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Abstract

Using recently proposed estimators of the variation of positive and negative returns (“realized semi-

variances”), and high frequency data for the S&P 500 index and 105 individual stocks, this paper sheds

new light on the predictability of equity price volatility. We show that future volatility is much more

strongly related to the volatility of past negative returns than to that of positive returns, and this effect

is stronger than that implied by standard asymmetric GARCH models. We also find that the impact of

a jump on future volatility critically depends on the sign of the jump, with negative (positive) jumps

in prices leading to significantly higher (lower) future volatility. We show that models exploiting these

findings lead to significantly better out-of-sample forecast performance for forecast horizons ranging

from 1 day to 3 months.
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1 Introduction

The development of estimators of volatility based on high frequency (intra-daily) information has lead

to great improvements in our ability to measure financial market volatility. Recent work in this area has

yielded estimators that are robust to market microstructure effects, feasible in multivariate applications,

and which can separate the volatility contributions of jumps from continuous changes in asset prices1, see

Andersen, Bollerslev, and Diebold (2009) for a recent survey of this growing literature. A key application of

these new estimators of volatility is in forecasting: better measures of volatility enable us to better gauge

the current level of volatility and to better understand its dynamics, both of which lead to better fore-

casts of future volatility. Volatility forecasting, while long useful in risk management, has recently become

increasing important as volatility is now directly tradable using swaps and futures.2

This paper uses high frequency data to shed light on another key aspect of asset returns: the “leverage

effect,” and the impact of signed returns on future volatility more generally. The observation that neg-

ative equity returns lead to higher future volatility than positive returns is a well-established empirical

regularity in the ARCH literature3, see the review articles by Bollerslev, Engle, and Nelson (1994) and An-

dersen, Bollerselv, Christoffersen, and Diebold (2006) for example. Recent work in this literature has also

found evidence of this relationship using high frequency returns, see Bollerslev, Litvinova, and Tauchen

(2006), Barndorff-Nielsen, Kinnebrock, and Shephard (2010), Visser (2008) and Chen and Ghysels (2011).

We build on these papers to exploit this relationship and obtain improved volatility forecasts.

We use a new estimator proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010) called “re-

alized semivariance,” which decomposes the usual realized variance into a component that relates only

to positive high frequency returns and a component that relates only to negative high frequency returns.4

1See Andersen, Bollerslev, Diebold, and Labys (2001), Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and
Shephard (2004), Barndorff-Nielsen and Shephard (2006), Zhang, Mykland, and Aït-Sahalia (2005), Aït-Sahalia, Mykland, and
Zhang (2005), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), amongst others.

2A partial list of papers on this topic includes Andersen, Bollerslev, Diebold, and Labys (2000),Andersen, Bollerslev, Diebold,
and Labys (2003),Fleming, Kirby, and Ostdiek (2003), Corsi (2009), Liu and Maheu (2005), Lanne (2006), Lanne (2007), Chiriac
and Voev (2007), Andersen, Bollerslev, and Diebold (2007), Visser (2008) and Chen and Ghysels (2011).

3Common ARCH models with a leverage effect include GJR-GARCH (Glosten, Jagannathan, and Runkle, 1993), TARCH (Za-
koian, 1994), and EGARCH (Nelson, 1991).

4Semivariance, and the broader class of downside risk measures, has a long history in finance. Applications of semivariance
in finance include Hogan and Warren (1974) who study semivariance in a general equilibrium framework, Lewis (1990) who
examined its role in option performance, and Ang, Chen, and Xing (2006) who examined the role of semivariance and covariance
in asset pricing. For more on semivariance and related measures, see Sortino and Satchell (2001).
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Previous studies have almost exclusively employed even functions of high frequency returns (squares, ab-

solute values, etc.) which of course eliminate any information that may be contained in the sign of these

returns. High frequency returns are generally small, and it might reasonably be thought that there is little

information to be gleaned from whether they happen to lie above or below zero. Using a simple autore-

gressive model, as in Corsi (2009) and Andersen, Bollerslev, and Diebold (2007), and high frequency data

on the S&P 500 index and 105 of its constituent firms over the period 1997-2008, we show that this is far

from true.

We present several novel findings about the volatility of equity returns. Firstly, we find that negative

realized semivariance is much more important for future volatility than positive realized semivariance,

and disentangling the effects of these two components significantly improves forecasts of future volatility.

This is true whether the measure of future volatility is realized variance, bipower variation, negative re-

alized semivariance or positive realized semivariance. Moreover, it is true for horizons ranging from one

day to three months, both in-sample and (pseudo-)out-of-sample. Second, we use realized semivariances

to obtain a measure of signed jump variation and we find that is important for predicting future volatility,

with volatility attributable to negative jumps leading to significantly higher future volatility, and positive

jumps leading to significantly lower volatility. Thus, while jumps of both signs are indicative of volatility,

their impacts on current returns and on future volatility might lead one to label them “good volatility”

and “bad volatility.” Previous research, see Andersen, Bollerslev, and Diebold (2007), Forsberg and Ghy-

sels (2007) and Busch, Christensen, and Nielsen (2011), reported that jumps were of only limited value for

forecasting future volatility. Our finding that the impact of jumps depends critically upon the sign of the

jump helps explain these results: averaging across both positive and negative jump variation the impact

on future volatility is near zero.5

Bollerslev, Litvinova, and Tauchen (2006) were perhaps the first to note that the sign of high frequency

returns contains useful information for future volatility, even several days into the future. They show that

several standard stochastic volatility models are unable to match this feature. Chen and Ghysels (2011)

propose a semiparametric model for aggregated volatility (e.g., daily or monthly) as a function of individ-

5Corsi, Pirino, and Renò (2010) find that jumps have a significant and positive impact on future volatility, when measured
using a new threshold-type estimator for the integrated variance.
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ual high frequency returns. The coefficient on lagged high frequency returns is the product of a paramet-

ric function of the lag (related to the MIDAS model of Ghysels, Santa-Clara, and Valkanov (2006)) and a

nonparametric function of the return. With this model, the authors obtain nonparametric “news impact

curves,” and document evidence that these curves are asymmetric for returns on the S&P 500 and Dow

Jones indices. A forecasting model based on realized semivariances avoids some of the difficulties of the

semiparametric MIDAS model of Chen and Ghysels (2011), such as the fact that estimation of news im-

pact curves requires either a local estimator of spot volatility (a difficult empirical problem) or a method

for dealing with the persistence in large returns, which makes estimation of the curve for larger values

difficult. Realized semivariances are simple daily statistics and require no choice of bandwidth or other

smoothing parameters, and no nonlinear estimation.

We complement and extend existing work in a number of directions. First, we look at the leverage ef-

fect and forecasting for a large set of assets – 105 individual firms, and the S&P 500, the FTSE 100 and the

EURO STOXX 50 indexes – and verify that the usefulness of realized semivariances relative to realized vari-

ances is not restricted only to broad stock indices. Second, we show that negative semivariances are useful

for predicting a variety of different measures of volatility: realized volatility, bipower variation, and both

realized semivariances. Third, we show the usefulness of simple autoregressive models that we use, all of

which can be estimated using least squares, across horizons ranging from one day to three months. We

also present results on the information in signed jump variation, a measure that does not fit into existing

frameworks, and which helps us reconcile our findings with the existing literature.

The remainder of the paper is organized as follows. Section 2 describes the volatility estimators that

we use in our empirical analysis. Section 3 discusses the high frequency data that we study, and intro-

duces the models that we employ. Section 4 presents empirical results on the gains from using realized

semivariances for forecasting, and Section 5 presents results from using signed jump variation for volatil-

ity forecasting. Section 6 presents results for a pseudo-out-of-sample forecasting application for the U.S.

data, and results for two international stock indexes. Section 7 concludes. An internet appendix contains

additional results and analyses.
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2 Decomposing realized variance using signed returns

In this section we briefly describe the estimators that are used in our analysis, including the new estimators

proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010).

Consider a continuous-time stochastic process for log-prices, pt , which consists of a continuous com-

ponent and a pure jump component:

pt =
ˆ t

0
µs ds +

ˆ t

0
σs dWs + Jt , (1)

whereµ is a locally bounded predictable drift process,σ is a strictly positive cádlág process and J is a pure

jump process. The quadratic variation of this process is:

[p , p ] =
ˆ t

0
σ2

s ds +
∑

0<s≤t

(∆ps )2 , (2)

where∆ps = ps − ps− captures a jump, if present.

Andersen, Bollerslev, Diebold, and Labys (2001) introduced a natural estimator for the quadratic vari-

ation of a process as the sum of frequently sampled squared returns which is commonly known as realized

variance (RV ). For simplicity, suppose that prices p0, . . . , pn are observed at n + 1 times, equally spaced

on [0, t ]. Using these returns, the n-sample realized variance, RV , is defined below, and can be shown

to converge in probability to the quadratic variation as the time interval between observations becomes

small (Andersen, Bollerslev, Diebold, and Labys, 2003).

RV =
n∑

i=1

r 2
i

p→ [p , p ] , a s n →∞, (3)

where ri = pi − pi−1. Barndorff-Nielsen and Shephard (2006) extended the study of estimating volatility

from simple estimators of the quadratic variation to a broader class which includes bipower variation

(BV ). Unlike realized variance, the probability limit of BV only includes the component of quadratic

5



variation due to the continuous part of the price process, the integrated variance.

BV = µ−2
1

n∑
i=2

|ri | |ri−1|
p→
ˆ t

0
σ2

s ds , a s n →∞, (4)

where µ1 =
√

2/π. The difference of the above two estimators of price variability can be used to consis-

tently estimate the variation due to jumps of quadratic variation:

RV − BV
p→
∑

0≤s≤t

∆p 2
s . (5)

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) recently introduced new estimators which can

capture the variation only due to negative or positive returns using an estimator named “realized semi-

variance.” These estimators are defined as

RS− =
n∑

i=1

r 2
i I[ri<0] (6)

RS+ =
n∑

i=1

r 2
i I[ri>0]

These estimators provide a complete decomposition of RV , in that RV = RS++RS−. This decomposition

holds exactly for any n , as well as in the limit. We use this decomposition of realized volatility extensively

in our empirical analysis below.6

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) show that, like realized variance, the limiting be-

havior of realized semivariance includes variation due to both the continuous part of the price process a

well as the jump component. The use of the indicator function allows the signed jumps to be extracted,

with each of the realized semivariances converging to one-half of the integrated variance plus the sum of

6Visser (2008) considers a similar estimator based on powers of absolute values of returns rather than squared returns. For
one-step forecasts of the daily volatility of the S&P 500 index, he finds that using absolute returns (i.e., a power of 1) leads to the
best in-sample fit. We leave the consideration of different powers for future research and focus on simple realized semivariances.
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squared jumps with a negative/positive sign:

RS+
p→1

2

ˆ t

0
σ2

s ds +
∑

0≤s≤t

∆p 2
s I[∆ps>0] (7)

RS−
p→1

2

ˆ t

0
σ2

s ds +
∑

0≤s≤t

∆p 2
s I[∆ps<0]

Note that the first term in the limit of both RS+ and RS− is one-half of the integrated variance. This has

two implications. First, it reveals that a “complete” decomposition of realized variance into continuous

and jump components, and positive and negative components, yields only three, not four, terms; the

continuous component of volatility is not decomposable into positive and negative components. Second,

it reveals that the variation due to the continuous component can be removed by simply subtracting one

RS from the other, without the need to estimate it separately. The remaining part is what we define as the

signed jump variation:

∆J 2 ≡ RS+ − RS− (8)

p→
∑

0≤s≤t

∆p 2
s I[∆ps>0] −

∑
0≤s≤t

∆p 2
s I[∆ps<0].

In our analysis below we use RS+, RS−and∆J 2 to gain new insights into the empirical behavior of volatil-

ity as it relates to signed returns.

3 Data and Models

The data used in this paper consists of high-frequency transaction prices on all stocks that were ever a

constituent of the S&P 100 index between June 23, 1997 and July 31, 2008. The start date corresponds to

the first day that U.S. equities traded with a spread less than 1
8 of a dollar.7 We also study the S&P 500 index

exchange traded fund (ETF), with ticker symbol SPDR, over this same period for comparison. Of the total

of 154 distinct constituents of the S&P 100 index over this time period, we retain for our analysis the 105

7Trading volume and the magnitude of microstructure noise that affects realized-type estimators both changed around this
date, see (Aït-Sahalia and Yu, 2009), and so we start our sample after this change took place.
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that were continuously available for at least four years.

All prices are taken from the New York Stock Exchange’s TAQ database. Data are filtered to include only

those occurring between 9:30:00 and 16:00:00 (inclusive) and are cleaned according to the rules detailed

in Appendix A. As we focus on price volatility over the trade day, overnight returns are excluded, and we

avoid the need to adjust prices for splits or dividends.

3.1 Business Time Sampling and Sub-Sampling

All estimators were computed daily, using returns sampled in “business time” rather than the more fa-

miliar calendar time sampling. That is, rather than use prices that are evenly spaced in calendar time

(say, every five minutes) we use prices that are evenly spaced in “event” time (say, every ten transactions).

(This implies, of course, that we sample more often during periods with greater activity, and less often in

quieter periods.) Under some conditions business-time sampling can be shown to produce realized mea-

sures with superior statistical properties, see Oomen (2005), and this sampling scheme is now common

in this literature, see Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and Bollerslev and Todorov

(2011) for example.8

We sample prices 79 times per day, which corresponds to an average interval of 5 minutes. We use

the first and last prices of the day as our first and last observations, and sample evenly across the inter-

vening prices to obtain the remaining 77 observations. The choice to sample prices using an approxi-

mate 5-minute window is a standard one, and is motivated by the desire to avoid bid-ask bounce type

microstructure noise.

Since price observations are available more often than our approximate 5-minute sampling period,

there are many possible “grids” of approximate 5-minute prices that could be used, depending on which

observation is used for the first sample. We use 10 different grids of 5-minute prices to obtain 10 different

estimators, which are correlated but not identical, and then average these to obtain our final estimator.

This approach is known as “sub-sampling” and was first proposed by Zhang, Mykland, and Aït-Sahalia

8Recent work by Li, Mykland, Renault, Zhang, and Zheng (2013) considers cases where trade arrivals are strongly related to
volatility, and shows that bias in realized variance can arise in such cases. That paper does not consider realized semivariance,
and we assume that our data fits into the usual framework where no such biases arise.
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(2005). This procedure should produce a mild increase in precision relative to using a single estimator.

3.2 Volatility Estimator Implementation

Denote the observed log-prices on a given trade day as p0, p1, . . . , pn where n + 1 is the number of unique

time stamps between 9:30:00 and 16:00:00 that have prices. Setting the number of price samples to 79

(which corresponds to sampling every 5 minutes on average), RV computed uniformly in business time

starting from the j th observation equals

RV ( j ) =
78∑

i=1

(
pbi k+ jδc − pb(i−1)k+ jδc

)2
(9)

where k = n/78, δ = n/78 × 1/10 and b·c rounds down to the next integer. Prices outside of the trading

day are set to the close price. The sub-sampled version is computed by averaging over 10 uniformly spaced

windows,

RV =
1

10

9∑
j=0

RV ( j ) (10)

Realized semivariances, RS+ and RS−, are constructed in an analogous manner.

In addition to sub-sampling, the estimator for bipower variation was computed by averaging multiple

“skip” versions. Skip versions of other estimators, particularly those of higher-order moments (such as

fourth moments, or “integrated quarticity”), were found to possess superior statistical properties than re-

turns computed using adjacent returns in Andersen, Bollerslev, and Diebold (2007). The “skip-q ” bipower

variation estimator is defined as

BVq = µ−2
1

78∑
i=q+2

∣∣pbi kc − pb(i−1)kc
∣∣ ∣∣pb(i−1−q )kc − pb(i−2−q )kc

∣∣ . (11)

whereµ1 =
√

2/π. The usual BV estimator is obtained when q = 0. We construct our estimator of bipower

variation by averaging the skip-0 through skip-4 estimators, which represents a tradeoff between locality

(skip-0) and robustness to both market microstructure noise and jumps that are not contained in a single
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sample (skip-4).9 Using a skip estimator was advocated in Huang and Tauchen (2005) as an important

correction to bipower which may be substantially biased in small samples, although to our knowledge the

use of an average over multiple skip-q estimators is novel.10

Table 1 presents some summary statistics for the various volatility measures used in this paper. The

upper panel presents average values for realized variance, bipower variation, positive and negative re-

alized semivariances, and the signed jump variation measures. We see that the average value of daily

RV for the SPDR was 1.154, implying 17.1% annualized volatility. The corresponding value for individual

firms us 33.2%, indicating the higher average volatility of individual stock returns compared with the mar-

ket. These figures reveal that variation due to jumps represent around 2% of total quadratic variation for

the SPDR, while they represent around 13% for the average individual firm in our collection of 105 firms.

(These proportions are ratios of averages of BV and RV across days; if we instead take the average of these

ratios, we also get 2% and 13% as the proportion of quadratic variation due to jumps.) In the middle panel

of this table we observe that the first-order autocorrelation of the SPDR volatility series (RV , BV , RS+ and

RS−) ranges from 0.47 to 0.70. The autocorrelations of the signed jump variation series for the SPDR are

lower, ranging from -0.11 to 0.06. The corresponding figures for the individual firms are similar. The lower

panel presents correlations between the various volatility measures where the continuous component of

volatility produces large correlation in RV , BV , RS+and RS−. The correlation between RS+ and RS−, at

around 80%, is markedly lower than the correlation between these and either RV or BV indicating that

there is novel information in this decomposition.

[ INSERT TABLE 1 ABOUT HERE ]

3.3 Model Estimation and Inference

We analyze the empirical features of these new measures of volatility using the popular Heterogeneous

Autoregression (HAR) model, see Corsi (2009) and Müller, Dacorogna, Dav, Olsen, Pictet, and von Weiz-

9Events which are often identified as jumps in US equity data correspond to periods of rapid price movement although these
jumps are usually characterized by multiple trades during the movement due to price continuity rules faced by market makers.

10We also conducted our empirical analysis using the MedRV estimator of Andersen, Dobrev, and Schaumburg (2012), which
is an alternative jump-robust estimator of integrated variance. The resulting estimates and conclusions were almost identical to
using BV and we omit them in the interest of brevity.
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sacker (1997). HARs are parsimonious restricted versions of high-order autoregressions. The standard

HAR in the realized variance literature regresses realized variance on three terms: the past 1-day, 5-day

and 22-day average realized variances. To ease interpretation, we use a numerically identical reparam-

eterization where the second term consists of only the realized variances between lags 2 and 5, and the

third term consists of only the realized variances between lag 6 and 22,

ȳh ,t+h = µ + φd yt + φw

(
1

4

4∑
i=1

yt−i

)
+ φm

(
1

17

21∑
i=5

yt−i

)
+ εt+h (12)

where y denotes the volatility measure (RV , BV , etc.), and ȳh ,t+h = 1
h

∑h
i=1 yt+i is the h-day average

cumulative volatility.11 Throughout the paper, we will use ȳw ,t to indicate the average value over lags 2 to

5, and ȳm ,t to denote the average value between lags 6 and 22. We estimate the model above for forecast

horizons ranging from h =1 to 66 days.

As the dependent variable in all of our regressions is a volatility measure, estimation by OLS has the

unfortunate feature that the resulting estimates focus primarily on fitting periods of high variance, and

place only little weight on more tranquil periods. This is an important drawback in our applications as

the level of variance changes substantially across our sample period, and the level of the variance and the

volatility in the error are known to have a positive relationship. To overcome this, we estimate our models

using simple weighted least squares (WLS). To implement this we first estimate the model using OLS, and

then construct weights as the inverse of the fitted value from that model.12

The left-hand-side variable includes leads of multiple days and so we use a Newey and West (1987)

HAC to make inference on estimated parameters. The bandwidth used was 2(h − 1) where h is the lead

length of the left-hand-side variable.

11In the internet appendix we present results where the h-day ahead daily volatility measure, yt+h , is used as the dependent
variable rather than the cumulative volatility.

12This implementation of WLS is motivated by considering the residuals of the above regression to have heteroskedasticity
related to the level of the process. This is related to standard asymptotic theory for realized measures, see Andersen, Bollerslev,
Diebold, and Labys (2003). An alternative approach is to use OLS on log-volatility, however this leads, of course, to predictions
of log-volatility rather than volatility in levels, and the latter are usually of primary interest in economic applications. For com-
parison, Tables 2, 3 and 4 in the web appendix present results from analyses based on log-volatility, and show that all of our
conclusions hold using this alternative specification.
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3.4 A Panel HAR for Volatility Modeling

Separate estimation of the models on the individual firms’ realized variance is feasible, but does not pro-

vide a direct method to assess the significance of the average effect, and so we estimate a pooled un-

balanced panel HAR with a fixed effects to facilitate inference on the average value of parameters. To

illustrate, in the simplest specification the panel HAR is given by:

y h ,i ,t+h = µi + φd yi ,t + φw y w ,i ,t + φm y m ,i ,t + εi ,t+h , i = 1, . . . , nt , t = 1, . . . , T ,

where µi is a fixed effect which allows each firm to have different levels of long-run volatility. Let Yi ,t =

[yi ,t , ȳw ,i ,t , ȳm ,i ,t ]′, then the model for each firm’s realized variance can be compactly expressed as:

y h ,i ,t+h = µi + φ′Yi ,t + εi ,t+h , i = 1, . . . , nt , t = 1, . . . , T .

Next, define ỹh ,i ,t+h = y h ,i ,t+h − υ̂h ,i and Ỹi ,t = Yi ,t − Υ̂i where υ̂h ,i and Υ̂i are the WLS estimates of the

mean of y h ,i and Yi , respectively. The pooled parameters are then estimated by:

φ̂ =

(
T −1

T∑
t=1

(
n−1

t

nt∑
i=1

wi ,t Ỹi ,t Ỹ ′i ,t

))−1(
T −1

T∑
t=1

(
n−1

t

nt∑
i=1

wi ,t Ỹi ,t ỹh ,i ,t+h

))
. (13)

where wi ,t are the weights and nt are the number of firms in the cross section at date t .13

Inference can be conducted using the asymptotic distribution

√
T
(
φ̂ − φ0

) d→ N
(

0,Σ−1ΩΣ−1
)

as T →∞ (14)

where Σ = plimT→∞T −1
T∑

t=1

(
n−1

t

nt∑
i=1

wi ,t Ỹi ,t Ỹ ′i ,t

)

Ω = avar

(
T −1/2

T∑
t=1

zt+h

)
13Our analysis takes the cross-section size, nt , as finite while the time series length diverges. In our application we have nt ∈

[71, 100] and T=2,795. If an approximate factor structure holds in the returns we study, which is empirically plausible, then the
same inference approach could be applied even if nt → ∞, as in that case we would find plimnt→∞V

[
n−1

t

∑nt
i=1 wi ,t Ỹi ,t εi ,t

]
→

τ2 > 0. A similar result was found in the context of composite likelihood estimation, and this asymptotic distribution can be
seem as a special case of Engle, Shephard, and Sheppard (2008).
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zt+h = n−1
t

nt∑
i=1

wi ,t Ỹi ,t εi ,t+h .

In addition to the results from the panel estimation, we also fit the models to each series individually and

summarize the results as aggregates in the tables below.

4 Predicting Volatility using Realized Semivariances

Before moving into models that decompose realized volatility into signed components, it is useful to es-

tablish a set of reference results. We fit a reference specification, the standard HAR model:

RV h ,t+h = µ + φd RVt + φw RV w ,t + φm RV m ,t + εt+h (15)

to both the S&P 500 ETF and the panel where RV w ,t is the average between lags 2 and 5 and RV m ,t is the

average value using lags 6 through 22. This model is identical to the specification studied in Andersen,

Bollerslev, and Diebold (2007). The panel version of the model is identical to eq. (15) except for the in-

clusion fixed effects to permit different long-run variances for each asset. Tables 2a and 2b each contain

four panels, one for each horizon 1, 5, 22 and 66. The first line of each panel contains the estimated pa-

rameters and t -statistics for this specification. These results are in line with those previously documented

in the literature: substantial persistence, with φd + φw + φm close to 1, and the role of recent informa-

tion, captured byφd , diminishing as the horizon increases.14 The results for both the SPDR and the panel

are similar, although the SPDR has somewhat larger coefficients on recent information. The final column

reports the R 2, which is computed using the WLS parameter estimates and the original, unmodified data.

[INSERT TABLES 2a AND 2b ABOUT HERE ]

14Tables A.6a and A.6b in the internet appendix contain corresponding results when the dependent variable is the h-day ahead
daily volatility. These tables reveal that, as expected, much, but not all, of the predictive power in the model for cumulative
realized variance occurs at short horizons.
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4.1 Decomposing Recent Quadratic Variation

Given the exact decomposition of RV into RS+ and RS−, we extend eq. (15) to obtain a direct test of

whether signed realized variance is informative for future volatility. Here, we only decompose the most

recent volatility (RVt ), and in the web appendix we present results and analysis when all three volatility

terms are decomposed. Applying this decomposition produces the specification:

RV h ,t+h = µ + φ+d RS+t + φ
−
d RS−t + φw RV w ,t + φm RV m ,t + εt+h . (16)

The panel specification of the above model includes fixed effects but is otherwise identical. Note that if the

decomposition of RV into RS+and RS− added no information we would expect to findφ+d = φ
−
d = φd .

Our first new empirical results using realized semivariances are presented in the second row of each panel

of Tables 2a and 2b. In the models for the SPDR (Table 2a), we find that the coefficient on negative semi-

variance is larger and more significant than that on positive semivariance for all horizons. In fact, the

coefficient on positive semivariance is not significantly different from zero for h = 1, 5 and 22, while it is

small and significantly negative for h = 66. The semivariance model explains 10-20% more of the variation

in future volatility than the model which contains only realized variance. The effect of lagged RV implied

by this specification is (φ+d + φ
−
d )/2, and we see that it is similar in magnitude to the coefficient found in

the reference specification where we only include lagged RV , which indicates that models which only use

RV are essentially averaging the vastly different effects of positive and negative returns. The results for

the panel of individual volatility series also reveal that negative semivariance has a larger and more sig-

nificant impact on future volatility, although in these results we also find that positive semivariance has

significant coefficients. The difference in the results for the index and for the panel points to differences in

the impact of idiosyncratic jumps in the individual firms’ volatility, which we explore in the next section.15

Figure 1 contains the point estimates of φ+d and φ−d from eq. (16) for all horizons between 1 and 66

15While the coefficients on negative semivariances are positive for both the SPDR and the panel of individual stocks, one dif-
ference between the two sets of results is that the coefficients on positive semivariances are generally insignificant or negative
for the SPDR, and positive for the panel of individual stocks. This may be due to the presence of idiosyncratic jumps in individ-
ual stocks, while these are “averaged out” in the SPDR market index and only “systematic” jump behavior is captured. We leave
detailed analysis of idiosyncratic and systematic jumps for future research.

14



along with pointwise confidence intervals. For the SPDR, positive semivariance plays essentially no role

at any horizon. The effect of negative semivariance is significant and positive, and declines as the horizon

increases. In the panel both positive and negative semivariances are significant although the coefficients

differ substantially in magnitude for all horizons. The effect of positive semivariance is economically small

from horizon 15. The smoothness indicated in both curves is a feature of the estimated parameters – no

additional smoothing was used to produce these figures.

[ INSERT FIGURE 1 ABOUT HERE ]

As noted above, if the decomposition of RV into RS+and RS− added no new information, then we

would expect to see φ+d = φ
−
d = φd . We reject this restriction at the 0.05 level for all but 3 out of 66

horizons (h=36,43,48) for the SPDR, and in the panel this null is rejected for all horizons.16 We interpret

these findings as strong evidence that decomposing RV into its signed components significantly improves

the explanatory power of this model.

Realized variance can be decomposed not only at the first lag but at higher lags as well. A “full” de-

composition allows for a refined view of the sources of persistence of these two components of realized

variance, and leads to a natural Vector HAR (VHAR) specification for RS+ and RS−. We estimated this

model using both RV as well as the two semivariances as dependent variables, and present the results in

Appendix B. We find that negative realized semivariance is much more important for both negative and

positive realized semivariance, and disentangling the effects of these two components significantly im-

proves forecasts of both measures of future volatility. This holds for horizons ranging from one day to

three months.

4.2 Comparison with a Simple Leverage Effect Variable

The classic leverage effect, whether due to varying firm leverage as in Black (1976) and Christie (1982) or

volatility-feedback in Campbell and Hentschel (1992), is usually modeled using a lagged squared return in-

teracted with an indicator for negative returns, as in Glosten, Jagannathan, and Runkle (1993). In this sec-

tion we determine whether our approach using information from realized semivariances adds anything

16Detailed test results for each horizon are omitted in the interests of brevity, but are available from the authors upon request.
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beyond this simple approach. To do so, we augment the regressions from the previous section with a term

that interacts the lagged realized variance with an indicator for negative lagged daily returns, RVt I[rt<0].17

RV h ,t+h = µ + φ+d RS+t + φ
−
d RS−t + γRVt I[rt<0] + φw RV w ,t + φm RV m ,t + εt+h (17)

If realized semivariance added no new information beyond the interaction variable then we would expect

φ+d = φ
−
d and γ to be significant.

The final row in each panel of Tables 2a and 2b contain the parameter estimates from this model.

In all cases the magnitude of the coefficient on the interaction term is small, and we again find that the

coefficient on negative realized semivariance is much larger than that on positive semivariance. In models

based on the SPDR, the interaction term has the opposite sign to what is commonly found at h = 22 and

66, and is insignificant at the 1-day horizon. This coefficient in the panel model is significantly positive

but small, generally only 10% of the magnitude the coefficient on negative realized semivariance, and in

all cases the gain in R 2 from including this interaction variable is just 0.001.18

The results in this section show that negative semivariance captures the asymmetric impact of neg-

ative and positive past returns on future volatility better than the usual method of using an indicator for

the sign of the lagged daily return. This is true across all horizons considered (1, 5, 22 and 66 days). Thus

there is more information about future volatility in the high frequency negative variation of returns than

in the direction of the price over a whole day.

5 Signed Jump Information

All of the models estimated thus far examine the role that decomposing realized variances into positive

and negative realized semivariance can play in explaining future volatility. These results consistently sug-

17We interact the indicator variable with the lagged realized variance rather than the lagged squared return as the latter is a
noisier measure of volatility than the former. The results using the usual version of this interaction variable, r 2

t I[rt <0] are even
weaker than those discussed here.

18We also considered a specification that includes the indicator variable I[rt <0] in addition to the interaction variable, see Tables
A.2a and A.2b in the internet appendix. This table shows that our main results continue to hold in this more general specifica-
tion: the coefficients on positive and negative semivariances are each qualitatively similar in size, and are strongly significantly
different from each other, regardless of the inclusion of the indicator and/or interaction variable.
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gest that the information content of negative realized semivariance is substantially larger than that of

positive realized semivariance. While the theory of BNKS shows that the difference in these two can be at-

tributed to differences in jump variation, the direct effect of jumps is diluted since realized semivariances

also contain one-half of the integrated variance, see eq. (7).

In this section we use signed jump variation, ∆J 2
t ≡ RS+t − RS−t , as a simple method to isolate the

information from signed jumps. This difference eliminates the common integrated variance term and

produces a measure that is positive when a day is dominated by an upward jump and negative when a

day is dominated by a downward jump. This measure has the advantage that a jump-robust estimator of

integrated variance, such as BV or MedRV, is not needed; we obtain the measure simply as the difference

between RS+t and RS−t . If jumps are rare, as often found in the stochastic volatility literature, then this

measure should broadly correspond to the jump variation when a jump occurs, and to mean zero noise

otherwise.

To explore the role that signed jumps play in future variance we formulate a model which contains

signed jump variation and an estimator of the variation due to the continuous part (bipower variation):

RV h ,t+h = µ + φJ∆J 2
t + φC BVt + φw RV w ,t + φm RV m ,t + εt+h . (18)

The panel specification includes fixed effects but is otherwise identical.19

Results from the model with signed jumps are presented in the second row of each of the four panels

in Tables 3a and 3b. Signed jump variation, ∆J 2
t , has a uniformly negative sign and is significant for all

forecast horizons. This reveals that days dominated by negative jumps lead to higher future volatility,

while days with positive jumps lead to lower future volatility. This result is quite different from that of

Andersen, Bollerslev, and Diebold (2007), who found that (unsigned) jumps lead to only a slight decrease

in future variance in the S&P 500.20 By including information about the sign of the jump, we find that the

jump variable does indeed help predict future volatility.

19It is worth noting that while this specification is similar to our baseline model (eq. 16) it is not nested by it, as it is not possible
to construct a measure of the continuous component of variation from the two realized semivariances alone.

20It should be noted, however, that Andersen, Bollerslev, and Diebold (2007) pretest for jumps and so on days where no jump
component is detected their jump measure is exactly zero. Since we do not pretest, we may have a noisier jump measure, al-
though it remains consistent for the object of interest.
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We next modify this model to use BV as the dependent variable, in order to see whether signed jump

variation is useful for predicting future continuous variation. The results from this model are presented

in the bottom row of Tables 3a and 3b, and reveal that using BV as the dependent variable resulted in

virtually identical estimates to those obtained using RV . Thus signed jump variation is indeed useful

for predicting the continuous part of volatility. This is a novel finding, and one that cannot be detected

without drawing on information about the sign of the high frequency returns.

[ INSERT TABLES 3a AND 3b ABOUT HERE ]

To determine whether the coefficient on positive jump variation differs from that of negative jump

variation, and thus whether the impact of jumps is driven more by positive or negative jump variation,

we extend this model to include
∑
∆p 2

s I[∆ps>0] and
∑
∆p 2

s I[∆ps<0] separately. One option would be to

subtract one half of a consistent estimator of the IV, for example to use RS+t − 1
2 BVt . We opt instead for a

simpler specification which uses an indicator for which realized semivariance was larger. This model is:

RV h ,t+h =µ + φ J+∆J 2+
t + φ J−∆J 2−

t + φC BVt + φw RV w ,t + φm RV m ,t + εt+h (19)

where ∆J 2+
t =

(
RS+t − RS−t

)
I[
(RS+t −RS−t )>0

] and∆J 2−
t =

(
RS+t − RS−t

)
I[
(RS+t −RS−t )<0

]

If the two signed jump components have equal predictive power then we expect to findφ J+ = φ J− = φ J .

The penultimate row of each panel in Table 3a contains estimates for this extended jump specification.

For the SPDR we find that both signed jump components have a negative sign, and for the longest two

horizons (h = 22 and h = 66) the coefficients are almost equal. For the shorter two horizons (h = 1 and

h = 5), the coefficient on the negative jump component is larger, in magnitude, than on the positive jump

component, indicating that the increase in future volatility is larger in magnitude following a negative

jump than the decrease in future volatility following a positive jump. We test the null H0 : φ J+ = φ J− we

reject only at the one-step-ahead horizon. In the panel, both types of jumps lead to higher future volatility

for the h = 1 horizon, although the magnitude of the coefficient differs by a factor of 10, and negative

jumps have a larger effect. At longer horizons, “good” jumps lead to lower volatility while “bad” jumps
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lead to higher volatility.21 Figure 2 contains a plot of the coefficients for all 66 leads for both the SPDR

and the panel. Aside from some mixed evidence for very short term effects, both sets of coefficients are

negative and significant. The significance of the variation due to positive jumps contrasts with the weaker

evidence of significance for positive realized semivariance. These results may be reconciled by noting that

positive realized semivariance contains, in the limit, both the variation due to positive jumps and one-half

of integrated variance, the latter also appearing in negative semivariance. By “stripping out” the integrated

variance component and focusing only on the jump component, we find that positive jumps do have an

important (negative) impact on future volatility. This model was also fit to the individual firm series, and

Figure 3 shows the magnitude and statistical significant of the coefficient, which was significantly negative

in 83 series at the 1-day horizon and 89 at the 5-day horizon, indicating a strong directional effect of jumps

on future volatility.

Finally, in the top row of each panel of Table 3a, we consider a model with no jump variation measures;

we include just BV at the one-day lag, along with RV w ,t and RV m ,t . Consistent with the significance of

the signed jump variation measures in the specifications discussed above, we observe a substantial drop

in R 2, particularly at short horizons. For the SPDR, R 2 falls from 0.61 to 0.56 for h = 1, and from 0.62 to

0.58 for h = 5.

[ INSERT FIGURE 2 ABOUT HERE ]

6 Out-of-sample evidence

This section presents two “out-of-sample” checks on the conclusions from the previous section on the

importance of signed measures of variation. The first is an analysis of two international stock indices,

the FTSE 100 index of United Kingdom stocks and the EURO STOXX 50 index of stocks from 12 European

countries. The second is an analysis of the pseudo-out-of-sample forecasting performance of models

21We note that this sign change in the reaction of future volatility to current price moves is consistent with the original “lever-
age” explanation offered by Black (1976), which focuses on the degree of financial leverage of a firm, although that explanation
does not distinguish between small and large price moves (corresponding to continuous and jump variation, in our framework).
It may also be related to differences between the economic sources, e.g. news announcements, of positive and negative jumps,
see Bajgrowicz, Scaillet, and Treccani (2012) for related work. We do not attempt to identify individual jumps, and so the effects
we report may be interpreted as average effects for positive and negative news.
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based on those above.

6.1 International evidence

The previous sections presented results for the SPDR, an exchange traded fund tracking the S&P 500 index

of U.S. firms, and for 105 individual U.S. firms. In this section we present results for two international

equity indices, the FTSE 100 index of United Kingdom stocks and the EURO STOXX 50 index of stocks from

12 European countries. Data on both indices is taken from Thomson Reuters Tick History, and covers the

same period as the main results.22 Both indices are computed from the underlying basket of 100 and 50

stocks, respectively, and prices were cleaned using the rules 1, 2, 5 and 6 from Appendix A using the local

market trading times in place of U.S. open hours and daily Tick History verified high-low range data. This

data is much cleaner than TAQ data and a total of 6 (high-frequency) observation were removed.

Table 4 presents results for the FTSE and the STOXX. The top row of each panel presents results for

a standard HAR, corresponding to the top row of each panel in Table 2a for the SPDR. The second row

presents results for a HAR model with the one-day lag of realized variance decomposed into positive and

negative semivariance, (eq. 16) and can be compared with the second row of each panel in Table 2a. In

common with the results for the SPDR, we find that negative realized semivariance is much more impor-

tant for predicting future volatility than positive semivariance. For the FTSE index, positive semivariance

is significant for only the two shorter horizons. For the STOXX index, it is significant at all four horizons,

but has coefficients that are less than one-half of those on negative semivariance in all cases. For both

indices and all four forecast horizons we can reject, at the 0.05 level, the null that φ+d = φ
−
d , and thus we

conclude that realized semivariances yield significant explanatory gains for both of these indices.

The third row of each panel in Table 4 presents results for a model that includes a measure of contin-

uous and signed jump variation (eq. 18) and can be compared with the results presented in the top row

of each panel of Table 3a. For both indices and all four forecast horizons we find thatφJ is negative, con-

sistent with the results for the SPDR. This parameter is significantly negative for all four horizons for the

FTSE, and for all but the longest horizon for the STOXX. This suggests that negative jumps lead to higher

22The first date available for the EURO STOXX 50 is February 26, 1998, and so we use that as the start date for that series; for
the FTSE 100 index we start on June 23, 1997.
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future volatility, while positive jumps lead to lower future volatility, further motivating the monikers “bad

volatility” and “good volatility.”

[ INSERT TABLE 4 ABOUT HERE ]

6.2 Pseudo-out-of-sample forecast performance

We now consider a pseudo out-of-sample forecasting application to see whether the in-sample gains doc-

umented in Sections 4 and 5 lead to better forecasts out-of-sample. We consider three classes of models,

each with two or three variations. All models include RV w ,t and RV m ,t , and they differ in what previous-

day information is used. The first model, denoted R̂V
H AR

, is the standard RV-HAR containing lags 1, 5 and

22 of RV (eq. 15). The second, denoted R̂V
G J R

, augments the standard HAR with an interaction term

which allows for asymmetry in persistence when the previous daily return was negative, RVt I[rt<0], (eq.

17). The second class of models uses information in positive and negative semivariance: R̂V
RS

is a spec-

ification that decomposes recent realized variance into positive and negative semivariance (eq. 16), and

R̂V
RS−

, is a restricted version of R̂V
RS

where positive realized semivariance is excluded from the model,

motivated by the relative magnitude of the coefficient and limited significance of this variable in Tables 2a

and 2b. The third class of models considers the information in jump variation: R̂V
BV

is a model that ex-

cludes jump information and only includes bipower variation; R̂V
∆J 2

is a specification that includes BVt

and∆J 2
t (eq. 18), and R̂V

∆J 2±

is a specification that breaks∆J 2
t into its positive and negative components

(eq. 19).

All forecasts are generated using rolling WLS regressions based on 1,004 observations (4 years), and

parameter estimates are updated daily. Only series that contain at least 500 out-of-sample data points

are included, reducing the number of individual firms from 105 to 95. No restrictions on the parameters

are imposed and forecasts are occasionally negative (approximately .004%), and so an “insanity filter” is

used to ensure that the forecasts were no smaller than the smallest realization observed in the estimation

window.

Forecast performance is evaluated using unconditional Diebold and Mariano (1995) - Giacomini and
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White (2006) tests, using the negative of the Gaussian quasi-likelihood as the loss function,

L
(

R̂V h ,t+h |t , RV h ,t+h

)
= ln

(
R̂V h ,t+h |t

)
+

RV h ,t+h

R̂V h ,t+h |t
.

This “QLIKE” loss function has been shown to be robust to noise in the proxy for volatility in Patton (2011),

and to have good power properties in Patton and Sheppard (2009).

Table 5 contains results from the forecasting analysis. Each of the three panels contains results from

comparing one pair of forecasting models. Within each panel, the left-most column contains the value

of the DM test statistic for the S&P 500 ETF, and the two right columns contain the percentage of the 95

individual series which favor the each of the competing models using a 2-sided 5% test.

The top-left panel compares the standard HAR with a semivariance-based model which decomposes

the first lag. The DM test statistic is positive across all forecast horizons, indicating the superior out-of-

sample performance of the semivariance model for the S&P 500 ETF, and rejects the null of equal perfor-

mance in favor of the semivariance-based model in 22% to 30% of individual series. The middle panel

of the top row compares the standard HAR to a model which includes only negative semivariance at the

first lag. This is our preferred realized semivariance specification in light of the weak evidence of signifi-

cant of positive semivariance, and this model has the same number of parameters as the standard HAR.

The restricted semivariance model outperforms the standard HAR at all horizons for the S&P 500, and

provides better performance for individual stocks than the less parsimonious specification. The top-right

panel compares the parsimonious realized semivariance specification to the realized variance HAR which

includes the interaction variable using the sign of the lagged return. The interaction variable appears to

help at short horizons, with the performance of that model being not significant different from our pre-

ferred semivariance specification, however the asymmetry-augmented HAR is significantly outperformed

at longer horizons by the semivariance-based forecast.

The lower-left panel compares models that differ in the one-day lag information: the first model uses

BV while the second model uses negative semivariance (RS−). We observe that negative semivariance

outperforms BV for the SPDR at all four horizons. For individual series the outperformance is significant
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for all but the shortest horizon, where the two models perform comparably well. The middle panel of the

bottom row of Table 5 compares a forecasting model that excludes jump information (from the one-day

lag) with a model that includes it through the variable∆J 2
t . We see that the model that incorporates signed

jump information significantly outperforms, for the SPDR, the one that does not for two out of the four

horizons (h = 5 and h = 22). For individual stocks ∆J 2
t significantly outperforms BV for between 17%

and 25% of series. Finally, the lower-right panel compares the model based on BV with one that breaks

jump variation into its positive and negative components. We again find that information from signed

jumps significantly improves out-of-sample forecast performance, although generally less than a simple

model with only negative semivariance.

[ INSERT TABLE 5 ABOUT HERE ]

Table 6 reports the out-of-sample R 2 values for the seven forecasting models considered in Table 5.

Relative to a baseline HAR specification, the best semivariance-based alternative generates gains in out-

of-sample R2 of between 1.1% (h = 66) and 3.0% for the SPDR (h = 22), and between 0.5% (h = 66) and

13.5% (h = 1) for the individual stocks. Thus statistically significant gains documented in Table 6 also

correspond to economically meaningful improvements.

[ INSERT TABLE 6 ABOUT HERE ]

7 Conclusion

This paper shows the sizable and significant gains for predicting equity volatility by incorporating signed

high frequency volatility information. Our analysis is based on the “realized semivariance” estimators

recently proposed by Barndorff-Nielsen, Kinnebrock, and Shephard (2010). These simple estimators al-

low us to decompose realized volatility into a part coming from positive high frequency returns and a

part coming from negative high frequency returns. For three equity market indices and a set of 105 in-

dividual stocks, we find that negative realized semivariance is much more important for future volatility

than positive realized semivariance, and disentangling the effects of these two components significantly

improves forecasts of future volatility. This is true whether the measure of future volatility is realized vari-
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ance, bipower variation, negative realized semivariance or positive realized semivariance, and holds for

horizons ranging from one day to three months. We also find that jump variation is important for pre-

dicting future volatility, with volatility attributable to negative jumps leading to significantly higher future

volatility, while positive jumps lead to significantly lower volatility. This may explain earlier results in this

literature, see Andersen, Bollerslev, and Diebold (2007) and Busch, Christensen, and Nielsen (2011) for

example, who found that jumps are of limited use for forecasting future volatility; only by including the

jump size and sign are the gains from jumps realized. Assessing the usefulness of realized semivariances

and signed jump variation in concrete financial applications, such as portfolio management, density fore-

casting and derivatives pricing, as in Fleming, Kirby, and Ostdiek (2003), Maheu and McCurdy (2011) and

Christoffersen and Jacobs (2004) for example, represents an interesting area for future research.
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Figure 1: Estimated coefficients from a model that decomposes realized variance into its signed compo-
nents, RV h ,i ,t+h = µi +φd RVi ,t +φ+d RS+i ,t +φ

−
d RS−i ,t +φw RV w ,i ,t +φm RV m ,i ,t + εt+h . 95% confidence

intervals are indicated using dotted lines, and the estimated coefficient from a standard HAR model, φd ,
is presented in a light solid line. The top panel contains results for the S&P 500 SPDR and the bottom panel
contains results for the panel of individual firm realized variances.
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Figure 2: Estimated coefficients from a model that includes both signed jump variation and bipower vari-
ation, RV h ,i ,t+h = µi + φ J+∆J 2+ + φ J−∆J 2− + φC BV −i ,t + φw RV w ,i ,t + φm RV m ,i ,t + εi ,t+h .. The top
panel contains the estimated parameters for the S&P 500 SPDR and the bottom panel contains the esti-
mated parameters in the panel of individual firms. 95% confidence intervals are indicated using dashed
lines.
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Figure 3: Effects of signed jump variation on individual firm volatilities, sorted by size. The magnitude of
the coefficient on∆J 2 is indicated as distance from the horizontal axis. Solid bars indicate significance at
the 5% level.
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Data Summary Statistics

Averages
SPDR Mean Q.05 Median Q.95

RV 1.154 4.391 1.758 3.542 10.675
BV 1.131 3.821 1.540 2.999 9.521
RS+ 0.583 2.192 0.887 1.777 5.286
RS− 0.571 2.199 0.874 1.806 5.388
∆J 2 0.012 -0.008 -0.210 0.011 0.107
∆J 2+ 0.098 0.403 0.168 0.337 0.904
∆J 2− -0.086 -0.411 -1.032 -0.334 -0.150

Autocorrelations
SPDR Mean Q.05 Median Q.95

RV 0.633 0.629 0.397 0.667 0.765
BV 0.682 0.637 0.420 0.658 0.788
RS+ 0.469 0.550 0.341 0.578 0.690
RS− 0.704 0.592 0.340 0.624 0.757
∆J 2 -0.112 -0.013 -0.148 -0.003 0.092
∆J 2+ 0.029 0.112 0.015 0.115 0.206
∆J 2− 0.062 0.133 0.055 0.127 0.276

Correlations
RV BV RS+ RS− ∆J 2 ∆J 2+ ∆J 2−

RV – 0.981 0.945 0.942 0.071 0.512 -0.472
BV 0.988 – 0.923 0.934 0.050 0.468 -0.452
RS+ 0.965 0.931 – 0.787 0.373 0.720 -0.217
RS− 0.943 0.962 0.824 – -0.252 0.238 -0.685
∆J 2 0.391 0.304 0.618 0.063 – 0.777 0.696
∆J 2+ 0.613 0.520 0.782 0.338 0.909 – 0.122
∆J 2− -0.340 -0.353 -0.148 -0.549 0.501 0.094 –

Table 1: The top panel contains the average values for realized variance (RV ), bi-power variation (BV ),
positive and negative semivariance (RS+ and RS−), jump variation (∆J 2) and signed jump-variation
(∆J 2+ and ∆J 2−), scaled by 100. The left column contains values for the S&P 500 ETF (SPDR). The right
four columns contain the average, 5% and 95% quantiles and the median from the panel of 105 stocks. The
second panel contains the 1st autocorrelation for each of the series, and the right four columns report the
average, 5% and 95% quantiles and median from the 105 individual stocks. The bottom panel contains
the correlations for the seven variables; entries below the diagonal are computed using the SPDR data,
and entries above the diagonal are average correlations for the 105 stocks.
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HAR estimation results for the SPDR, cumulative volatility

RV h ,t+h = µ + φd RVt + φ+d RS+t + φ
−
d RS−t + γRVt I[rt<0] + φw RV w ,t + φm RV m ,t + εt+h

φd φ+d φ−d γ φw φm R 2

h = 1 0.607
(17.0)

0.268
(8.1)

0.120
(4.9)

0.532

−0.024
(−0.3)

1.182
(13.0)

0.291
(9.3)

0.120
(4.9)

0.611

0.037
(0.4)

1.064
(7.4)

0.050
(1.4)

0.293
(9.3)

0.121
(5.0)

0.611

h = 5 0.425
(14.7)

0.409
(8.6)

0.158
(4.0)

0.563

−0.030
(−0.7)

0.862
(13.4)

0.421
(8.8)

0.155
(4.0)

0.620

0.073
(1.1)

0.650
(6.6)

0.092
(2.5)

0.424
(8.8)

0.157
(4.0)

0.619

h = 22 0.305
(11.8)

0.357
(7.7)

0.265
(4.8)

0.468

−0.009
(−0.3)

0.628
(9.9)

0.359
(7.5)

0.261
(4.8)

0.508

−0.012
(−0.2)

0.635
(5.8)

−0.003
(−0.1)

0.359
(7.6)

0.261
(4.8)

0.508

h = 66 0.203
(8.4)

0.256
(7.4)

0.299
(5.3)

0.282

−0.067
(−2.2)

0.501
(7.3)

0.253
(6.8)

0.294
(5.3)

0.313

−0.121
(−1.8)

0.622
(4.1)

−0.054
(−1.3)

0.251
(6.8)

0.292
(5.2)

0.315

Table 2a: Each of the four panels contains results for the forecast horizon indicated in the left most column.
Each panel contains 3 models: the first model corresponds to the reference model using only realized
variance, the second decomposes realized variance into positive and negative realized semivariance at the
first lag, and the third specification adds an asymmetric term where the sign of the most recent daily return
is used. The R 2 measure is constructed using the WLS parameter estimates and the original, unmodified
data. Robust t -statistics are reported in parentheses.
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HAR estimation results for the panel of 105 individual stocks, cumulative volatility

RV h ,i ,t+h = µi + φd RVi ,t + φ+d RS+i ,t + φ
−
d RS−i ,t + γRVi ,t I[ri ,t<0] + φw RV w ,i ,t + φm RV m ,i ,t + εi ,t+h

φd φ+d φ−d γ φw φm R 2

h = 1 0.488
(39.7)

0.315
(28.1)

0.172
(16.2)

0.395

0.268
(15.6)

0.704
(24.5)

0.317
(28.7)

0.172
(16.4)

0.398

0.316
(17.1)

0.607
(18.9)

0.046
(6.8)

0.317
(28.7)

0.172
(16.5)

0.398

h = 5 0.357
(23.2)

0.357
(16.3)

0.247
(10.2)

0.525

0.158
(11.4)

0.551
(19.0)

0.359
(16.4)

0.247
(10.3)

0.529

0.210
(14.5)

0.444
(19.6)

0.052
(7.7)

0.359
(16.5)

0.248
(10.3)

0.529

h = 22 0.241
(14.8)

0.312
(11.9)

0.360
(10.3)

0.511

0.091
(7.3)

0.388
(12.8)

0.314
(11.9)

0.360
(10.4)

0.513

0.126
(9.4)

0.314
(13.8)

0.036
(5.1)

0.314
(11.9)

0.360
(10.4)

0.514

h = 66 0.161
(12.2)

0.236
(10.7)

0.431
(12.0)

0.450

0.044
(3.9)

0.275
(8.8)

0.238
(10.6)

0.431
(12.1)

0.452

0.062
(5.9)

0.235
(8.5)

0.020
(3.8)

0.238
(10.6)

0.432
(12.1)

0.452

Table 2b: Each of the four panels contains results for the forecast horizon indicated in the left most col-
umn. Each panel contains 3 models: the first model corresponds to the reference model using only real-
ized variance, the second decomposes realized variance into positive and negative realized semivariance
at the first lag, and the third specification adds an asymmetric term where the sign of the most recent daily
return is used. The final column reports the average of the 105 R 2s for the individual assets constructed
using the WLS parameter estimates and the original, unmodified data. Robust t -statistics are reported in
parentheses.

32



The impact of signed jump variation on future volatility, results for the SPDR

R M h ,t+h = µ + φJ∆J 2
t + φJ +∆J 2+

t + φJ−∆J 2−
t + φC BVt + φw RV w ,t + φm RV m ,t + εt+h

R M φJ φJ + φJ− φC φw φm R 2

h = 1 RV 0.645
(17.5)

0.255
(7.8)

0.119
(4.9)

0.561

RV −0.572
(−7.7)

0.610
(18.4)

0.282
(9.0)

0.120
(5.0)

0.613

RV −0.190
(−2.1)

−0.964
(−5.5)

0.545
(16.8)

0.289
(9.4)

0.120
(5.0)

0.621

BV −0.549
(−9.5)

0.596
(20.4)

0.278
(10.2)

0.098
(5.0)

0.663

h = 5 RV 0.466
(14.0)

0.389
(8.2)

0.156
(3.9)

0.584

RV −0.408
(−9.0)

0.449
(13.6)

0.406
(8.5)

0.154
(4.0)

0.622

RV −0.284
(−3.9)

−0.544
(−6.1)

0.426
(11.9)

0.409
(8.6)

0.154
(4.0)

0.622

BV −0.392
(−9.2)

0.440
(15.0)

0.389
(8.6)

0.137
(3.9)

0.633

h = 22 RV 0.346
(11.7)

0.334
(7.1)

0.262
(4.8)

0.485

RV −0.276
(−7.3)

0.342
(11.2)

0.342
(7.1)

0.260
(4.8)

0.512

RV −0.299
(−3.8)

−0.248
(−2.3)

0.346
(10.0)

0.341
(7.0)

0.260
(4.8)

0.513

BV −0.264
(−7.0)

0.333
(10.9)

0.330
(6.8)

0.243
(4.7)

0.505

h = 66 RV 0.237
(9.3)

0.237
(6.6)

0.296
(5.4)

0.290

RV −0.244
(−5.4)

0.240
(9.6)

0.240
(6.3)

0.293
(5.3)

0.312

RV −0.246
(−3.1)

−0.242
(−1.9)

0.240
(8.3)

0.240
(6.0)

0.293
(5.3)

0.312

BV −0.233
(−5.1)

0.232
(9.2)

0.231
(6.1)

0.279
(5.3)

0.304

Table 3a: Models that include signed jump information where quadratic variation has been decom-
posed into signed jump variation, ∆J 2, and its continuous component using bipower variation, BV (ro-
bust t -statistics in parentheses). Each of the four panels contains results for the forecast horizon in-
dicated at the left. R M indicates the dependent variable, realized variance (RV ) or bipower variation
(BV ). ∆J 2+

t and ∆J 2−
t decompose ∆J 2

t using an indicator variable for the sign of the difference where
∆J 2+

t = ∆J 2
t I[RS+t −RS−t >0]. The R 2 measure is constructed using the WLS parameter estimates and the

original, unmodified data.
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The impact of signed jump variation on future volatility, results for the panel of 105 individual stocks

R M h ,i ,t+h = µi + φJ∆J 2
i ,t + φJ +∆J 2+

i ,t + φJ−∆J 2−
i ,t + φC BVi ,t + φw RV w ,i ,t + φm RV m ,i ,t + εi ,t+h

R M φJ φJ + φJ− φC φw φm R 2

h = 1 RV 0.566
(38.6)

0.325
(28.6)

0.181
(17.0)

0.394

RV −0.215
(−10.5)

0.563
(40.0)

0.327
(29.1)

0.182
(17.2)

0.397

RV 0.048
(2.5)

−0.492
(−12.2)

0.502
(38.1)

0.330
(29.5)

0.182
(17.3)

0.399

BV −0.178
(−10.9)

0.488
(41.9)

0.258
(28.3)

0.136
(16.2)

0.427

h = 5 RV 0.414
(22.8)

0.364
(16.4)

0.255
(10.4)

0.524

RV −0.195
(−11.5)

0.411
(23.0)

0.366
(16.5)

0.255
(10.5)

0.527

RV −0.116
(−5.2)

−0.277
(−12.2)

0.392
(20.9)

0.367
(16.6)

0.255
(10.5)

0.527

BV −0.161
(−11.6)

0.358
(23.6)

0.293
(16.0)

0.196
(10.1)

0.538

h = 22 RV 0.281
(13.7)

0.316
(12.1)

0.366
(10.3)

0.510

RV −0.146
(−8.7)

0.279
(13.9)

0.318
(12.1)

0.366
(10.4)

0.512

RV −0.122
(−5.3)

−0.172
(−7.8)

0.273
(13.0)

0.319
(12.1)

0.366
(10.4)

0.512

BV −0.120
(−8.6)

0.244
(13.8)

0.256
(11.4)

0.287
(10.0)

0.505

h = 66 RV 0.182
(11.2)

0.242
(10.8)

0.437
(12.1)

0.448

RV −0.114
(−5.6)

0.180
(11.5)

0.244
(10.7)

0.437
(12.1)

0.450

RV −0.080
(−4.3)

−0.149
(−4.9)

0.171
(11.5)

0.245
(10.6)

0.437
(12.1)

0.450

BV −0.092
(−5.4)

0.158
(11.4)

0.194
(10.0)

0.348
(12.4)

0.439

Table 3b: Models that include signed jump information where quadratic variation has been decom-
posed into signed jump variation, ∆J 2, and its continuous component using bipower variation, BV (ro-
bust t -statistics in parentheses). Each of the four panels contains results for the forecast horizon in-
dicated at the left. R M indicates the dependent variable, realized variance (RV ) or bipower variation
(BV ). ∆J 2+

i ,t and ∆J 2−
i ,t decompose ∆J 2

i ,t using an indicator variable for the sign of the difference where
∆J 2+

i ,t = ∆J 2
i ,t I[RS+i ,t−RS−i ,t>0]. The final column reports the average of the 105 R 2s for the individual assets

constructed using the WLS parameter estimates and the original, unmodified data.
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International Evidence
RV h ,t+h = µ + φd RVt + φ+d RS+t + φ

−
d RS−t + φJ∆J 2

t + φC BVt + φw RV w ,t + φm RV m ,t + εt+h

FTSE 100

φd φ+d φ−d φJ φC φw φm R 2

h = 1 0.489
(8.4)

0.341
(6.9)

0.169
(4.6)

0.362

0.183
(2.2)

0.708
(8.0)

0.361
(7.2)

0.180
(5.0)

0.386

−0.248
(−3.7)

0.579
(7.8)

0.344
(6.9)

0.184
(5.0)

0.412

h = 5 0.373
(7.7)

0.450
(10.2)

0.175
(3.8)

0.449

0.138
(2.9)

0.541
(7.2)

0.466
(10.3)

0.184
(4.0)

0.472

−0.186
(−4.4)

0.466
(6.8)

0.441
(10.2)

0.183
(3.9)

0.496

h = 22 0.250
(8.0)

0.366
(5.6)

0.333
(4.5)

0.369

0.034
(0.8)

0.406
(6.3)

0.380
(5.7)

0.340
(4.7)

0.392

−0.180
(−3.6)

0.299
(7.1)

0.367
(5.4)

0.341
(4.7)

0.401

h = 66 0.171
(6.5)

0.308
(5.7)

0.292
(3.9)

0.245

0.029
(0.7)

0.277
(4.4)

0.317
(5.6)

0.296
(4.0)

0.260

−0.124
(−2.7)

0.198
(4.4)

0.313
(5.6)

0.298
(3.9)

0.268

EURO STOXX 50

φd φ+d φ−d φJ φC φw φm R 2

h = 1 0.515
(12.9)

0.334
(10.4)

0.110
(4.3)

0.625

0.209
(3.7)

0.727
(12.6)

0.361
(11.1)

0.119
(4.7)

0.640

−0.227
(−5.5)

0.633
(12.6)

0.332
(10.2)

0.105
(4.2)

0.639

h = 5 0.448
(6.7)

0.392
(8.5)

0.109
(2.8)

0.637

0.243
(3.6)

0.582
(7.0)

0.412
(8.8)

0.116
(3.0)

0.645

−0.148
(−3.9)

0.558
(6.4)

0.383
(7.6)

0.105
(2.8)

0.638

h = 22 0.299
(6.5)

0.365
(5.0)

0.232
(3.7)

0.508

0.165
(3.2)

0.386
(5.5)

0.379
(5.1)

0.236
(3.8)

0.513

−0.101
(−2.2)

0.366
(7.8)

0.362
(4.7)

0.230
(3.7)

0.505

h = 66 0.221
(4.6)

0.304
(3.9)

0.210
(3.3)

0.383

0.122
(2.4)

0.284
(3.5)

0.315
(3.8)

0.213
(3.3)

0.388

−0.071
(−1.2)

0.278
(5.5)

0.298
(3.5)

0.207
(3.2)

0.379

Table 4: Models fit on international equity market realized variance and semivariance. The top panel
contains models estimated on the realized variance of the FTSE 100 and the bottom contains results from
the EURO STOXX 50. Models were fit to 1-day, 1-week, 1-month and 1-quarter ahead cumulative realized
variance. Each subpanel contains 3 models: the first is a reference HAR which only includes realized
variance, the second decomposes realized variance into positive and negative realized semivariance and
the third splits recent volatility in to a signed-jump measure,∆J 2 , and bi-power variation (BV ), a estimate
of the continuous component of variance. 35
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Out-of-sample R 2

SPDR

R̂V
H AR

R̂V
G J R

R̂V
RS

R̂V
RS−

R̂V
BV

R̂V
∆J 2

R̂V
∆J 2±

h = 1 66.7 69.0 67.8 68.8 68.0 68.9 69.3
h = 5 64.8 67.8 67.8 67.6 65.6 67.7 67.8
h = 22 52.4 53.0 54.1 53.9 53.0 54.1 54.1
h = 66 42.8 43.0 43.8 43.7 43.1 43.7 43.9

Individual

R̂V
H AR

R̂V
G J R

R̂V
RS

R̂V
RS−

R̂V
BV

R̂V
∆J 2

R̂V
∆J 2±

h = 1 40.4 51.5 50.2 50.5 46.8 53.9 53.0
h = 5 59.1 61.1 61.6 61.8 60.7 62.6 61.3
h = 22 55.1 55.4 55.8 56.0 55.5 56.0 55.8
h = 66 51.7 51.0 51.8 52.2 51.7 51.8 51.3

Table 6: Out-of-sample R 2 for the alternative models used in the forecast evaluation. The OOS R 2 is com-
puted as one minus the ratio of out-of-sample model-based MSE to the out-of-sample MSE from a forecast
that only includes a constant. The largest value in each row is in bold.
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