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Abstract

Not all measured features in SLAM/SfM contribute to

accurate localization during the estimation process, thus

it is sensible to utilize only those that do. This paper de-

scribes a method for selecting a subset of features that are

of high utility for localization in the SLAM/SfM estima-

tion process. It is derived by examining the observability

of SLAM and, being complimentary to the estimation pro-

cess, it easily integrates into existing SLAM systems. The

measure of estimation utility is formulated with temporal

and instantaneous observability indices. Efficient compu-

tation strategies for the observability indices are described

based on incremental singular value decomposition (SVD)

and greedy selection for the temporal and instantaneous

observability indices, respectively. The greedy selection

is near-optimal since the observability index is (approxi-

mately) submodular. The proposed method improves local-

ization and data association. Controlled synthetic exper-

iments with ground truth demonstrate the improved local-

ization accuracy, and real-time SLAM experiments demon-

strate the improved data association.

1. Introduction

A fact in visual SLAM/SfM is that not all of the fea-

tures being tracked contribute to accurate estimation of the

camera poses and the map. Finding the features that pro-

vide the best values for estimation is important when SLAM

is to be used for practical purposes. It is equally impor-

tant when considering visual SLAM systems developed for

large-scale/dense reconstruction with massive data process-

ing needs [27, 8, 12, 19, 29].

Conventionally, a fully data-driven and randomized pro-

cess like RANSAC is used to select the valuable features

by retrieving the inlier set [11]. Various approaches [33, 7]

were later proposed to improve the computational efficiency

and robustness of RANSAC in visual SLAM. These meth-

ods are data-driven and make no use of structural informa-

tion of the relative motion. Recent research efforts have

sought more systematic criterion for selecting the valuable

Figure 1. The proposed method selects the measurements (high-

lighted in yellow) which provide the most value to the SLAM es-

timation, by considering observability scores. In the example the

camera is mostly rotating w.r.t. the optical axis.

features. [5] propose to exploit the co-visibility of fea-

tures by cameras to select the best subset of points, but this

method is developed for Bundle Adjustment and requires

the complete structure of features-camera graph as a priori

knowledge. For SLAM, information gain has been a popu-

lar criterion for such a selection [9, 6, 17, 20]. The rationale

behind information gain is that selecting the features which

maximize the information gain in estimation will maximize

the uncertainty reduction for both the camera pose and land-

mark positions. Nevertheless, low uncertainty in estimation

is not equivalent to high accuracy. For instance, if drift ex-

ists in the estimate, the converged estimates with lowest un-

certainty still suffer from the drift. Rather, the accuracy of

the converged SLAM estimate is determined by the opera-

tor mapping the projective space of image observations to

the space of camera motion and feature 3D positions, and

its temporal dynamics, as indicated in the right block in

Fig. 2. Intuition then indicates that the better conditioned

this operator is, the more tolerant the output space is to the

perturbations in the input space. This operator encodes the

camera motion across frames due to temporal coupling of

SLAM estimates.

To exploit nature of SE〈3〉 SLAM operator to feature

ranking, we study the SLAM problem using system the-

ory to define the observability scores for feature selec-

tion. System theory, especially observability theory, have

been seen in robotics literature, but mostly restricted to 1D

SLAM [14] or 2D(planar motion) SLAM [1, 24, 28] rather

than monocular camera SLAM on SE〈3〉. Moreover, ob-
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Figure 2. Overview of our approach. The proposed method can be plugged in as a sub-step in the SLAM process. In a time step (T3 in

the figure), for features which are initially matched, we first examine the rank conditions for them, i.e. whether the feature is completely

observable to the SLAM system. If rank condition a feature is satisfied (depicted in green/purple), the τ -temporal observability score is

evaluated by considering the relative motion of the feature in the past τ local frames. Features with high observability scores are selected

as ‘good’features (depicted in green). If the number of highly observable features is too few, feature grouping with a submodular learning

scheme is applied to collect more good features. These subset of good features provide the near-optimal value for SLAM estimation.

servability theory has mainly been for full rank observabil-

ity condition analysis, much as in [34] which analyzes

bearings-only SLAM. For visual SLAM on SE〈3〉, [26]

provides an analysis of observability, but it is for stereo-

vision SLAM with planar displacement. [32] discusses ob-

servability tests for camera ego-motion from perspective

views at time instances. Few works use observability in

algorithm design rather than merely observable condition

analysis /observability tests. [18] presented a framework for

improving the consistency of EKF-based planar SLAM by

finding linearization points that ensure the observable sub-

space is of appropriate dimension for the linearized system.

Contribution. Using systems theory, we develop a fea-

ture ranking criterion for selecting the features which pro-

vide good conditioning for visual SLAM ego-motion esti-

mation. The overview of our method is depicted in Fig. 2.

This paper has three major contributions: we (1) propose a

feature ranking criterion based on observability scores us-

ing a complete observability condition for SE〈3〉 SLAM;

(2) describe an efficient algorithm for computing temporal

observability based on incremental SVD; and (3) describe

an efficient algorithm for computing instantaneous observ-

ability via submodular learning. The algorithm is called the

Good Features algorithm and can be integrated into most

existing SLAM implementations to arrive at GF-SLAM.

The contributions lead to performance gains regarding ego-

motion estimation and data-association in visual SLAM,

which are shown via experiments.

2. Good Features to Track for Visual SLAM

Let F be the set of features being tracked during the

monocular SLAM process. Much like [30] sought good

features within an image for data association across frames,

the Good Features algorithm here aims to find the subset of

features which aids most the SLAM camera ego-motion es-

timates across time (in terms of accuracy and robustness to

noise). This subset is selected by ranking features according

to their contribution to system observability (higher system

observability means better conditioned estimation). In order

to formulate the ranking score for each feature, the SLAM

system is first modeled with SE〈3〉 motion. The score is

then formulated based on the observability of the subsys-

tem composed of the camera and each individual feature.

2.1. Motion and Observations for SE〈3〉 SLAM

Here, the SLAM scenario with features and anchors is

considered. The SLAM system dynamics are modeled un-

der the hybrid SE〈3〉 state common to robotics (position in

world frame W , with orientation in body frame R ) [25],

with a perspective camera measurement model.

2.1.1 Dynamic and Measurement Models

For a system with discrete observations, a constant velocity

motion model suffices [11]. Accordingly, given the SE〈3〉
position and orientation rW

Rk
, qW

Rk
(vector, quaternion), and

associated velocities vW
Rk

, ωR , at time k, the camera state

xW
Rk

=
(

rW
Rk

qW
Rk

vW
Rk

ωR
)⊤

is updated per:

xW
Rk+1

=









rW
Rk

+ (vW
Rk

+VW )∆t

qW
Rk
× exp

([

ωR +ΩR
]

∆t
)

vW
Rk

+VW

ωR +ΩR









,

where VW ,ΩR are zero-mean Gaussian noise. The mea-

surement model for the i-th feature (i)pW
k ∈ R

3 is pinhole
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projection:

(i)
p

Rk = [pRk
x , p

Rk
y , p

Rk
z ]⊤ = R

Rk

W

(

(

q
W
Rk

)−1
)

(

(i)
p

W
k − r

W
Rk

)

,

h
Rk
i = Distort













u0 − fku
p

Rk
x

p
Rk
z

v0 − fkv
fp

Rk
y

p
Rk
z












, (1)

where R(q) is the rotation matrix of q; fku, fkv, u0, v0 are

the camera intrinsic parameters; and Distort[·] is nonlinear

image distortion [10].

2.1.2 Piece-wise Linear System (PWLS) modeled for

SLAM

Assume the system has Nf features and Na anchors. An

anchor is a 3D point in W whose position is known and

is not included in estimation process, while a feature is 3D

point whose position is not certain (at least initially). Both

are observed by the camera as per Equation (1). For the k-th

time segment Tk ≡ [tk, tk+1) (from time k to time k + 1),

the dynamics of the whole system with input uk are

XW
k+1 ,

(

xW
Rk+1

PW
k+1

)

= f

((

xW
Rk

PW
k

)∣

∣

∣

∣

AW
k

)

+ uk, (2a)

hRk+1 = hRk+1

((

xW
Rk

PW
k

)∣

∣

∣

∣

AW
k

)

, (2b)

where PW
k , ((1)pW

k ,
(2)pW

k , ...,
(Nf )pW

k )⊤ ∈ R
3Nf

is the map state vector by stacking the feature vectors,

AW
k , ((1)aW

k ,
(2)aW

k , ...,
(Na)aW

k )⊤ ∈ R
3Na is the anchor

state vector, and hRk+1 , (h
Rk+1

1 ,h
Rk+1

2 , ...,h
Rk+1

N )⊤ ∈
I
2(Nf+Na) is the measurement vector at time k + 1 with

measurements from both features and anchors.

With the smooth motion assumption, the system at Tk

is linearized via XW
k+1 ≅ XW

k + Df
(

XW
k

)

· XW
k + uk,

hRk+1 ≅ hRk + DhRk+1

(

XW
k

)

·XW
k . The linearized sys-

tems across time segments form the piece-wise linear sys-

tem (PWLS) in (3) below, which approximates the time-

varying system in (2).

{

XW
k+1 = FRkXW

k + uk

δhRk = HRkXW
k

for t ∈ Tk (3)

The PWLS preserves the characteristic behavior of the orig-

inal time-varying system with little loss of accuracy [15].

2.2. System Observability Measure

For a discrete PWLS, the sufficient and necessary condi-

tion for the system to be completely observable is given by

the following Lemma:

Lamma 1. [15] A discrete PWLS is completely observable

iff the Total Observability Matrix (TOM) is full-rank.

QTOM(j) =











Q1

Q2F
n−1
1
...

QrF
n−1
r−1 F

n−1
r−2 · · ·F

n−1
1











(4)

where Fj is the process matrix and Hj is the measurement

matrix for time segment j. Qj is the linear observability

matrix, Q⊤
j =

[

H⊤
j |(HjFj)

⊤| · · · |(HjF
n−1
j )⊤

]

.

Computation of the TOM is expensive. However, for the

SLAM system described in Equation 3, N (Qj) ⊂ N (Fj).
Lemma 2 provides a proxy to examine the full rank condi-

tion of the system

Lamma 2. [15] For PWLS, when N (Qj) ⊂ N (Fj), the

stripped Observability Matrix (SOM)

QSOM(j) =
[

Q⊤
1 |Q

⊤
2 | · · · |Q

⊤
j

]⊤
. (5)

has the same nullspace as TOM, i.e. N (QSOM(j)) =
N (QTOM(j)).

Theorem 1. When Nf = 0, a necessary condition for sys-

tem (3) to be completely observable within J is (1) J = 1
and Na ≥ 3, or (2) J ≥ 2 and Na ≥ 1.

Proof. The SLAM system with Nf features and Na an-

chors has the PWLS matrices

FRk =

(

F
xW

Rk

013×3Nf

03Nf×13 I3Nf×3Nf

)

, (6)

and

F
xW

Rk

=





I3×3 03×4 ∆t · I3×3 03×3

04×3 Q4×4 04×3 Ω4×3

06×7 I6×6



 (7)

where Q and Ω are defined as

Q =









qR −qx −qy −qz

qx qR qz −qy

qy −qz qR qx

qz qy −qx qR









, and

Ω =









qR
k

−qx
k

−q
y
k

−qz
k

qx
k

qR
k

−qz
k

q
y
k

q
y
k

qz
k

qR
k

−qx
k

qz
k

−q
y
k

qx
k

qR
k









·

dq

dω
·∆t.

(8)

with qW
Rk

= (qRk , q
x
k , q

y
k , q

z
k)

⊤ and exp (ωR ∆t) =

3



(qR, qx, qy, qz)⊤. The measurement Jacobian is

HRk = (9)


































∂h
Rk
1

∂rW
R

∂h
Rk
1

∂qW
R

02×6
∂h

Rk
1

∂pW
k

· · · 02×3

...
...

...
...

. . .
...

∂h
Rk
Nf

∂rW
R

∂h
Rk
Nf

∂qW
R

02×6 02×3 · · ·

∂h
Rk
Nf

∂pW
k

∂h
Rk
(Nf+1)

∂rW
R

∂h
Rk
(Nf+1)

∂qW
R

02×6

...
...

... 02Na×3Nf

∂h
Rk
(Nf+Na)

∂rW
R

∂h
Rk
(Nf+Na)

∂qW
R

02×6



































.

The first Nf rows are w.r.t. the features while the last

Na rows are w.r.t. the anchors. Using Equations (6) to

(9), the dimensions of null spaces within one time segment

when Nf = 0, Na 6= 0 can be obtained: When Na ≥ 3,

Dim(N (QSOM(1))) = 0 may hold, i.e. QSOM(1) is full-

rank. Thus, the system (3) is completely observable. Sim-

ilarly, when r ≥ 2 and Na ≥ 1, Dim(N (QSOM(j))) = 0
may hold, i.e. system is completely observable.

According to Theorem 1, if a feature is tracked across

3 frames, the system composed of the camera motion and

the feature may become observable, and the corresponding

SOM full-rank. Degenerate conditions such as the point ly-

ing on the translation vector of a camera undergoing pure

translation would fail to be observable (as would pure ro-

tation). The degenerate conditions are typically of mea-

sure zero in the observation space. Tracking multiple fea-

tures would guarantee observability for some subset of the

tracked set. Under the observable condition for a feature,

the value of a feature towards ego-motion estimation is re-

flected by the conditioning of the SOM. Thus, we define the

τ -temporal observability score of a feature across τ local

frames, τ ≥ 2 with the minimum singular value of SOM:

ψ(f, τ) = σmin(QSOM(τ |f)),

where at time k, QSOM(τ |f) is defined on the time seg-

ments (k − τ), (k − τ + 1), ..., k.

This temporal observability score measures how con-

strained the SLAM estimate is w.r.t. the feature observation

in the projective space, when considering the relative poses

of the feature and camera over a recent period of time. The

temporal nature of the measure is important because the

SLAM estimate, in both the filtering and smoothing ver-

sions, is performed across time, with the current estimate

affected by the previous estimate.

2.3. Rankk Temporal Update of Observability
Score

Computation of the τ -temporal observability score is ef-

ficient. Firstly, due to the sparse nature of the process matrix

F , each subblock in Q can be computed iteratively with

HFn =
(

H1∼3 H4∼7Q
n H1∼3n∆t H4∼7

∑n−1
i=0 QiΩ

)

where H1∼3 denotes the matrix consist of column 1 to col-

umn 3 of matrix H. Secondly, the running temporal observ-

ability score of a feature can be computed efficiently with

incremental SVD. Computation of the τ -temporal observ-

ability score is divided into the following phases:

1. In the first two frames that a feature is tracked, the ob-

servability cannot be full-rank. Build the SOM;

2. In frame three, the full rank condition of SOM may be

satisfied. Compute SVD of the SOM;

3. From frame 4 to frame τ+1 (in total τ time segments),

for each new time segment a block of linear observabil-

ity matrix is added to the SOM. Instead of computing

SVD on the expanded SOM, perform a constant time

rank-k update of the SVD [4], as per below.

The SVD of QSOM(j) is USV ⊤ = QSOM(j)⊤,

where S ∈ R
r×r with r = 13 (camera state). For the

new row a⊤, compute

m , U⊤a; p , a−Um; P , p/||p||. (10)

Let

K =

(

S m

0 ||p||

)

. (11)

Diagonalize K as U′⊤KV′ = S′ and update

[QSOM(j)⊤|a] = ([U P]U′)S′([V̄ Q]V′)
⊤

(12)

where V̄⊤ = [V⊤,0], Q = [0, · · · , 0, 1]⊤. Diagonal-

ization of K takes O(r2) [16].

Expanding the SOM with more time segments re-

sults in adding 2r new rows into SOM. Each new row

requires a rank-1 update, leading to rank-2r update for

the whole SOM.

4. After frame τ+1, for each new frame, update the SOM

by replacing the subblock from the oldest time seg-

ment with the linear observability matrix of the cur-

rent time segment. For example, let SOM at time k

beQ
(k)
SOM(τ) =

[

Q⊤
k−τ+1|Q

⊤
k−τ+2| · · · |Q

⊤
k

]⊤
, then at

time k+1,Q
(k+1)
SOM (τ) =

[

Q⊤
k+1
|Q⊤

k−τ+2| · · · |Q
⊤
k

]⊤
.

Computing the SVD of Q
(k+1)
SOM (τ) given the SVD

of Q
(k)
SOM(τ) can also be done with a rank-2r update

similar to phase 3. Let row b be replaced by row vector

c in this case, by setting a = (c−b)⊤, the updated SVD

is generated via (10)-(12).

After updating the τ -temporal observability scores of the

features and ranking them, the top Ka features over a se-

lected threshold are upgraded to be anchors. If the anchor

set has less than (Ka − 2) elements passing the threshold

test, then additional features will need to be added to com-

plete the anchor set.
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Figure 3. In spatial grouping, selecting one more feature as anchor

results in an additional row-block in the measurement Jacobian,

which further expands the SOM.

3. Submodular Learning for Feature Grouping

When needed, the group completion step selects more

features as anchors by maximizing the minimum singular

value of SOM over the selected features. Upgrading a fea-

ture to be an anchor will expand the dimension of F and H
in Equation (6)-(9), resulting in additional rows in SOM.

The group completion problem can be formulated as fol-

lows: Let X be the SOM of the features with high ob-

servability score, X ∈ R
n×m, n ≥ m. Adding a fea-

ture results in adding a row-block Rk to the SOM as in

Fig. 3. Denote the set of all candidate row-blocks as R =
{R1, R2, ..., RK}, Rk ∈ R

n′×m. Finding K∗ features

which form the most observable SLAM subsystem is equiv-

alent to finding a subset of the candidate rows that maximize

the minimum singular value of the augmented matrix

R∗ = argmax
R∗⊆R,|R∗|=K∗

σmin

(

[

X⊤|R∗⊤
1 |R

∗⊤
2 |...|R

∗⊤
K∗

]⊤
)

Such a combinatorial optimization problem is NP-hard.

However, the problem has nice submodular properties.

Definition 1. [23] (Approximate submodularity)

A set function F : 2V 7→ R is approximately submodular if

for D ⊂ D′ ⊂ V and v ∈ V \D′

F (D ∪ {v})− F (D) ≥ F (D′ ∪ {v})− F (D′)− ε (13)

Theorem 2. When X ∩R = ∅, the set function Fσmin
(·) :

2X∪R 7→ R is approximately submodular,

Fσmin
(X ∪R∗) = σmin

(

[

X⊤|R∗⊤
1 |R

∗⊤
2 |...|R

∗⊤
K∗

]⊤
)

.

(14)

The proof requires the following two lemmas.

Lamma 3. [3] (Concavity of min eigenvalue function)

For any real symmetric matrix G ∈ R
m×m, let f(G) ,

λmin(G), f(G) is a concave function of G.

Lamma 4. [13] (Eigenvalues of sum of two matrices) Let

A, B, C be Hermitian n by n matrices, denote the eigen-

values of A by α : α1 ≥ α2 ≥ ... ≥ αn, and similarly write

β and γ for eigenvalues of B and C, then:

γi+j−1 ≤ αi + βj whenever i+ j − 1 ≤ n. (15)

Proof. (Theorem 2) WLOG consider the two row-blocks

R1 and R2 from R. Denote the Gram matrices G◦ as:

GX = X⊤X, GR1
= R⊤

1 R1, and GR2
= R⊤

2 R2.
Also define the augmented Gram matrices as

GXR =
(

X⊤|R⊤
)

·

(

X
R

)

It holds that GXR1
= GX + GR1

, GXR2
= GX + GR2

,

GXR1R2 = GXR1 + GR2 , and GXR2R1 = GXR2 + GR1 .

Let the minimum eigenvalue of GX be λmin(GX) ≡
λm(GX), the maximum eigenvalue be λmax(GX) ≡
λ1(GX). Since X is a real matrix, λmin(GX) = σ2

min(X),
and likewise for the augmented matrices. From Lemma 3,

λmin (GXR1) = λmin (GX +GR1)

≥ (λmin (GX) + λmin (GR1)) (16)

≥ λmin (GX)

Thus, Fσmin
(X ∪ {R1}) ≥ Fσmin

(X). From Lemma 4,

and the fact that the Gram matrices are real-symmetric and

hence Hermitian, the following holds:
λmin (GXR1R2) = λm+1−1 (GXR1R2)

≤ λm (GXR2) + λ1 (GR1)
(17)

Combining (16) and (17),

λmin (GX) + λmin (GXR1R2)

≤ λmin (GXR1) + λmin (GXR2) + dρ(R1),

where dρ(R1) = λmax(R1)− λmin(R1). Similarly,

λmin (GX) + λmin (GXR1R2)

≤ λmin (GXR1) + λmin (GXR2) + dρ(R2)

The tighter bound is:

λmin (GX) + λmin (GXR1R2)

≤ λmin (GXR1)+λmin (GXR2)+min (dρ(R1), dρ(R2)) .

This leads to

Fσmin
(X ∪ {R1}) + Fσmin

(X ∪ {R2})

≥ Fσmin
(X) + Fσmin

(X ∪ {R1} ∪ {R2})

−min (dρ(R1), dρ(R2)) . (18)

When X ∩R = ∅, Fσmin
(·) is approximately submodular,

with the bound ε = max(dρ(Rk)), ∀Rk ∈ R.

Theorem 2 means that a greedy algorithm will be near-

optimal. The simplest greedy algorithm outline in Algo-

rithm 1 identifies the group completion in the cardinality

deficient case with a complexity of O(K∗Kn′) (when us-

ing incremental SVD). The near-optimality bound is

Theorem 1. [23]. Let AG be the set of the first

K∗ elements chosen by Algorithm 1, and let OPT =
max

A⊂R,|A|=K∗

Fσmin
(X ∪A). Then

Fσmin
(AG) ≥

(

1−

(

K∗ − 1

K∗

)K∗
)

(OPT −K∗ε)

(19)
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Figure 4. Simulated scenario #1 for ego-motion estimation experiment. Results shown have 1.0 pixel measurement standard deviation and

Ka = 10. Row 1: reconstructed maps at time steps when camera is performing circular movement; features are depicted with estimated

mean and covariance; points in red are selected as anchors. Row 2: corresponding camera frames with observability scores shown for all

measurements. Row 3: interpolated maps of observability score on image plane showing how it changes during the motion.

Algorithm 1: Submodular learning for feature grouping.

Data: X ∈ R
n×m, n ≥ m,

R = {R1, R2, ..., RK}, Rk ∈ R
1×m, K∗

Result: R∗, |R∗| = K∗

1 R∗ ← ∅;
2 while |R∗| < K∗ do

3 R∗ ← argmaxR∗∈R Fσmin
(X ∪ {R∗});

4 R∗ ← R∗ ∪ {R∗};
5 R← R \ {R∗};

4. Evaluation

4.1. Integration into SLAM

The proposed method is complementary to various se-

quential SLAM algorithms [11, 7, 22, 21]. It provides a

ranking of features which can be used in different phases:

• Ego-motion estimation. After data-association but

prior to post-optimization, the Good Features method

can be used to select a subset of features from the

best matched measurements, so that both the data-

association scores and the observability scores are con-

sidered. Localization is performed using only the sub-

set, while the mapping is performed on the whole fea-

ture set based on the localization results (acting as ex-

ternal input).

• Data-association. The observability scores can be

used in some data-association processes. For exam-

ple, in 1-Point RANSAC method, for each iteration the

features with high observability scores are used to par-

tially update the model, which is then used to retrieve

the inlier set.

4.2. Experiments for Egomotion estimation

Evaluation of the proposed method for the ego-motion

estimation phase focuses on the estimation accuracy. There-

fore this experiment will isolate the data association error

from the localization error such that the SLAM accuracy is

only affected by the selection of anchors. Precisely bench-

marking the SLAM accuracy is a difficult task, because

most of the publicly available datasets do not provide exact

ground truth and perfect data association. The usual SLAM

baseline for evaluating accuracy is a global optimization,

usually bundle adjustment [2, 35]. However, these data-

driven baseline methods are not actual ground truth.

Experimental Scenarios. To perform controlled ex-

periments for accuracy evaluation, we use camera motion

and observation simulation modules from software in [31]

which assumes perfect data association, but implements the

SLAM estimation process. Two scenarios are simulated.

The simulated environment is of dimension 12m × 12m
with 72 landmarks forming a square. Two scenarios are

tested. In the first one, the robot performs circular trajec-

tory as in Row 1, Fig. 4. The second scenario simulates a

more cluttered scene. The robot moves away from the land-

marks while performing slight rotation as shown in Fig. 5.

Experiment Setup and Comparison. In each time

step, ego-motion estimation is performed with an Extended

6



Figure 5. Simulated scenario #2 for ego-motion estimation exper-

iment. Left: reconstructed map with robot trajectory shown in the

thick red curve. Right: corresponding camera frame.

Kalman Filter only with the anchors, while the features are

estimated based on the ego-motion estimate. Experiments

are performed with different levels of observation noise and

anchor set sizes. We tested the configurations with standard

deviation of observation noise of 0.5, 1.0, 1.5, 2.0, 2.5
pixels under Gaussian noise, and maximum anchors sets of

Ka = 3, 4, 5, 6, 7, 8, 10, 12. The temporal parameter

τ = 5 is used in our method. The threshold for observabil-

ity score is 0.003. In cases with less than Ka − 2 strongly

observable features, at most 2 more features are added via

spatial grouping. The baseline state-of-the-art method uses

information gain for feature selection [20]. The same ego-

motion estimation and mapping scheme is applied on both

methods. Due to the randomized effects from the noise sim-

ulation, 15 experiments are run per configuration.

Metrics. Localization accuracy is evaluated by the cu-

mulative translation errors and cumulative orientation er-

rors. Let ∆rW
Rk

be the translation error at time k, ∆θW
Rk

be the orientation error in Euler angles,
∑

k ||∆rW
Rk
||2

and
∑

k ||∆rW
Rk
||∞ are used for evaluating cumulative

translation errors, and accordingly
∑

k ||∆θ
W
Rk
||2 and

∑

k ||∆θ
W
Rk
||∞ for cumulative orientation errors. The av-

erage value of the 15 runs are used as the final evaluation

result for each configuration.

Results. The evaluation results are shown in Fig. 6 and

Fig. 7. For the interest of space, configurations of #An-

chors ∈ {3, 4, 5, 10} are displayed for scenario #1 to high-

light both the extreme cases and saturated cases, and #An-

chors∈ {3, 4, 8, 10} for the more cluttered scenario #2. Our

method outperforms the information gain based method in

92.5% (37/40) cases for translation and 82.5% (33/40) for

orientation in scenario #1; 85% (34/40) for translation and

95% (38/40) for orientation in scenario #2. These ratios are

the same for both l2-norm and l∞-norm metrics.

4.3. Experiments for Dataassociation

The proposed method is tested in data-association with

real scenes and via modification of the baseline SLAM sys-

tem (1-Point RANSAC) from [7]. For data-association,

the features are first matched with individual compatibil-

ity. Then in each iteration of 1-Point RANSAC, one feature

measurement is selected randomly to partially update the lo-

Figure 6. Results of simulation scenario #1 with cumulative trans-

lation errors and cumulative orientation errors. “ObsStd ”stands

for the standard deviation of observation noise in pixel units.

Figure 7. Results of simulation scenario #2.

calization, which further generates a hypothesis to retrieve

the inlier set. The maximum supported hypothesis is used

as the data-association results. The Good Features modifi-

cation changes selection of the feature for hypothesis gen-

eration such that strongly observable features are selected.

Dataset. For the purpose of evaluating the effect of tem-

poral parameter, we collected videos under smooth motion

and highly dynamic motion respectively. We use 3 videos

for each type of motion respectively. The videos are col-

lected in 640 × 480 resolution and 40 fps frame rate. Each

video clip has about 2300 frames.

7



Figure 8. Example frames from data-association experiment. The strongly observable features are illustrated in yellow, retrieved inlier set

is in cyan, and the outlier set is in purple. Row 1: camera is moving away from the desktop. Row 2: camera is rotating w.r.t. the optical

axis. Row 3: camera is rotating w.r.t. the x axis of camera.

Figure 9. Relative improvements of inlier ratios versus [7].

Experiment Setup and Comparison. The code was

written in C++ with OpenCV and Armadillo following the

pipeline described in [7]. The experiments are run on a

2.7GHz 8-core PC with 16GB RAM. For our method, the

strongly observable features quantity parameter is set toKa,

which are then used to generate the data-association hy-

pothesis. We tested our method with temporal parameter

τ ∈ {3, 5, 7, 9, 11}. Some example frames under three mo-

tion segments are shown in Fig. 8.

Metrics. We evaluate data-association results by com-

paring average inlier ratios of the maximum supported data-

association hypothesis. The inlier ratio is defined as Γ =
#inlier/(#inliers+#outliers).

Results. The relative improvements of the inlier ra-

tios from our good features for SLAM method (denoted as

ΓGFSLAM) over that from [7] (denoted as Γ0) are shown in

Fig. 9. Our method outperforms [7] in all the datasets by

at least ≈5.5%. For the slow motion, the inlier ratio of our

method has the peak value with τ ∈ [9, 11]. For the fast mo-

tion, the peak value is at about τ ∈ [5, 7]. Some statistics

of execution time are reported in Table 1. Our method has

Frame rates (fps) Mean Std. Min Max

[7] 52.58 9.25 12.26 72.55

GF-SLAM 48.14 5.59 25.81 65.54
Table 1. Statistics of execution time.

a slightly lower average frame rate due to the computation

overhead for computing the observability scores. However,

our method is more stable in terms of both standard devi-

ation and max/min values. Moreover, the execution time

of our method can be further improved by parallelizing the

computation of observability scores for different features.

5. Conclusion

We presented a new method for selecting the features in

visual SLAM process which provides the best values for

SLAM estimation. The feature selection criterion based on

temporal observability is proposed via analysis of the vi-

sual SLAM problem from a control systems view. We fur-

ther develop efficient computation methods for temporally

updating the score via incremental SVD. A greedy algo-

rithm for group completion, in the case of insufficient high-

observability features, is also presented and justified. The

Good Features method performs competitively with respect

to the state-of-the-art methods in terms of localization ac-

curacy and data-association inlier ratios.
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