
5326 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Google Earth Engine Cloud Computing Platform for

Remote Sensing Big Data Applications: A

Comprehensive Review
Meisam Amani , Senior Member, IEEE, Arsalan Ghorbanian , Seyed Ali Ahmadi , Mohammad Kakooei ,

Armin Moghimi , S. Mohammad Mirmazloumi, Student Member, IEEE, Sayyed Hamed Alizadeh Moghaddam ,

Sahel Mahdavi, Masoud Ghahremanloo, Saeid Parsian,

Qiusheng Wu , and Brian Brisco

Abstract—Remote sensing (RS) systems have been collecting
massive volumes of datasets for decades, managing and analyzing
of which are not practical using common software packages and
desktop computing resources. In this regard, Google has developed
a cloud computing platform, called Google Earth Engine (GEE), to
effectively address the challenges of big data analysis. In particular,
this platform facilitates processing big geo data over large areas and
monitoring the environment for long periods of time. Although this
platform was launched in 2010 and has proved its high potential for
different applications, it has not been fully investigated and utilized
for RS applications until recent years. Therefore, this study aims
to comprehensively explore different aspects of the GEE platform,
including its datasets, functions, advantages/limitations, and vari-
ous applications. For this purpose, 450 journal articles published in
150 journals between January 2010 and May 2020 were studied. It
was observed that Landsat and Sentinel datasets were extensively
utilized by GEE users. Moreover, supervised machine learning
algorithms, such as Random Forest, were more widely applied to
image classification tasks. GEE has also been employed in a broad
range of applications, such as Land Cover/land Use classification,
hydrology, urban planning, natural disaster, climate analyses, and
image processing. It was generally observed that the number of
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GEE publications have significantly increased during the past few
years, and it is expected that GEE will be utilized by more users
from different fields to resolve their big data processing challenges.

Index Terms—Big data, cloud computing, Google Earth Engine
(GEE), remote sensing (RS).

I. INTRODUCTION

I
N RECENT years, there has been a significant increase in the

number of remote sensing (RS) datasets acquired by various

spaceborne and airborne sensors with different characteristics

(e.g., spectral, spatial, temporal, and radiometric resolutions)

[1]. This trend is expected to continue due to the availability of

more open-access RS datasets and daily advancement in sensor,

image processing, and computer vision technologies [2].

Working with petabytes of RS datasets is a challenging task

and has its own special requirements. The challenges of big data

processing and analyzing can be divided into two categories:

common and individual facets [3]. The common challenges

are more related to handling big data and include big data

computing, big data collaboration, and big data methodologies.

The individual challenges are related to big data life cycle in

different applications, such as the appropriate data identifica-

tion, data deployment, data representation, data fusion, as well

as data visualization and interpretation. In order to provide a

comprehensive solution that can meet a wide range of current

and future challenges and requirements in RS applications, one

of the most important steps is to develop a safe, efficient, and

advanced cloud computing platform [3], [4].

Cloud computing platforms are efficient ways of storing,

accessing, and analyzing datasets on very powerful servers,

which virtualize supercomputers for the user. These systems

provide infrastructure, platform, storage services, and software

packages in a variety of ways for the customers [3], [4]. Several

cloud computing platforms have so far been developed. For

example, Amazon Web Services (AWS) is a pay-as-you-go

platform, where users pay based on the hours that they use the

services [2]. AWS has a dedicated cloud Earth Observation (EO)

offering called “Earth on AWS” as part of its Public Dataset

Program, which includes open data from several satellites such
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as Landsat-8, Sentinel-1, Sentinel-2, China–Brazil Earth Re-

sources Satellite program, National Oceanographic, and Atmo-

spheric Administration Advanced (NOAA) image datasets, as

well as global model outputs. AWS also hosts open data supplied

by DigitalGlobe with its SpaceNet challenges. Moreover, AWS

hosts the largest suite of machine learning services [4]. Azure

is another cloud computing platform hosted by Microsoft. This

platform has established the Artificial Intelligence (AI) for earth

initiative to facilitate the use of its AI tools for addressing

environmental challenges in four main areas of climate, agri-

culture, biodiversity, and water. Azure only contains Landsat

and Sentinel-2 products for North America, since 2013, as well

as moderate resolution imaging spectroradiometer (MODIS)

imagery. Azure is also a pay-as-you-go platform which provides

virtual systems for the users [5].

Google Earth Engine (GEE) is another cloud computing

platform which was launched by Google, in 2010. GEE

uses Google’s computational infrastructure and available open-

access RS datasets [6]. GEE is the most popular big geo data

processing platform, facilitating the scientific discovery process

by providing users with free access to numerous remotely sensed

datasets [1], [2]. Users can access GEE via an internet-based

Application Programming Interface (API) and a web-based In-

teractive Development Environment [2], [6]. Additionally, users

do not need to have expertise in web programming or HyperText

Markup Language to use GEE for different applications [6].

GEE has the features of an automatic parallel processing and fast

computational platform to effectively deal with the challenges

of big data processing [6], [7]. For instance, according to Hansen

et al. [8], it only took 100 h to process 654 178 Landsat-7 images

(about 707 terabytes) within GEE and produce a global map of

forests. This was reported as a great achievement because if

they did not use GEE, this process would have taken a million

hours to complete. Furthermore, users do not need to download

the available dataset within GEE in order to use them or install

any software to perform the processing tasks existing in GEE.

However, GEE users can utilize complementary software pack-

ages or process their own private datasets within this platform.

This platform also contains various built-in algorithms, such as

classification algorithms, to analyze data at a planetary scale and

also helps scientists to develop their own algorithms with less

effort than before [1], [2], [9].

As discussed, the remarkable capabilities of GEE provide

unprecedented opportunities to employ this platform for big

data processing and interpretation and, therefore, it is effectively

employed in a broad variety of disciplines in all branches of Earth

science studies. It is also expected that users will more frequently

use this cloud computing service considering the trends of GEE

studies in recent years. There are currently four GEE literature

review studies conducted by Gorelick et al. [6], Kumar and

Mutanga [9], Mutanga and Kumar [10], and Tamiminia et al. [2],

published between 2017 and 2020, respectively. Gorelick et al.

[6] was the first comprehensive GEE review paper conducted

by the main GEE developers. The authors comprehensively

discussed different aspects of GEE, including data catalog,

system architecture, functions, data distribution models, effi-

ciency, along with several applications and challenges. Kumar

and Mutanga [9] also briefly discussed the publication and au-

thorship trends, datasets, study areas, and applications of GEE by

reviewing 300 journal papers. Furthermore, Mutanga and Kumar

[10] briefly discussed four main applications of GEE. More

recently, Tamiminia et al. [2] also discussed various aspects of

GEE by reviewing 349 journal papers. The authors provided

comprehensive information about the GEE publications based

on study areas, number of publications, datasets and products,

functions, sensor type and resolutions, classification accuracies,

and various applications.

There is still need for a more comprehensive review to discuss

various aspects of the GEE platform. Therefore, in this study,

450 journal articles along with peer-reviewed conference papers

were investigated through eight main sections: Section I pro-

vides an introduction to GEE; Section II provides an overview

of the GEE platform; Section III presents different datasets

included in this platform; Section IV discusses various GEE

functions and algorithms; Section V provides comprehensive

information about the advantages and limitations of GEE; Sec-

tion VI analyzes the pattern of GEE publications over one

decade; Section VII discusses different applications of GEE;

and finally Section VIII provides several case studies, in which

GEE was applied to process and analyze big data over large areas

and within a long period of time.

II. GEE PLATFORM OVERVIEW

GEE is mainly composed of the following three platforms:

1) Earth Engine (EE) Explorer;

2) EE Code Editor;

3) EE Timelapse.

The details of each platform are discussed in the following

sections.

A. EE Explorer

EE Explorer (see Fig. 1) is a data viewer platform which

allows users to access the massive datasets available in the EE

Data Catalog. The Data Catalog houses millions of publicly

available datasets, including a complete series of Landsat-4, -

5, -7, and -8, MODIS, Sentinel-1, -2, -3, and -5P imagery, as

well as several atmospheric, meteorological, and vector datasets,

which will be further discussed in Section III. The Data Catalog

receives approximately 4000 new datasets every day [11].

As illustrated in Fig. 1, the EE Explorer is composed of the

Workspace [see Fig. 1(a)] and the Data Catalog [see Fig. 1 (b)]. In

the Data Catalog, users can search among massive datasets and

import them to the Workspace. In the Workspace, users can man-

age and visualize datasets. The Workspace also enables users for

a quick view, zoom, and pan. Additionally, it allows users to set

parameters related to the visualization setting, such as contrast,

brightness, and opacity levels. To better inspect any changes over

time, users can add multiple layers to the Workspace. Users

can display the layers in a three-band RGB or a single-band

grayscale/pseudocolor representation [6]. For example, Fig. 1(a)

demonstrates a true color composite of a MODIS bidirectional

reflectance distribution function (BRDF)-adjusted image.
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Fig. 1. Earth Engine Explorer platform. (a) Workspace. (b) Data Catalog.

B. EE Code Editor

While the EE Explorer platform is designed to visualize

datasets, the EE Code Editor (see Fig. 2) is designated to process

big data using a JavaScript programming language and to de-

velop EE applications. According to Fig. 2, the EE Code Editor is

composed of the following elements: Code editor, Map, Layer

manager, Geometry tools, and several tabs, including Script,

Doc, Assets, Inspector, Console, and Tasks.

The central panel allows users to write their JavaScript code.

GEE processes the written codes and illustrates the results as

images in the Map panel or as messages in the Console Tab.

Similar to the EE Explorer, users can set the visualization

parameters via the Layer manager in the Code Editor (see Fig. 2).

In the Script tab, numerous examples of scripts facilitate devel-

oping applications. There are more than 800 prebuilt functions

(discussed in detail in Section IV) in the EE library, users can

become familiar with them using the Doc tab, providing API

reference documentation [6].

As previously mentioned, GEE includes big open-access

datasets. Users, however, are not restricted to use only these

datasets. They can upload and manage their own data using the

Asset tab. It is also possible to interactively query the map using

the Inspector tab. Finally, the Geometry tools allow users to draw

geometric features, such as points, lines, and polygons, which

can be used in further analyses [6].

C. EE Time-Lapse

GEE combines petabytes of RS datasets over four decades

and produces a global, zoomable, and cloud-free video over

space and time in its EE Time-laps platform [6]. The Timelapse

platform is an example of the great computational power of the

GEE platform. This platform provides the most comprehensive

picture of the Earth revealing how its residents are treating it.

For instance, through EE Time-lapse, one can easily observe

the fast retreat of Mendenhall Glacier in Alaska, decapitation of

West Virginia Mountains by the mining industry, forest loss in

the Amazon, and drying Urmia lake in Iran over time.

III. GEE DATASETS

As discussed, GEE contains an immense number of datasets,

including raw datasets, preprocessed data, elevation models, and
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Fig. 2. Overview of the Earth Engine Code Editor.

products at global, national, and regional extents. Table IV in the

Appendix provides all available datasets within GEE along with

a brief description of each. Some of these datasets, which are

frequently utilized by users are discussed in more detail in the

following.

Landsat datasets are valuable resources to perform tem-

poral analysis. Landsat collection includes seven multispec-

tral satellites: Landsat 1–3 (1972–1983), Landsat-4 (1982–

1993), Landsat-5 (1984–2012), Landsat-7 (1999–present), and

Landsat-8 (2013–present). Landsat satellites have optical sen-

sors, the images of which may be obscured by clouds. Therefore,

temporal cloud detecting, masking, and removing are essential

preprocessing steps in different applications, such as image clas-

sifications using multitemporal imagery [12]. Additionally, the

availability of the multitemporal Landsat datasets has facilitated

national and global scale analysis [13]. Landsat-based datasets

within GEE have been employed in various applications. For in-

stance, Landsat data available in GEE have been widely utilized

in generating Land Cover/Land Use (LCLU) maps (e.g., [14]–

[16]). Moreover, urban detection and extraction is an impor-

tant task in the economic investigation due to rapid population

growth. Therefore, several studies have utilized Landsat data in

urban monitoring [17], [18].

GEE includes datasets acquired by Sentinel satellites, devel-

oped by the European Space Agency (ESA). Sentinel collection

includes Sentinel-1 Synthetic Aperture RADAR (SAR) (2014–

present), Sentinel-2 multispectral (2015–present), Sentinel-3

Ocean and Land Color (2016–present), and Sentinel-5P Tro-

pospheric Monitoring (2018–present) datasets. Sentinel-1 and

Sentinel-2 have been extensively utilized by GEE users for

different applications. Their 10 m spatial resolution makes it

possible to analyze objects in a better resolution compared

to Landsat images. They can also simplify the procedure of

training and validation steps in image classification tasks. Man-

dal et al. [19] applied Sentinel-1 SAR data to map rice and

monitor its temporal changes. Additionally, Traganos et al. [20]

estimated satellite-derived bathymetry (SDB) of three regions

in the Aegean Sea using Sentinel-2 time-series analysis.

GEE includes MODIS images. MODIS has a great potential

in near-real-time (NRT) mapping of the ground surface in na-

tional and global scales. MODIS acquires images in 36 spectral

bands, the spatial resolutions of which vary from 250 m to 1

km. MODIS time series are available in GEE Data Catalog

from 2000 to present, facilitating temporal analysis over globe.

Campos-Taberner et al. [21] developed a temporal investigation

on MODIS-based indices, including the global Leaf Area Index,

Canopy water content, Fraction Vegetation Cover, and Fraction

of Absorbed Photosynthetically Active Radiation.

IV. GEE FUNCTIONS

GEE provides various functions to perform spectral and spa-

tial operations on either a single image or a batch of images.

Different operations within the GEE platform, ranging from

simple mathematical operations to advanced image processing

and machine learning algorithms are illustrated in Fig. 3. Various

pixel-based spectral operations, which have high potential to be

implemented in parallel on cloud architecture, are included in

GEE. However, GEE supports fewer spatial functions, such as

Gaussian and Laplacian filters, edge detection methods (e.g.,

Sobel, Roberts, and Canny), line detection via the Hough Trans-

form, and morphological operators (e.g., dilation and erosion)

due to parallel implementation issues. Moreover, GEE currently

does not support several functions, including frequency do-

main algorithms (e.g., FFT and Wavelet), hierarchical algo-

rithms (e.g., hierarchical clustering), graph-based methods (e.g.,

graphcut), geometric descriptors (e.g., Haar, SIFT, SURF), and

physical-based models (e.g., radiative transfer models).

Both supervised and unsupervised machine learning algo-

rithms are accessible through the GEE library. For example,

the classification and regression tree (CART), support vector

machine (SVM), and random forest (RF) classifiers are among
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Fig. 3. Overview of different supporting functions within GEE.

the supervised classification algorithms within GEE. Labeled

samples are required in supervised classification methods to train

the classifiers, for which both sampling and training functions

are available in GEE. There are also many clustering algorithms

in GEE, such as K-means. K-means is a popular clustering

method in the data mining area. The algorithm requires users

to define the number of clusters (K) and the stopping criteria

[22]–[24]. Besides the original K-means, two modified versions

of K-means (i.e., Cascade K-means [25] and X-means [26]),

in which the number of clusters is estimated automatically, are

available in GEE. Cobweb is another clustering algorithm which

hierarchically handles data instances data instances. It constructs

a classification tree and manages it through merging and splitting

steps [27]. Simple noniterative clustering (SNIC) is another

clustering-based segmentation method, which is initiated with

randomly/manually determined seeds and generates segments

[28]. SNIC is widely utilized by users to perform object-based

image classifications (e.g., [29]).

As mentioned before, GEE contains over 40 years of datasets,

facilitating temporal and change analyses. For temporal analysis

purposes, several functions, such as continuous change detection

and classification (CCDC) [30], exponentially weighted moving

average change detection (EWMACD) [31], and Landsat-based

detection of Trends (LandTrendr) [32] are available. CCDC

fits harmonic functions to temporal data to detect points with

significant variations. EWMACD calculates a model according

to the training data. Then, the difference between the model and

real data points are found according to the Shewhart X-bar charts

and an exponentially weighted moving average. LandTrendr is

specially designed for Landsat data and finds the pixel-based

spectral change in temporal analysis. Vegetation analysis is also

a popular subject in temporal analysis. Therefore, GEE has

several algorithms, such as vegetation change tracker (VCT) [33]

and vegetation regeneration and disturbance estimates through

time (VERDET) [34], which are specifically developed for this

purpose. VCT can automatically analyze Landsat time-series

images to generate forest disturbance history. VERDET catego-

rizes forest change into three types, including disturbed, stable,

and regenerating. The analysis is based on the total variation

regularization in the spatial and temporal domain [34].

V. GEE ADVANTAGES AND LIMITATIONS

GEE is a valuable tool in analyzing geospatial data that

provides many capabilities for researchers, especially for the RS

community. However, there are also several limitations that users
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TABLE I
MAIN ADVANTAGES OF GEE BIG GEO DATA PROCESSING PLATFORM

should be aware of. The key advantages and limitations of GEE

are summarized in Table I and discussed in more detail in the

following section. As illustrated in Table I, the advantages and

disadvantages of GEE are investigated within the four categories

of cloud infrastructure, API, data, and functions.

A. Advantages

1) Cloud Infrastructure: GEE is mainly a free cloud-based

service without having to download and manage data locally

[35]. It is built upon the Google cloud computing infrastructure

and computations are automatically handled by Google itself.

All operations are automatically performed in bulk and parallel

on the Google CPUs and GPUs [6]. The complexities of parallel

computing are hidden due to this automation in processes [17].

Since GEE was mainly created and optimized for geospatial

data analysis, it can process petabyte of RS data both in large

geographical scales and in long temporal coverages [17]. Thus,

it is a great tool for analyzing regional, national, continental, and

global-scale applications.

Besides various datasets, which are already available within

GEE, researchers can easily upload and share their own datasets

as well as their scripts and models through URLs [9]. Other

maps and products are generated on-the-fly [28], [29], once any

user wants to run the code [36], [37]. Additionally, there is no

need to install third-party software packages, such as ENVI and

ERDAS, because almost all of the required tools are already

available on GEE [38].

GEE stores and analyzes RS imagery based on a pyramiding

and tiling concept [39]. Every image ingested into GEE has its

pyramid at different pixel resolutions [6]. Furthermore, every

tool used in GEE processes images on 256×256 tiles. Thus,

different scales of the pyramid are used at various zoom levels.

This enables GEE to visualize large areas of processed imagery

quickly and efficiently.

Fast filtering and sorting capabilities are provided within

GEE, inherited from Google. This enables users to select their

desired data out of millions of images based on various spatial

and temporal specifications [40].

2) API: GEE is combined with a powerful web-based pro-

gramming interface. Users can easily access archived RS data

through the JavaScript and Python API. The straightforward

concept of using both APIs allows users to focus on the logic

of data selection and programmable workflow. Only a log-in is

required to access all GEE power. An online code editor is also

available to write scripts, debug them, and see the results just

after compilation.

Both the JavaScript and Python APIs provide access to the

same set of EE objects and methods, except for a few methods

which are capitalized differently (e.g., .and() versus .And()) [41],

[42].

Most of the libraries in GEE are similar to existing open source

components, such as OpenCV, and GDAL. Therefore, there is a

minimum requirement to learn new concepts.

The Python API provides a programmatic and flexible

interface to EE [41], [43]. It allows for automating batch
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processing tasks, piping EE processed data to Python packages

for postprocessing and leveraging the power of the command

line. Additionally, the Jupyter notebook interface of the Google

Colaboratory platform delivers a highly interactive and collab-

orative experience and is without the burden of local system

setup and management as a hosted service. In summary, the

EE code editor has a high ease of setup and use, while the

Python API is more flexible. Combining GEE and Python

APIs inside a Jupyter notebook provides the advantage of both

to users.

In order to compare JavaScript with Python based on [43],

it can be argued that JavaScript is easy to get started and share

scripts, while it cannot share code between scripts. However,

Python is easy to share code between scripts and is easier

to be transformed into a web application. Moreover, Python

has many plotting options, which requires several assembly

and maintenance. Finally, the code editor enables the user to

store, share, and control their codes in a behind-the-scene git

environment.

3) Datasets: As discussed in Section III, GEE contains a

large catalog of RS, geophysical, and meteorological datasets.

It contains most of the important and temporal datasets in

RS, including Landsat, MODIS, and Sentinel. Furthermore,

the combination of different sources of imagery improves the

temporal density of datasets and can help fusion algorithms to

have more power. Moreover, several NRT datasets are uploaded

to GEE in a daily manner. If a dataset is not in the GEE Data

Catalog, it can also be uploaded to the servers. Datasets are also

downloadable to continue from a desktop workstation at any

point of the workflow.

GEE stores datasets in their original projection with all orig-

inal data and metadata. Resolutions are managed directly by

the platform. Data are stored in its original resolution, but a

pyramid of images is also constructed and stored beside every

image which is used in different zoom levels for the sake of

efficiency. As mentioned, users can also easily search for their

desired data using the tags provided within data categorization,

which is very well handled in GEE.

Several preprocessing steps have been already applied to the

datasets and, thus, users can use corrected data besides raw data.

For instance, the orthorectified, atmospherically corrected, and

Calibrated Top of Atmosphere Landsat data are easily accessible

apart from the raw data [44], [45]. Analysis-ready SAR datasets

on GEE represent a significant step forward because SAR pre-

processing is relatively complex (especially for regular users).

For example, GEE hosts Sentinel-1 GRD data preprocessed with

ESA’s SNAP software [46].

GEE makes many derivative products available. Multiple

popular spectral indices (e.g., NDVI) are already calculated.

Since storage is more expensive than computation, most of these

derivative products are computed on-the-fly upon users’ request.

4) Functions: As discussed in Section IV, a large set of

functions and algorithms are available within GEE library

for analyzing various datasets. All algorithms are parallel in

nature and can automatically handle data management over

servers.

Machine learning, image processing, vector processing, geo-

metrical analysis, different visualizations, and multiple special-

ized algorithms are gathered into the GEE platform and enable

users to implement their idea. The GEE functions usually satisfy

the needs of a typical scientific project. Additionally, users can

always implement their own algorithms outside GEE and return

the result for postprocessing. For instance, TensorFlow is a better

option in the deep learning section, for which more complex

models, larger training datasets, more input properties, or longer

training times are required [47], [48]. TensorFlow models are

developed, trained, and deployed outside EE [49]. For easier

interoperability, the EE API provides methods to import/export

data in TFRecord format [47]. This facilitates generating training

and evaluation datasets in EE and exporting them to a format

where they can be ingested to a TensorFlow model.

A complete API reference and tutorial with runnable code

examples are available for beginner to advanced users (e.g.,

[47]). The tutorials are detailed and cross referenced to each

other to guide users through different applications and important

notes. Outputs of these algorithms can be directly embedded in

different applications.

B. Limitations

GEE limitations are relatively minor, but it is essential to be

familiar with the constraints. Several main limitations of GEE

are discussed in the following.

1) Although data is kept as private in the user’s account, it is

still stored in the servers of a private company, which is not

acceptable for many governmental agencies and private

companies [50].

2) GEE-based image analysis is restricted to existing tools

within the GEE API. For example, several standard image

preprocessing methods (e.g., atmospheric correction tech-

niques) are currently not implemented in GEE. Moreover,

developing new tools is not trivial and requires knowledge

about all GEE algorithms and their functionality along

with performance considerations about cloud-based com-

puting on Google servers.

3) GEE is limited to selected data mining models for classi-

fication and regression. There are only a few classification

and regression algorithms, such as CART, RF, and SVM.

4) Image classification as one of the important applications of

RS can be considerably improved by object-based image

analysis. However, currently, there is not an efficient and

accurate segmentation algorithm within GEE [1].

5) One of the main approaches to improve classification

accuracy is increasing the number of training samples or

input features. However, users are limited to employ only a

certain amount of samples or a limited number of features

within classification methods [1], [16].

6) Complex machine/deep learning algorithms which require

large training datasets or longer training times are not

performed in GEE due to computational restrictions. Thus,

users need to implement these algorithms outside of this

environment [48].
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TABLE II
TOP 10 JOURNALS PUBLISHING GEE-RELATED ARTICLES ALONG WITH THE NUMBER OF PUBLICATIONS PER JOURNAL

TABLE III
GEE STUDIES PRESENTED AT THE TOP EIGHT CONFERENCES ALONG WITH THE NUMBER OF PRESENTED ARTICLES

7) When trying to download processed data in the middle of

the workflow for further analysis in a third-party software

environment, users face a time-consuming process due to

huge map size and internet speed limitations.

8) Complex SAR phase data are not stored in GEE because

they are not compatible with the tiling concept of the

infrastructure [51]. This limits the Polarimetric SAR and

Interferometric SAR applications, which relies on the

phase information.

VI. GEE PATTERN OF PUBLICATIONS

In this study, 450 journal papers, published between January

2010 and May 2020, were assessed to depict the pattern of GEE

publications. Several investigations, including keyword analy-

sis, annual publication numbers, and geographical distribution

are provided in the following sections. Additionally, the top

journals and conferences, which have published GEE papers

are discussed in Section VI-E.

A. Analysis Method

A meta-analysis was performed in the Elsevier’s Scopus (the

largest abstract and citation database of peer-reviewed literature

covering over 5000 publishers) and Web of Science (formerly

known as ISI Thomson) to provide a comprehensive literature

trend conducted using GEE. It is worth noting that conference

articles and presentations were also reviewed during the course

of this study; however, they were not considered in this study

because most of them had a relatively lower academic level

or had later been converted to journal papers. Only the top

conferences, where GEE studies were presented, were provided

in Table III. The Google Earth Engine and GEE search queries

were performed in the journal articles’ titles, abstracts, and

keywords from January 2010 to mid-May 2020. The EndNote

software was then used to remove the duplicate articles, which

resulted in 462 peer-reviewed journal articles. Subsequently, 12

papers, which discussed unrelated topics (e.g., using GEE for

gaming development and analyzing the computational perfor-

mance of GEE) were discarded. Finally, 450 journal articles

were selected for further analyses.

B. Keyword Analysis

Fig. 4 illustrates a word cloud visualization based on the

keywords in these GEE studies. The more frequent the term

appears within the keyword analysis, the larger the word de-

picts in the figure. As clear, Google Earth Engine, Landsat,

Remote Sensing, Sentinel-2, Random Forest, Cloud Computing,

NDVI, Machine Learning, and Land Cover were the mostly

used keywords, respectively. For example, Google Earth Engine

keyword was utilized in 278 papers. The name of different

satellites and machine learning algorithms are also widely used

in GEE publications. Landsat, Sentinel-2, MODIS, Landsat-8,

and Sentinel-1 are the satellites and Random Forest is the clas-

sification method, which are frequently utilized in the keyword

lists of GEE journal papers. It was also observed that NDVI, land
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Fig. 4. Word cloud of the keywords from the GEE journal articles.

Fig. 5. Number of journal articles, which utilized GEE.

cover, classification, and Urbanization were among the most

used keywords, indicating the popularity of LCLU classification

applications. Additionally, the Time Series, Change Detection,

Climate Change, Land Cover Change, and Time Series Analysis

keywords were frequently utilized in the GEE publications,

indicating the importance of the archived open-access remote

sensing datasets in change detection studies. Furthermore, multi-

ple journal publications used China, United States, and Africa in

the keywords, demonstrating the leadership of the corresponding

countries in utilizing GEE in their studies.

C. Annual Publication Numbers

The statistical analysis of the number of publications related

to GEE is provided in Fig. 5. The first peer-reviewed journal

paper was published in 2011 by Keller et al. [52] in PFG - Jour-

nal of Photogrammetry, Remote Sensing and Geoinformation

Science. This study investigated the automated generation and

presentation of historical 4-D city models. As clear from Fig. 5,

a substantial increase in the number of GEE publications was

observed from 2017, when Gorelick et al. [6] (GEE develop-

ers) discussed a comprehensive utility of this cloud computing

platform, particularly for RS applications. Additionally, it was

observed that the increasing trend in the number of GEE pub-

lications is getting more substantial. For instance, 35 journal

articles were published within the last 1.5 months (April 1–May

15, 2020).

D. Geographical Distribution

The study areas of the peer-reviewed GEE journal papers were

investigated to provide a picture of the geographic distribution of

GEE studies. Fig. 6 illustrates the geographical distribution of

GEE studies after removing ten papers, which did not belong

to any study areas (e.g., literature review papers and papers

related to the theoretical aspects and development of the GEE

platform). Additionally, 35 studies which were conducted over

the continental scales (7 and 1 papers covered the entire Africa

and Europe, respectively) and global scales (27 papers cov-

ered the entire world) were not considered in a country-based

enumeration. Furthermore, if a study was conducted over sev-

eral countries, all of them were counted separately. Moreover,

studies with sub-country scales (e.g., small study site, city, or

province) were considered in the number of publications for

the corresponding countries. Finally, it was observed that GEE

studies were conducted over 138 countries. The highest number

of GEE publications have been conducted over the United States

(97 articles), China (96 articles), Brazil (29 articles), Canada

(25 articles), and India (25 articles), followed by Australia

(19 articles), and Indonesia (15 articles), respectively. On the

continental scale, 37.5%, 24%, 18.5%, 9%,7.5%, 3.5%, and 0%

of studies were conducted over Asia, North America, Africa,

Europe, South America, Australia, and Antarctica, respectively.

38% of studies conducted over Asia were related to China.

E. Journals and Conferences

Table II provides the top journals, in which GEE studies have

been published. 450 journal papers have been published in 150

journals, 95 of which have published only one GEE paper. Based

on the results, the Remote Sensing, Remote Sensing of Environ-

ment, ISPRS Journal of Photogrammetry and Remote Sensing,

and International Journal of Applied Earth Observation and

Geoinformation were the top four journals, which published 126,

61, 14, and 12 papers, respectively.

Table III provides the name of several conferences, in which

GEE studies have been most frequently presented. GEE studies

are among the most presented research topics in the prominent

international RS conferences, such as the International Archives

of the Photogrammetry Remote Sensing and Spatial Information

Sciences ISPRS Archive, the International Geoscience and Re-

mote Sensing Symposium IGARSS, and the Proceedings of SPIE

The International Society for Optical Engineering.



AMANI et al.: GOOGLE EARTH ENGINE CLOUD COMPUTING PLATFORM FOR REMOTE SENSING BIG DATA APPLICATIONS 5335

Fig. 6. Number of GEE studies conducted over each country.

VII. GEE APPLICATIONS

The 450 selected GEE journal articles were studied to decide

about the main disciplines. It is worth noting that seven papers

which were review articles were initially removed from the

analysis. Consequently, all the 443 journal papers were divided

into 10 categories as illustrated in Fig. 7 along with several

keywords describing each category. The articles which include

more than one application were considered in the most relevant

category by an in-depth review of the paper. It is worth noting that

although only the journal articles were investigated to adopt the

main disciplines, it was observed that other sorts of publications

(e.g., conference papers) correspond well with the application

types considered in this study.

Fig. 8 illustrates the number of journal articles related to

each application provided in Fig. 7. The highest number of

contributions were in the Vegetation category with 90 papers

followed by 77 papers in Agriculture, 68 papers in Hydrology, 53

papers in Land cover, 40 papers in Urban, 40 papers in Natural

disaster, 31 papers in Atmosphere and climate, 17 papers in

Image processing, and 14 papers in Pedosphere. Moreover, 13

papers, which were not related to any of the 10 application types

or their numbers and not enough to be assigned to a new category

were considered in the Others category.

In the following sections, more information about each

of the GEE applications along with several case studies are

discussed.

A. Vegetation

Vegetation (e.g. forest, grassland, rangeland, and shrub) can

be considered as one of the most vital components of the

Earth’s biosphere because it serves critical functions to both

humans and the environment [53]. Vegetation is also impor-

tant in many biochemical cycles that are directly or indirectly

interacting with water, soil, and air [54]. Such cycles are im-

portant for global vegetation pattern and climate studies and,

thus, vegetation is also important for biodiversity conservation

and climate change mitigation [55]. Moreover, vegetations are

the primary source of converting dioxide carbon to oxygen,

enabling aerobic metabolism on the globe [56]. Considering the

important services of vegetation, it is highly required to monitor

the current state and dynamics of various vegetation types. GEE

leverages cloud computing services for long-term monitoring

of vegetation covers. Furthermore, the publicly available RS

data within GEE enable researchers to employ this platform

for vegetation monitoring at various spatial scales. In particu-

lar, the existence of several vegetation indices in GEE allows

conducting vegetation studies in efficient and quick manners.

GEE has been widely used for vegetation mapping [57], [58],

vegetation dynamics monitoring [59], [60], deforestation [61],

[62], vegetation and forest expansion [63], [64], forest health

monitoring [65], [66], forest mapping [67], [68], pasture mon-

itoring [49], [69], and rangeland assessment [70], [71]. For

instance, the full archive of the Landsat imagery was processed

within GEE to map the vegetation dynamics from 1988 to 2017

in Queensland, Australia [59]. Field observations were utilized

to evaluate the performance of the proposed algorithm and an

overall accuracy of 82.6% was reported. Finally, the suitability

of GEE for large-scale and long-term vegetation monitoring

was reported along with an approximately 20% decrease in the

vegetation cover in this study area. The authors emphasized

the high computational efficiency of GEE compared to when

they did the same analysis using traditional methods. In another

study, an algorithm was developed within GEE by employing

spectral mixture analysis to detect degradation and deforestation

in the Brazilian state of Rondônia [62]. To this end, Landsat

archived images from 1990 to 2013 were used. All the required

processing steps were performed within GEE to produce annual
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Fig. 7. GEE applications (LC: Land Cover).

forest disturbances maps. Landsat data were transformed into

spectral endmember fraction and were applied to calculate the

Normalized Degradation Fraction Index. The presented method

obtained producer accuracies of 68.1% and 85.3% for degrada-

tion and deforestation maps, respectively.

B. Agriculture

Mapping and monitoring croplands and plantations are es-

sential for food security. Food security could be stated as one of

the most significant issues in the current era and, thus, the Food

and Agriculture Organization (FAO) has set its goal to achieve

food security around the globe [72], [73]. Agricultural products

not only play a vital role in human life, but also are critical

from economic aspects. Therefore, agriculture can be considered

as a source of livelihood and a contributor to national revenue

[74]. Moreover, monitoring agricultural products is required for

policy-makers and governments to ensure the path to economic

growth and self-sufficiency of the country [72]. RS datasets

allow frequent and cost-effective monitoring of croplands

and plantations. GEE hosted extensive publicly available RS

datasets that can be effectively utilized for productivity, quality,
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Fig. 8. Number and percentage of journal papers related to GEE applications, published in each discipline provided in Fig. 7.

profitability, and sustainability studies of agriculture produc-

tion. Researchers have applied GEE to plantation mapping and

monitoring [75], [76], phenology-based classification [77], [78],

cropland mapping [79], [80], crop condition monitoring [81],

[82], crop yield estimation [83], [84], irrigation mapping [85],

[86], and other agricultural studies [87], [88]. For example,

seasonal median composites of Sentinel-1 and Sentinel-2 were

calculated in GEE to predict the Maize yield in Kenya and

Tanzania [83]. The use of RF resulted in the production of

Maize/none Maize maps in Kenya and Tanzania with 63% and

79% overall accuracies, respectively. Finally, satellite obser-

vations along with gridded soil datasets were ingested into a

scalable harmonic regression to estimate Maize yield. Moreover,

multitemporal Landsat-8, Landsat-7, and Sentinel-2 imagery

were employed to calculate composite NDVI images for winter

cropland mapping in an area of over 200 000 km2 [77]. Then, the

multitemporal NDVI curve was inserted into a CART algorithm

to produce a phenology-based map of winter cropland with an

overall accuracy of 96.22%. The authors reported that lacking

remote sensing images with high temporal frequency in GEE

was one of the limitations of their work and, thus, suggested to

use Chinese GaoFen satellite data with four days revisit time for

the future cropland classifications.

C. Hydrology

Water is an essential element for life whether in liquid form

(e.g., lake, reservoir, and river) or solid forms (e.g., snow, ice,

and glaciers) in the cryosphere and, thus, obtaining reliable in-

formation about water resources is a high necessity. In addition,

monitoring inland, coastal, and arctic water resources are bene-

ficial in climate change studies [89]. Moreover, investigating

the size and behavior of glaciers along with the amount of

snow ablation could render supporting information about the

Cryosphere–Atmosphere interactions and climate change [90],

[91]. Furthermore, drought and flood disasters are relatively

associated with the dynamics of water resources [92]. Therefore,

persistent and precise monitoring of all types of water resources

is a vital need. Publicly available datasets within GEE along with

its high computing performance allow for accurate monitoring of

water resources with adequate temporal and spatial resolutions.

Consequently, GEE was efficiently employed for surface water

dynamics monitoring [93], [94], bathymetry [20], [95], shoreline

and coastal studies [96], [97], lake and reservoir mapping and

monitoring [98], [99], glacier studies [90], [100], snow ablation

and snow mapping [92], [101], suspended sediments and river

studies [102], [103], and water health assessment [104], [105].

For instance, Nguyen et al. [93] introduced a fully automatic

method for water extraction in New Zealand. The GEE and

Landsat-8 images between 2014 and 2018 were employed to

map lakes and reservoirs using an Automatic Water Extraction

Index with an overall accuracy of 85%. In a different study,

GEE was used to combine MODIS fractional snow cover with

Sentinel-1 wet snow mask data to develop an algorithm to

produce a monthly wet-dry snow map [92]. In this study, 2.5

years were studied in the Indian Himalayan region covering

around 55 000 km2. It is worth noting that the underestimation

of the wet snow area was corrected by DEM. In another study,

blue and green bands of Sentinel-2 were processed to develop

an empirical model for satellite-derived bathymetry maps [20].

In this regard, cloud masking, sun glint correction, radiometric

calibration, and normalization were performed within GEE in

three sites of the Aegean Sea in the Eastern Mediterranean.

Finally, based on 9818 reference points, the proposed approach

achieved R2 and RMSE of 0.9 and 1.67 m, respectively. The au-

thors argued that GEE time-out error was the main limitation in

their work, because their empirical method required estimation

of the regression between the image composite values and water

depth over large region and a long period of time.

D. Urban

Urban areas are regions with concentrated people and human

infrastructure and usually expand through the time for better

livelihood. These regions have become the central point of

economic, social, cultural, and recreational activities, as well as
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resource consumption [106], [107]. Therefore, urban areas could

be considered as the primary source of human interaction with

the surrounding environment. The environment and the urban

areas affect each other mutually since the environmental changes

could influence human life. On the other hand, unrestricted urban

growth causes severe damage to natural resources and can nega-

tively alter the atmosphere and climate [108], [109]. Conducting

urban studies are essential to support sustainable development.

In this regard, RS datasets enable the quantification and profound

analysis of urban dynamics that are fundamental for devising

suitable approaches for urban development and urban planning

[110]. GEE promotes long-term monitoring of urban conditions

to effectively study the urban environment from different as-

pects. Urban expansion and extent mapping [18], [111], urban

morphology and local climate zone monitoring [112], [113],

urban 4-D modeling [52], urban green space classification [114],

[115], urban temperature and urban heat island identification

[17], [110] are some of the main urban studies conducted within

GEE. For instance, Ravanelli et al. [17] studied the long-term

monitoring of Surface Urban Heat Island (SUHI) and its relation

to urban land cover changes over six metropolitan areas of the

United States. More than 6000 Landsat images were interpreted

between 1992 and 2011 by Detrended Rate Matrix analysis to

illustrate the land cover change versus SUHI. It was reported

that GEE was the best solution for their applications in terms of

efficiency in time, cost, and computation. The results revealed

a definite increase of SUHI due to urban growth. Moreover,

Gong et al. [18] investigated the urban expansion dynamics

by producing annual global artificial impervious surfaces that

are predominate indicators of human settlement. To this end,

the full archives of Landsat satellite data between 1985 and

2018 were processed within GEE. Sentinel-1 SAR data and

nighttime images were also used to improve the final results

in arid areas. The implementation of the Exclusion–Inclusion

algorithm combined with the temporal consistency check within

GEE yielded the overall accuracy of over 90% in mapping annual

global impervious surfaces.

E. Land Cover

The dominant land cover types of a region determine the

terrestrial surface characteristics of the corresponding area. Veg-

etation, water, and soil are the main land cover types spread

across the globe. These land cover types form environmental

conditions for the habitat of various flora and fauna [116], [117].

Furthermore, the distribution of land covers defines the physical

interaction between Earth’s surface and the surrounding environ-

ment. Recognizing the significant impacts of land covers on the

environment and investigating the current condition along with

monitoring long-term dynamics of land covers are essential for

sustainable development, climate change modeling, biodiversity

studies, and natural resource monitoring [118], [119]. GEE

hosted enormous publicly RS datasets in various spectral and

spatial resolutions to conduct land cover mapping [14], [120],

land cover dynamics monitoring [121], [122], coastal mapping

[123], [124], and wetland classification [125]. For instance,

an automatic land cover mapping was developed within GEE

through the integration of Landsat imagery and RF algorithm

over the north of China [14]. The reference samples were col-

lected by rules of pixel and spectral filtering from MODIS land

cover products with the International Geosphere-Biosphere Pro-

gram theme in ten classes. Two types of monthly and percentile

features were utilized separately, and the best result was obtained

through the usage of monthly features by achieving over 80%

accuracy. In another study, GEE was used to produce a sharpened

land cover map over Mato Grosso, Brazil [15]. Their proposed

algorithm (BULC-U) fused the 300 m the GlobeCover product

with Landsat imagery to produce a 30 m land cover map. In this

regard, Landsat images were segmented and then the ISODATA

algorithm was applied to generate an unsupervised map in 20

clusters. Finally, the unsupervised classification result was fused

to the GlobeCover product. More recently, Ghorbanian et al.

[126] produced an improved version of the land cover map of

Iran using Sentinel-1/2 imagery within GEE. They also proposed

an automatic workflow to update this map every year without the

need to collect additional in situ data using migrated samples.

F. Natural Disaster

Extreme and unexpected phenomena caused by the natural

process of the Earth are called natural disasters. These events

bring destruction to the surrounding environment and human

life [127]. Profound research should be carried out to investi-

gate the characteristics and behavior of these phenomena and,

consequently, to reduce the amount of damage. The importance

of geospatial data for monitoring and damage assessment of

natural disasters is undeniable [128]. Long-term and NRT pub-

licly available RS datasets within GEE along with its high-

performance computing promote this cloud-based platform for

monitoring, forecasting, prevention, vulnerability, and resilience

studies of natural disasters. In particular, GEE was utilized

for drought monitoring [129], [130], flood mapping and flood

risk assessment [131], [132], wildfire severity mapping [133],

[134], landslides analyses [135], hurricane studies [136], and

tsunami studies [137]. For instance, MODIS and meteorological

datasets were employed within GEE to study the temporal and

spatial variations of drought events in Potohar Plateau of Punjab,

Pakistan between 2000 and 2015 [129]. In this regard, multiple

features of standard precipitation index, standard precipitation-

evapotranspiration index, vegetation condition index, precipita-

tion condition index, soil moisture condition index, and temper-

ature condition index were utilized for drought monitoring. In

addition, 44 Sentinel-1 GRD dual-polarized data were employed

within GEE to develop an operational methodology for rapid

flood inundation mapping in Bangladesh [131]. Moreover, a

potential flood damage map was generated to support efficient

decision making. The proposed method obtained 96.44% overall

accuracy by incorporating 4500 reference samples. Finally, a

preflood Landsat-8 image was used to generate a land cover map

for further estimation of flood damages to cropland and rural

settlements. It was reported that the developed algorithm within

GEE could be effectively used for monitoring land covers in
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a cost-efficient approach because open-access Landsat datasets

are regularly inserted into GEE. In a different study, very high-

resolution oblique images were processed within GEE to detect

irregularity in façade and rooftop areas caused by hurricane

events [136]. First, a vertical building map was produced from

a temporal analysis of predisaster images through an edge-

based/knowledge-based approach. Then, pre- and postdisaster

images were fused in the data level followed by spectral-only

and geospectral classifiers through the RF algorithm. The results

obtained a significant reduction in false-positive error.

G. Atmosphere and Climate

As a principal component of the natural process of the Earth

system, land interacts with the atmosphere through biophysical

and biochemical processes mutually [138]. Constant population

growth and human activities result in significant changes in the

atmospheric constituents [139]. Climate change and air pollu-

tion are two decisive consequences of these disturbances that

directly impact the surrounding environment and human health

[140], [141]. Therefore, it is essential to monitor and control

air quality and climate conditions to avoid severe outcomes.

The availability of climate products accompanied by surface

products within GEE, make this platform a great tool for climate

studies and air quality monitoring. These advantages create a

rising interest in the research community to use GEE for air

pollution analyses [142], [143], climate change and monitoring

[144], [145], biophysical variable studies [21], [146], evapotran-

spiration estimation [147], and precipitation mapping [148]. For

instance, GEE was employed to map exposed mine waste areas

to estimate the corresponding emission of particulate matter to

the atmosphere [142]. Four benchmark years of 1990, 2000,

2010, and 2018 as a part of Canada’s Air Pollutant Emission

Inventory were studied. Landsat-5, Landsat-8, Sentinel-1, and

Sentinel-2 satellite data were used to map exposed mine through

an RF algorithm. Finally, the authors reported that GEE was

an invaluable platform for monitoring long-term emission from

exposed mine waste. Furthermore, GEE was used along with

version 1 Tropical Rainfall Measuring Mission (TRMM) pre-

cipitation products to study the spatial and temporal patterns

of precipitation in the Zambezi River basin [148]. To this end,

TRMM data from 1998 to 2017 were processed in GEE to

investigate the precipitation trends and magnitudes by Kendall’s

correlation and Sen’s slope reducer respectively. A “dry gets

dryer, wet gets wetter” pattern was observed and reported in the

study region.

H. Image Processing

In the current era, almost all EO platforms are equipped

by digital sensors and, thus, terabytes of data are generated

and stored in digital formats every day. As discussed, GEE

hosts an immense number of digital images. The RS images

are extensively utilized in various applications and for different

purposes. Therefore, it is highly required to develop and en-

hance digital image processing algorithms to efficiently exploit

the potential of digital images. Moreover, since the quality of

every input data directly affects the final accuracy of studies,

image processing must be considered a necessity. Precision,

level of automation, reliability, computational complexity, and

time-consumption are the most critical criteria in developing

image processing algorithms [149], [150]. Therefore, to ensure

high-quality results, it is inevitable to develop and enhance the

existing image processing algorithms within GEE protocols.

In this regard, researchers have employed GEE to develop

various efficient and useful image processing algorithms, such

as cloud masking [12], [149], data selection and enhancement

[13], [150], image-based sensor calibration [151], [152], and

training sample migration [153]. For instance, Kong et al.

[150] introduced weighted Whittaker with a dynamic param-

eter (wWHd) denoising method within GEE to reconstruct the

vegetation phenology based on 500 m MODIS EVI products.

A large number of reference samples were used to compare

the proposed method with four well-known denoising methods.

The results, in terms of RMSE, roughness, and computational

efficiency revealed the superiority of the proposed method. Fur-

thermore, Li et al. [13] developed an algorithm to improve GEE’s

processing to efficiently acquire large-scale cloud-free Landsat

images to support further applications. This method comprises

cloud and shadow masking, snow/ice masking, and low-quality

pixels removal by incorporating the quality band. Therefore, this

method can efficiently prepare high-quality data for each region

of interest. It was discussed that their algorithm was developed

within GEE, and the open-access codes within this platform

provided a simple framework with a flexible user-friendly inter-

face. Finally, Kakooei et al. [154] proposed a global Sentinel-1

foreshortening mask to improve the reliability of SAR-based

analysis.

I. Pedosphere

The Pedosphere is the outermost layer of Earth which dynam-

ically interacts with the Biosphere and atmosphere [155]. Moni-

toring and studying the Pedosphere and the corresponding cate-

gories (e.g., soil, geology, and geomorphology) are prerequisites

for sustainable development, especially in the climate modeling

context [156]. Soil is the most significant component of the Pedo-

sphere that has straight impacts on the surrounding environment

and, thus, essential for biodiversity conservation and climate

regulations [157]–[160]. The availability of RS datasets in GEE

makes it an appealing platform for the Pedosphere studies at

diverse scales. GEE was utilized for digital soil mapping [50],

[161], geology and mining [162], [163], geomorphology studies

[164], soil topography mapping [165], soil moisture derivation

[166], and soil carbon and salinity estimation [167], [168]. For

example, Ivushkin et al. [168] applied Landsat-5 and Landsat-8

datasets within GEE to produce a global soil salinity map based

on the thermal anomaly. They incorporated 15 188 reference

points from ISRIC-world soil information. Seven soil salinity

indicators of sand content, silt content, clay content, PH, bulk

density, organic carbon content, and cation exchange capacity

with thermal anomaly were fed to the RF algorithm. The final

soil salinity map obtained overall accuracies of 67%–70% for
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six different times. Moreover, GEE capabilities and Landsat

imagery were combined to automatically delineate the annual

extent of surface coal mining in Central Appalachia between

1985 and 2015 [162]. To this end, the urban areas were masked

using publicly available datasets and the mining zones were

identified by low values in NDVI images. The proposed algo-

rithm achieved Kappa coefficients varying from 0.62 to 0.93 for

different years.

J. Others

Other than previously mentioned applications, there are mul-

tiple articles related to other applications of GEE, which were

conducted with lower frequency. Therefore, their number was

not enough to have a separate category and, thus, were as-

signed to the Others applications category. These studies are

mainly related to archaeology [169]–[171], 3-D printing [172],

wildlife [173], [174], oil platform detection [175], and crashed

airplane detection [176]. For example, 300 Landsat-8 images

between 2013 and 2018 were processed in GEE to detect pos-

sible crashed airplane in the Cambodian jungle [176]. NDVI,

albedo, thermal bands, spectral information, and panchromatic

features were utilized in this study. Moreover, Sentinel-1 SAR

data were used to automatically identify and delineate offshore

oil platforms [175]. The proposed method was evaluated by

1577 reference samples and obtained an overall accuracy of

96.09% over the Gulf of Mexico. Furthermore, GEE was re-

ported as a suitable platform to process high-resolution drone

imagery for pottery shreds identification [169]. In this regard,

texture and gradient features from RGB drone imagery were

calculated within GEE and were ingested into the RF classifier.

The developed algorithm was able to identify pottery shreds

with 32.9% and 76.8% accuracies for two separate regions.

Moreover, GEE was employed to process drone imagery to

estimate the wildlife aggregation population [173]. To this end,

the RF algorithm was applied to map targets of interest (bird nest)

pursuit using a predictive model to estimate the population. The

proposed approach obtained overall accuracies ranging from

86% to 96% over four different water bird colonies. Finally,

a web-application called TouchTerrian was developed to sim-

plify the 3-D terrain model printing [172]. After determining

the region of interest, the corresponding DEM was obtained

through GEE to be used for final 3-D printing. It was re-

ported that users with any level of expertise could easily utilize

their model within GEE with minimum computing resources

requirements.

VIII. GEE LARGE-SCALE CASE STUDIES

As discussed, the enormous capabilities of GEE resolve the

existing challenges of processing big data over large-scale areas.

Therefore, GEE has been recognized as an efficient platform for

regional to global LC mapping and monitoring over long periods

of time. In this section, ten studies conducted over the globe,

continents, and big countries (e.g., the United States, Canada,

and China) are discussed in detail.

A. Globe

Long et al. [133] proposed an automatic method for producing

a global annual burned area maps using all available Landsat

images acquired between 2014 and 2015 within the GEE cloud

computing platform. The map of the burn degree was first gen-

erated using the RF classifier. Then, several logical filters (e.g.,

NDVI, Normalized Burned Ratio (NBR), and temporal filters)

were implemented to select candidate seeds of the burned area.

Finally, the global annual burned area map of 2015 (GABAM

2015) was produced by employing an iterative seed-growing

process. A strong correlation (R2
= 0.74) was observed between

the spatial distribution of the burned surfaces from the GABAM

2015 and the annual 250 m MODIS Vegetation Continuous

Fields (VCF) Collection 5.1 (MOD44B) product.

Hansen et al. [8] analyzed forest cover changes at the global

scale between 2000 and 2012 using Landsat time-series images

within GEE. Based on the results, the authors reported the

following:

1) the tropical domain had the highest forest cover change

(loss and gain) with annual deforestation rate of approxi-

mately 2101 km2/year;

2) most forests in the subtropical climate domain were con-

sidered as croplands, because the existence of long-lived

natural forests in this domain was relatively rare;

3) the trend of change in temperate forests was almost con-

stant and had a low ratio of loss compared to gain;

4) fire was the most important cause of deforestation in the

boreal domain;

5) the speed of deforestation in Brazil was more than other

countries.

In [177], a grid-based Mountain Green Cover Index (MGCI)

was implemented to monitor mountain ecosystems at large

scales. A novel frequency- and phenology-based technique was

applied to generate the global green vegetation cover using all

available Landsat-8 images within the GEE platform. Then,

the real surface area generated from ASTER GDEM Version

2 was applied to calculate the MGCI model instead of the

planimetric surface. The results showed that the generated data

had a high correlation (R2
= 0.9548) with FAO MGCI baseline

data.

In [178], global surface water and its long-term changes were

mapped over three decades of Landsat satellite images (three

million images) within the GEE platform. The result of this

global assessment demonstrated the following:

1) permanent water bodies disappeared by approximately 90

000 km2 and new water bodies covering 184 000 km2

formed between 1984 and 2015;

2) the permanent net water of all continental regions in-

creased except for Oceania;

3) over 70% of global net permanent water loss occurred

in the Middle East and Central Asia due to drought and

human actions (e.g., river damming).

It is finally argued that the proposed strategy within GEE can

be effectively used for water resources management.

Scherler et al. [90] proposed a novel automatic method to map

supraglacial debris cover over the globe using multitemporal
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optical satellite images within GEE. In this study, debris-covered

ice surfaces were generated by thresholding of three indices,

including red to Shortwave Infrared band ratio, the Normalized

Difference Snow Index, and linear spectral unmixing-derived

Fractional Debris Cover. These indices were generated based on

Landsat-8 and Sentinel-2 optical satellite images in 19 glacier

areas at the world-scale from 2013 to 2015. The results showed

that 4.4% (about 26 000 km²) of all glacier areas is affected with

debris. Furthermore, an inverse relationship between glacier

size and percentage of debris was also reported, indicating

continuous shrinking glaciers due to the debris effects.

B. Continent and Big Countries

Amani et al. [1] produced the first Canadian wetland inventory

(CWI) map using Landsat-8 imagery and several advanced

algorithms available within GEE. In this study, 30 000 scenes

of Landsat-8 images were used along with machine learning

algorithms in GEE. The RF algorithm was applied to classify

wetlands over the entire Canada. The CWI map was based on

five wetland classes, defined by the Canadian Wetland Classifi-

cation System: bog, fen, marsh, swamp, and shallow water. The

quantity and quality of the results showed that the generated

CWI map had reasonable accuracy considering the challenges

existing over this immense country (9.985 million km2).

Li et al. [179] generated African LCLU map at a 10 m

resolution within GEE using multisource RS datasets, including

Sentinel-2, Landsat-8, Global Human Settlement Layer, Night

Time Light data, Shuttle Radar Topography Mission (SRTM),

and MODIS Land Surface Temperature images. The RF al-

gorithm was applied to classify the area into five categories

of urban, trees, low plants, bare soil, and water. The results

showed that the LCLU map generated by this method had a better

performance than that of the FROM-GLC10 [180] in detecting

urban class and distinguishing trees from low plants in rural

areas.

Beresford et al. [181] developed an NRT monitoring frame-

work for conservation of the Key Biodiversity Areas (KBAs) in

Africa using the GEE platform. In this study, simple repeatable

techniques were proposed to detect changes in fire rate, tree

loss, and nighttime lights between 1992 and 2013. The results

showed that fire rate, nighttime lights, and rate of forest loss

considerably increased in KBAs and ecoregions. Moreover, the

authors argued that the method implemented within GEE has

a high potential for monitoring changes over any geographic

area and using different RS data types and could be effectively

utilized by conservation end-users.

Teluguntla et al. [182] developed a precise Landsat-based

cropland extent product over Australia and China using machine

learning tools in GEE. In this study, cropland maps were pro-

duced by applying RF to Landsat-8 images. The RF classifier

was trained and validated using ground truth data obtained from

different resources, such as field surveys, very high spatial res-

olution (5 m) imagery, and several other auxiliary information.

Based on their results, the total cropland areas of Australia

and China were estimated as 35.1 and 165.2 million hectares,

respectively.

Goldblatt et al. [183] used GEE for temporal analysis of large

urban areas in India using multitemporal Landsat-7 and Landsat-

8 images. In order to generate high-quality maps of built-up

areas, the country was classified into the built-up and non-built-

up regions using 21 030 training datasets and three types of

supervised classification algorithms (i.e., SVM, CART, and RF).

It was reported that the proposed GEE approach generated a

high-quality map of built-up areas in India and can be potentially

employed in other countries.

IX. CONCLUSION

The proliferation of big geo data and the recent advance in

cloud computing and big data processing services are changing

the future of RS. In this regard, GEE is effectively paving the road

for researchers, scientists, and developers to be able to easily

extract valuable information from big RS datasets without the

burdens of traditional data analysis methods. The massive troves

of RS datasets available with GEE (e.g., archived Landsat and

Sentinel images) helps researchers to address global challenges

and environmental issues, such as global warming, climate

change, LCLU classification over large areas, and monitoring

landscape over several decades. GEE also contains hundreds of

prebuilt functions which can be easily understood and utilized by

different users. Through a basic knowledge of JavaScript, users

can also implement their own algorithms. These advantages

make any user employ this cloud computing platform for various

applications related to LCLU, agriculture, hydrology, natural

disaster, etc. Besides all the advantages, it also has several

limitations, such as limited storage of 250 GBs for each user

and limited memory to train machine learning algorithms, which

may push a new user backward. However, it is undeniable that

GEE presents a novel way of processing geospatial data and

resolves several big data challenges existed for RS researchers.

Based on the GEE publication trends, it is also clear that this

platform is becoming more popular not only among the RS

researchers but also within any community interested in using

EO datasets.
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