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GOODNESS-OF-FIT TESTS BASED
ON CHARACTERIZATIONS

OF CONTINUOUS DISTRIBUTIONS

Abstract. We construct goodness-of-fit tests for continuous distributions
using their characterizations in terms of moments of order statistics and
moments of record values. Our approach is based on characterizations pre-
sented in [2]–[4], [5], [9].

1. Introduction. Let (X1, . . . , Xn) be a random sample from a dis-
tribution F (x) = P [X ≤ x], x ∈ R, and let Xk:n denote the kth smallest
order statistic of the sample. In what follows we use the following char-
acterizations of continuous distributions via moments of functions of order
statistics.

Theorem 1 (cf. [9]). Let m be a positive integer and EX2
k:n < ∞ for

some pair (k, n). Then

(k − 1)!
n!

EX2
k:n − 2

(k + m− 1)!
(n + m)!

EXk+m:n+m +
(k + 2m− 1)!

(n + 2m)!
= 0

iff F (x) = x1/m on (0, 1).

Taking k = n = 1, we get

Corollary 1. F (x) = x1/m on (0, 1) iff
2

m + 1
EXm+1:m+1 − EX2 =

1
2m + 1

.

In particular , X ∼ U(0, 1) iff EX2:2 − EX2 = 1/3.
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In the following theorems, X denotes a random variable with distribution
F , and I(F ) denotes the minimal interval containing the support of F .

Theorem 2 (cf. [5]). Let n, k, l be given integers such that n ≥ k ≥ l ≥
1. Assume that G is a nondecreasing right-continuous function from R to
R. Then the relations

EGl(Xk+1:n+1) =
(k + 1) . . . (k + l)

(n + 2) . . . (n + l + 1)
,

EG2l(Xk+1−l:n+1−l) =
(k − l + 1) . . . (k + l)

(n− l + 2) . . . (n + l + 1)
hold iff F (x) = G(x) on I(F ) and F is continuous on R.

Taking n = k = l = 1, we get

Corollary 2. F (x) = G(x) on I(F ) and F is continuous on R iff
EG2(X) = 1/3 and EG(X2:2) = 2/3.

Theorem 3 (cf. [2], [3]). Under the assumptions of Theorem 2, F (x) =
G(x) on I(F ) and F is continuous on R iff

(k − l)!
(n− l + 1)!

EG2l(Xk+1−l:n+1−l)

− 2k!
(n + 1)!

EGl(Xk+1:n+1) +
(k + l)!

(n + l + 1)!
= 0.

Taking n = k = l = 1, we get

Corollary 3. F (x) = G(x) on I(F ) and F is continuous on R iff

(1.1) EG(X2:2)− EG2(X) = 1/3.

Before quoting characterization theorems in terms of moments of record
values we give the definition of k-record values (cf. [1]).

Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with cdf F and
pdf f . For a fixed k≥1 we define the sequence Uk(1), Uk(2), . . . of k-(upper)
record times of X1, X2, . . . as follows: Uk(1) = 1, and for n = 2, 3, . . . ,

Uk(n) = min{j > Uk(n− 1) : Xj:j+k−1 > XUk(n−1):Uk(n−1)+k−1}.
Write

Y (k)
n := XUk(n):Uk(n)+k−1, n ≥ 1.

The sequence {Y (k)
n , n ≥ 1} is called the sequence of k-(upper) record values

of the above sequence. For convenience we also take Y
(k)
0 = 0 and note that

Y
(k)
1 = X1:k = min(X1, . . . , Xk).

We shall apply the following characterization results:

Theorem 4 (cf. [3], [4]). Let {Xn, n ≥ 1} be a sequence of i.i.d. random
variables with cdf F . Assume that G is a nondecreasing right-continuous
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function from R to (−∞, 1], and let n, k, l be given integers such that k ≥ 1
and n ≥ l ≥ 1. Then F (x) = G(x) on I(F ) iff the following relations hold :

E[− log(1−G(Y (k)
n+1))]

l =
(n + l)!

n!k!
,

E[− log(1−G(Y (k)
n−l))]

2l =
(n + l)!

(n− l)!k2l
.

Theorem 4′ (cf. [3], [4]). Under the assumptions of Theorem 4, F (x) =
G(x) on I(F ) iff

k2l(n− l)!EH2
l (Y (k)

n−l+1)− 2n!klEHl(Y
(k)
n+1) + (n + l)! = 0,

where Hl(x) = (− log(1−G(x)))l, x ∈ R.
In particular X has df F iff

E[− log(1− F (Y (k)
1 ))]2 − 2

k
E[− log(1− F (Y (k)

2 ))] +
2
k2

= 0.

Corollary 4. (a) F (x) = xα on (0, 1), α > 0, iff

E(− log(1− (Y (k)
1 )α))2 − 2

k
E(− log(1− (Y (k)

2 )α)) +
2
k2

= 0.

In particular , X ∼ U(0, 1) iff

E(− log(1− Y
(k)
1 ))2 − 2

k
E(− log(1− Y

(k)
2 )) +

2
k2

= 0.

(b) F (x) = 1− e−(1/λ)xα

, x > 0, α > 0, λ > 0, iff

E(Y (k)
1 )2α − 2λ

k
E(Y (k)

2 )α +
2λ2

k2
= 0.

In particular , X ∼ Exp(1/λ), i.e. F (x) = 1− e−x/λ, iff

E(Y (k)
1 )2 − 2λ

k
EY

(k)
2 +

2λ2

k2
= 0.

(c) F (x) = 1− (x0/x)a, x > x0, a > 0, iff

E

[
− log

(
x0

Y
(k)
1

)]2

− 2
ka

E

[
− log

(
x0

Y
(k)
2

)]
+

2
k2a2

= 0.

2. Goodness-of-fit tests based on characterizations via mo-
ments of order statistics. First note that (1.1) can be written in the
form

E(F (X2:2))−
1
2
(E(F 2(X1)) + E(F 2(X2))) =

1
3

as X1 and X2 are distributed as X.
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Let (X1, . . . , X2n) be a sample. Write

Yj = F 2(X2j−1) + F 2(X2j),
Zj = F (max(X2j−1, X2j)), j = 1, . . . , n.

Letting Y := Y1 = F 2(X1)+F 2(X2), Z := Z1 = F (max(X1, X2)), we quote
the following result (cf. [6]).

Lemma 1. Under the above assumptions, the density of (Y, Z) is given
by

f(y, z) =
{

1/
√

y − z2, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1, z2 ≤ y ≤ 2z2,
0, otherwise,

and

EY = 2/3, Var(Y ) = 8/45,

EZ = 2/3, Var(Z) = 1/18, Cov(Y,Z) = 4/45.

Put

Dj = Zj −
1
2
Yj , j = 1, . . . , n.

We see that

EDj = EZj −
1
2
EYj =

1
3
,

VarDj = VarZj +
1
4

VarYj − Cov(Zj , Yj) =
1
90

, j = 1, . . . , n.

Now define
Vn = 3

√
10n(Dn − 1/3),

where Dn = (1/n)
∑n

j=1 Dj .
Setting X∗

j = max(X2j−1, X2j), j = 1, . . . , n, we note that Vn can be
written as

Vn = 3
√

10n

(
1
n

n∑
j=1

F (X∗
j )− 1

2n

2n∑
j=1

F 2(Xj)−
1
3

)
.

Taking into account that

X∗
j = (X2j−1 + X2j)/2 + |X2j −X2j−1|/2

and writing

X0
j = (X2j−1 + X2j)/2, X+

j = |X2j −X2j−1|/2

we obtain

Vn = 3
√

10n((F (X0
n + X+

n )− F 2(X2n))− 1/3),
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where

F (X0
n + X+

n ) =
1
n

n∑
j=1

F (X0
j + X+

j ),

F 2(X2n) =
1
2n

2n∑
j=1

F 2(Xj).

Moreover, we conclude from the CLT that

(2.1) Vn
D→ V ∼ N(0, 1),

and hence that
V 2

n
D→ χ2(1),

which provides a simple asymptotic test of the hypothesis X ∼ F when the
parameters of F are specified.

Special cases:

(a) If F (x) = x1/m, x ∈ (0, 1), m is a positive integer, then

Vn = 3
√

10n

(
1
n

n∑
j=1

((X2j + X2j−1 + |X2j −X2j−1|)/2)1/m

− 1
2n

2n∑
j=1

X
2/m
j − 1

3

)
.

In particular, for X ∼ U(0, 1),

Vn = 3
√

10n(X2n + X+
n −X2

2n − 1/3).

(b) If F (x) = x/β, x ∈ (0, β), β > 0, then

Vn =
3
√

10n

β

(
X2n + X+

n −
1
β

X2
2n −

β

3

)
,

(c) If F (x) = x−α
β−α , x ∈ (α, β), then

Vn =
3
√

10n

β − α

(
β + α

β − α
X2n + X+

n −
1

β − α
X2

2n −
αβ

β − α
− β − α

3

)
.

(d) If F (x) = 1− e−(1/λ)xα

, x ≥ 0, α > 0, λ > 0, then

Vn = 3
√

10n

(
1
n

n∑
j=1

(1− exp(−(X2j + X2j−1 + |X2j −X2j−1|)α/(2αλ)))

− 1
2n

2n∑
j=1

(1− exp(−Xα
j /λ))2 − 1

3

)
.
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In particular, for X ∼ Exp(1/λ),

Vn = 3
√

10n

(
1
n

n∑
j=1

(1− exp(−(X2j + X2j−1 + |X2j −X2j−1|)/(2λ)))

− 1
2n

2n∑
j=1

(1− exp(−Xj/λ))2 − 1
3

)
,

(e) If F (x) = 1− (x0/x)a, x ≥ x0, a > 0, then

Vn = 3
√

10n

(
1
n

n∑
j=1

(
1−

(
2x0

X2j−1 + X2j + |X2j −X2j−1|

)a)

− 1
2n

2n∑
j=1

(
1−

(
x0

Xj

)a)2

− 1
3

)
.

From (2.1) we see that in each special case Vn converges weakly to the
standard normal distribution, and so provides an asymptotic test of the
hypothesis H that X has df F in the case when the parameter values are
specified by H. When H does not specify the parameter values we con-
sider the test statistic obtained from Vn by replacing the parameters by
estimators. In this case we have the following results.

Proposition 1. When F (x) = x/β, x ∈ (0, β), β > 0, the resulting test
statistic is

Vn(β̂n) :=
3
√

10n

β̂n

(
X2n + X+

n −
1

β̂n

X2
2n −

β̂n

3

)
D→ V ∼ N(0, 1),

where β̂n = max(X1, . . . , X2n).

P r o o f. We write

Vn(β̂n) =
β

β̂n

(
3
√

10n

β

(
X2n + X+

n −
1
β

X2
2n −

β

3

))
− 3

√
10n

β̂n

(
1

β̂n

− 1
β

)
X2

2n −
√

10n

β̂n

(β̂n − β).

Note that

−
√

10n

β̂n

(
1

β̂n

− 1
β

)
X2

2n =
√

10n(β̂n − β)

β̂2
nβ

X2
2n

P→ 0,

as
X2

2n
P→ EX2 and 2n(β − β̂n) D→W ∼ Exp(1/β).

The assertion then follows from Slutsky’s theorem.
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Proposition 2. When F (x) = x−α
β−α , x ∈ (α, β), the resulting test statis-

tic is

Vn(α̂n, β̂n) =
3
√

10n

β̂n − α̂n

(
β̂n + α̂n

β̂n − α̂n

X2n + X+
n −

1

β̂n − α̂n

X2
2n

− α̂nβ̂n

β̂n − α̂n

− β̂n − α̂n

3

)
D→ V ∼ N(0, 1),

where β̂n = max(X1, . . . , X2n) and α̂n = min(X1, . . . , X2n).

P r o o f. The proof is similar to the proof of Proposition 1, since

2n(α̂n − α) D→W1 ∼ Exp(1/α), 2n(β − β̂n) D→W2 ∼ Exp(1/β),

X2n
P→ EX, X2

2n
P→ EX2.

Remark. From the above proof we see that one can use estimators α̂n

and β̂n such that
√

n(α̂n − α) P→ 0 and
√

n(β̂n − β) P→ 0.

Note. It appears that a similar result holds when X ∼ Exp(1/λ), but
the proof is too long for inclusion here.

3. Goodness-of-fit tests based on characterizations via mo-
ments of record values. From Corollary 4(b) we know that X ∼ Exp(1/λ)
iff

E(Y (k)
1 )2 − 2λ

k
EY

(k)
2 +

2λ2

k2
= 0.

Consider the case λ = 1. Then we see that X ∼ Exp(1) iff

(3.1) E(min(X1, . . . , Xk))2 − 2
k

EY
(k)
2 +

2
k2

= 0.

The idea is to use the sample to obtain an estimate, θn say, of the
expected value of (Y (k)

1 )2 − (2/k)Y (k)
2 + 2/k2 and reject H if θ2

n is large.
Since record values are defined in terms of an infinite sequence, it is not
clear how one can get estimates of the associated expected values from a
finite sample. But they can be estimated indirectly here because when H is
true then for each k,

EY
(k)
2 = EX1:k +

1
k

(cf. [7], [8]),

and so (3.1) has the form

(3.2) E

(
X2

1:k −
2
k

X1:k

)
= 0.
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Now suppose that X ∼ Exp(1/λ). Since X ∼ Exp(1/λ) ⇔ X/λ ∼
Exp(1), it follows from (3.2) that

(3.2′) E

(
X2

1:k −
2λ

k
X1:k

)
= 0.

Consider first the case k = 1. Then

E(X2
1 − 2λX1) = 0.

The sample (X1, . . . , Xn) provides an estimator of EW1, where W1 = X2
1 −

2λX1, of the form
Wn = X2

n − 2λXn,

where X2
n = (1/n)

∑n
j=1 X2

j . It follows from the CLT that
√

n Wn
D→W ∼ N(0,Var(W1)),

and hence that

T (1)
n (λ) := n(Wn )2/Var(W1)

D→ χ2(1),

which provides a simple asymptotic test of the hypothesis X ∼ Exp(1/λ)
when λ is specified. Here

Var(W1) = EX4
1 − 4λEX3

1 + 4λ2EX2
1 = 8λ4

since X1 ∼ Exp(1/λ) gives EXm
1 = m!λm, m = 1, 2, . . . , and so

(3.3) T (1)
n (λ) =

n

8

(
1
λ2

X2
n −

2
λ

Xn

)2

.

Thus we have proved

Proposition 3. If Xn ∼ Exp(1/λ), n ≥ 1, are independent then

T (1)
n (λ) =

n

8

(
1
λ2

X2
n −

2
λ

Xn

)2
D→ χ2(1).

Now consider the case k = 2. Write U1 := X1:2 = min(X1, X2). Here
from (3.2′) we have to estimate EW ′

1, where W ′
1 = U2

1 − λU1. The sample
X1, . . . , X2n provides the sample W ′

1, . . . ,W
′
n, where W ′

j = U2
j − λUj and

Uj = min(X2j−1, X2j), j = 1, . . . , n. Then EW ′
1 is estimated by

W ′
n = U2

n − λUn,

and
T (2)

n (λ) := n(W ′
n)2/Var(W ′

1)
D→ χ2(1).

Taking into account that U1 ∼ Exp(2/λ) we see that Var(W ′
1) = λ4/2. Thus

another simple asymptotic test is provided by
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Proposition 4. If Xn ∼ Exp(1/λ), n ≥ 1, are independent then

(3.4) T (2)
n (λ) =

2n

λ4
(U2

n − λUn)2 D→ χ2(1).

The same argument leads to a similar test for the case k = 3, . . . , n− 1
based on a sample of size kn.

We now consider the case k = n. Write Un = min(X1, . . . , Xn). Then
by (3.2′) we have to estimate E(U2

n − (2λ/n)Un). The obvious estimate is
U2

n − (2λ/n)Un itself, and then when λ is specified the test statistic is

T (n)
n (λ) :=

(
U2

n −
2λ

n
Un

)2

.

As above, under H, Un ∼ Exp(n/λ), whence

(3.5) U :=
n

λ
Un ∼ Exp(1), n ≥ 1.

It follows that

T (n)
n (λ) =

λ4

n4
(U2 − 2U)2

and so an equivalent test statistic is T := (U2 − 2U)2, which provides an
exact test for H : X ∼ Exp(1/λ).

Proposition 5. The significance probability of the test using T is

Pt := P [T > t] =

{
e−1−

√
1+
√

t if t > 1,
e−1−

√
1+
√

t + e−1+
√

1−
√

t − e−1−
√

1−
√

t if 0 < t < 1.
P r o o f. The first statement is obtained from the positive root of the

equation u2 − 2u −
√

t = 0, and the second from the positive roots of the
equation (u2 − 2u)2 = t.

In particular we consider the 5% test of H, i.e. Pt = 0.05. But since

P [T > 1] = e−(1+
√

2) > 0.05,

the 5% test rejects when U > x0, where e−x0 = 0.05, i.e. when x0 = 3.00.
Thus the exact 5% test rejects when (n/λ)Un > 3.

We now consider corresponding tests when λ is not specified. The general
idea is to consider the statistics obtained by replacing λ in (3.3) and (3.4)
by an estimate λ̂n obtained from the sample.

In this case we have the following results based on T
(1)
n (λ) and T

(2)
n (λ).

Proposition 6. When F (x) = 1 − e−x/λ, x > 0, λ > 0, the resulting
test statistic is

2T̂ (1)
n := 2T (1)

n (λ̂n) =
n

4
(X2

n/(Xn)2 − 2)2 D→ χ2(1),

where λ̂n = Xn.
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Proposition 7. When F (x) = 1 − e−x/λ, x > 0, λ > 0, the resulting
statistic is

4
3
T̂ (2)

n :=
4
3
T (2)

n (λ̂n) =
8n

3λ̂4
n

(U2
n − λ̂nUn )2

=
8n

3

(
U2

n

(X2n)2
− Un

X2n

)2
D→ χ2(1),

where λ̂n = X2n.

Proof of Proposition 6. Consider V =
(
X2

X

)
. Then Vn =

(X2
n

Xn

)
and by

the CLT,
√

n(Vn − µ) D→N(0, Σ),

where

µ = EV =
(

2λ2

λ

)
and Σ = Var(V) =

(
20λ4 4λ3

4λ3 λ2

)
.

We now use a theorem on asymptotic distributions of functions of statis-
tics (cf. [10], p. 260), with g(x) = x1/x2

2. Then

g(µ) = 2, γ :=
(

∂g

∂x

)
x=µ

=
(

1/λ2

−4/λ

)
, γ′Σγ = 4,

and so
√

n(g(Vn)− g(µ)) =
√

n(X2
n/(Xn)2 − 2) D→W ∼ N(0, 4),

and
2T̂ (1)

n =
n

4
(X2

n/(Xn )2 − 2)2 D→ χ2(1).

In the proof of Proposition 7 we shall apply the following

Lemma 2. Let X1 ∼ Exp(1/λ), X2 ∼ Exp(1/λ) be independent and put
U := U1 = min(X1, X2), Y = (X1 + X2)/2. Then the pdf of U and Y is

h(u, y) =
4
λ2

e−2y/λ, 0 < u < y, y > 0,

and
Cov(U, Y ) = λ2/4, Cov(U2, Y ) = λ3/2.

Proof of Proposition 7. We now consider

V =

 U2
1

U1

(X1 + X2)/2

 , Vn =

 U2
n

Un

X2n

 .

By the CLT,
√

n(Vn − µ) D→N(0, Σ),
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where µ = EV and Σ = VarV. Now using Lemma 2 we get

µ =

 λ2/2
λ/2
λ

 and Σ =

 5λ4/4 λ3/2 λ3/2
λ3/2 λ2/4 λ2/4
λ3/2 λ2/4 λ2/2

 .

Using the above theorem of Wilks [10] with g(x) = x1/x2
3 − x2/x3 we have

g(µ) = 0, γ :=
(

∂g

∂x

)
x=µ

=

 1/λ2

−1/λ
−1/2λ

 , γ′Σγ = 3/8.

Thus √
n(U2

n/(X2n )2 − Un/X2n ) D→N(0, 3/8),

and so
8n

3
(U2

n/(X2n )2 − Un/X2n )2 =
4
3
T̂ (2)

n
D→ χ2(1).

Remark. Instead of the MLE λ̂n one could consider the correspond-
ing estimate λ∗n := 2Un obtained from U1, . . . , Un. But since Var(λ∗n) >

Var(λ̂n), one would expect intuitively that the resulting test would be in
some respect poorer. This leads to

T ∗(2)n :=
n

8
(U2

n/(Un )2 − 2)2.

Then it follows as in the discussion of Proposition 6 that

2T ∗(2)n
D→ χ2(1).

Referring to (3.5), in the case when k = n we use the statistic Ûn =
nUn/λ̂n where λ̂n = Xn. Consider the test that rejects when Ûn > 3. Now
Ûn = (λ/λ̂n)U where U = nUn/λ ∼ Exp(1), and Ûn

D→ U since λ̂n
P→ λ.

Thus
lim

n→∞
P (Ûn > 3) = P (U > 3) = 0.05

and so this is an asymptotic 5% test.
Moreover, we have

Proposition 8. Let T̂n := (Û2
n − 2Ûn)2 and let P̂t := P [T̂n > t] stand

for the associated significance probability. Then limn→∞ P̂t = Pt, where Pt

is given by Proposition 5.

P r o o f. Since Ûn = (λ/λ̂n)U , we have

T̂n = [(λ/λ̂n)2U2 − 2(λ/λ̂n)U ]2 D→ T,

which ends the proof.
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4. Simulations. Here we consider tests of Exp(1/λ).
First note that some goodness-of-fit tests based on a characterization

were also proposed in [6] where the χ2(2) approximation was used. Here we
observe that a long and complicated argument shows that

Dn(λ̂n) = 45n

[
110
19

(
1
2n

2n∑
j=1

(1− exp(−Xj/λ̂n))2 − 1
3

)2

+ 2
(

1
n

n∑
j=1

exp(−(X2j + X2j−1 + |X2j −X2j−1|)/(2λ̂n))− 1
3

)2

− 4
(

1
2n

2n∑
j=1

(1− exp(−Xj/λ̂n))2 − 1
3

)

×
(

1
n

n∑
j=1

exp(−(X2j + X2j−1 + |X2j −X2j−1|)/(2λ̂n))− 1
3

)]
→ χ2(2), where λ̂n = X2n.

Simulation strongly confirms that indeed Dn(λ̂n) D→ χ2(2), and so Dn(λ̂n)
provides a simple test for X ∼ Exp(1/λ). We see that Dn(λ̂n) differs from
Dn of [6] by having leading coefficient 110

19 instead of 5
2 .

The test statistics investigated here are: Dn(λ̂n),

V 2
n (λ̂n) = 90n

[
1
n

n∑
j=1

(1− exp(−(X2j + X2j−1 + |X2j −X2j−1|)/(2λ̂n)))

− 1
2n

2n∑
j=1

(1− exp(Xj/λ̂n))2 − 1
3

]2

,

T̂
(1)
n , T̂

(2)
n , T

∗(2)
n and T̂n from Propositions 8 and 5.

Firstly, 2000 samples of size 20 were obtained from an exponential distri-
bution and the 6 statistics evaluated for each sample, and tested for signifi-
cance at the 10%, 5% and 1% levels approximately. For Dn(λ̂n) the χ2(2)
approximation was used, so that for the approximate 10% test the observed
value is significant if it exceeds 4.605 etc. Then for V 2

n (λ̂n), T̂
(1)
n , T̂

(2)
n and

T
∗(2)
n the χ2(1) approximation was used, and for T̂n the approximation ob-

tained from Propositions 5 and 8. In each case the percentage of significant
samples is shown in the table below. Then this was repeated for samples of
size 40, 100, 200.
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n Dn(λ̂n) V 2
n (λ̂n) T̂

(1)
n T̂

(2)
n T

∗(2)
n T̂n

20 8.1 11.7 3.2 3.6 1.4 10.0
40 8.6 9.6 5.8 4.5 3.8 10.8

10%
100 9.6 8.7 7.8 6.5 5.5 9.6
200 9.3 9.4 8.9 7.9 7.9 10.5
20 3.6 5.7 2.0 2.5 0.8 4.6
40 4.3 4.8 3.5 3.1 2.5 5.5

5%
100 5.0 4.1 3.8 3.8 2.9 5.3
200 4.2 4.3 3.9 4.5 4.1 5.5
20 0.8 0.9 0.7 0.8 0.4 1.0
40 0.7 1.1 1.4 1.8 1.0 0.7

1%
100 1.2 0.9 1.4 1.7 1.3 1.3
200 0.7 0.9 0.8 2.1 1.8 1.2

It appears that T̂n performs the best, followed by Dn(λ̂n) and V 2
n (λ̂n),

and the other tests are poorer when n is small.

Remark. The above statistics Dn(λ̂n) and V 2
n (λ̂n) are derived from the

statistics

Dn = 45n

[
110
19

(
Y n −

1
3

)2

+ 2
(

Zn −
2
3

)2

− 4
(

Y n −
1
3

)(
Zn −

2
3

)]
,

V 2
n = 90n

(
Zn −

1
2
Y n −

1
3

)2

,

respectively.
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