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Abstract

No feature�based vision system can work until good features can be identi�ed and tracked from
frame to frame� Although tracking itself is by and large a solved problem� selecting features that
can be tracked well and correspond to physical points in the world is still an open problem� We
propose a feature selection criterion that is optimal by construction because is based on how the
tracker works� as well as a feature monitoring method that can detect occlusions� disocclusions� and
features that do not correspond to points in the world� These methods are based on a new tracking
algorithm that extends previous Newton�Raphson style search methods to work under a�ne image
transformations� We test performance with several simulations and experiments on real images�



Chapter �

Introduction

Is feature tracking a solved problem� The extensive studies of image correlation �CL��	� �CR�
	�
�RGH��	� �Woo�
	� �FP�
	� �TH�
	 and sum�of�squared�di�erence �SSD� methods �BYX��	� �Ana��	
show that all the basics are in place� When image displacements are small from one frame to the
next� a window can be tracked by optimizing some matching criterion �LK��	� �Ana��	 over all
possible small translations and� in more sophisticated systems� over all moderate linear image
deformations �F���	� �FM��	� �MO�
	� Furthermore� feature windows can be selected by maximizing
an interest criterion� or some measure of texturedness or cornerness in the �rst image� Favorite
criteria are a high standard deviation in the spatial intensity pro�le �Mor��	� the presence of zero
crossings of the Laplacian of the image intensity �MPU��	� and corners �KR��	� �DN��	� Finally�
even the size of the window to be tracked can be selected adaptively based on local variations of
image intensity and inter�frame disparity �OK��	�

Yet a nagging problem remains open� In fact� even a region of high interest or rich texture
content can be poor� For instance� it can straddle a depth discontinuity or the boundary of a
re�ection highlight� In either case� the window is not attached to a �xed point in the world�
making that feature useless or more likely harmful to most structure�from�motion algorithms� This
phenomenon occurs very often� Extreme but typical examples are trees and cars� In a tree� branches
at di�erent depths and orientations create intersections in the image that would trigger any feature
detector and yet correspond to no physical point in the world� With a car� most features on the
body and windows are re�ections that change their position on the surface as the car drives past
the camera� Even in carefully engineered imaging situations� the problem of poor features is so
pervasive that good features must often be picked by hand� Furthermore� even good features can
be occluded by nearer surfaces� and trackers often blissfully drift away from their original point in
the world when this occurs� No vision system based on feature tracking can be claimed to really
work until these issues have been settled�

In this report we show how to monitor the quality of image features during tracking� Speci�cally�
we investigate a measure of feature dissimilarity that quanti�es how much the appearance of a
feature changes between the �rst and the current frame� The idea is straightforward� dissimilarity
is the feature�s rms residue between the �rst and the current frame� and when dissimilarity grows
too large the feature should be abandoned� However� in this report we make two main contributions
to this problem� First� we provide experimental evidence that pure translation is not an adequate
model for image motion when measuring dissimilarity� but a�ne image changes� that is� linear
warping and translation� are adequate� Second� we propose a numerically sound and e�cient way
of determining a�ne changes by a Newton�Raphson stile minimization procedure� much in the style
of what Lucas and Kanade �LK��	 do for the pure translation model�
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In addition to these two main contributions� we improve tracking in two more ways� First� we
propose a more principled way to select features than the more traditional �interest� or �cornerness�
measures� Speci�cally� we show that feature windows with good texture properties can be de�ned
by explicitly optimizing the tracker�s accuracy� In other words� the right features are exactly those
that make the tracker work best� Second� we submit that two models of image motion are better
than one� In fact� pure translation gives more stable and reliable results than a�ne changes when
the inter�frame camera translation is small� On the other hand� a�ne changes are necessary to
compare distant frames as is done when determining dissimilarity�

In the next chapter� we introduce a�ne image changes and pure translation as our two models
for image motion� In chapter 
 we describe our method for the computation of a�ne image changes�
Then� in chapters � and �� we discuss our measure of texturedness and feature dissimilarity� which
are based on the de�nition of the tracking method given in chapter 
� We discuss simulations and
experiments on real sequences in chapters 
 and �� and conclude in chapter ��
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Chapter �

Two Models of Image Motion

In this chapter� we introduce two models of image motion� the more general a�ne motion is a
combination of translation and linear deformation� and will be described �rst� The second model�
pure translation� is the restriction of the general model to zero deformation�

As the camera moves� the patterns of image intensities change in a complex way� In general�
any function of three variables I�x� y� t�� where the space variables x� y and the time variable t are
discrete and suitably bounded� can represent an image sequence� However� images taken at near
time instants are usually strongly related to each other� because they refer to the same scene taken
from only slightly di�erent viewpoints�

We usually express this correlation by saying that there are patterns that move in an image
stream� Formally� this means that the function I�x� y� t� is not arbitrary� but satis�es the following
property�

I�x� y� t� �� � I�x� ��x� y� t� ��� y� ��x� y� t� ��� � �����

Thus� a later image taken at time t�� can be obtained by moving every point in the current image�
taken at time t� by a suitable amount� The amount of motion � � ��� �� is called the displacement
of the point at x � �x� y� between time instants t and t � � �

Even in a static environment under constant lighting� the property described by equation �����
is often violated� For instance� at occluding boundaries� points do not just move within the image�
but appear and disappear� Furthermore� the photometric appearance of a surface changes when
re�ectivity is a function of the viewpoint� However� the invariant ����� is by and large satis�ed at
surface markings that are away from occluding contours� At these locations� the image intensity
changes fast with x and y� and the location of this change remains well de�ned even in the presence
of moderate variations of overall brightness around it�

A more pervasive problem derives from the fact that the displacement vector � is a function of
the image position x� and variations in � are often noticeable even within the small windows used
for tracking� It then makes little sense to speak of �the� displacement of a feature window� since
there are di�erent displacements within the same window� Unfortunately� one cannot just shrink
windows to single pixels to avoid this di�culty� In fact� the value of a pixel can both change due to
noise and be confused with adjacent pixels� making it hard or impossible to determine where the
pixel went in the subsequent frame�

A better alternative is to enrich the description of motion within a window� that is� to de�ne a
set of possible displacement functions ��x�� for given t and � � that includes more than just constant
functions of x� An a�ne motion �eld is a good compromise between simplicity and �exibility�

� � Dx� d






where

D �

�
dxx dxy
dyx dyy

�

is a deformation matrix� and d is the translation of the feature window�s center� The image
coordinates x are measured with respect to the window�s center� Then� a point x in the �rst image
I moves to point Ax� d in the second image J � where

A � ��D

and � is the � � � identity matrix� Thus� the a�ne motion model can be summarized by the
following equation relating image intensities�

J�Ax� d� � I�x� � �����

Given two images I and J and a window in image I � tracking means determining the six
parameters that appear in the deformation matrix D and displacement vector d� The quality of
this estimate depends on the size of the feature window� the texturedness of the image within it�
and the amount of camera motion between frames� When the window is small� the matrix D is
harder to estimate� because the variations of motion within it are smaller and therefore less reliable�
However� smaller windows are in general preferable for tracking because they are more likely to
contain features at similar depths� and therefore correspond to small patches in the world� rather
than to pairs of patches in di�erent locations as would be the case along a depth discontinuity� For
this reason� a pure translation model is preferable during tracking�

J�x� d� � I�x�

where the deformation matrix D is assumed to be zero�
The experiments in chapters 
 and � show that the best combination of these two motion

models is pure translation for tracking� because of its higher reliability and accuracy over the small
inter�frame motion of the camera� and a�ne motion for comparing features between the �rst and
the current frame in order to monitor their quality� In order to address these issues quantitatively�
however� we �rst need to introduce our tracking method� In fact� we de�ne texturedness based on
how tracking works� Rather than the more ad hoc de�nitions of interest operator or �cornerness��
we de�ne a feature to have a good texture content if the feature can be tracked well�
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Chapter �

Computing Image Motion

The a�ne motion model is expressed by equation ������

J�Ax� d� � I�x�

and for pure translation the matrix A is assumed to be equal to the identity matrix� Because of
image noise and because the a�ne motion model is not perfect� the equation above is in general
not satis�ed exactly� The problem of determining the motion parameters can then be de�ned as
that of �nding the A and d that minimize the dissimilarity

� �
Z Z

W

�J�Ax� d�� I�x�	� w�x� dx �
���

where W is the given feature window and w�x� is a weighting function� In the simplest case�
w�x� � �� Alternatively� w could be a Gaussian�like function to emphasize the central area of the
window� Under pure translation� the matrix A is constrained to be equal to the identity matrix� In
the following� we �rst look at the unconstrained problem� which we solve by means of a Newton�
Raphson style iterative search for the optimal values of A � � � D and d� The case of pure
translation is then obtained as a specialization�

To minimize the residual �
���� we di�erentiate it with respect to the unknown parameters in
the deformation matrix D and the displacement vector d and set the result to zero� This yields
the following two matrix equations�

�

�

��

�D
�

Z Z
W

�J�Ax� d�� I�x�	gxT wdx � � �
���

�

�

��

�d
�

Z Z
W
�J�Ax� d�� I�x�	gwdx � � �
�
�

where

g �

�
�J

�x
�
�J

�y

�T
is the spatial gradient of the image intensity and the superscipt T denotes transposition�

If the image motion
u � Dx� d �
���

could be assumed to be small� the term J�Ax � d� could be approximated by its Taylor series
expansion truncated to the linear term�

J�Ax� d� � J�x� � gT �u� �
���
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which� combined with equations �
��� and �
�
� would yield the following systems of equations�Z Z
W

gxT �gTu�wdx �
Z Z

W

�I�x�� J�x�	gxT wdx �
�
�Z Z
W

g�gTu�wdx �
Z Z

W

�I�x�� J�x�	gwdx � �
���

Even when a�ne motion is a good model� these equations are only approximately satis�ed� because
of the linearization of equation �
���� However� equations �
�
� and �
��� can be solved iteratively
as follows� Let

D� � � d� � � J� � J�x�

be the initial estimates of deformation D and displacement d and the initial intensity function
J�x�� At the i�th iteration� equations �
�
� and �
��� can be solved with J�x� replaced by Ji�� to
yield the new values

Di di Ji � Ji���Aix� di�

where Ai � � �Di is the transformation between images Ji�� and Ji� To make this computation
more explicit� we can write equations �
�
� and �
��� in a more compact form by factoring out the
unknowns D and d� This yields �see Appendix A� the following linear 
� 
 system�

Tz � a �
���

where

T �
Z Z

W

�
��������

x�g�x x�gxgy xyg�x xygxgy xg�x xgxgy
x�gxgy x�g�y xygxgy xyg�y xgxgy xg�y
xyg�x xygxgy y�g�x y�gxgy yg�x ygxgy
xygxgy xyg�y y�gxgy y�g�y ygxgy yg�y
xg�x xgxgy yg�x ygxgy g�x gxgy
xgxgy xg�y ygxgy yg�y gxgy g�y

�
�������	
wdx

is a matrix that can be computed from one image�

z �

�
��������

dxx
dyx
dxy
dyy
dx
dy

�
�������	

is a vector that collects the unknown entries of the deformation D and displacement d� and

a �
Z Z

W

�I�x�� J�x�	

�
��������

xgx
xgy
ygx
ygy
gx
gy

�
�������	
w dx

is an error vector that depends on the di�erence between the two images�






The symmetric 
� 
 matrix T can be partitioned as follows�

T �

Z Z
W

�
U V

V T Z

�
wdx �
���

where U is �� �� Z is �� �� and V is �� ��
During tracking� the a�ne deformation D of the feature window is likely to be small� since

motion between adjacent frames must be small in the �rst place for tracking to work at all� It is
then safer to set D to the zero matrix� In fact� attempting to determine deformation parameters
in this situation is not only useless but can lead to poor displacement solutions� in fact� the
deformation D and the displacement d interact through the �� � matrix V of equation �
���� and
any error in D would cause errors in d� Consequently� when the goal is to determine d� the smaller
system

Zd � e �
����

should be solved� where e collects the last two entries of the vector a of equation �
����
When monitoring features for dissimilarities in their appearance between the �rst and the

current frame� on the other hand� the full a�ne motion system �
��� should be solved� In fact�
motion is now too large to be described well by the pure translation model� Furthermore� in
determining dissimilarity� the whole transformation between the two windows is of interest� and
a precise displacement is less critical� so it is acceptable for D and d to interact to some extent
through the matrix V �

In the next two chapters we discuss these issues in more detail� �rst we determine when system
�
���� yields a good displacement measurement �chapter �� and then we see when equation �
���
can be used reliably to monitor a feature�s quality �chapter ���
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Chapter �

Texturedness

Regardless of the method used for tracking� not all parts of an image contain motion information�
This has been known ever since the somewhat infelicitous label of aperture problem was attached to
the issue� for instance� only the vertical component of motion can be determined for a horizontal
intensity edge� To overcome this di�culty� researchers have proposed to track corners� or windows
with a high spatial frequency content� or regions where some mix of second�order derivatives is
su�ciently high� However� there are two problems with these �interest operators�� First� they are
often based on a preconceived and arbitrary idea of what a good window looks like� In other words�
they are based on the assumption that good features can be de�ned independently of the method
used for tracking them� The resulting features may be intuitive� but are not guaranteed to be the
best for the tracking algorithm to produce good results� Second� �interest operators� have been
usually de�ned for the simpler pure translation model of chapter �� and the underlying concept are
hard to extend to a�ne motion�

In this report� we propose a more principled de�nition of feature quality� Rather than intro�
ducing this notion a priori� we base our de�nition on the method used for tracking� a good window
is one that can be tracked well� With this approach� a window is chosen for tracking only if it is
good enough for the purpose� so that the selection criterion is optimal by construction�

To introduce our de�nition of a good feature� we turn to equation �
����� the basic equation to
be solved during tracking� We can track a window from frame to frame if this system represents
good measurements� and if it can be solved reliably� Consequently� the symmetric ��� matrix Z of
the system must be both above the image noise level and well�conditioned� The noise requirement
implies that both eigenvalues of Z must be large� while the conditioning requirement means that
they cannot di�er by several orders of magnitude� Two small eigenvalues mean a roughly constant
intensity pro�le within a window� A large and a small eigenvalue correspond to a unidirectional
texture pattern� Two large eigenvalues can represent corners� salt�and�pepper textures� or any
other pattern that can be tracked reliably�

In practice� when the smaller eigenvalue is su�ciently large to meet the noise criterion� the
matrix Z is usually also well conditioned� This is due to the fact that the intensity variations in a
window are bounded by the maximum allowable pixel value� so that the greater eigenvalue cannot
be arbitrarily large�

As a consequence� if the two eigenvalues of Z are �� and ��� we accept a window if

min���� ��� 	 � � �����

where � is a prede�ned threshold�
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To determine �� we �rst measure the eigenvalues for images of a region of approximately uniform
brightness� taken with the camera to be used during tracking� This yields a lower bound for �� We
then select a set of various types of features� such as corners and highly textured regions� to obtain
an upper bound for �� In practice� we have found that the two bounds are comfortably separate�
and the value of �� chosen halfway in�between� is not critical�

We illustrate this idea through two extreme cases� The left picture in �gure ��� is an image
window with a broad horizontal white bar on a black background� The picture on the right shows
the corresponding con�dence ellipse de�ned as the ellipse whose half axes have lengths ��� �� and
directions given by the corresponding eigenvectors�

-1 -0.5 0 0.5 1
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1

Figure ���� An image window with a white horizontal bar �left� and the corresponding con�dence
ellipse �right��

Because of the aperture problem mentioned above� a horizontal motion of the bar cannot be
detected� and the horizontal axis of the con�dence ellipse is correspondingly zero�

The situation is very di�erent in �gure ���� showing four circular blobs in the image window�
Because motion of this pattern can be detected equally well in all directions� the corresponding
con�dence ellipse� shown on the right� is a circle�

-0.2 0 0.2

-0.2

0

0.2

Figure ���� An image window with four circular blobs �left� and the corresponding con�dence ellipse
�right��

Similar considerations hold also when solving the full a�ne motion system �
��� for the defor�
mation D and displacement d� However� an essential di�erence must be pointed out� deformations
are used to determine whether the window in the �rst frame matches that in the current frame
well enough during feature monitoring� Thus� the goal is not to determine deformation per se�
Consequently� it does not matter if one component of deformation �such as horizontal scaling in
�gure ���� cannot be determined reliably� In fact� this means that that component does not a�ect
the window substantially� and any value along this component will do in the comparison� In prac�
tice� the system �
��� can be solved by computing the pseudo�inverse of T � Then� whenever some
component is undetermined� the minimum norm solution is computed� that is� the solution with a
zero deformation along the undetermined component�s��

It is still instructive� however� to consider through some examples the relative size of the eigen�
vectors and eigenvalues of the matrix U in equation �
���� corresponding to the space of linear
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deformations of the image window� For instance� a horizontal stretch or shear of the window of
�gure ��� would pass unnoticed� while a vertical stretch or shear would not� This is illustrated in
�gure ��
� the diagram on the lower left shows the four eigenvalues of the deformation matrix D�

21 3 4

Figure ��
� E�ects of a horizontal scaling �top center�� horizontal shear �bottom center�� vertical
scaling �top right� and vertical shear �bottom right� for the image at the top left� The diagram
shows the eigenvalues of the deformation matrix�

The corresponding eigenvectors are orthogonal directions in the four�dimensional space of defor�
mations �the four entries of D are the parameters of this space�� What these directions correspond
to depends on the particular image content� The four right pictures in �gure ��
 show the e�ects
of a deformation along each of the four eigenvectors for the bar window of �gure ���� repeated for
convenience at the top left of �gure ��
� The two deformations in the middle of �gure ��
 corre�
spond to the zero eigenvalues� so no change is visible� except for a boundary e�ect in the �gure at
the bottom center� The two corresponding eigenvectors correspond to the deformation matrices�

� �
� �

�
and

�
� �
� �

�

which represent unit horizontal scaling and shear� respectively� The two image windows on the
right of �gure ��
� on the other hand� represent changes parallel to the eigenvectors corresponding
to the large eigenvalues and to the vertical scaling and shear matrices�

� �
� �

�
and

�
� �
� �

�

respectively�
For the blobs of �gure ���� repeated at the top left of �gure ���� the situation is quite di�erent�
Here� the four deformation eigenvalues are of comparable size� Overall scaling �top right� is the

direction of maximum con�dence �second eigenvalue in the diagram�� followed by vertical scaling
�top center� �rst eigenvalue�� a combination of vertical and horizontal shear �bottom right� fourth
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Figure ���� E�ects of a horizontal scaling �top center�� horizontal shear �bottom center�� vertical
scaling �top right� and vertical shear �bottom right� for the image at the top left� The diagram
shows the eigenvalues of the deformation matrix�

eigenvalue�� and rotation �third eigenvalue� bottom center�� Because all eigenvalues are high� the
deformation matrix can be computed reliably with the method described in chapter 
�
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Chapter �

Dissimilarity

A feature with a high measure of con�dence� as de�ned in the previous chapter� can still be a
bad feature to track� For instance� in an image of a tree� a horizontal twig in the foreground can
intersect a vertical twig in the background� This intersection� however� occurs only in the image�
not in the world� since the two twigs are at di�erent depths� Any selection criterion would pick the
intersection as a good feature to track� and yet there is no real world feature there to speak of� The
problem is that image feature and world feature do not necessarily coincide� and an image window
just does not contain enough information to determine whether an image feature is also a feature
in the world�

The measure of dissimilarity de�ned in equation �
���� on the other hand� can often indicate
that something is going wrong� Because of the potentially large number of frames through which a
given feature can be tracked� the dissimilarity measure would not work well with a pure translation
model� To illustrate this� consider �gure ���� which shows three out of �� frame details from Woody
Allen�s movie� Manhattan�

Figure ���� Three frame details from Woody Allen�s Manhattan� The details are from the �st� ��th�
and ��st frames of a subsequence from the movie�

Figure ��� shows the results of tracking the tra�c sign in this sequence�

Figure ���� A window that tracks the tra�c sign visible in the sequence of �gure ���� Frames
��
�����
��� are shown here�
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While the inter�frame changes are small enough for the pure translation tracker to work� the
cumulative changes over �� frames are too large� In fact� the size of the sign increases by about
�� percent� and the dissimilarity measure �
��� increases rather quickly with the frame number� as
shown by the dashed line of �gure ��
�
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Figure ��
� Pure translation �dashed� and a�ne motion �solid� dissimilarity measures for the
window sequence of �gure ����

The solid line in the same �gure� on the other hand� shows the dissimilarity measure when also
deformations are accounted for� that is� if the entire system �
��� is solved for z� As expected�
this new measure of dissimilarity remains small and roughly constant� Figure ��� shows the same
windows as in �gure ���� but warped by the computed deformations� The deformations make the
�ve windows virtually equal to each other�

Figure ���� The same windows as in �gure ���� warped by the computed deformation matrices�

Let us now look at a sequence from the same movie where something goes wrong with the
feature� In �gure ���� the feature tracked is the bright� small window on the building in the
background� Figure ��
 shows the feature window through �ve frames� Notice that in the third
frame the tra�c sign occludes the original feature�

The circled curves in �gure ��� are the dissimilarity measures under a�ne motion �solid� and
pure translation �dashed�� The sharp jump in the a�ne motion curve around frame � indicates the
occlusion� After occlusion� the �rst and current windows are too dissimilar from each other� Figure
��� shows that the deformation computation attempts to deform the tra�c sign into a window�
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Figure ���� Three frame details from Woody Allen�s Manhattan� The feature tracked is the bright
window on the background� just behind the �re escape on the right of the tra�c sign�

Figure ��
� The bright window from �gure ���� visible as the bright rectangular spot in the �rst
frame �a�� is occluded by the tra�c sign �c��
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Figure ���� Pure translation �dashed� and a�ne motion �solid� dissimilarity measures for the
window sequence of �gure ��� �plusses� and ��� �circles��

Figure ���� The same windows as in �gure ��
� warped by the computed deformation matrices�
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Chapter �

Simulations

In this chapter� we present simulation results to show that if the a�ne motion model is correct
then the tracking algorithm presented in chapter 
 converges even when the starting point is far
removed from the true solution�

The �rst series of simulations are run on the four circular blobs we considered in chapter �
��gure ����� The following three motions are considered�

D� �

�
������ ���
���
��
��� ���

�

�
� d� �

�


�

�

D� �

�
��
��� ���
���
��
��� ��
���

�
� d� �

�
�
�

�

D� �

�
������ ����
�
��
��
 ���
��

�
� d� �

�


�

�

To see the e�ects of these motions� compare the �rst and last column of �gure 
��� The images
in the �rst column are the feature windows in the �rst image �equal for all three simulations in this
series�� while the images in the last column are the images warped and translated by the motions
speci�ed above and corrupted with random Gaussian noise with a standard deviation equal to �

percent of the maximum image intensity� The images in the intermediate columns are the results
of the deformations and translations to which the tracking algorithm subjects the images in the
leftmost column after �� �� and �� iterations� respectively� If the algorithm works correctly� the
images in the fourth column of �gure 
�� should be as similar as possible to those in the �fth
column� which is indeed the case�

A more quantitative idea of the convergence of the tracking algorithm is given by �gure 
���
which plots the dissimilarity measure� translation error� and deformation error as a function of the
frame number ��rst three columns�� as well as the intermediate displacements and deformations
�last two columns�� Deformations are represented in the �fth column of �gure 
�� by two vectors
each� corresponding to the two columns of the transformation matrix A � � � D� Displacements
and displacement errors are in pixels� while deformation errors are the Frobenius norms of the
di�erence between true and computed deformation matrices� Table 
�� shows the numerical values
of true and computed deformations and translations�

Figure 
�
 shows a similar experiment with a more complex image� the image of a penny
�available in Matlab�� Finally� �gure 
�� shows the result of attempting to match two completely
di�erent images� four blobs �leftmost column� and a cross �rightmost column�� The algorithm tries
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to do its best by rotating the four blobs until they are aligned �fourth column� with the cross� but
the dissimilarity �left plot in the bottom row of �gure 
��� remains high throughout�

Figure 
��� Original image �leftmost column� and image warped� translated and corrupted by noise
�rightmost column� for three di�erent motions� The intermediate columns are the images in the
leftmost column deformed and translated by ����and �� iterations of the tracking algorithm�

�




0 10 20
0

0.05

0.1

0 10 20
0

0.5

1

0 10 20
0

1.5

3

0

0

0 3

0

0 10 20
0

0.05

0.1

0 10 20
0

0.5

1

0 10 20
0

1.5

3

0 1

0

0 1.5

0

0 10 20
0

0.05

0.1

0 10 20
0

0.5

0 10 20
0

1.5

3

0
0

1

0 3

0

Figure 
��� The �rst three columns show the dissimilarity� displacement error� and deformation error
as a function of the tracking algorithm�s iteration number� The last two columns are displacements
and deformations computed during tracking� starting from zero displacement and deformation�
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Table 
��� Comparison of true and computed deformations and displacements �in pixels� for the
three simulations illustrated in �gures 
�� and 
���
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Figure 
�
� The penny in the leftmost column at the top is warped through the intermediate stages
shown until it matches the transformed and noise�corrupted image in the rightmost column� The
bottom row shows plots analogous to those of �gure 
���
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Figure 
��� The blobs in the leftmost column at the top are warped through the intermediate stages
shown until they are as close as possible to the cross in the rightmost column� The bottom row
shows dissimilarity� translation� and deformation during the iterations of the tracking algorithm�

��



Chapter �

More Experiments on Real Images

The experiments and simulations of the previous chapters illustrate speci�c points and issues con�
cerning feature monitoring and tracking� Whether the feature selection and monitoring proposed
in this report are useful� on the other hand� can only be established by more extensive experiments
on more images and larger populations of features� The experiments in this chapter are a step in
that direction�

Figure ���� The �rst frame of a �
 frame sequence taken with a forward moving camera�

Figure ��� shows the �rst frame of a �
�frame sequence� The Pulnix camera is equipped with
a �
mm lens and moves forward �mm per frame� Because of the forward motion� features loom
larger from frame to frame� The pure translation model is su�cient for inter�frame tracking but not
for a useful feature monitoring� as discussed below� Figure ��� displays the ��� features selected
according to the criterion introduced in chapter �� To limit the number of features and to use
each portion of the image at most once� the constraint was imposed that no two feature windows
can overlap in the �rst frame� Figure ��
 shows the dissimilarity of each feature under the pure
translation motion model� that is� with the deformation matrix D set to zero for all features�
This dissimilarity is nearly useless� except for features �� and ��� all features have comparable
dissimilarities� and no clean discrimination can be drawn between good and bad features�

From �gure ��� we see that features �� is at the boundary of the block with a letter U visible in

��



Figure ���� The features selected according to the texturedness criterion of chapter ��
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Figure ��
� Pure translation dissimilarity for the features in �gure ���� This dissimilarity is nearly
useless for feature discrimination�
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the lower right�hand side of the �gure� The feature window straddles the vertical dark edge of the
block in the foreground as well as parts of the letters Cra in the word �Crayola� in the background�
Six frames of this window are visible in the third row of �gure ���� As the camera moves forward�
the pure translation tracking stays on top of approximately the same part of the image� However�
the gap between the vertical edge in the foreground and the letters in the background widens� and
a deformation of the current window into the window in the �rst frame becomes harded and harder�
leading to the rising dissimilarity� The changes in feature �� are seen even more easily� This feature
is between the edge of the book in the background and a lamp partially visible behind it in the top
right corner of �gure ���� As the camera moves forward� the shape of the glossy re�ection on the
lamp shade changes and is more occluded at the same time� see the last row of �gure ����
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53 30

1

Figure ���� Labels of some of the features in �gure ����

However� many other features are bad in this frame� For instance� feature 
 in the lower right
of �gure ��� is a�ected by a substantial disocclusion of the lettering on the Crayola box by the U
block as the camera moves forward� as well as a slight disocclusion by the �
M� box on the right�
Yet the dissimilarity of feature 
 is not substantially di�erent from that of all the other features
in �gure ��
� This is because the degradation of the dissimilarity caused by the camera�s forward
motion is dominant� and re�ects in the overall upward trend of the majority of curves in �gure ��
�
Similar considerations hold� for instance� for features �� �a disocclusion�� �� �an occlusion�� and �
�a disocclusion� labeled in �gure ����

Now compare the pure translation dissimilarity of �gure ��
 with the a�ne motion dissimilarity
of �gure ��
� The thick stripe of curves at the bottom represents all good features� including features
�����
���
� From �gure ���� these four features can be seen to be good� since they are immune from
occlusions or glossy re�ections� � and �� are lettering on the �Crayola� box �the second row of
�gure ��� shows feature �� as an example�� while features 
� and �
 are details of the large title on
the book in the background �upper left in �gure ����� The bad features 
������������ on the other
hand� stand out very clearly in �gure ��
� discrimination is now possible�

Features �� and 
� deserve a special discussion� and are plotted with dashed lines in �gure ��
�
These two features are lettering detail on the rubber cement bottle in the lower center of �gure
���� The fourth row of �gure ��� shows feature 
� as an example� Although feature �� has an
additional slight occlusion as the camera moves forward� these two features stand out from the very
beginning� that is� even for very low frame numbers in �gure ��
� and their dissimilarity curves are
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Figure ���� Six sample features through six sample frames�
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Figure ��
� A�ne motion dissimilarity for the features in �gure ���� Notice the good discrimination
between good and bad features� Dashed plots indicate aliasing �see text��
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very erratic throughout the sequence� This is because of aliasing� from the fourth row of �gure ����
we see that feature 
� �and similarly feature ��� contains very small lettering� of size comparable
to the image�s pixel size �the feature window is ��� �� pixels�� The matching between one frame
and the next is haphazard� because the characters in the lettering are badly aliased� This behavior
is not a problem� erratic dissimilarities indicate trouble� and the corresponding features ought to
be abandoned�
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Chapter �

Conclusion

In this report� we have proposed both a method for feature selection and a technique for feature
monitoring during tracking� Selection speci�cally maximizes the quality of tracking� and is therefore
optimal by construction� as opposed to more ad hoc measures of texturedness� Monitoring is
computationally inexpensive and sound� and makes it possible to discriminate between good and
bad features based on a measure of dissimilarity that uses a�ne motion as the underlying image
change model�

Of course� monitoring feature dissimilarity does not solve all the problems of tracking� In some
situations� a bright spot on a glossy surface is a bad �that is� nonrigid� feature� but may change
little over a long sequence� dissimilarity may not detect the problem� However� it must be realized
that not everything can be decided locally� For the case in point� rigidity is not a local feature� so
a local method cannot be expected to detect its violation� On the other hand� many problems can
indeed be discovered locally and these are the target of the investigation in this report� The many
illustrative experiments and simulations� as well as the large experiment of chapter �� show that
monitoring is indeed e�ective in realistic circumstances� A good discrimination at the beginning of
the processing chain can reduce the remaining bad features to a few outliers� rather than leaving
them an overwhelming majority� Outlier detection techniques at higher levels in the processing
chain are then much more likely to succeed�
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Appendix A

Derivation of the Tracking Equation

In this appendix� we derive the basic tracking equation �
��� by rewriting equations �
�
� and �
���
in a matrix form that clearly separates unknowns from known parameters� The necessary algebraic
manipulation can be done cleanly by using the Kronecker product de�ned as follows �Van��	� If A
is a p� q matrix and B is m� n� then the Kronecker product A �B is the p� q block matrix

A� B �

�
��
a��B � � � a�qB
���

���
ap�B � � � apqB

�
�	

of size pm � qn� For any p � q matrix A� let now v�A� be a vector collecting the entries of A in
column�major order�

v�A� �

�
�����
a��
a��
���
apq

�
����	

so in particular for a vector or a scalar xwe have v�x� � x�� Given three matrices A�X �B for which
the product AXB is de�ned� the following two equalities are then easily veri�ed�

AT
� BT � �A� B�T �A���

v�AXB� � �BT
�A�v�X� � �A���

The last equality allows us to �pull out� the unknowns D and d from equations �
�
� and �
����
The scalar term gTu appears in both equations �
�
� and �
���� By using the identities �A����

�A���� and de�nition 
��� we can write

gTu � gT �Dx� d�

� gTDx� gTd

� v�gTDx� � gTd

� �xT � gT �v�D� � gTd

� �x� g�Tv�D� � gTd �

Similarly� the vectorized version of the �� � matrix gxT that appears in equation �
�
� is

v�gxT � � v�g �xT �

� x� g �

��



We can now vectorize matrix equation �
�
� into the following vector equation��Z Z
W

U�x�wdx

�
v�D� �

�Z Z
W

V �x�wdx

�
d �

Z Z
W

b�x�wdx �A�
�

where the rank � matrices U and V and the vector b are de�ned as follows�

U�x� � �x� g��x� g�T

V �x� � �x� g�gT

b�x� � �I�x�� J�x�	 v�gxT � �

Similarly� equation �
��� can be written as�Z Z
W

V T �x�wdx

�
v�D� �

�Z Z
W

Z�x�wdx

�
d �

Z Z
W

c�x�wdx �A���

where V has been de�ned above and the rank � matrix Z and the vector c are de�ned as follows�

Z�x� � ggT

c�x� � �I�x�� J�x�	g �

Equations �A�
� and �A��� can be summarized by introducing the symmetric 
� 
 matrix

T �
Z Z

W

�
U V

V T Z

�
w dx

�

Z Z
W

�
��������

x�g�x x�gxgy xyg�x xygxgy xg�x xgxgy
x�gxgy x�g�y xygxgy xyg�y xgxgy xg�y
xyg�x xygxgy y�g�x y�gxgy yg�x ygxgy
xygxgy xyg�y y�gxgy y�g�y ygxgy yg�y
xg�x xgxgy yg�x ygxgy g�x gxgy
xgxgy xg�y ygxgy yg�y gxgy g�y

�
�������	
w dx �

the 
� � vector of unknowns

z �

�
v�D�
d

�
�

and the 
� � vector

a �

Z Z
W

�
b

c

�
wdx

�
Z Z

W

�I�x�� J�x�	

�
��������

xgx
xgy
ygx
ygy
gx
gy

�
�������	
w dx �

With this notation� the basic step of the iterative procedure for the computation of a�ne
deformation D and translation d is the solution of the following linear 
� 
 system�

Tz � a �

��


