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Abstract

The fact that the more resourceful people are sharing with the poor to mitigate inequality—

egalitarian sharing—is well documented in the behavioral science research. How inequality

evolves as a result of egalitarian sharing is determined by the structure of “who gives

whom”. While most prior experimental research investigates allocation of resources in

dyads and groups, the paper extends the research of egalitarian sharing to networks for a

more generalized structure of social interaction. An agent-based model is proposed to pre-

dict how actors, linked in networks, share their incomes with neighbors. A laboratory experi-

ment with human subjects further shows that income distributions evolve to different states

in different network topologies. Inequality is significantly reduced in networks where the

very rich and the very poor are connected so that income discrepancy is salient enough to

motivate the rich to share their incomes with the poor. The study suggests that social net-

works make a difference in how egalitarian sharing influences the evolution of inequality.

Introduction

The proliferation of research in the behavioral sciences of the past decade has provided strong

evidence to the human nature of aversion to economic inequality and the propensity to care

for the economic disadvantaged. Experimental studies show that from children to adults people

share valuable goods with unrelated others [1–7] and take costly action to correct unfair divi-

sions of resources between strangers from which they claim no benefits [8–10]. These studies

suggest that facing unequal distributions people are willing to sacrifice their own benefits to

help the economic disadvantaged—an action termed egalitarian sharing [1,11–14], although

egalitarianism is far from the only guiding principle of human behavior, as people are also

found to choose utilitarian options that maximize group welfare over egalitarian divisions of

resources [15–16].

Most of the experimental research on egalitarian sharing investigates the division of re-

sources in a dyad, in which a person interacts with an alter, or a complete group, wherein actors

interact with one another. Social interaction, however, could take a different form than dyads

and groups. In fact, many social activities are carried out in networks—a more generalized
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structure of social interaction, of which dyads and complete groups are two special cases. Net-

work is not only more representative of how social connections are structured, but is also an

important mechanism for the emergence of social behavior, such as cooperation and influence

[17–20]. Yet, in the literature little do we know how network structure influences the behavior

of egalitarian sharing and how inequality evolves in networks.

Social networks play an important role in the assessment of income inequality. The study of

social comparison in social psychology indicates that people tend to select particular referents

to compare their well-being with [21–23]. Accordingly, scholars have long proposed a network

approach to understanding the choices of referents in social evaluation [24]. Network influ-

ences not only how social referents are chosen, but also how kindness and generosity flow. Dif-

ferent forms of social supports, such as food sharing, are provided through social networks

[25–26]. Economic aids provided by microcredit finances, for example, are mobilized mainly

through interpersonal networks [27–28]. These examples suggest that network influences the

extent to which inequality is perceived, as well as how altruistic giving is distributed to the

needy.

We present an experimental study to investigate how actors share incomes with neighbors

in some stylized networks. The result shows that income distribution evolves differently across

networks. People’s behavior of sharing is driven by some factors related to the distributions

they are exposed to, but the factors are activated of different extents in different networks, ex-

plaining in part why there is a difference across networks in how inequality evolves.

Egalitarian Sharing in Networks

The scenario (or a game) we depict for studying egalitarian sharing in networks can be de-

scribed as follows. Consider a group of actors, each of which is given an income and linked to a

set of others in the group. The network that governs people’s interaction is fixed. In each round

of the game, actors view the income distribution of their network neighbors—those linked to

them—and decide whether to give money to neighbors. Actors’ incomes are modified whenev-

er they give or receive money from others. The game continues until no one gives.

Understanding how egalitarian sharing is practiced and in turn how income distribution

evolves in the game requires considerations of an array of factors that can be summarized in

the following two inquiries: What motivates people to share? And whom would they share

with?

When actors are placed in a network, the income distribution of their network neighbors is

what they are exposed to. Prior research in the economic behavioral sciences has provided in-

sights into how altruistic sharing is influenced by properties related to the distribution itself

and the position that allocators take in the distribution. First, behavioral economists found that

aversion to inequality is a propellant of prosocial behavior [12, 29]. Larger income discrepancy

is expected to trigger more sharing of income. Second, income status could influence the deci-

sion. Psychological research found that social status is associated with altruism. An actor who

occupies a higher position in the distribution may be more [30] or less [31] motivated to share

his/her income with the poor. Thirdly, how many recipients an actor is exposed to could make

a difference. A recent study shows that people’s altruism varies with the number of recipients.

A person may feel more motivated to give when there are more recipients available [32].

Network not only influences a person’s motive of giving, it also determines the pool of po-

tential recipients. Research evidence suggests that the probability of receiving donation is a

function of economic status: the poorer a person is, the more likely s/he would receive giving

from others [3, 33]. On the other hand, altruism can be congestible in the sense that similarly

poor people are poised to compete for giving from the same giver [32]. The probability of
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receiving giving, therefore, is not only determined by the recipient’s income level, but is also

contingent on how many other similarly poor people are competing for the giving. Givers, on

the other hand, could choose different forms to allocate their giving. For example, they could

evenly divide the giving to a set of similarly poor people or could randomly select one of them

to concentrate their giving. It remains an empirical question how giving would be allocated.

Furthermore, giving does not necessarily come from the rich to the poor per se. Earlier re-

search evidence has found incidents of reverse redistribution; i.e., donation goes along the op-

posite direction from the poor to the rich [2]. Despite being rare, reverse redistribution can be

caused by different motives. One of the drivers is reciprocity: people express their gratitude for

receiving donation from others by giving money in return even though that the recipients may

have higher incomes than they do. In addition, reverse redistribution can be attributed to a de-

sire not to be the poorest person: the poor may choose to give to the rich, but not those poorer

than they are, out the fear that their giving to the poorer may make them the poorest in the dis-

tribution [34].

While prior research provides useful guidance to predicting how egalitarian sharing unfolds

for an income distribution, the overall effect would be determined by network topology, which

delineates the different (local) income distributions that each actor would face in his neighbor-

hood. Tracking the dynamics of income distribution as a result of egalitarian sharing in net-

works is extremely difficult by intuitive reasoning. To the challenge, we draw on an agent-

based model to derive some theoretical predictions. Details of the model are reported in the on-

line supporting materials (S2 File). As can be found there, while the evolution of income distri-

butions is influenced by a multitude of factors pertaining to individual’s sharing behavior, the

effects of these factors vary across network topologies.

The Experiment

Experiment Design

Income Distribution. Each actor is given an income in the beginning. Incomes are uni-

formly distributed (min = 10 and max = 200) over a group of 25 actors, shown by the numbers

in each node of the network in Fig 1.

Network Topologies. We choose four network topologies that are well studied in network

science. For the first two networks, lattices, ties are equally distributed across nodes: each actor

is linked to four neighboring others along a circle [35]. For the other two networks, Scale Free

Networks (SF), ties are unevenly distributed—while a small number of people are well con-

nected, the remaining are sparsely connected [36]. Owing to their unique structural properties,

the two types of networks have proved to influence the emergence of many kinds of social be-

havior [37–38]. They are selected here for another reason: previous work shows that the num-

ber of ties a node has—nodal degree—influences the perception of distributional inequality

[39]. Because Lattice and SF networks take opposite positions in the distribution of nodal de-

gree, implementation of the two types of networks allows us to investigate how inequality in

the distribution of network ties influences egalitarian sharing.

Within the first network type, lattice, we make a distinction by how incomes are assorted in

network. People can be linked with others with little or large difference in incomes—homo-

phily vs. heterophily [40]. In homophilous (heterophilous) networks, an actor’s income would

be less (more) different from his neighbors than non-neighbors. The difference between homo-

phily and heterophily is expected to generate different perceptions of local income inequality

and mobilize different amounts of giving.

Within the second network type (SF), where ties are unevenly distributed, we make a dis-

tinction by how nodal degree and income level are related. Richer people could be more or less
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linked than the poor in network [41–42]. We simulate the two conditions by relating nodal de-

gree to income level positively and negatively respectively.

Fig 1 presents the four network topologies. Details of the generation of the four networks

are provided in the online supporting material (S1 File). The four networks are identical in net-

work density, allowing us to investigate how structure rather than the amount of ties influences

egalitarian sharing and the evolution of inequality. We also consider a fully saturated network

(not shown in the Figure) to represent that everyone is linked to all others in the group. A total

of five network topologies are investigated.

Experimental Procedure

A total of 162 undergraduate students of a public university in southern California of the U.S

were recruited to participate in the experiment using monetary payoff as incentive. The

Fig 1. The four network topologies. (a) Lattice_Hetero: actors with discrepant income levels are linked in a lattice, where each node has the same number
of ties. (b) Lattice_Homo: actors with similar income levels are linked in a lattice, where each node has the same number of ties. (c) SF_Negative: income
levels and nodal degrees are negatively associated in a network where ties are unevenly distributed across nodes. (d) SF_Positive: income levels and nodal
degrees are positively associated in a network where ties are unevenly distributed across nodes. Numbers within each node represent income levels. Darker
colors refer to higher incomes.

doi:10.1371/journal.pone.0128777.g001
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experiment was approved by the university IRB (HS#2011–8378). Participants were recruited

by a social science experimental laboratory of the university and were allocated to seven ses-

sions. We customized our experiment to accommodate any number of participants that would

show up in a session. We worked to recruit 25 participants for each session; however, fewer

participants than expected turned out in the last two sessions. For the two sessions with fewer

participants, the experiments were run on smaller networks (19 and 18 nodes respectively); ex-

cept for this difference, every other experiment condition was kept the same as the normal ex-

periment with n = 25. The generation of the slightly smaller networks is following the same

mechanism detailed in the online supporting materials.

We adopt a within-subject design: in each session, all participants went through five trials,

each of which implemented one of the five network topologies (or treatment). The order of the

five network trials in a session was randomized. At the end of each session, a network trial was

chosen by lottery and participants were paid in proportion to their income levels at the final

round of the chosen trial [43].

The experiment was held at a social science laboratory on campus. Participants were seated

in individual cubicles and interacted with others through Internets using the pseudo-identities

we provided. We customized a web-based experiment program to operate the experiment.

We read out the instruction to participants before the experiment began (the instruction

sheet provided in S3 File). In the beginning of an experiment trial, participants were given an

income as was specified in Fig 1. Incomes were represented by tokens and participants were

told that the tokens were redeemable to money. In each round, the experiment identities of

each person’s network neighbors and their current token balances were shown on the screen. If

an individual would like to donate token(s) to a network neighbor, s/he could put a number in

the box designated for the recipient neighbor. Our program would block illegal inputs, such as

symbols, non-integers or negative integers. Shall an illegal input occur, a warning message

would pop up and request the subject to input a new donation if s/he wants. The default

amount of donation is set to zero so if a person does not input any number, nothing will be do-

nated. The participants were not allowed to give more than they currently had.

Each person has sufficient time (40 seconds) to make a decision of giving in each round.

The game moves to the next round when all participants have made their decisions or when

the time expires. The game stops under two circumstances: either when no one gives, or the

game finishes the 10th round. The former condition is an ideal stopping rule, but to prevent the

game from proceeding too long, we imposed a compulsory stopping time at round 10 if the ex-

periment fails to stop by then. The participants were informed of the first stopping rule, but

did not know of the compulsory stopping rule set at round 10.

Participants were paid individually at the end of the experiment. The payoff includes a

show-up fee (US$7), plus the token balance in the last round of the chosen trial. On average, a

participant received $12.25 from the experiment.

Experiment Result

A total of 35 experiment trials (7 sessions × 5 trials) were run. Four of them encountered unex-

pected software problems in the middle of the experiment. The failed trials were not included

in the analysis.

Inter-temporal Distribution of Giving. S7and S8 Figs present the records of giving over

time. About half of the participants donated money in the early period of the experiment. The

proportion drops to around 20% by round 10. On average, people donated 5.4% of their in-

comes in the beginning, and the percentage falls to 2.6% by round 10. In 7 of the 31 experiment

trials that were successfully run (22%), all participants stopped giving before round 10.
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End-Round Inequality. Our primary objective is to compare income distributions in the

initial and the final round of the experiment to see whether inequality improves or not. Fig 2

presents the distribution of inequality levels measured by the Gini coefficient for each network

treatment. We calculate the Gini coefficient of the end-round distribution for each session.

Using session as the unit of analysis, we compare the initial and the end-round Gini coefficients

by running the Wilcoxon Signed Rank test (for more details, please see S4 File). The test shows

that the Gini coefficient of the end-round distribution is lower than the original income distri-

bution in the Lattice_Hetero and the SF_Negative network treatment (W = 0, p = 0.01 and

W = 0, p = 0.03), but not in the other three network treatments (W = 5; p = 0.31 for Full;

W = 15; p = 0.44 for Lattice_Homo and W = 14; p = 0.56 for SF_Positive).

The finding shows a difference in the reduction of inequality across the five network treat-

ments. Why is there such a difference? We attempt to seek the answer by looking into subjects’

behavior of sharing in the experiment. As would be shown, the two networks found to

Fig 2. Inequalities of the end-round distributions measured by the Gini coefficient for each network treatment. The segments represent the 95%
confidence interval. The vertical dotted line shows the inequality level of the original distribution.

doi:10.1371/journal.pone.0128777.g002
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experience a significant reduction of inequality actually performed differently from others in

triggering actors’ egalitarian sharing in the experiment.

Individuals’ Behavior. In reference to the discussion in section 2, here we consider a list

of variables that are suspected to trigger subjects’ sharing of incomes: Actor i’s income (Xi,t)

and nodal degree (Ki); the ranking of actor i (Ri,t) and the inequality level (Li,t) of the income

distribution in actor i’s network neighborhood. The subscript t (time) denotes that the variable

is endogenous and subject to change in each round.

Actor i’s income level at time t (Xi,t) is bound between 0 and the sum of all actors’ incomes.

Income ranking (Ri,t) is the position that actor i takes in the sequence, ordered from low to

high, of the incomes of actor i’s and his network neighbors. We normalize the ranking by divid-

ing it by the length of the sequence so that Ri,t would be bound between 0 and 1. Local inequali-

ty (Li,t) is the Gini coefficient of the income distributions of actor i and his neighbors. Nodal

degree (Ki) is the number of ties linked to actor i.

The variables, Xi,t, Ri,t and Li,t, represent perception of inequality of different levels [39]: Xi,t

is actor i’s own income; Ri,t is a comparison of i’s income with others’, and Li,t extends the com-

parison to all neighbors, which takes into account the income difference among one another in

the neighborhood. Egalitarian sharing is possible to be triggered by the three different perspec-

tives to inequality.

Theoretical predictions of how the variables above determine the evolution of incomes in

different networks can be found in the online supporting materials, assuming that these factors

take effect. Yet, whether these factors significantly influence participants’ decision-making of

giving in each round remain an empirical question. To the question, I use a Hurdle regression

model to assess the effects of these factors. In the Hurdle regression, the probability and the

amount of giving are assessed separately and the latter is estimated only when the former

passes a threshold [3, 44]. In our within-subject design, the decisions of giving are not indepen-

dent so standard errors of the regression coefficients are clustered within subjects in the

following analysis.

Tables 1 and 2 shows the Hurdle regression result on participants’ giving in each round.

The variables perform differently across networks. Notably, the two networks, Lattice_Hetero

and the SF_Negative, differ from other networks in local inequality (L): both the coefficients

are positive in estimating the probability and the amount of giving, suggesting that high local

inequality would prompt a person to give more in the two networks, but not in others. As can

be found in the online supporting materials, a positive coefficient of local inequality (Li,t) con-

tributes to the mitigation of inequality. It explains in part why inequality can improve more

profoundly in the two networks.

Table 1. Hurdle Regression Model on Giving Decisions (Probability of Giving).

Networks

Full Lattice_Hetero Lattice_Homo SF_Negative SF_Positive

Income Level (X) 0.006 -0.01** 0.002 -0.004 0.005

Income Ranking (R) -2.27* 1.28* -0.68 0.80 1.45*

Local Inequality (L) 6.44 4.28*** 1.36 4.64*** 1.26

Nodal Degree (K) -0.08 N/A N/A 0.09* -0.0006

Note: *** p<0.001

** p<0.01

* p<0.05.

doi:10.1371/journal.pone.0128777.t001
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But why do the two networks motivate people to respond to local inequality more vividly

than other networks? Part of the answer lies in the inherent local inequality of the two net-

works. As can be seen in Fig 1, the two networks link together very rich and very poor actors

and thus create profound income discrepancies in actors’ local neighborhoods. We suspect that

egalitarian sharing is triggered when (local) inequality is large enough, such as in the two net-

works mentioned above.

Nodal degree (K) has a positive and a negative effect respectively on the probability and the

amount of giving in the SF_Negative network. Note that in this network the poor are more

linked than the rich. The fact that the poor are more likely to give in this network suggests inci-

dence of reverse redistribution. As would be discussed later, reverse redistribution may be mo-

tivated by reciprocity: as the poor have received giving from multiple sources in this particular

network, they may feel obligated to return the favors even just little. Although S5 Fig indicates

that a positive coefficient of the variable Ki helps to improve inequality, the magnitude of the

coefficient is so trivial that it does not cause a large impact in the experiment.

Although we found a significant effect of income ranking (R) on giving in some of the net-

works, judged by the sign and the magnitude of it and in reference to S3 Fig, it causes only a

minor impact on the reduction of inequality.

How would people allocate their giving to the neighbors? We fit the participants’ donation

decisions to the Beta distribution to get some answers. Manipulated by two parameters (de-

noted by β1 and β2), the Beta distribution encompasses a wide range of distributional patterns,

such as right- or left-skewed, uniform and bi-modal distributions. An empirical assessment of

the participants’ allocation of giving would help us understand how people select recipients of

their donations.

We fit the data of the recipients of giving to the Beta distribution. The best-fit values of the

parameter β1 and β2, reported in Table 3, indicate that the distributions are left-skewed (shown

in S1 Fig). The pattern suggests that people tend to allocate a high proportion of giving to the

relatively poor in their local neighborhood, except for the SF-Positive network, for which the

distribution is more bi-modal.

Table 2. Hurdle Regression Model on Giving Decisions (Amount of Giving).

Networks

Full Lattice_Hetero Lattice_Homo SF_Negative SF_Positive

Income Level (X) 0.002 -0.0002 0.0003 -0.0003 -0.007

Income Ranking (R) 0.21 -0.06 -0.53 -0.60 -0.09

Local Inequality (L) -1.29 2.93** 1.01 4.61*** -2.05

Nodal Degree (K) 0.08 N/A N/A -0.08** 0.10

Note: *** p<0.001

** p<0.01

* p<0.05.

doi:10.1371/journal.pone.0128777.t002

Table 3. Fitted Parameters of the Beta Distribution.

Networks

Full Lattice_Hetero Lattice_Homo SF_Negative SF_Positive

β1 0.21 1.27 0.97 1.06 0.32

β2 1.03 1.72 1.72 1.65 0.21

doi:10.1371/journal.pone.0128777.t003
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Note, however, the fact that a person is allocating his giving to a low income-ranking recipi-

ent in networks does not necessarily mean that inequality would be improved equally effective-

ly. The effect would depend on the gradient of income discrepancy. Consider, for example, the

contrast between the Lattice_Hetero and the Lattice_Homo network. Despite sharing a similar

left-skewed distribution in the choices of recipients of giving, inequality is improved in the for-

mer, but not in the latter network, because donation is transferred from the rich to the poor in

the former network with a steep income gradient, while in the latter giving is exchanged be-

tween people of similar income levels (see S9 Fig).

The choices of the recipients of egalitarian giving also explain why the Full network fails to

reduce inequality as profoundly as we expect. In the Full network, an actor is linked to everyone

else so he has many choices to share income with. Although the fitted Beta distribution suggests

that participants are allocating their giving to the very poor, a closer look into the data indicates

that giving in the Full network treatment is still less concentrative than the two leading net-

works—the Lattice_Hetero and the SF_Negative network. We found that the number of per-

sons who had received a giving was greater, but the average amount of money received was

lower in the Full network than the other two networks. It suggests that giving was allocated

more evenly to neighbors in the Full network than the Lattice_Hetero and the SF_Negative net-

work. When giving is not generous, such as in our experiment, a more concentrative allocation

of the giving to the poor, demonstrated by the Lattice_Hetero and the SF_Negative network,

would work better in improving inequality.

Reverse Redistribution. In addition to the kind of giving we would expect from the rich

to the poor, in the experiment we also found incidents of reverse redistribution (11.67%). As

discussed in section 2, reverse redistribution could be triggered by reciprocity. Indeed, the ex-

periment result shows that a person who received more in the previous round tend to have

higher amounts of reverse donations in the present round (Hurdle regression, p = 0.009 for the

probability and p<0.001 for the amount of reverse donation). Note that in our experiment par-

ticipants only knew how much as a total they received in the previous round, but did not know

exactly who gave them. Therefore, direct reciprocity to the original givers is impossible, but in-

direct reciprocity in the form of generalized exchange—returning favors to a third party differ-

ent from the original donor—is possible to occur in the experiment [45–46] (but also see [47]

for opposite evidence).

Concluding Remarks

The paper presents a laboratory experiment to investigate how people share their incomes to

pursue a more equitable distribution in networks. The study extends the convention of study-

ing egalitarian sharing in dyads and groups to the network frontier, motivated by the premise

that network is not only a generalized structure of social interaction, but is also an important

mechanism driving the emergence of social complexity.

We developed a number of behavioral rules in the model in reference to past research on

the behavior of egalitarian sharing. We implemented the rules in the model and found a differ-

ence across networks in how inequality evolves. Tested with human subjects, the laboratory ex-

periment confirms that network influences the mitigation of inequality. Some networks

perform better than others in improving inequality as they activate more profoundly some of

the behavior rules found beneficial for the improvement of inequality in the model. It is note-

worthy that there were still a few people donating money before the experiment was terminated

in many sessions, implying that inequality would have been mitigated even further had the ex-

periment continued. In fact, the experiments that had higher percentages of people not ceasing

from giving at the end were the network treatments found effective in improving inequality, so
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it suggests that the superiority of these network topologies in improving inequality would have

been more profound had we prolonged the experiment time.

The two networks found to improve inequality, the Lattice_Hetero and the SF-Negative net-

works, suggest that egalitarian sharing can improve inequality in the following ways. First, the

poor are immensely linked to the rich so that poor people can receive giving from multiple

sources—in the case of the SF-Negative network. Second, the poor are not highly linked, but

they are properly segregated from one another so as not to compete for giving from the same

donors—in the case of the Lattice_Hetero network. In combination, the findings suggest while

it is important to see whom the poor are linked to, it is equally important whom the rich are

linked to as well, when it comes to how egalitarian sharing influences inequality improvement

in networks.

The five networks manipulated in the paper are selected from the popularly studied network

topologies in the physical and social science literature. They serve as examples to show how

network topology influences egalitarian sharing and the evolution of inequality. A number of

possible directions can be considered to extend the study. On the one hand, future studies can

implement the experiment in real social networks. The emergence of social media makes it eas-

ier than before to conduct a real-time experiment on egalitarian income redistribution on a

larger scale in people’s daily-life social networks. On the other hand, as it is impossible to ex-

haust all network topologies, a more parsimonious approach is to study how the underlying

structural properties of these networks influence individuals’ sharing behavior and the evolu-

tion of inequality. As far the model is concerned, one can also consider the cost in addition to

altruistic giving so that when one helps the poor, the cost does not only include the giving itself,

but also some cost incurred in the transition, such as the management fee paid to charity orga-

nizations [48]. Consideration of the transaction cost is expected to influence actors’ behavior of

sharing as well as the consequence of how networks influence the mitigation of inequality.

Supporting Information

S1 Fig. Density functions of the Beta distribution. The horizontal axis marks an interval be-

tween 0 and 1 and the vertical axis is the density of the distribution. Vectors in the legend of

panel (a) show the parameter values of β1 (left) and β2 (right).

(TIF)

S2 Fig. The average inequality level (Gini coefficient) of the end-round distribution in the

simulation tested against CX (light coral color) and CX’ (light steel blue color). The shaded

areas mark one standard error above and below the means. The horizontal dotted line shows

the inequality level of the original distribution.

(TIF)

S3 Fig. The average inequality level (Gini coefficient) of the end-round distribution in the

simulation tested against CR (light coral color) and CR’ (light steel blue color). The shaded

areas mark one standard error above and below the means. The horizontal dotted line shows

the inequality level of the original distribution.

(TIF)

S4 Fig. The average inequality level (Gini coefficient) of the end-round distribution in the

simulation tested against CL (light coral color) and CL’ (light steel blue color). The shaded

areas mark one standard error above and below the means. The horizontal dotted line shows

the inequality level of the original distribution.

(TIF)
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S5 Fig. The average inequality level (Gini coefficient) of the end-round distribution in the

simulation tested against CK (light coral color) and CK’ (light steel blue color). The shaded

areas mark one standard error above and below the means. The horizontal dotted line shows

the inequality level of the original distribution.

(TIF)

S6 Fig. The average inequality level (Gini coefficient) of the end-round distribution in the

simulation tested against β1 (light coral color) and β2 (light steel blue color). The shaded

areas mark one standard error above and below the means. The horizontal dotted line shows

the inequality level of the original distribution.

(TIF)

S7 Fig. The proportion of participants that had donated in each round of the experiment.

The values represent the mean proportions.

(TIF)

S8 Fig. The proportion of an individual’s income given to others over the experiment. The

Figure plots the mean proportions in each round of the experiment.

(TIF)

S9 Fig. The distributions of donations from donors to recipients in the experiment marked

by initial income levels. The x-axis (width) represents a donor’s initial income levels and the

y-axis (depth) shows a recipient’s initial income levels. The accumulated donations delivered

from the donor to the recipient are marked on the z-axis (height). Panel (a) shows the Lattice_-

Hetero network and (b) the Lattice_Homo network.

(TIF)
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