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Abstract

Doubly truncated data are commonly encountered in areas like medicine, astron-
omy, economy, among others. A semiparametric estimator of a doubly truncated ran-
dom variable has been proposed by Moreira and de Uña-Álvarez (2010b). Their esti-
mator is based on a parametric specification of the distribution function of the trunca-
tion times. This semiparametric estimator outperforms the nonparametric maximum
likelihood estimator when the parametric information is correct, but might behave
badly when the assumed parametric model is far off. In this paper we introduce sev-
eral goodness-of-fit tests for the parametric model. The proposed tests are investigated
through simulations. For illustration purposes, the tests are also applied to data on
the induction time to AIDS for blood transfusion patients.
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1 Introduction

Truncated data play an important role in the statistical analysis of survival times as well

as in other fields like astronomy or economy. Generally speaking, random truncation occurs

when one is only able to observe the variable of interest when its value falls within a certain

(random) set. This happens for example when analyzing time from HIV infection to AIDS,

when the recruited times correspond to individuals who developed AIDS prior to some spe-

cific date (right truncation). Another typical truncation setup can be found in medicine,

where the survival time of prevalent cases must be larger than the time from diagnosis to the

cross-section date to enter the sample, resulting in random left truncation. In all these situ-

ations, estimation is based on sampling information coming from a conditional distribution,

which is different from the distribution of the population of interest, and suitable corrections

of ordinary estimators are needed. This problem goes back to Turnbull (1976).

Among the various existing problems with random truncation, the literature has mainly

focused on the left truncation model or, more generally, on one-sided truncation setups. See

for example Woodroofe (1985) and Stute (1993). Left truncation and right censoring was

considered by many authors, including Tsai et al. (1987), Wang (1991) and Zhou and Yip

(1999), among many others. However, in some scenarios two-sided (rather than one-sided)

truncation occurs. As an example, consider a situation in which one only observes the sur-

vival times of individuals with terminating event falling between two specific dates, t0 and t1.

In this case, the observed survival times X are those satisfying U ≤ X ≤ V , where U (resp.

V ) is the time elapsed between the initial event and t0 (resp. t1). This double truncation

phenomenon was recognized in applications with AIDS data (Bilker and Wang, 1996), as-

tronomic data (Efron and Petrosian, 1999), and cancer data (Moreira and de Uña-Álvarez,

2010a).

The literature on two-sided or double random truncation is much more scarce, probably

due to the technical complications in the computation of estimators and in the derivation of

statistical properties. Efron and Petrosian (1999) introduced the nonparametric maximum

likelihood estimator (NPMLE) of the distribution function (df) under double truncation,

while Shen (2010a) formally established the uniform strong consistency and the weak con-

vergence of the NPMLE. Bootstrap methods to approximate the finite sample distribution

of the NPMLE with doubly truncated data were explored in Moreira and de Uña-Álvarez

(2010a). An R package to compute the NPMLE of a doubly truncated df was presented in

Moreira et al. (2010).

In some scenarios, it may be convenient to introduce some parametric information regard-

ing the truncation variables. For example, in epidemiological applications, the distribution of
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the truncation times is related to the so-called incidence rate of a disease, so information on

the behavior of this rate (such as stationarity) may lead to specific models for the truncation

times. See Wang (1989) and Asgharian et al. (2002) for further discussions. This semipara-

metric approach, in which the distribution of the truncation times is assumed to belong to a

given parametric family, was investigated in Moreira and de Uña-Álvarez (2010b), see also

Shen (2010b). Interestingly, these authors showed that the semiparametric estimator may

outperform the NPMLE in the sense of the mean squared error (MSE). However, it was

also pointed out that missspecification of the parametric family may introduce a systematic

estimation bias, and hence goodness-of-fit methods for the parametric model are needed in

practice. This is the problem we address in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce the NPMLE,

the semiparametric estimator, and six different test statistics for the goodness-of-fit problem

considered above. Also, a bootstrap algorithm is proposed to approximate the null distri-

bution of the tests in practice. In Section 3 the finite sample performance of the proposed

tests is investigated through simulations. A real data illustration is given in Section 4, while

Section 5 reports the main conclusions of our investigation.

2 The test statistics

Let X∗ be the random variable of ultimate interest, with df F . We assume that X∗ is

subject to double truncation by the random pair (U∗, V ∗) with joint df K, where U∗ and

V ∗ (U∗ ≤ V ∗) are the left and right truncation variables respectively. This means that

the triplet (U∗, X∗, V ∗) is observed if and only if U∗ ≤ X∗ ≤ V ∗, while no information

is available when X∗ < U∗ or X∗ > V ∗. Assume that X∗ is independent of (U∗, V ∗). Let

(Ui, Xi, Vi), i = 1, . . . , n, denote the available data, drawn independently from the conditional

distribution of (U∗, X∗, V ∗) given U∗ ≤ X∗ ≤ V ∗. Let α = P (U∗ ≤ X∗ ≤ V ∗) be the

probability of no-truncation. For any df W denote the left and right endpoints of its support

by aW = inf {t :W (t) > 0} and bW = inf {t : W (t) = 1}, respectively. Let K1(u) = K(u,∞)

and K2(v) = K(∞, v) be the marginal df’s of U∗ and V ∗, respectively. (Woodroofe, 1985)

showed that F and K are both identifiable when aK1
≤ aF ≤ aK2

and bK1
≤ bF ≤ bK2

, which

we will assume from now on.

We know that the NPMLE of (F,K) is a discrete distribution supported by the set of

observed data (Turnbull, 1976). Let ϕ = (ϕ1, . . . , ϕn) be the vector of mass probabilities

corresponding to the weighted empirical df
∑n

i=1 ϕiI[Xi≤x]. Similarly, let ψ = (ψ1, . . . , ψn)

be the vector of weights corresponding to the estimator
∑n

i=1 ψiI[Ui≤u,Vi≤v] of the joint dis-

tribution of (U, V ). Under the assumption of independence between X∗ and (U∗, V ∗), the
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full likelihood, L(ϕ, ψ), can be decomposed into a product of the conditional likelihood of

the Xi’s given the (Ui, Vi)’s, say L1(ϕ), and the marginal likelihood of the (Ui, Vi)’s, say

L2(ϕ, ψ):

L(ϕ, ψ) =

n∏

j=1

ϕj

Φj

×

n∏

j=1

Φjψj∑n

i=1Φiψi

= L1(ϕ)× L2(ϕ, ψ), (2.1)

where Φi =
∑n

m=1 ϕmJim, and where Jim = I[Ui≤Xm≤Vi]. The conditional NPMLE of F

(Efron and Petrosian, 1999) is defined as

Fn(x) =
n∑

i=1

ϕ̂iI[Xi≤x],

where ϕ̂ = (ϕ̂1, . . . , ϕ̂n) is the maximizer of L1(ϕ) in equation (2.1).

Shen (2010a) proved that the conditional NPMLE Fn maximizes indeed the full likelihood,

which can also be written as the product

L(ϕ, ψ) =
n∏

j=1

ψj

Ψj

×
n∏

j=1

Ψjϕj∑n

i=1Ψiϕi

= L1(ψ)× L2(ψ, ϕ),

where Ψi =
∑n

m=1 ψmI[Um≤Xi≤Vm] =
∑n

m=1 ψmJmi, for i = 1 . . . , n. Here, L1(ψ) denotes the

conditional likelihood of the (Ui, Vi)’s given the Xi’s, and L2(ψ, ϕ) refers to the marginal

likelihood of the Xi’s. Let ψ̂ = (ψ̂1, ..., ψ̂n) be the maximizer of L1(ψ). Then, Kn(u, v) =∑n

i=1 ψ̂iI[Ui≤u,Vi≤v] is the NPMLE of K (Shen, 2010a).

The NPMLE of F also admits the representation

Fn(x) = αn

∫ x

−∞

dF ∗
n(t)

Gn(t)
≡

∫ x

−∞

dF ∗
n(t)

Gn(t)

/∫ ∞

−∞

dF ∗
n(t)

Gn(t)
,

where F ∗
n is the ordinary empirical df of the Xi’s, i.e. F

∗
n(t) = n−1

∑n

i=1 I[Xi≤t],

Gn(t) =

∫

{u≤t≤v}

Kn(du, dv)

is a nonparametric estimator of the conditional probability of sampling a lifetime X∗ = t, i.e.

G(t) = P (U∗ ≤ t ≤ V ∗), and αn = [
∫∞

−∞
Gn(t)dF

∗
n(t)]

−1 is an estimator of α. Shen (2010a)

established the uniform strong consistency and the weak convergence of Fn.

Instead of estimating K nonparametrically, we can also assume that K belongs to a

parametric family of df’s {Kθ}θ∈Θ, where θ is a vector of parameters and Θ is a compact,

finite dimensional parameter space. In that case, G(t) is parametrized as

Gθ(t) =

∫

{u≤t≤v}

Kθ(du, dv).
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The parameter θ can be estimated by the maximizer θ̂ of the conditional likelihood of the

(Ui, Vi)’s given the Xi’s, i.e. θ̂ = argmaxθ∈ΘL
∗
1(θ), where

L∗
1(θ) ≡ L∗

1(ψ) =

n∏

i=1

kθ(Ui, Vi)

Gθ(Xi)
,

and where kθ(u, v) =
∂2

∂u∂v
P (U∗ ≤ u, V ∗ ≤ v) = Kθ(du, dv) is the joint density of (U∗, V ∗)

(assumed to exist).

Once θ is estimated, a semiparametric estimator of F is obtained:

F
θ̂
(x) = α

θ̂

∫ x

−∞

dF ∗
n(t)

G
θ̂
(t)

,

where α
θ̂
= [

∫∞

−∞
G

θ̂
(t)dF ∗

n(t)]
−1. Moreira and de Uña-Álvarez (2010b) established the asymp-

totic normality of both θ̂ and F
θ̂
. They also showed via simulations that F

θ̂
may perform

much more efficiently than the NPMLE. As a drawback, the semiparametric estimator re-

quires preliminary specification of a parametric family, which may eventually introduce a

bias component when it is far away from reality (Moreira and de Uña-Álvarez, 2010b). It is

therefore necessary to have a procedure at hand that allows to test the appropriateness of

the parametric family, i.e. we need to develop a goodness-of-fit test for the null hypothesis

H0 : K = Kθ0 for some θ0 ∈ Θ.

To measure the distance between the null hypothesis and the data, several approaches are

possible. Firstly, since the null refers to the joint distribution of (U∗, V ∗), an initial approach

is to introduce a test statistic which measures the distance between Kn and K
θ̂
. However,

as long as the focus is the estimation of F , one may argue that, rather than the distribution

Kθ, the relevant issue is the closeness of Fθ̂ to Fn. This motivates the use of testing methods

which evaluate the difference Fn(x) − F
θ̂
(x) along all possible x-values. Thirdly, it should

be noted that Fn (respectively F
θ̂
) is a weighted average of the indicators I[Xi≤x], where the

weights are proportional to Gn(Xi)
−1 (respectively G

θ̂
(Xi)

−1). Therefore, it also makes sense

to look at the difference between Gn and G
θ̂
. According to this, the tests proposed below

are based on the differences Gn(x) − G
θ̂
(x), Fn(x) − F

θ̂
(x) and Kn(u, v) − K

θ̂
(u, v). Both

Kolmogorov-Smirnov type and Cramér-von Mises type test statistics are considered. More

precisely, define:
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Dn(G) = sup
x∈R

|Gn(x)−G
θ̂
(x)| (2.2)

Dn(F ) = sup
x∈R

|Fn(x)− F
θ̂
(x)| (2.3)

Dn(K) = sup
u,v∈R

|Kn(u, v)−K
θ̂
(u, v)| (2.4)

W 2
n(G) =

∫
(Gn(x)−G

θ̂
(x))2Fn(dx) (2.5)

W 2
n(F ) =

∫
(Fn(x)− F

θ̂
(x))2Fn(dx) (2.6)

W 2
n(K) =

∫ ∫
(Kn(u, v)−K

θ̂
(u, v))2dKn(u, v). (2.7)

These test statistics may be grouped into three different classes: G-based tests (equations

(2.2) and (2.5)), F -based tests (equations (2.3) and (2.6)), andK-based tests (equations (2.4)

and (2.7)). Note that the squared differences in (2.5) and (2.6) are weighted by the NPMLE

of Efron and Petrosian (1999), which means that more weight is given to Xi’s that have a

small probability of being observed.

In practice, the null distribution of the six proposed test statistics must be estimated.

For this we introduce a semiparametric bootstrap resampling plan, which makes use of the

information contained under the parametric null model. Fix B and let T be any of the six

test statistics considered above for H0 : K ∈ {Kθ}θ∈Θ. The bootstrap resampling plan is as

follows. All data are generated independently of each other (between and within resamples):

1. For b = 1, . . . , B:

For i = 1, . . . , n:

Step 1 Draw (U b
i , V

b
i ) from Kθ̂.

Step 2 Draw independently Xb
i from Fn.

Step 3 If U b
i ≤ Xb

i ≤ V b
i is violated, go back to Step 1. Otherwise, keep

(U b
i , X

b
i , V

b
i ).

Let T ∗b be the test statistic obtained from the bootstrap resample (U b
i , X

b
i , V

b
i ),

i = 1, . . . , n.

2. Compute the critical value Cα, which is the 100(1− α)% percentile of T ∗1, . . . , T ∗B.

3. If the realization of the test statistic is greater than or equal to Cα, then reject H0.

The simulation results in the following section are based on this resampling plan.
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3 Simulation study

In this section we study the finite sample behavior of the test statistics defined in (2.2)–(2.7)

through simulations. We consider two different situations of double truncation, Case 1 and

Case 2. In Case 1, U∗, V ∗ and X∗ are mutually independent. In Case 2, we simulate U∗

independently of X∗ and then we define V ∗ = U∗ + τ for some fixed constant τ > 0. Case

2 follows the spirit of the AIDS Blood Transfusion Data, which we will consider in Section

4. The recruited patients in that data set are those with terminating events falling between

two specific dates. Under the null hypothesis the data are generated as follows. For Case 1

we draw X∗ from a uniform U(0, 1), while U∗ and V ∗ are drawn independently from uniform

distributions with respective supports (0, c) and (d, 1), where c and d are chosen as follows:

c = d = 0.5 (Model 1.1), and c = 0.25, d = 0.75 (Model 1.2). Truncation occurs whenever

the condition U∗ ≤ X∗ ≤ V ∗ is violated. For Case 2, we take τ = 0.25 and U∗ ∼ U(0, 0.75),

X∗ ∼ U(0, 1) (Model 2.1) and U∗ ∼ U(0, 1), X∗ ∼ 0.75Beta(3/4, 1)+0.25 (Model 2.2). The

function G of each simulated model is shown in Figure 1. The depicted functions indicate

that small and large values of the variable of interest (X∗) are observed with a relatively

small probability in the first three models, while there is no observational bias in Model

2.2 (because G remains constant on the support of X∗). In these simulated models, the

percentage of truncation is 50% (Model 1.1), 25% (Model 1.2) and 75% (Model 2.1 and

Model 2.2).

The parametric family of distributions {Kθ}θ∈Θ is defined as follows. We always consider

a Beta(θ1, 1) distribution for U∗ in Case 2, and the independent product of this distribution

and a Beta(1, θ2) for V ∗ in Case 1. Since under H0 the support of the data (generated as

indicated above) may be different from the interval [0, 1], we adapted the support of these

Beta parametric models to the corresponding supporting intervals. In this way, Models 1.1,

1.2, 2.1, and 2.2 belong to the null hypothesis.

Under the alternative hypothesis, we generate U∗ from a Beta(1, a) with a 6= 1 (note

that a = 1 corresponds to the null hypothesis). The values a = 1/10, 1/5, 1/2, 2 and 4 are

considered. The alternative shapes of the G function are shown in Figure 1. From this Figure

we see that, for Case 1, the deviation from the null is only important when x is small, while

G is changed all along its support for Case 2.

The simulations are carried out for samples of size n = 50, 100 and 250. The results are

based on 1000 Monte Carlo trials and for each of them 300 bootstrap replications are taken.

In Tables 1 to 4 (corresponding respectively to Models 1.1, 1.2, 2.1 and 2.2) the rejection

percentages of the six test statistics introduced in Section 2 are given for α = 0.05. As

expected, the power increases with the sample size and with the distance between the null
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and the alternative (given by |a− 1|).

When investigating the rejection proportions under the null (a = 1), we see that, generally

speaking, all the test statistics respect the nominal level well. As an exception, we note

that the statistics based on the comparison between the two estimators of F are a bit

anti-conservative, particularly for small sample sizes. For example, for Models 1.1 and 2.1,

the level in the simulations is always above 10% in the case n = 50. We also investigate

the rejection proportions under the different considered alternatives. For this we consider

separately Case 1 and Case 2, which show somewhat different results.

KS (Dn) CM (W 2
n)

a n G F K G F K

50 0.983 0.791 0.982 0.728 0.765 0.977

1/10 100 0.995 0.914 0.994 0.931 0.906 0.993

250 0.997 0.988 0.996 0.987 0.987 0.996

50 0.977 0.642 0.965 0.754 0.604 0.905

1/5 100 0.992 0.844 0.992 0.966 0.828 0.992

250 0.997 0.959 0.997 0.993 0.961 0.997

50 0.367 0.278 0.301 0.329 0.251 0.240

1/2 100 0.731 0.378 0.668 0.649 0.333 0.591

250 0.979 0.681 0.973 0.968 0.634 0.964

50 0.047 0.108 0.046 0.056 0.102 0.037

1 100 0.056 0.096 0.055 0.066 0.089 0.047

250 0.052 0.062 0.056 0.057 0.058 0.046

50 0.336 0.143 0.318 0.230 0.150 0.195

2 100 0.700 0.226 0.659 0.672 0.226 0.546

250 0.983 0.596 0.978 0.993 0.604 0.966

50 0.922 0.272 0.897 0.837 0.311 0.637

4 100 0.988 0.594 0.988 0.992 0.607 0.979

250 0.994 0.829 0.994 0.997 0.852 0.994

Table 1: Power under H1 : K 6∈ {Kθ}θ∈Θ along 1000 trials for Model 1.1 with α = 0.05.

For Models 1.1 and 1.2 (Case 1, Tables 1 and 2), the test statistics based on the compar-

ison between the nonparametric and the parametric estimator of G are the most powerful.

Indeed, Dn(G) gives the largest rejection proportions in almost all cases (and, when it is not

the largest, it is improved byW 2
n(G) by only a small amount). On the contrary, the statistics

measuring the departure between the nonparametric and the semiparametric estimator of F
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KS (Dn) CM (W 2
n)

a n G F K G F K

50 0.994 0.558 0.994 0.521 0.557 0.994

1/10 100 0.997 0.755 0.997 0.787 0.738 0.996

250 0.998 0.954 0.998 0.980 0.944 0.998

50 0.991 0.521 0.991 0.699 0.502 0.987

1/5 100 0.997 0.697 0.997 0.941 0.652 0.997

250 0.999 0.921 0.999 0.993 0.896 0.999

50 0.635 0.253 0.534 0.445 0.221 0.416

1/2 100 0.951 0.366 0.904 0.827 0.318 0.847

250 1.000 0.642 1.000 0.999 0.567 1.000

50 0.047 0.010 0.054 0.045 0.106 0.047

1 100 0.046 0.081 0.044 0.048 0.067 0.043

250 0.056 0.073 0.060 0.062 0.063 0.049

50 0.658 0.134 0.631 0.483 0.127 0.515

2 100 0.944 0.252 0.929 0.917 0.235 0.847

250 0.998 0.569 0.998 0.997 0.558 0.997

50 0.988 0.310 0.986 0.954 0.309 0.938

4 100 0.995 0.566 0.994 0.995 0.570 0.994

250 0.999 0.802 0.999 1.000 0.816 0.999

Table 2: Power under H1 : K 6∈ {Kθ}θ∈Θ along 1000 trials for Model 1.2 with α = 0.05.

perform poorly, giving the smallest powers. This indicates that, in Case 1, the alternatives

are more easily detected when looking at the function G. The test statistics based on K

(Dn(K) and W 2
n(K)) are competitive for the largest considered sample size (n = 250), but

for n = 50 and n = 100 they are often less able to reject the null than the G-based tests. This

is interesting, since the G-based tests are only looking at a portion of the joint distribution

of (U∗, V ∗).

Case 2 (Tables 3 and 4) is more difficult to summarize. The more visible change with

respect to Models 1.1 and 1.2 is that the F -based test statistics are the more powerful ones

in special situations. This is true, for example, for Model 2.1 and the closest alternatives

a = 1/2 and a = 2 (at least with moderate sample sizes), and for Model 2.2 for a = 2 and

a = 4. In these situations, the F -based tests may have about five times the power of the

G-based or the K-based tests. On the contrary, for Model 2.1, the test statistic leading

to the largest power when considering more distant alternatives is often W 2
n(K), while for
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KS (Dn) CM (W 2
n)

a n G F K G F K

50 0.477 0.393 0.427 0.497 0.581 0.525

1/10 100 0.906 0.703 0.888 0.692 0.800 0.905

250 0.979 0.910 0.977 0.818 0.926 0.978

50 0.399 0.254 0.320 0.309 0.406 0.416

1/5 100 0.843 0.574 0.775 0.674 0.698 0.774

250 0.980 0.883 0.979 0.922 0.928 0.979

50 0.075 0.133 0.054 0.052 0.222 0.078

1/2 100 0.318 0.226 0.202 0.249 0.271 0.238

250 0.794 0.664 0.575 0.679 0.682 0.589

50 0.013 0.114 0.013 0.018 0.119 0.016

1 100 0.019 0.068 0.027 0.045 0.072 0.028

250 0.039 0.074 0.054 0.057 0.066 0.057

50 0.036 0.245 0.041 0.064 0.117 0.031

2 100 0.147 0.291 0.197 0.263 0.230 0.223

250 0.566 0.592 0.683 0.666 0.547 0.723

50 0.112 0.287 0.092 0.246 0.121 0.139

4 100 0.773 0.424 0.744 0.831 0.271 0.777

250 0.973 0.827 0.970 0.965 0.707 0.968

Table 3: Power under H1 : K 6∈ {Kθ}θ∈Θ along 1000 trials for Model 2.1 with α = 0.05.

Model 2.2 the best tests for a < 1 are Dn(G) and the K-based statistics. The fact that the

F -based tests lead to the largest power in some cases of Model 2.1 could be due to their

anti-conservatism. However, F -based tests preserve the level well in Model 2.2. In this latter

case, differences between the nonparametric and the semiparametric estimators of F lead

more frequently to reject the null model than when considering departures for G or K.

When comparing Kolmogorov-Smirnov to Cramér-von Mises type statistics, it is found

that the former reject the null more frequently and, therefore, they are generally preferable.

However, Case 2 models report different results, particularly when focusing on F and K-

based tests. Consequently, it is worthwhile to keep both measures when testing for the

parametric model.
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KS (Dn) CM (W 2
n)

a n G F K G F K

50 0.220 0.078 0.230 0.067 0.116 0.125

1/10 100 0.350 0.134 0.345 0.222 0.132 0.413

250 0.870 0.224 0.853 0.751 0.206 0.830

50 0.175 0.054 0.179 0.059 0.083 0.099

1/5 100 0.267 0.099 0.252 0.170 0.108 0.300

250 0.778 0.192 0.751 0.617 0.189 0.770

50 0.109 0.033 0.106 0.034 0.049 0.050

1/2 100 0.116 0.079 0.126 0.091 0.085 0.125

250 0.299 0.119 0.303 0.217 0.111 0.347

50 0.083 0.037 0.089 0.023 0.049 0.042

1 100 0.046 0.055 0.047 0.045 0.055 0.034

250 0.041 0.066 0.058 0.062 0.068 0.061

50 0.050 0.139 0.048 0.061 0.124 0.018

2 100 0.052 0.251 0.056 0.096 0.249 0.056

250 0.072 0.397 0.180 0.303 0.406 0.264

50 0.040 0.285 0.025 0.064 0.125 0.017

4 100 0.125 0.535 0.070 0.212 0.388 0.115

250 0.727 0.862 0.576 0.834 0.771 0.667

Table 4: Power under H1 : K 6∈ {Kθ}θ∈Θ along 1000 trials for Model 2.2 with α = 0.05.

4 Real data application

For illustration purposes, in this section we consider epidemiological data on transfusion-

related Acquired Immune Deficiency Syndrome (AIDS). The AIDS Blood Transfusion Data

are collected by the Centers for Disease Control (CDC), which is from a registry data base, a

common source of medical data (see Kalbfleisch and Lawless, 1989; Bilker and Wang, 1996).

The variable of interest (X∗) is the induction or incubation time, which is defined as the time

elapsed from Human Immunodeficiency Virus (HIV) infection to the clinical manifestation of

full-blown AIDS. The CDC AIDS Blood Transfusion Data are subject to double truncation.

Indeed, the data were retrospectively ascertained for all transfusion-associated AIDS cases

in which the diagnosis of AIDS occurred prior to the end of the study, thus leading to right

truncation. Moreover, since HIV was unknown prior to 1982, any cases of transfusion-related

AIDS before this time would not have been properly classified and thus would have been
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missed. Thus, in addition to right truncation, the data are also truncated from the left. See

Bilker and Wang (1996), Section 5.2, for further discussion.

The data include 494 cases reported to the CDC prior to January 1, 1987, and diagnosed

prior to July 1, 1986. Of the 494 cases, 295 had consistent data, and the infection could be

attributed to a single transfusion or short series of transfusions. Our analyses are restricted

to this subset, which is entirely reported in Kalbfleisch and Lawless (1989), Table 1. The

variable U∗ is defined as the length of time between January 1, 1982, and the moment of

HIV infection, while V ∗ is the time from HIV infection to the end of study (July 1, 1986).

Note that the difference between V ∗ and its respective U∗ is always 4.5 years.

We choose to work with a Beta(θ1, θ2) model for U∗ under the null hypothesis. The

parameters θ1 and θ2 are estimated by maximizing the conditional likelihood of the truncation

times (see Section 2 for more details). Note that in this case the pair (U∗, V ∗) does not have

a density, and the likelihood L∗
1(θ) must be properly re-defined by replacing the density kθ by

the density of U∗ in that expression, see Remark 2.1 in Moreira and de Uña-Álvarez (2010b)

for further details. The estimated values of the parameters are θ̂1 = 1.289 and θ̂2 = 3.119.

Informal testing of the null hypothesis can be done by plotting the fitted parametric

model versus the NPMLE of the biasing function G. Both curves are shown in Figure 2,

right. The label for the horizontal axis refers to the values of Ui and Vi in the sample, which

are the jump points of Gn. The semiparametric and the nonparametric estimators of the

cumulative distribution function of X∗ are also given in Figure 2, left. The transformation

t→ (t+4.5)/8.5 has been applied to the time axis in both figures, so that X∗ belongs to the

interval [0.5, 1.5], while U∗ is supported on [0, 1]. Note that, for the test statistic W 2
n(G), the

differences between the curves in Figure 2, right, are only relevant on the interval [0.5, 1.5],

while the full support [0, 1.5] must be considered for the computation of Dn(G).

We used the tests proposed in Section 2 to verify whether the parametric model assumed

for the truncation variables is appropriate. The p-values of the tests (based on B = 1000

bootstrap resamples) are presented in Table 5. The table shows that the Beta model is

suitable for U∗ or that, at least, there is no statistical evidence to reject it. In this case, the

test statistic W 2
n(G) is based on the distance between Gn and Gθ̂ on the interval [0.5, 1.5]

(see the curves displayed in Figure 2, right panel), while the test statistic Dn(G) looks at

the maximal separation along the interval [0, 1.5]. None of the methods rejected the Beta

model for U∗.
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Test KS (Dn) CM (W 2
n)

G F K G F K

p-value 0.844 0.214 0.438 0.335 0.179 0.466

Table 5: P -values for the AIDS Blood Transfusion Data computed from B = 1000 bootstrap

resamples.

5 Conclusions

When analyzing doubly truncated data, more efficient estimation may be obtained under a

semiparametric truncation model. However, in order to avoid systematic estimation bias,

the semiparametric model must be tested. In this paper we proposed several Kolmogorov-

Smirnov and Cramér-von Mises type test statistics for this problem. The proposed test

statistics measure the distance between the nonparametric and the semiparametric estimator

of several important curves, namely the cumulative df of the variable of interest, the joint df

of the pair of truncation times, and the bias function G.

The more natural test is the one reporting the distance between Kn and K
θ̂
. When the

parametric null model is false, this test should be able to reject H0 when the sample size

increases. However, our simulations showed that more power can be obtained in practice

when focusing on special portions of the function K. More explicitly, the distance between

the nonparametric and the parametric bias function (Gn and G
θ̂
) will often lead to a more

optimal test. It was also demonstrated that a comparison between the nonparametric and

the semiparametric estimator of the cumulative df of the lifetime of interest is quite powerful

in certain scenarios. It should be noted, however, that F -based tests are sometimes anti-

conservative and hence, in general, the application of G or K-based tests is recommended.

A real data illustration has been provided.
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Figure 1: Shapes of the G function for the simulated models under the null hypothesis

(solid line, a = 1) and under the considered alternative hypotheses (dashed lines, a =

1/10, 1/5, 1/2, 2 and 4): Model 1.1 (top-left), Model 1.2 (top-right), Model 2.1 (bottom-left),

and Model 2.2 (bottom-right).
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Figure 2: AIDS Blood Transfusion Data: The NPMLE and the semiparametric estimator of

F (left), and the nonparametric and the parametric estimator of G (right). The solid curve

is the (semi)parametric estimator, the dashed curve is the nonparametric estimator.
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