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Goodness of Fit in Confirmatory Factor Analysis:

Thu Effects of Sample Size and Model Complexity

ABSTRACT

The purpose of the present investigation is to examine the influence of

sample size (N) end model complexity on a set of 23 goodness-of-fit indices

including those typically used in confirmatory. .factor analysis. For data

simulated from each of two different population models, values for 17 of the

23 fit indices were at least moderately influenced by N, and many of these

indices failed to control sufficiently for the inclusion of superfluous

parameter. (i.e., parameters that had zero values in the population model).

Four of the indices were relatively independent of N and were not

significantly affected by the inclusion of superfluous parameters. The 4

recommended indices are two measures of fit based on the noncentrality

parameter proposed by McDonald (in press), the widely known incremental

(relative) index developed by Tucker and Lewis (1973), and a new

increme6Zat index called the-McDonald-Marsh Index (MMI) that is based on one

of McDcnald's noncentrality indices
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Goodness of Fit 1

Goodness of Fit in Confirmatory Factor Analysis*

The Effects of Sample Size and Model Complexity

The purpose of the present investigation is to examine the influence of

sample size (N) and of model complexity on different goodness-of-fit indices

used in confirmatory factor analysis (CFA). In CFA responses to p observed

variables by N subjects are summarized by a (p x p) sample covariance matrix

and it is hypothesized that the corresponding population covariance matrix

can be described by K parameters, namely the factor loadings, the factor

variances and covariances, and the residual variances. To the extent that

the fitted population covariance matrix I derived from a set of (in some

sense) best-fitting parameters is similar to the observed sample covariance

matrix S, the model is supported. The problem of goodness of fit is how to

decide whether I is sufficiently similar to S to justify the conclusion that

a specific model adequately fits a particular set of data. The present

focus is how goodness of fit as a3sessed with a variety of indices varies

with U, the number of cases in the data to be fit, and model complexity as

measured by K. the number of parameters estimated in a series of nested

models.

The classical form of statistical hypothesis testing is generally

inappropriate for evaluation of fit in CFA. Cudeck and Browne (1983) noted

that since hypothesized models are best regarded as approximations to

reality rather than exact statements of truth, any model can be rejected if

the sample size is sufficiently large. From this perspective they argued

that it is preferable to abandon the statistical hypothesis testing

approach. Similarly, Joreskog and Sorbom argued that statistical hypothesis

testing is generally inappropriate because "the statistical problem is not

one of testing a given hypothesis (which a priori may be considered false)

but rather one of fitting the model to data and to decide whether the fit is

adequate or not" (p. 1.38-39). McDonald (1985, p. 56) also noted that

hypothesis testing is inappropriate for selecting a restrictive model since

all common factor hypotheses are false, because all restrictive hypotheses

are false, and they will be proven false by the use of a sufficiently large

sample size." In actual application only the "saturated" model can be true.

Accordingly, a large number of fit indices have boen proposed (e.g., Akaike,

1974; Bollen, 1986; Sealer & Bonett, 1980; Bozdogan, 1987; Cudeck & Browne,

1983; Hoelter, 1983; Horn & McArdle, 1980; James, Mulaik & Brett, 1982;
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Joreskog & Sorbom, 1981; Marsh, Balla & McDonald, 1988; McArdle, 1986;

McDonald, in press; McDonald & Marsh, 1988; Schwartz, 1978; Steiger & Lind,

1960; Tanaka, 1987; Tanaka & Huba, 1986; Tucker x Lewis, 1973) to facilitate

the evaluation of fit and the comparison of alternative models.

Desirable Characteristics of ELt Indices,

The focus of the present investigation is on two potential problems in

assessing goodness of fit. First, some fit indices are substantially

influenced by N so that tests of the sem model based on the same variables

for a new sample from the same population are not directly comparable unless

N is alsn held constant. Such an effect of N also makes problematic any

guidelines of what constitutes an acceptable fit. Thus, some researchers

have developed fit indices that are claimed to be relatively independent of

N. Second, the inclusion of additional parameters; particularly when based

on a posteriori criteria and tested with the same data, may provide an

illusory improveeent in fit. Thus, some researchers have developed fit

indices that are claimed to compensate for capitalization on chance. From

these perspectives, an ideal index of fit would be relatively independent of

N, provide an accurat2 measure of goodness of fit for competing models, vary

along a well-defined continuum that is easily interpreted, and control

appropriately for model complexity.

Many researchers have examined the effect of N on goodness of fit

(e.g., Anderson & Garbing, 1984; Bearden, Sharma & Teel, 1982; Bentler &

Bonett, 1980; Dollen, 1986; Boomsma, 1982; Cudeck & Browne, 1983; Serbing &

Anderson, 1985; Hoelter; 1983; Joreskog & Sorbom, 1981; Marsh, Balla &

McDonald, 1988; Marsh & McDonald, 1988) and some have proposed fit indices

that are claimed to be independent of N. Marsh, Brla, and McDonald used

actual and simulated data to demonstrate that near/ all frequently used

indices are substantially influenced by N. Of the more than 30 indices that

they considered, the Tucker-Lewis index (TLI) was the only frequently used

index that was relatively independent of N.1

Researchers have also examined the effect of the number of parameters

included in the hypothesized model on goodness of fit (e.g., Akaike, 1974;

1981; Anderson & Garbing, 1984; Bentler & Bonett, 1980; Boomsma, 1982;

Bozdogan, 1987; Cudeck & Browne, 1983; Serbing & Anderson, 1985; James,

Mulaik & Brett, 192; Joreskog & Sarbom, 1981; Schwartz, 1978; Tucker &

Lewis, 1973). Many fit indices are monotonically related to model complexity

2
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as measured by the number of parameters estimated in a series of nested

Models so that for sample data goodness of fit will continue to improve with

the addition of more parameters so long as the df is positive. From this

perspective the best fitting model will always be the saturated model with

df0. However, for sample data this improved fist due to the inclusion of

additional parameters may be due to capitalization on chance. Furthermore

the parameter estimates for a saturated model may be uninterpretable and

researchers often seek more parsimonious models that are both theoretically

defensible and able to desCribe their data adequately.

Researchers have approached this problem of evaluating fit in relation

to model complexity from different perspectives. For example, James, et al.,

(1982, p. 155) ask "how efficient is the increase in fit going from the null

model with many degrees of freedom to another model with just a few degrees

of freedom in berms of degrees of freedom lost in estimating more

parameters?" Joreskog and Sorbom (1981, p. I. 40) note that when the change

in X2 is close to the difference in df due to the addition of new

parameters, then the "improvement in fit is obtained by 'captializing on

chance,' and that the added parameters may not have real significance and

meaning." Cudeck and Browne (1983; also see Marsh, 1987) proposed the method

of cross-validation to determine the ability of a set of parameter estimates

to adequately describe data based on new observations from the same

population and to determine the extent to which capitalization on chance has

occurred. Cudeck and Browne also demonstrated the use of CAK and CSK (see

definition in Appendix 1), indices described by Akaike (1974) and by

Schwartz (1978) respectively that were retread in terms of FF (see Appendix

I), for this purpose. Bozdogan (1987) noted that model selection requires

researchers to achieve an appropriate balance between problems associated

with overfitting and underfitting the data, and that different fit indices

vary in the balance of protection that they offer from these conflicting

possibilities. Similarly, McDonald (in press) noted the need to strike a

balance between badness of fit and model complexity or, equivalently,

between goodness of fit and model parsimony. He further noted that this

compromise xs not an issue of sampling in that even if the true population

were known, an appropriate compromise would still be required.

Cudeck and Browne (1983) examined the joint influence of sample size

and model complexity on goodness of fit. They considered the CAK and CSK

indices that are a function of the number of estimated parameters. These

3
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indices are possibly a useful indication of fit for comparing competing

models that vary in thn number of parameters used to describe the same data

and have recently received much attention (e.g., Bozdogan, 1987). Cudeck and

Browne's results, as well as results by Marsh, Balla and McDonald (1988),

show empirically that these indices are substantially influenced by 114, and

McDonald (in press) demonstrated that this relation was inherent in the

matthematical form of the indices. The Akaike index penalized the inclusion

of additionrl parameters less severely than the Schwartz index so that it

consistently led to the selection of more complex models (see Bozdogan,

1987). This effect of sample size need not invalidate the use of these

indices for purposes of model nAlection if the effects of N are relatively

constant across the different models. That is, the same model may be

selected as "best" for each of the different sample sizes even though the

actual values of the fit indices varied according to sample size. However,

Cudeck and Browne found that the relative fit of competing models did vary

with N. For small sample sizes, simple models positing fewer parameters had

better fit indices whereas for large sample sizes more complicated models

positing more parameters, and, ultimately, for sufficiently large sample

sizes, the saturated model, had better fit indices. As noted by McDonald

(in press), two studies differing only in sample size would on average lead

to the support of models differing in complexity and no investigator would

reasonably use such indices if the sample size were large enough to require

the selection of an uninterpretably complex model.

he Present Investigation

Our objective is to examine the effect of model complexity and of N on

a 'let of 23 goodness of fit indices. Data were generated from one of two

known population models and a variety of models used to fit the data were

developed in relation to these known population models. Some models posited

parameters to be zero that were known to be non-zero for the population

model, thus providing models that were under-fit. Other models estimated

values for superfluous parameters tt.. were known to be zero for the

population model, thus providing models that were over-fit. Covariance

matrices to be fit by the alternative models were based on one of six

different sample sizes varying from 50 to 1600.

The set of 23 goodness of fit indices considered here are described in

more detail in Appendix I. For present purposes the indices are classified

4
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into three types, namely: (a) stand-alone (absolute) indices, (b) type-1

incremental (relative) indices, and (c) type-2 incremental (relative)

indices. The 15 stand-alone indices are based on the results of just a

target model, the a priori model posited by the researcher to fit the data.

These indices are provided by, or easily computed from results provided by,

LISREL and most other statistical packages used to fit structural equation

models: The incremental indices are based on the difference between the

target model and an alternative model such as a "null" model in which I isa

diagonal matrix (gentler & Bonett, 1980). Incremental type-2 indices

incorporate an expected value of an index for a true model whereas

incremental type-1 indices do not (see Appendix). Marsh, Balla and McDonald

(1988) examined 19 of the 23 indices considered here -- all but Dk, Mc, Z,

and the McDonald-Marsh Index (MMI) -- and found that only the TLI was

relatively independent of N (also see footnote 1). McDonald (in press)

indicated that his DK and Mc indices were relatively independent of N. Z,

because it is monotonically related to X2, should be affected by sample

size. The MMI was developed for purposes of the present inyestigation.2

Method

EA aft model and Analyses

All analyses were conducted with LISREL V (Joreskog & Sorbom, 1981)

using the method of maximum likelihood. In each of the analyses involving 9

observed variables a set of eight substantive models posited between 18 and

33 parameters .to define 1, 2, or 3 factors. Hence the df (.5 x 9 x 10 - K)

varied from 27 to 12. These eight models and their relation to the

population model used to generate the data are summarized in Table 1. A null

model was also tested for each covariance matrix such that the reproduced

covariance matrix was a diagonal matrix of variances and the nine measured

variables were posited to be uncorrelated. The df for the null model (.5 x 9

x 10 - 9 = 36) was constant for all the analyses. These nine models, the

eight substantive models and the null model, were tested for each of 120

covariance matrices described below.

lm Data.

Inffig -LO. STIP e

Insert Tables 1 & 2 About Here

gilAttit gi3 e. The six sample sizes to be considered in the present

5
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investigation, 30, 100, 200, 400, 800 and 1600, were selected to span the

range of sample sizes typically considered in CFA. For each of the two data

sets to be considered, ten random samples were generated for each sample

slaw and the same nine models were fit to these 120 (2 data sets x 6 sample

sizes x 10 cases) covariance matrices.

Sigel, structgre simulated Oats (SSIM)., The nine measured variables

were defined with the random number generator from the commercially

available SPSS package (Hull & Hie, 1981). Each variable was defined to

reflect only one factor (factor loadings were .6, .7 or .8) and a normally

distributed random error component, and the three factors were defined to be

correlated (factor covariances were .08, .12, and .24). A total of 31,500

cases were generated and divided into 60 sets of data such that each sample

size was represented by 10 covariance matrices. The eight substantive models

and the null model were fit to each of the 60 covariance matrices.

The population model used to generate this data was one of the

substantive models to be considered (3SF, see Table 1) and thus was the most

parsimonious model (i.e., contained the fewest estimated parameters) able to

fit the data. Models positing only one or two factors (Ilif and 2UF in Table

1) should not be able to fit the data. In each of the remaining five

substantive models, all the parameters in the 3SF model are included along

with a varying number of additional parameters. These additional parameters

are superfluous in that their population values, the values from the

population models used to generate the data, are zero. The fit indices of

these over -fit models are used to evaluate how various indices are affected

by capitalization on chance. To the extent that any of these over-fit models

fit the SSIM data significantly better than the 3SF model according to a

particular index, then the index does not control for the effects of

capitialization on chance. To the extent that any of these models fit the

data significantly poorer than the 3SF model according to any particular

indices, then, perhaps, the index over-compensates for capitalization on

chance. This relation between the substantive models to be tested and the

SSIM data was the basis of a priori contrasts used to compare various models

(see Table 2).

Comolex gtructure Simulated Pata (CSIM). The nine measured variables

were defined as with the SSIM except that six of the nine measured variables

-- two for each factor -- were defined such that each should have a small

loading (.2) on one factor in addition to the one it was designated to

6
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Goodness of Fit 7

reflect. (In Table 1, the 9 factor loadings corresponding to those in the

SSIM data are called major factor loadings whereas the additional 6 factor

loadings in the model used to generate the CSIM data are called minor

loadings). Again a total of 31,500 cases were generated and divided into 60

sets of data such that each sample size was represented by 10 covariance

matrices, and the null and hypothesized models were fit to these 60

covariance matrices.

The population model used to generate the CSIM data was one of the

substantive models to be considered (3CF, see Table 1) and so it is the most

parsimonious model able to fit the CSIM data. Model 3UF, positing three

unrestricted factors, should also be able to fit the data adequately though

it is less parsimonious. Models positing only one or two factors (1E14 and

2UF in Table 1) should not be able to fit the data. Furthermore, in each of

the remaining four substantive models positing three factors, either 3

(Models 3F1 and 3F2) or all 6 (Models 3F3 and 3SF) of the minor factor

loadings are constrained to be zero. Of these four models, only Model 3F3

contains superfluous parameters, parameters whose population value is zero.

This set of models provides additional tests of how the different indices

vary according to model complexity and models known to over-fit or under-fit

the data in relation.to the known population parameters. Two sets of models

(Models 3UF and 3CF, and Models 3F3 and 3SF) should be equivalent in their

ability to fit the data but differ in the number of parameters that are

estimated. For two additional sets of models (3UF vs. 3SF; 3F1 and 3F2 vs.

3SF) the model should fit best requires more parameters so that an

index that over-corrects for capitalization on chance may distort

appropriate differences in fit. This relation between the substantive models

to be tested and the CSIM data was the basis of a priori contrasts used to

compare various models (see Table 2).

ftesults

The analyses to be described are based on a set of B (substantive

models) x 6 (sample sizes) ANOVAs which were followed up by the set of 9 a

priori contrasts described in Table 2. Separate analyses were conducted for

each of the 23 fit indices and separate analyses were conducted for results

of the SSIM and CSIM data.

Simple Simulated (SSIM) Data,

7
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Models., In relation to the population model used to generate the SSIM

data Models 3 - 8 should be able to fit the data (i.e., all nonzero

population parameters are estimated) whereas Models 1 and 2 should not. For

all 23 fit indices there are significant differences in the ability of

competing models to fit the data (see Etas attrioutable to the Model in

Table 3), and most of this difference is due to the poorer fits of Models 1

and 2.

For the SSIM data, models 3 - 8 are all able to fit the data but differ

in the number of parameters that are posited. Because all these models

should be able to fit the data, it could be argued that the models should

not differ in goodness of fit. For analysis conducted on just Models 3 - 8

(Table 4) the effect of the model complexity varies substantially with the

fit index; 7 indices show significantly better fits when more (superfluous)

parameters are estimated, 6 indices show significantly poorer fits when more

parameters are estimated, and the remaining 10 indices are not significantly

related to the number of estimated parameters.

Insert Tables 3 & 3 and Figure 1 About Here

For all but 3 indices (DK, MC, and LHRI1) the effect of the models

interacted significantly with sample size (see Table 3), though the size of

this interaction was substantial for only 6 indices. Particularly for these

6 indices there is a similar pattern of interaction. For Models 1 and 2 that

are unable to .fit the data, fit becomes substantially poorer as sample size

increases (see X2 in figure 1). For Models 3 - 8 that are able to fit the

data, differences between models less related to sample size. Thus, for

analyses of just Models 3 - 8 (Table 4) the size of this interaction is much

smaller. The form of the interaction is illustrated for other selected

indices in Figure 1.

P44101, Siz (N1 Effect. The effect of the six levels ofN is

statistically significant and substantial for 17 of the 23 indices ' '..as of

J.26 to .96; see Table 3). For these 17 indices most of this effect can be

explained by the linear effect of log N (rs of .25 to J.90). The direction

of the effect of N, however, depends on the particular index (see Table 3

and Figure 1). The relation between goodness of fit and N is not

statistically significant for McDonald's Dk and Mc stand-alone indices and

the MMI relative index, and is very small for the TLI relative index.

8
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Priori contrasts. The purposes of the a priori contrasts are to test

the ability of the 23 indices to differentiate among model's known to differ

in their ability to fit the data, and to evaluate the indices in relation to

capitalization on chance. For the SSIM data, the set of 9 a priori contrasts

can be divided into two types. Contrasts 1 and 2 compare morsels that are

known to differ substantially in their ability to fit the data, whereas

contrasts 3 - 9 compare models that are all able to fit the data. For

contrasts 1 and 2, comparisons based on 20 of the 23 indices are

statistically significant and in the right direction. For CN both contrasts

are in the right direction but one is not statistically significant. For the

two parsimony indices one or both of the contrasts are significant but in

the wrong direction. These results based on contrasts 1 and 2 provide

support far 20 of the indices, but call into question the usefulness of CN

and the two parsimony indices.

Contrasts 3 - 9 are all based on comparisons among Models 3 - 8 that do

not differ in their ability to fit the data. Because the SSIM data was

generated by a population model containing only 21 parameters estimated in

Model 3SF (Table 1), additional parameters are superfluous. Fa" just

contrast 3 the models being compared are equally able to fit the data and

posit the same number of parameters (each contains 3 superfluous

parameters); this contrast fails to reach statistical significance for any

of the 23 indices.

Contrasts.3 4, 6, 7, 8 and 9 all compare models that are able to fit

the data but differ in the number of (superfluous) parameters. For each of

these contrasts (Table 3), a plus (+) indicates that the model with more

parameters fits the data better whereas a minus (-) indicates the opposite.

The behavior of the different fit indices in relation to these contrasts

vary substantially and fall into three classifications.

51 For 8 indices (FF, LHR, X2, RMR, 6F1, FFIl, LHRI1, X211) all

statistically significant contrasts favor the models that posit more

parameters. For these 8 indices, even those contrasts that are not

statistically sign1-54.cant favor models that posit more parameters, For these

indices more complex models positing more parameters fit the data better.

Because the true population values for these additional parameters are known

to be zero for this simulated data, this improved fit is illusory and due to

capitalization on chance.

9
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Goodness of Fit 10

2) For 6 of the fit indices (CSK, CAK, OCSK, OCAK, PIX2, and PIRMR),

all statistically significant contrasts favor models that posit fewer

parameters. For these 6 indices, even those contrasts that are not

statistically significant favor models with fewer parameters. That is,

models positing more (superfluous) parameters fit the data more poorly than

models positing fewer parameters so that these indices can be said to

penalize model complexity. The danger in penalizing mcdel complexity too

severely is observed for the two parsimony indices in relation to contrasts

1 and 2. For both these contrasts, the better model (in relation to the

known population model) posited more parameters. T two parsimony indices

so severely penalize the inclusion of additional parameters that better

fitting models have significantly poorer indices of fit. Examination of the

contrasts for the remaining four indices'in this second group suggests that

the CSK and OCSK penalize model complexity more severely than CAK and OCAK

(also see Bozdogan, 1987, for a mathematical basis for this observation).

However, because contrasts 1 and 2 are statistically significant and in the

right direction for each of these four indices, there is no basis for

claiming that model complexity is penalized too severely. Indeed, it may be

reasonable to severely penalize the inclusion of superfluous parameters so

long as models better able to fit known population parameters have better

indices than models less able to fit known population parameters. Although a

useful guideline for simulated data, this condition cannot be tested for

real data since the population parameters can never be known.

3) For the remaining 9 fit indices (X2 /df, AGFI, CN, DK, MC, Z,

X2/0I1, TLI, and MMI), none of the contrasts are statistically significant.

That is, for these indices models positing more (superfluous) parameters do

not differ significantly frOm models positing fewer parameters.

Summary 0. SSD, analyses. Analyses of the SSIM data were used to

examine the behavior of 23 indices of fit. Four of the indices (DK, Mc,

ILI, and MMI) were relatively independent of N and were not significantly

affected by the inclusion of superfluous parameters. The remaining 19

indices were at least moderately influenced by N and many were significantly

affected by the inclusion of superfluous parameters. CN, in addition to

being substantially influenced by sample size, did not differentiate between

tzodels known to differ in their ability to fit the data. The two parsimony

indices, in addition to being moderately influenced by N, were shown to

penalize model complexity too severely.

10
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Complex Simulatel (CSIM) Data.

Models. For the CSIM data the effect of the different models is

statistically significant and substantial for all 23 fit indices (Table 5).

This effect of models interacts significantly with M for 17 of the fit

indices, though the size of the interaction is substantial for only 6

indices. The indices most affected by this interaction and the nature of

this interaction are similar to that observed for the SSIM data (also see

Figure 1), and so are not discussed further.

Insert Table 5

Sample Size (N) Effect. The effect of N is statistically significant and

substantial for 19 of the 23 indite-- (etas of .26 to .96; see Table 5). For

these 19 indices most of this effect is linearly related to log N irs of

J.25 to J.90), but the direction of this effect depends on the index (see

Table 5 & Figure 1). The relation between goodness of fit and N is not

statistically significant for Dk, Mc, TLI and MMI. Again, these results are

similar to those observed for the SSIM data.

A Priori Contrasts. For the CSIM data, the set of 9 a priori contrasts

can be divided into two types. Contrasts 1, 2, 4, 5, 6, 7, and 9 are between
models known to differ in their ability to fit the data, whereas contrasts 3
and 13 compare models that are equally able to fit the data but differ in the

number of superfluous parameters that are posited.

Contrasts 1 and 2 are gross tests in that they compare the 3

unrestricted models positing 1, 2 and 3 factors. For 20 of the 23 indices,

contrasts 1 and 2 are statistically significant and in the right direction.

For CN both contrasts are in the right direction but one is not

statistically significant. For the two parsimony indices one or both of the

contrasts is significant but in the wrong direction. These results based on

contrasts 1 and 2 are similar to findings based on the SSIM data and so are

not discussed further.

Contrasts 4 and 9 are also rather gross tests in that models that are

able to fit the data (3UF and 3CF) are compared to model 3SF in which all 6

minor factor loadings known to be nonzero in the population model are fixed

to be zero. For 17 of the 23 indices, these contrasts are statistically

11
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significant and in the right direction. For CSK, OCSK, OCAK and the two

parsimony indices, one or both of these comparisons is statistically

significant and in the wrong direction. This demonstrates that with respect

to these contrasts, these indices penalize model complexity too severely.

Contrasts 6 and 7 are less gross in that the models being compared

differ in terms of only 3 of the 6 minor factor loadings. For 16 of the 23

indices, these contrasts are statistically significant and in the right

direction. For the two parsimony indices, both these contrasts are

statistically significant but in the wrong direction. For CSK the contrasts

are in the wrong direction, but not statistically significant. For CAK, CN,

OCSK, and LHRI1, one of these contrasts was not statistically significant

though none were in the wrong direction. This demonstrates that with respect

to these contrasts, the at least the parsimony indices penalize model

complexity too severely.

Contrast 5 compares models 3F1 and 3F2 in which 3 of the 6 minor factor

loadings are fixed to be zero with model 3F3 in which all 6 are fixed to be

zero. Thus, Models 3F1 and 3F2 should be able to fit the data better than

model 3F3. In model 3F3, however, 3 additional superfluous parameters are

also estimated so the df is the same for all three models. For only 5 (X2,

X2/df, OCAK, OCSK, and Z) of the 23 indices is this contrast statistically

significant and in the right direction. For all 23 indices, however, this

contrast was in the right direction and the contrast approached statistical

significance for many of these indices. It is also relevant to note that the
-.-

results of this contrast are not related to the number of estimated

parameters in that all the models posited the same number of parameters.

Contrasts 3 and 8 compare models that are equally able to fit the data

but differ in the number of (superfluous) parameters. As observed with the

SSIM data in this situation, the behavior of the indices fell into three

general categories. For 10 indices one or both of these contrasts are

statistically significant such that the model positing more parameters fits

the data better. As noted previously, this improved fit is illusory and

represents capitalization on chance. For 4 indices one or both of these

contrasts are statistically significant such that the model positing fewer

parameters fits the data more poorly. For 9 indices, neither of these

contrasts is statistically significant.

Summary of CSIM analyses. Analyses of the CSIM data were used to

12
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examine the behavior of 23 indices of fit. Four of the indices (DK, Mc,

TLI, and MMI) were relatively independent of N and were not significantly

affected by the inclusion of superfluous parameters. The remaining 19

indices were at least moderately influenced by N and many were shown to

significantly capitalize on chance when superfluous parameters were

estimated. CSK, OCSK, the two parsimony indices, and perhaps CAK in addition

to being moderately influenced by N, were shown to penalize model complexity

too severely in that models less able to fit the data provided better fits

than mdels better able to fit the data. These findings are generally

consistent with those based on the SSIM data.

Discussion

Results for both the SSIM and CSIM data lead to clear conclusions about

the behavior of fit indices considered here. For 19 of the indices -- all

but Dk, Mc, TLI, and MMI -- there was a moderate or large effect of N.

These results are consistent with conclusions by Marsh, Balla and McDonald

(1988), Marsh and McDonald (1988), and McDonald (in press). These same 4

indices were also shown to be not significantly affected by the inclusion of

superfluous parameters that had population values known to be zero. 1 ;,

contrast, the addition of superfluous parameters resulted in significant

improvements in fit that was due to capitalizing on chance for many of the

indices. Other indices were shown to penalize model complexity tao severely

in that inclusion of parameters that had nonzero values in the population

led to a significantly poorer fit. In some instances indices penalized model

complexity so severely that models better able to fit the data in relation

to the known population parameters produced poorer fit indices than models

that were less able to fit the data but contained fewer parameters. Whereas

a few other indices were not significantly affected by the introduction of

superfluous parameters, all of these other indices ware at least moderately

affected by sample size. Hence, in relation to the desirable characteristics

of fit indices considered here, there is clear support for only Dk, Mc, TLI,

and MMI indices.

The empirical results presented here suggest little basis for choosing

among the four recommended indiceS. In fact correlations among these indices

are .97 or higher for the data considered in this study. Theoretically,

however, the four indices differ in important ways. McDonald's two indices

are absolute or stand-alone indices that depend only on the model being

13
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Goodness of Fit 14

tested. Mc may be preferable to Dk in that it varies on a zero-to-one

continuum that may prove to be more easily interpreted. McDonald noted,

however, that such interpretations must be subjective since only the

saturated model is true in application. TLI and MMI are both incremental or

relative indices that depend on the fit of a null model as well as the fit

of the hypothesized model. The TLI is much better known than the new MMI,

but its estimation is frequently unstable particularly when sample size is

small (see Figure 1; also see Anderson & Gerbing, 1984; Marsh, Balla &

McDonald, 1988). Further research may show, however, that the same problem

applies to the MMI although it was not apparent in the present

investigation. The Dk, Mc, and MMI also differ from the TLI in that the

first three are monotonically related to the number of estimated parameters

whereas McDonald and Marsh (1988) show that the TLI can be written as an

index of fit that is weighted by a parsimony index. In this respect, the TLI

can be said to penalize model complexity whereas the other indices do not.

In the present investigation this mathematical distinction between these

indices was not demonstrated empirically. This can apparently be explained

by the observation that when the TLI is sufficiently large, as in most of

the contrasts in the present investigation, the size of this penalty is

negligible. Hence, it is possible the these four indices will differ mcre

substantially in other situations and this is at important question for

further research.

The present investigation is based on a variety of models fit to

simulated data -of varying sample sizes derived from only two different

population models. Hence, there is concern about the generality of our

findings, particularly with respect to use of simulated data. We found that

19 of the indices considered here were at least moderately affected by

sample size, and that many of these were significantly influenced by the

addition of superfluous parameters that represented capitalization on

chance. Other indices were shown to penalize model complexity too severely

in that models able to fit the data resulted in significantly poorer indices

than models not able to fit the data. These findings call into question the

usefulness of these indices as indicators of fit according to the criteria

proposed here. Even if other research shows any of these indices to be

useful in some specific situations, our results would stand as

counterinstances to the generality of claims to their usefulness.

We found that 4 of the indices considered here were relatively

14
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independent of sample size and were not significantly affected by the

inclusion of additional parameters. The conclusions about the effect of N on

these indices is consistent with other empirical research and mathematical

derivations of the indices. Further tests of the generality of our findings

based on the data sets considered here, however, will help clarify the

relations between these indices and model complexity. With further research

it may be possible to establish useful guidelines on the values of these

indices that constitute acceptable fit, but such attempts may be unjustified

for any of the other 19 indices considered here. For real data, however,

none of the population parameters will generally have a zero value so that

there may be no rational basis for concluding that any restricted model fits

the data better than the saturated model. Ultimately model selection must be

based on evaluation of fit, the behavior of competing models, and

substantive issues. From this perspective it would be undesirable to

establish absolute guidelines about what constitutes an adequate fit that

are independent of the research context.

15
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Footnotes

1 -- Several additional incremental (relative) indices referred to as Type-2

incremental indices (see Appendix for discussion of Type-1 and Type-2

incremental indices) by Marsh, Balla and McDonald (1988) were found to be

relatively independent of sample size for the four data sets considered in

that study. McDonald and Marsh (1988) subsequently showed, however, that by

their mathematical form some of these indices should vary with sample size

under certain conditions that did not exist in the data sets considered by

Marsh, Balla and McDonald (1988).

2 -- McDonald first developed his two indices, Mc and Dk, based on the

noncentrality parameter in late 1986, as described by McDonald (in press).

Shortly after their development, in February of 1987, Marsh and McDonald

proposed the incremental type-1 and type-2 forms of both these indices for

purposes of the present investigation. Only the results of the DkI2 are

actually presented here. DkIl and DKI2 are mathematically identical (see

Appendix) whereas the pattern of empirical results based on the MCI2 were

nearly identical to those based on DKI2. MCI', because it was significantly

related to sample size, was not pursured for purposes of the present

investigation. Subsequently, in October 1988, McDonald and Marsh evaluated

the mathematical properties of DKI2 more fully in research described in

Marsh and McDonald (1988). For purposes of that paper and the present

investigation, the index is referred to as the McDonald and Marsh index

(MMI).
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APPENDIX I

Descriptions of the 23 Goodness of Fit Ind;ces Used in This Study

Four types of fit indices are considered here. Stand alone indices are based

on results of just the hypothesized model. Two forms of incremental indices;

called type-1 and type-2 for present purposes, are based on differences in

fit between a hypothesized model and a null model. Parsimony indices are an

alternative form of the type 1 incremental indices thf impose a penalty

function for the inclusion of additional parameters.

I. Absolute; Stand-alone Indices.

The maximum likelihood fitting function (FF) and the scaled likelihood ratio

(LHR). Although not typically presented as fit indices (but see Cudeck &

Browne, 1983), the FF and LHR are the basis for the X2 test statistic and

most other fit indices. Tie FF has a minimum value of 0 when E = 5; but does

not have an upper bound. The scaled LHR has a maximum value of 1.0 when E = S

and a minimum value of zero. The FF and LHR are defined as:

(1) FF = X2 /(N),

(2) LHR = Exp(X2/(-2 x (N))) = e -1/2 FF.

X2 and X2/df Ratio. These two indices continue to be the most frequently used

indices. The X2 for a false model varies directly with sample size, but the

X2 for a true model does not. In CFA the df does not vary with the sample

size; so that the effect of sample size on the X2/df must necessarily be the

same as for the X2. For alternative models of the same data, increasing the

number of parameters necessarily results in a better (i.e., lower) X2.

Because the X2/df ratio incorporates a penalty function for using more

parameters; it may be poorer if additional parameters result in little

improvement in X2. They are defined as:

(3) X2 = tr (E -1 S I) - log : E -1 S = (N) FE,

(4) X2/df =((N)/df) FF.

LISREL's root mean square residual (RMR). Joreskog and Sorbom (1981, p. 1.41)

define the RMR as the square root of the mean of squared residuals in S and

E. When S and E are based on correlation matrices RMR is strictly bounded by

0 and 1. For covariance matrices RMR still has a lower-bound of zero but does

not have an upper bound. Thus RMR must be interpreted in relation to the size

of the variances and covariances of the measured variables, and cannot be

compared across applications based on different variables. RMR is defined as:

19
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(5) RMR = C 2 E E (sij - eij)2 /(p x (13+1))3 1/2.

where Nj and eij are elements in S and E

LISREL's aLwdness-offit (GFI) and ad usted GFI (AGFI). Joreskog and Sorbom

(1981; also see Tanaka & Huba, 1936) describe the GFI and AGFI as computed by

LISREL. They state that GFI is "a measure of the relative amount of variances

and covariances jointly accounted for by the model" and assert that "unlike

X2, GFI is independent of the sample size" while AGFI "corresponds to using

mean squares instead of total sums of squares" (Joreskog & Sorbom, 1981, p.

I. 40-41). Thus AGFI incorporates a penalty function for additional

parameters. Joreskog and Sorbom suggest that GFI and AGFI will generally fall

between 0 and 1, but that it is possible for them to be negative. They are

defined as:

(6) GFI = 1 - C (tr (E-1 x S - I)2/(tr E -1 S)2 3,

(7) AGFI = 1 - Cp x (p+1)/2df3 x (1 - GFI).

Information Criterion. Akaike (1974, 1981) and Schwartz (1978) each proposed

fit indices that incorporate penalty functions based on the number of

parameters that are estimated. Cudeck and Browne (1983, p. 154) proposed

rescaled versions of these indices expressed in terms of FF. For purposes of

the present investigation, Cudeck and Browne's rescaling of the CAK (based on

Akaike, 1974) and CSK (based on Schwartz, 1978) ale defined as:

(8) CAK FF + 2K / N,

(9) CSK = FF + (K x In (N)) / N

where K = the number of parameters to be estimated.

The corresponding indices originally proposed by Akaike and by Schwartz are

defined as:

(10) OCAK = X2 + 2K,

(11) OCSK = X2 + K ln(N).

Critical N (CN). Hoelter (1983, p. 528) argued that "rather than ignoring or

completely neutralizing sample size we can estimate the size that a sample

must reach in order to accept the fit of a given model on a statistical

basis. This estimate, referred to here as 'critical N' (CN), allows one to

assess the fit of a model relative to identical hypothetical models estimated

with different sample sizes." Hoelter cautioned that no firm basis could be

offered as to what constituted an adequate fit, but he suggested that a value

of 200 was a reasonable starting point for suggesting that differences

20
23



Goodness of Fit 21

between the model and data may be unimportant. In practice the usefulness of

CN would rest on the assumption that its value is independent of sample size.

It is defines as:

(12) CN = iCzcrit + (2 x df - 1)1/2)2/12 x X2/(N)]] + 1.

where zcrit = the critical value from a normal curve table for a given

probability level -- 1.96 in the present investigation.

McDonald's Fit Indices. McDonald (in press) notes that a problem with the

CAK, as'with many other fit indices, is that the value of the index and model

selectino based on it are dependent on sample size. His DK index is based on

similar formulations as the CAK but with a slightly different derivation.

McDonald proposed Wald's (1943) noncentrality parameter (also see related

suggestions by Steiger, 1980), rescaled to be independent of sample size, as

an index of fit, estimated by:

(13) DK = FF - df/N = CAK (2K/N) df/N.

McDonald further proposed that DK could be transformed to yield Mc, a measure

of centrality that is a consistent estimator of the asymptotic likelihood

ratio scaled to be independent of sample size. Mc is scaled to lie on the

interval zero to unity with unity representing a perfect fit, though sampling

error may produce values greater than 1.0. It is defined as:

(14) Mc = exp (-.5 DK)

Normal Deviate Z-score. Horn and McArdle (1980) proposed the Wilson-Hilferty

normal deviate -Z -score (also see Bishop, Fienberg & Holland, 1975, p. 527) as

a useful indicator of fit. It is defined as:

(15) Z = C (X2/df) 1/3 - C 1 - (2/9 df)]] / C(2/9 df) 1/2)

Because this quantity is a monotonic function of X2 it apparently will be

influenced by N so long as the hypothesized model is false.

II. Relative, Tvne-1 Incremental Fit Indices.

Bentler and Bonett (1980) proposed that valuable information could be

obtained by comparing the ability of nested models to fit the same data. In

the case of CFA it may be useful to compare the fit of the proposed target

model with the -Fit of a null model in which all the p variables are assumed

to be uncorrelated. (It should be noted that in general models for the

analysis of covariance structures the null model is not the only more

restrictive model that could be considered as a baseline model.) If the fit

of a null model is reasonable, because the sample size is small or because

the measured variables are relatively uncorrelated, then the difference in
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fit between the null and target models will be small. However, if the fit of

the null model is reasonable then there is little covariance to explain and

no basis of support for the target model even if it also fits the data.

Bentler and Bonett specifically stated that these indices are useful for

comparing the fit of a particular model across samples that have unequal

sizes. They cautioned that the absolute value of these indices may be

difficult to interpret, but that values of less than J.9 usually mean that

the model can be improved substantially. Much of the value of these indices

is based on the assumption that their behavior is independent of sample size.

One form of the incremental index, called type-1 incremental indices for

present purposes, can be used to derive incremental fit indices from each of

the stand alone indices described earlier: Absolute Value (t n) / Maximum

of (t or n), where t is the value of a stand-alone index for the target

model, and n is the value for the null model. For present purposes,

incremental type-1 indices were defined in relation to the FF, LHR, X2, and

X2/df, and are denoted by appending an Il to each stand-alone index. The X2I2

is more commonly known as the Bentler-Bonett Index (BBI) and Bollen (1986)

described an index related to the FFIl (see Marsh, Balla & McDonald, 1988).

These are defined as:

(16) FFIl = (FFn - FFt)/ (FFN).

(17) LHRI1 = (LHRt - LHRn)/ (LHRt).

(18) X2I1 = BBI = (Xn2 - Xt2)/ (Xn2).

(19) X2 /dfIi = (Xn2/dfn - Xt2/dft)/ (Xn2/dfn).

III. Parsimony Indices.

James et al. (1982) also described an alternative form of the incremental

type-1 indices called the parsimony index (PI). The PI invokes a penalty

function for using additional parameters by multiplying an incremental type-1

index by the ratio of the dfs for the null and target models: PI = (dfT/dfn)

x Incremental Type-1 Index. Using this general formulation, James et al.

recommended a PI based on the X2 defined as:

(20) PIX2 = (dfT/dfn) x (Xn2 - Xt2)/ (XN2).

Similarly, McArdle (1986) described a parsimony index based on the RMR.

(?1) PIRMR = (dfT/dfn) x (1 - ERMRt / RMRN3).

Additional parsimony indices could be derived for other stand-alone indices,

22
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though this might not make sense for indices that already impose a penalty

function (e.g., the AGFI and the X2/df).

IV. Relative. Incremental Type -2 Indices,

A second general form of the incremental fit indices described by Marsh,

Balla, and McDonald (1988) is: Absolute Value (t - n) / Absolute Value of (e

- n), where t is the value of a stand-alone index for the target model, n is

the value for the null model, and e is the expected value of the stand-alone

index if the target model is true. This second form of incremental index

requires the expected value for a true model in addition to empirical values

for the target and null models. In general, expected values for the stand-

alone indices are not known for finite samples but can be estimated based on

the asymp.:Astic behavior of the indices. For example, many of the stand alone

indices can be specified in terms of X2 and the asymptotic expected value for

the X2 equals the df for the medel. For purposes of the present

investigation, incremental type-2 indices were derived from only the X2/df

and Dk stand-alone indices. These are denoted by appending an 12 to each of

the stand-alone indices though the X2/dfI2 is better known as the Tucker

Lewis Index (Tucker & Lewis, 1973: and McDonald and Marsh (1988) refer to the

DKI2 as the McDonald-Marsh Index (MMI). These are defined as:

(22) X2/dfI2 = TLI = (Xn2/dfn Xt2/dft)/(X2n/dYn - [1,.0]).

(23) DkI2 = MMI = (Dkn - Dkt) / (Dkn - 0)

Mote that because the expected value of Dk for a true model is 0, the

incremental type-1 and type-2 forms of this index are the same.]
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FIGURE CAPTIONS

FIGURE 1. Values for selected goodness-of-fit indices based on two

population models (simple and complex), 8 models, and 6 sample sizes (50,

100, 200, 400, 800, and 1600 corresponding to the 6 column bars above each

model respectively).
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Table 1

Descriotion gi Models To Be Tested,

Abbrev- Number of
iation Parameters Description

0 9 Null
a

1UF 18 1 Unrestricted Factor
a

2UF 26 2 Unrestricted Factors
a

3UFb 33 3 Unrestricted Factors

3F1 24 3 Factors; 9 major, 3 minor factor loadings

3F2 24 3 Factors; 9 major, 3 minor factor loadings

3F3 24 3 Factors; 9 major, 3 minor factor loadings

3CF 27 3 Complex Factors; 9 major, 6 minor factor loadings
.e

3SF 21 3 Simple Factors; 9 major factor loadings

Note. The nine models were designed to fit 9 x 9 covariance matrices

generated from one of two population models. The simple simulated (SSIM)

data was generated by the 3SF model in which 3 correlated factors were each

defined by a unique set of three variables. Thus the most parsimonious

model able to fit this data contained only 9 major factor loadings. The

complex simulated (CSIM) data was generated from the 3CF model that

contained three complex factors. In the 3CF model each factor was defined

by three major factor loadings, the same as those in the 3SF model, and two

additional minor loadings. Thus, the most parsimonious model able to fit

this data contained 9 major factor loadings and 6 minor factor loadings.

a -- Unrestricted actor models for 1, 2, and 3 factors. b -- For the SSIM

data these models contained 3 superfluous parameters, factor loadings that

had population values of zero. For the CSIM data 3 of the 6 minor factor

loadings were constrained to be zero. c -- For both the SSIM and CSIM data

this model contained 3 superfluous parameters. For the CSIM data all 6 minor

factor loadings were constrained to be zero. d -- This model was used to

generate the CSIM data. For the SSIM data it contained 6 superfluous

parameters. e This model was used to generate the SSIM data. For the CSIM

data all 6 minor (non-zero) loadings were constrained to be zero.
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Table 2

Pescrlotica !dart Contracts IRIETested,

Models
a

Predictions For:

CSIM Data SSIN Data1UF 2UF 3UF 3F1 3F2 3F3 3CF 3SF

Contrast 1 -1 +1 0 0 0 0 0 0 2UF > IUF 2UF > 1UF

Contrast 2 0 -1 +1 0 0 0 0 0 3UF > 2UF 3UF > 2UF

Contrast 3 0 0 +1 0 0 0 -1 0 3UF = 3CF 3UF = 3CF

Contrast 4 0 0 +1 0 0 0 0 -1 3UF > 3SF 3UF = 3SF

Contrast 5 0 0 0 +1 +1 -2 0 0 '3F1,3F2 > 3F3 3F1,3F2 = 3F3

Contrast 6 0 0 0 -1 -1 0 +2 0 3FC ) 3F1,3F2 3FC = 3F1,3F2

Contrast 7 0 0 0 +1 +1 0 0 -2 3F1,3F2 ) 3SF 3F1,3F2 = 3SF

Contrast B 0 0 0 0 0 +1 0 -1 3F3 = 3SF 3F3 n 3SF

Contrast 9 0 0 0 0 0 0 +1 -1 3CF ) 3SF 3CF = 3SF

Note. SSIN = simple simulated data that was generated by the 3SF model. CSIN

= copies simulated data that was generated by the 3CF aodel.

a -- See Table 2 for a description of the models. b -- For predictions

represented by ) signs, models on the left side of the ) signs should be

better able to fit the data. For all but one prediction represented by

= signs, models on the left side of the = signs have more parameters and

thus provide a test of penalty functions imposed by some indices. For just

contrast 5 for the SSIN data, eadels on both sides of the = sign have the

sane flusher of parameters.
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Table 3

The Effect of &Ai and gage Size on Fit Indices for MIN Data: Effect Sizes
ffis_ riT a Fffor-T1Wairs_

a

Index Model

Eta

b

Sin

Eta rl r2

Inter-

action A Priori Contrasts

Eta 1 2 3

d

4

d

5

d

6

d

7

d

8

d

9

d

Stand-alone indices

1 FF .8211 .4711 -.43 -.31 .1481 +II +II +I +II + + + + +II
2 . LHR .811$ .5011 .45 .33 .1411 +II OS +88 +II + +8 +8 + +II

3 12 .6511 .3611 .36 .33 .3311 +II +II + +II + + + + +

12/df .6411 .11 .38 .34 .661$ +II +II + + + + + - +

5 RNR .841 1 .341811 -.31 -.39 .2111 +II +II +II +II + +It +8 +I +II

6 6F1 .8111 .11 .45 .33 .1611 01 01 +II +II + +8 +8 + OS
7 A6FI ,7211 .559011 .54 .40 .1511 0$ 05 + + + + + +

8 CAK .4011 .9011 -.81 -.60 .061 +II +II -I -II +

9 CSK .2311 .9611 -.90 -.68 .0911 +II +II -IS -II + -II -IS -II -II

10 OCAK .6411 .3611 .36 .33 .6711 01 +II - -$I + - -

11 OCSK .5811 .5011 .48 .49 .6411 +II +St -35 + -II -SI -II

12 CM .3511 .6711 .67 .60 .3911 + 08 + + + + + + +

13 DK .9311 .02 .01 .01 .10 01 01 + + + +

14 NC .931$ .02 .01 -.01 .10 01 +II + + + + + +

152 .7811 .29$t .28 .28 .5211 01 01 + + + + + +

Type-1 incremental indices

16 FFII .9111 .2611 .25 .20 .1811 +II +II +I +II + +II

17 LHRI1 .7111 .4811 .40 .28 .10 +II 01 + + +

18 1211 .9111 .2611 .25 .19 .1811 0$ +II +I +II + +II

19 12/dfIl .8711 .3411 .32 .26 .2181 +II +II + +

Parsimony Indices

20 PII2 .9111 .2511 .25 .19 .1911 +II -It -1$ -II + -II -SI -II -II

21 PIRNR .9211 .2811 .26 .20 .1411 -II -II -II + -II -II -II -II

Type-2 incremental indices

22 TLI .9211 .0711 -.05 -.04 .1411 +II +II + + + + + + +

23 NMI .9511 .05 -.03 -.02 .1211 +II +II + + + + + + +

Note.. Results are based on a series of 8 (Models) by 6 (Sample Sizes) ANOVAs

conducted on the simple simulated data set. The TLI and NMI indices are based

on the I2/df and the Dk indices respectively.

1 p ( .05; II p f .01.

a -- see Table 1 for a description of the indices. b -- Eta is the linear and

nonlinear effects of sample size (HI rl is the linear effect of the log

sample size (sample sizes are log spaced in this study), and r2 is the linear

effect of sample size. c For each of the a priori contrasts a + sign

indicates that the best fit was obtained for the model posited to fit the

best, or for the model with the greatest 'weber of parameters when the

contrasted models were posited to fit equally well (see Table 3 for a

description of the a priori contrasts). d -- These contrasts are betweedeodels

that are equally able to fit the data.
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Table 4

Effect of Sample Size and Model on Fit Indices for SSIM Data For Models 3-8

a b
Index Model

Eta Complexity

Stand-alone indices

c
Size

Eta rl r2

Inter-
action

Eta

1 FF .18** + .89#* -.79 -.53 .20**
2 LHR .18** + .90## .81 .60 .19**
3 X2 .52** + .07 -.02 -.01 .07
4 X2/df .05 + .08 -.02 -.01 .10
5 RMR .29#* + .89** -.86 -.70 .16**
6 GFI .21** + .89** .81 .60 .21**
7 AGFI .05 + .93** .84 .63 .06
8 CAK .05## - .99** -.66 -.B9 .04*
9 CSK .11** - .99## -.92 -.70 .08**
10 OCAK .49$# - .07 -.02 -.01 .08
11 OCSK .49#$ - .84** .84 .77 .13**
12 CN .06 + .82** .74 .82 .07
13 DK .07 + .12 -.07 -.04 .14
14 MC .07 + .10 .05 .03 .14
15 Z .05 + .09 -.03 -.02 .09

Type-1 incremental indices

16 FFIl .21## + .84** .80 .63 .19##
17 LHRI1 .09 + .66#* -.56 -.39 .09
18 X2I1 .21** + .84## .80 .63 .19**
19 X2/dfIl .03 + .86** .B3 .65 .05

Parsimony Indices

20 PIX2 .89** - .38** .37 .29 .14**
21 PIRMR .95** - .29** .2B .21 .10**

Type-2 incremental indices

22 TLI .06 + .06 .03 .01 .03
23 MMI .06 + .02 .01 .00 .06

Note.. Results are based on a series of 6 (Models) by 6 (Sample Sizes)

ANOVAs conducted on the simple simulated data set. For purposes of these

analyses only the three-factor models, all of which are'able to fit the

data, were included.

t p < .05; #* p < .01.

a -- see Table 1 for a description of the indices. b -- Because all models

ar equally able to fit the data, differences between models are a test of

the relations between each model and model complexity. Under the Complexity

column a + indicates that fit improved with the addition of superfluous

parameters and a - indicates that fit was poorer with the addition of

superfluous parameters. c -- Eta is the linear and nonlinear effects of

sample size (N) rl is the linear effect of the log sample size (sample

sizes are log spaced in this study), and r2 is the linear effect of sample

size.

32
'711



Goodness of Fit 29

Tables

Efft4t IL ORK ELNIMAILS
contrafts,

0Ea

Inter-

action

Eta

YAM for CSIN Sizes

a Priori

r2

A Priori Contrasts

d

1 2 3 4 5 6

d

7 8 9rl

4.110.40.=

a

Index

b

Model Size

Eta Eta

indicesStand-alone

- 1 FF .73Si .571I -.51 -.36 .16I1 +SS +11 +1 + +11 +11 +11

2 LHR .74I1 .5811 .52 .38 .14I1 +11 +11 +11 + +11 +;:

3 12 .6021 .4911 .44 .49 .6211 +11 +22 4 422 422 422 +22 422 +22

4 12/df .57I1 .5311 .47 .53 .6111 +11 +22 4 +22 +11 +11 +11 + +11

5 RHR .8021 .461$ -.43 -.32 .19I1 +11 +22 +22 +11 + +11 +11 +21 +11

6 6FI .7411 .5141 .50 .36 .16I1 +SS +11 +11 +SS + +11 +11 +SS +SS

7 i6FI .6111 .6811 .61 .44 .1511 +SS +11 + +11 + +11 +1 + +11

8 CAK .3011 .9411 -.84 -.62 .05 +11 +81 - +1 + +11 + + +11

9 CSK .1611 .9811 -.91 -.69 .094: +11 +11 -11 -11 + - - -1

10 OCAK .571: .5011 .45 .50 .6311 +11 +11 - -SS +11 +11 +11 + +11

11 1CSK .491: .6411 .60 .63 .5821 +11 +11 -11 - +11 +11 + - -1I

12 l .531: .4811 .46 .48 .611$ + +11 + +11 + +11 + + +11

13 DK A11-196 -.02 -.01 .11 +11 +3I + +11 + +11 +11 + +11

14 MC .8821 . .02 .00 .12 +SS +SS + +SS + +SS +SS + +SS

15 1 .6711 . .54 .55 .45:I +11 +11 + +11 +11 +11 +11 +Is +11

Type-1 incremental indices

16 FFII .8711 .3711 .35 .27 .151* +SS +11 +11 +11 + +11 +11 +IS

17 LHRII .6011 .5111 .35 .22 .09 +11 +11 + +11 + + + +11

18 1211 .871: .3711 .35 .27 .1511 +11 +11 +Si +11 + +11 +11 +11 +11

19 I2/dfIl .7911 .4711 .45 .35 .1811 +11 +St + +11 + +11 + +11

Parsimony indices

20 P112 .8711 .3411 .33 .25 .16:1 - -11 -St -ES + -11 -St -11 -11

21 PIRNR .9111 .3211 .28 .20 .14I1 -11 -11 -11 -11 - -11 -11 -11 -11

Type-2 incremental indices

22 71.1 .8511 .07 -.04 -.03 .12 +11 +SI + +II + +11 +1 + +11

23 HMI .9011 .04 -.03 -.02 .10 +11 +11 + +11 + +11 + +11

Note.. Results are based 66 a series of 8 (Models) by 6 Maple Sizes) ANOVAs

conducted on the complicated simulated data set.

a -- see Table 1 for a description of the indices. S -- Eta is the linear and

nonlinear effects of sample size (N) rl is the linear effect of the log

sample size (sample sizes are log spaced in this study), and r2 is the linear

effect of sample size. c -- For each of the a priori contrasts a + sign

indicates that the best fit was obtained for the model posited to fit the

best, or for the model with the greatest number of parameters when the

contrasted models were posited to fit equally well (set Table 3 for a

description of the a priori contrasts). d -- These contrasts are between models

that are equally able to fit the data.

I p ( .05; It p ( .01.
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