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SUMMARY

General goodness of fit tests for the Jolly-Seber model are

proposed. These tests are based on conditional arguments using minimal

sufficient statistics. The tests are shown to be of simple hypergeometric

form so that a series of independent contingency table chi-square tests

can be performed. The relationship of these tests to other proposed

tests is discussed. This is followed by a simulation study of the power

of the tests to detect departures from the assumptions of the Jolly-Seber

model.
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1. Introduction

Jolly (1965) and Seber (1965) develop a stochastic k-sample

capture-recapture model for an open population of animals. This model

requires every animal to have both the same probability of capture in

any sample and the same probability of survival for any period. For a

detailed discussion of this model see Seber (1973; p. 196).

The Jolly-Seber model makes very strong assumptions so that there

is a need for an omnibus goodness of fit test to it. Seber (1973; p. 223)

suggests a traditional chi-square goodness of fit test based on comparing

observed and expected values for numbers of animals captured with each

possible capture history. He emphasizes that often many cells will need

to be pooled because of their small expected values. Seber (1973; p. 224)

also suggests an indirect test based on work of Leslie et al. (1953).

This test compares newly marked individuals with estimates of this number

obtained from animals captured at least twice. Jolly (1982) has also

proposed an omnibus test. To avoid the large scale pooling necessary

for Seber's chi-square test, he suggests comparing observed and expected

values of the triangular array of animals caught in sample i which were

last previously caught in sample h using a chi-square goodness of fit

test.

Specific tests for individual assumptions have also been proposed.

Carothers (1971) has suggested a specific test for heterogeneity of

capture probabilities which extends earlier work of Leslie (1958).

Robson (1969) and Pollock (1975) have suggested tests for survival and
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capture probabilities being influenced by marking for a temporary

period. (See also Brownie and Robson (1983». Balser (unpublished

1981 Ph.D. thesis, Cornell University) has provided a_ test for temporary

emigration in the Jolly-Seber model. His test is based on conditioning

on sufficient statistics and turns out to be asymptotically equivalent

to the omnibus test suggested by Jolly (1982).

Here we develop some conditional tests of the Jolly-Seber model.

We then examine their power by conducting a detailed simulation study.

Finally there is a general discussion section.

2. Some Definitions

Jolly (1965) and Seber (1965) in their formulation of the

Jolly-Seber model assume binomial variation for the sample sizes and for

the number surviving during any given period. Here, following Robson (1969)

and Pollock (1975), we find it convenient to treat the sample sizes as

fixed observable numbers. Also the number of marked animals at any period

is treated as a fixed unknown parameter. However, our tests also apply

to the original Jolly-Seber model. Allowance is also made for "losses

on capture" by assuming that the number of animals released, after a

sample has been taken, is a fixed observable number.

The following notation which is an obvious extension of that of

Seber (1973) is used in this paper:

M. , the number of marked animals in the population at the time
~

the ith sample is taken (i = 1, ... , k' M
I - 0).,

N. , the total number of animals in the population at the time the
~

ith sample is taken (i = 1, ... , k) .

B., the total number of new animals entering the population between
~

the ith and (i + l)th sample. (i = 1, •.• , k-l).
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~i ' the survival probability for all animals between the ith

and (i + l)th sample (i = 1, ..., k-l) .

~i_ll
, the number of animals captured in the ith sample which

have the previous capture history h. 1 ( i = 1, ... , k) .
~-

~i_ll
, the number of the ~ 1 animals which are released after

i-I
the ith sample. Note that those animals which are unmarked

are marked before being released. (i = 1, ... , k).

m.(u.) , the number of marked (unmarked) animals captured in the
~ ~

ith sample (i = 1, ... , k).

~i ,the number of marked animals captured in the ith sample

which were last previously captured in sample h

(h = 1, ••. , i-I; i = 2, ... , k).

n. (m. + u.), the total number of animals captured in the ith
~ ~ 1

sample (i = 1, ... , k).

R. , the number of the n. which are released after the ith
~ ~

sample (i = 1, ••. , k-l).

Zi the number of animals captured before i, not captured at i,

and captured again later (i = 2, .•. , k-l).

r. , the number of the R. animals released at i which are
~ ~

recaptured again (i = 1, ..• , k-l).

T. , the number of marked animals in the population just before
~

the ith sample which are recaptured (i = 1, ... , k-l).
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3. Goodness of Fit Tests

3.1 The Likelihood Function

The joint probability distribution of the
~i_ll

which is the

likelihood function can be expressed as

L = Pr [(~ 1)' {~ l}' ... , {~lJ
k-l k-2

= Pr

The first component involves the minimal sufficient statistic which is of

dimension (2k-3) and can be expressed in the following way.

Pr [ m2' ... , "k' r 2' ... , r k- 1]

k

11
= i=2

The second component which is of

probability distribution vectors of numbers in each capture history

conditional on the minimal sufficient statistic. Clearly this component

will not involve the unknown parameters (from the definition of

sufficiency). We now present two different forms for this conditional

distribution which form the basis of our goodness of fit tests.
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3.2 One Conditional Goodness of Fit Test

1T
~i_ll

~i_lll' ~i_llOl'···'~i_llO •.. Ol •= h. 1
~-

(:~)
k (~~ ) k (mi~ ) rk

-
l (

Zk_l

IT IT rn
3i ~-2 k-l ~-2i=3 . rnZi i=4 k

(
rz+zz)

( r 3::3) ( rk_Z+Zk_ Z
r 2

r
k

_
2

The first form is given by

[{~ I}'"'' {~ } 1m2 , ... , ~, r 2, ••. , rk_ll
k-l 1 j

Pr

Note thatU
h. 1
~-

denotes the product of all the capture histories. Also

note that the notation in the second component needs elaboration. To

illustrate we note

2i
rn
li

rn
li

+ rnZi

3imli = mli + rn2i + rn3i

It is interesting to note that the second term in the distribution

which has dimension (k(~-l) - Zk + ~ has been given by Balser in his

Ph.D. thesis as a test for temporary emigration. It is also asymptotically

equivalent to a test suggested by Jolly (1982). We shall refer to this

as the Jolly-Balser test component.
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3.3 Another Conditional Goodness of Fit Test

An alternative form is given by

•

Xh. 111 + Xh. 101 + ... + Xh. 10 ... 01
~- ~- ~-

~l_ll

Xh. III + Xh. 1101 + ... + Xh. 110 ... 01
~- ~- ~-

11
h. 1
~-

k-lTrTT
i=3 h. 1

~-

k-1

11
i=2

IT
h. 1 denotes product over all capture histories
~-

1T
h. 1 denotes product over all capture histories except {O, 0, ••• , O}
~-

3.4 Illustration of Tests

In this section we present the form of the probability distributions

for the special case when k = 5. We also show how the distributions give

rise to contingency table chi-square tests. We believe that this section

is very important to obtaining a clear understanding of the tests' structure.
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3.4.1 The First Form

I

RIOlI

\ XIOIlI
( ROOII ) (RIOOI ) (RnOI 1(ROIOI

XOOIIl XI001I XIIOll XOIOll

These hypergeometric distributions give rise to the following

independent contingency tables.



First Component (Degrees of Freedom 16)

i = 2 (Degrees of Freedom 3)

9

i = 3 (Degrees of Freedom 6)

XlIII XllIOl RIll - XlIII - XlllOl

XlOll XlOlOl RlOl - XlOll - XlOlOl

XOlll XOllOl ROll - XOlll - XOllOl

XOOll XOOlOl ROOI - XOOll - XOOlOl

i - 4 (Degrees of Freedom 7)

XlIlll Rlill - XlIlll

XlOlll RlOll - XlOlll

XOllll ROllI - XOllll

XOOlll ROOlI - XOOlll

XlOOll RlOOl - XlOOll

XlIOll RllOl - XlIOll

XOlOll ROlOl - XOlOlI

XOOOll ROOOI - XOOOll



Second Component - Jolly-Balser (Degrees of Freedom 3)

Degrees of Freedom 2

Degrees of Freedom 1

10
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3.4.2 The Second Form

=

'R4
r 4

I

(
XIII + XllOl + XllOOl

XIII(
XlOl + XlOOl + XlOOOl

XlOl

(
Rllll )

Xlllll

This formulation of the conditional probability distribution gives

rise to the following independent contingency tables.



First Component (Degrees of Freedom 11)

i = 2 (Degrees of Freedom 1)

i =:3 (Degrees of Freedom 3)

12

Xll11 + Xl110l RIll - XlIII - XlllOl

Xl011 + XlOlOl RlOl - XlOll - XlOlOl

XOOll + XOOlOl ROOI - XOOll - XOOlOl

XOOll + XOOlOl ROOI - XOOll - XOOlOl

i =4 (Degrees of Freedom 7)

Xl1111 R11ll - Xl11ll

XlO11l Rl011 - XlOl11

XOllll ROllI - XOllll

XOOlll ROOll - XOOlll

XlOOll RlOOl - XlOOll

XllOll RllOl - XllOll

XOlOll ROlOl - XOlOll

XOOOll ROOOI - XOOOll
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Second Component (Degrees of Freedom 8)

i = 3 (Degrees of Freedom 2)

XlOl XlOOl + XlOOOl

XIII XllOl + XllOOl

XOll XOlOl + XOlOOl

i = 4 (Degrees of Freedom 6)

XlIII Xll101

XlOll XlOlOl

XOlll XOllOl

XOOll XOOlOl

XlOOl ~OOOI

XllOl XllOOl

X
OIOI XOIOOI

3.5 Practical Application of the Tests (Pooling Suggestions)

The full contingency tables for each of the 2 tests contain too

many cells for practical application with most actual data sets, and

pooling of cells is thus generally necessary. Cell pooling decisions

can always be based on visual inspection of contingency tables, but we

were interested in standardized pooling rules that could be implemented

in computer programs.
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The first tes.t has 2 components, the first of which. includes k-2

tables. The rows of these tables correspond to the different previous

capture histories of animals captured in period i (i = 2, ••• , k-l).

We suggest reducing the number of rows to 2, with one row corresponding

to animals captured for the first time at period i and the other row

corresponding to all animals captured both at i and some previous period

« i). The columns of these k-2 tables correspond to the periods in

which the animals captured in i are next captured (i + 1, i + 2, ..• k),

with a final column for animals never captured again after i. We recommend

that the tables for i 2, 3, ••. k-2 be collapsed to yield 3 columns,

one for animals next captured at i + 1, one for animals next captured in

some period> i + 1 (this column is thus obtained by pooling) and one

for animals never recaptured after i. For the last table, corresponding

to period k - 1, only 2 columns are possible; animals captured at k and animals

not recaptured. The second (Jolly-Balser) component of the first test involves

the m.. statistics, and we chose not to apply an initial pooling rule to
~J

the k-3 resulting contingency tables.

The second test also has 2 components, the first of which includes

k-2 contingency tables. The rows of these tables correspond to the different

previous capture histories of animals captured in period i (i = 2, ••• k-l).

We recommend pooling all animals captured both at i and some previous

period « i) to form one row, and using animals captured for the first

time at i to form the other row. The 2 columns of these tables correspond

to animals that are and are not captured again at some period > i, and these,

of course, require no pooling. Note that with these pooling rules, this

first component of the second test reduces to the test for short ~erm mortality
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due to marking given by Robson (1969) and Brownie and Robson (1983). The second

component of the second test includes k-3 contingency tables. The rows of the

tables correspond to the different previous capture histories of animals

captured at i (i = 2, ••• k-2) and at some later period (> i). We

recommend pooling all of these animals that were captured at some period

< i to form one row, and using all animals captured for the first time

at i to form a second row. The 2 columns of these tables correspond to

animals next recaptured at i + 1 and to animals next recaptured at some

later period (> i + 1).

In addition to this initial pooling, which we implement for all

data sets, it is sometimes necessary to pool additional cells when

expected values are small. Our approach has been to pool cells with

the smallest expectations until all expected values are> 2.

4. Simulation Study of Power of the Tests

4.1 Description

We used computer simulation to investigate the size and power

of the 2 suggested tests against alternatives involving heterogeneity

of capture and survival probabilities. We recognized 2 subpopulations

of animals in the simulation program. The first subpopulation (denoted

by primed symbols) was started with N
l

' = TI Nl indiViduals and the second

subpopulation (denoted by double-primed symbols) was started with

N
l

" = (1 - TI)N
l

individuals, where TI denotes the proportion of the total

initial population in the first subgroup. Capture and survival of each

individual for each sampling period were treated as independent Bernoulli
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trials using pseudorandom numbers. Although our simulation program

was quite general, we made the following restrictive assumptions to

facilitate interpretation of results:

<l>i
,

= <1>' for all i,

<l>i ' , = <I> ' , for all i,

p.' = p' for all i, and
~

P." = p" for all i.
~

We also assumed no losses on capture. Constant numbers of new

individuals were added to each subpopulation every time period after

the first (Bi ' = B' = (l-<I>')Nl ', Bi " = B" = (1-<1>' ')N
l

" for

i = 1, .•• , k-l). Since the number of births balanced expected deaths,

expected sizes of the subpopulations were constant, E(N.') = N.' and
~ .i

E(N
i

' ') = Nl ", for i = 1, •.. , k-l.

The above procedure was used to generate a table of capture

histories for the entire population each iteration. Summary statistics

for these capture histories were then used to compute test statistics

using the 2 described goodness-of-fit tests with the pooling modifications

given in Section 3.5. For each component of each test, the resulting

statistic was compared with the critical values corresponding to the

0.01, 0.05 and 0.10 probability levels. Power was then estimated for

each probability level as blc, where b is the total number of rejections

recorded among the c iterations. The computer program itself was written

in standard FORTRAN for an HP3000 Series 3 computer and is available from

the second author, James E. Hines.
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4.2 Heterogeneity of Capture Probabilities

To illustrate the dependence of the power of the test on population

size (N), sample size (k) and survival rate (ep) when capture probabilities

are heterogeneous we present Figure 1. This figure is for the overall

test using the first formulation but trends are similar for the second

formulation. Notice that the power increases with sample size, population

size and survival rate as you would expect. Also notice that for the

parameters in many practical applications the test will have low power.

(Figure 1 to appear here)

We also did a comparison of the two test formulations and the components

of each test (Table 1). Notice that test 1 performs somewhat better than

test 2 under heterogeneity of capture probabilities. Also notice that here

the components of the tests behave similarly.

(Table 1 to appear here)

4.3 Heterogeneity of Survival Probabilities

To illustrate the dependence of the power of the test on population

size (N), sample size (k) and capture probability (p) when survival probabilities

are heterogeneous we present Figure 2. This figure is for the overall test

using the first formulation but again trends are similar for the second

formulation. Notice that the power increases with sample size, population size

and capture probability as you would expect. Again it is true that for the

parameters of many practical applications the test will have low power.

(Figure 2 to appear here)

We also did a comparison of the two test formulations and the components

of each test (Table 2). Here test 2 performs a little better than test 1 which

is the opposite of that in § 4.2. For test 1 the first component provides all

the power. The second component which is the Jolly-Balser has no power against

heterogeneity of survival probabilities. For the test 2 both components have

some power but component 2 is much more powerful than component 1.

(Table 2 to appear here)
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4.4 Heterogeneity of Capture and Survival Probabilities

We also did a small comparison of the two tests when both capture

and survival probabilities were heterogeneous (Table 3). We found that

there was little to choose between the two tests overall and that they

both performed much better when there was a positive relationship between

the subgroup capture and survival probabilities. The results for the

components of the tests were extremely interesting. For test 1 the first

component performed better for a direct relationship (like the overall test)

while the second component (Jolly-Balser) performed better for an inverse

relationship. For test 2 the results were reversed. The first component

performed best for the inverse relationship while the second performed best

for the direct relationship.

(Table 3 to appear here)

5. Discussion

In this paper we have presented some goodness of fit tests to the

Jolly-Seber model. We have examined their power properties for heterogeneity

of capture, survival and a combination. Our results although condensed show

the need for examination of the test components as well as the overall tests.

Our results also show that often in practice the tests will have low power.

We did not examine the important alternative of temporary emigration.

We felt this inappropriate as Balser examined this in his thesis which is

still unpublished.

We wish to emphasize that goodness of fit tests cannot detect all types

of failures of assumptions. Permanent trap response of capture probabilities

cannot be detected. Also a permanent lowering of survival due to marking, an

important problem in fisheries, cannot be detected. However it is possible to

detect short term influences on survival or capture probabilities (Robson 1969,

Pollock 1975, Brownie and Robson 1983). Finally we also mention that mark loss

will be very difficult to detect by goodness of fit tests. If the mark loss is

a function of time since marking the test may have some power to detect it.
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FIGURE LEGEND

Figure 1 - Empirical power estimates for the first goodness of fit test

for differing values of survival (~) and population size (N) as

a function of increasing heterogeneity of capture probabilities.
, , , A

We define ~p = (p - P )/E(p) and use V when E(p) = 0.1, * when

E(p) = 0.2, ~ when E(p) = 0.5 and 0 when E(p) = 0.8. Part (a)

refers to sampling periods k = 5 and part (b) to sampling periods k = 10.

The size of test is a = 0.05.
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Table 1- Empirical power estimates for both goodness of fit tests for

N = 500, K = 10 and Pl' p2' 11>1' <1>2 as specified. Heterogeneity

of capture probabilities. a
Size of test a = 0.05.

Pl P2 11>1 <1>2 Test 1 Test 2

Comp 1 Comp 2 Total Comp 1 Comp 2 Total

0.15 0.25 0.50 0.50 0.0690 0.0570 0.0610 0.0650 0.0700 0.0680

0.15 0.25 1. 00 1.00 0.0820 0.0500 0.0650 0.0550 0.0790 0.0810

0.375 0.625 0.50 0.50 0.0710 0.0650 0.0670 0.0630 0.0530 0.0650

0.375 0.625 1. 00 1.00 0.3220 0.2510 0.3770 0.1370 0.0942 0.1420

0.60 1.00 0.50 0.50 0.1570 0.0490 0.1770 0.0460 0.0930 0.0710

0.60 1.00 1.00 1.00 0.9980 1.0000 1.0000 0.9910 0.9910

apower was estimated for each component of each test separat~ly, as well as for
the entire tests.



FIGURE LEGEND

Figure 2 - Empirical power estimates for the first goodness of fit

test for differing values of capture probability (p) and

population size (N) as a function of increasing heterogeneity

of survival probabilities. We define ~~ = (~' - ~")/E(~) and

use * when E(~) = 0.2, ~ when E(~) = 0.5, and 0 when E(~) = 0.8.

Part (a) refers to sampling periods k = 5 and part (b) to sampling periods

k = 10. The size of test is a = 0.05.
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Table 2. Empirical power estimates for both goodness of fit tests for

N = 500, K = 10 and P1' P2' </>1' </>2 as specified. Heterogeneity of

Survival probabilities. a Size of test a. = 0.05.

Test 1 Test 2

P1 P2 </>1 </>2 Camp 1 Camp 2 Total Camp 1 Camp 2 Total

0.2 0.2 0.45 0.75 0.1610 0.0600 0.1370 0.0640 0.1600 0.1530

0.5 0.5 0.45 O. 75 0.6100 0.0860 0.5120 0.1170 0.6970 0.6400

0.8 0.8 0.45 0.75 0.9450 0.0740 0.9010 0.0810 0.9710 0.9450

0.2 0.2 0.60 1.00 0.6700 0.0610 0.4420 0.1040 0.7560 0.6750

0.5 0.5 0.60 1.00 1.0000 0.0760 1.0000 0.5170 1.0000 1.0000

0.8 0.8 0.60 l.00 1.0000 0.0730 1.0000 0.3350 1.0000 1.0000

apower was estimated for each component of each test separately, as well as for
the entire tests.



Table 3. Empirical power estimates for both goodness-of-fit tests for

N = 500, K = 10, and PI' P2' ~1' ~2 as specified. Heterogeneity of

capture and survival probabi1ities. a Size of test a = 0.05.

Test 1 Test 2

PI P2 ~1 ~2 Comp 1 Comp 2 Total Comp 1 Comp 2 Total

0.15 0.25 0.30 0.50 0.1287 0.0566 0.0997 0.0645 0.1241 0.1045

0.15 0.25 0.50 0.30 0.0538 0.0675 0.0711 0.0646 0.0520 0.0579

0.15 0.25 0.45 0.75 0.3130 0.0540 0.2380 0.0460 0.3590 0.2820

0.15 0.25 0.75 0.45 0.0620 0.0850 0.1010 0.0800 0.0640 0.0810

0.15 0.25 0.60 1.00 0.9940 0.0510 0.9460 0.0640 0.9990 0.9960

0.15 0.25 1.00 0.60 0.1310 0.1050 0.1520 0.1880 0.1190 0.2100

0.375 0.625 0.30 0.50 0.4530 0.0370 0.3880 0.0510 0.5370 0.4210

0.375 0.625 0.50 0.30 0.0590 0.1523 0.1210 0.1130 0.0570 0.0960

0.375 0.625 0.45 0.75 0.9990 0.0500 0.9910 0.0500 0.9990 0.9990

0.375 0.625 0.75 0.45 0.1100 0.4110 0.3650 0.3440 0.0740 0.2730

0.375 0.625 0.60 1.00 1.0000 0.0450 1.0000 0.0600 1.0000 1.0000

0.375 0.625 1.00 0.60 0.9920 0.8100 0.9990 0.9870 0.9340 1.0000

0.60 1.00 0.30 0.50 0.9640 0.9640 0.1324 0.9550 0.9420

0.60 1.00 0.50 0.30 0.0700 0.5337 0.1410 0.2730 0.0550 0.2010

0.60 1.00 0.45 0.75 1. 0000 1.0000 0.9200 1.0000 1.0000

0.60 1.00 0.75 0.45 0.3870 1.0000 0.9980 0.9330 0.1370 0.8750

0.60 1.00 0.60 1.00 1. 0000 0.9535 1.0000 1.0000 1.0000 1.0000

0.60 1.00 1.00 0.60 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

apower was estimated for each component of each test separately, as well as for the
entire tests.


