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Abstract When dealing with classical spike train analysis, the practitioner often per-
forms goodness-of-fit tests to test whether the observed process is a Poisson process,
for instance, or if it obeys another type of probabilistic model (Yana et al. in Bio-
phys. J. 46(3):323–330, 1984; Brown et al. in Neural Comput. 14(2):325–346, 2002;
Pouzat and Chaffiol in Technical report, arXiv:0909.2785, 2009). In doing so, there is
a fundamental plug-in step, where the parameters of the supposed underlying model
are estimated. The aim of this article is to show that plug-in has sometimes very un-
desirable effects. We propose a new method based on subsampling to deal with those
plug-in issues in the case of the Kolmogorov–Smirnov test of uniformity. The method
relies on the plug-in of good estimates of the underlying model that have to be consis-
tent with a controlled rate of convergence. Some nonparametric estimates satisfying
those constraints in the Poisson or in the Hawkes framework are highlighted. More-
over, they share adaptive properties that are useful from a practical point of view. We
show the performance of those methods on simulated data. We also provide a com-
plete analysis with these tools on single unit activity recorded on a monkey during a
sensory-motor task.
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1 Introduction

In neuroscience, the action potentials (spikes) are the main components for the real-
time information processing in the brain. Moreover, it is possible to record in vivo
several neurons and to have access to simultaneous spike trains. The duration of each
spike is very small, about one millisecond. Moreover, the number and the position
of each spike fluctuate from one trial to another trial. It is consequently quite natural
to assimilate a spike to a random event. Therefore, in this article, we mathematically
model spike trains as real-valued point processes that have been deeply described
and studied for a long time in the literature (see [4] for a review) and often used in
neuroscience (see, for instance, [2] and the references therein). However, except in
very particular tests of independence (see, for instance, [5, 6]), it is most of the time
necessary to describe spike trains as realizations of particular stochastic processes.

Most of the analyses start by answering a standard basic question. Is the process
an homogeneous Poisson process or not? See, for instance, [7–9]. Indeed, for this
simple model, extensively used in neuroscience, there is only one parameter to infer,
namely the firing rate. The study of firing rates in neuroscience has lead to significa-
tive advances in the understanding of the coding of the direction of movements [10]
for instance. But most of the time, spikes trains are more complex than homogeneous
Poisson processes. Various studies have exhibited different kinds of correlations be-
tween some motor, sensory, or cognitive events in a behaving animal and a variation
of the firing rate of specific neurons, before, during or after this event [11, 12]. In
particular, such data cannot be stationary. So, constraints on the previous model are
relaxed and processes can be assumed to be inhomogeneous Poisson processes. In
this setting, the firing rate is now time-dependent and is modeled by a function λ(·),
which is the intensity of the inhomogeneous Poisson process (see [8, 9]). Several
studies have also established statistical evidence of dependence between the occur-
rences of the spikes of several neurons (see [5, 6, 13–15]) or even within a given
neuron. In this case, standard homogeneous or inhomogeneous Poisson processes
cannot be used and models based on univariate or multivariate Hawkes processes

or variations of them are quite natural to capture dependence of spikes occurrences
[16–21]. Hawkes processes, extensively described and discussed later on, generalize
homogeneous Poisson processes by using functions quantifying interactions between
spikes. These functions are called interaction functions. Such interaction functions
are used in neuroscience to model excitation and inhibition phenomena [22].

Whatever the chosen model, this model has to be tested before any other inference
based on this model. A plug-in step to infer unknown parameters is most of the time
unavoidable to perform these tests. More precisely, for general models on point pro-
cesses, the main ingredient consists in transforming the data so that the time changed
process becomes a homogeneous Poisson process, fact which can be easily tested.
However, the parameters of the transformation are usually unknown and are replaced
by estimates. This plug-in trick has been widely popularized since [23]. It is widely
used in neuroscience since [1] (see also the textbook of Tuckwell [24], [3], or [2]).
The main goal of this article is to precisely show that the plug-in step may sometimes
lead to undesirable effects and to propose the subsampling as a reasonable and quite
universal solution. We focus here on the Kolmogorov–Smirnov (K.S.) test of unifor-
mity. Indeed this K.S. test is usually considered as one of the three main tests on



Journal of Mathematical Neuroscience (2014) 4:3 Page 3 of 41

the first-order statistics that can be done to test the homogeneous Poisson hypothesis

(see [1] and the references therein). More generally, the K.S. test (see [25] for its first

use up to our knowledge) is one of the main omnibus tests [26], meaning that it is

effective against a wide class of alternatives. However, it is known that a plug-in has

to be taken with care for this test (see [27] for some brief discussion of this point).

By using aggregated or cumulated tests, we propose 5 tests based on subsampling as

goodness-of-fit tests, for which plug-in issues are solved. Note that, in neuroscience,

plug-in problems have already been emphasized for other types of tests, namely the

independence tests [22].

The second goal of this paper results from the first one: We have to develop statisti-

cal methods in the setting of point processes to estimate functions such as the intensity

for the Poisson model or the interaction functions for the Hawkes model. Standard

statistical procedures consist in assuming that these functions are parameterized by

a few number of parameters, and in taking (for instance) the maximum likelihood

estimator [28, 29]. This approach is called parametric. For instance, assuming that

a spike train is an homogeneous Poisson process, is equivalent to parameterizing the

intensity by one parameter, namely the fixed constant firing rate. However, in neuro-

science, except in the particular case of the homogeneous Poisson process, there is no

a priori parametric shape for the functions to be estimated. These functions are most

of the time unknown. Our second main contribution consists in proposing estimation

procedures in a very flexible setting once the probabilistic model is fixed. So we con-

sider the setting of nonparametric statistics, which is designed to estimate functions

when no parametric model can be assumed. In particular, this nonparametric setting

allows us to weaken assumptions considerably. The estimates proposed in this paper

are based on kernel rules, wavelets expansions, or penalized criteria. Not only are

they nonparametric, but they also share the following features:

1. They are obtained by completely data-driven procedures that can be used even by

neophytes in nonparametric statistics.

2. They achieve optimal convergence rates.

3. They do not assume light tails or any shape (exponential, unimodal, etc.) about

the underlying function.

4. They adapt to the smoothness of the underlying function.

Furthermore, the developed strategies considerably extend the procedures proposed

by [7, 30]. In particular, new data-driven kernel rules are introduced to estimate the in-

tensity of inhomogeneous Poisson processes. We also derive a lasso-type estimate for

recovering interaction functions of multivariate Hawkes processes when observing n

trials. Some new interpretations of the estimate and connections with classical tools

of the neuroscience literature such as joint peristimulus time histograms (JPSTH) and

cross correlograms are also proposed. Theoretical results are established by using the

oracle approach (see later).

The article is organized as follows. We first explain how subsampling can over-

come the issues raised by plug-in for goodness-of-fit tests for the special case of

the K.S. test. Then we extensively discuss adaptive nonparametric estimation and its

advantages with respect to parametric estimation. This is illustrated on Poisson or

Hawkes processes and a wide range of nonparametric methods are proposed. Finally,
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some simulations have been performed and real data sets coming from the recordings
of a sensory-motor task (that can be found in [15], for instance) are analyzed thanks
to these new methods. Most of the analysis has been performed with the software R.
We refer to [7] for a complete list of its advantages.

Let us introduce succinctly the main notions. More mathematical insight on the
subject can also be found in [31]. For more-to-the-point definitions in link with neuro-
science, and heuristic interpretations, we refer the interested reader to the very limpid
article of Brown et al. [2] on the time-rescaling theorem. In the sequel, a point pro-
cess N is a random countable set of points. For all measurable subset A, N(A) is the
random variable giving the number of points of N in A. The associated point measure
dN is defined as follows: for all measurable function f ,

∫

f (x)dN(x) =
∑

T ∈N

f (T ).

To a finite point process N on the positive real line, one can associate the correspond-
ing counting process (Nt )t≥0 = (N([0, t]))t≥0 and its compensator (Λ(t))t≥0 with
respect to some given filtration (history). Most of the time, a conditional intensity
λ(·) depending on the past history exists and in this case

Λ(t) =
∫ t

0
λ(u)du.

The function Λ(·) is therefore continuous nondecreasing. This is also the time-
transformation on which the time-rescaling theorem is based [2]. In the sequel,

Xp
P−−−→

p→∞
0 means that the sequence Xp converges in probability toward 0 when

p tends to infinity; Xp
L−−−→

p→∞
X means that the distribution of Xp tends to the one of

X when p tends to infinity.

2 Goodness-of-Fit Tests: The Plug-in Drawback and Subsampling as a Possible

Universal Solution

Once spike trains have been obtained and sorted, neurophysiologists often perform a
very basic data analysis, which consists in testing several features such as stationarity
for instance among other statistical inferences [7]. Following Ventura et al. [8], the
first step of a “good practice” is usually to test whether the observed spike train is
homogeneous Poisson or not. But it is usually admitted that real spike trains cannot
be that simple and this hypothesis is most of the time rejected. To explain the re-
jection, the next step, still following [8], is to impute it to a lack of stationarity or
to something more complex. It means that we have to test whether the process is an
inhomogeneous Poisson process or not. For this purpose, one uses the time-rescaling
theorem (see [32] but also [4, 31]) under the hypothesis that the process is a Poisson
process with deterministic intensity λ(·). Its associated compensator Λ(·) is in this
case deterministic as well. The time-rescaling theorem, in its simplest version, states
therefore that if N is a Poisson process with intensity λ(·), observed on [0, Tmax], then
N = {X = Λ(T ) : T ∈ N} is an homogeneous Poisson process on [0,Λ(Tmax)] with
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intensity 1, fact which can be tested by practitioners. However, there is a misspecifica-
tion in the method since λ(·) is unknown. The most popular and widely used method
in neuroscience consists in plugging an estimate λ̂(·) in [8]. As explained in the Intro-
duction, we first illustrate the drawbacks of noncautious plug-ins for goodness-of-fit
tests on the K.S. test, which has already been observed by [27]. We then propose a
remedy to overcome these drawbacks based on subsampling.

2.1 Elementary Situation for Illustration

Let us illustrate our purpose on a very basic situation. Assume that one observes
X1, . . . ,Xn n independent and identically distributed (i.i.d.) real variables with cu-
mulative distribution function (c.d.f.) u → F(u) = P(X1 ≤ u). Given F0 a c.d.f., we
can test whether the hypothesis H0: “F = F0” is true or not. To do so, let us first
define Fn the empirical distribution function associated with the Xi ’s by

u → Fn(u) = 1

n

n
∑

i=1

1{Xi≤u}.

If n is large enough, Fn(u) is close to F(u) for any u. The K.S. test is therefore based
on the statistic

KSn = sup
u

∣

∣Fn(u) − F0(u)
∣

∣. (1)

Under H0, if F0 is continuous, the distribution of KSn is known and it does not depend
on F0, so it can be tabulated [27]. For any α ∈ (0,1), let kn,1−α be the 1 − α quantile
of this distribution. The classical (without plug-in) K.S. test consists in rejecting H0

whenever KSn > kn,1−α and this test is of exact level α. Note also that when n tends
to ∞, the random variable

√
nKSn tends in distribution to a tabulated distribution K

(see [33]). As a consequence, if k̃1−α is the 1 − α quantile of K,
√

nkn,1−α tends
to k̃1−α and the approximation is valid as soon as n > 45 [34] (see also Durbin’s
modification in [27]).

Often, the c.d.f. F0 is unknown since it depends on one or several unknown pa-
rameters and a natural idea consists in estimating it to use the previous procedure.
This idea, extensively used in neuroscience, can lead to false results. For illustration,
assume for example that we wish to test the hypothesis H0 “the Xi ’s are exponential
with unknown parameter λ.” Note that this hypothesis is often tested on the inter-
spike time intervals (ISI) [24] in order to test whether the observed spike process is
an homogeneous Poisson process with unknown intensity λ. Following the scheme
described previously, a natural procedure to test the exponentiality of the Xi ’s could
be the following:

(i) Estimate λ by λ̂ = 1/X̄, where X̄ is the empirical mean of the Xi ’s: X̄ =
n−1

∑n
i=1 Xi .

(ii) Plug in the estimate λ̂ and estimate F0 by u → F̂ (u) = 1 − exp(−λ̂u).
(iii) Form the K.S. statistic (1) by replacing F0 by F̂ . This leads to KS(1).
(iv) Reject H0 whenever KS(1) > kn,1−α .

The p-values of this test are represented in Fig. 1. If the distribution of the test
statistic was correctly predicted by the quantiles kn,1−α , then the repartition of the
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Fig. 1 Repartition of the p-values in a K.S. test of exponentiality with plug-in. Graph of the p-values
as a function of their rank. A n = 40 i.i.d. sample of exponential variables with parameter λ = 20 has
been drawn 1000 times. Each time a p-value has been computed either by estimating the parameter λ and
performing the K.S. test with exactly the same sample (in black), or by estimating the parameter λ on half
of the sample and performing the K.S. test on the other half (in red), or by estimating the parameter λ

on the whole sample and performing the K.S. test on a subsample of size n2/3 (in green). Note that the
estimated level (i.e., the number of p-values smaller than 0.05 divided by 1000) is in the first case of 0.009,
of 0.12 in the second case, and of 0.039 in the third case. Those levels and curves are stable with respect
to the sample size: Similar results are obtained for a larger sample size (n = 200 and n = 1000)

p-values should be close to the first diagonal of the graph (see [35]). Clearly, the

curve is above the diagonal and the test is too conservative, which means that the test

will accept H0 more than required. The previous procedure fails in obtaining good

results since, roughly speaking, the same data are used to estimate λ and to compute

the test statistic. For very specific c.d.f., this problem can be overcome by computing

the distribution of KS(1) (see [27] for exponential and Gaussian cases). However, this

is based on a trick that makes distributions, in those specific cases, independent of

the unknown underlying parameter λ. Therefore, this solution cannot be adapted to

complex situations such as the inhomogeneous Poisson process framework described

above in the neuroscience field [8].

To be more careful and to avoid dependencies between λ̂ and Fn, we could use the

following “split into two parts” procedure where n is assumed to be even.

(i) Estimate λ by λ̃ = 1/ ¯̄X, where ¯̄X is the empirical mean of the first half of the

Xi ’s: ¯̄X = 2/n
∑n/2

i=1 Xi .

(ii) Plug in the estimate λ̃ and estimate F0 by u → F̃ (u) = 1 − exp(−λ̃u).

(iii) Form the K.S. statistic (1) by replacing F0 by F̃ , but also by replacing Fn by the

empirical cumulative distribution function only based on Xn/2+1, . . . ,Xn. This

leads to KS(2).

(iv) Reject H0 whenever KS(2) > kn/2,1−α .

The p-values of this test are represented on Fig. 1. Surprisingly, the distribution

of the p-values shows that the resulting test is not conservative enough. Indeed, the
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test will reject H0 more than required and this procedure is even worse than the first

strategy. Therefore, we turn toward a much more universal strategy, subsampling,

thanks to the following result (see the Additional File 1 for the proof).

Proposition 1 Let X1, . . . ,Xp be p i.i.d. variables with c.d.f. F assumed to be con-

tinuous. Let Fp be the associated empirical distribution. Assume that F̂ is a consis-

tent estimate of F such that

√
p sup

x

∣

∣F̂ (x) − F(x)
∣

∣

P−−−→
p→∞

0. (2)

Then

√
p sup

x

∣

∣Fp(x) − F̂ (x)
∣

∣

L−−−→
p→∞

K.

Therefore, it remains to find F̂ satisfying (2). In most of the parametric

cases, and in particular in the exponential case, Assumption (2) does not hold

if F̂ is based on the same data as Fp . Assumption (2) may hold if p is much

smaller than n, the whole sample size, as illustrated by the following strategy.✬

✫

✩

✪

Test 1

1. Estimate λ by λ̂ = 1/X̄, where X̄ is the empirical mean of the Xi ’s on the whole sample

size n.

2. Select randomly a subsample S of the trials with cardinality p = p(n), such that

p(n)/n −→
n→∞ 0 (for instance take p(n) = √

n or p(n) = n2/3).

3. Compute on S the following empirical cumulative distribution function:

∀x ≥ 0, FS(x) = 1

p

∑

i∈S

1{Xi≤x}.

4. Take k̃1−α the 1 − α quantile of the asymptotic distribution K.

5. Reject H0: “the distribution of the Xi ’s is exponential” whenever

√
p sup

x∈R+

∣

∣FS(x) − F̂ (x)
∣

∣ > k̃1−α,

where for any x ≥ 0,

F̂ (x) = 1 − e−λ̂x .

Technical arguments of Additional File 1 prove that the previous test is of exact

level α asymptotically. More importantly, in practice this conclusion remains true

even for relatively small values of n as shown in Fig. 1 illustrated with n = 40. Even

if this test is not as powerful as the one described in [27], it has the main advantage

to be almost universal. It can be adapted to most of parametric situations, since the

use of subsampling makes the condition (2) quite easy to fulfill.

We want now to adapt this method to the more general scheme of goodness-of-fit

tests for counting processes. From now on and whatever the situation, p will always

http://dx.doi.org/10.1186/2190-8567-4-3
http://dx.doi.org/10.1186/2190-8567-4-3
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correspond to the size of a subsample, i.e., a positive integer much smaller than n the
total number of observations.

2.2 Aggregated Test of H0: “The Observed Processes Are i.i.d. Poisson Processes”

To fix notation, we consider in the sequel that we observe n i.i.d. trials. Consequently,
we have access to N1, . . . ,Nn, n i.i.d. point processes observed on [0, Tmax] repre-
senting the n i.i.d. spike trains of a fixed recorded neuron during Tmax seconds.

It is not possible to assess on just one realization whether a point process is a
(non necessarily homogeneous) Poisson process or not since the variations of the
repartition of the points between different parts of one trial can either be due to non-
stationarity or to more complex dependency structures that cannot be studied on just
one run.

The first simple way to use the repetition of the trials is to use aggregation, which
can be viewed as an empirical sum on the point processes. More precisely, the aggre-
gated process over the processes N1, . . . ,Np is defined by

Na,p =
⋃

i=1,...,p

Ni or equivalently dNa,p =
p

∑

i=1

dNi .

By classical properties of Poisson processes [4], if the processes are i.i.d. Poisson
processes with compensator Λ(·), then Na,p is also a Poisson process with compen-
sator pΛ(·). This implies that conditionally to the event {Na,p([0, Tmax]) = ntot}, the
observed points of Na,p behave like an ntot i.i.d. sample of c.d.f.

t → F(t) = Λ(t)

Λ(Tmax)
.

Since F is unknown in our present situation, one has to estimate it, which leads to
exactly the same plug-in problem as before. Fortunately, we are able to prove the
following result.

Proposition 2 Let N1, . . . ,Np be p i.i.d. Poisson processes with compensator Λ(·),
assumed to be continuous, on [0, Tmax]. Let FNa,p([0,Tmax]) be the associated empirical

distribution, defined for any x by

FNa,p([0,Tmax])(x) = 1

Na,p([0, Tmax])
∑

T ∈Na,p

1{T ≤x}, (3)

where Na,p is the aggregated Poisson process. Assume that F̂ (·) is a consistent esti-

mate of F(·) = Λ(·)/Λ(Tmax) such that

√

Na,p
(

[0, Tmax]
)

sup
x∈[0,Tmax]

∣

∣F̂ (x) − F(x)
∣

∣

P−−−→
p→∞

0. (4)

Then
√

Na,p
(

[0, Tmax]
)

sup
x∈[0,Tmax]

∣

∣FNa,p([0,Tmax])(x) − F̂ (x)
∣

∣

L−−−→
p→∞

K.
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Once again, subsampling (i.e., choosing p much smaller than n) gives us estimates
F̂ satisfying (4). Two different approaches lead to two distinct tests. First, let us use
the empirical c.d.f. on the whole sample.✬

✫

✩

✪

Test 2

1. Take F̂ as FNa,n([0,Tmax]), the empirical c.d.f. of the whole aggregated process Na,n

over the n trials (see (3)).

2. Select randomly a subsample S of the trials with cardinality p = p(n), such that

p(n)/n −→
n→∞ 0 (for instance take p(n) = √

n or p(n) = n2/3).

3. Aggregate the p processes in S to form Na,p and FNa,p([0,Tmax]) as in Proposition 2.

4. Take k̃1−α the 1 − α quantile of the asymptotic distribution K.

5. Reject H0: “The n observed processes are i.i.d. (nonnecessarily homogeneous) Poisson

processes” whenever

√

Na,p
(

[0, Tmax]
)

sup
x∈[0,Tmax]

∣

∣FNa,p([0,Tmax])(x) − F̂ (x)
∣

∣ > k̃1−α .

In Additional File 1, we prove that this test is of exact asymptotic level α, as soon
as the compensator Λ(·) is continuous and this even if λ(·) does not exist. However
its practical performance are poor (see later). A slightly more useful test can be ob-
tained by using smoother and more elaborate estimates F̂ satisfying (4). We obtain
the following testing procedure.✬

✫

✩

✪

Test 3

1. Select randomly a subsample S of the trials with cardinality p = p(n), such that

p(n)/n tends to 0.

2. Use all the n observed processes to obtain a λ̂(·) such that, if the processes are Poisson

processes with intensity λ(·), one can assume that

√

p(n)

∫ Tmax

0

∣

∣λ̂(u) − λ(u)
∣

∣

P−−−−→
p→∞ 0. (5)

3. Take

t → F̂ (t) =
∫ t

0 λ̂(u)du
∫ Tmax

0 λ̂(u)du
.

4. Aggregate the p processes in S to form Na,p and FNa,p([0,Tmax]) as in Proposition 2.

5. Take k̃1−α the 1 − α quantile of the asymptotic distribution K.

6. Reject H0: “The n observed processes are i.i.d. (non necessarily homogeneous) Poisson

processes” whenever

√

Na,p
(

[0, Tmax]
)

sup
x∈[0,Tmax]

∣

∣FNa,p([0,Tmax])(x) − F̂ (x)
∣

∣ > k̃1−α .

In Additional File 1, we prove that the previous test is of asymptotic level α.
Note that Condition (5) can be demanding and rejection can be due to nonfulfillment

of this condition. For instance, estimates λ̂ based on parametric estimates on a pre-
scribed parametric model (such as maximum likelihood estimates for instance, see

http://dx.doi.org/10.1186/2190-8567-4-3
http://dx.doi.org/10.1186/2190-8567-4-3
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Fig. 2 Aggregation versus cumulation. Description of the way the points are gathered together for aggre-
gation or for cumulation. On the left-hand side, the first five lines correspond to a trial, the sixth line being
the aggregated process. On the right-hand side, the same five lines are put together to form the cumulated
process

[8]) fulfill (5) if the prescribed model is true, but cannot fulfill this condition if the

prescribed parametric model is not true. Hence, using parametric estimates in this

setting lead to test both H0 and “the prescribed parametric model is correct,” which

is not satisfying. Therefore, it is natural to make no parametric assumption on the

underlying model for λ(·) and to try to fulfill (5) by using nonparametric estima-

tion.

Finally, as already observed by [8], aggregation can dilute the dependencies be-

tween the points. Therefore, Tests 2 and 3 cannot be really powerful as we will see

later.

2.3 Cumulated Goodness-of-Fit Tests

Another way to use the repetition of the trials, is to cumulate the p processes instead

of aggregating them. This difference is made more explicit in Fig. 2. When processes

are aggregated, points of very different trials can be very close, which can dilute

dependencies between occurrences. This cannot occur for cumulated processes. With

this method, we can also test models that are more general than Poisson processes.

Those general models are usually described through their conditional intensity

λ(·), which represents the probability of occurrence of a point at time t given the past

before t . So, defining a model through its conditional intensity is the easiest way to

model the dependence between points. For instance, when we assume the conditional

intensity λ to be a deterministic function f , we are assuming independence with re-

spect to the past. This is equivalent to assuming that the process is an inhomogeneous

Poisson process with intensity λ = f . Therefore, testing H0: “the observed processes

are i.i.d. with conditional intensity λ = f and unknown deterministic function f ” is

equivalent to testing H0: “the observed processes are i.i.d. inhomogeneous Poisson

processes.”



Journal of Mathematical Neuroscience (2014) 4:3 Page 11 of 41

More generally, we wish to test a nonparametric hypothesis on the conditional

intensity. An example, more developed in the next section, is the multivariate Hawkes

process, which models the dependence between the spikes of different neurons via

several interaction functions, for which we do not want to give a parametric form. Let

us give just a simple expression of this process to illustrate our set-up, with only one

process. The classical self-exciting Hawkes process has conditional intensity given

by

λ(t) = λf (t) = μ +
∫ t−

−∞
h(t − u)dN(u), (6)

where μ is a positive real parameter and h a non negative integrable function with

support in R
∗
+ and with f = (μ,h). For instance, if the function h is supported by

the interval (0,2], then the probability of occurrence at time t randomly depends on

the occurrences of the process on [t − 2, t). Testing whether the process is a classical

self-exciting Hawkes or not can be rephrased as testing whether the process has con-

ditional intensity given by the form λf defined in (6), with unknown f . Other famous

examples in biomedical areas such as the multiplicative Aalen intensity or the Cox

model can be found in [29].

As in the previous subsection, we use the time-rescaling theorem but in a deeper

way. Remember that the general time-rescaling theorem [2] states that for any point

process N on [0, Tmax] with compensator Λ(·), the point process N = {X = Λ(T ) :
T ∈ N} is a Poisson process with intensity 1 on [0,Λ(Tmax)]. Therefore, it is more

interesting to cumulate the processes after time-rescaling than in the usual time space

[0, Tmax]. For general conditional intensity models, Λ(·) is random. Therefore the

state space [0,Λ(Tmax)] is also random in general. Moreover, when we are dealing

with p i.i.d. processes N1, . . . ,Np , each Ni has a different compensator Λi(·) which

depends on the history of the ith trial. So except in the Poisson case where Λ(·) is

deterministic, we do not apply the same transformation to all the points. We finally

have to deal with p processes Ni = {X = Λi(T ) : T ∈ Ni} that are Poisson processes

of intensity 1, and whose occurrences lie in [0,Λi(Tmax)]. Even if the Λi(Tmax) are

i.i.d., they are not equal in general.

This leads to two main remarks. First, it is not possible to aggregate in gen-

eral the time-transformed processes since we would aggregate processes with dif-

ferent lengths (see Fig. 2). Therefore, Tests 2 and 3 cannot be transferred to the

most general case straightforwardly. However, one can cumulate those processes

as done in Fig. 2 and this even if the intervals have different lengths. The result-

ing process N c,p is therefore a Poisson process with intensity 1 on the random in-

terval I = [0,
∑p

i=1 Λi(Tmax)] (see also Additional File 1 for a more precise for-

mula and a proof of this statement). The second remark consists in noting that
∑p

i=1 Λi(Tmax) being a random quantity, it is not true in general that conditionally

to the total number of points in I , the points of N c,p behave like an i.i.d. uniform

sample, and in the sequel we shall need to restrict ourselves to an interval of the form

[0,pθ ] with a deterministic bound pθ , which is with high probability, smaller than
∑p

i=1 Λi(Tmax).

http://dx.doi.org/10.1186/2190-8567-4-3
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Besides we have to deal with estimation of unknown transformations Λi(·). For

this purpose, we introduce estimates of the type t → Λ̂i(t) =
∫ t

0 λ̂i(u)du, where λ̂i(·)
estimates λi(·), the conditional intensity of the ith process Ni . We obtain a cumulate

process N̂ c,p built from the Λ̂i(·)’s. We have the following equivalent to Proposi-

tion 2.

Theorem 1 Let N1, . . . ,Np be p i.i.d. processes with respective conditional intensity

λi(·). Assume that there exist nonnegative estimates λ̂i(·) of λi(·) such that

p−1/2

(

p
∑

i=1

∫ Tmax

0

∣

∣λ̂i(u) − λi(u)
∣

∣du

)

P−−−→
p→∞

0. (7)

Then, for all θ > 0 such that E(Λ1(Tmax)) > θ ,

√

N̂ c,p
(

[0,pθ ]
)

sup
u∈[0,1]

∣

∣

∣

∣

1

N̂ c,p([0,pθ ])
∑

X∈N̂ c,p,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

L−−−→
p→∞

K.

It is now easy to turn this result into an operational test, using subsampling.✬

✫

✩

✪

Test 4

1. Select randomly a subsample S of the trials with cardinality p = p(n), such that p(n)/n

tends to 0.

2. Use all the n observed processes to obtain a f̂ such that if λ = λf , one can assume that

p(n)−1/2

(

p(n)
∑

i=1

∫ Tmax

0

∣

∣(λ
f̂
)i(u) − (λf )i(u)

∣

∣du

)

P−−−→
n→∞

0. (8)

3. For all i in S, take

Λ̂i(t) =
∫ t

0

(

(λ
f̂
)i(u)

)

+du,

and change time of the ith process accordingly to obtain N̂i = {X = Λ̂i(T ) : T ∈ Ni} on

[0, Λ̂i(Tmax)].
4. Cumulate the p processes N̂i for i in S to form N̂ c,p .

5. Take k̃1−α the 1 − α quantile of the asymptotic distribution K.

6. Fix θ > 0, strictly smaller than p−1
∑

i∈S Λ̂i(Tmax).

7. Reject H0: “The n observed processes are i.i.d. processes with conditional intensity of the

form λf and unknown f ” whenever

√

N̂ c,p
(

[0,pθ]
)

sup
u∈[0,1]

∣

∣

∣

∣

1

N̂ c,p([0,pθ])
∑

X∈N̂ c,p ,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

> k̃1−α .

In Additional File 1, we prove that the previous test is of exact asymptotic level

α as soon as E(Λi(Tmax)) > θ . There exists a simpler form of this test when dealing

http://dx.doi.org/10.1186/2190-8567-4-3
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with Poisson processes since in this case compensators do not depend on i.✬

✫

✩

✪

Test 5

1. Select randomly a subsample S of the trials with cardinality p = p(n), such that p(n)/n

tends to 0.

2. Use all the n observed processes to obtain a λ̂(·), such that if the processes are Poisson

processes with intensity λ(·), one can assume that

√

p(n)

(∫ Tmax

0

∣

∣λ̂(u) − λ(u)
∣

∣du

)

P−−−→
n→∞

0. (9)

3. Take

Λ̂(t) =
∫ t

0

(

λ̂(u)
)

+du,

and change time of the ith process accordingly to obtain N̂i = {X = Λ̂(T ) : T ∈ Ni} on

[0, Λ̂(Tmax)].
4. Cumulate the p processes in S to form N̂ c,p .

5. Take k̃1−α the 1 − α quantile of the asymptotic distribution K.

6. Fix θ > 0, strictly smaller than Λ̂(Tmax).

7. Reject H0: “The n observed processes are i.i.d. non necessarily stationary Poisson pro-

cesses” whenever

√

N̂ c,p
(

[0,pθ]
)

sup
u∈[0,1]

∣

∣

∣

∣

1

N̂ c,p([0,pθ])
∑

X∈N̂ c,p ,X≤pθ

1{X/(pθ)≤u} − u

∣

∣

∣

∣

> k̃1−α .

This test, as a special case of Test 4, is also of exact asymptotic level α as soon as

Λ(Tmax) > θ . Tests 4 and 5 are more powerful to detect dependencies or to reject the

Poisson assumption than Tests 2 or 3, as we will see later.

As for Test 3, and for exactly the same reasons, we want to find nonparametric

estimates satisfying (8) or (9). We provide in the next section powerful tools to deal

with this problem and theoretical guarantees of performance of these estimates.

3 Nonparametric and Adaptive Estimation

3.1 Why Is Adaptive Estimation Useful?

Nonparametric estimation, and in particular nonparametric estimation of Poisson pro-

cess intensity, is at the root of most of the data analyses performed on spike trains.

Indeed, peristimulus time histograms (PSTH) [36] are usually the first graphical rep-

resentations of an experiment. Those histograms have usually a fixed length for each

interval (typically 10 ms) and are quite noisy from a statistical point of view (see,

for instance, the representations of [8]). Therefore, there have been several attempts

to provide smoother estimates, either by kernel estimates (see, for instance, [30]) or

by projection on an orthonormal basis (see, for instance, [7] for the use of splines).

These methods provide a first illustration of the data with as few assumptions as pos-

sible on the underlying “true” firing rate. They are originally not linked at all to any

statistical or probabilistic models and constitute descriptive statistics. In particular,
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no parametric assumption on the underlying intensity is made at this step, the para-

metric model and its associated maximum likelihood estimator (MLE) being given

in a second time once the shape of the curve is guessed [8]. Because of this lack of

parametric assumption, those estimates seem to be the best candidates at first glance

for the estimate λ̂ that needs to be plugged in Tests 3 or 5.

However, the problem of the convergence rate remains. In all these methods, there

is a tuning parameter that needs to be chosen: it is the length of the interval for his-

tograms, the bandwidth in kernel rules or the number of coefficients in the orthonor-

mal expansion. The problem of the choice of this parameter has first been tackled

very roughly in the neuroscience literature by choosing a fixed value. On the real

data presented here or on the ones in [8], it was usually considered that a bandwidth

of 50 or 100 ms was a good choice. However, such a very rough choice cannot guar-

antee a convergence rate when n goes to ∞. Indeed let us look more closely at the

kernel estimate.

For the i.i.d. observed point processes N1, . . . ,Nn, the kernel estimate with kernel

K and bandwidth h is given by

λ̂Kh
n (x) = 1

n

n
∑

i=1

∫

Kh(x − u)dNi(u) = 1

n

∫

Kh(x − u)dNa,n(u), (10)

where Na,n is the corresponding aggregated process and where Kh(u) = (1/h) ×
K(u/h). If we assume that the observed processes are inhomogeneous Poisson pro-

cesses with intensity λ, Na,n is also an inhomogeneous Poisson process with intensity

nλ and, therefore,

E
[

λ̂Kh
n (x)

]

= (Kh ⋆ λ)(x), ∀x ∈ R,

where ⋆ denotes the convolution product. So, the expectation of λ̂
Kh
n constitutes a

regularized approximation of λ(·). To measure the performance of λ̂
Kh
n , we compute

its L2-risk (see further details in Additional File 2):

E
∥

∥λ̂Kh
n − λ

∥

∥

2

2
= ‖Kh ⋆ λ − λ‖2

2 + ‖λ‖1

nh
‖K‖2

2, (11)

which is classically interpreted as a bias-variance decomposition. Therefore, if h is

fixed, the variance term goes to 0 whereas the bias remains fixed so that the L2-risk

of the estimate does not go to 0. Consequently, a fixed choice for the bandwidth

is not convenient and it is essential to choose h = h(n) tending to 0 with n. The

dependence of h with respect to n is a problem that has been extensively studied in

the density framework, a setting close to the present one since conditionally to the

total number of points, the observed points of Na,n behave like an i.i.d. sample of

density λ(·)/Λ(Tmax). We refer the reader to [37] for a review. The main conclusion

of such a study is that if λ is regular and if the regularity is known then we are able to

choose h(n) such that the L2-risk tends to 0 at a known rate of convergence depending

on the regularity. Furthermore, the larger the regularity, the faster the rate. Typically,

if the r th derivative of λ is bounded in the L2 sense, then it is possible to choose K

http://dx.doi.org/10.1186/2190-8567-4-3
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and1 h(n) ≍ n−1/(2r+1) such that the L2-risk behaves as

E
∥

∥λ̂Kh
n − λ

∥

∥

2

2
≍ n−2r/(2r+1).

In this setting, this choice can be applied to Tests 3 and 5, since the Markov inequality

implies that (5) or (9) are satisfied with p(n) = nδ and δ < (2r)/(2r + 1). The choice

r = 1 gives δ < 2/3 and r = 2 gives δ < 4/5.

Of course, in practice the choice of the bandwidth is capital. Since the smooth-

ness of λ is unknown, the practitioner cannot use the previous choice. Furthermore,

guessing the order of magnitude of h(n) is not enough to achieve good performance

since the leading constant plays an essential role. Hence, the theoretical considera-

tions developed before do not solve the practical problem. Several directions have

been proposed to overcome this problem. One of the most famous ones consists in

using leave-one-out or other cross-validation methods [30, 38]: among a finite fam-

ily of fixed bandwidths, such methods choose the best one in an asymptotic setting.

However, to our knowledge, nothing can be said when the family of bandwidths is

not fixed and some bandwidths tend to 0 with n. It is not clear at all that the resulting

estimate achieves a prescribed rate and, therefore, it cannot be used for the proposed

tests in particular. Other methods based on the rule of the thumb (and variations of it)

have been proposed in the density or the Poisson setting [8, 39], and in this case the

resulting bandwidth is of the form h(n) = Cn−1/5 for various possible choices of the

constant C. Generally, those choices lead to poor results as noted by [8] (see also our

the simulation study).

Adaptive estimation [37] aims at tuning in a data-driven way the unknown pa-

rameters of those methods (kernels, histograms, etc.) such that the resulting estimate

has good practical performance and a guaranteed convergence rate. The adaptive es-

timates are usually mathematically proved to achieve the best possible rate of conver-

gence and this even if the regularity is unknown. Moreover, they do not depend on any

restrictive assumption such as, for instance, some parametric assumption. The only

assumption lies in the underlying probabilistic model (for instance, one assumes that

the processes are inhomogeneous Poisson processes). Their reconstructions are there-

fore much more trustworthy than other methods for which those extra assumptions

may not be fulfilled. As a conclusion, adaptive estimates constitute ideal candidates

to be plugged in Tests 3, 4, or 5.

The main aim of next subsections is therefore to present adaptive estimates in the

Poisson or in the Hawkes model that will have these good properties.

3.2 Adaptive Estimation for Poisson Processes

3.2.1 Kernel Estimates

As mentioned previously, the Poisson setting is very close to the density setting. In

the density setting, the main adaptive method for choosing a bandwidth is the Lepski

1If (an)n≥0 and (bn)n≥0 are two sequences, a(n) ≍ b(n) means that there exists two positive constants
c1, c2 such that for all n ≥ 0, c1an ≤ bn ≤ c2an .
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method, which has been recently updated to the multidimensional framework and

to deal with the problem of choosing the leading constant of the bandwidth. Due to

Goldenshluger and Lepski [40], it is referred in the sequel as the GL method. We

propose here to adapt this method to the Poisson setting in the following way and to

prove its adaptive properties.

We consider a set of bandwidths H and their corresponding kernel estimates λ̂
Kh
n .

The bias-variance decomposition shows that the parameter h̄ which minimizes the

right-hand side of (11) with respect to h ∈H is the best possible choice. It is called the

oracle bandwidth: since it depends on λ(·), it cannot be used in practice. To propose

a data-driven choice of the bandwidth by a GL method, we define for any h,h′ ∈H:

λ̂h,h′
n (x) := 1

n

∑

T ∈Na,n

(Kh ⋆ Kh′)(x − T ) =
(

Kh ⋆ λ̂
Kh′
n

)

(x), ∀x ∈R,

then for η > 0, we set

A(h) := sup
h′∈H

{

∥

∥λ̂h,h′
n − λ̂

Kh′
n

∥

∥

2
− (1 + η)(1 + ‖K‖1)‖K‖2

√
Na,n([0, Tmax])

n
√

h′

}

+
.

The Additional File 2 shows that A(h) constitutes a good estimate of the bias term

(see (11)). Finally, we select the data-driven bandwidth as follows:

ĥ := arg min
h∈H

{

A(h) + (1 + η)(1 + ‖K‖1)‖K‖2

√
Na,n([0, Tmax])

n
√

h

}

, (12)

which allows us to estimate λ(·) by using

λ̂GL
n := λ̂

K
ĥ

n . (13)

Note that in (12), ‖K‖2
2N

a,n([0, Tmax])/(n2h) is an unbiased estimate of the variance

term in (11) and therefore the previous criterion mimics the bias-variance decompo-

sition of the risk of λ̂
Kh
n up to some multiplicative constant. Once K , H and η are

chosen, we obtain a turnkey procedure. The following theoretical result justifies our

procedure.

Theorem 2 If H ⊂ {D−1 : D = 1, . . . ,Dmax} with Dmax = δn for some δ > 0, and if

‖λ‖∞ < ∞, then,

E
∥

∥λ̂GL
n − λ

∥

∥

2

2
≤ C1 inf

h∈H

{

‖Kh ⋆ λ − λ‖2
2 + ‖λ‖1

nh
‖K‖2

2

}

+ C2n
−1,

where C1 is a constant depending on ‖K‖1 and η and C2 is a constant depending on

δ, η, ‖K‖2, ‖K‖1, ‖λ‖1, and ‖λ‖∞.

Theorem 2 combined with (11) shows that our procedure mimics the performance

of the oracle up to the constant C1 and up to the term C2n
−1, which is negligible when

n goes to +∞. It is classically called an oracle inequality, which is the main property

http://dx.doi.org/10.1186/2190-8567-4-3
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of adaptive estimates. In particular, one can take the family H = {1, . . . , ⌊δn⌋−1},
which grows with n and it is possible to select a bandwidth tending to 0 with n. If the

r th derivative of λ(·) is bounded in L2, then the choice h(n) ≍ n−1/(2r+1) is in the

family H and the oracle inequality gives straightforwardly that

E
∥

∥λ̂GL
n − λ

∥

∥

2

2
≍ n−2r/(2r+1),

which is the optimal rate of convergence over such spaces. This rate is achieved, even

if we do not know in advance the regularity r of λ, which is from a theoretical point

of view the main improvement with respect to the theory described in the previous

subsection.

If K is the Gaussian kernel, then ‖K‖1 = 1 and ‖K‖2 = 2−1/2π−1/4. Moreover,

Kh ⋆Kh′ = K√
h2+h′2 and a straightforward computation shows that explicit formula

for ‖λ̂h,h′
n − λ̂

Kh′
n ‖2 are also available. It is consequently very easy to implement the

method, the computational cost being almost of the same order as cross-validation.

We will see in the simulation study that this practical choice is also quite robust.

3.2.2 Histograms

In the Poisson set-up, there are several ways to select data-driven partitions that lead

to adaptive histogram estimates. For instance, one can use model selection as in [41].

Model selection can either select a regular partition or an irregular partition on a

grid. When regular partitions are considered, the resulting estimator satisfies an ora-

cle inequality similar to the oracle inequality established in Theorem 2 for the kernel

rule combined with the GL method. Indeed the bin for the histograms plays exactly

the same role as the kernel bandwidth. Therefore, it leads to similar theoretical per-

formance, except that the histograms cannot become smooth enough to guarantee an

optimal convergence rate for regular intensities (namely r > 1). Therefore, the choice

of regular partitions is probably not the best one and one may prefer the GL method.

The data-driven choice of the partition becomes much more interesting when the par-

tition is not forced to be regular. Indeed irregular partitions can capture a fast increase

of the firing rate followed very quickly by a fast decrease at some particular moment

of the experiment, without leading to too noisy estimates as the classical PSTH, since

over smoother periods, the length of the interval can be much larger. However, the

method of [41] is too time consuming to be really considered in practice. Another

possible direction is the context of Markov modulated Poisson processes [42], where

the algorithms are also quite time consuming without ensuring any adaptive prop-

erty in terms of convergence rate (despite some possible interpretation with respect

to hidden Markov processes).

However, and as already noticed in [41], it is possible in certain cases to interpret

a model selection estimate as a thresholding rule. We hereafter illustrate in a simpler

case, the method developed in [43]: If λ(·) ∈ L2, we can decompose it on the Haar

basis,

λ =
+∞
∑

j=−1

∑

k∈Z
βj,kψj,k,
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where ψ−1,k(·) = φ(· − k) with φ = 1[0,1) the Haar father wavelet and where
ψj,k(·) = 2j/2ψ(2j (· − k)) for j ≥ 0 with ψ = 1[0,1/2) − 1[1/2,1) the Haar mother
wavelet. The βj,k’s are the unknown coefficients of λ(·) and are given by

∀j ≥ −1, k ∈ Z, βj,k =
∫

ψj,k(x)λ(x)dx.

These coefficients can therefore be unbiasedly and consistently estimated by

∀j ≥ −1, k ∈ Z, β̂j,k = 1

n

∫

ψj,k(x)dNa,n(x).

Given a fixed finite subset of indices m, we obtain an easily computable estimate of
λ(·):

λ̂m
n =

∑

(j,k)∈m

β̂j,kψj,k.

Since the Haar basis is piecewise constant, the previous estimate is also piecewise
constant on a certain partition P depending on m. A data-driven choice of m there-
fore leads to a data-driven choice of the partition that can be irregular. Let us fix an
arbitrary highest level of resolution j0 such that 2j0 ≤ n < 2j0+1 and let us consider
the L2-risk of λ̂m

n such that if (j, k) ∈ m then j ≤ j0. The bias-variance decomposi-

tion of λ̂m
n can be written as follows:

E
[∥

∥λ̂m
n − λ

∥

∥

2] =
∑

(j,k)/∈m

β2
j,k +

∑

(j,k)∈m

Var(β̂j,k)

=
∑

j>j0

∑

k

β2
j,k +

∑

j≤j0

∑

k

[

β2
j,k1(j,k)/∈m + vj,k1(j,k)∈m

]

, (14)

where

vj,k := Var(β̂j,k) = 1

n

∫

ψ2
j,k(x)λ(x)dx.

Hence, the best subset m is the set of indices (j, k) such that βj,k >
√

vj,k . This is the
oracle choice. A possible data-driven way to choose the indices (j, k) is to choose the
indices such that β̂j,k are larger than a certain threshold ηjk depending on an estimate
of the variance vj,k . The choice advertised in practice in [43] is

ηj,k =
√

2γ ln(n)v̂j,k + γ ln(n)2j/2

3n
where v̂j,k = 1

n2

∫

ψ2
j,k(x)dNa,n(x). (15)

Then we obtain the following thresholding estimator:

λ̂Th
n =

j0
∑

j=−1

∑

k

β̂j,k1{|β̂j,k |>ηj,k}ψj,k. (16)

In [43], it has been proved that a slight modification of this estimate satisfies an or-
acle inequality in the same spirit as Theorem 2. It also generalizes this estimate by
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considering general biorthogonal bases instead of the Haar basis, leading to smooth

estimates (see [43, 44]). In this case, for a slight modification of the threshold, the re-

sulting estimate has the same convergence rates as the kernel estimate combined with

the GL method, up to some logarithmic term, as soon γ > 1. The choice γ < 1 has

been shown to lead to bad convergence rates and the choice γ = 1 has been shown

to work well on extensive simulations in both [43, 44]. This method is easily imple-

mentable leading to very fast algorithms that are in particular faster than algorithms

based on the GL method.

3.2.3 More Sophisticated Procedures

Thresholding rules and irregular partitions overcome a drawback of kernel estimates

that suffer from a lack of spatial adaptivity on the time axis. Several attempts have

been proposed to build more local choices of the bandwidth (see [30] for instance),

but to our knowledge no mathematical proof of this spatial adaptation has been estab-

lished, whereas histograms and in particular the previous Haar thresholding estimator

can adapt the length of the bin to the heterogeneity of the data. But the resulting esti-

mator is not smooth at all. As explained, we can consider a smoother wavelet basis,

but this extension does not completely address the issue.

The best alternative, to our knowledge, when the support of λ(·) is known and

bounded (here [0, Tmax]) and when λ(·) does not vanish for a significant period of

time, is due to Willett and Nowak [45]. Their method is quite intricate to describe. In-

formally, a penalized log-likelihood criterion is used to select a piecewise polynomial.

Both the partition and the degree of each polynomial on each interval of the partition

are free (on a very refined grid of resolution). Willett and Nowak have proved that

such an estimator achieves optimal rates of convergence for various classes of regu-

larity and in an adaptive way. From a practical point of view, a dyadic tree algorithm

is used. Its complexity is much smaller than a full model selection method on the

same piecewise polynomial family of models. It is a bit more complex than a thresh-

olding algorithm, but there exist a program (FreeDegree) in Matlab interfaced

with C which makes its use in practice quite easy. For a more complete description of

the method, we refer to [45]. Note that in practice because of its adaptive properties,

this estimator is able to be piecewise constant when the true intensity is piecewise

constant but also very smooth (with high degree for the polynomials) when the un-

derlying intensity is smooth and when the number of points is sufficient. It is also

able to be spatially adaptive, the underlying data-driven partition being irregular. In

the sequel, we denote this method λ̂WN
n .

3.3 Adaptive Estimation for Hawkes Processes

If inhomogeneous Poisson processes can model nonstationary data, they are not

appropriate to model dependencies between points. However, several studies have

established potential dependence of spike occurrences for different neurons. This

has been detected via descriptive statistics, via independence tests for a given fixed

model or via model-free independence tests based on permutations (also called trials-

shuffling) [5, 6, 13, 15, 22, 46].
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One simple model of dependency is the multivariate Hawkes process, which is the

point process equivalent to the auto-regressive model. It has first been introduced by

Hawkes [47], as a self-exciting point process, that is useful in particular in seismology

(see, for instance, [23]). It has also been used to model positions of motifs along the

DNA molecule [48, 49]. In neuroscience, it explicitly appears in the 1980s with [19]

and is close in spirit to [50, 51], with the additional advantage of modeling potential

feed-back between the neurons.

The multivariate Hawkes process (see, for instance, [52] or [4]) models the instan-

taneous firing rates of M different neurons, with spike trains N (1), . . . ,N (M), where

the conditional intensity of the mth point process is defined for any t ≥ 0 by

λ(m)(t) =
(

ν(m) +
M
∑

ℓ=1

∫ t−

−∞
h

(m)
ℓ (t − u)dN (ℓ)(u)

)

+

=
(

ν(m) +
M
∑

ℓ=1

∑

Tℓ∈N (ℓ),Tℓ<t

h
(m)
ℓ (t − Tℓ)

)

+
. (17)

In (17), the ν(m)’s are positive parameters representing the spontaneous firing rates

and the h
(m)
ℓ ’s are the interaction functions and have support included into R

∗
+. More

precisely, before the first occurrence of the multivariate process, the N (m)’s behave

like homogeneous Poisson processes with constant intensities ν(m). The first occur-

rence (and the next ones) affects all the processes by increasing or decreasing the

conditional intensity via the interaction functions h
(m)
ℓ ’s. For instance, if h

(m)
ℓ takes

large positive values in the neighborhood of the delay d and is null elsewhere, then

after the delay d of one occurrence of N (ℓ), the probability to have a new occurrence

of N (m) will significantly increase: The process N (ℓ) excites the process N (m). On the

contrary, if h
(m)
ℓ is negative around d , then after the delay d of one occurrence of N (ℓ),

the probability to have a new occurrence of N (m) will significantly decrease: The pro-

cess N (ℓ) inhibits the process N (m). Note in particular that the functions h
(m)
m ’s model

self-interactions.

The Hawkes process as described above cannot really model nonstationary data.

Indeed, when t grows (and under conditions on the interaction functions), the process

converges quite quickly toward an equilibrium, which is stationary (see, for instance,

[52, 53], and the references therein). If these conditions are not satisfied, the number

of points in the process grows too fast to be a realistic model for spike trains anyway.

Hence, Hawkes processes as defined in (17) cannot model nonstationary data, but can

model dependent data.

Therefore, we fix an interval [T1, T2] ⊂ [0, Tmax], typically an interval where all

the estimated mean firing rates seem constant. The aim is to estimate on this interval

f ∗ =
((

ν(m)
)

m=1,...,M
,
(

h
(m)
ℓ

)

ℓ,m=1,...,M

)

,

where it is assumed that the interaction functions are bounded with support in [0,A]
with T1 > A.
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Inference for Hawkes models based on the likelihood can be found in the literature,

in particular, for parametric models [23, 49]. However, in neuroscience, for flexibility,

the used parametric models are based on a large number of parameters. Therefore,

they require several thousand spikes per neuron to be observed in a stationary way

to achieve good estimation [19]. Classical model selection based on AIC and BIC

criteria has also been used to select the number of knots for the spline estimate [21,

48, 54]. However, these criteria do not adapt well to irregular functions. This is the

reason why alternative nonparametric adaptive inference has recently been developed

in such models. The univariate case (M = 1) has been studied in [55], where rates of

convergence depending on the underlying regularity of the self-interaction function

have been derived. We can also mention the alternatives proposed in [20, 56] but no

theoretical validation is provided in those works.

A multivariate approach, valid for very general counting processes including

Hawkes processes and based on ℓ1 penalties, has been recently developed in [57].

Based on minimization of convex criteria, its computational cost is more reasonable

than procedures proposed in [55] and it is also proved to satisfy oracle inequalities.

We shall detail this method in the case of Hawkes processes and with piecewise con-

stant estimates of the underlying interaction functions.

In the next section that can be skipped at first reading, we describe the method

in a technical way. Then we give heuristic arguments to understand more deeply the

presented method (see also [58] for a quicker view on this estimate). In particular, the

method does not rely on the likelihood, but on a least-square contrast, which can be

reinterpreted in terms of JPSTH [59].

3.3.1 Intensity Candidates and Least-Square Contrast on One Trial

We first propose a conditional intensity candidate. So for any f ∈H with

H =
(

R×L2

(

[0,A]
)M)M

=
{

f =
((

μ(m),
(

g
(m)
ℓ

)

ℓ=1,...,M

)

m=1,...,M

)

: g(m)
ℓ with support in (0,A]

and ‖f ‖2 =
∑

m

(

μ(m)
)2 +

∑

m

∑

ℓ

∫ A

0
g

(m)
ℓ (t)2dt < ∞

}

,

we consider the predictable transformation ψ(f ) = (ψ (1)(f ), . . . ,ψ (M)(f )) such

that

∀t > 0, ψ
(m)
t (f ) = μ(m) +

M
∑

ℓ=1

∫ t−

−∞
g

(m)
ℓ (t − u)dNℓ(u). (18)

Note that λ(m) = [ψ (m)(f ∗)]+. Therefore, for each m, ψ (m)(f ) can be considered as

a good intensity candidate as long as it is close enough to the conditional intensity

λ(m) (even if ψ (m)(f ) takes negative values). We measure the distance between ψ(f )
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and λ by using the classical L2-norm ‖ · ‖:

∥

∥ψ(f ) − λ
∥

∥

2 =
M
∑

m=1

∫ T2

T1

[

ψ
(m)
t (f ) − λ(m)(t)

]2
dt

=
M
∑

m=1

∫ T2

T1

[

ψ
(m)
t (f ) −

[

ψ
(m)
t

(

f ∗)]
+
]2

dt. (19)

Depending on f ∗, the right-hand side is not observable. But minimizing the last ex-
pression with respect to f is equivalent to minimizing f �−→ γ̃ (f ) with

γ̃ (f ) = −2

M
∑

m=1

∫ T2

T1

ψ
(m)
t (f )λ(m)(t)dt +

M
∑

m=1

∫ T2

T1

[

ψ
(m)
t (f )

]2
dt.

But by definition of the conditional intensity, γ̃ (f ) is close to γ (f ) with

γ (f ) = −2

M
∑

m=1

∫ T2

T1

ψ
(m)
t (f )dN (m)(t) +

M
∑

m=1

∫ T2

T1

[

ψ
(m)
t (f )

]2
dt, (20)

which is called the least-square contrast. This expression is observable and can be
minimized if f is parameterized by a fixed number of parameters.

One particular parameterization, that is used in practice, is obtained when each

function g
(m)
ℓ is a piecewise constant function written as

g
(m)
ℓ =

K
∑

k=1

am,ℓ,kδ
−1/21((k−1)δ,kδ], (21)

where δ > 0 is the size of the bin and K the number of bins. So we have Kδ = A. The
am,ℓ,k’s are the renormalized coefficients of g

(m)
ℓ on the regular partition of size K .

Since f → ψ (m)(f ) is linear, one obtains

∀t > 0, ψ
(m)
t (f ) = μ(m) +

M
∑

ℓ=1

K
∑

k=1

am,ℓ,kδ
−1/2N (ℓ)

([

t − kδ, t − (k − 1)δ
))

,

still for f = ((μ(m), (g
(m)
ℓ )ℓ=1,...,M)m=1,...,M). Let us denote by a(m) the column vec-

tor such that

(

a(m)
)′ =

(

μ(m), am,1,1, . . . , am,1,K , am,2,1, . . . , am,M,K

)

, (22)

where ′ denotes the transpose. Then one can write

∀t > 0, ψ
(m)
t (f ) = (Rct )

′a(m), (23)

with Rct being the renormalized instantaneous counts given by

(Rct )
′ =

(

1, δ−1/2
(

c
(1)
t

)′
, . . . , δ−1/2

(

c
(M)
t

)′)
,
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and with c
(ℓ)
t being the vector of instantaneous counts with delay of N (ℓ), i.e.,

(

c
(ℓ)
t

)′ =
(

N (ℓ)
(

[t − δ, t)
)

, . . . ,N (ℓ)
([

t − Kδ, t − (K − 1)δ
)))

.

Hence, by (23), proposing ψ
(m)
t (f ) as a candidate for the intensity λ(m) of N (m)

amounts to proposing a linear combination of instantaneous counts with delay to

model the probability of the next occurrence of a point in N (m).

Now, minimizing γ (f ) over such piecewise constant functions is equivalent, by

linearity, to minimizing

γ (f ) =
M

∑

m=1

(

−2
(

a(m)
)′

b(m) +
(

a(m)
)′

Ga(m)
)

with respect to the vectors a(m). The vector b(m) is observable and is given by

(

b(m)
)′ =

(∫ T2

T1

RctdN (m)(t)

)′

=
(

N (m)
(

[T1, T2]
)

, δ−1/2n′
m,1, . . . , δ

−1/2n′
m,M

)

,

where

nm,ℓ =
(∫ T2

T1

N (ℓ)
([

t − kδ, t − (k − 1)δ
))

dN (m)(t)

)

k=1,...,K

and

G =
∫ T2

T1

Rct (Rct )
′dt.

Note that the kth component of nm,ℓ is the number of couples (x, y) with x ∈
N (m) ∩[T1, T2], y ∈ N (ℓ) and (y −x) ∈ ((k −1)δ, kδ] and G is a symmetric matrix of

size 1 + MK whose components are the integrated covariations of the renormalized

instantaneous counts. The solution of this minimization problem is easily available:

If G is invertible,

∀m = 1, . . . ,M, â(m) = G−1b(m). (24)

Heuristic arguments show that (24) is a natural expression. We can indeed informally

write for any m that

dN (m)(t) ≃ λ(m)(t)dt + noise ≃ ψ
(m)
t

(

f ∗)dt + noise,

assuming that at time t , the intensity is strictly positive. By linearity of ψ (m), one can

also write that

dN (m)(t) ≃ (Rct )
′a(m)

∗ + noise,
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where a
(m)
∗ are the coefficients corresponding to f ∗, assuming that f ∗ can be coded

in this way. Finally, we obtain

∫ T2

T1

RctdN (m)(t) = b(m) ≃
∫ T2

T1

Rct (Rct )
′a(m)

∗ dt + noise ≃ Ga(m)
∗ + noise,

showing that the estimate given in (24) should be a convenient preliminary estimate.

3.3.2 Least-Square Estimates on Several Trials and Connections with JPSTH and

Cross-Correlograms

We observe now n trials and, therefore, we have access to (N
(1)
i , . . . ,N

(M)
i )i=1,...,n an

i.i.d. sample of a multivariate point process on [T1, T2]. Each trial has its own history.

So to each trial i, we can associate as in the previous subsection the matrix G, the

vectors b(m) and so on. Depending on the trial i, we denote them G(i), b(m,i) and so

on. The least-square contrast for these n × M spike trains can then be written as

γn(f ) =
M

∑

m=1

(

−2
(

a(m)
)′
(

n
∑

i=1

b(m,i)

)

+
(

a(m)
)′
(

n
∑

i=1

G(i)

)

a(m)

)

(25)

whose solution is given by

∀m = 1, . . . ,M, â(m) =
(

n
∑

i=1

G(i)

)−1( n
∑

i=1

b(m,i)

)

. (26)

The quantity (
∑n

i=1 b(m,i)) can be reinterpreted in terms of cross-correlograms and

joint-PSTH, following [59]. Indeed we can write

(

n
∑

i=1

b(m,i)

)′

=
([

N (m)
]a,n([T1, T2]

)

, δ−1/2n̄′
m,1, . . . , δ

−1/2n̄′
m,M

)

,

where for any ℓ,

n̄m,ℓ =
n

∑

i=1

(∫ T2

T1

N
(ℓ)
i

([

t − kδ, t − (k − 1)δ
])

dN
(m)
i (t)

)

k=1,...,K

,

and [N (m)]a,n is the aggregated process over all the n trials for the mth neuron. The

quantity n̄m,ℓ can be reinterpreted as a particular histogram based on the joint peri-

stimulus time scatter diagram as the JPSTH or the cross-correlogram (see Fig. 1 of

[59] and Fig. 3 of the present article). More precisely as detailed in Fig. 3, the counts

n̄m,ℓ are close to a cross correlogram except that representations are not based on

squares but on herringbones. Local features are then preserved, as for the JPSTH.

Furthermore, the elements of the partition have the same area and can therefore be

compared more easily. Besides, for small disjoint intervals [T1, T2] with an increas-

ing parameter A (corresponding to the maximal size of the support of the interaction
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Fig. 3 Scatter diagrams and histograms. In panel a, we recall how a scatter diagram is constructed for
each trial (here black crosses for trial 1 and red crosses for trial 2) and then superposed. Various histograms
can be built with those points, using different partitions. Panel b gives the partition corresponding to the
classical cross-correlogram. Panel c gives the partition of the JPSTH. The diagonal squares are filled in

gray: if a point of the scatter diagram lies in one of those square, its coordinates correspond to spikes
that are very close to each other. Two very close spikes (one on N1, the other one on N2) and their
corresponding point in the scatter diagram are added, showing that the reverse is wrong. Therefore, there
are some couples that are close to each other and not counted by the JPSTH as such. Panel d gives the
partition used for the computation of the vectors n̄m,ℓ of dimension K (K = 2 here). More precisely, n̄1,2
corresponds to the vertical part 2 → 1, whereas n̄2,1 corresponds to the horizontal part 1 → 2. The same
spikes are added, and they are now counted as close to each other

functions), and for δ close to 0, we obtain representations close to the JPSTH, except

that the limits are not parallel to the axis, but parallel to the diagonal. This change

of orientation smooths the binning effects. Indeed the quantity that is binned for the

quantities n̄m,ℓ is the delay itself between two points, whereas for the JPSTH, each

position of the points is first binned. Therefore, two points whose distance is less than

δ are always counted as such in one of the diagonal parallelograms for n̄m,ℓ, whereas

they may eventually not be counted in a diagonal square of the JPSTH, because one

point appears in one bin and the other one in another bin (see Figs. 3c and 3d). This
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problem of information loss when binning is involved has already been discussed for

the coincidence counts [15].

JPSTH and cross correlograms have been used for a long time in neuroscience,

without links with any model. The formula (26), for the least-square estimate, shows

the link between those descriptive statistics (more precisely the n̄m,ℓ’s) and the pa-

rameters of the Hawkes model. To recover the parameters, we need, in particular, to

inverse the matrix (
∑n

i=1 G(i)). This matrix quantifies for instance the following situ-

ation. Assume that M = 3 and that the interaction functions h
(1)
2 and h

(2)
3 are large on

[0, δ] and null elsewhere. We also assume that all the other interaction functions are

null. In this situation, n̄1,3 (or at least its first coordinate) will be large even if there

is no direct interaction from N3 on N1. The matrix (
∑n

i=1 G(i)) cumulates all these

features (and also the fixed effect due to the spontaneous parameter, which needs to

be subtracted) and inverting it enables us to find an estimate of the true interactions.

See also [58] for a more visual transcription.

Note, however, that even if many coefficients are null as in the above described

situation, due to the random noise, the estimates â(m) have non-zero coordinates al-

most surely. Therefore, it is difficult to interpret the resulting estimate in terms of

functional connectivity graph [58]. Moreover, if we wish to capture all the features,

it is preferable to take A large and δ small. Therefore, the number of parameters of

the model, depending on K = Aδ−1, increases. With a small number of trials n and

a small interval [T1, T2], the least-square estimate is doomed to be quite poor as the

MLE [19].

To remedy these problems, we now consider ℓ1 penalization to find a nonparamet-

ric estimate with adaptive properties and prescribed convergence rate.

3.3.3 Lasso Estimate

The Lasso method as developed by [57], is based on the following penalized least-

square criterion, reformulated here in the context of n i.i.d. trials: for any m =
1, . . . ,M ,

ã(m) ∈ arg min
a(m)

(

−2
(

a(m)
)′
(

n
∑

i=1

b(m,i)

)

+
(

a(m)
)′
(

n
∑

i=1

G(i)

)

a(m) + 2
(

d(m)
)′∣
∣a(m)

∣

∣

)

, (27)

where |a(m)| denotes the vector whose coefficients are the absolute values of the

coefficients of a(m) and where

(

d(m)
)′ = (dm,0, dm,1,1, . . . , dm,1,K , dm,2,1, . . . , dm,M,K)

is a vector of positive observable weights given by

dm,ℓ,k =
√

2γ ln
(

n(T2 − T1)
)

V̂m,ℓ,k + γ ln(n(T2 − T1))

3
B̂ℓ,k, (28)
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where

V̂m,ℓ,k =
n

∑

i=1

∫ T2

T1

δ−1
[

N
(ℓ)
i

([

t − kδ, t − (k − 1)δ
))]2

dN
(m)
i (t),

B̂ℓ,k = δ−1/2 sup
i,t∈[T1,T2]

N
(ℓ)
i

([

t − kδ, t − (k − 1)δ
))

,

and with

dm,0 =
√

2γ ln
(

n(T2 − T1)
)[

N (m)
]a,n([T2, T1]

)

+ γ ln(n(T2 − T1))

3
.

Since the criterion (27) is convex, the minimization problem can be performed quite

easily. The function f ∈H associated with ã is denoted f̂ B, in reference to the Bern-

stein inequality that governs the shape of the weights (see [57]).

Because the penalty term added to the least-square criterion is a weighted ℓ1-norm,

the resulting estimate is sparse and many coordinates in ã(m) will be null (see [60] for

the seminal paper on Lasso methods). This estimate and much more general forms

have been studied quite intensively in [57]. In Additional File 3, we prove an oracle

inequality for a slight modification of the present estimate, whose exact form can also

be found in [58].

Let us just present the result informally to highlight the main properties (the com-

plete version can be found in Additional File 3). An oracle inequality, in the same

spirit as Theorem 2, is proved. The main difference is that it holds on a event with

large probability and not in expectation. We have an upper bound of

∑

i

∑

m

∫ T2

T1

(

ψ (m)
(

f̂ B
)

i
(t) − λi(t)

)2
dt, (29)

that constitutes a compromise, as usual, between a bias term and a variance term.

Minimizing the bias gives the best linear approximation of λ of the form ψ(f ) and

this even if λ is not of the form ψ(f ). In this sense, it applies in particular to Hawkes

processes with self-inhibition (i.e., negative h
(m)
m ’s), which models refractory periods

[22] and for which f → λ = (ψ(f ))+ is not linear anymore. Finally, (29) leads to

a control of the left-hand side of (8) adapted to the context of this section. Under

further technical assumptions, we can then prove that Test 4 can be applied. We refer

the reader to [57] for more details that are omitted here to avoid too tedious technical

aspects.

The last point already developed in [57] is that Lasso estimates are most of the

time biased in practice. To overcome this problem, a two step procedure is proposed.

It consists in finding the non zero coefficients of f̂ B and performing a classical least-

square estimate on this support. We denote this two-step estimate f̂ BO.

http://dx.doi.org/10.1186/2190-8567-4-3
http://dx.doi.org/10.1186/2190-8567-4-3
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4 Practical Performance

4.1 Description of the Data

4.1.1 Real Data

The data used here are a small subset of already partially published data in previ-

ous experimental studies [15, 22, 61, 62]. These data were collected on a 5-year-old

male rhesus monkey who was trained to perform a delayed multidirectional pointing

task. The animal sat in a primate chair in front of a vertical panel on which seven

touch-sensitive light-emitting diodes were mounted, one in the center and six placed

equidistantly (60 degrees apart) on a circle around it. The monkey had to initiate a

trial by touching and then holding with the left hand the central target. After a delay

of 500 ms, the preparatory signal (PS) was presented by illuminating one of the six

peripheral targets in green. After a delay of either 600 or 1200 ms, selected at random

with various probability, it turned red, serving as the response signal and pointing tar-

get. During the first part of the delay, the probability for the response signal to occur at

500 + 600 ms = 1.1 s was 0.3. Once this moment passed without signal occurrence,

the conditional probability for the signal to occur at 500 + 600 + 600 ms = 1.7 s

changed to 1. The monkey was rewarded by a drop of juice after each correct trial,

i.e., a trial for which the monkey touches the correct target at the correct moment.

Signals recorded from up to seven independently moving microelectrodes (quartz

insulated platinum–tungsten electrodes, impedance: 2–5 MO at 1000 Hz) were am-

plified and band-pass filtered from 300 Hz to 10 kHz. Single unit activity was ob-

tained by performing an online discrimination of spikes on each electrode. Spikes

were firstly selected by taking into account their amplitude using an online window

discriminator with high-pass and low-pass filters. In cases where spikes were not

discriminable due to their amplitude only, the electrode was moved until the signals

were sufficiently distinct to be discriminable on this basis. Although off-line spike

sorting was available, it was not used in this study. Indeed, beyond the reservations

that one may have concerning the variable quality of the output of such software, the

use of clean original electrophysiological signals makes safer the more specific study

of precise neuronal synchronization. Neuronal data along with behavioral events (oc-

currences of signals and performance of the animal) were stored on a PC for off-line

analysis with a time resolution of 1 kHz.

Two sets of data are here considered. They both correspond to a probability of 0.3

that the response signal occur at 1.1 s for the monkey, but only correct trials where

the response signal occurs at 1.7 s are considered. On both data sets, two neurons

have been recorded simultaneously over [0, Tmax] where Tmax is approximately two

seconds. In the sequel, Data Set A (respectively B) corresponds to the pair of neurons

(N1A, N2A) (respectively to the pair of neurons (N1B, N2B)). In Data Set A (respec-

tively B), 177 trials (respectively 141 trials) are considered. Figure 4 plots the rasters

associated with both data sets. However, because 6 different directions of movement

were proposed to the monkey, we can also consider in both data sets, 6 subsets of

trials, each subset corresponding to a prescribed direction of movement (see Table 1

for a repartition of the number of trials per direction).
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Fig. 4 Raster plots of the data sets. In panel a the rasters associated to Data Set A i.e. (N1A, N2A). In
panel b, the ones associated to Data Set B, i.e. (N1B, N2B). Each line corresponds to a trial, each dot to a
spike

Table 1 Repartition of number
of trials on the real data sets Direction Total

1 2 3 4 5 6

Data Set A 28 31 30 35 28 25 177

Data Set B 23 24 26 18 30 20 141

Therefore, n, the total number of trials will be close to 200 if one aggregates over

all the directions or will belong to the interval [20,35] if one considers the trials

according to the directions. Those trials are assumed to be i.i.d. This assumption is

more reasonable if one considers trials for a fixed given direction.

4.1.2 Simulated Data

To assess the performance of our procedure, simulated data for which the underly-

ing model is known have also been simulated. Three different data sets have been

simulated, with the thinning method [63]:

• (S-HomPoi) Spikes are distributed according to an homogeneous Poisson pro-

cesses of intensity 20 Hz on [0,2] s.

• (S-InPoi) Spikes are distributed according to an inhomogeneous Poisson processes

with piecewise continuous intensity on [0,2] s given by

t → λ(t) =
3

∑

i=1

[

gi + hie
−4∗(t−ci)

2/(r2
i −(t−ci)

2)
]

1t∈[ci−ri ;ci+ri),

with g = [5,30,0], h = [12.5,15,12.5], c = [0.375,1.25,1.825], and r =
[0.375,0.5,0.125].

• (S-Haw) Two spike trains are simulated according to a bivariate Hawkes process

observed on [0,2]. Each process is respectively denoted N (1) and N (2). Their

intensities are given by (17) with spontaneous parameters ν(1) = ν(2) = 20 Hz
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Table 2 p-values of the chi-square test of the Poissonian distribution for the number of spikes per trial.
The following code is used: ◦ corresponds to a p-value of the test by upper values in [10−2,10−1), △

to a p-value of the test by upper values in [10−3,10−2), △△ to a p-value of the test by upper value in
[10−4,10−3), △△△ to a p-value of the test by upper value in (−∞,10−4). The signs are filled in black if
the p-values correspond to rejection of a Benjamini and Hochberg (BH) multiple test method [64] either
on the simulated data (left part of the table) or on Data Sets A and B (right part of the table)

n Directions Pooled

40 200 1 2 3 4 5 6

S-HomPoi N1A ◦ ◦ • � ���

S-InPoi N2A �� ◦ ◦ ���

S-Haw (N (1)) N1B ◦ ◦ ◦ ���

S-Haw (N (2)) ◦ N2B ◦ • ���

and interaction functions h
(1)
1 = h

(2)
2 = −20 × 1[0,0.005], h

(1)
2 = 60 × 1[0,0.01] and

h
(2)
1 = 0.

Each time a n i.i.d. sample is drawn.

The several treatments have been done in R except Willett and Nowak’s estimate

(WN) for which Matlab has been used.

4.2 Results

4.2.1 Checking the Homogeneous Poisson Assumption

One of the simplest tests is to check whether the number of spikes per trial obeys a

Poisson distribution with unknown parameter. Since the Poisson distribution is dis-

crete, one can use a chi-square test with one estimated parameter, whose results are

summarized in Table 2. Since the number of spikes per trial is also a Poisson vari-

able for inhomogeneous Poisson processes, it is reasonable to have large p-values

for (S-HomPoi) and (S-InPoi). Relatively smaller p-values appear for (S-Haw), but

they are not small enough for a clear rejection: This test seems therefore not very

powerful. Note that a very close test has been used in [8] on disjoint intervals of

observations. The estimate of the parameters were computed via a prescribed para-

metric model and, therefore, the procedure was testing both the Poisson assumption

and the parametric assumption. To our knowledge, chi-square tests cannot be adapted

to a nonparametric plug-in. On Data Sets A and B, the most undoubtedly rejection

appears for the pooled data, which can be explained by the fact that those data are not

i.i.d.

The second simplest test (as prescribed by Yana et al. [1] for instance) is the clas-

sical Kolmogorov–Smirnov test of uniformity performed on all the spikes, once all

the trials have been aggregated, which relies on the fact that conditionally to the total

number of observed spikes the points of a homogeneous Poisson process should obey

a uniform distribution. Table 3 shows the corresponding p-values. It is quite coherent

to have large p-values for (S-HomPoi) and very small p-values for (S-InPoi) because

of the lack of stationarity of the later. Since (S-Haw) is stationary, aggregation dilutes

the dependence and it explains that this test is not powerful and that the p-values are
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Table 3 p-values of the classical K.S. test of uniformity on the spikes, all trials being aggregated. Same
codes as in Table 2. Note that none of the p-values were close enough to 1 to force a rejection by the test
by lower values (i.e., rejection when the test statistic is smaller than kn,α , which corresponds to p-values
of the test by upper values larger than 1 − α)

n Directions Pooled

40 200 1 2 3 4 5 6

S-HomPoi N1A ��� ��� ��� • ��� �� ���

S-InPoi ��� ��� N2A ��� ��� ��� ��� ��� ��� ���

S-Haw (N (1)) N1B ��� ��� ��� ��� ��� ��� ���

S-Haw (N (2)) N2B ��� ��� ��� ��� ��� � ���

Table 4 p-values of Test 1 on the ISI, with a subsample size ⌊[nISI
tot ]2/3⌋, where nISI

tot is the total number
of ISI that have been observed in all the trials. Same codes as in Table 2 for the p-values. Note that none
of the p-values were close enough to 1 to force a rejection by the test by lower values (i.e., rejection when
the test statistic is smaller than kn,α , which corresponds to p-values of the test by upper values larger than
1 − α)

n Directions Pooled

40 200 1 2 3 4 5 6

S-HomPoi N1A ��� ��� � • ◦ ���

S-InPoi �� ��� N2A ��� ��� ��� � ��� ��� ���

S-Haw (N (1)) ◦ � N1B ��� ��� ��� • ��� ��� ���

S-Haw (N (2)) � ��� N2B • ��� � ◦ �� � ���

large in this case. This test clearly rejects for Data Sets A and B the homogeneous

Poisson hypothesis.

Another test of first-order statistics as explained in [1] is the exponential test on

the ISI (see Table 4). Here, we apply our version of the exponential test, i.e., Test 1,

using the subsampling scheme. As soon as there is enough trials, this test is power-

ful enough to detect the nonstationarity (S-InPoi), but also the dependence (S-Haw),

since there is no aggregation to dilute the dependence between consecutive points in

one trial with respect to the previous test. On Data Sets A and B, the result is almost

the same as the previous test.

4.2.2 Checking the Inhomogeneous Poisson Assumption

Let us first look at the reconstructions of the underlying intensities. We first program

two very basic kernel estimates (10): the sliding window (i.e., K = (1/2)1[−1,1])
with length 0.1 s (i.e., bandwidth 0.05), denoted λ̂

SWh
n , and the Gaussian kernel (used

for instance in [8]) with the same bandwidth and denoted λ̂
Kh
n . As [8], we also pro-

grammed a data-driven choice of bandwidth, called the thumb rule (here we followed

[39] to construct it): it is denoted λ̂
Kh∗
n . Finally, we programmed the three presented

adaptive method. The GL estimate, λ̂GL
n is programmed with the Gaussian kernel,
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Fig. 5 Reconstructions of the intensity λ on simulated Poisson data. Reconstructions for (S-HomPoi)
and (S-InPoi) over n trials, observed on [0,2]. Th corresponds to the adaptive histogram λ̂Th

n , GL to the

Goldenshluger and Lepski’s method λ̂GL
n with the Gaussian kernel, Kh to a fixed bandwidth h = 0.05 for

the Gaussian kernel, SWh to the sliding window with h = 0.05, WN to the Willett and Nowak’s method and
Kh* to the rule of the thumb. Panel a corresponds to (S-HomPoi) with n = 40, panel b to (S-InPoi) with
n = 40 and panel c to (S-InPoi) with n = 200

with the choice η = 0.5 and with the bandwidths family

H =
{

D−1 : D = 4,5,6,7,8,9,10,11,12,14,16,18,20,22,25,30,35,40,45,50
}

,

which has shown a robust behavior on various simulations, for the present considered

size of n (n ≈ 40). The thresholding estimate on the Haar basis, λ̂Th
n , has been per-

formed with j0 = 15 and γ = 1. We use the Matlab package FreeDegree for the

Willett and Nowak estimate, λ̂WN
n . Reconstructions for (S-HomPoi) and (S-InPoi) are

given in Fig. 5.

First of all, λ̂
SWh
n is clearly the worst choice, as expected for such a rough ker-

nel. Figure 5a shows the reconstruction of a constant intensity. Kernel estimates with

Gaussian kernels are oscillating; the thumb rule bandwidth h∗ is larger than ĥ, the

GL bandwidth. The fixed bandwidth h = 0.05 is the smallest one and is quite inad-

equate in this setting. The adaptive Haar thresholding rule λ̂Th
n is much better in this

case. The WN method is able to reconstruct perfectly the flat line. For (S-InPoi), the

intensity has large jumps and smooth bumps (Figs. 5b and 5c). For such an irregular

intensity and for a small number of trials (Fig. 5b), the thresholding estimate and the

WN method are both able to recover the jumps perfectly but the smooth bumps are

estimated by a piecewise constant function. The Gaussian kernels are better for the



Journal of Mathematical Neuroscience (2014) 4:3 Page 33 of 41

Fig. 6 Variability of the reconstructions of the intensity λ on simulated Poisson data. Superposition of 20
reconstructions by Willett and Nowak’s method for (S-InPoi) over n trials, observed on [0,2]. In panel a,
n = 40. In panel b, n = 200

estimation of the bumps, but of course, they cannot detect the jumps. In this respect,

the GL bandwidth is the best, whereas λ̂
Kh∗
n and λ̂

Kh
n are too smooth. For a large

number of trials (Fig. 5c), the thresholding estimate is a bit refined but clearly suffers

from a lack of smoothness. Unlike λ̂
Kh∗
n and λ̂

Kh
n , λ̂GL

n is reconstructing all the three

bumps. The WN method is reconstructing more accurately the jumps despite some

important boundary artefacts. It also gives smoother reconstructions for the bumps.

In conclusion, the GL method clearly gives a bandwidth choice that adapts to high

irregularity of the intensity with respect to other choices, whereas the thresholding

estimate, which leads to an adaptive histogram, is more spatially adaptive despite its

lack of smoothness. Up to boundary effects, the WN methodology seems to be the

most accurate, since it adapts to the regularity of the underlying intensity. Note, how-

ever, that on an interval with a few number of points, this method provides a piece-

wise constant reconstruction, even if the underlying intensity is smooth, because this

choice is more robust. This conclusion is also coherent with two previous and more

extensive studies (see [43, 44]).

To understand more clearly the variability of WN estimates, we have drawn 20

reconstructions in Fig. 6, which confirms that the variability is small and diminishes

when n grows. The estimates are more likely to be piecewise constant for small n.

For large n, there are some edge effects around the jumps, but the amplitude around

the bumps is very small thanks to a smooth estimate in those parts of the curve.

As an example of estimation on real data, Fig. 7 displays an interesting case,

namely N2A in direction 1, where one sees clearly that WN estimate is able to find

correctly the main jump in the intensity (which is clearly seen in the raster plots of

Fig. 4), but also to produce a smoother estimate at some places (here a straight de-

creasing line on the right) to reproduce the much slower attenuation of the firing rate

that can be seen in the raster plots.

Now let us apply the different proposed tests. First, Test 2 has been applied on

the simulated data sets with n = 40 and p = ⌊n2/3⌋ and nothing was declared signifi-
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Fig. 7 Example of estimation of the intensity λ on real data. Estimations for neuron N2A, in direction 1.
Same conventions as in Fig. 5

cant. However, the p-values corresponding to (S-Haw) are abnormally large. To take

this into account, we have performed also a variant of Test 2 where one rejects if the

same test statistic is now smaller than kn,α . This test consists therefore in rejecting

the Poisson hypothesis when both estimated distributions are too close. As Test 2,

this test is also asymptotically of level α, by application of Proposition 2. Actually,

all the tests presented here can be said to reject “by upper values” and have therefore

a version “by lower values.” On each set (simulated or not) of Test 2 p-values (by

upper and lower values), one can perform a Benjamini and Hochberg procedure with

FDR 5 % [64]. It declares both processes in (S-Haw) as non-Poissonian in the fam-

ily of simulated data (p-values in [10−3,10−2)). Due to the high variability of the

reconstructions on Data Sets A and B, which depend on the considered direction, it

was not possible to pool the data together and, therefore, the corresponding tests have

been performed direction by direction. However, Tests 2 by upper or lower values do

not detect anything on Data Sets A and B.

Tests 3 (by upper or lower values) do not detect anything on the simulated data

sets. However, on Data Sets A and B (see Table 5), Test 3 clearly rejects the Poisson

hypothesis for most of the directions of N1B and in this sense, Test 3 is more powerful

than Test 2.

Test 5 is, as expected, more powerful than Tests 2 and 3 and detects the non-

Poissonian structure in (S-Haw) (see Table 6). More importantly, on Data Sets A and

B, all the p-values of Test 5 (by upper values) are smaller than 10−14 making clear

that those data are not inhomogeneous Poisson processes.

4.2.3 Checking the Hawkes Assumption

Once again, Data Sets A and B have to be treated direction by direction because of

the high variability of the reconstruction. However, because of the very small number

of trials per direction, it was not possible to look at very small subintervals [T1, T2].
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Table 5 p-values of Test 3 on
Data Sets A and B, with a
subsample size ⌊n2/3⌋, where n

is the number of trials. Same
codes as Table 2 for the p-values
of the test by upper values. For
the p-values of the test by lower
values, same codes except that ◦
becomes � and △ becomes ▽

Directions

1 2 3 4 5 6

N1A Th �

GL

WN

N2A Th

GL

WN

N1B Th △ ◦
GL �� ��� ��� �� �

WN △

N2B Th △ ◦ �

GL ◦ ◦ ◦ ◦
WN ◦

Table 6 p-values of Test 5 on
the simulated data sets, with
n = 40 and a subsample size
⌊n2/3⌋. Same codes as in
Tables 2 and 5 for the p-values

Th GL WN

S-HomPoi

S-InPoi

S-Haw (N (1)) � � �

S-Haw (N (2)) ◦ ◦ ◦

Therefore, we decided to look at the largest interval that one can take i.e. [Kδ,2]. We

choose K = 8, δ = 0.005 and γ = 1. On simulated data (Fig. 8), f̂ B and f̂ BO recover

the support of the interaction functions and also find that h
(2)
1 = 0, which could not

have been possible with a classical least-square estimate (see also more comments on

the functional connectivity graph in [58]). Moreover, f̂ BO is less biased than f̂ B as

expected. We provide one estimation of the interaction functions for Data Set A in

direction 2 (Fig. 9), where it clearly appears a one way excitation of N2A on N1A.

This is coherent with a previous study on the same data set, which finds this pair

of neurons dependent through a complete different method [22]. Note also that at

short range the self-interaction functions are negative, fact which is consistent with

refractory periods.

Test 4 is used to check the Hawkes assumption, with f̂ given either by f̂ B or f̂ BO

(see Table 7). It is coherent to find that, on simulated data, the Hawkes assumption is

accepted for (S-Haw), but also for (S-HomPoi), which is a particular case of Hawkes

process with null interaction functions. On the contrary, Test 4 detects that (S-InPoi)

is not a Hawkes process. On Data Sets A and B, the Hawkes assumption is sometimes

accepted on the whole interval of observations. Let us focus for instance on N1A in

direction 2 (see also Fig. 9). This process could not be a Poisson process, since the

p-value of Test 5 is smaller than 10−14. However, the large p-value for Test 4 com-

bined with Fig. 9 means that this process can be explained via a pure self-interaction

process, which is negative at short range (refractory period) and positive at larger
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Fig. 8 Reconstruction of the interaction functions on simulated data. Reconstructions for (S-Haw) with

n = 40 trials, with T1 = 0.05 and T2 = 2. On the upper left, the interaction function h
(1)
1 , on the upper

right, h
(1)
2 , on the bottom left h

(2)
1 and on the bottom right h

(2)
2 . In black, the true interaction functions, in

green, reconstruction by method f̂ B, in red, reconstruction by method f̂ BO . On the top of each graphics,
the true spontaneous parameter ν(1) on the top and the true parameter ν(2) on the bottom are referred by
S*. The estimated spontaneous parameters by method f̂ B are referred as SB and the estimated spontaneous
parameters by method f̂ BO are referred as SBO. We used K = 8, δ = 0.005, and γ = 1

range. Note that 9 processes on the 24 are not explained in this way (in particular

N2A in direction 2), and are not Poisson either: Ihis can be due to a too large lack of

stationarity, combined with a large dependence between points.

5 Conclusion

When using the time-rescaling theorem to assess whether an observed spike train

obeys a certain probabilistic model (e.g., Poisson, Hawkes, etc.), a plug-in step is

currently performed [1–3, 8, 24]. If this plug-in step is done without care the result-

ing test may be much too conservative leading to poor detections (see Fig. 1). We

propose here to use the subsampling as an almost universal solution when dealing

with Kolmogorov–Smirnov tests of uniformity, such a universal solution being com-

pletely new. The main requirement is to have access to an estimate of the underlying

intensity, whose rate of convergence is known (see, for instance, (5)).

In classical previous works such as [8, 23], parametric estimates such as MLE over

a prescribed parametric model are used as plug-in estimates, which are converging

toward the true intensity when the underlying parametric model is true. Therefore,
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Fig. 9 Example of estimation of the interaction functions on real data. Estimations for Data Set A in
direction 2 with n = 40 trials, with T1 = 0.05 and T2 = 2. Same conventions as in Fig. 8

Table 7 p-values of Test 4 with a subsample size ⌊n2/3⌋. Same codes as in Tables 2 and 5 for the p-values

n = 40 Directions

1 2 3 4 5 6

S-HomPoi B N1A B ◦ ◦ ◦
BO ◦ BO ��� ◦

S-InPoi B � N2A B ◦ �� � ◦
BO BO ◦ ◦

S-Haw (N (1)) B N1B B △ � ◦
BO BO

S-Haw (N (2)) B N2B B ��� ��� ◦ �

BO ◦ BO ◦ � �

when this parametric plug-in is used inside omnibus tests (and in particular the ones

presented here), one has to be careful that we are not only testing the probabilis-

tic assumption, but also the fact that the intensity belongs to the parametric model.

To overcome this problem, we advertise for the use of nonparametric estimates and

more precisely to adaptive estimates, for which rates of convergence are known under

lighter assumptions on the intensity than a prescribed parametric assumption. More-
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over, those adaptive methods have very good practical performance making them also
very good in practice for estimation.

On some simulated data and on some real data sets, we have shown that our
method performs very well. However, there are still two main directions in which
our work need to be pursued in order to provide a more complete answer on real data
sets. First of all, the KS test of exponentiality on the ISI can also be performed instead
of the KS test of uniformity [1]. If the method with subsampling can be adapted to
this case, we have presently no guarantee that this test would have a controlled level.
Indeed we have no equivalent of Proposition 2 or Theorem 1 for the ISI repartition.
The second main drawback is that we are clearly able to reject (at least on the pre-
sented real data sets) both homogeneous and inhomogeneous Poisson assumptions.
We are also able to test whether the processes are Hawkes or not, which in particular
takes into account refractory periods and dependence between several spike trains.
However, the Hawkes model reflects stationary features, and cannot model nonsta-
tionary data. Therefore, we would need a more general model, which includes the
dependence as in the Hawkes model presented here, but also the non- stationarity
as in the inhomogeneous Poisson process. At the present moment, models reflecting
both are not compatible with a full agnostic approach where no assumption is made
on the underlying functions, the estimation problem being not completely identifiable
[16]. A first step will be therefore to provide a trade off between estimation capacity
and not too restrictive assumptions on the process itself, with respect to real spike
train data.
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