
 
Center for 
Studies in 
Demography  
and Ecology 
 
       
 
 

Goodness of Fit of Social  
Network Models 
by 
 
David R. Hunter 
Pennsylvania State University 
 
Steven M. Goodreau 
University of Washington 
 
Mark S. Handcock 
University of Washington 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNIVERSITY OF WASHINGTON              CSDE Working Paper No. 05-05 



Goodness of Fit of Social Network Models1

David R. Hunter
Pennsylvania State University, University Park

Steven M. Goodreau
University of Washington, Seattle

Mark S. Handcock
University of Washington, Seattle

Working Paper no. 47
Center for Statistics and the Social Sciences

University of Washington

April 28, 2005

1David R. Hunter is Assistant Professor of Statistics, Department of Statistics, Pennsylvania
State University, University Park, PA 16802 (E-mail: dhunter@stat.psu.edu); Steven M. Goodreau
is Assistant Professor of Anthropology, Department of Anthropology, University of Washing-
ton, Box 35100, Seattle WA 98195-5100. E-mail:goodreau@u.washington.edu ; Web:
faculty.washington.edu/goodreau ; Mark S. Handcock is Professor of Statistics and Sociol-
ogy, Department of Statistics, University of Washington, Box 354322, Seattle WA 98195-4322. E-mail:
handcock@stat.washington.edu ; Web: www.stat.washington.edu/handcock . The au-
thors are grateful to Martina Morris for numerous helpful suggestions. This research is supported by Grant
DA012831 from NIDA and Grant HD041877 from NICHD.



Abstract

We present a systematic examination of real network datasets using maximum likelihood es-
timation for exponential random graph models as well as new procedures to evaluate how well
the models fit the observed graphs. These procedures compare structural statistics of the observed
graph with the corresponding statistics on graphs simulated from the fitted model. We apply this
approach to the study of friendship relations among high school students from the the National
Longitudinal Study of Adolescent Health (AddHealth). The sizes of the networks we fit range
from 71 to 2209 nodes. The larger networks represent more than an order of magnitude increase
over the size of any network previously fit using maximum likelihood methods for models of this
kind. We argue that several well-studied models in the networks literature do not fit these data
well, and we demonstrate that the fit improves dramatically when the models include the recently-
developed geometrically weighted edgewise shared partner (GWESP) and geometrically weighted
degree (GWD) network statistics. We conclude that these models capture aspects of the social
structure of adolescent friendship relations not represented by previous models.

Key Words: degeneracy, exponential random graph model, maximum likelihood estimation, Markov
chain Monte Carlo,p−star model



1 Introduction

Among the many statistical methods for dealing with dependent data of various types developed
in recent decades, social network models are especially useful for dealing with the kinds of depen-
dence induced by social relations. Much effort has been focused on inference for social network
models (e.g., Holland and Leinhardt 1981; Strauss and Ikeda 1990; Snijders, 2002; Hunter and
Handcock, 2004), but comparatively little work tests the goodness of fit of the models. We present
an approach within the exponential random graph model (ERGM) framework and illustrate its
effectiveness using data from the National Longitudinal Study of Adolescent Health (AddHealth).

Relational data can be described as data whose properties cannot be reduced to the attributes of
the individuals involved. They are a particularly common form of data in the social sciences, where
relationships among pairs of individual actors represent a central object of inquiry. Such data can
be represented as a network, or mathematical graph, consisting of a set of nodes and a set of edges,
where an edge is an ordered or unordered pair of nodes. Graphically, it is possible to represent a
network as in Figure 1, in which the nodes are of various shapes and the presence of an edge is
indicated by a line connecting two nodes. It may be the case that there are measurements associated
with each of the actors; we refer to these measurements asnodal covariates. The different shapes
and labels of the nodes in Figure 1 represent different values of categorical nodal covariates for
these network data.

School 10:  205 Students

1

1

0

9
8

9

9

7

9

8

8

1

9

1

7

9

8

9

9

8

7

7

9

7

7

7 8

7

7

9

7

0
0

0

2 9

−

8

9

7

0

7

1

1

1

9

0 9

9

0

7

7
0

7

7

7

1

9

9

0

9

2

8

7

7

9

7

1

7

7

9

8

9

−7

7

2
8

9

9
8

7

0 8

7

9
8

8
1

8

8

1

7

7

0

9

9

8

7

2

7
7

9

8

8

2

7

9

7

0

1

7

7
9

7

9
0

7

7

1

8

77

9

7

8

9

1

1

0

0

7

0

1

2

0

8
8

−

7

7
9

8

7

1

2

0

8

7

9

1

7

1

7

7

8

2

9

7

8

7

7

0

7

7

7
8

−

2

0

8

8

7

9

8

8

1

9
1

7

0

7

8

8

1

2

7

7

0 8

8

9

2

2

1

8

8

0 7

1

0

9 89

9

Figure 1: Mutual friendships represented as a network. Shapes of nodes denote sex: circles for
female, squares for male, and triangles for unknown. Labels denote the units digit of grade (7
through 12), or “–” for unknown.

In typical applications, the nodes in a graph represent individuals and the edges represent a
specified relationship between individuals. Nodes can also be used to represent larger social units,
such as groups, families, or organizations; objects, such as physical resources, servers, or loca-
tions; or abstract entities, such as concepts, texts, tasks, or random variables. Networks have been
applied to a wide variety of situations, including the structure of social networks, the dynamics
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of epidemics, the interconnectedness of the World Wide Web, and long-distance telephone calling
patterns. This article focuses specifically on network data collected at a nationally representative
sample of middle schools and high schools in the United States.

We consider exponential family models, in the traditional statistical sense, for network struc-
ture. These models have a long history in the networks literature, and we refer to them here
as exponential random graph models (ERGMs). The primary contribution of this article is to
demonstrate that it is possible to achieve reasonably good model fit on large networks using
ERGMs that include both a small number of covariates measured on the nodes and key network
statistics chosen to capture the structural properties of the network. Although such models have
been proposed before, no attempts to assess goodness of fit have accompanied them (Wasser-
man and Pattison, 1996; Snijders et al. 2004). Another contribution of this paper is to demon-
strate the use of maximum likelihood to fit reasonable models to network data with hundreds of
nodes and obtain results that are scientifically useful. We have developed anR package (called
statnet ) to implement the procedures developed in this paper. The package is available at
http://csde.washington.edu/statnet .

It is possible to simulate random networks from a given ERGM — at least in principle —
using well-established Markov chain Monte Carlo techniques. More recently, various researchers
have been developing techniques to solve a harder problem: calculating approximate maximum
likelihood estimates of the ERGM parameters, given an observed network. While these techniques
are conceptually simple (Geyer and Thompson 1992), their practical implementation for large
networks has proven elusive. We are now able to apply these techniques to networks encompassing
thousands of nodes, problems more than an order of magnitude larger than any previous application
of which we are aware.

In problems for which maximum likelihood estimation previously has been possible in ERGMs,
a troubling empirical fact has emerged: When ERGM parameters are estimated and a large number
of graphs are simulated from the resulting model, these graphs frequently bear no resemblance at
all to the observed network. This seemingly paradoxical fact arises because even though the max-
imum likelihood estimate makes the probability of the observed graph as large as possible, this
probability might still be extremely small. In such a case, the ERGM does not fit the data well.

The remainder of this article provides a case study illustrating the application of new model-
fitting capabilities and goodness of fit procedures to network datasets from the National Longitu-
dinal Study of Adolescent Health (AddHealth), which is described in Section 2. Section 3 explains
the statistical models we will fit to these data along with the techniques we use for doing so, while
Section 4 lists potential difficulties encountered along the way. Section 5 illustrates our goodness
of fit technique on a couple of simple models that do not fit well. Finally, Section 6 presents a
model that fits the mutual friendship data well and explains what we have been able to learn about
high school friendship networks as a result.

2 Introduction to the AddHealth Survey

The network data on friendships that we study in this article were collected during the first wave
(1994–1995) of the National Longitudinal Study of Adolescent Health (AddHealth). The Ad-
dHealth data come from a stratified sample of schools in the US containing students in grades 7
through 12. To collect friendship network data, AddHealth staff constructed a roster of all students
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in a school from school administrators. Students were then provided with the roster and asked to se-
lect up to five close male friends and five close female friends. Students were allowed to nominate
friends who were outside the school or not on the roster, or to stop before nominating five friends of
either sex. Complete details of this and subsequent waves of the study can be found in Resnick et al.
(1997) and Udry and Bearman (1998) and athttp://www.cpc.unc.edu/projects/addhealth .
In most cases, the individual school does not contain all grades 7–12; instead, data were collected
from multiple schools within a single system (e.g. a junior high school and a high school) to obtain
the full set of six grades. In these cases, we will use the term “school” to refer to a set of schools
from one community. The full dataset contains 86 schools, 90,118 student questionnaires, and
578,594 friendship nominations. Our analysis includes 59 of the schools, ranging in size from 71
to 2209 surveyed students.

The edges in these raw network data are directed, since it is possible A could name B as a
friend without B nominating A. However, in this article we will consider the undirected network
of mutualfriendships, those in which both A nominates B and B nominates A.

Each network may be represented by a symmetricn × n matrix Y and ann × q matrix X
of nodal covariates, wheren is the number of nodes. The entries of theY matrix, termed the
adjacency matrix, are all zeros and ones, withYi j = 1 indicating the presence of an edge between
i and j . Since self-nomination was disallowed,Yi i = 0 for all i . The limit on the number of
allowed nominations means that the data are not complete, but we will assume for convenience
that a lack of nomination in either direction between two individuals means that there is no mutual
friendship.

The nodal covariate matrixX includes many measurements on each of the individuals in these
networks. Some such measurements, like sex, are not influenced by network structure in any way,
and are termedexogenous. Other covariates may exhibit strong non-exogeneity: For example,
tobacco use may be influenced through friendships. Exogeneity comes into play, for instance, in
claiming that the dyadic independence model of equation (4) truly has the dyadic independence
property as advertised. We focus our analysis on only three covariates: sex, grade, and race.
Although the latter two may exhibit some endogeneity (e.g., the influence of friends may affect
whether a student fails and must repeat a grade, or which race a student of mixed-race heritage
chooses to identify with), we assume such effects are minimal and consider the attributes fixed
and exogenous. What we term “race” is constructed from two questions on race and Hispanic ori-
gin, with Hispanic origin taking precedence. Thus, our categories “Hispanic”, “Black”, “White”,
“Asian”, “Native American”, and “Other” are short-hand names for “Hispanic (all races)”, “Black
(non-Hispanic)”, “White (non-Hispanic)”, etc.

Though in this article we focus primarily on a single illustrative school, we analyzed many
schools. Schools with large amounts of missing data were excluded from the analysis; this hap-
pened, among other reasons, for special education schools and for school districts that required
explicit parental consent for student participation. Results for all the schools we analyzed may be
found athttp://csde.washington.edu/networks .

3 Exponential Random Graph Models

Our overall goal in using exponential random graph models (ERGMs) is to model the random
behavior of the adjacency matrixY, conditional on the covariate matrixX. Given a user-defined
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p-vectorg(Y, X) of statistics and lettingη ∈ Rp denote the statistical parameter, these models
form a canonical exponential family (Lehmann, 1983),

Pη(Y = y|X) = c−1 exp{ηtg(y, X)}, (1)

where the normalizing constantc ≡ c(η) is defined by

c =

∑
w

exp{ηtg(w, X)} (2)

and the sum (2) is taken over the whole sample space of allowable graphs. The form ofg(Y, X)

is the essential modelling task and is determined by the researcher. The objective is to choose
statistics that represent aspects of the social structure inherent in the network. The range of sub-
stantially motivated network statistics that might be included in theg(Y, X) vector is vast — see
Wasserman and Faust (1994) for the most comprehensive treatment of these statistics — though
we will consider only a few key ones in this article. The statistical problem is to estimateη given
network data and assess the quality of the resulting fit.

3.1 Interpretation and background

Perhaps the simplest way to interpret the probability model (1) is by thinking of the conditional
probability that an edge exists between two nodes, conditional on the state of the rest of the graph.
Let node indicesi and j be fixed, and denote “the rest of the graph” (that is, all ofY except forYi j )
by Yc

i j . If we let logit(p) = log(p) − log(1 − p) denote the logit function well known in logistic
regression, then equation (1) implies

logit
{

P(Yi j = 1|Yc
i j = yc

i j )
}

= ηt1(g(y, X))i j , (3)

where1(g(y, X))i j = g(y, X)|yi j =1 − g(y, X)|yi j =0 denotes the change in the vector of statistics
whenyi j is changed from 0 to 1 and the rest ofy (i.e.,yc

i j ) remains unchanged.
As usual with generalized linear models involving more than one predictor variable, it is dan-

gerous to interpret the individual components of theη vector in isolation. For instance, ifg1(y)

equals the number t(y) of triangles iny (about which we will say more in Section 3.3), thenη1

represents the increase in log-odds of an edge for each new triangle that edge would createafter
all other effects in the model are taken into account.

Holland and Leinhardt (1981) appear to be the first to propose a specific case of model (1) in
the literature. Their model, which they called thep1 model, resulted in the set of dyads being
independent, where adyad is an ordered pair(Yi j , Yj i ) for some pairi < j of nodes. Based on
developments in spatial statistics (Besag 1974), Frank and Strauss (1986) generalized to the case in
which dyads exhibit a kind of Markovian dependence: two dyads are dependent, conditional on the
rest of the graph, only when they have a node in common. Frank (1991) mentioned the application
of model (1) to social networks in its full generality, a topic pursued in depth by Wasserman and
Pattison (1996). In honor of Holland and Leinhardt’sp1 model, Wasserman and Pattison (1996)
referred to model (1) asp∗ (p-star), a name that has been widely applied to ERGMs in the social
networks literature.

Development of estimation methods for ERGMs has not kept pace with development of ERGMs
themselves. To understand why, consider the sum of equation (2). A sample space consisting of all
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possible undirected graphs onn nodes contains 2n(n−1)/2 elements, an astronomically large num-
ber even for moderaten (e.g., forn = 20 there are 1.6×1057 graphs). Therefore, direct evaluation
of the normalizing constantc in equation (2) is computationally infeasible for all but the smallest
networks — except in certain special cases such as the dyadic independence model of equation (5)
— and inference using maximum likelihood estimation is extremely difficult. To circumvent this
difficulty, we use a technique called Markov chain Monte Carlo maximum likelihood estimation
in which a stochastic approximation to the likelihood function is built and then maximized (Geyer
and Thompson 1992). This and other methods have been considered by Dahmström and Dahm-
ström (1993), Corander et al. (1998), Crouch et al. (1998), Snijders (2002), and Handcock (2002).
Details of the specific technique we use may be found in Hunter and Handcock (2004).

3.2 Dyadic independence models and pseudolikelihood

An important special case of model (1) is thedyadic independencemodel, in which

g(y, X) =

∑ ∑
i < j

yi j h(Xi , X j ) (4)

for some functionh mappingRq
×Rq into Rp, where theq-dimensional row vectorsXi andX j are

the nodal covariate vectors for thei th and j th individuals. In the context of an undirected network,
the worddyadrefers to a singleYi j for some pair(i, j ) of nodes (not to be confused with anedge,
which requiresYi j = 1). The ERGM resulting from equation (4) is called the dyadic independence
model because equation (1) becomes

Pη(Y = y|X) = c−1
∏ ∏

i < j

exp{yi j η
th(Xi , X j )}, (5)

and the joint distribution of theYi j is simply the product of the marginal distributions. In this
case, one can obtain the MLE using logistic regression. As the simplest example of a dyadic
independence model, we takep = 1 andh(Xi , X j ) = 1, which yields the well-known Bernoulli
graph, also known as the Erdős-Ŕenyi graph, in which each dyad is an edge with probability
exp{η}/(1 + exp{η}).

Using the notation of equation (3), note that equation (4) implies that1(g(y, X))i j = h(Xi , X j ),
so the likelihood (5) may be rewritten

Pη(Y = y|X) = c−1
∏ ∏

i < j

exp{yi j η
t1(g(y, X))i j }. (6)

For dyadic dependence models, equation (6) is not generally true, but nonetheless the right hand
side of this equation is called thepseudolikelihood. Until recently, inference for social network
models has relied on maximum pseudolikelihood estimation, or MPLE, which may be imple-
mented using a standard logistic regression algorithm (Besag 1974; Frank and Strauss, 1986;
Strauss and Ikeda, 1990; Geyer and Thompson 1992). However, it has been argued that MPLE
can perform very badly in practice (Geyer and Thompson, 1992) and that its theoretical proper-
ties are poorly understood (Handcock, 2003). Particularly dangerous is the practice of interpreting
standard errors from logistic regression output as though they are reasonable estimates of the stan-
dard deviations of the pseudolikelihood estimators. The only estimation technique we discuss for
the remainder of this article is maximum likelihood estimation.
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3.3 Structural properties of networks: Degree, shared partner, and other
statistics

Perhaps the simplest ERGMs that are not dyadic independence models are those in whichg(y, X)

consists only of a subset of the degree statistics dk(y), 0 ≤ k ≤ n − 1. The degree of a node in a
network is the number of neighbors it has, where a neighbor is a node with which it shares an edge.
We define dk(y) to be the number of nodes in the graphy that have degreek. Note that the dk(y)

statistics satisfy the constraint
∑n−1

i =0 di (y) = n, so it is unwise to include alln degree statistics
among the components of the vectorg(y, X); if we did, the coefficients in model (1) would not
be identifiable. A common reformulation of the degree statistics is given by thek-star statistics
s1(y), . . . , sn−1(y), where sk(y) is the number ofk-stars in the graphy. A k-star is an unordered
set ofk edges that all share a common node. For instance, “1-star” is synonymous with “edge”.
Since a node withi neighbors is the center of

(i
k

)
k-stars (but the “common node” of a 1-star may

be considered arbitrarily to be either of two nodes), we see that

sk(y) =

n−1∑
i =k

(
i

k

)
di (y), 2 ≤ k ≤ n − 1; and s1(y) =

1

2

n−1∑
i =1

i di (y). (7)

Thek-star statistics are highly collinear with one another: For example, any 4-star automatically
comprises four 3-stars, six 2-stars, and four 1-stars (or edges).

An additional class of statistics that will be useful later on are the shared partner statistics. We
define two distinct sets of shared partner statistics, theedgewiseshared partner statistics and the
dyadicshared partner statistics. The edgewise shared partner statistics are denoted ep0(y), . . . , epn−2(y),
where epk(y) is defined as the number of unordered pairs{i, j } such thatyi j = 1 andi and j
have exactlyk common neighbors (Hunter and Handcock, 2004). The requirement thatyi j =

1 distinguishes the edgewise shared partner statistics from the dyadic shared partner statistics
dp0(y), . . . , dpn−2(y): We define dpk(y) to be the number of pairs{i, j } such thati and j have
exactlyk common neighbors. In particular, it is always true that dpk(y) ≥ epk(y), and in fact
dpk(y) − epk(y) equals the number of unordered pairs{i, j } for which yi j = 0 andi and j share
exactlyk common neighbors.

Since there are s1(y) edges and
(n

2

)
dyads in the entire network, we obtain the identities

s1(y) =

n−2∑
i =0

epi (y) (8)

and (
n

2

)
=

n−2∑
i =0

dpi (y). (9)

Furthermore, we can obtain the number of triangles iny by considering the edgewise shared partner
statistics: Wheneveryi j = 1, the number of triangles that include this edge is exactly the number
of common neighbors shared byi and j . Therefore, if we count all of the shared partners for all
edges, we have counted each triangle three times, once for each of its edges. In other words,

t(y) =
1

3

n−2∑
i =0

i epi (y). (10)
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A related formula involving the dyadic shared partner statistics is obtained by noting that each
triangle automatically comprises three 2-stars. Therefore, s2(y) − 3t(y) is the number of 2-stars
for which the third side of the triangle is missing. We conclude that

s2(y) − 3t(y) =

n−2∑
i =0

i
[
dpi (y) − epi (y)

]
. (11)

Combining equation (11) with equation (10) produces

s2(y) =

n−2∑
i =0

i dpi (y).

Because a 2-star is also a path of length two, s2(y) is sometimes referred to as the twopath statistic.
Finally, we summarize two additional sets of statistics, due to Snijders et al. (2004), that will

be used in Section 6. First, the triangle statistic generalizes to the set ofk-triangle statistics, where
a k-triangle is defined to be a set ofk distinct triangles that share a common edge. In particular, a
1-triangle is the same thing as a triangle. Second, the 2-star statistic (also known as the twopath
statistic) generalizes to the set ofk-twopath statistics, where ak-twopath is a set ofk distinct 2-
paths joining the same pair of nodes. In particular, a 1-twopath is the same thing as a 2-star or a
2-path. Snijders et al (2004) actually coined the term “k-independent 2-path,” but we simplify this
to k-twopath in this article.

1
2

3
4

5

Figure 2: For this simple five-node network, the edgewise and dyadic shared partner distributions
are(ep0, . . . , ep3) = (1, 4, 1, 0) and(dp0, . . . , dp3) = (2, 6, 2, 0), respectively; thek-triangle and
k-twopath distributions are(t1, t2, t3) = (1, 2, 0) and(u1, u2, u3) = (10, 1, 0), respectively.

As a concrete example, we note that in the simple network of Figure 2, there are two 1-triangles;
one 2-triangle; ten 1-twopaths; and one 2-twopath. (Note that the 2-twopath joining nodes 1 and
4 is the same as the 2-twopath joining nodes 2 and 3, though it is counted only once.) We denote
the number ofk-triangles andk-twopaths in the networky by tk(y) and uk(y), respectively. Just as
the degree statistics di (y) are related to thek-star statistics sk(y) by (7), the edgewise and dyadic
shared partner statistics are related to thek-triangle andk-twopath statistics, respectively, by the
equations

tk(y) =

n−2∑
i =k

(
i

k

)
epi (y), 2 ≤ k ≤ n − 2

and

uk(y) =

n−2∑
i =k

(
i

k

)
dpi (y), 1 ≤ k ≤ n − 2, k 6= 2.
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The cases not covered above are that of t1(y), given in equation (10), and u2(y), the number of
4-cycles, which includes an extra factor of 1/2 because any 4-cycle can be considered a 2-path
between two distinct pairs of nodes:

u2(y) =
1

2

n−2∑
i =2

(
i

2

)
dpi (y)

4 Difficulties in Fitting ERGMs

Although the theory for fitting ERGMs using MCMC to obtain approximate maximum likelihood
estimators is well developed, few applications have appeared. This is because these models prove
very difficult to fit in practice, and the results are not always useful. There are several interrelated
reasons for this.

Because it is impossible to find the MLE or even evaluate the likelihood exactly for graphs of
moderate size, as explained in Section 3, approximation methods must be used. Approximations to
the loglikelihood based on MCMC sampling can be very bad near the maximizer. Depending on the
application, this might be because the Markov chain does not produce a very representative sample,
a problem elucidated by Snijders (2002); or because the exponentiation involved in approximating
the normalizing constantc−1 of equation (1) is unstable in the sense that it tends to magnify small
numerical errors. This latter problem is the subject of quite a bit of work over the last couple
decades on estimating (ratios of) normalizing constants; see Hunter and Handcock (2004) for a
fuller discussion. Even when the loglikelihood function has a reasonably good approximation,
there is the numerical challenge of maximizing this approximation, a task that is subject to many
of the usual difficulties of high-dimensional numerical optimization. An alternative estimation
procedure, due to Snijders (2002), attempts to find a maximum likelihood estimator by solving a
moment equation rather than by maximizing a function; yet this procedure is subject to numerical
problems of its own.

A related cause of failure of the fitting algorithm occurs when the approximate likelihood
function to be maximized does not have a maximizer at all. Indeed, sometimes even the true
likelihood function cannot be maximized. This problem is familiar to any practicing statistician
who has run a logistic regression that has failed to converge. According to well-known maximum
likelihood theory (see, for example, Barndorff-Nielsen, 1978), no maximizer exists whenever the
observed vector of statisticsg(yobs, X) is not contained in the interior of the convex hull of the set
S, where we defineS to be the set of all possibleg(y, X) asy ranges over the sample space of all
graphs. This problem occurs with ERGMs more frequently than one might suppose; for example, it
arises whenever the model contains a degree statistic dk such that dk(yobs) = 0 (that is, the observed
graph does not happen to contain any nodes of degreek). In such a case, the coefficient for the
dk term will be driven to−∞ in the estimation procedure. An even more troublesome problem
is the fact that we generally cannot knowS and must instead rely on an MCMC-generated subset
of S. Call this subsetSMCMC. The same theory cited above implies that there is no maximizer of
the approximated likelihood function whenever the interior of the convex hull ofSMCMC does not
containg(yobs, X).

Finally, and most importantly from the perspective of this article, the maximum likelihood esti-
mator can result in a completely unrealistic model even when it (or its approximation) exists. This
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happens when an ERGM is so badly misspecified that even using the vector of parameters most
likely under that ERGM to generate the observed graph — by definition, the maximum likelihood
estimator — it is still extremely unlikely to do so. In other words, once we obtain an estimatorη̂,
the resulting ERGM

P(Y = y|X) ∝ exp{η̂tg(y, X)} (12)

places most of the probability mass on a subset of the sample space containing networks that bear
no resemblance to the observed network.

Naturally, the next question is: exactly what is meant by “resemblance to the observed net-
work”? To an experienced practitioner, the informal “I’ll know it when I see it” might suffice,
but clearly a more objective set of criteria would be of benefit. Handcock (2003) addresses some
extreme cases, e.g., in which most of the probability mass is placed on the full graph and empty
graph. Whenever the ERGM in question is particularly ill-suited to modelling networks, then
when networks are repeatedly simulated from model (12), even those statistics that are part of the
g(y, X) vector will not be near the corresponding values ofg(yobs, X). Handcock (2003) terms
this “model degeneracy”. This is a very serious problem; as explained above, it implies that the
observed vector of graph statistics will not be contained in the interior of the convex hull of the
sampled statistics. Thus, even when we assume the model is correct, we would be unable to obtain
a maximum likelihood estimator in a simulation study.

However, a model does not have to be degenerate in order to fit poorly; it merely has to produce
graphs that bear no resemblance to the observed network. In these less extreme cases, determining
goodness of fit is more difficult. Our approach begins by selecting a set of graph statistics that
are not functions of the statistics ing(y, X) and which are believed to represent important struc-
tural properties of networks. We then compare these statistics for the original graph and graphs
simulated from the fitted model. When the original statistic appears unlikely to have arisen from
the statistic’s simulated distribution, we call thislack of fit. Thus, goodness of fit refers in general
to the ability of the fitted ERGM to reproduce certain graph statistics seen in the observed graph.
Graphically, it is possible to assess goodness of fit as defined by a chosen graph statistic by plot-
ting the ranges of the values of the statistic(s) in question along with the corresponding value for
the observed graph. If the latter is within the range of the sampled statistic values, we say that
the model appears to fit well (or, more accurately, we say that we see no evidence of lack of fit).
We stress that using this criterion, we are not familiar with any class of ERGMs that has been
previously demonstrated in the literature to fit well for social network data.

5 Dyadic independence models for friendship networks

Dyadic independence models (5) for network data are merely logistic regression models, so model-
fitting procedures do not suffer from the problems described in Section 4. However, the dyadic
independence models we applied to the AddHealth friendship data do not fit well by certain criteria
that we introduce below. More promising models for these data are introduced in Section 6.

5.1 Attribute-based models for networks

The first dyadic independence model we consider is perhaps the simplest possible network model,
in which g(y, X) consists only of s1(y), the number of edges iny. This is the Bernoulli, or Erd̋os-
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Rényi, graph described in Section 3. For AddHealth school 10, the parameter estimate for the
Bernoulli graph is seen in Table 1 to be−4.625. This may be derived exactly: Since school 10 has
205 nodes and 203 edges, the MLE for the probability that any dyad has an edge is 203/

(205
2

)
, or

0.00971, and the log-odds of this value is−4.625. If only all estimates were so easy to find!
The second model we consider includes edges and also several statistics based on nodal covari-

ates. Recall that in the dyadic independence model of equation (4), an individual component of the
g(y, X) vector, say thekth component, may be written as

gk(y, X) =

∑ ∑
i < j

yi j hk(Xi , X j ). (13)

Because it is not important, we drop the subscriptk in equation (13) and simply allowh(Xi , X j )

to denote a generic covariate statistic in the following discussion.
For the factors grade, race, and sex, our second model includes two types of statistics. We

call the first type anodal factor effect. Given a particular level of a particular factor (categorical
variable), the nodal factor effect counts the total number of endpoints with that level for each edge
in the graph. In other words, we define

h(Xi , X j ) =

{ 2 if both nodesi and j have the specified factor level;
1 if exactly one ofi, j has the specified factor level;
0 if neitheri nor j has the specified factor level.

(14)

Interpreted using equation (3), this means that the corresponding parameter is the change in condi-
tional log-odds when we add an edge with one endpoint having this factor level — and this change
is doubled when both endpoints of the edge share this level. As an example, consider the grade
factor, which has levels 7 through 12 along with one missing-value levelNA. These seven levels
of the grade factor require six separate statistics for the nodal factor effect; one level must be ex-
cluded since the sum of all seven equals twice the number of edges in the graph, thus creating a
linear dependency among the statistics.

The second type of nodal statistics we employ arehomophily statistics. A homophily statistic
for a particular factor gives each edge in the graph a score or zero or one, depending on whether the
two endpoints have matching values of the factor. We distinguish between two kinds of homophily,
depending on whether the distinct levels of the factor should exhibit different homophily effects.
Thus, foruniform homophily, we have a single statistic, defined by

h(Xi , X j ) =

{
1 if i and j have the same level of the factor;
0 otherwise.

On the other hand, fordifferential homophily, we have a set of statistics, one for each level of the
factor, where each is defined by

h(Xi , X j ) =

{
1 if i and j both have the specified factor level;
0 otherwise.

(15)

Note that for sex, a two-level factor, we may include a differential homophily effect or a nodal
factor effect but not both. This is because in an undirected graph, there are only three types of
edges — male-male, female-female, and male-female — so only two statistics are required to
completely characterize the sexes of both endpoints of an edge, provided the overall edge effect is
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also in the model. A differential homophily effect (two statistics) plus a nodal factor effect (one
statistic) would together entail redundant information.

Now that we have defined nodal factor and homophily effects, we are ready to describe our sec-
ond dyadic independence model. It includes an edge statistic; nodal factor effects and differential
homophily for both the race and grade factors; and a nodal factor effect and uniform homophily for
the sex factor. Note that all schools have two sexes and six grades, but only some have additional
NA categories for these factors. Furthermore, the number of races present varies considerably from
school to school. Parameters are excluded from the model when it can be determined in advance
that the MLE will be undefined. Such cases occur for node factor effects when only a small number
of students possess the factor level and they all have 0 friendships; or for homophily terms, when
there are no ties between two students with a given factor level. For example, in AddHealth school
10, grade is a seven-level factor, sex is a three-level factor, and race is a four-level factor; and our
dyadic independence model contains 25 parameters: one for edges, six for the grade factor effect,
six for differential homophily on grade (excluding the NA category), five for the race factor effect,
four for differential homophily on race (excluding the NA and Other categories), two for the sex
factor effect, and one for uniform homophily on sex. The fitted values of these 25 parameters are
presented as Model I in Table 2.

5.2 Goodness of fit statistics for ERGMs

Our graphical tests of goodness-of-fit require a comparison of certain observed graph statistics
with the values of these statistics for a large number of networks simulated according to the fitted
ERGM. The choice of these statistics determines which structural aspects of the networks are
important in assessing fit. We propose to consider three sets of statistics: the degree distribution,
the edgewise shared partner distribution, and the geodesic distance distribution.

The degree distribution for a graph consists of the values d0/n, . . . , dn−1/n. Note that these
values sum to unity. Similarly, the edgewise shared partner distribution consists of the values
ep0/s1, . . . , epn−2/s1. (The statistics di , epi , and si are defined in Section 3.) Finally, the geodesic
distance distribution consists of the relative frequencies of the possible values of geodesic distance
between two nodes, where the geodesic distance between two nodes equals the length of the short-
est path joining those two nodes (or infinity if there is no such path). For instance, because two
nodes are at geodesic distance 1 if and only if they are connected by an edge, and because there are(n

2

)
possible pairs of nodes, the first value of the geodesic distance distribution equals s1/

(n
2

)
. The

last term, the fraction of dyads with infinite geodesics, is also called the fraction “unreachable.”
We chose to include the degree statistics because of the tremendous amount of attention paid

to them in the networks literature — for example, degree statistics are central to the work of Frank
and Strauss (1986) on Markov graphs, as explained in Section 6. We included the shared partner
statistics based on the work of Snijders et al. (2004) and Hunter and Handcock (2004), and because
we will show (in Section 6) that the addition of a parametric formula involving ep0, . . . , epn−2 im-
proves model fit dramatically. Therefore, these statistics appear to contain a great deal of relevant
network information. Furthermore, equation (10) demonstrates that the triangle count, ubiquitous
in the networks literature, is a function of the shared partner statistics. Finally, the geodesic dis-
tance statistics are the basis for two of the most common measures of centrality, a fundamental
concept in social network theory (Wasserman and Faust 1994, page 111), and are clearly relevant
to the flow of pathogens, information or other entities among actors. They also represent higher-
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order network statistics not directly related to any of the statistics included in our models, and thus
provide a strong independent criterion for goodness of fit.

Figure 3 depicts the results of 100 simulations for School 10 from the fitted dyadic indepen-

School 10: Edges only (Bernoulli or Erdős-Ŕenyi model)
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School 10: Edges and covariates
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Figure 3: Simulation results for dyadic independence models. In all plots, the vertical axis is the
logit of relative frequency; the School 10 statistics are indicated by the solid lines; the boxplots
include the median and interquartile range; and the light gray lines represent the range in which 95
percent of simulated observations fall.

dence models given in Tables 1 and 2. The vertical axis in each plot is the logit (log-odds) of
the relative frequency, and the solid line represents the statistics for the observed graph. We
can immediately see that the models do an extremely poor job of capturing the shared partner
distribution. They perform relatively well for the degree distribution and the geodesics distri-
bution, considering their simplicity. Adding the attribute-based statistics improves the fit of the
geodesic distribution considerably, but very little for the degree distribution. The large depar-
ture in the shared partner plot reflects the fact that the model strongly underestimates the amount
of local clustering present in the data. The models predict friends to have no friends in com-
mon most of the time, and occasionally one friend in common, whereas in the original data they
have up to five. Although we present plots for only one school here, the qualitative results for
other schools follow a small number of similar patterns. Plots for other schools can be viewed at
http://csde.washington.edu/networks .

In the next section, we present some modifications to the models seen here that fit much bet-
ter as measured both by the graphical criterion we have employed here and by more traditional
statistical measures such as Akaike’s Information Criterion (AIC). The fact that the simple dyadic
independence models do not appear to fit the data well is not surprising; after all, such models are
merely logistic regression models in which the responses are the dyads. That we must move be-
yond dyadic independence in order to construct models that fit social network data well is a result
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of the fact that the formation of edges in a network depends upon the existing network structure
itself.

6 Dyadic Dependence Models for Friendship Networks

As illustrated in Section 4, many problems can arise when trying to fit ERGMs using maximum
likelihood. Only recently has the application of likelihood-based ERGM-fitting methods to net-
work data reliably produced repeatable, interpretable results (Snijders et al., 2004; Hunter and
Handcock, 2004). In this section, we describe extensions of the ERGMs of Section 5.1 that im-
prove their fit. We offer graphical and numerical evidence of their improved fit, and we make some
generalizations about what these models indicate about high school friendship networks.

We begin by noting some commonly-used social network models that donot fit. The well-
studied homogeneous Markov ERGM (Frank and Strauss, 1986), in which

Pη(Y = y|X) = c−1 exp{η1d1(y) + · · · + ηn−1dn−1 + ηnt(y)} (16)

(where dk and t are the degree and triangle statistics defined in Section 3.3), did not converge to a
finite MLE for any school examined. This is not surprising given that the homogeneity condition,
which ignores the nodal covariate information contained inX, is unrealistic for nearly any social
network. Deeper reasons for the failure of model (16) are explored by Handcock (2002; 2003), and
in fact it was precisely this failure that motivated the work of Snijders et al. (2004) in developing
the alternating triangle and alternatingk-star statistics that we explain in Sections 6.1 and 6.2.

A Markov model with the additional nodal covariate parameters described in Section 5.1 (main
effects and homophily for grade, sex, and race) also did not converge. In each case, the MLE for
the triangle parameter headed off to positive infinity and the other parameters to either positive or
negative infinity; the resulting probability model places nearly all of its mass on the full or empty
graph, in a ratio that results in a mean number of triangles equal to that in the observed graph.
Clearly this is not a good model for the data. Nonetheless, the Markov assumption, by allowing
for the presence of a triangle statistic in an ERGM, allows us to consider effects such as “triangle
closure” — in whichYi j = 1 andYjk = 1 increases the chance thatYik = 1 — as arising from
an intrinsic property of network formation rather than merely a side effect of homophily. In the
remainder of this section, we discuss extensions of the statistics introduced in Section 3.3 that do
a better job than Markov models of modelling social network behavior such as triangle closure.

6.1 Geometrically weighted shared partner statistics

Here, we consider the shared partner statistics, both edgewise and dyadic, defined in Section 3.3.
Consider first the edgewise shared partner statistics ep0, . . . , epn−2. It would be possible to add one
new term to the model for each of ep1, . . . , epn−2 — we omit ep0 to avoid the linear dependence
of equation (8) — but this leads to a model with too much flexibility. As Hunter and Handcock
(2004) point out, it is often better to restrict the parameter space to avoid problems of degeneracy.
To this end, we define the single statistic

epG(y; τ) = eτ

n−2∑
i =1

{
1 −

(
1 − e−τ

)i
}

epi (y), (17)
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whereτ is an additional parameter. Because the coefficient in equation (17) of the shared partner
statistic epi includes(1 − e−τ )i , we refer to epG(y; τ) as thegeometrically weighted edgewise
shared partnerstatistic; thus, the superscriptG stands for “geometrically weighted”. Hunter and
Handcock (2004) introduce this statistic and show that it coincides with the alternatingk-triangle
statistic proposed by Snijders et al. (2004):

epG(y; τ) = 3t1(y) −
t2(y)

(eτ )1
+ · · · + (−1)n−3 tn−2(y)

(eτ )n−3
. (18)

Similarly, we may define

dpG(y; τ) = eτ

n−2∑
i =1

{
1 −

(
1 − e−τ

)i
}

dpi (y), (19)

a statistic equal to the alternatingk-twopath statistic of Snijders et al. (2004):

dpG(y; τ) = u1(y) −
2u2(y)

(eτ )1
+ · · · + (−1)n−3un−2(y)

(eτ )n−3
. (20)

The parameterτ in epG(y; τ) or dpG(y; τ) is not a canonical exponential family parameter like
η in equation (1); rather, ifτ is considered unknown, so that(η, τ ) is the full parameter vector,
then the ERGM forms acurved exponential family, which complicates the estimation procedure.
Hunter and Handcock (2004) address this more complicated situation; however, for the purposes
of this article, we make the simplifying assumption thatτ is fixed and known. In our model-fitting
procedure, we tried a range of different values ofτ on several schools and found that the estimated
likelihood value was generally highest aroundτ = 1.0 to τ = 1.5. Furthermore, the different
likelihood values were very close together, and the goodness-of-fit plots (as in Figure 5) were
nearly indistinguishable for different values ofτ in the range we tested (0.5-2.0). Values too far
outside this range resulted in models that could not be fit for one of the reasons listed in Section 4.
Based on these results, we use a fixed value ofτ = 1.0 for all the models we discuss below.

As an example, we takeg(y, X) to consist of only two terms, the edge statistic and the geomet-
rically weighted edgewise shared partner (GWESP) statistic. In this case, the ERGM of equation
(1) becomes

Pη(Y = y|X) = c−1 exp{η1s1(y) + η2epG(y; τ)}. (21)

We fit model (21) and a similar model involving the geometrically weighted dyadic shared partner
(GWDSP) statistic dpG(y; τ), to AddHealth school 10 and summarize the results in Table 1.

6.2 Geometrically weighted degree statistic

Similar to the GWESP and GWDSP statistics is the geometrically weighted degree (GWD) statistic

dG(y; τ) = eτ

{
2s1(y) − eτ

n−1∑
i =1

[
1 −

(
1 − eτ

)i
]

di (y)

}

=
(
eτ

)2
n−1∑
i =1

[(
1 − e−τ

)i
− 1 + ie−τ

]
di (y). (22)
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Model:
Coefficient Edges only Edges plus GWESP Edges plus GWDSP Edges plus GWD

edges −3.896(0.12)∗∗∗
−5.314(0.10)∗∗∗

−4.780(0.07)∗∗∗
−4.625(0.07)∗∗∗

GWESP — 2.404(0.14)∗∗∗ — —
GWDSP — — 0.039(0.009)∗∗∗ —

GWD — — — 1.998(0.31)∗∗∗

∗∗∗ Significant at 0.001 level

Table 1: Estimated coefficients and standard errors for the parameters of three simple models
that consider only network structure but no nodal covariate information. The GWESP statistic
epG(y; τ), the GWDSP statistic dpG(y; τ), and the GWD statistic dG(y; τ) all useτ = 1.0.

The dG(y; τ) statistic coincides with the alternatingk-star statistic of Snijders et al (2004):

dG(y; τ) = s2(y) −
s3(y)

(eτ )1
+ · · · + (−1)n−1sn−1(y)

(eτ )n−3
. (23)

Comparing equation (22) with the equation (17) that defines epG(y; τ), we see that one main
difference is the inclusion of s1(y) in (22). This difference is superficial, since all models that we
consider in this article contain the s1(y) term. Therefore, our uses of the terms “geometrically
weighted degree statistic” for (22) and “geometrically weighted shared partner statistic” for (17)
are completely analogous.

We fit the AddHealth school 10 data to the ERGM containing only edges and GWD:

Pη(Y = y|X) = c−1 exp{η1s1(y) + η2dG(y; τ)}. (24)

The results are summarized in the second column of Table 1. Based on repeatedly fitting various
models using a range ofτ values, we settled onτ = 1.0 for the GWD statistic. We also fit
models that include the two terms of equation (24), all of the nodal covariate statistics described in
Section 5.1, and one or both of the shared partner statistics epG and dpG of Section 6.1. Since the
coefficient of dpG is not significant when both epG and dpG are included in the model, we omit it.
The resulting model fit is summarized as Model II in Table 2.

Most dyadic dependence models create such severe numerical difficulties in estimation that
we are unable to fit them successfully for a large number of different networks of different sizes.
However, both the GWD and GWESP statistics appear to be more robust: Using our MCMC
fitting procedure, we were able to be estimate both of these parameters on many of the AddHealth
schools, a feat not before seen with any dyadic-dependent model. As a case in point, we fit the
full model of Table 2 to the largest school in our sample, with 2209 nodes. Though the fit of the
model to data is imperfect, as seen in Figure 4, the model provides reasonable parameter estimates.
Plots like Figure 4 can now inform us as to the specific ways in which our model is adequate and
in which it needs improvement.

6.3 Graphical goodness-of-fit

As described in Section 5.2, one way to develop an idea of how well a model fits is by comparing
a set of observed graph statistics with the range of the same statistics obtained by simulating many
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Coefficient Model I Model II Coefficient Model I Model II
edges −9.233(0.91)∗∗∗

−9.127(0.85)∗∗∗

GWESP — 1.586(0.18)∗∗∗

GWD — 0.025(0.34)
GWDSP — 0.019(0.002)∗∗∗

DH (Gr. 7) 5.623(0.79)∗∗∗ 4.681(0.76)∗∗∗

NF (Gr. 8) 0.536(0.54) 0.555(0.52) DH (Gr. 8) 4.520(0.75)∗∗∗ 3.722(0.71)∗∗∗

NF (Gr. 9) 1.575(0.48)∗∗ 1.445(0.46)∗∗ DH (Gr. 9) 2.129(0.55)∗∗∗ 1.814(0.50)∗∗∗

NF (Gr. 10) 1.896(0.49)∗∗∗ 1.712(0.46)∗∗∗ DH (Gr. 10) 1.942(0.62)∗∗ 1.621(0.55)∗∗

NF (Gr. 11) 2.039(0.49)∗∗∗ 1.817(0.46)∗∗∗ DH (Gr. 11) 1.953(0.58)∗∗∗ 1.486(0.52)∗∗

NF (Gr. 12) 2.035(0.52)∗∗∗ 1.836(0.49)∗∗∗ DH (Gr. 12) 2.392(0.79)∗∗ 1.952(0.69)∗∗

NF (Gr. NA) 2.270(0.65)∗∗∗ 2.099(0.60)∗∗∗

DH (White) 1.514(0.61)∗ 1.215(0.53)∗

NF (Black) 0.438(0.39) 0.322(0.32) DH (Black) 1.165(1.26) 1.152(1.19)
NF (Hisp) −0.418(0.34) −0.318(0.28) DH (Hisp) 1.107(0.41)∗∗ 0.935(0.35)∗∗

NF (Nat Am) −0.462(0.30) −0.366(0.25) DH (Nat Am) 1.696(0.42)∗∗∗ 1.351(0.36)∗∗∗

NF (Other) −1.146(0.75) −0.736(0.65)
NF (Race NA) 1.223(0.61)∗ 0.865(0.48)

NF (Female) 0.089(0.09) 0.055(0.06) UH (Sex) 0.776(0.15)∗∗∗ 0.676(0.14)∗∗∗

NF (Sex NA) −0.418(0.47) −0.178(0.40)
NF stands for Node Factor. DH stands for Differential Homophily.

UH stands for Uniform Homophily.
∗ Significant at 0.05 level ∗∗ Significant at 0.01 level ∗∗∗ Significant at 0.001 level

Table 2: Estimated coefficients (and standard errors) for two models applied to AddHealth school
10. Model I contains terms for edges and the 25 nodal covariate terms described in Section 5.1.
Model II contains all of the terms in Model I plus three additional terms, GWESP, GWDSP, and
GWD, each withτ = 1.0. Differential homophily terms for Grade NA, Race Other, Race NA, and
Sex NA are omitted because there are no edges observed between two actors sharing these attribute
values.
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School 44: Edges, covariates, and GWESP (τ = 1.5)
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School 44, Edges + Attributes + WSPartner(1.5), free−degree

Figure 4: Goodness-of-fit plots for the largest AddHealth school, school 44, with 2209 nodes.
The clear lack of fit in the geodesic distribution is typical of this model for the larger AddHealth
schools, even though the same model tends to fit well on smaller schools.

graphs from the fitted ERGM. If the observed graph is not typical of the simulated graph for a
particular statistic, then the model is either degenerate (if the statistic is among those included
in the ERGM vectorg[y, X]) or poorly-fitting (if the statistic is not included). Figure 5 depicts
simulation results for school 10 for the three dyadic-dependent ERGMs in Table 1; Figure 6 depicts
Model II from Table 2.

For both School 10 and many of the other smaller AddHealth schools, a simple model contain-
ing only individual-level attributes (Figure 3, bottom graph) does a respectable job of recreating
the geodesic distribution of the observed data, a global property of the graph. At the same time,
it strongly underestimates the amount of local clustering as captured by the shared partner dis-
tribution. The former observation is encouraging, since information on attribute matching is far
easier to collect than other types of network data in most real-world settings (where only a sample
of nodes is available); it requires questions about the attributes of respondents’ partners only, not
their actual identity. The latter observation tells us that not all features of the network can be as-
cribed to purely dyadic-level phenomena — yet this fact is not surprising, as it is the very basis for
the field of network analysis.

The fact that a simple model is strongly predictive of one higher-order network property
(geodesics) and strongly divergent from another (shared partner) is intriguing. This pattern makes
clear that a variety of network statistics ought to be tested in order to develop a robust sense of
goodness-of-fit. It also provides some evidence that the same macro-level social structure can be
built out of multiple distinct social processes. This observation is of potentially great interest to
social scientists trying to understand the development of social structure.

Comparing the bottom graph in Figure 3 with the top two graphs in Figure 5, we see that
incorporating the heterogeneity of actors through nodal covariates was more important for model fit
than either modelling degree or edgewise shared partners alone. This should not be too surprising;
high school students are anything but homogeneous with regard to the characteristics of peers with
whom they form friendships. In fact, we expect that few if any networks of social relations are
likely to demonstrate goodness of fit by the methods we use when all actors are assumed to be
homogeneous.

Empirical social relations generally exhibit local clustering, and this one is no exception: the
simple Bernoulli model drastically under-predicts the number of shared partners people should
have, even though it captures the degree distribution well. Such clustering can come from at
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School 10: Edges and GWESP (τ = 1.0)
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School 10: Edges and GWDSP (τ = 1.0)
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School 10: Edges and GWD (τ = 1.0)
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Figure 5: Simulation results for dyadic dependence ERGMs of Table 1

least two different sources: (1) actors matching on exogenous attributes; and (2) actors form-
ing partnerships on the basis of existing shared partners. The two are fundamentally different:
the former is dyadic-independent, using factors exogenous to the network structure; while the
latter is dyadic-dependent and reflects a tendency known in the social networks literature as “tri-
angle closure” in which friends of my friends are more likely to be my friends. The modelling
here shows that neither attributes nor shared partners alone are sufficient to explain the clus-
tering observed in this network (the same is true of other AddHealth schools; see the plots at
http://csde.washington.edu/networks ). Only by including both in tandem did we
obtain a good fit to the observed network patterns. One can see the joint effect of these two phe-
nomena by comparing the homophily parameter values in the simple attribute model (Model I,
Table 2) with those of the model that also includes shared partner effects explicitly (Model II, Ta-
ble 2); the magnitudes of the homophily effects are smaller in the larger model, since some of the
homophily effects can be explained by triangle closure effects.

In this setting, fitting degree was of tertiary importance. A simple one-term Bernoulli model
(Figure 3, top graph) came closer to capturing the degree distribution than it did any other feature of
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School 10: Edges, covariates, GWESP, GWDSP, and GWD (allτ = 1.0)
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Figure 6: Simulation results for Model II of Table 2.

the network; and a model that included only a term for the degree distribution (Figure 5, top graph)
did not capture any of the other structure of the network. This finding seems particularly important
given the massive attention that has been placed on degree-only models in some branches of the
network literature recently; see Albert and Barabási (2002) for a survey of some of this literature.

6.4 Akaike’s information criterion

To see whether the results we observe from the goodness of fit plots are consistent with more
traditional goodness-of-fit approaches, we also considered a more regimented approach to model
selection based on Akaike’s information criterion, or AIC (Akaike, 1973). AIC is among the best-
known of the many methods proposed in the literature for solving the problem of balancing the
conflicting modelling aims of fidelity to data and parsimony of representation:

AIC(M) = −2(maximized loglikelihood underM) + 2(# of parameters inM), (25)

whereM denotes a particular ERGM. The goal is to minimize AIC(M) as a function ofM .
Unfortunately, as we pointed out in Section 3, it is not possible to evaluate the likelihood

function directly for most ERGMs. Therefore, the value of the loglikelihood used in equation (25)
is approximate except in the case of a dyadic independence model, where the pseudolikelihood (6)
is equal to the likelihood.

The graphical approach is generally consistent with AIC, in the sense that models that produce
large reductions in AIC also seem to yield considerably better fits in the graphical plots; those with
smaller reductions in AIC have less pronounced effects on the plots. However, the goodness of
fit plots provide a richer picture than AIC alone. From these plots, a number of features of the
relationships between these models and the network structure become clear. For instance, both the
plots and AIC indicate that incorporating the heterogeneity of actors through nodal covariates is far
more important for model fit than modelling either degree or shared partners alone. Yet the picture
of this comparison that emerges through the plots is much richer than the information in Table 3.
Finally, we note that the approximations of the loglikelihoods, necessary for computing the AIC
scores of Table 3, appear to lead to some contradictory results. For example, the AIC score of the
largest model, which coincides with Model II in Table 2, is much lower than that of the model that
drops only the GWD term — despite the fact that the GWD term is not significant in Table 2.

An interesting question is whether formal model selection criteria other than AIC can be ap-
plied to these models. For instance, there is a great deal of statistical literature addressing the
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Model, M # of parameters AIC(M)

edges only 1 2287.7
edges plus GWESP∗ 2 2133.0
edges plus GWDSP∗ 2 2287.4

edges plus GWD∗ 2 2255.7
edges plus NC 25 1816.3

edges, NC, and GWESP∗ 26 1753.6
edges, NC, and GWDSP∗ 26 1818.2

edges, NC, and GWD∗ 26 1790.0
edges, NC, GWESP, and GWDSP∗ 27 1756.2

edges, NC, GWESP, and GWD∗ 27 1738.9
edges, NC, GWESP, GWDSP, and GWD∗ 28 1727.2

Table 3: Comparison of various ERGMs for school 10 using Akaike’s information criterion (AIC).
NC stands for the nodal covariates, as described in Section 5.1. For GWD, GWESP, and GWDSP,
τ always equals 1.0. Asterisks indicate the models in which approximate loglikelihoods are used.

comparison between AIC and the Bayesian information criterion (BIC); see, for example, Kuha
(2004). The definition of BIC is similar to that of AIC:

BIC(M) = −2(maximized loglikelihood underM) + log N(# of parameters inM),

whereN is the sample size. However, for network models, the sample size is not the same as
the number of nodes,n. For example, for any dyadic independence model, the sample size is
unequivocally

(n
2

)
, the number of dyads. However, when dependence among dyads exists, the

effectivesample size can be smaller than
(n

2

)
. Indeed, in cases of extreme dependence, we may

encounter ERGMs in which nearly all of the probability mass is placed on the full graph and the
empty graph. In such a case, the effective sample size is roughly one because all dyads nearly
always have the same value. Clearly, in order to implement a model selection criterion that relies
on the sample size, such as BIC, it is first necessary to establish what “sample size” means. This
is a challenging question for network ERGMs, beyond the scope of this article.

7 Discussion

Although the basic idea of exponential random graph models (ERGMs) as a way to model the prob-
abilistic behavior of a network has been around for almost twenty-five years, computing maximum
likelihood estimates for these models has proven to be very difficult in the dyadic dependence
case. By presenting the first systematic study of a large group of networks using likelihood-based
inference for dyadic-dependent ERGMs, this article allows us to consider the goodness of fit of
these ERGMs and interpret the parameter estimates obtained. Some of the networks successfully
modelled for this article are far larger than for any previously reported dyadic-dependent ERGMs.

Choosing an appropriate set of network statistics on which to compare the observed graph with
graphs simulated from the fitted model is an important task in the graphical goodness-of-fit studies
we advocate in this article. If possible, these statistics should match the purpose for which one
is estimating and simulating networks. It may not be immediately clear what kinds of network
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properties are relevant; in fact, that might be precisely the question in which we are interested
in the first place. For many social relations, theory may suggest that people do not look beyond
more than one or two layers of network neighbors, so adequately modelling statistics such as the
edgewise shared partner distribution might be expected to get higher-order statistics correct as well.

When we compare different AddHealth schools, we find that many significant model param-
eters show remarkably similar qualitative patterns. Even the numerical values of the maximum
likelihood estimates are often quite similar across friendship networks. However, it is important
when comparing networks with different numbers of nodes that the values of the parameter es-
timates are not necessarily comparable. The question of how to modify ERGMs so that their
coefficients are directly comparable without regard ton, the number of nodes, is a very important
issue in network modelling. Furthermore, as we pointed out in Section 6.4, the related question of
the effective sample size of a network onn nodes for a particular ERGM is important if we have
any hope of applying model selection methods such as BIC that depend on sample size. How-
ever, this is a question for the future; for now, the science of likelihood-based methods for fitting
ERGMs is still in its early stages.

Although the most complete and best-fitting model presented here appears to come close to
capturing the higher-order network statistics examined for School 10, the same is not true for many
of the larger schools; for instance, compare Figure 4, based on 2209 nodes. Larger schools depart
from the fitted model in a similar way: The model under-predicts the number of long geodesics
and over-predicts the number of short ones. In effect, the real social networks are more ”stringy”
than our best-fitting model predicts. One likely reason for this can be seen in Figure 1: It appears
as if (and makes intuitive sense that) students are less likely to be friends as the gap between their
grade levels grows. But our models, which include homophily effects, capture this effect only
partially; for instance, they treat friendships between a seventh grader and an eighth grader, and
between a seventh grader and an twelfth grader, as equally likely assuming that all other nodal
covariates are the same. And this is only one of many likely additional processes underlying the
structure of some of the larger school groups. We hope that the approach to assessing model fit that
we propose in this paper will provide a catalyst for researchers to think about these many different
processes and how to test hypotheses about them, not only on these data but a wide variety of social
network data generally. We strongly believe that nodal covariate information is vital to any attempt
at social network modelling, and the particular covariates of importance will not be the same for
all situations.

In the meantime, we believe that the geometrically weighted degree, edgewise shared partner,
and dyadic shared partner statistics — equivalent to the alternatingk-star,k-triangle, andk-twopath
statistics, respectively, of Snijders et al. (2004) — do a credible job of capturing a great deal of
dyadic dependence structure of the friendship networks we have studied here. Both the graphical
plots and the numerical AIC scores attest to the improvement in goodness of fit attainable by
the inclusion of one or both of the these terms. In the interest of parsimony, we note that the
GWESP statistic is more valuable than the GWD statistic for the friendship networks we have
studied; however, including them both still leads to quite a parsimonious model. On the other
hand, inclusion of the GWDSP statistic does not appear to dramatically improve model fit, perhaps
because friendship networks tend to be neutral to the formation of twopaths connecting individuals
when these individuals are not connected themselves. We hope that such rudimentary observations
as these will be continually refined as the tools for fitting ERGMs improve.
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