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Abstract This paper discusses a recent development in partial least squares (PLS)
path modeling, namely goodness-of-fit indices. In order to illustrate the behavior of
the goodness-of-fit index (GoF) and the relative goodness-of-fit index (GoFrel), we
estimate PLS path models with simulated data, and contrast their values with fit indi-
ces commonly used in covariance-based structural equation modeling. The simulation
shows that the GoF and the GoFrel are not suitable for model validation. However, the
GoF can be useful to assess how well a PLS path model can explain different sets of
data.

Keywords Partial least squares path modeling (PLS) · Goodness-of-fit index (GoF)

JEL Classification C39

1 Introduction

For decades, researchers have applied partial least squares (PLS) path modeling to
analyze complex relationships between latent variables. Many fields of research have
embraced the specific advantages of PLS path modeling, for instance behavioral
sciences (e.g., Bass et al. 2003) as well as many fields of business research, such
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as marketing (e.g., Hair et al. 2012; Henseler et al. 2009), strategy (e.g., Hulland
1999), organization (e.g., Sosik et al. 2009), and management information systems
(e.g., Ringle et al. 2012; Chin et al. 2003). PLS path modeling’s popularity among
scientists and practitioners is due to four genuine advantages: First, PLS path mod-
eling “involves no assumptions about the population or scale of measurement” (For-
nell and Bookstein 1982, p. 443). PLS path modeling can thus be used when distri-
butions are highly skewed (Bagozzi and Yi 1994), such as in customer satisfaction
studies (Fornell 1995). Wold (1973), who developed PLS path modeling, coined the
term “soft modeling” because of PLS’ rather soft assumptions. Second, even when
having a small sample, PLS path modeling can be used to estimate relationships
between latent variables with several indicators (Chin and Newsted 1999). As the PLS
path modeling algorithm consists of ordinary least squares regressions for separate
subparts of the focal path model, the complexity of the overall model hardly influ-
ences sample size requirements. Third, modern easy-to-use PLS path modeling soft-
ware with graphical user-interfaces, like SmartPLS (Ringle et al. 2005), PLS-Graph
(Soft Modeling Inc 1992–2002) or the PLS-PM module of XLSTAT software (Addin-
soft SARL 2007–2008), and open packages like semPLS (Monecke and Leisch 2012)
have contributed to PLS path modeling’s appeal. Fourth, PLS path modeling is pre-
ferred over covariance-based structural equation modeling (CBSEM) when improper
or non-convergent results are likely (so called heywood cases, c.f. Krijnen et al. 1998;
Reinartz et al. 2009), as for instance in more complex models, for which the number
of latent and manifest variables is high in relation to the number of observations, and
the number of indicators per latent variable is low.

Whereas CBSEM minimizes some distance between an observed covariance matrix
and an implied covariance matrix, PLS path modeling maximizes a correlation-based
criterion (Hanafi 2007) or tends to maximize a covariance-based criterion (Tenenhaus
and Tenenhaus 2011).1 CBSEM focuses on providing unbiased model parameter esti-
mates, whereas PLS path modeling produces scores that are optimal in some sense.
Therefore, the objectives of both methods are very different. Unlike CBSEM, PLS
path modeling does not optimize a unique global scalar function. For a long time, this
has prevented the development of an index that could provide the researcher with a
global validation of the model, such as χ2 and related measures in CBSEM. The lack
of a global scalar function and the consequent lack of global goodness-of-fit measures
has long been considered a drawback of PLS path modeling.

As a response to this deficiency, Tenenhaus et al. (2004) proposed the goodness-of-
fit index (GoF), which takes both the measurement and structural models’ performance
into account. As Tenenhaus et al. (2005, p. 173) point out: “The GoF represents an
operational solution to this problem as it may be meant as an index for validating
the PLS model globally.” The GoF has been presented in several research studies
(e.g., Tenenhaus et al. 2004, 2005; Esposito Vinzi et al. 2010a; Chin 2010) and has
also been used in empirical PLS path modeling applications (e.g., Sarstedt and Ringle
2010; Duarte and Raposo 2010). Furthermore, Esposito Vinzi et al. (2008) proposed

1 Simulations show that regularized generalized canonical correlation analysis give almost the same results
as PLS path modeling on usual customer satisfaction data. We thank an anonymous reviewer for sharing
this insight.
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REBUS-PLS, a response-based segmentation approach to treat unobserved heteroge-
neity in PLS path modeling, which compares local models based on GoF values in
order to identify differences between latent classes. Despite its popularity, the GoF’s
statistical properties have not yet been examined in depth. Specifically, research has
not yet broached the issue of the index’s appropriateness for model validation, which
is of crucial importance in empirical studies (e.g., Rigdon et al. 2010).

Against this background, this paper contributes to the literature on PLS path mod-
eling by providing a conceptual and empirical assessment of extant goodness-of-fit
indices for PLS path modeling. The paper is structured as follows: The next section
provides a brief introduction to the PLS path modeling algorithm. The third section
presents the goodness-of-fit index (GoF) and the relative GoF (GoFrel), and discusses
several conceptual issues related to them. The following section presents the results
of a simulation study to compare the indices’ performance with that of traditional
CBSEM fit measures. The final section draws conclusions for researchers who are
interested in the development and application of PLS path modeling as well as for
users of PLS path modeling in general and highlights avenue for future research.

2 PLS path modeling

PLS is a family of alternating least squares algorithms, which extend principal
component and canonical correlation analysis. The method was designed by Wold
(1966, 1974, 1982, 1985a,b, 1989) for the analysis of high dimensional data in a
low-structure environment and has undergone various extensions and modifications.

PLS path models are formally defined by two sets of linear equations: the inner
model and the outer model. The inner model specifies the relations between unobserved
or latent variables, while the outer model specifies the relations between a latent
variable and its observed indicators or manifest variables. However, the same termi-

Fig. 1 A simple PLS path model
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nology is not always employed in the literature. For instance, publications addressing
CBSEM (e.g., Rigdon 1998) often refer to structural and measurement models or indi-
cator variables, whereas those focusing on PLS path modeling (e.g., Lohmöller 1989)
use the terms inner and outer model or manifest variables for similar elements of the
cause-effect relationship model. As this paper deals with PLS path modeling, related
terminology is used. Figure 1 depicts an example of a PLS path model.

Without a loss of generality, it can be assumed that latent and manifest variables are
centered so that the location parameters can be discarded in the following equations.
The inner model for relationships between latent variables can be written as:

� = �B + Z , (1)

where � is the vector of latent variables, B denotes the matrix of path coefficients,
and Z represents the inner model residuals. The basic PLS design assumes a recursive
inner model2 that is subject to predictor specification. Thus, the inner model consti-
tutes a causal chain system (i. e. with uncorrelated residuals and without correlations
between the residual term of a particular endogenous latent variable and its predictor
variables). Predictor specification reduces Eq. 1 to:

E(�|�) = �B . (2)

PLS path modeling includes two different modes of outer models: Mode A and
Mode B. PLS path modeling with Mode B optimizes a correlation criterion (Hanafi
2007), and PLS path modeling with Mode A tends to optimize a covariance crite-
rion (Tenenhaus and Tenenhaus 2011). A small modification of the PLS algorithm is
needed to actually maximize a covariance criterion, but simulations show that both
approaches are in very close correspondence (Tenenhaus and Tenenhaus 2011). The
choice of a certain mode is subject to statistical and theoretical reasoning, and typically
results from a decision to define an outer model as reflective or formative (Fornell and
Bookstein 1982).

Model estimation occurs via a sequence of regressions in terms of weight vectors
which satisfy the fixed point equations upon convergence. Dijkstra (1981, 2010) pro-
vides a general analysis of such equations and ensuing convergence issues. Wold’s
(1982) basic PLS path modeling algorithm, which was later extended by Lohmöller
(1989), includes the following three stages: (1) the iterative approximation of latent
variable scores, (2) the estimation of outer weights, outer loadings, and path coeffi-
cients, and (3) the estimation of location parameters. Only the first stage is iterative
and comprises four steps:

Step #1: Outer approximation of the latent variable scores. Outer proxies of the
latent variables, ξ̂o

j , with zero mean and unit variance, are calculated as
linear combinations of their respective indicators. The weights of the linear

2 If the centroid or the factorial schemes are used, the iterative PLS algorithm does not require the inner
model to be recursive. Feedback loops are thus permitted, and the PLS model is not limited to a causal
chain. We thank an anonymous reviewer for this remark.

123



GoF indices for PLS path modeling 569

combinations result from Step #4 of the previous iteration. Upon initializa-
tion, weights are typically set to 1.

Step #2: Estimation of the inner weights. Inner weights are calculated for each
latent variable in order to reflect how strongly the other latent variables
are connected to it. There are three schemes available for determining the
inner weights: the centroid, the factorial and the path weighting schemes.
To ensure convergence, it is recommended to use the centroid weight-
ing scheme (Henseler 2010), which sets the weights equal to the signs
of the correlations between interconnected latent variables. Tenenhaus et
al. (2005) provide a more detailed description of the weighting schemes.
Regardless of the weighting scheme, a weight of zero is assigned to all
non-adjacent latent variables.

Step #3: Inner approximation of the latent variable scores. Using the afore-deter-
mined inner weights, inner proxies of the latent variables, ξ̂ i

j , are calculated
as linear combinations of the outer proxies of their respective adjacent latent
variables.

Step #4: Estimation of the outer weights. The outer weights are calculated either as
the covariance between the inner proxy of each latent variable and its indi-
cators (in Mode A), or as the regression weights resulting from the ordinary
least squares’ regression of the inner proxy of each latent variable on its
indicators (in Mode B, formative).

These four steps are repeated until the change in the outer weights between two itera-
tions drops below a predefined limit. The algorithm terminates after Step #1, delivering
latent variable scores for all latent variables. Given the constructed indices, loadings
and inner regression coefficients are then easily calculated. In order to determine the
path coefficients, a (multiple) linear regression is conducted in respect of each endog-
enous latent variable. The endogenous variable’s scores are regressed on the latent
predictor variable scores.

3 Goodness-of-fit indices for PLS path modeling

3.1 The goodness-of-fit index (GoF)

Tenenhaus et al. (2004) propose the GoF as a means to validate a PLS path model
globally. Specifically, the GoF is defined as follows (Esposito Vinzi et al. 2008):

GoF =

√
√
√
√
√

∑J
j=1

∑p j
q=1 Cor2

(

xq j , ξ̂ j

)

∑J
j=1 p j

×
∑J∗

j∗=1 R2
(

ξ̂ j∗ ,
{

ξ̂ j
′s explaining ξ̂ j∗

})

J ∗ . (3)

In this equation, J is the number of latent variables in the model, and J ∗ < J
is the number of endogenous latent variables in the model. Cor(xq j , ξ̂ j ) is the cor-
relation between the qth reflective indicator of the j th latent variable and the cor-
responding latent variable scores. R2(ξ̂ j∗, {ξ̂ j

′s explaining ξ̂ j∗}) is the R2 value of
the regression that links the j∗th endogenous latent variable to its explanatory latent
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variables. Esposito Vinzi et al. (2008, p. 444) provide the following perspective on the
GoF:

The left term of the product […] can be considered as an index measuring the
predictive performance of the measurement models: the communality index. It
is obtained as the mean of the squared correlations linking each manifest vari-
able (xq j ) to the corresponding latent variable (ξ̂ j ) over all blocks. The term on
the right side of the product, the average R2, is instead an index measuring the
predictive performance of the structural model.

Based on this explanation, the GoF can be understood as the geometric mean of two
types of R2 values’ averages: the average communality, �Com, i. e. the average pro-
portion of variance explained when regressing the reflective indicators on their latent
variables (Fornell and Larcker 1981), and �R2

inner, i. e. the average R2 of the endoge-
nous latent variables. The formula for the GoF can thus be rewritten as:

GoF =
√

�Com × �R2
inner. (4)

The GoF as defined by Eq. 3 cannot be applied to PLS path models without endog-
enous latent variables, because the denominator J ∗ in the right part of Eq. 3 would be
zero. Therefore, when the blocks are not connected (i.e., there is no endogenous latent
variable), the GoF is defined as

√�Com. Consequently, for any structural equation
model, the GoF is maximum when the blocks are not connected.3

While initially appealing, especially since it is easy to interpret, the GoF also exhib-
its some limitations.

Being partly based on average communalities, the GoF is conceptually inappro-
priate whenever measurement models are formative. In such situations, however,
PLS path modeling presents itself as favorable compared to CBSEM (Hair et al.
2012). Although it is possible to calculate communalities even for formative indica-
tors (c.f. Esposito Vinzi et al. 2010b), one should note that PLS path models do not
intend to explain formative indicators. Consequently, the application and interpreta-
tion of the GoF for models involving formative measurement cannot be universally
recommended.

In addition, changing from multi-item to single-item measurement would typically
increase the GoF, although it usually does not imply an increase in reliability or pre-
dictive validity. In order to solve this problem, Esposito Vinzi et al. (2010b) propose
to only include latent variables with multi-item measurement into the calculation of
the GoF. The ratio behind this redefinition of the GoF is that single-item measure-
ment always implies a communality of one, which means that it does not permit to
quantify the measurement error in the indicator. Since the communality in case of
single-item measurement is not informative about validity, it should not be considered
when calculating the GoF.

Lastly, when exploring different model set-ups, researchers may be tempted to add
structural model relations in an effort to increase the R2 of one or more endogenous

3 We thank an anonymous reviewer for this comment.
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latent variables and, ultimately, the GoF. In its current form, however, the GoF does
not penalize overparametrization efforts. Consequently, a penalty term similar to the
adjusted R2 vis-à-vis the regular R2 in regression analysis would be needed. Despite
this, it is, however, important to note that PLS path modeling should not be consid-
ered an entirely exploratory technique; it is up to the researcher to balance PLS path
modeling’s exploratory spirit and the a priori knowledge about relations in the path
model.

3.2 The Relative GoF (GoFrel)

Recently, Esposito Vinzi et al. (2010b) introduced a normalized version of the GoF,
the so-called relative GoF (GoFrel). GoFrel contrasts the communalities obtained from
PLS with the communalities obtained from a principal component analysis, and the
R2 values obtained from PLS with the R2 values obtained from a canonical correlation
analysis (for a motivation of GoFrel as well as a more detailed explanation of it, see
Esposito Vinzi et al. 2010b). The formula for the GoFrel can be written as:

GoFrel =
√

� ComPLS

ComPCA
× � R2

PLS

R2
CanCor

. (5)

When the blocks are not connected (i.e., there is no endogenous latent variable), the
GoFrel is equal to 1. In principle, the limitations of the GoF identified in the previous
subsection also apply to the relative GoF.

4 Fit in PLS path modeling versus fit in CBSEM

4.1 Conceptual differences

It is important to recognize that the term “fit” has different meanings in the contexts of
CBSEM and PLS path modeling. Fit statistics for CBSEM are derived from the dis-
crepancy between the empirical and the model-implied (theoretical) covariance matrix
(Bollen 1989b). In contrast, the GoF focuses on the discrepancy between the observed
(in the case of manifest variables) or approximated (in the case of latent variables)
values of the dependent variables and the values predicted by the model in question.
Owing to the different meanings of fit, there may be instances in which the CBSEM
fit statistics indicate a perfect fit, but the GoF signals the absence of fit.

Figure 2 shows an example of CBSEM and PLS path modeling revealing quite
different fit statistics. The model consists of two latent variables: a formative exoge-
nous latent variable ξ measured by the indicators x1 and x2, and a reflective endogenous
latent variable η measured by the five indicators y1 to y5. The empirical correlation
matrix is shown at the top of the figure. Given the model as specified, CBSEM will be
able to generate an implied correlation matrix equal to the empirical correlation matrix.
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Fig. 2 Example of a situation in which CBSEM and PLS path modeling provide fit statistics with opposite
meanings

This means that CBSEM will indicate perfect fit. In contrast, PLS path modeling will
yield a GoF value of 0.4 Thus, the GoF indicates a lack of fit.

Evidently, PLS path modeling and CBSEM have two different aims: CBSEM aims
at estimating parameters such that the empirical and the model-implied covariance
matrices are as “close” as possible to oneanother, while PLS path modeling aims at
maximizing “explained variability” between variables (manifest or latent) in term of
correlation (Mode B) or covariance (Mode A). The different conceptions of fit align
with the different principal objectives of CBSEM and PLS path modeling. That is,
whereas CBSEM is the method of choice for theory-testing, PLS path modeling is
primarily prediction-oriented (Fornell and Bookstein 1982).

4.2 Empirical comparison between the fit statistics of PLS path modeling
and CBSEM

In order to create a deeper understanding of the GoF and the GoFrel and to assess their
adequacy for model validation, we empirically examine their behavior by exposing
them to simulated data. We define a well-behaved population model, as depicted in
Fig. 3. The population model, which includes a mediating effect, was selected based
on the recommendation of Paxton et al. (2001). It has several characteristics that make
it particularly useful for our purpose:

– The model has two significant effects: one between an exogenous and an endoge-
nous latent variable, and one between two endogenous latent variables. Thereby we
can examine whether a fit measure consistently suggests including those effects.

4 PLS path modeling estimates communalities of 0.4 for all five reflective indicators. Since x1 and x2 do
not share any variance with y1 to y5, the R2 value of η is 0, which implies that the GoF is also 0.
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Fig. 3 Population model for the simulated data containing variances and regression weights

– The model has one effect of zero. Thereby we can examine whether a fit measure
suggests excluding this effect.

– Finally, the model is the most parsimonious constellation to achieve the above
characteristics.

The values in the figure denote standardized population parameters. The exogenous
variable ξ1, the structural model disturbance terms ζ2 and ζ3, as well as the mea-
surement errors ε1 to ε9 are orthogonal, normally distributed random variables. We
generated a data set of 100 observations, which is sufficient to achieve a positive-
definite correlation matrix. The correlation matrix is shown in Table 2 (Appendix).

Table 1 depicts the eight estimated models. Both Models 1 and 4 reflect the popu-
lation model; Model 4 is more parsimonious. For the PLS path modeling calculations,

123



574 J. Henseler, M. Sarstedt

Ta
bl

e
1

Fi
ts

ta
tis

tic
s

of
PL

S
pa

th
m

od
el

in
g

an
d

C
B

SE
M

fo
r

di
ff

er
en

tm
od

el
sp

ec
ifi

ca
tio

ns

Te
ch

ni
qu

e
A

na
ly

ze
d

co
nc

ep
tu

al
m

od
el

s

1
2

3
4

5
6

7
8

St
at

is
tic

C
B

SE
M

N
PA

R
21

20
20

20
19

19
19

18

χ
2 m

in
/
df

0.
00

0
0.

94
4

0.
49

4
0.

00
0

0.
93

3
0.

93
3

1.
53

8
1.

77
2

SR
M

R
0.

00
0

0.
14

5
0.

07
2

0.
00

0
0.

15
5

0.
15

5
0.

18
9

0.
20

5

R
M

SE
A

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
07

4
0.

08
8

G
FI

1.
00

0
0.

95
5

0.
97

3
1.

00
0

0.
95

4
0.

95
5

0.
93

1
0.

90
0

PG
FI

0.
53

3
0.

53
1

0.
54

1
0.

55
6

0.
55

1
0.

55
1

0.
53

8
0.

54
0

IF
I

1.
10

6
1.

00
6

1.
05

6
1.

11
1

1.
00

8
1.

00
8

0.
93

8
0.

90
7

C
FI

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
93

5
0.

90
3

A
IC

42
64

52
40

62
63

78
84

β̂
1

0.
60

0
–

0.
67

2
0.

60
0

0.
60

0
–

–
–

se
β̂

1
0.

14
0

–
0.

14
6

0.
13

9
0.

14
1

–
–

–

β̂
2

0.
60

0
0.

55
1

–
0.

60
0

–
0.

60
0

–
–

se
β̂

2
0.

18
6

0.
13

8
–

0.
13

6
–

0.
14

1
–

–

β̂
3

0.
00

0
0.

10
6

0.
45

7
–

–
–

0.
36

0
–

se
β̂

3
0.

16
8

0.
11

7
0.

14
0

–
–

–
0.

13
7

–

P
ri

nc
ip

al
co

m
po

ne
nt

an
al

ys
is

�C
om

0.
65

8
0.

65
8

0.
65

8
0.

65
8

0.
65

8
0.

65
8

0.
65

8
0.

65
8

123



GoF indices for PLS path modeling 575

Ta
bl

e
1

co
nt

in
ue

d

Te
ch

ni
qu

e
A

na
ly

ze
d

co
nc

ep
tu

al
m

od
el

s

1
2

3
4

5
6

7
8

St
at

is
tic

C
an

on
ic

al
co

rr
el

at
io

n
an

al
ys

is

R
2
(ξ

2
)

0.
21

2
–

0.
21

2
0.

21
2

0.
21

2
–

–
–

R
2
(ξ

3
)

0.
21

7
0.

21
7

0.
07

6
0.

21
2

–
0.

21
2

0.
07

6
–

P
L

S
pa

th
m

od
el

in
g

�C
om

0.
65

8
0.

65
8

0.
65

8
0.

65
8

0.
65

8
0.

65
8

0.
65

8
0.

65
8

R
2
(ξ

2
)

0.
20

7
–

0.
20

7
0.

20
7

0.
20

7
–

–
–

R
2
(ξ

3
)

0.
21

2
0.

21
2

0.
07

4
0.

20
7

–
0.

20
7

0.
07

4
–

G
oF

0.
37

1
0.

37
4

0.
30

4
0.

36
9

0.
36

9
0.

36
9

0.
22

1
0.

65
8

G
oF

re
l

0.
98

7
0.

98
8

0.
98

8
0.

98
6

0.
98

6
0.

98
6

0.
98

9
1.

00
0

β̂
1

0.
45

5
–

0.
45

5
0.

45
5

0.
45

5
–

–
–

se
β̂

1
0.

07
4

–
0.

07
3

0.
07

4
0.

07
2

–
–

–

β̂
2

0.
41

7
0.

41
7

–
0.

45
5

–
0.

45
5

–
–

se
β̂

2
0.

08
1

0.
08

1
–

0.
07

4
–

0.
07

4
–

–

β̂
3

0.
08

3
0.

08
3

0.
27

3
–

–
–

0.
27

3
–

se
β̂

3
0.

09
3

0.
08

8
0.

09
1

–
–

–
0.

08
7

–

123



576 J. Henseler, M. Sarstedt

SmartPLS 2.0 M3 beta (Ringle et al. 2005) was used, and the path weighting scheme
was applied. In order to estimate Models 5–7, two separate PLS path models per con-
ceptual model were estimated. Model 8 even required three separate PLS path models
to be estimated, which in this case were equal to three principal component analyses.
The CBSEM calculations were done with AMOS 5, Build 5138 (Arbuckle 2003). The
number of distinct parameters (NPAR) ranges from 21 for the most complex model
(Model 1) to 18 for the simplest model without any path coefficients (Model 8).

For CBSEM, AMOS determined a variety of popular absolute and relative fit
indices. These include: the relative χ2 (χ2

min/df; Wheaton et al. 1977), the standardized
root mean square residual (SRMR; Hu and Bentler 1999), the root mean square error
of approximation (RMSEA; Steiger 1990), the goodness-of-fit index (GFI; Jöreskog
and Sörbom 1986), the parsimony goodness-of-fit index (PGFI; Mulaik et al. 1989),
the incremental fit index (IFI; Bollen 1989a), the comparative fit index (CFI; Bentler
1990), as well as Akaike’s information criterion (AIC; Akaike 1987).

For PLS path modeling, the GoF and the GoFrel were calculated. Table 1 also shows
the average communality (�Com) and the average R2 values of the endogenous latent
variables (�R2

inner) as provided by PLS path modeling, so that one can easily verify
the correct calculation of the GoF. We also report the results of principal component
analyses and canonical correlation analyses in order to facilitate the calculation of the
GoFrel.

As Table 1 shows, almost all CBSEM fit measures can discriminate between accept-
able models (Models 1 and 4) and unacceptable models (exceptions are CFI and
RMSEA). However, only PGFI, IFI, and Akaike’s information criterion were able to
prioritize the more parsimonious model (Model 4). Using these fit measures, every
researcher trained in CBSEM would opt for either Model 1 or Model 4 as the most
valid model. Given that Model 4 is more parsimonious than Model 1, researchers are
most likely to favor Model 4.

However, for PLS path modeling, the GoF and the GoFrel provide a surprising
picture. Neither the GoF nor the GoFrel provide a good indication for the acceptable
models.

Models 1, 2, 4, 5 and 6 all have relatively high GoF values, with Model 2 having
the highest GoF. Since all eight models have very similar average communalities, the
differences in GoF values can be traced back to the R2 values of the inner model.
Model 2 has only one endogenous latent variable being explained by two exogenous
latent variables. In this way, Model 2 yields the highest (average) R2

inner value among
all models. Contrasting the results of Model 1 with those of the remaining models
shows that reducing the number of endogenous variables so that only the endogenous
latent variable with the highest R2 value remains is an effective means to increase the
GoF. This behavior of the GoF might work as an incentive for researchers to streamline
models accordingly, and to focus on a single endogenous latent variable—whether this
comes close to the true population model or not.

Despite the substantial differences between the eight models, the GoFrel provides
very similar values close to one for the first seven models. The GoFrel of the eighth
model is by Definition 1. In particular, all GoFrel values meet the rule of thumb for-
mulated by Esposito Vinzi et al. (2010b, p. 59) who say that “a value of the relative
GoF equal to or higher than 0.9 clearly speaks in favour of the model.” If one were
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to interpret the GoFrel in a relative manner, one would have to select Model 8 as the
model with the highest goodness of fit.

5 Implications and recommendations

Originally proposed by Tenenhaus et al. (2004), the GoF has recently gained increasing
dissemination as an index to judge the overall model fit in PLS path models. Despite
this, prior research has not yet examined the GoF’s statistical properties. Researchers
making use of PLS path modeling’s goodness-of-fit indices should know how to inter-
pret them and for which purposes they can be used. Within this article, we have
provided an extensive discussion about the characteristics of the GoF and the GoFrel.

Since the GoF has been introduced as a statistical measure of model fit, a presum-
ably natural field of application would be to use it for model validation and model
selection. The underlying idea would be that the model with a higher fit is the better
or more valid model. However, using simulated data, we have illustrated that the GoF
and the GoFrel are not suitable for model validation. Neither of these indices is able to
separate valid models from invalid models. In fact, researchers would be misled if they
chose for the model yielding the highest GoF. Instead, researchers should carefully
evaluate the path coefficients and particularly their significance in order to decide
upon which paths to leave in the model and which to discard.

For some specific types of model validation, though, the application of the GoF does
make sense. That is, when it comes to validating models that differ not in their structure
but in their (reflective) indicators, the GoF is the statistic of choice. If the structural
model remains constant, the GoF can indirectly assess relative changes in convergence
validity as expressed by the average variance extracted (Fornell and Larcker 1981).

The GoF is also very useful for data comparisons (i.e., varying the data while
keeping the model constant). As a consequence, the GoF is best applied in group
comparisons (Sarstedt et al. 2011) and assessments of unobserved heterogeneity, as
it is the case with the REBUS-PLS procedure. In these cases, the GoF can answer
questions on how well different subsets of the data can be explained by a particular
model.

Our findings also confirm the different objectives of PLS path modeling and
CBSEM. While PLS path modeling provides latent variable scores with beneficial
characteristics for prediction, CBSEM is better suited for model validation, model
selection, and model comparisons. In particular, it has become apparent that whereas
CBSEM fit measures can help to determine whether a model is adequate or not, PLS’
GoF and GoFrel do not provide such information.

In order to increase the GoF’s applicability to different types of models, there is
a need to redefine the original GoF so that it can be used to assess formative mea-
surement models. For a formative block, one might replace in the GoF formula the
block communality by the R2 between the inner proxy of the formative block and the
block’s manifest variables.5 Another point of departure could be assessing a formative
block’s weights. Future research should make more concrete suggestions of how to

5 We thank an anonymous reviewer for this suggestion.
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improve the GoF, and demonstrate the viability of the improvements by means of both
conceptual reasoning and Monte Carlo simulations.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

Table 2 Correlation matrix for the simulation model

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1.0000 0.4200 0.4800 0.2160 0.2520 0.2880 0.1296 0.1512 0.1728

x2 0.4200 1.0000 0.5600 0.2520 0.2940 0.3360 0.1512 0.1764 0.2016

x3 0.4800 0.5600 1.0000 0.2880 0.3360 0.3840 0.1728 0.2016 0.2304

x4 0.2160 0.2520 0.2880 1.0000 0.4200 0.4800 0.2160 0.2520 0.2880

x5 0.2520 0.2940 0.3360 0.4200 1.0000 0.5600 0.2520 0.2940 0.3360

x6 0.2880 0.3360 0.3840 0.4800 0.5600 1.0000 0.2880 0.3360 0.3840

x7 0.1296 0.1512 0.1728 0.2160 0.2520 0.2880 1.0000 0.4200 0.4800

x8 0.1512 0.1764 0.2016 0.2520 0.2940 0.3360 0.4200 1.0000 0.5600

x9 0.1728 0.2016 0.2304 0.2880 0.3360 0.3840 0.4800 0.5600 1.0000
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