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Abstract

Copulas are often used in finance to characterize the dependence between assets.
However, a choice of the functional form for the copula is an open question in the
literature. This paper develops a goodness-of-fit test for copulas based on positive
definite bilinear forms. The suggested test avoids the use of plug-in estimators that
is the common practice in the literature. The test statistics can be consistently
computed on the basis of V-estimators even in the case of large dimensions. The
test is applied to a dataset of US large cap stocks to assess the performance of
the Gaussian copula for the portfolios of assets of various dimension. The Gaussian
copula appears to be inadequate to characterize the dependence between assets.
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1 Introduction

The copula proved to be a handy instrument in the analysis of multivariate
time series. It allows to capture the full dependence within multivariate time
series without specifying a shape of the marginal distributions. This result is
due to Sklar’s theorem: any multivariate distribution can be decomposed into
a copula and its marginals; if the marginal distributions are continuous the
copula is unique. Moreover, the copula is invariant under strictly increasing
transformations. For a thorough analysis of copulas see Nelsen [1].

Due to these favorable properties copulas proved to be useful in financial
applications, e.g. risk management, portfolio aggregation, spillover effects (for
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review see Bouyé et al. [2]). In the Econophysics literature copulas were applied
by Wise and Bhansali [3] and Malevergne and Sornette [4].

The major drawback in the copula approach is that there is no indication
of what parametric form the copula is. Thus, to proceed with a traditional
parametric analysis a specific functional form has to be assumed for the copula.
Though many functional forms have been suggested [1], there are no general
guidelines for optimal parametric copula selection.

Up to now there were a few studies trying to tackle the problem. Durrleman
et al. [5] constructed the Deheuvels or empirical copula and compared it with
various parametric copulas on the basis of bivariate data. The discrete L2

norm was chosen as a criterion of fit. Malevergne and Sornette [4] investigated
whether bivariate data dependences can be described by the Gaussian copula.
Their tests are based on Kolmogorov and Anderson-Darling distances and
their modifications. Patton et al. [6] considered multivariate data analysis to
test the hypothesis of the Gaussian and Student copula. However, according
to these authors their first test suffers the curse of dimensionality. The second
test does not have this problem, but may be inconsistent.

This study develops an alternative goodness-of-fit test for bivariate and multi-
variate copulas. The test is based on a divergence measure first introduced by
Diks et al. [7]. This measure, a kernel-based positive definite bilinear form, can
be consistently estimated using V -statistics. It does not require the usage of
plug-in estimators that is now a common practice in the field [8] and separates
the problem of inference from consistent estimation of multivariate densities.
The proposed test is nonparametric and may be applied to any functional form
of the copula.

As an example of the empirical application, the fit of the Gaussian copula is
evaluated on the US large cap stocks returns data. Both bivariate and multi-
variate portfolios of assets are considered in the analysis.

2 Estimation of copula parameters

Consider the case where a copula C(u), u ∈ R
N and marginals Fn(xn) are

continuous. According to Sklar’s theorem, the joint distribution F (x), x ∈ R
N

can be represented as

F (x) = C(F1(x1), F2(x2), . . . , FN(xN)). (1)

The corresponding density function is
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f(x) = c(F1(x1), F2(x2), . . . , FN(xN))
N∏

n=1

fn(xn), (2)

where fn(xn) is the density of the marginal Fn(xn) and c(u) is the density of
the copula C(u)

c(u1, . . . , uN) =
∂C(u1, . . . , uN)

∂u1, . . . , ∂uN

. (3)

The canonical maximum likelihood (CML) method [2] is used to estimate the
vector of parameters α of the copula. First the data {xt

1, x
t
2, . . . , x

t
N}

T
t=1 are

transformed into the corresponding empirical distributions F̂n(xn) through

F̂n(xn) =
1

T

T∑

t=1

I(xt
n ≤ xn). (4)

The vector of parameters α is estimated semi-parametrically maximizing log-
likelihood for the copula density c, given the empirical marginals F̂n(xn)

α̂ = arg max
T∑

t=1

ln c(F̂1(x
t
1), . . . , F̂N(xt

N); α). (5)

3 A notion of distance between probability distributions

Following Diks et al. [7] for an integrable functions f1 and f2 define the bilinear
form

〈f1|κN |f2〉 =
∫∫

κN(s1, s2)f1(s1)f2(s2)ds1ds2, (6)

where s1, s2 ∈ R
N and κN(·, ·) is a positive definite symmetric kernel such as

κN (s1, s2) = e−‖s1−s2‖
2/(2Nd2), (7)

where ‖·‖ denotes Euclidean norm in R
N and d > 0 is a smoothing parameter,

or a bandwidth. This kernel allows factorization

κN(s1, s2) =
N∏

i=1

κ1(s1i, s2i). (8)

The Gaussian kernel is chosen for convenience. In general, other positive defi-
nite kernel functions can be used.
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According to a theorem [9] for integrable function g, 〈g|κN |g〉 ≥ 0 and 〈g|κN |g〉 =
0 if and only if g = 0 almost everywhere. In fact, 〈f1|κN |f2〉 is an inner prod-
uct of f1 and f2, which can be used as a measure of distance between f1 and
f2. Note that the defined bilinear form (6) is an expectation of the kernel κN

taken with respect to the independent random vectors S1 with the probability
density function f1(s1) and S2 with the probability density function f2(s2).

E[κN(S1, S2)] =
∫∫

κN(s1, s2)f1(s1)f2(s2)ds1ds2. (9)

Define a squared distance Q between f1 and f2 as

Q = 〈f1 − f2|κN |f1 − f2〉 . (10)

It follows from the aforementioned theorem that Q becomes zero only when
f1(·) and f2(·) are equal. Following the properties of the inner product, Q can
be decomposed as follows

Q = Q11 − 2Q12 + Q22, (11)

where Qij = 〈fi|κN |fj〉 . Each term of the above decomposition can be consis-
tently estimated using V-statistics

Q̂ij =
1

T 2

T∑

t1=1

T∑

t2=1

κN(St1
i , St2

j ), (12)

where S
t denotes a realization of the random vector S at a time t.

Relying on the theory of V-statistics it is also possible to develop asymptotics
[10] for the functional of interest Q.

4 Testing procedure

Our goal is to test whether a specific functional copula can adequately describe
the dependence between given series. Serial independence of the individual
series is assumed throughout this section. First, the data series are transformed
to the empirical marginal cumulative distributions according to Eq. (4). Jointly
this transformed data can be viewed as a sample from the true copula. In the
second stage, the parameters of the specific copula of interest are estimated as
described in Section 2. Next, we sample from the parametric copula with the
estimated parameters. Under the null hypothesis both series, the transformed
empirical series S1 (parallel to the notation of Section 3) and the sampled
series S2, originate from the same copula. The squared distance Q is used
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to compare the series. Its estimate denoted by Q̂ is computed element-wise
according to Eq. (11) and Eq. (12).

Since the asymptotic theory for the statistics Q is still under development,
the parametric bootstrap [11] is proposed to determine p-values of the test.
We repeatedly (B-times) sample series S

∗
1j, 1 ≤ j ≤ B from the copula with

estimated parameters using different seeds of the random number generator
and compare them with the initially sampled series S2. The corresponding
distances are denoted by Q∗

j . P -values are generated following the standard

procedure of comparing Q̂, an estimated distance between the transformed
empirical data S1 and the initially sampled series S2, with values of Q̂∗

j , an
estimated distance between S

∗
1j and S2, i.e.

p̂ =

∑B
i=1 I(Q̂ ≥ Q̂∗

i ) + 1

B + 1
, (13)

where I is indicator function. The null hypothesis is rejected whenever p̂ ≤ α,
where α is a size of the test. The minimal number of replications is B = 1

α
− 1

(for a 5%-test, the minimal value of B is 19). Note that Q̂22, an estimated
element of the decomposition (11) depends only on S2. Therefore, it takes
the same values in Q̂ and Q̂∗

j and may be abandoned without any effect on
p-values.

An optimal value of the bandwidth parameter d is determined via simulations.
Power of the test is used as a criterion for the selection. The highest power is
achieved for the value of the bandwidth d = 0.05 (time series are standardized
to the unit variance).

5 Testing the Gaussian copula hypothesis

In this section we apply the previously described procedure to test the Gaus-
sian copula hypothesis. The N -variate Gaussian copula with the correlation
matrix R is defined as

GaCN
R (u) = ΦN

R (Φ−1(u1), ..., (Φ
−1(uN)), (14)

where ΦN
R denotes the joint distribution function of N−variate standard nor-

mal distribution with the linear correlation matrix R, and Φ denotes the dis-
tribution function of the univariate standard normal distribution. Due to rela-
tively simple estimation procedure and a possibility to incorporate multivari-
ate series, the Gaussian copula is now widely applied in finance. However, this
copula is radially symmetric and has zero tail dependence [1]. Thus, it may be
inadequate to characterize the dependence between the financial series.
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The proposed goodness-of-fit test is used to determine whether the Gaussian
copula can adequately describe the dependence between the series of (log)-
returns of the US large cap stocks. The dataset consists of US traded securities
with a volume over 10 million per day and market capitalization over one
billion US dollars as of the 1st of April 2003, which comprises 33 stocks from
different sectors. The selection of the large cap stocks ensures considerable
interest from the side of investors. The length of the time series covering the
period January 1997-March 2003 is 1607.

Collections of the assets of the dimension 2, 5 and 10 were randomly selected
100 times, the full set of 33 stocks was also included in the analysis. In most of
the applications individual financial series are filtered with (G)ARCH process
to remove long-term serial dependence in the variance [6]. Serial independence
of the individual series is required by our test. However, it is possible that
(G)ARCH filtering destroys some of the dependence structure between assets
[4]. Therefore, we consider both the raw data and the GARCH(1,1) filtered
series and compare the corresponding outcomes of the test. A presence of serial
dependence in the raw data may weaken power of the test.

The CML parameter estimator (5) in case of the Gaussian copula reduces to

R̂ =
1

T

T∑

t=1

yty
′

t, (15)

where yt = (Φ−1(F̂1(x
t
1)), ..., Φ

−1(F̂N(xt
N))))

′

and F̂i(x
t
i) is computed accord-

ing to Eq. (4). Sampling from the Gaussian copula is straightforward: a multi-
variate standard normal variable z ∼ N(0, R) transformed to (Φ(z1), ..., Φ(zN))
yields a sample originating from the Gaussian copula with the correlation ma-
trix R. Next, a testing procedure described in Section 4 is applied. Table 1
presents the rejection rates with the nominal size set to 0.05. The number of
replications B was set to 19 and bandwidth d = 0.05.

Table 1
Rejection rates for the null hypothesis of the Gaussian copula for US large cap stock
(log)-returns

procedure\dimension 2 5 10 33

raw returns 14/100 32/100 52/100 1/1

GARCH(1,1) filtered returns 10/100 19/100 45/100 1/1

The analysis reveals that the rejection rates are notably larger than the nom-
inal size. The number of rejections increases with the dimension of the as-
set collections. GARCH(1,1) filtered data indicate less deviations from the
Gaussian copula possibly because of the change in the dependence structure.
Consequently, the analysis suggests that the Gaussian copula is inadequate
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in characterization of the dependence between US large cap stocks, especially
for multivariate collections of assets. Similar rejections rates were found by
Malevergne and Sornette [4] for bivariate collections of stocks from the dataset
similar to one applied in this paper. Patton et al. [6] report lower than the
nominal rejection rates for bivariate collections and the rejection probability
close to one for 5- and higher dimensional collections. The difference may be
attributed to the difference in data selection and testing procedures.

6 Conclusions

In line with the current increasing use of nonlinear time series analysis the
goodness-of-fit test for copulas is suggested. The test procedure remains con-
sistent and applicable even in the case of higher dimensions. An asymptotic
theory for the test is still under development and the bootstrap procedure is
used instead. The application of the test to the US large cap stocks showed
inadequacy of the Gaussian copula. As an alternative more flexible Student-t
copula maybe used for the dependence modelling of multivariate collections of
stocks. To reflect dynamical changes in the dependence structure more flexible
copula forms are to be developed.
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