
total pressure 62
Total Velocity Divergence 764
TOTAL_ALE 63, 251, 293, 295, 297, 300,
302, 304, 307, 655, 760, 782, 783, 843, 851,
856, 859, 867, 869, 871
trace 759
traction 258, 260, 261, 263, 287, 295, 297, 298,
299, 300, 307, 533
transfer mechanisms 957
transient 63, 64, 66, 67, 68, 69, 655
transient problem 77
transient simulations 65
Trapezoid rule 72
Trilinos library 127, 143, 144, 145
two materials 247
two phases 243, 942
TWO_PHASE 1018
two-dimensional flow field 652
two-dimensional tables 208, 212
two-phase flows 244
two-phase models 942
types of norms 129

U
U_supg_porous 803
umf/umff 119
univariate 202, 213
unknown vector 47
unperturbed 44
Unreacted Gel Temperature 877, 903
unsaturated medium 942

unsaturated porous flow problems 969
un-scaled 43
upwinding 664, 671, 673, 685, 695, 697, 699,
700
USER 91, 111, 275, 790, 921, 923, 925, 1036
user_bc.c 454
USER_GEN 1049
user_gibbs_criterion 276
user-defined 263, 300, 421, 435, 520
user-defined functions 311
user-defined geometry 176
User-Defined Post Processing 790
user-defined subroutine 58, 365, 790
user-defined subroutines 228, 229, 304, 305
user-defined temperature 415, 487
user-definition subroutines 225
user-prescribed function 454
UVW 308, 501, 502, 504, 506, 507, 509, 511,
512, 514
UVWUSER 313
UVWVARY 311

V
Valid Equation Rotation Strings 635
VAN_GENUCHTEN 961, 963
vapor flux 397, 558
VAPOR PRESSURE 459
Vapor Pressure 1018
vapor pressure curve 474, 477
vapor-liquid equilibria 442
vapor-liquid equilibrium 458, 460, 462, 794,
795, 976, 979
vapor-liquid external boundary 442
vapor-liquid phase equilibrium 1027, 1028,
1031, 1032, 1033
VAR_CA_EDGE 272, 274, 279, 281, 282,
286, 324, 326
VAR_CA_USER 272, 274, 279, 281, 285, 326
variability in time 366
variable block row 118, 123
variable contact angle 282, 285
variable electrical current density 522
variable scaling 339

1152 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

variable slip coefficient 351
variable slip coefficient model 340, 341
variable wall normal 401, 405, 407
VARIABLE_DENSITY 1036
variation 311
VBR 46, 118, 127, 128, 133
VDOT0 781
VDOT1 781
VDOT2 781
vector 258, 260, 261, 287, 295, 297, 298, 307
vector condition 316
vector electric field 688
vector equation 663
vector mesh equations 239, 240, 242, 243
vector mesh motion equations 220
vector momentum equation 667
vector particle momentum equation 669
vector traction 260, 262, 297
vector weak integrated boundary conditions
207
vectors used in rotating 787
VELO_NORM_COLLOC 321
VELO_NORMAL 317, 319, 321, 332, 340,
344, 393, 573, 575, 580, 586, 604, 639
VELO_NORMAL_DISC 322
VELO_NORMAL_EDGE 324, 327, 333, 336
VELO_NORMAL_EDGE_INT 327
VELO_SLIP 326, 331, 339, 341, 343, 349,
403, 406, 409, 423
VELO_SLIP_ELECTROKINETIC 345, 346
VELO_SLIP_ELECTROKINETIC3D 346
VELO_SLIP_FILL 343, 387, 564, 584, 587,
589, 591
VELO_SLIP_LS 564, 573, 575, 580, 584, 587,
589, 591
VELO_SLIP_ROT 341, 403, 406, 409, 423
VELO_SLIP_SOLID 349
VELO_TANGENT 329, 337, 355, 393, 403,
406, 409, 604
VELO_TANGENT_3D 337, 346, 355
VELO_TANGENT_EDGE 324, 326, 333, 335
VELO_TANGENT_EDGE_INT 335
VELO_TANGENT_SOLID 348

VELO_THETA_COX 401, 407, 588
VELO_THETA_HOFFMAN 404, 407, 569,
590
VELO_THETA_TPL 401, 404, 407
velocity component 311, 335
Velocity Divergence 762
velocity field 762
velocity gradient 357, 1052
velocity gradient tensor 500, 501, 503, 505,
506, 508, 510, 511, 513, 717
velocity of the gas phase 797
velocity of the solid material 349
velocity vectors 786
versus time 234
VERTEX 168, 169, 170, 173
vertex node 645
vertices 644
VISC_DISS 1049
viscoelastic 661, 686, 905, 906, 913
viscoelastic constitutive equation 661
viscoelastic modes 661, 758, 908
Viscoplastic Def_Grad Tensor 785
Viscosity 768, 770, 771, 772, 773, 872, 883,
942
viscosity 576, 588, 716, 719, 753, 798, 799,
800, 873, 893, 926, 948, 959, 961, 982, 983,
1011
Viscosity Diffusivity 996, 1007
viscosity gradient term 1007
viscous dissipation 828, 1050
viscous forces 1052
viscous heating 1052
viscous heating due to slip 423
VL_EQUIL 247, 443, 458, 1020
VL_EQUIL_PSEUDORXN 245, 292, 390,
462, 465
VL_POLY 443, 460, 1029, 1031, 1032, 1033
VL1 786
VL2 786
VL3 786
VN_POROUS 397
VNORM_LEAK 369, 439
VOF color function 79

Revised: 6/12/13 1153

VOF fill function 756
VOL_REVOLUTION 807
volatile 459
volatile liquid 1018
volatile solvent component 461
VOLT 521
VOLT_USER 528
VOLTAGE 377, 596, 597, 599, 690, 764, 765
voltage 521, 528, 596, 598, 686, 688, 1038
voltage equation 688, 1050
VOLTAGE field variable 766, 767
voltage potential equation 1060
VOLUME 460, 828
volume change 759, 761
Volume Expansion 933, 1042
volume fraction 461, 792, 945, 948, 982, 1000,
1010, 1011, 1028
volume of fluid 343, 591, 682
VOLUME_FLUX 806
VOLUME_INT 827, 830
volume-of-fluid simulations 1014
volumetric flowrate 363
volumetric integrals 827
Volumetric Integration 826
Von Mises 847, 865
vort_dir 692
vort_lambda 694
vorticity direction 694, 1012
vorticity equation 692
Vorticity Vector 804
VORTX 804
VORTY 804
VORTZ 804
VP_EQUIL 427

W
wave transmission 627, 630
wavenumber 721, 723, 724
WEAK_SHELL_GRAD 599
web 324, 327
weighted residual 233, 235, 775, 985
weighted residual function 774
weighting coefficient 956

weighting function 241, 688
weighting vector 46
WETTING 957
wetting 387, 404, 580
wetting line 407, 562, 565, 568, 570, 572, 574,
581, 584, 587, 589
wetting line model 333
wetting line motion 343, 591
wetting line physics 325
wetting velocity 583
WETTING_SPEED_BLAKE 409, 562, 572,
573, 575, 581, 584, 591
WETTING_SPEED_COX 403, 574, 587
WETTING_SPEED_HOFFMAN 406, 568,
577, 589
WETTING_SPEED_LINEAR 409, 570, 573,
575, 579, 580, 591
WHITE-METZNER 904
Williams-Landel-Ferry shift model 909
WLF model 909
Write initial solution 39
Write Intermediate Results 38, 774, 775
Write Intermediate Solutions 37

X
xdot 781
XDOT0 781
XDOT1 781
XDOT2 781
xx-stress 490
xx-velocity gradient component 500
xy-stress 491
xy-velocity gradient component 501
xz-stress 493
xz-velocity gradient component 503

Y
Y 433
Y_DISCONTINUOUS 436
Y0dif0 776
Y0dif1 776
Y0dif2 776
Y0DOT 781

1154 OFFICIAL USE ONLY Revised: 6/12/13

 OFFICIAL USE ONLY

Y0FLUX 778
y12m 119
Y1D0T 781
Y1dif0 776
Y1FLUX 778
Y2dif1 776
YFLUX 254, 430, 438, 560
YFLUX_ALLOY 455
YFLUX_BV 448
YFLUX_CONST 441
YFLUX_EQUIL 442, 1027, 1029, 1031, 1032,
1033
YFLUX_HOR 450
YFLUX_ORR 452
YFLUX_SPECIES 353
YFLUX_SULFIDATION 443
YFLUX_SUS 447
YFLUX_USER 454
yield criterion 847, 865
Yield Exponent 874, 897
Yield Stress 874, 896
yield stress 848, 865, 879, 896
yielded 785
YTOTALFLUX_CONST 456
YUSER 435
yuser_surf 435
yx-velocity gradient component 505
yy-stress 495
yy-velocity gradient component 506
yz-stress 496
yz-velocity gradient component 508

Z
zero 47
zero level set function contour 88
zeta potential 345, 346
zx-velocity gradient component 510
zy-velocity gradient component 511
zz-stress 498
zz-velocity gradient component 513

Revised: 6/12/13 1155

Distribution

1 MS 0899 RIM-Reports Management, 9532 (electronic copy)

1156 Revised: 6/12/13

	Nomenclature
	1 Introduction
	Figure 1. Main physics modules of Goma, their coupling and examples of potential applications.

	2 Background Information
	2.1 Program Features
	2.2 Numerical Methods
	2.3 Portability, Software Library Infrastructure, and Code Accessibility

	3 Code Structure and I/O
	3.1 Files for Data Input
	Figure 2. I/O structure for Goma. Dashed lines indicate that the files or commands are not required.

	3.2 Command-line Arguments

	4 Data Input-- Problem Description File
	Figure 3. Sample problem description input deck. Italic type denotes required data cards (lines) and plain type denotes optional...
	4.1 File Specifications
	4.1.1 FEM file
	4.1.2 Output EXODUS II file
	4.1.3 GUESS file
	4.1.4 SOLN file
	4.1.5 Write Intermediate Results
	4.1.6 Write initial solution

	4.2 General Specifications
	4.2.1 Number of processors
	4.2.2 Output Level
	4.2.3 Debug
	4.2.4 Number of Jacobian File Dumps
	4.2.5 Initial Guess
	4.2.6
	4.2.7 Initialize
	4.2.8
	4.2.9 External Field
	4.2.10 Export Field
	4.2.11 External Pixel Field
	4.2.12 Pressure Datum
	4.2.13 Anneal Mesh on Output

	4.3 Time Integration Specifications
	4.3.1 Time Integration
	4.3.2 delta_t
	4.3.3 Maximum number of time steps
	4.3.4 Maximum time
	4.3.5 Minimum time step
	4.3.6 Maximum time step
	4.3.7 Minimum Resolved Time Step
	4.3.8 Courant Number Limit
	4.3.9 Time step parameter
	4.3.10 Time step error
	4.3.11 Printing Frequency
	4.3.12 Second frequency time
	4.3.13 Initial Time
	4.3.14 Fill Subcycle
	4.3.15 Fill Weight Function
	4.3.16 Level Set Interface Tracking
	4.3.17 Level Set Semi_Lagrange
	4.3.18 Level Set Subgrid Integration Depth
	4.3.19 \\\
	4.3.20 Level Set Subelement Integration
	4.3.21 Level Set Adaptive Integration
	4.3.22
	4.3.23 Level Set Adaptive Order
	4.3.24
	4.3.25 Overlap Quadrature Points
	4.3.26 Level Set PSPP filtering
	4.3.27 Level Set Length Scale
	4.3.28 Level Set Initialize
	4.3.29
	4.3.30 Level Set Initialization Method
	4.3.31 Level Set Periodic Planes
	4.3.32 Level Set Control Width
	4.3.33 Level Set Timestep Control
	4.3.34 Level Set Renormalization Tolerance
	4.3.35 Level Set Renormalization Method
	4.3.36 Level Set Renormalization Frequency
	4.3.37 Restart Time Integration After Renormalization
	4.3.38 Level Set Reconstruction Method
	4.3.39 Level Set Contact Extension
	4.3.40 Level Set Slave Surface
	4.3.41
	4.3.42 Ignore Level Set Dependencies
	4.3.43 Force Initial Level Set Renormalization
	4.3.44 Number of phase functions
	4.3.45 Phase Function Slave Surface
	4.3.46 Phase Function Initialization Method
	4.3.47 Phase Function Renormalization Tolerance
	4.3.48
	4.3.49 Phase Function Renormalization Method

	4.4 Continuation Specifications
	4.5 Hunting Specifications
	4.6 Augmenting Conditions Specifications
	4.7 Solver Specifications
	4.7.1 Solution Algorithm
	4.7.2 Matrix storage format
	4.7.3 Preconditioner
	4.7.4 Matrix subdomain solver
	4.7.5 Matrix scaling
	4.7.6 Matrix residual norm type
	4.7.7 Matrix output type
	4.7.8 Matrix factorization reuse
	4.7.9 Matrix graph fillin
	4.7.10 Matrix factorization overlap
	4.7.11 Matrix overlap type
	4.7.12 Matrix auxiliary vector
	4.7.13 Matrix drop tolerance
	4.7.14 Matrix polynomial order
	4.7.15 Matrix reorder
	4.7.16 Matrix factorization save
	4.7.17 Matrix ILUT fill factor
	4.7.18 Matrix RILU relax factor
	4.7.19 Matrix BILU Threshold
	4.7.20 Matrix Relative Threshold
	4.7.21 Matrix Absolute Threshold
	4.7.22 Size of Krylov subspace
	4.7.23 Orthogonalization
	4.7.24 Maximum Linear Solve Iterations
	4.7.25 Number of Newton Iterations
	4.7.26 Modified Newton Tolerance
	4.7.27 Jacobian Reform Time Stride
	4.7.28 Newton correction factor
	4.7.29 Normalized Residual Tolerance
	4.7.30 Normalized Correction Tolerance
	4.7.31 Residual Ratio Tolerance
	4.7.32 Pressure Stabilization
	4.7.33 Pressure Stabilization Scaling
	4.7.34 Linear Stability
	4.7.35 Filter Concentration
	4.7.36 Disable Viscosity Sensitivities

	4.8 Eigensolver Specifications
	4.9 Geometry Specifications
	4.9.1 ACIS file
	4.9.2 VERTEX
	4.9.3 END OF VERTEX
	4.9.4 EDGE
	4.9.5 END OF EDGE
	4.9.6 FACE
	4.9.7 END OF FACE
	4.9.8 END OF BODY
	4.9.9 Exported geometry file

	4.10 Boundary Condition Specifications
	4.10.1 Number of BC
	4.10.2 FIX
	4.10.3 GD_CONST
	4.10.4 GD_LINEAR
	4.10.5 GD_PARAB
	4.10.6 GD_POLYN
	4.10.7 GD_TIME
	4.10.8 GD_CIRC
	4.10.9 GD_TABLE
	4.10.10 TABLE_WICV
	4.10.11 TABLE_WICS
	4.10.12 TABLE
	4.10.13 DISTNG
	4.10.14 DXDYDZ
	4.10.15 DXUSER DYUSER DZUSER
	4.10.16
	4.10.17 DXYZDISTNG
	4.10.18 SPLINEXYZ/GEOMXYZ
	4.10.19 SPLINE/GEOM
	4.10.20
	4.10.21 PLANEXYZ
	4.10.22 PLANE
	4.10.23 MOVING_PLANE
	4.10.24 SLOPEXYZ
	4.10.25 SLOPE
	4.10.26 KINEMATIC
	4.10.27 KINEMATIC_PETROV
	4.10.28 KINEMATIC_COLLOC
	4.10.29 KINEMATIC_DISC
	4.10.30 KINEMATIC_EDGE
	4.10.31 KINEMATIC_SPECIES
	4.10.32 KIN_DISPLACEMENT_PETROV
	4.10.33 KIN_DISPLACEMENT_COLLOC
	4.10.34 KIN_DISPLACEMENT
	4.10.35 KIN_LEAK
	4.10.36 KIN_CHEM
	4.10.37 FORCE
	4.10.38 NORM_FORCE
	4.10.39 REP_FORCE
	4.10.40 FORCE_USER
	4.10.41 CA
	4.10.42 CA_OR_FIX
	4.10.43 CA_EDGE
	4.10.44 CA_EDGE_INT
	4.10.45
	4.10.46 CA_EDGE_OR_FIX
	4.10.47 CA_EDGE_CURVE
	4.10.48 CA_EDGE_CURVE_INT
	4.10.49 VAR_CA_EDGE
	4.10.50 VAR_CA_USER
	4.10.51 FRICTION
	4.10.52 SOLID_FLUID
	4.10.53 PENETRATION
	4.10.54
	4.10.55 POROUS_KIN
	4.10.56 SDC_KIN_SF
	4.10.57 DXDYDZ_RS
	4.10.58 FORCE_RS
	4.10.59 NORM_FORCE_RS
	4.10.60 REP_FORCE_RS
	4.10.61 FORCE_USER_RS
	4.10.62 SOLID_FLUID_RS
	4.10.63 SPLINEXYZ_RS
	4.10.64 SPLINE_RS
	4.10.65 FRICTION_RS
	4.10.66 Category 4: Boundary Conditions for the Fluid Momentum Equations
	4.10.67 UVW
	4.10.68 PUVW
	4.10.69 UVWVARY
	4.10.70 UVWUSER
	4.10.71 NO_SLIP/NO_SLIP_RS
	4.10.72 VELO_NORMAL
	4.10.73 VELO_NORMAL_LS
	4.10.74
	4.10.75 VELO_NORM_COLLOC
	4.10.76
	4.10.77 VELO_NORMAL_DISC
	4.10.78 VELO_NORMAL_EDGE
	4.10.79 VELO_NORMAL_EDGE_INT
	4.10.80 VELO_TANGENT
	4.10.81 VELO_TANGENT_EDGE
	4.10.82 VELO_TANGENT_EDGE_INT
	4.10.83 VELO_TANGENT_3D
	4.10.84 VELO_SLIP
	4.10.85 VELO_SLIP_ROT
	4.10.86 VELO_SLIP_FILL
	4.10.87 VELO_SLIP_ELECTROKINETIC
	4.10.88 VELO_SLIP_ELECTROKINETIC3D
	4.10.89 VELO_TANGENT_SOLID
	4.10.90
	4.10.91 VELO_SLIP_SOLID
	4.10.92 DISCONTINUOUS_VELO
	4.10.93 HYDROSTATIC_SYMM
	4.10.94 FLOW_PRESSURE
	4.10.95 FLOW_STRESSNOBC
	4.10.96 FLOW_GRADV
	4.10.97 FLOW_PRESS_USER
	4.10.98 FLOW_HYDROSTATIC
	4.10.99
	4.10.100 FLOWRATE
	4.10.101 PRESSURE_USER
	4.10.102 CONT_TANG_VEL
	4.10.103 CONT_NORM_VEL
	4.10.104 VNORM_LEAK
	4.10.105 CAPILLARY
	4.10.106 CAP_REPULSE
	4.10.107 CAP_RECOIL_PRESS
	4.10.108 ELEC_TRACTION
	4.10.109 CAP_ENDFORCE
	4.10.110 SURFTANG_EDGE
	4.10.111 CAP_ENDFORCE_SCALAR
	4.10.112 SURFTANG_SCALAR_EDGE
	4.10.113 FILL_CA
	4.10.114 MOVING_CA
	4.10.115
	4.10.116 SDC_STEFANFLOW
	4.10.117
	4.10.118 FLUID_SOLID
	4.10.119
	4.10.120 FLUID_SOLID_RS
	4.10.121 DARCY_CONTINUOUS
	4.10.122 VN_POROUS
	4.10.123 CAPILLARY_SHEAR_VISC
	4.10.124 VELO_THETA_COX
	4.10.125 VELO_THETA_HOFFMAN
	4.10.126 VELO_THETA_TPL
	4.10.127
	4.10.128 SHEET_ENDSLOPE
	4.10.129 TENSION_SHEET
	4.10.130 T
	4.10.131 T_USER
	4.10.132
	4.10.133 QCONV
	4.10.134 QRAD
	4.10.135 QSIDE
	4.10.136 \ T_CONTACT_RESIS, T_CONTACT_RESIS_2
	4.10.137 QUSER
	4.10.138
	4.10.139 Q_VELO_SLIP
	4.10.140 Q_LASER_WELD
	4.10.141 Q_VAPOR_BC
	4.10.142
	4.10.143 VP_EQUIL
	4.10.144 LATENT_HEAT
	4.10.145 LATENT_HEAT_INTERNAL
	4.10.146 Y
	4.10.147 YUSER
	4.10.148
	4.10.149 Y_DISCONTINUOUS
	4.10.150 YFLUX
	4.10.151 YFLUX_CONST
	4.10.152 YFLUX_EQUIL
	4.10.153
	4.10.154 YFLUX_SULFIDATION
	4.10.155 YFLUX_SUS
	4.10.156
	4.10.157 YFLUX_BV
	4.10.158 YFLUX_HOR
	4.10.159
	4.10.160 YFLUX_ORR
	4.10.161
	4.10.162 YFLUX_USER
	4.10.163
	4.10.164 YFLUX_ALLOY
	4.10.165 YTOTALFLUX_CONST
	4.10.166 VL_EQUIL
	4.10.167 VL_POLY
	4.10.168
	4.10.169 VL_EQUIL_PSEUDORXN
	4.10.170 IS_EQUIL_PSEUDORXN
	4.10.171 SURFACE_CHARGE
	4.10.172 P
	4.10.173
	4.10.174 PSPG
	4.10.175
	4.10.176 PRESSURE DATUM
	4.10.177
	4.10.178 POROUS_LIQ_PRESSURE
	4.10.179 POROUS_LIQ_FLUX_CONST
	4.10.180 POROUS_GAS_PRESSURE
	4.10.181
	4.10.182 POROUS_GAS
	4.10.183
	4.10.184 POROUS_GAS_FLUX_CONST
	4.10.185 POROUS_CONV
	4.10.186 POROUS_FLUX
	4.10.187 POROUS_PRESSURE
	4.10.188
	4.10.189 P_LIQ_USER
	4.10.190
	4.10.191 POROUS_TEMPERATURE
	4.10.192
	4.10.193 S11
	4.10.194 S12
	4.10.195 S13
	4.10.196 S22
	4.10.197 S23
	4.10.198 S33
	4.10.199 G11
	4.10.200 G12
	4.10.201 G13
	4.10.202 G21
	4.10.203 G22
	4.10.204 G23
	4.10.205 G31
	4.10.206 G32
	4.10.207 G33
	4.10.208 SH
	4.10.209 F
	4.10.210 FILL_INLET
	4.10.211 CURRENT
	4.10.212 CURRENT_USER
	4.10.213 VOLT
	4.10.214 CURRENT_BV
	4.10.215
	4.10.216 CURRENT_HOR
	4.10.217
	4.10.218 CURRENT_ORR
	4.10.219
	4.10.220 VOLT_USER
	4.10.221
	4.10.222 LAGRANGE_NO_SLIP
	4.10.223
	4.10.224 OVERSET_FLUID_SOLID/BAAIJENS_FLUID_SOLID
	4.10.225 OVERSET_SOLID_FLUID/BAAIJENS_SOLID_FLUID
	4.10.226
	4.10.227 F1 F2 F3 F4 F5
	4.10.228
	4.10.229 PF_CAPILLARY
	4.10.230
	4.10.231 LS_ADC
	4.10.232
	4.10.233 LS_CA_H
	4.10.234
	4.10.235 LS_CAPILLARY
	4.10.236
	4.10.237 LS_FLOW_PRESSURE
	4.10.238
	4.10.239 LS_FLUID_SOLID_CONTACT
	4.10.240
	4.10.241 LS_INLET
	4.10.242
	4.10.243 LS_NO_SLIP
	4.10.244
	4.10.245 LS_Q
	4.10.246
	4.10.247 LS_QRAD
	4.10.248
	4.10.249 LS_QLASER
	4.10.250
	4.10.251 LS_RECOIL_PRESSURE
	4.10.252
	4.10.253 LS_VAPOR/LS_QVAPOR
	4.10.254
	4.10.255 LS_YFLUX
	4.10.256
	4.10.257 SHARP_BLAKE_VELOCITY
	4.10.258
	4.10.259 SHARP_CA_2D
	4.10.260
	4.10.261 SHARP_COX_VELOCITY
	4.10.262
	4.10.263 SHARP_HOFFMAN_VELOCITY
	4.10.264
	4.10.265 SHARP_WETLIN_VELOCITY
	4.10.266
	4.10.267 WETTING_SPEED_BLAKE
	4.10.268
	4.10.269 WETTING_SPEED_COX
	4.10.270 WETTING_SPEED_HOFFMAN
	4.10.271 WETTING_SPEED_LINEAR
	4.10.272
	4.10.273 LINEAR_WETTING_SIC
	4.10.274
	4.10.275 BLAKE_DIRICHLET
	4.10.276 COX_DIRICHLET
	4.10.277
	4.10.278 HOFFMAN_DIRICHLET
	4.10.279
	4.10.280 VELO_SLIP_LS
	4.10.281
	4.10.282 SHELL_SURFACE_CHARGE
	4.10.283
	4.10.284 SHELL_SURFACE_CHARGE_SIC
	4.10.285
	4.10.286 SURFACE_ELECTRIC_FIELD
	4.10.287
	4.10.288 SH_TENS
	4.10.289
	4.10.290 SH_K
	4.10.291
	4.10.292 SH_FLUID_STRESS
	4.10.293
	4.10.294 LUB_PRESS
	4.10.295 GRAD_LUB_PRESS
	4.10.296
	4.10.297 SHELL_FILMP
	4.10.298 SHELL_FILMH
	4.10.299 SHELL_PARTC
	4.10.300 SHELL_GRAD_FP
	4.10.301 _SHELL_GRAD_FP_NOBC
	4.10.302 SHELL_GRAD_FH
	4.10.303 SHELL_GRAD_FH_NOBC
	4.10.304 SHELL_GRAD_PC
	4.10.305 SHELL_LUBP_SOLID
	4.10.306 SHELL_TEMP
	4.10.307
	4.10.308 SHELL_OPEN_PRESS, SHELL_OPEN_PRESS_2
	4.10.309 LUBP_SH_FP_FLUX
	4.10.310 LUBP_SH_FP_MATCH
	4.10.311 APR
	4.10.312
	4.10.313 APR_PLANE_TRAN
	4.10.314
	4.10.315 API
	4.10.316
	4.10.317 API_PLANE_TRAN
	4.10.318 END OF BC

	4.11 Rotation Specifications
	4.11.1 Rotation Specifications
	4.11.2 ROT SURFACE
	4.11.3 ROT EDGE
	4.11.4 ROT VERTEX
	4.11.5 END OF ROT

	4.12 Problem Description
	4.12.1 Number of Materials
	4.12.2 MAT
	4.12.3 Coordinate System
	4.12.4 Element Mapping
	4.12.5 Mesh Motion
	4.12.6 Number of bulk species
	4.12.7 Material is nondilute
	4.12.8 Number of bulk species equations
	4.12.9 Default Material Species Type
	4.12.10 Number of viscoelastic modes
	4.12.11 Number of EQ
	4.12.12 energy
	4.12.13 momentum
	4.12.14 pmomentum
	4.12.15 stress
	4.12.16 species_bulk
	4.12.17 mesh
	4.12.18 mom_solid
	4.12.19 continuity
	4.12.20 fill
	4.12.21 lagr_mult_1, lagr_mult_2, lagr_mult_3
	4.12.22 level set
	4.12.23 voltage
	4.12.24
	4.12.25 efield
	4.12.26 enorm
	4.12.27 shear_rate
	4.12.28 vort_dir
	4.12.29 vort_lambda
	4.12.30 porous_sat
	4.12.31 porous_unsat
	4.12.32 porous_liq
	4.12.33 porous_gas
	4.12.34 porous_deform
	4.12.35 porous_energy
	4.12.36 surf_charge
	4.12.37 shell_tension
	4.12.38 shell_curvature
	4.12.39 shell_angle
	4.12.40 shell_diff_flux
	4.12.41 shell_diff_curv
	4.12.42 shell_normal
	4.12.43 shell_surf_curv
	4.12.44 shell_surf_div_v
	4.12.45 grad_v_dot_n1, grad_v_dot_n2, grad_v_dot_n3
	4.12.46 n_dot_curl_v
	4.12.47 acous_preal
	4.12.48 acous_pimag
	4.12.49 acous_reyn_stress
	4.12.50 potential1
	4.12.51 potential2
	4.12.52 lubp
	4.12.53 lubp_2
	4.12.54
	4.12.55 shell_energy
	4.12.56 shell_filmp
	4.12.57 shell_filmh
	4.12.58 shell_partc
	4.12.59 shell_sat_closed
	4.12.60
	4.12.61 shell_sat_gasn
	4.12.62
	4.12.63 shell_sat_open
	4.12.64 shell_sat_open_2
	4.12.65
	4.12.66 shell_deltah
	4.12.67
	4.12.68 END OF EQ
	4.12.69 END OF MAT

	4.13 Post Processing Specifications
	4.13.1 Stream Function
	4.13.2 Streamwise normal stress
	4.13.3 Cross-stream shear rate
	4.13.4 Mean shear rate
	4.13.5 Pressure contours
	4.13.6 Fill contours
	4.13.7 Concentration contours
	4.13.8 Stress contours
	4.13.9 First Invariant of Strain
	4.13.10 Second Invariant of Strain
	4.13.11 Third Invariant of Strain
	4.13.12 Velocity Divergence
	4.13.13 Particle Velocity Divergence
	4.13.14 Total Velocity Divergence
	4.13.15 Electric Field
	4.13.16 Electric Field Magnitude
	4.13.17 Enormsq Field
	4.13.18 Enormsq Field Norm
	4.13.19 Viscosity
	4.13.20
	4.13.21 Density
	4.13.22 Lame MU
	4.13.23 Lame LAMBDA
	4.13.24 Von Mises Strain
	4.13.25 Von Mises Stress
	4.13.26
	4.13.27 Navier Stokes Residuals
	4.13.28 Moving Mesh Residuals
	4.13.29 Mass Diffusion Vectors
	4.13.30 Diffusive Mass Flux Vectors
	4.13.31 Mass Fluxlines
	4.13.32 Energy Conduction Vectors
	4.13.33 Energy Fluxlines
	4.13.34 Time Derivatives
	4.13.35 Mesh Stress Tensor
	4.13.36 Real Solid Stress Tensor
	4.13.37 Mesh Strain Tensor
	4.13.38 Viscoplastic Def_Grad Tensor
	4.13.39 Lagrangian Convection
	4.13.40 Normal and Tangent Vectors
	4.13.41 Error ZZ velocity
	4.13.42 Error ZZ heat flux
	4.13.43 Error ZZ pressure
	4.13.44 User-Defined Post Processing
	4.13.45 Porous Saturation
	4.13.46 Total density of solvents in porous media
	4.13.47 Density of solvents in gas phase in porous media
	4.13.48 Density of liquid phase in porous media
	4.13.49 Gas phase Darcy velocity in porous media
	4.13.50 Liquid phase Darcy velocity in porous media
	4.13.51
	4.13.52 Liquid phase Darcy velocity in porous media
	4.13.53
	4.13.54 Capillary pressure in porous media
	4.13.55
	4.13.56 Grid Peclet Number in porous media
	4.13.57 SUPG Velocity in porous media
	4.13.58 Vorticity Vector

	4.14 Post Processing Fluxes and Data
	4.14.1 Post Processing Fluxes
	4.14.2 FLUX
	4.14.3 END OF FLUX
	4.14.4 Post Processing Data
	4.14.5 DATA
	4.14.6 END OF DATA
	4.14.7 Post Processing Flux Sensitivities
	4.14.8 FLUX_SENS
	4.14.9 END OF FLUX_SENS
	4.14.10 Post Processing Data Sensitivities
	4.14.11 DATA_SENS
	4.14.12 END OF DATA_SENS

	4.15 Post Processing Particle Traces
	4.15.1 Post Processing Particle Traces
	4.15.2 PARTICLE
	4.15.3 END OF PARTICLES

	4.16 Volumetric Integration
	4.16.1 Post Processing Volumetric Integration
	4.16.2 VOLUME_INT
	4.16.3
	4.16.4 END OF VOLUME_INT

	5 Data Input-- Material Files
	Figure 4. Sample material-description file format. Lines highlighted in bold-face type are required.
	5.0.1 Default Database
	5.1 Physical Properties
	5.1.1 Density

	5.2 Mechanical Properties and Constitutive Equations
	5.2.1 Solid Constitutive Equation
	5.2.2 Plasticity Equation
	5.2.3 Convective Lagrangian Velocity
	5.2.4 Lame MU
	5.2.5 Lame LAMBDA
	5.2.6 Stress Free Solvent Vol Frac
	5.2.7 Solid Thermal Expansion
	5.2.8 Solid Reference Temperature
	5.2.9 Plastic Viscosity
	5.2.10 EVP Yield Stress
	5.2.11 Pseudo-Solid Constitutive Equation
	5.2.12 Pseudo-Solid Lame MU
	5.2.13 Pseudo-Solid Lame LAMBDA
	5.2.14 Liquid Constitutive Equation
	5.2.15 Viscosity
	5.2.16 Low Rate Viscosity
	5.2.17 Power Law Exponent
	5.2.18 High Rate Viscosity
	5.2.19 Time Constant
	5.2.20 Aexp
	5.2.21 Thermal Exponent
	5.2.22 Thermal WLF Constant2
	5.2.23 Yield Stress
	5.2.24 Yield Exponent
	5.2.25 Suspension Maximum Packing
	5.2.26 Suspension Species Number
	5.2.27 Cure Gel Point
	5.2.28 Cure A Exponent
	5.2.29 Cure B Exponent
	5.2.30 Cure Species Number
	5.2.31 Unreacted Gel Temperature
	5.2.32 Polymer Constitutive Equation
	5.2.33 Polymer Stress Formulation
	5.2.34 Polymer Weight Function
	5.2.35 Polymer Shift Function
	5.2.36 Discontinuous Jacobian Formulation
	5.2.37
	5.2.38 Polymer Weighting
	5.2.39 Adaptive Viscosity Scaling
	5.2.40 Polymer Viscosity
	5.2.41 Polymer Time Constant
	5.2.42 Mobility Parameter
	5.2.43 PTT Xi parameter
	5.2.44 PTT Epsilon parameter
	5.2.45 Surface Tension
	5.2.46 Second Level Set Conductivity
	5.2.47
	5.2.48 Second Level Set Density
	5.2.49
	5.2.50 Second Level Set Heat Capacity
	5.2.51
	5.2.52 Second Level Set Momentum Source
	5.2.53
	5.2.54 Second Level Set Viscosity
	5.2.55
	5.2.56 Shell bending stiffness

	5.3 Thermal Properties
	5.3.1 Heat Flux Model
	5.3.2 Conductivity
	5.3.3 Heat Capacity
	5.3.4 Volume Expansion
	5.3.5 Reference Temperature
	5.3.6 Liquidus Temperature
	5.3.7 Solidus Temperature
	5.3.8 Energy Weight Function

	5.4 Electrical Properties
	5.4.1 Electrical Conductivity
	5.4.2 Electrical Permittivity
	5.4.3 Microstructure Properties
	5.4.4 Media Type
	5.4.5
	5.4.6 Porosity
	5.4.7 Permeability
	5.4.8 Liquid phase compressibility
	5.4.9 Liquid phase reference pressure
	5.4.10 FlowingLiquid Viscosity
	5.4.11 Inertia Coefficient
	5.4.12 Capillary Network Stress
	5.4.13 Rel Gas Permeability
	5.4.14 Rel Liq Permeability
	5.4.15 Saturation
	5.4.16 Porous Weight Function
	5.4.17 Porous Mass Lumping
	5.4.18
	5.4.19 Porous Diffusion Constitutive Equation
	5.4.20 Porous Gas Diffusivity
	5.4.21 Porous Latent Heat Vaporization
	5.4.22 Porous Latent Heat Fusion
	5.4.23 Porous Vapor Pressure
	5.4.24 Porous Liquid Volume Expansion
	5.4.25 Porous Gas Constants

	5.5 Species Properties
	5.5.1 Number of Species
	5.5.2 Diffusion Constitutive Equation
	5.5.3 Species Weight Function
	5.5.4 Number of chemical reactions
	5.5.5 Reaction Rate
	5.5.6 Thermodynamic Potential
	5.5.7 Interfacial Area
	5.5.8 Butler_Volmer_j
	5.5.9 Butler_Volmer_ij
	5.5.10 Solution Temperature
	5.5.11 Porosity
	5.5.12 Diffusivity
	5.5.13 Shear Rate Diffusivity
	5.5.14 Viscosity Diffusivity
	5.5.15 Curvature Diffusivity
	5.5.16 Fickian Diffusivity
	5.5.17 Gravity-based Diffusivity
	5.5.18 Q Tensor Diffusivity
	5.5.19 Species Time Integration
	5.5.20 Advective Scaling
	5.5.21 Latent Heat Vaporization
	5.5.22 Latent Heat Fusion
	5.5.23 Vapor Pressure
	5.5.24 Species Volume Expansion
	5.5.25 Standard State Chemical Potential
	5.5.26 Pure Species Chemical Potential
	5.5.27 Chemical Potential
	5.5.28 Reference Concentration
	5.5.29 Molecular Weight
	5.5.30 Specific Volume
	5.5.31 Molar Volume
	5.5.32 Charge Number
	5.5.33 Non-condensable Molecular Weight
	5.5.34 Non-volatile Molar Volume
	5.5.35 Non-volatile Specific Volume
	5.5.36 Flory-Huggins parameters

	5.6 Source Terms
	5.6.1 Navier-Stokes Source
	5.6.2 Solid Body Source
	5.6.3 Mass Source
	5.6.4 Heat Source
	5.6.5 Species Source
	5.6.6 Current Source
	5.6.7 Initialize

	5.7 Shell Equation Properties and Models
	5.7.1 Upper Height Function Constants
	5.7.2 Lower Height Function Constants
	5.7.3 Upper Velocity Function Constants
	5.7.4 Lower Velocity Function Constants
	5.7.5 Upper Contact Angle
	5.7.6 Lower Contact Angle
	5.7.7 Lubrication Fluid Source
	5.7.8 Lubrication Momentum Source
	5.7.9 Turbulent Lubrication Model
	5.7.10 Shell Energy Source QCONV
	5.7.11 Shell Energy Source Sliding Contact
	5.7.12 Shell Energy Source Viscous Dissipation
	5.7.13 Shell Energy Source External
	5.7.14 FSI Deformation Model
	5.7.15 Film Evaporation Model
	5.7.16 Disjoining Pressure Model
	5.7.17 Diffusion Coefficient Model
	5.7.18 Porous Shell Radius
	5.7.19 Porous Shell Height
	5.7.20
	5.7.21 Porous Shell Closed Porosity
	5.7.22 Porous Shell Closed Gas Pressure
	5.7.23 Porous Shell Atmospheric Pressure
	5.7.24 Porous Shell Reference Pressure
	5.7.25 Porous Shell Cross Permeability
	5.7.26 Porous Shell Gas Diffusivity
	5.7.27 Porous Shell Gas Temperature Constant
	5.7.28 Porous Shell Henrys Law Constant
	5.7.29
	5.7.30

	References
	Appendix 1: Goma Documentation Lists
	Appendix 2: Using Goma in Library Mode
	Index

